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ABSTRACT

STATISTICAL ESTIMATION AND PREDICTION IN
PROBABILISTIC MODELS,

WITH APPLICATION TO STRUCTURAL RELIABILITY

by

DANIELE VENEZIANO

Submitted to the Department of Civil Engineering on
August 12, 1974 in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

When modeling engineering systems it is common
practice to neglect statistical uncertainty on the model
parameters. Such an uncertainty originates from one esti-
mating the parameters of the model from limited data; as a
result, given the estimates, the true parameters values
remain unknown. Statistical uncertainty can be reduced (in
the limit: removed) by collecting additional information.

The model itself may be probabilistic, in which case
statistical uncertainty superimposes to the uncertainty of
the model itself. The combination of statistical and model
uncertainties is known in the statistics literature as a
problem of statistical prediction. If instead the model is
deterministic, all the uncertainty has statistical nature,
leading to problems of statistical estimation.

Both problems of statistical estimation and pre-
diction are studied; their relevance to the reliability of
engineering systems is quantified and illustrated through
examples. It is found that the uncertainty from poor statis-
tical information may dominate the response of the model (say
with regard to failure-no failure events). This is particu-
larly true in the tail behavior of the model since the
occurrence probability of "rare" events may be modified sub-
stantially. Problems of statistical prediction are studied
for univariate and multivariate, memoriless and serially
dependent probabilistic models, and from both the viewpoints
of Classical and Bayesian statistics. Data are considered to
be either in censored or in uncensored format. In discussing
estimation, the important problem is addressed of designing
sampling experiments in an optimal way. This problem arises
when estimating unknown functions of continuous (possibly
multidimensional) parameter from a finite number of (possibly
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noisy) observations; a solution has potential applications
to diverse fields like soils, hydrology, biological systems
surveillance and quality control.
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INTRODUCTION

Uncertainty in probabilistic modeling

As a necessary premise to a work dealing with

statistical modeling, the uncertainties in mathematical

analogs to natural mechanisms are reviewed and classified.

We shall not differentiate probabilities on account of

their meaning; i.e., depending on whether they are factual,

logical or evaluative. Instead, our classification will

concern the object of probability statements, and in

particular how they relate to mathematical models of nature.

The classical question should be addressed first,

whether nature is deterministic or stochastic. The pre-

valent belief of scientists is that nature is deterministic:

to say it with Laplace, that all natural events follow

"the great (deterministic) laws of nature" and that an

intelligence provided with, absolute knowledge could establish

such laws, predict the future with certainty and reconstruct

events in the past with the same degree of confidence.

But can one prove the existence of "the great laws

of nature"? Can one test the hypothesis of a deterministic

against a stochastic nature? The answer being no, the

original problem belongs to the speculative domain of
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metaphysics and has no "correct" general'solution, in the

sense of a demonstrable one. Indeed, having an answer to

this problem is not important to what follows, except for

its constituting a reference viewpoint, at all times inter-

changeable with the opposite one.

In this sense and with this arbitrariness, let us

assume that natural phenomena are the output of a determin-

istic natural system whose future behavior will "resemble

its past". This last assertion, called "the principle of

uniformity of nature", is essential to natural sciences in

that it provides the basis for scientific induction and

prediction. The primary objective of natural sciences is

to produce mathematical analogs to natural systems (system

identification problem) and to describe their present state

(state reconstruction or state estimation problem) at least

to the extent which is relevant to the phenomena under

study (definition of boundaries).

For the purpose of illustration consider a discrete

sequence of events generated by a recursive "law of nature"

of the type:

e = f(e_ ,ej -2'j-3) ,
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th
where e. denotes the magnitude of the j event and f is a

J

deterministic function. Given {e.}, but with f unknown,
J.

the mathematical modeling of the natural mechanism might

start from assuming some boundaries (e.g., e. does not
J

depend directly on ek' for k < j - 8) and then proceed

hypothesizing a mathematical structure within these boundaries;

for instance e = f (ek,®;j-8 <k<j). f1 is a given class of

functions of {ek}, indexed by the parameter 0, and 0 is

estimated from the available data. Finally, in an experi-

mental situation, predictions from the model are confronted

with the outcome of nature. In absence of agreement one

returns to a previous stage, redefining the boundaries, or

the mathematical structure, or the parameters.

The foregoing example was kept simple on purpose.

In most circumstances natural systems are quite complex,

without well-defined boundaries, and little information is

available on their mathematical structure. A more practical

approach might then be to construct a probabilistic analog,

in which the mathematical structure is defined in terms of

only few parameters and reflects our level of understanding

the natural system, while the randomness accounts for the

lack of complete knowledge or for the unwillingness of

modeling the system in greater detail. (This is only a

gross classification of possible approaches; for instance it
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does not differientiate between structured (parametric) and

nonstructured (nonparametric) uncertainty, which distinction

i.s considered unnecessary for the moment). Thus, in modeling

the sequence introduced earlier one might restrict the

search to a simple mathematical representation of the type:

e. = g(e ) , (2)

where g is a stochastic relation to be determined.

Because of the limitation in the arguments of 4, the model

(2) cannot describe exactly the actual process (1); hence

its probabilistic :Character. The most one can do is to find

the function - which leads to the closest (in some probabil-

istic sense) representation of (1) through a stochastic

first-order difference equation. As before one might start

from hypothesizing a structured relation, say - (e _ ),

and proceed sequentially towards the "best" form of i and

towards the "best" set of parameters 0. Let

e *= *(e _ ,[o*) (3)

denote the optimal solution, optimality being judged by an

observer who knows the true law, equation (1). This final
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condition ensures that (3) is a correct probabilistic model

in the sense that long-run relative frequencies from (1)

coincide with the probabilities in (3). Given e _, e * is

a random variable; its uncertainty originates from the

imperfect description of the constitutive law (1) by model

(3) ; it might be called probabilistic uncertainty. A

reduction in probabilistic uncertainty requires a modifica-

tion of the model, say by using e = 4(ej_,,ej- 2) instead of

e= -(e. _ ) If one chooses a third or higher order model:

ej= -(e_ ,e j-2',j-3'...) the optimal choice is f,

with no probabilistic uncertainty.

Going back to a model of the type (2) with optimal

choice (3), assume that 4* is known. For instance 4* might

be a first-order autoregressive normal sequence, with

correlation and variance as unknown parameters (vector 0).

From a finite set of data the estimate 0 of Q* is obtained.

The stochastic model

e. = (e _ ,0) , (4)

which is optimal under the condition 0 = 0*, is no longer

correct for prediction purposes due to the fact that 0*jO

is a random vector in a fiducial or Bayesian sense. (Note

that (4) may still be correct for describing the past.)
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A correct predictive model would be:

e= G* (e ) = .,*),d F*^(Q*), (5)

all 0*

which accounts for the uncertainty in 0* through a modifi-

cation of the model (G* *) . For instance, if the pro-

babilistic model q* is a first-order autoregressive normal

sequence with unknown variance, e. has "Student's" t
J

predictive distribution, for an appropriate choice of the

variance estimator (see Chapter III).

The uncertainty of the model parameters, which

originates from the finite amount of available data, might

be called statistical uncertainty. In prediction, it com-

bines with probabilistic uncertainty through a rule of the

type (5). The qualitative result is an increased prediction

uncertainty. Statistical uncertainty is reduced by

processing more information; in fact this reduces the

variance of (i* - 0 if 0. is a consistent estimator. In

other words, additional information reduces the (statistical)

uncertainty on the probabilistic uncertainty which is given,

say, by the "correct" but unknown stochastic relation (3).
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Consider relaxing the assumption that g* is known,

and replace the optimal model by some consistent estimator

g, e.g., within a class of first-order autoregressive

models that contain the Gaussian model as a special case.

Then 0 + 0* and 5 + @* with probability 1 in the limit

case of an infinite amount of available information. Never-

theless, for limited information the model obtained from

equation (5) with g in place of * is not correct for pre-

diction, due to the neglected (say fiducial or Bayesian)

uncertainty of * For instance one might accept on

statistical ground the hypothesis that {e.} is a normal
J

sequence, but this does not exclude that the true sequence

has a different marginal distribution. If y indexes the

possible exact models, one should use the following as a

prediction model:

e G(e.) = G*(e. ,1 )d F (Y) , (6)

all y

where G*(*) is given by equation (5) with 4*, 0* and 0
y

indexed by Y.

The uncertainty on the model has the same statistical

nature as the uncertainty on the parameters for a fixed model.
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To summarize briefly: the assumption was made that

natural systems are deterministic; however the use of

descriptive probabilistic models may be necessitated by the

complexity of a detailed deterministic analysis. Two types

of uncertainties are always present when such models are

inferred from a finite set of data: (i) a probabilistic

uncertainty, which is inherent in the model itself, due to

its being an approximation to the actual deterministic

system; (ii) a statistical uncertainty, with origin in the

finite amount of available data. Statistical uncertainty

has itself two components, one at the level of the model,

the other at the level of the parameters. Probabilistic

and statistical uncertainties combine in a rather complex

way to provide prediction models; see equations (5) and (6).

No essential modification is induced by assuming

that natural systems are themselves random, except for the

fact that deterministic models should be ruled out. Perfect

modeling would produce mathematical analogs with probabilis-

tic, but without statistical uncertainty. In models inferred

from limited data statistical and probabilistic uncertainties

would again combine, with the net result of increasing the

prediction uncertainty.
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Under the hypothesis of stochastic natural systems

the notion of probabilistic uncertainty is related to what

Good (1965) calls "physical" probability and Benjamin and

Cornell (1970) call "fundamental" probability; these labels

refer to an uncertainty which is intrinsic in the natural

mechanism, and therefore irreducible in prediction. However,

identity between the present definition of probabilistic

uncertainty (which refers to the model) and "physical" or

"fundamental" uncertainty (which refers to the natural

system) holds conditionally on the model selected corres-

ponding exactly to the stochastic law of nature. This was

not the case, for instance, when a process like (1), with

no-physical or fundamental uncertainty, was approximated

by a first-order autoregressive process of the type (2)

which, according to the present definition, has nonzero

probabilistic uncertainty.

Analyzing uncertainties on models as opposed to

doing it directly on nature evades the question whether

probability is a constitutive property of nature (this

viewpoint is supported by the physical and fundamental

probabilities of Good, Benjamin and Cornell), or it is due

to our incomplete state of knowledge, as in Laplace's view.

Going one step further one might ask whether sub-

jective probabilities can be viewed also as the superposition

of "model" uncertainties and statistical uncertainty about
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the correct "model". In this case "model" stands for

physiological or psychological structure, being the physical

or mental counterpart of a stochastic mathematical model

(or class of models, like equation (2)). In this sense,

"absolute certainty" (or "equiprobability of exclusive

events", etc.) might be just one of such mental "models".

Research in this area would be valuable to assess the

relative merit (not the correctness, which cannot be es-

tablished) of the model-uncertainty notion versus the idea

of an irreducible uncertainty in nature.

Safety and statistical uncertainty

In the analysis of structural safety it is customary

to assume some probabilistic model for the unknown quantities

and to neglect statistical uncertainties both in the model

and in the parameters, as second-order variations. The

arbitrariness of this assumption discredits the claim that

a probabilistic approach to safety is more rational than a

nonprobabilistic approach. In the former one assumes a

probabilistic model; in the latter one assumes a determinis-

tic model; the difference might be called quantitative more

than qualitative. The author addressed the problem of

rescuing probabilistic methods from the accusation of
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arbitrariness in a recent study (Veneziano (1974)). After

criticizing the deductive character of the present theory of

probabilistic safety, some lines wer.e indicated along which

a more general inductive theory might be developed. Al-

though still within a strictly deductive logic, the inclusion

of statistical uncertainty in probabilistic models is a step

in this direction.

The relevance of statistical uncertainty in state

estimation and prediction is studied quantitatively in the

following three chapters, with particular emphasis on

safety implications. A basic problem in structural safety

is that of finding the predictive distribution of unknown

quantities (such as resistances and loads) at a future

time, when the system performance, say failure or non-

failure, is of concern. To solve this problem, a mathematical

model is assumed for the time evolution of these unknown

quantities (state of the model). The model may be determin-

istic or stochastic; in any case it contains unknown para-

meters, which control the evolutive law, or the present

state, or both. If no statistical information were available,

the predictive distribution of the state (and so the safety

of a system depending on it) would be undefined.

This prediction problem has important particular

cases and extensions which depend mainly on the choice of

the mathematical model.
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A very special and important case is when the state

evolution in time is assumed deterministic (in particular,

state = const.), with unknown present state. Statistical

information consists of partial, and/or noisy, and/or

censored observations of the state.. In "deterministic"

models of this type any prediction problem reduces then to a

problem of statistical estimation.

In Chapter I, classical estimation theory for noisy

observations is reviewed and applied to several problems

in the area of Civil Engineering. In the same chapter the

theory is extended to censored data, such as those from

acceptance tests and from proof loading of structural systems.

The optimal design of estimation experiments is

discussed and examplified; in particular, a problem which is

given consideration is that of designing optimal sampling

networks for the estimation of spatially continuous, unknown

state functions with possibly multidimensional parameter

(for instance the compressibility of a soil as a function of

three geographical coordinates).

Clearly, since the state is unknown but not random,

all the estimation uncertainty is statistical in nature, and

can be reduced (to zero, in the limit) by collecting addi-

tional information.
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The simplest models with stochastic time dependence

assume that the state evolves at discrete times like a

stationary, independent ,sequence. The marginal distribution

type of the sequence may be assumed known with unknown

parameters (parametric or parameter-free prediction) or may

be itself unknown (nonparametric or distribution-free

prediction). In both cases statistical information consists

of an independent sample from the same statistical popula-

tion; again, the sample may be noisy or censored.

For these models the simplest prediction problem

asks for the distribution of the state at a future time

(say the distribution of the next value in the random

sequence), but one can imagine situations in which the

joint distribution of many future observations is needed;

for instance, when computing the reliability of a system

subjected to m > 1 independent loading events. Not only

does statistical uncertainty cause the predictive distribu-

tion to be of different type than that assumed for the se-

quence, but it also introduces correlation among distinct

future observations. Finding the joint predictive distri-

bution of the state at different times is known as a problem

of simultaneous (as opposed to "simple") statistical

prediction.
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Independent models and related prediction problems

are studied in Chapter II. For each marginal distribution

considered, a penalty measure for statistical uncertainty

is defined and tabulated, allowing one to make reliability

analyses and designs which account for statistical uncer-

tainty. The penalty may be quite large both in terms of

estimated failure probability, and of design safety factors

for a given reliability. The penalty increases with the

level of reliability and with decreasing statistical

information.

An impartial position is held with respect to

Classical and Bayesian approaches, although the Bayesian

logic seems more natural for handling prediction problems.

A third class of models hypothesizes that the state

evolves according to a stochastic process with memory.

The same prediction problems which were mentioned for white

sequences can be defined here, but the difficulty of finding

exact analytical solutions for the predictive distribution

increases considerably. In Chapter III attention is re-

stricted to first-order autoregressive models. In this

case, when the process is known and the unknown state is

estimated from noisy observations one can use the well-known

Kalman filter and Kalman prediction algorithms. The
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extension of the algorithms to cover censored information

is presented and applied to the prediction of resistance

parameters in deteriorating systems. Some cases with

unknown process parameters are also studied, and a penalty

measure for statistical uncertainty is defined, as for the

independent models in Chapter II.
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CHAPTER I

DETERMINISTIC MODELS

In this chapter we discuss the problem of estimating

an unknown but non-random state of nature. The terminology

"deterministic models" refers to the evolution of the state

in time; the evolution being deterministic, estimation of the

present leads automatically to prediction of the future. In

structural reliability, data collection and statistical esti-

mation can be used to reduce the uncertainty on natural

properties (resistance, elastic moduli, etc.), on soil para-

meters of structural interest before construction (profile,

compressibility, bearing capacity, etc.), on the overall

characteristics of elements and subsystems after construction

(member and joint stiffnesses, dead loads, geometrical vari-

ables, etc.).

"Statistical estimation" is used here in a non standard

sense in that the object of estimation are not the parameters

of a probabilistic model, but rather the present state of a

physical system; the two problems are, however, mathematically

identical.

A flexible and general formulation of the estimation

problem is one which allows for information being available on

the state of nature before experimenting. This leads naturally,
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although not necessarily, to Bayesian theory, in which evi-

dence from new data is combined with quantified prior beliefs

through Bayes' theorem, yielding quantified posterior beliefs.

Most of the results in this chapter are valid under Bayesian

inference, but methods of non-Bayesian estimation theory are

also considered.

Necessary for applying the techniques of statistical

estimation theory is that the state of nature has at least

partial observability. In the case of complete non-noisy

observation, the state is known with certainty after the

experiment; therefore the interest of estimation theory lies

in the less trivial cases of noisy or partial non-noisy

observations (Sections 1.1, 1.2, 1.3), and of censored, noisy

or non-noisy data (Sections 1.4, 1.5). These are the kinds of

data which are available most often, and which are considered

in this chapter. However, there is no logical necessity for

experimental evidence not to conform to different formats.

The distinction between uncensored and censored data

is mathematically relevant, and also corresponds to different

goals of experimentation. Uncensored data are collected by

devices which measure directly the quantities of interest,

although possibly with disturbances. Examples are the

measurement of mechanical properties of materials sampled

from a structure after construction and the laboratory tests

on soil specimens. In both cases experimental data are in

39



the form of direct point measurements of the state of nature,

which is an unknown function of one or more natural variables.

Local disturbances in the system caused by the sampling pro-

cedure are generally neglected. Even with non-noisy measure-

ments (which is rarely a realistic hypothesis) the state of

the system at nearby points remains uncertain. Making "best

guesses" and quantifying the residual uncertainties are among

the goals of estimation theory.

In other cases data are collected in a censored format.

Typical is the proof loading of a structure under prefixed

loading conditions. In general the system survives, which

fact insures a minimum resistance level via truncation of the

resistance distribution. The reasons for collecting informa-

tion of this type are both to increase the reliability of

those systems which survived the experiment, and to detect

possible causes of future disastrous failures by observing an

anomalous behavior. In some cases this is also a way of

demonstrating the meeting of legal requirements for minimum

resistance. An obvious economic advantage of proof loading

over direct methods of measuring resistance is that the

experiment is destructive selectively, with survival of those

systems whose performance under experimentation was

satisfactory.

The organization of the chapter is as follows. The

first three sections deal with estimation from uncensored
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data. After reviewing basic results of Bayesian and Classical

estimation theory (Section I.1) some criteria of experiment

evaluation are introduced in Section 1.2. The evaluation

criteria allow one to assign informativeness measures to a

given experiment and to compare a priori different experiments.

This leads naturally to problems of optimal experiment design

which are discussed briefly in Section 1.3. Examples are

used both to illustrate possible applications of the quoted

results to (structural) reliability problems, and to suggest

developments in directions of engineering interest. In the

latter sense they may appear to be incomplete, as indeed they

are.

I.1 ELEMENTS OF BAYESIAN AND NON-BAYESIAN ESTIMATION THEORY;

UNCENSORED DATA

Consider a system with an unknown finite dimensional

state vector X = [X , X , ... , X ]' (for instance, X. may be
-" 1 2 n1

the resistance of the ith structural member or the compressi-

bility of the ith soil stratum). In many cases X is defined

from a continuous and possibly vector-valued state function

X(-) through appropriate discretization. Another meaning that

X may have is as a collection of parameters in a polynomial

approximation to X(-). However, the analysis which follows

applies also (in the limit) to the full function X(-). For

41



this, X collects the values of X(') at a finite number of

points. Since the length of X and the points at which X(-)

is sampled by X are arbitrary, this covers in the limit the

case of continuous estimation. Since X is not random the

uncertainty on its actual value is purely statistical (see

Introduction). The purpose of making experiments is to

reduce this uncertainty by providing additional information.

In Section I.1 we give some state estimators and the un-

certainty in the state after experimentation. This is done

concisely, without proofs. Proofs can be found in classical

texts on estimation theory, which the reader is referred to.

For applications see Sections 1.2 and 1.3.

1.1.1 Bayesian and non-Bayesian estimators

The problem in this paragraph is to define common

rules (estimators) for obtaining point estimates of X from a

given amount of information, including in particular the

observations of experiments.

The ingredients of a statistical estimation rule are:

(i) the prior uncertainty on the state

vector X;

(ii) the observation model;

(iii) the estimation criterion.

In Bayesian estimation theory the first two elements

define the posterior probability distribution of X. Let the

prior probabilities be given in the form of the PDF f(X),
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and denote 1(ZIX) m f(ZIX) the likelihood function corres-

ponding to the measurement model (Z = vector of measurements).

Then, from Bayes' theorem, the posterior PDF of the state is:

f (XI Z) c f (X) - l(Z IX) (I.1)

f(XIZ) is an exhaustive descriptor of the state of knowledge

after experimentation and can be used for posterior relia-

bility evaluations. If desired, posterior confidence regions

(regions in state space which contain X with a given proba-

bility) can be found from it. Also, given the error loss

function

L(X) = L[X - (Z);

X = true state,

X(Z) = posterior estimate of X,

X = X - X(Z), error,

one can find an optimal estimator X(-) as any law which

minimizes the Bayes risk (= the a priori expected loss):

B[X(-)] = E [L(X)] = L[X-X(Z)] f (X,Z) dZ dX.
XZ

all X all Z
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After writing f(X,Z) = f(XjZ) - f(Z) it is easy to see that

the same estimator minimizes the conditional Bayes risk

(= the posterior expected loss):

B[X(Z)IZ] = E [L(X)IZ]= { L[X-X(Z)] f(XIZ) dX.

all X

There is no unique, best choice for the estimator of X.

Different choices of L[-] produce different optimal estimators.

Commonly used Bayes loss functions and the associated optimal

point estimators are:

(i) L(X) = 2 (Squared error loss function),
S

where I x 2 denotes the generalized squared
S

norm of the estimation error with respect to the

symmetric positive matrix S:

11x11 2 = [X-X(Z)]'S[X-X(Z)].
S

The associated optimal estimator is called the

minimum-variance-of-error estimator, denoted

X('). It is easy to show (see for instance Sage
MV

and Melsa (1971), Par. 6.2) that X (Z) coincides
MV
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with the posterior mean estimator X(-), and
PM

therefore is independent of S.

. L(X) n f for I Xi = (XX) 1 2 < C/2

1 /E for I IXII > '/2

(limit uniform cost function)

The conditional Bayes risk attains its minimum

value when X(-) satisfies

D f(XiZ)

D X X = X(ZW

i.e., when X(Z) equals the maximum posterior

estimate, X (Z).
MAP

(iii) L(X) = max IIXJI (maximum-absolute-value-of-
S

error loss function)

This criterion is applicable when f(XiZ) 0

outside a bounded region, in which case the

optimal estimator is the minimax estimator, also

called the minimum-error estimator.
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(iv) L(X) = lxii (absolute-value-of-error loss
S

function)

When X is a scalar the associated optimum esti-

mator X%(-) corresponds to a median value of the

posterior density. Analogous results do not

exist for the multidimensional case, since there

is no standard definition of the median of multi-

variate distributions.

In general these Bayesian point estimators differ the

one from the others. However, for symmetrical and unimodal

posterior densities it is true that: X () = X (-) =
MV MAP

-ABS

All the loss functions considered above are "homo-

geneous" in the sense that they penalize the error vector X

irrespective of the actual value of the state vector X (and

of the estimate X(Z) = X - X). Although this is common in

estimation theory and leads to statistically meaningful "best"

estimates of X (like the posterior mean, the maximum posterior

estimate, and so on), it is not a necessity of Bayesian

estimation. One can easily think of estimation problems in

which L(o) is markedly nonhomogeneous, reflecting the un-

equal consequences of an estimation error for different true

states of nature.
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Some non-Bayesian point estimators

(v) Linear-minimum-variance estimator

Let S- = E[(X - X(Z))(X - X(Z))'] be the second
X

moment matrix of the estimate error. An esti-

mator which minimizes the trace of S_ is called a
X

minimum-mean-square-error estimator. The Gauss-

Markov theorem states that if X and Z are random

vectors with second moment matrices:

E[X X'] = S
X

E[Z Z'] = S
Z

E[X Z'] = S
X Z

and if det S $ 0, the linear (in Z) minimum-
Z

mean-square-error estimator X(-) is:

X(Z) = S S Z , (1.2)
X Z Z

with associated second moment error matrix:

E[X X'] = E[(X-X)(X-X)'] = S~ = S -S S 5' . (1.3)
X X XZ Z XZ

Also, if the condition for unbiasedness
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E[X] = S S E[Z] (= E[X]) (1.4)
X z z

is satisfied, then X is the (unbiased) linear-

minimum-variance estimator, denoted X () . For
LMV

a proof of the theorem, see Liebelt (1967),

Par. 5.3.

(vi) Maximum likelihood estimator

When the conditional measurement density f(ZIX)

is known, the maximum likelihood estimator

X (Z) is defined to be the vector which maxi-
ML

mizes f(ZIX). Under conditions of differentia-

bility and unimodality a necessary and sufficient

condition for X (Z) is:
ML

3 F(ZX)
= 0 (1.5)

X X = X (Z)
- ML

This estimator is particularly appealing when no

a priori information on X is available, or when

the posterior Bayesian density f(XJZ) is difficult

to compute.
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(vii) Least-squares estimators

Consider the measurement model

Z = g(X) + s

where E is a zero-mean random noise vector. A

least-squares estimator X() can be defined by
LS

the quadratic condition:

J[X(Z)] = {Z - g[X(Z)]}'R{Z - g[X(Z)]} = min

X(Z)

where R = R' > 0.

A more general form of the optimality criterion

for least-squares estimators will be considered

at the end of the next paragraph.

1.1.2 Linear observation model; measurement error

covariance known

The measurement vector Z being a stochastic linear

function of X defines a particularly simple and important case.

From what will be said in this paragraph the linear observation

model is mathematically very convenient and should be used

always when meaningful in the physical context. It is also

the obvious model when Z measures X directly.
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Let

Z = Z + H X + s, (1.6)
- -o - - -

where Z is a given m-vector, H is a given (mxn) measurement
0

matrix and 6 is a zero-mean noise vector. The posterior

Bayesian density is given by equation (I.1), where (ZIX)

follows the same distribution type as 6, differing only in

the location parameter. The special case when both the prior

density f(X) and the noise density f(E) are normal is of

considerable practical and theoretical interest. Let

X N (X; ) , N (0;E),
- n -b m -

Cov[Xs] = 0

Then, from equation (1.6):

(Z X) O N (Z + H X;e)

Z N (Z + H Xb; H E H' + 0)m -o - - -b - -

From direct substitution into equation (I.1) one finds (see

for instance Bryson and Ho (1969), Par. 12.7) that the

posterior distribution of X is also Gaussian with parameters:
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E[XZ] = X = Z {H' 0' (Z - Z )+ Z Xb (a )-[IZ - -a -a-- - -o -b--by a

(I.7)

b + Z H' 0~ (Z - Z - H X ) (b)

-b -a - - - -o - -b

= X + L H'(H L H' + 0)~(Z - Z - H X ); (c)

-b -b- -- b - - - -o - -b

and

Var [X|Z] = Z= ( ~ + H' G'H)' (a)

(1.8)

-b -b H' ( + H E H')~ H ( , b)-b b - - b - - -b

where the indicated inverses are assumed to exist. The last

identity in equations (1.8) comes directly from the matrix

inversion lemma, see Householder (1953). For the case of

present interest the lemma proves the equality:

(A + B' C B) = A- - A B' (B A1 B' + C~1 ) B A'

Again, the indicated inverses are assumed to exist (for the

use of generalized inverses in the foregoing results, see

Deutsch (1965) Par. 7.2).

The relative advantage of using either of equations

(1.8) comes from comparing the dimensions of the matrices

under the inversion signs, which are the same as the

51



dimensions of X and Z. This point is discussed more below.

For the special case of a scalar state and a scalar

noisy measurement (n = m = 1); i.e., for

Z = Z + h X + E; X r N(Xb; c ) N(0; G 2 ); Cov[X,E] = 0,

equations (I.7b) and (1.8) become:

(G.2

X X + h a (Z -Z -h X) ; (1.9)a b 2 0 b

2 + h2 (I.10)a [a 2 cr, J h 2  + a: b C

Equations (1.7) and (1.8) play an important role in

Bayesian and Classical linear estimation theory, and will be

used repeatedly in the sequel. It seems therefore fruitful

to pause for some comments.

The posterior mean (I.7b) or (I.7c) is a linear

function of the "innovation vector" (Z - Z - H X ), meaning

that the difference (X - X ) is proportional to the de--a =b

viation of the observations from their prior expected value

(Z + H Xb); see equation (1.6). The revision of the state

mean, (X - X ), also depends on the matrix product E H' e~1-a --b -a - -

(on h - in the scalar case), being larger for a smaller

52



error covariance matrix (*. This means that measurements

which are statistically affected by small errors are given

more credibility than measurements with highly dispersed

errors. The difference (X - Xb) is also "proportional" to

the signal-to-noise strength which is measured by the obser-

vation or modulation matrix H; see equation (1.6). Finally

the presence of E in equation (I.7b) indicates that Bayes'-a

rule weights more the observations when the prior uncertainty

about the value of X is larger (when E is larger); a state--a

ment which makes good sense.

Passing to the posterior error covariance, equations

(1.8), if E_ is positive definite, H' E H is at least

positive semidefinite, so that E1 > _~ (meaning that

E-1 - Eb1 is positive semidefinite). Assuming F > 0, the

same is true for and Z b (meaning that Z - E is-b -a -- b -b -a

positive semidefinite). The foregoing inequalities state

formally that the uncertainty does not increase by processing

more information, again an intuitively obvious fact.

An important feature of equations (1.7) and 1.8) is

that while the computation of the posterior mean requires

knowing the outcome Z of the experiment, the posterior error

covariance matrix does not depend on the numerical value

(*) If A and B are square matrices of the same
dimension we say that A is larger than B, written A > B
if the difference (A -~B) is positive definite.
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of the observations, and therefore is precomputable (before

the experiment).

If 0 = diag [a ] equation (I.8b) presents the

practical advantage over equation (I.8a) that one can process

recursively one scalar observation at a time, thus reducing

the matrix inversion to the trivial operation of inverting

scalars. Another advantage of using equation (I.8b) is that

when E~1 is positive semidefinite (which corresponds to the

case of partially "diffuse" prior) the matrix (E + H 0_1H)-b

may be singular. In any case, numerical difficulties are

expected in the inversion of Z-1 if both the prior and the
-a

observations carry little information on some linear com-

bination of the state variables.

Intuitively speaking, if the absolute entries of H

are not much larger than 1 and the prior distribution has

little dispersion as compared to the measurement noise co-

variance, E~1 is "large" with respect to H' 0~1 H, and
-:-b

E . This is immediately clear in the scalar case.

Also, since the product Z H' 0-1 is "small", it is X X-a -b

meaning that little is learned from measurements with large

noise perturbations.

At the other extremum, if the prior uncertainty is

"large" when compared to the covariance of the measurement

error (accurate experiments), it is E ~ (H' 0-1 H)~'

(assume existance of the inverse) and, from equation (I.7b):
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X a X + (H'O'H) H' O'(Z-Z )-(H'O 'H)' H' 0e1 H X-a -b - - - - -- o - - - - -- b

= (H' 1H)' H' 0 1 (Z-Z )

= H'(H H')' (Z-Z )

The last equality holds under the assumption: det (HH')/O.

The point of this derivation is to show that for accurate

experiments prior beliefs receive little weight in the

posterior probabilities. (In processing accurate measure-

ments one should use equations (I.7c) and (I.8c), which do

not require inverting 0).

From equations (I.8a) and (I.10) it is seen that the

critical comparison which decides on the effectiveness of an

experiment is between ' (or 1/a2) and H' 0~1 H (or h 2 /a).

The latter matrix product, denoted M, is known as the

Fisher information matrix of the experiment. It is easy to

show that M is positive semidefinite. In fact, after

assuming e > 0, one may write:

M = H' 0-1 H = ( / H)' (0-1/2 H)

Since any matrix of the form A' A is positive semidefinite,

the property M > 0 follows.
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Two generalizations of equations (1.7) and (1.8)

are indicated next; they concern the case of correlation

between the state X and the measurement errors e, and the

case of repeated observations from possibly different linear

models. Finally, equations (1.7) and (1.8) are specialized

for a noninformative ("diffuse") prior.

(i) Correlation between the state vector and the

measurement errors

Uncorrelation between X and _ is a rather "robust"

assumption, in the sense of being justified in most problems

of state estimation. However, depending on the modalities

of the experiment, there may be cases in which this is not

true.

When the measurement error vector e and the state

vector X are correlated a priori, say Cov[X, _] = 1' $ 0,

some easy algebra generalizes equations (I.7c) and(I.8b)

into:

X X + (Z H'+J) (H Z H'+H F+P'H'+) ~'(Z-Z -H X); (I.11)
-a -b -b - - b - - - - - - - -o - :-b

E - (E H'+r)(H Z H'+H r+F'H'+G)~1(H z +r'). (1.12)-:-a -b -b = b = b -

For a scalar state variable and Cov[X, s] = Y these equations

yield:
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X = X +a b

h + y/a2

2 hb (Z - Z - h Xb)' (1.13)
h2 + 2hy/a 2 + /2 oh E+ b

a2 -
2

a bl

(h + y/ 2)

h 2 + 2hy/2 + a /2
(1.14)

(ii) Repeated linear measurements

A second easy generalization of equations (1.7) and

(1.8) concerns the case of multiple observations according to

the model:

Z. = Z
-1 --.

+ H. X + 6. ;-1-- -1

where Z . is an m. -measurement vector, H . is an (m. xn)
1i 1-

observation matrix, Z is a given vector and the e's are

noise vectors with first and second-moments:

E[E.] = 0
-1

Cov[E. , E.] = G. 6..-1 -J -1 1J

Cov[s.,X] = 0

Define:

Zi Hi -IT- TO 1 --
Z = ;Z = . ;H= '- . - 0 - .0

.:-K - - K KK -
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Then:

E[s] = 0 ; Cov[s,s] = 0 = diag[0.]

Entering equations (I.7a,b) and (I.8a) with the foregoing

notations yields:

X = E-a -a

' K

(a)H.' 7' (Z. - Z- -i -1 -0.
I

(1.16)

- + E a

K

i . 1 (Z. z

K

-a = (~1 + 2 H.' 0.' H.)a -b -1 -1

- H. Xb)]; (b)

-I
(1.17)

Alternatively (and with operational advantages) the equi-

valents of equations (I.7c) and (I.8b) can be written in

recursive form:

-a. -bX -b -H.1(H. H.'+O.)~'(Z.-Z -H. X ); i=1,...,K,4 -b +. - I I -1 -o. -i -b.
1 1 1 1 1

-b
= X -l ; i=2,...,K,

(1.18)

E = -E H.'(0.+H. E H')-'H. E
-a. =b b. -b -1 - b - -1 -b.
1 1 11
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; i=2,. .. , ( )
-b

with given initial conditions: X = X; = b

(iii) Diffuse prior state probabilities

The prior distribution of X is said to be diffuse if

f(X) constant. Then from equation (1.1):

f (X) Z) 0 1(ZIX)

= (2 7) -n/
2 121-1/2exp{- !(Z-Z -H X)'~ (Z-Z -H X)}.(I.19)

2 - - -0 - -

By direct substitution one can verify the following identy

for the quadratic form in the exponent of equation (1.19):

-l ^ -l ^ ^ 1
(Z-Z -H X)'1 (Z-Z -H X) (Z-Z) 'O (Z-Z)+(X-X)'H' 1 H(X-X)
-w- -- - ----- -- - - - --

where

X = (H'0 1H) 1 H'O (Z-Z )

Z = H X + Z

and the Fisher information matrix M = H'0 1 H is assumed to

be positive definite. Since (Z-Z)'_ (Z-Z) is not a function
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of X for given Z, we conclude:

f(XZ)o exp{- (X-X)'H'G~ 1 H(X-X)}, (1.20)

meaning that (XjZ) has normal distribution with parameters:

E[XIZ] = X a= X
- a- l9(- HH)-

= (H'O 1H) 1H 0)1(Z-Z ) H'(H H') 1 (Z-Z ) (1.21)

Var[XZ = = (H'O 1H) 1 . (1.22)

(The last equality in equation (1.21) requires the condition

det(H H') j 0). Note that analogous results were found

above as approximations to the case of informative prior and

accurate measurements. For Z = 0 and for measurement errors

having spherical normal distribution (0 = a 2 I ) equation

(1.20) reproduces a well-known result in linear regression

theory (see Box and Tiao.: (1973) page 115).

(X'Z) -nHexp'- (X-X)'H'H(X-X)

where now X = (H'H) 1 H'Z

The posterior parameters, equations (1.21) and (1.22), could
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also be derived by letting b 1 = 0 in equations (1.7) and

(1.8). The posterior covariance coincides with the inverse

of the information matrix, and the posterior mean is in-

dependent of the measurement dispersion.

For the linear Gaussian model considered above Xa is

the best Bayesian estimator under several criteria: posterior

mean (XPM X ); maximum posterior estimate (XA =X

absolute-value-of-error (BX X). For all these cases-ABS -a

the Bayesian estimator error covariance is .

If a priori the first two moments of X are known, but

not its full prior probability distribution, the estimators

(1.7) and (1.11) no longer possess the properties that we

found for the Gaussian model. However, the estimators (1.7)

and (I.11) are attractive because they use only the first

two moments of X and c, and because the resulting error

covariance is independent of the measurement vector Z, and

therefore is precomputable. Later in this chapter we shall

see that they correspond to the linear-minimum-mean-square-

of-error estimator. For non-normal prior and/or non-normal

measurement error some nonlinear estimators may exist

with lower estimate error mean square. Under a second

moment characterization of X and e the estimators (1.7) and

(I.11) are often called pseudo-Bayes estimators.

A brief discussion of non-Bayesian point estimators

for the linear measurement model (1.6) follows.
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Some non-Bayesian linear estimators

(i) Linear-minimum-variance estimator

The Gauss-Markov theorem (cfr. equations (1.2) and

(1.3)) does not require any functional relationship between

Z and X. Here we specialize the claim of the theorem for

the linear observation model (1.6), for which we define:

Z* = Z-Z -H X;
-- o -- b

Then, in the notations which precede equation (1.2):

S
SCov [X,-Z]

S = Var[Z] = H E H'+P' H'+H P+ ,
Z* -b- -----

where F = E[X* E'] = Cov[X,E]

From equations (1.2) and (1.3):

X*= (E H'+) (H E H'+'H'+H )Z* ; (a)- b- - - -b- - - - - - -

(1.23)

(X = X*+X) (b);

S~- S = Z -(Z H'+) (H E H'+r'H'+H +D) -l (H E+r'). (I.24)
X* x -b = - - - -b- --- -
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The reason for introducing the new variables X* and

Z* is to have E[Z*] = E[X*] = E[X*] = 0, so that equation

(1.4) holds and X is the linear-minimum-variance estimator

(and not only the linear minimum-mean-square-error estimator).

As already anticipated in discussing Bayesian esti-

mation equations (1.23) and (1.24) are identical with

equations (I.11) and (1.12). They hold under no distribution

assumption, a property which makes ILMV a very convenient

distribution-free estimator (see Anderson (1972) for some

structural engineering applications of the scalar form

(1.9) (1.10)).

Equations (1.23) and (1.24) reproduce equations (1.7)

and (1.8) when F = 0, and the Bayesian results for diffuse

prior, equations (1.21) and (1.22), when, in addition,

= .

(ii) Maximum likelihood estimator

Equation (1.5) is the condition for maximum likelihood

when (ZIX) has unimodal distribution. For the linear ob-

servation model (1.6) with Gaussian errors the conditional

distribution of the observations is N (Z +H X; 0). There-

fore maximizing f(ZIX) is equivalent to minimizing the

quadratic form:

1Z-Z -H X1 2 = (Z-Z -H X)'0~1(Z-Z -H X)-- 0 - E-_ - -0 - - - - _O - -
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This condition is satisfied if

x = x (Z) = (H'O 1H)~H'e'(z-Z) = H'(H H') (Z-Z

We conclude that in this case the maximum likelihood esti-

mator coincides with the Bayes posterior mean for diffuse

prior, equation (1.21). The estimate error covariance is

the same as in equation (1.22).

Note that these results are independent of the prior

information on X, so that from a Bayesian viewpoint the

maximum likelihood estimator is efficient only if Z 1 = 0.

(An estimator is said to be efficient if it minimizes the

error mean square). Otherwise the Bayes posterior mean and

the linear-minimum-variance estimators have smaller error

covariance.

(iii) (Weighted) least-squares estimators

Given the linear observation model (1.6), let the

optimality condition for the estimator have the weighted

quadratic form:

x-x' (X-x )+(Z-Z -H X) '1 (Z-Z -H X)) = min (1.25)
2- -b -b -- b -- o -0--

X

As before, X is the prior mean vector and E is- the prior

covariance matrix of X, e is the covariance of the zero-mean
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measurement error vector e, and Cov[X,c] = 0. In equation

(1.25), J is the sum of a penalty term for the weighted

distance of the observation from its expected posterior

value. Of course, E and e may be replaced by different
-:-b

matrices, but when they are chosen as indicated above, the

weighted-least-squares estimator X (Z) coincides with the

posterior Bayes mean, equation (1.7), and with the linear-

minimum-variance estimator. In fact, in order that

d J/d X = 0 it must be:

X(Z) = X (Z) = X +Z H'e~ 1 (Z-Z -H (1.26)-LS - -b-a-- -- ( -1

with the error covariance Z in equation (1.8).

If E and 0 in equation (1.25) are replaced by-b

different matrices the weighted-least-squares estimator is

still given by equation (1.26) with the obvious substitu-

tions, but now X is inferior to the estimators XLMV and

Xa'

In summary, for the linear observation model (1.6)

the estimator (1.7) satisfies the linear-minimum-mean-square-

of-error and the least-squares criteria, the latter in the

form (1.25). If in addition the prior distribution of X

and the distribution of the measurement error e are multi-

variate normal, then (1.7) shares some desirable Bayesian

properties, such as being the maximum posterior (density)
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estimator, the absolute-value-of-error estimator, and the

posterior mean. For a diffuse prior X in equation (1.21)

has analogous properties being, in addition, the maximum

likelihood estimator.

1.1.3 Linear observation model; measurement error

covariance unknown

The estimation problem with the linear experiment

model (1.6) and unknown measurement error covariance ® is

significantly more involved than the same problem when e is

known. Nevertheless, simple Bayesian solutions can be

found in particular situations.

One case which lends itself to an easy, although

approximate, treatment is when the prior information on e

has the discrete form:

nj

P(0) = P. 6 (0-0.) (1.27)

where~ P. , 6(A if A / 0where P 1 6(a) = , and {G.} is a set of

j 11lif A 0

known matrices.

Under the conditions e N (0, 0); X ~ N n b

Cov[X, e] = 0, and under the simplifying assumption that

(1.27) is also the posterior distribution of 0 (this

assumption is legitimate for measurements carrying little
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new information) the posterior mean of the state is given by

nj nj
X = P. X =X + P E H' (Z-Z-H X (1.28)

-. j -a. -b . L a.2-- --(- -b

where E = (L~' + H'-.'H) ' (1.29)a -- -

The associated error covariance of the estimate is:

nj

P. E + (X ) (X -X (I.30)-=a- -a -a. -a ,.- (

For a diffuse prior on X equations (1.28), (1.29), (1.30)

still hold with = .

The posterior mean (1.28) is not any longer the maxi-

mum-posterior estimate, but it still retains the property of

being the linear-minimum-variance estimator. The foregoing

problem is solved exactly in Aoki (1967) Par. III.2.D.d for

the scalar case with n. = 2.
J

The difficulty of solving the general problem is

illustrated by considering the maximum likelihood criterion.

Using the general linear observation model (1.15) with

m = m and 0. = 0 (i = 1,.. .,K) and following Sage and Melsa

(1971) Par. 6.5, one finds:
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X = H. '0 1 H .) 1 H. '0'1 (Z.-Z ); (a)-ML -- - -ML -i -o.

(1.31)

K

- K (Z.-Z -H.X )(Z.-Z -H.X )' , (b)K -1 -0. -i-ML -i -o. -i-ML

which is a system of coupled nonlinear equations in the

coefficients of L and of L. The special case K=1 is

degenerate since under the condition det(H H ') / 0

equation (I. 31b) yields: 0 L 0.

Nevertheless (and quite importantly) if one assumes

that 0 has the diagonal form

G = 2 I 2 unknown) (1.32)

does not depend on 0 . This special case is studied

next in greater detail within the context of Bayesian

estimation.

Consider first a noninformative prior density

f(X, a 2 ) of the type:

f (X, a 2 ) 1/a 2  . (1.33)

From equation (I.1) the joint posterior density is:

68

K K



f(X, o2 jz) cc f (ZIX, a 2 ) f (X, a 2 ) ,)

where

cc L xp- - (Z-Z -H X) '(Z-Z -H X).
a m2a

2
-0 -o-0

1 1 (V 2 +X-^
- 2x - (S+XX)'H'H(X-X))

mr 2 2 -- - - -

with the notations:

X = (H'H) 1 H' (Z-Z 0 )(H'H) 0 (if det (H'H) / 0) ;

Z = H X+Z

v= m-n

S2 = ((Z_- )'(Z_-)

Substituting (1.33) and (1.35) into (1.34) yields (Box and

Tiao (1973) Par. 2.7.2):

1X0 C 1 A) VS2l(f (X, a2 Z) -...4 exp - (v 2 +(X-X) 'H'H(X-X))-
a2 22 a - -
2

- - - - - - (1.36)

This joint density can be factored into a marginal posterior

density for a2 and a conditional posterior density for X,

the latter being in multivariate normal form with mean X

and covariance matrix c 2 (H'H)~'. Integrating out U2 yields

the marginal posterior distribution of (X-X) as an n-variate
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t-distribution with V = m-n degrees of freedom and covariance

matrix V S 2 (H'H) 1 .
V-2

It is immediate to generalize this result for a

conjugate prior distribution of X and G 2 . In fact, let

f(X, 2  m+2 2 +(X-X )'H 'H (X-X
G 2 C 2 1 1 -- 1 - 1 - -

where: V =m -n ;
1 1

X (H 'H ) H '(Z -Z ) (det (H 'H ),0)
--1 -i -- -- i -i- 0k A -- 1 -i

vS 2 (Z -Z -H X )'(Z -Z -H X
1 1 -~ - 0 k 1 l1 -- 1 4 -- i-

Then the posterior density is of the same type, namely:

f (Xy 2IZ) C __ * S - vs2+(X-X) AM(X-lX) (1.37)
aml+m- 2Y 2- -  - - -  - - - - -

where: M H'H + H'H ;
- 1-1 -

X = M~1(H'Z +H'Z)
1-1 --

vS 2  (Z -Z -H X)'(Z -Z -H X)

+(Z-Z -H X)'(Z-Z -H X)

v =m +m-n
1

For a detailed derivation see Zellner (1971) Par. 3.2.3.

The result can be extended by induction to any number of

measurements Z., j=1,2,... .Since the posterior density
-J

(1.37) has the same form as the posterior density (1.36)
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the considerations in the marginal state probability density

for diffuse prior carry over to the present case; in par-

ticular (X-X) - t [S2M~ ; m +m-n].
- _ n -1

1.1.4 Some additional considerations and extensions

(i) Error analysis

Equations (1.7) and (1.8) were derived under the

hypothesis that the parameters X and Z of the prior normal

distribution and the measurement error covariance 0 are the

"correct" ones. For instance, X might be a realization

from a normal process with parameters X and Z; in this

context one may say that the values assumed a priori for the

parameters are the "correct" ones or not. The sensitivity

to this type of errors is studied by Sage and Melsa (1971)

Par. 6.5, with reference to the maximum-likelihood and to

the Bayes maximum-posterior-density estimators. Their main

result for the Bayes estimator, equations (1.7), is as

follows.

Let Xb' -, be the assumed parameter values, and

X, g, 0 the true values. If one uses equations (1.7) with

the assumed parameters the estimator is biased. In fact,

denoting X the resulting estimate it is:

-a

E[X I = (H'S 1 H+_ 1)1 (H'U H X +)
-a - - - -b - - - -b -b-b
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= _b'Q + ) _' b) bQ b ~b) ' (1.38)

which equals Xb only if ~ = or if 1 =0. The mean

square error of the computed estimate T is:-a

E (X-X )(X-XK ) 'I) = (H'-j ~'H+ - I)--- a - -a) -= --

{ -b Eb - b (Q b_2% ) I3 +H6 E1O1I 1H}

(H' 1H+ 1 ) . (1.39)

which is not smaller than the error variance (1.8).

Equations (1.38) and (139) reduce to equations (1.7) and (1.8)

if Eb = X; Y = E and 0 = 0.

These results are useful to judge the relevance of

errors if the prior parameters are estimated from previous

statistical data, without going through a full Bayesian

analysis. Indeed, this is a recurrent situation in problems

of engineering reliability; for instance, in estimating the

quality of serially produced structural elements when

limited data are available a priori from the statistical

population (e.g., data are the resistances of previously

tested elements). A similar problem arises in two-stage

sampling (say of soil properties), in which one needs to

estimate the posterior probabilities after a preliminary
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sampling, in order to plan the second exploration in some

optimal way.

Sage and Melsa also give an approximate expression

for the increase in the estimate error covariance due to

imperfect knowledge of Z and of 0, valid for small errors.

-b

(ii) H unknown

The estimation of the state of a physical system

from noisy observations is mathematically analogous to

finding the "best" parameters of a regression relation.

Within the latter framework Fedorov (1972) Par. 1.6, studies

the problem of (nonlinear) parameters estimation when the

control matrix H (our measurement matrix) has random entries.

In estimation, H being random means that the observed quan-

tities and the state of the system are not related deter-

ministically, even after removing the additive measurement

noise term (see equation (1.6)). Working with the first

few moments of H Fedorov finds the first two moments of the

regression parameters by using a finite series expansion of

H around its expected value.

(iii) Robustness

In estimation, Bayesian robustness is concerned with

the sensitivity of the posterior distribution to variations

in the prior distribution f(X) and to variations in the
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distribution of the measurement errors. Note the difference

with error analysis, in which one studies the effect of

deviations from fixed, "correct", parameter values. Much of

the literature on estimation robustness in Classical and

Bayesian inference refers to population parameters, but the

same results can be applied to the estimation of a state of

nature.

Since Bayesian estimation requires information in

which the analyst has rarely complete confidence, the

estimators robustness is a question of great practical

interest. A detailed account of the available results is

beyond the scope of this study; as guides to the literature

in this area the reader is referred to the review chapter on

robustness in Lindley (1971), to Chapter 3 in Box and Tiao

(1973), and to the references therein. We mention briefly

some relevant studies.

Box and Tiao (1973) varied the type of distribution

of the measurement error, and studied the effects of that on

the posterior density of the (simple) regression coefficients

(the analogous of a two-dimensional state vector). f(e) was

assumed within a family of symmetrical distributions,

indexed by a continuous parameter s[-ll]. S controls the

Kurthosis coefficient, and is respectively -1, 0, and 1 for

the uniform, the normal and the double exponential dis-

tribution. Processing a set of real data they found that
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with respect to the normal case ( = 0) values of smaller

than -0.3 affected considerably the shape of the parameters

posterior density as well as its location, while positive

values up to = 0.9 did not. However, the relaxation of

the normality assumption on c is not of critical importance

when estimating a non-random state of nature from noisy

measurements, since the actual distribution of (ZIX) is

generally close to the normal. The assumption of normality

may instead be unjustified when e has not the meaning of a

measurement error, as in the case of regression analysis.

With reference to the estimation of a state of nature

robustness with respect to the prior density f(X) is perhaps

more important. On the effects of departures from a normal

density, see Edwards, et al. (1963).

Finally, we mention another area of robustness

analysis, namely the sensitivity of the estimator to a small

presence of outliers in the data. In the framework of

Bayesian analysis this problem was studied by Box and Tiao

(1968).

(iv) Nonlinear observation model

Nonlinear estimation has been the object of much

research during the last decade, particularly in the area of

nonlinear optimal control, resulting in a variety of non-

linear filtering algorithms. The "static" problem consists
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in estimating a vector X from noisy nonlinear observations

Z = g(X,e). The practical need for nonlinear models is

apparent; however, for our present goals it is considered

sufficient to address the reader to existing literature.

Also, since statistical estimation theory is relatively new

to the reliability engineer, it seems appropriate to start

from the relatively simple linear results. Their use in

solving practical problems will suggest the appropriate

extension into the nonlinear theory.

A general discussion of nonlinear estimation is in

Balakrishnam (1964). Sage and Melsa (1971) devote a whole

chapter to nonlinear Bayesian estimation. Although they

refer to discrete and continuous dynamical systems, steps

of the dynamic algorithms can be used for "static" esti-

mation. Deutsch (1965) deals with "static" nonlinear

estimation problems in a Bayesian framework, and indicates

several approximate procedures. Other useful readings are

Aoki (1971), and the pertinent references in Sage and Melsa

(1971).

EXAMPLE 1. EFFECT OF NOISY MEASUREMENTS ON THE RELIABILITY

OF SERIES, PARALLEL AND SERIES-PARALLEL SYSTEMS

Consider a construction plant which serially produces

pre-cast reinforced concrete members. The resistance of the

76



i-th member is denoted R.; the sequence R. is assumed to

be Gaussian and white. (The assumption of independence is

in no sense essential, but it simplifies the computations

without weakening the results.) Before combining the elements

into a more complex structural configuration or system, we

decide to measure nondestructively a secondary character-

istic of each of the elements, such as their hardnesses or

stiffnesses which are known to be correlated with their

resistances. Then only those elements which have been tested

are used in the system.

Denote Rb and U2 the mean and the variance of the

production sequence {R. }, which are assumed to be known.

For the ith element in the system the measurement Z . of the

secondary characteristic and the resistance R. are related

through the linear stochastic equation

Z. = Z + h R. + E- , (i = 1,...,n)

where Z and h are known constants and n is the number of

elements in the system. The zero-mean error vector c' =

[s ,..., £ ] has multinormal distribution with covariance
1 n

matrix:

o = C 2 2
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where C is a known constant. The equicorrelated structure

of 0 results from modeling the measurement error e as the

sum of an uncertain bias term E common to all the obser-

vations, and an independent error component c*. In fact

the covariance matrix 0 corresponds to:

E. = S+ E:,
3. 0 1

with E[E ] =E[c*] = 0; 2  = E[P2] = C2 , 2 ;E*20 1 0o 0 b i

(1-p)C 2 ; E[e E*] = 0.

If a2 and a are given as part of the modeling, the

necessary parameters C2ab and p can be determined. Because

of the whiteness assumption on {R.} the prior covariance

matrix of the resistances is: Eb a 2 I and the posterior-b b -n

covariance matrix is, from equations (1.8):

E= a2 I - h 2 4 (O+h 2 a2 1 n- 1  (I.40a)
-a b -n b - b -n

Due to the correlation in the measurements, E is not

diagonal. Its entries are:
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a 2 = Ci2 h 2  1 + (n-2) p* . .a b (h 2 +C 2 ) (1-p*) [l+(n-1) p*]

(Ea - = (I.40b)

P G2 2 J h 2  for i__ __ j
a a b (h 2 +C 2 ) (1-p*) [l+(n-1) p*]

where

p* = P C 2

C 2 + h2

For making possible a comparison between the prior and the

posterior reliability of systems which use these elements,

one has to know the actual experimental outcomes, i.e., the

numerical values of the measurements. In what follows we

assume for simplicity and clarity that each outcome turns

out to be simply its expected value:

Z. = E[Z.] = Z + h - R (i = 1,...,n)
1 o b

(in the next section we shall comment further on this

assumption); for this assumption the posterior mean resis-

tances are the same as the prior mean- resistan-ces; i.e., Ra=

Rb from equations (I.7), simplifying 'the reliability com-

parisons to follow.
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Series system. When the elements are connected in

series as in fig. lA and the system is acted on by a deter-

ministic load S, failure may occur in any of the n modes

corresponding to the conditions: R. < S (i = 1,2,...,n).

Due to the fact that the posterior means are R = Rb and to

the equicorrelated structure of the posterior covariance

matrix (1.40), the posterior reliability of the system

depends only on the number of elements, n., on the normalized

modal safety margin a = (S-Rb)/a a, and on the modal cor-

relation coefficient pa' which is the same for all pairs of

modal resistances. From the assumption that {R.} is a priori

an independent sequence, the prior modal correlation pb is

zero. The prior normalized modal safety margin is 0b

(S-Rb)/a b'

For a given number of bars, n, a normalized safety

margin , and a modal correlation coefficient pM the

probability of failure of the system is. the probability

that at least one bar's resistance is less than the applied

load, or:

Pg = 1- @n )

where n (pM, 6) is the probability that n standard normal

variates with common correlation coefficient pM are simul-

taneously less than or equal to 0. It can be shown (see
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Gupta (1963)) that

00

n = n( +p U) (1-P ) $(u) du (I.41)

(with the obvious particular case: n(0,S) = )n(s)), where

D[-] and $(-) denote the standard normal CDF and PDF,

respectively. Gupta tabulated 0 (pM'0) for n = 1(1)12, for

(his h) = -3.5(0.1)3.5, and for discrete values of pM in

the range [0.1, 0.9]. Plots of the reliability for selected

values of 3, pM and for 1 to 12 elements, are shown in

fig. 1. In accordance with a theorem by Slepian (1962) Pf

is a non-increasing function of pM. Noticeable features of

these plots are (see fig. 1):

(i) Small modal correlation coefficients (say pM<0 .5)

are negligible in safely designed systems (fig.

1 D), while the opposite is true for unreliable

systems (fig. lA);

(ii) The sensitivity of P to the number of elements

increases with the system reliability and

decreases with the modal correlation. In par-

ticular, fig. lD suggests that for reliable

systems with slightly correlated modes the

probability of failure decays with the number of

elements in an approximately geometrical fashion:

P ~ - n
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Returning to the reliability effects of noisy

measurements, for S deterministic the prior reliability

corresponds to the straight lines in fig. 1 (pM = 0).

Given n, Sb and the measurement constants h, C and p, the

posterior parameters are:

-1/2
9b 1 h 2  1 + (n-2) p*

Sa b bb a a (h 2 +C 2 ) (1-p*) [l+(n-1) p*]

h 2 P* h2 1 + (n-2) p*
P = -1 -

S h2 {p*) [- + (n-1) p* (1-p*) [+(n- ) p*

h 2 p*

C2 [l+(n-2)p*]-(C 2+h 2 ) (n-l)p*2

From these one can calculate the posterior reliability. For

example, if n = 2, h = C = 1 and p = 0.5 one finds

= 1.46 Sb' and p = 0.286.

For the same parameter values the prior and the posterior

failure probabilities for selected values of b are given

in the following table.
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Table 1. Prior normalized safety margin b and prior and

posterior (after the estimation experiment)

failure probabilities Pfb and Pfa for the series

system in fig. 1 under deterministic loading.

Refer to the text for parameters values and for

the definition of the estimation experiment.

Ductile parallel system (fig. 2A). System failure

occurs if the applied load S excedes the sum of the indi-
n

vidual element resistances, R = R. A priori the dis-

tribution of R is N(n Rb; b
R ~ (b

R - N(n Rb G2 ), where
a

a posteriori:

2 = 2
Rb b

2 =) = n 2 . _
R a i j -a 3 b

h 2

(h2 +C 2) [l+ (n-l) p*]
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0 0.75 0.705

1.0 0.29 0.13

1.5 0.13 0.027

2.0 0.046 0.004



For a given load S, let 6 be the normalized prior safety

margin; then the normalized posterior safety margin is:

h 2 -1/2'=b' / a = bS - -__

b /RR a b (h2+C 2 ) [l+(n-l)p*J

If S is random, say S N(S, a2), and independent of R, the

prior and the posterior normalized safety margins become:

ar2  Cr2 Cr2
R b Rb + S

bb a 2 + 2 a 2  a 2

R S R +
b a S

where has the meaning of narmalized prior safety margin

for S = E[S] = S.

The prior and the posterior failure probabilities are

the values of the standard normal CDF at and at S' for

given S, at b and at a for random S.

Series-parallel system. Consider the system in fig. 2

G
and let R . denote the resistance of the jth parallel group

J
of n/N elements. The (NxN) prior covariance matrix of the

Ggroup resistances, Zb' is diagonal with non-zero elements

Ka The posterior covariance matrix is not diagonal; in

fact straightforward algebra yields
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n2 2 1 + 1 (n--n/N) p*
N b V t2+C2) (l1 p*) [1+(n-1) p*1

2 2
n.2 b -2 2*

c (h 2+C ) (1 - p*) [1+ (n-1) p*]

for i=j

f or i,:6j

If S is deterministic and b is the prior safety

margin for a single group (normalized with respect to
1/2

(n - then the situation is analogous to that for

series systems, except that now:

n,and pa -
l-q 1+ (n-l-n/N) p*'

where

2 2
(h +C )

1+ (n-1-n/N) p*
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The prior and the posterior failure probabilities can be

obtained easily from these expressions and from the afore-

mentioned tables in Gupta (1963).

Additional examples of applications of estimation

theory to reliability problems are presented in the following

two sections.

1.2 EXPERIMENT EVALUATION

The effectiveness of an experiment depends on the

measurement model, on the quality of prior information and

on the goals of experimentation. Two situations should be

distinguished:

(a) The effectiveness of the experiment is eval-

uated a posteriori, in which case no decision

problem arises;

(b) The effectiveness is evaluated a priori, in

order to compare different alternatives and

finally to choose the best course of action.

The latter is a typical problem of decision

making under uncertainty and will be considered

in more depth in Section 1.3.

Situation (a) is illustrated by the example in the last

section: in that case, given the prior distribution, the

difference between the prior and the posterior reliabilities
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was taken as a measure of effectiveness. A preposterior

application of the same criterion for decision purposes, i.e.,

for choosing a priori the best experiment, based on con-

siderations about the posterior state of knowledge, is

senseless because E[Pf ] = Pf (the expectation being over
a b

all possible experiment outcomes). For the purpose of a

qualitative comparison, a simple-minded way of avoiding the

difficulty was used in the last section: namely it was

assumed that the measurements would correspond to their

prior expected values. Under this condition the posterior

mean is the same as the prior mean and in a Gaussian model

the difference a -b gives a complete description of the

gain from experimentation.

In- decision problems a quite general preposterior

criterion is based on the notion of expected utility. For

instance, the expected utility of an experiment c might be

(for simplicity assume additivity):

E[U(e)] E[U ]+ f f E[U ] f(XIZ) f(Z) dX dZ (1.42)
allZ allX

where U is the expected utility of making the experiment

with no account for its outcome (this term includes the

actual cost of the experiment, the legal consequences of

non-experimenting, etc.), U is the utility of the state of

nature being X, f(XJZ) is the PDF of the state of nature
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having observed Z, and f(Z) is the PDF of the observation.

A widely accepted optimality criterion for 6 is that it

maximizes E[U(c)].

A decision analysis based on the maximum expected

utility criterion is practically feasible only in very

special cases. Often one cannot express utilities in an

analytical form, if one can quantify them at all. In

addition, there are cases in which an "optimal" sampling

policy must be decided for a whole class of different future

situations (for example in structural codes writing), making

the expected utility criterion even less practical. These

difficulties motivate the search for simpler evaluation

criteria.

In second-moment probability theory the dispersion of

a random vector is measured by its covariance matrix E:

the "larger" E, the "larger" the dispersion. If the utility

of an experiment increases with "decreasing" posterior

estimate error covariance, a class of second-moment criteria

can be constructed by defining a preference order in E space.

In this sense some commom definitions are given below,

together with their geometrical interpretation.

Let E and E be two alternative experiments. We
1 2

write E > E if E is preferred to E according to a given
1 2 1 2

criterion. Also, let Z denote the posterior covariance or
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the estimation error mean square, whichever applies. Some

criteria for comparing E and E on a second-moment basis
1 2

are (see also Fedorov (1972) Par. 1.8):

(i) E > E if E (E ) < Z (E ) (1.43)
1 2 --a 1 --a 2

The associated geometric condition is that the

(origin centered) dispersion ellipsoid of E :X' Z~1 (E )X < C 2

1 -- a 1- -

is inscribed within the ellipsoid of E :X' E E )X < C 2 for

all C. This is a very strict requirement, and the criterion

is applicable only when the dispersion of any linear combi-

nation of the state under one experiment is less than the

corresponding dispersion under the other experiment.

(ii) E > E if |E a(E )I < IZ (E2 ) (1.44)

Since the eigenvalues of E (E) are the squares of

-1
the principal semiaxes of the ellipsiod X' (E)X < 1,

Ja(E) l increases with the volume of the dispersion ellip-

soid. An experiment which is optimal in the sense of (1.44)

is called a D-optimal experiment.

(iii) E > E if Tr E (E ) < Tr E (E ) (1.45)
1 2 1- ma 2
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In this case one penalizes an invariant sum of

directional dispersions. In some instances the trace

operator is analytically less tractable than the determinant

operator, but it has the conceptual advantage of associating

non-zero penalty to singular matrices. An experiment which

minimizes the mean dispersion - Tr E (E) is called an A-n -a

optimal experiment.

(iv) E > E if max[E (E )].. < max[E (E )]..
1 2 - 1a 2 ii (1.46)

Here only the maximum posterior variance is penalized.

(v) E > E if one of the conditions (i) to (iv)
1 2

applies to

E (-) = L E (*) L' ; i.e., to X* = L X
-- *_ -a - - - -

The last criterion is quite flexible; in particular

it may be used to judge the effectiveness of experiments

along specific directions in state space.

The foregoing criteria are appropriate for ranking

experiments in preferential order. Sometimes the question

arises whether or not to make an experiment when prior

information is available. At the level of second moments

the informativeness of prior knowledge can be quantified by
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a scalar dispersion measure L(E ) (such as IEbI, Tr b

max [E b.i, or other). If an experiment E is informative

the posterior dispersion is smaller than the prior under any

criterion L(-).

In the examples which follow the effectiveness of an

experiment is measured by the ratio:

1/2n

r(E) = { (1.47)
JZ - (E) I

The geometrical meaning of (1.47) is best illustrated by

the case in which f(X) and f(XjZ) are spherical normal

densities; then r is the ratio between the radii of any two

n-dimensional mean-centered spheres with the same proba-

bility content. The more an experiment is informative, the

larger the effectiveness ratio r. Also, if r(E ) > r(E ),
1 2

it is E > E according to the criterion (1.43). Occasion-
1 2

ally different effectiveness measures will be introduced.

An explicit expression for r(E) can be obtained in

terms of the prior state covariance and of the measurement

parameters, if Z (E) is computed through equations (1.8).
-a

For a scalar state:

r(E) = ab/a (E) = a b = (+a "2m)1/2 (1.48)
b a (l+G2H'O H) b 2
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where m = H' 1 -H is the Fisher information matrix, here

simply a scalar. When ab -+ and H'O-'H 3 0 (diffuse prior

and informative experiment) equation (1.48) gives r -+ o. At

the other extremum, when ab = 0 or when the experiment is

noninformative (01 = 0, or H = 0), one finds r = 1, which

indicates that the experiment is useless. The quantity

a2m is the fraction by which l/U2 is increased by making thebb

experiment.

If K measurements are made, possibly with different

linear models, equation (1.48) generalizes to:

K

r (E) = (1+Cr2m)112, where mK . H.O.'H. (1.49)
K b K i.l = -=

When the unknown state of nature is an n-vector and

equations (1.8) hold, the effectiveness ratio (1.47) is:

r(E) = (t *a-1) 1 /2n -= E(E +H'0 H) l1/ 2 n

= II_+Z H'~1OH~l/ 2 n-n b- - -

which can be written, in analogy with equation (1.48):

r(E) = 1I + E Ml/ 2 n, where M = H'O0'H. (1.50)
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Finally, for a set of K linear measurements the same ratio is:

K

rK (E) =I + E KI 1/2n, where IK H_ H. (1.51)

One can also find the effectiveness ratio with respect

to a set of transformed variables X* = L X (X* has dimension

n*<n). For the most general case considered here equation

(1.51) becomes:

rK = jI + Z M* 1/2n*

where Z* = L b L' and M * K
_=b - -b- a =dK*-MK -

Two examples follow. The first one refers to a

scalar state for which equations (1.48) and (1.49) are

used; the second one to a three-dimensional vector X. In

particular, the first example shows the relative importance

of "systematic" versus "random" measurement errors as a

function of the number of repeated observations.

EXAMPLE 2. SYSTEMATIC AND RANDOM MEASUREMENT ERRORS IN

SCALAR ESTIMATION

Let X denote an unknown scalar state of nature,

whose physical meaning can be decided at will. For reducing
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the uncertainty on X one can make one or more measurements

of X with a given facility (machinery and personnel) in

which case the measurement errors are correlated by the

presence of uncertain but systematic bias. Alternatively

one may use more than one facility (possibly also changing

the type of experiment), in which case the errors when using

different facilities are uncorrelated. In general the

experiment program may involve K different facilities (or

K different types of experiment) with n. measurements from

the ith facility. This corresponds to a measurement vector

Z of the form:

z Z.
-1 -- i

z Z.
~2 -12

Z ,where Z =

z Z.
-K -1

n.

The following model is considered to be appropriate:

- Prior information (at a second-moment level):

X - (Xb; a2 ) (I.52a)
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- Experiment model:

Z = H X + E =

1

1

1

E.

12

n.
I

(I.52b)

- The measurement error vector _' = [e ' , has
1 -2

zero mean and block-diagonal covariance matrix e = diag (0.),
whe-

where:

1l

P.

Pi 
1

n.

, p. > 0 .
1 -

Note that since the n. measurements with the ith
1

facility have the same distribution, no generality was lost

by choosing H = [l,...,l]' in equation (I.52b).

Let 0 (n) denote the matrix (I.52c) with n. = n,
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a = 2 and p. = p. Then:

(1.53)

[l+(n-2)pl
-p

0 (n ) ^-_
2 (1-p) [1+(n-1) p] _[+(n-2)p]

Since H is the unit column vector, when using the pseudo-

Bayes estimator (1.7) the Fisher information matrix of the

experiment (here a scalar) equals the sum of the entries

of {o(n)J-l

Of(n -) (n 1-1n

m = H' _,n) H = (1.54)
U 2 1+(n-l)p

The informativeness ratio of the experiment, r, increases

with m, according to equation (1.48). The quantity a2m is

plotted in fig. 3 for varying n and p. With the exception

of p being 0 or 1, a 2m is a nonlinear function of n and the

difference [(a2 m)n- ( 2 m) n-I decreases with n. This means

(*) If one removes the restriction p > 0, equation (1.54)
yields m = w when p = -1/(n-1) (n > 2). In fact -1/(n-1)
is the minimum value attainable by p for a set of n
equicorrelated variables. If p = -l/(n-1), X is a
deterministic function of Z.
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that there is little convenience in making many correlated

observations with the same facility, the advantage of making

one additional observation being a decreasing function of

the number of past observations. If p > Q,m approaches a

finite asymptote as n + w:

mo = limm= (1.55)
n-co p G2

This fact is easily explained. The equicorrelated error

covariance matrix 0 (n) can be generated by the combination of

n+1 independent error terms e ,e. ,...,e , as follows:

c. = e + e. (j=l,...,n)
J 0 J

where e ~ (Q,pa2); e. (0, (1-p)cY2 ); E[e. e.] = 0 (i3j;
0 J J

i,j = 0 ,,...,n).

The error component e is common to all the measure-

ments and is responsible for the asymptotic (n -+ w) bias in

the estimate of X. For this reason eo is called systematic

error. The terms e., j > 0, represent the random error and
J

are uncorrelated in different measurements. Infinitely

many measurements reduce to zero the effect of the random

component of the error in the posterior state covariance.

In other words, an infinite sequence of equicorrelated

measurements is equivalent to a single measurement with
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error 6 = eo. In fact in this case H = 1, 01 = 1/pa2 , and

m = 1/pa 2 , which corresponds to the asymptotic result (1.55).

Fig. 3 can be used to compare the informativeness of

n correlated observations with small variance a2 with that
1

of n uncorrelated (or less correlated) observations with a

larger variance a2. Similarly one can decide which of the

following alternatives is more rewarding: to make nj

measurements with an accurate technique, or to make n2 > nj

measurements with a less accurate procedure.

Consider the first problem with the following data:

G2 = 2a1, pi = 0.2, P2 = 0. For each experiment the

quantity a2-m is a measure of informativeness (see equation

(1.48)), and is plotted versus n in fig. 4A. It is found

that n measurements of type 1 are more informative than n

measurements of type 2 if n < 6. The reverse is true if

n > 6, while the two experiments are equally informative if

n = 6.

For the second problem suppose that a2 = 2a, as

before, and that p1 = P2 = 0.2. The quantity a2-m is plotted

versus n in fig. 4B, allowing to compare the effectiveness

of the two experiments for given ni and n2 . Alternatively,

an analytical solution can be found: in order that r 2 > r,

it must be (from equations (1.48) and (1.53):
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1 n2 1 ni

> - 1U 2 1+ (n2 -1) p 2 1+ +(n -1) p1 (IIa

G22 (l-p 2) M,
or: n 2 > (I. 56b)

l-Y 2 P2 mi

where m, equals the right side of equation (I.56a).

Equation (I.56B) holds under the condition: 2 p2 m1 < 1.

If this inequality is not satisfied experiment 1 must be

prefered. This follows from m20 = / P2 being the maximum

value of m which is attainable from experiment 2; see

equation (1.55). When p2 = 1 one should drop the equal sign

from (I.56b).

For the most general experiment considered here the

effectiveness ratio rK is, from equation (1.49):

rK= (1 + a M) 1 / 2  (1.57)

K K

wherem= m. = --

i=1 i=l a 1+(n +1) p

By using equation (1.57) one can study more complex problems

than the ones considered so far, like finding the experiment

with the optimal tradeoff between cost and effectiveness.

The problem of optimal experiment design is addressed in
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more general terms in Section 1.3; Example 4 in the same

section is a continuation of the present particular case.

EXAMPLE 3. STIFFNESS ESTIMATION OF A THREE BARS TRUSS

A three bars truss is shown in fig. 5. The problem

is to reduce the prior uncertainty in the actual stiffness

of the bars, denoted X 1 , X 2 , X 3 . Let X = [X 1 ,X 2 ,X 3 ]' be

the unknown state with prior distribution X ~ N(Xb I

The uncertainty on X has two sources: the varia-

bility of the material quality, which affects the stiffness

of all the bars, and the manufacturing uncertainty, which is

independent for different bars. Along each bar the material

properties are constant. Under these assumptions the

stiffness of the ith bar can be expressed as:

X X b. + (0 +e.)/l. , (i=l,2,3) (1.58)
1 0. 1 1

1

where 1. is the length of the ith bar, Xb. is the best prior
1i

estimate of X., 0 is the error associated with the material

uncertainty, and e is a manufacturing error. c and e

have units of force. According to equation (1.58) the

effect of the errors on the stiffness is proportional to the

inverse bar length. All errors are assumed to be

100



independent and normally distributed:

-~ N(0;cy 2
0 0

N(0; a'a') , E[e sC] = 0
10 01i

Since 13 = 1 and 11 = 12

covariance matrix is:

2(50

Iz i 212

(1+U2)

1

y i

(i=l,2,3).

= 11 (11 > 0.5), the a prior state

1

(l+at2 )

P P2 (1+a
2 )

The experiment may include one or more measurements of

following two types.

(i) Hardness measurements. If Z is the vector of

hardness measurements, the following observation model is

hypothesized:

Z = Z 0+ H X + c ,

where Z is a known vector and the matrix H has coefficients:

h I.

(H).. =

0

if Z is a hardness measure of bar j,

otherwise.

101

(1.59)

(1.60)

the

(1.61)



For instance the matrix

H = h 0

11

0

0

0

results when Z, and Z3 measure

Z measures the hardness of bar
2

have normal distribution:

0- U 2
' H

0

13

0

the hardness of bar 1 and

3. The measurement errors

H

PH

(1.62)

The correlation coefficients pH account for the uncertainty

in the relationship between hardness and stiffness (a random

bias term common to all the scalar observations in Z would

introduce correlation), and for the correlation due to

systematic measurement errors.
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(ii) Stiffness measurements. Stiffness experiment

may consist of imposing compatible nodal displacements 61,

62, 63 (see fig. 5) and of measuring the forces F1, F 2 , F 3

required for equilibrium. Then each measurement is

of the type (F.,B.), where

F. = K 6. + E. (1.63)

is the load vector corresponding to the displacement

vector 6 . The coefficients of the elastic stiffness

matrix K are linear functions of X; with reference to fig. 5:

(XItX2 )cos
2

(Xi-X 2)sin3cos

-X 2 cos 2 6

(Xl-X 2 ) sin~cos -X 2cos
2 3

(Xl+X 2 )sin
2  X 2 sin3cos

X 2 sin~cos3 X3+X2cos 2

(1.64)

where cos3 = 1/2p. Equation (1.63) can be rewritten

with F as a function of X:

F. = H. X + E.

where
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(6,icos2 +6,2 sinscos ) [(6l.-63i)cos 2 0_-62 sin~cosf] 0

H.= (61isin~cos +62sin23) [-(61.-63.)sin~cos +6 2 sin 2 ] 0

0 [-(61i-63i)co s 2 +62zsin~cos ] (63i

(1.66)

As to the experiment errors we assume:

0; 0 = (

1 p p

p 1 p

p p 1

Passing to

-=12, so that

a numerical application let 1 = 1,

from (1.60):

E = 2a 2

-b 0

and from

hi.Sh1

H. = hi.0
-1

(l+a 2 )

1

v2/ 2

(1.66)

1

(1+Ct2)

,/ 2

(/2)/ 2

(1+a2 ) /2

(1.68)

h2i 0 hi =(61+62)/2

-h21 0 where -h 2i = (6 1i-62i- 6 3i)/ 2 , (1.69)

-h 2. h 3. .h3. 63i.
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The three distinct non-zero entries of H. are controllable

experiment parameters.

We compare now the effectiveness of different

experiments, as measured by the ratio r in equation (1.47).

(i) Hardness measurements. If one makes a single

measurement from bar 1 the measurement matrix is:

H = h[/V/2, 0, 0]

with information matrix and effectiveness ratio:

1 0 0

M =H'0~1H =h2 0 0 0
2a 2 0 0 0

a
2

r = I_3+ Mb1/6 = [1 + (,+a2) 0 h21/6I.)11L3 + __M
1 6 ~h~] 1  (1.70)

H

As one would expect, r increases with the prior state

variance and with the signal-to-noise strength h, and

decreases with the variance of the measurement error. The

effectiveness ratio is the same for a single measurement

from bars 2 or 3 (i.e., for H = h[O, V'/2, 0] or for

H = h[0, 0, 1], respectively).

When n hardness measurements are made from the same

bar equation (1.70) generalizes to:
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F2n 1/6
r = 1 + (1.+a 2 ) _ h (1.71)

n a H 1+ (n-1) p H

with PH > -1/(n-1). When n -* o equation (1.71) yields:

1+0 gr2  1/6
r= 1 + - h , (1.72)

PH H

which is finite for pH > 0. Because of the similarity with

the case studied in EXAMPLE 2 (compare equation (1.71) with

equations (1.48) and (1.54)), the plots in fig. 3 can be

used also here to compare the effectiveness of experiments

obtained by varying pH and n (replace p by pH in fig. 3).

Equations (1.71) and (1.72) are valid also when making n

measurements from bar 2 or from bar 3.

A different situation is faced when making measure-

ments from different bars. Suppose we measure once the

hardness of bar 1, and once the hardness of bar 2. Then

1 0 0
H v/ -h

2 0 1 0

and r = (1 + 2a(l+a2_pH) + a2 2 (2+a2) (,_p 2)l/6 (1.73)
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h2 cy2
where a = 0 .

CY2 (1-P )H ~H

It is interesting to compare the effectiveness of this

experiment with the effectiveness of making two measurements

from the same bar. Specializing equation (1.71) for n = 2

gives:

r 2 = (1 + 2a (1+a2(.H4Ha2)))/6

For easy reference denote "experiment 1" measuring twice

from the same bar and "experiment 2" measuring once from

bar 1 and once from bar 2. Experiment 1 is more effective

when r 2 /r > 1, i.e., when

a(2+a 2 )

-1 < P < and 0 < a(2+a2) < 1 ; (1.75)H a(2+a2)-2

otherwise experiment 2 should be preferred. In the plane

XY where X=a(2+ a2) and Y = p H in [-1,1], fig. 6 shows the

regions where each experiment is more informative than the

other, assuming a> 0. When a = 0 the stiffnesses are

perfectly correlated and there is no difference between

experimenting on different bars or on the same bar (r = r 2 ).

As a increases, so does a(2+a 2 ); the correlation between
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the bar stiffnesses decreases (see equation (1.60)) and the

second experiment becomes more advantageous.

From this example one can intuitively extrapolate

that when the measurement errors are positively correlated

and the quantities to be measured are identically distri-

buted the best policy is to allocate the measurements as

evenly as possibly.

In EXAMPLE 2 the state of nature was a scalar. In

that case any effectiveness measure based on the ratio

L(a-)/L(a2), where L(-) conforms one of the criteria (1.43) -

(1.46), does not differ qualitatively from the ratio (1.47).

(The determinant, the trace and the maximum diagonal entry

of a scalar are all the same). This is no longer true when

the state of nature is an unknown vector. For instance,

the truss in fig. 5 might be designed to carry only vertical

loads, so that its performance is best described by the

stiffness coefficient X4 = F2 /6 2 (while F1 = F 3 = 0). The

effectiveness of an experiment should then be judged from

the reduction of uncertainty in X 4 , as it is shown next in

some detail. From linear elasticity and for p = /2/2 (see

fig. 5) it is:

X 1 X 2 X 3

X4 = 4
XiX 2 + 2X 2 X 3 + 2X 3X1
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In order to use the results of linear estimation theory,

one can truncate the series expression of X4 aroung the

prior mean state X

3
X4 Z X4

XL ~ X 4  + --

1=4+ i=l 3X. X=b
(Xi-X ) = X4

b'_=

+ d-' (X-) (1.76)

where d' = [di, d2, d 3 ]

and di= d2 2 d3
2X2 2X 2  4'X 2

Sb 2 b 3b

If the bars have the same prior mean stiffness per unit

length, then

S = X1b 1 ; X 4

-b b 2=X2

=y2/- Xlb ; d 1 =d 2 =d 3 = 4

1 + 2V2 9 + 4

Denote M the Fisher information matrix relative to X; then

the effectiveness ratio (1.48) for the linearized stiffness

X4 is (in this case we use a ranking criterion of the type

(1.46)):
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r = a4b /G4a = 4bI d' (-b +M) d /2 (1.77)

where E is the matrix defined in (1.68). Equation (1.77)

has the inconvenience of requiring two matrix inversions.

For a small number of measurements the posterior variance
2

T4a can be found more easily through direct application of

the Gauss-Markov theorem; namely of equation (1.3).

If n hardness measurements are made from bar 1 in

the form Z. = Z + h li X, + s. (i=l,...,n) with Cov[X, 1s.]=0,0 1

then one can follow the same procedure as for the general

linear measurement model (see the steps which led to equation

(1.24)), except that now

SX* a 2b4b

S =H E H' + 0
-Z_* - -b 4 --

S *Z* =Cov[X4,Z] =dl[(Zb)11+(E )12+(E )13][1,1,...,1] ,

where, for 1 /2/2, it is

1 1 0 0

1 0 0
H /2 . .

2

n 1 0 0
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and E and 0 are the same as in equations (1.68) and (1.62).=b

We study first the case n = 1 for which

S = a 2  a2 + h2 a 2 (1+a 2 )
-Z* Z H 0

S = Cov[X4,Z] = 2d, C [ (1+a2) +1+Y/2]

and from equation (1.3):

a2  = a2  _
4a 4b

d 2  a4

1 0

2 h a2 (1+a2)~H +0h

2
(4 + Y2+ 2 U2)

Going through the same procedure, the posterior variance of

X4 after making one observation of the hardness of bar 3 is:

d 2 a4
1 0

a H + h2 a2 (12)
H 0

(1+ 2/2+Ct2 )

By comparison of equations (1.78) and (1.79) it is seen

that for any given a the maximum variance reduction occurs

when measuring the hardness of bar 1. The reason for that

is the higher prior variance of X, as compared with the

prior variance of X3. Since di = d 3 , it is obvious that one

should measure from the bar with maximum prior stiffness

variance. This result contrasts with the previous finding
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a 2  = a2

4a 4b

2
(1.79)



that measurements from any bar are equally effective when

compared through the ratio (1.47).

If two measurements are made from bar 3, then

a1 + h2 G 2 (l+x 2 )H 0

CY 21H + h 2 a 2 (1+a 2-)

H H + 0h

* 2 + h 2 a2 (l+a2)
H 0

= di a (2/2 + 1 + a2) 1,1]
0

2 2
Y 4 = a44a b

2 a 4

2 di a0

a (1+pH)+2h 2 a (1+a 2 )

2

(2v'r2+l+cx 2 ) .(1.80)

If p1H = 1 there is no advantage in making the second measure-

ment, and equation (1.80) coincides with equation (1.79);

if p1H = -1, the two measurements remove completely the

statistical uncertainty on the hardness of bar 3. This last
2

case gives the minimum value of aiT a when using hardness

measurements from bar 3 only.

(ii) Stiffness measurements. We compare the effect-

iveness of six different experiments, in which the displace-

ments are the control variables (see fig. 5):

112

=i

SX* , _

)

and



61
(1) 1 62

63

61

(4) -62

6 3

=1

=0

=0

= 1

= 1

= 0

(2) -62

163

61

(5) -62

6 3

=0

=1

=0

= 1

= 0

= 1

(3)

(6)

61

62

63

61

62

63

=0

=0

= 1

= 0

= 1

= 1

The deformed configurations corresponding to these dis-

placements are shown in fig. 7. The associated measurement

matrices H (1 )...,H( 6 ) are, from equation (1.69):

H =A
-(l)~ 2

H =l
-(4)

0

1

0

0

0

0

1

-l

-l

0

0

0

0

0

0

1

;H = 1
-(2)

0

1

(5) 2

0

-l

1

1

0

0

0

0

0 ; H = _
-(3) 2

0

0

0;

2

H - 1
-(6) 2

10

0

0

0

-l

1

1

-2

2

2

0

0

2

0

0

2

For simplicity we assume that the measurement error co-

variance matrix (1.67) is diagonal. With I given by

equation (1.68) the effectiveness ratios
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r = 1 13 +b H! 0O'H 11/6 are:

r(1) (2) {1+5C (1+a2)+6C 21 +(+a 2 1/6

r = {l+C[2/2+5(1+a2 )]+4C2 [-l+(1+a 2 ) 2 1/6

r (4) = {l+8C(l+a2) 1/6 ;

(5) ={+4C (1+a2 )+4 C2 [-l+(1+a 2)2] 1/6

r (6) = 114C +

r(6) = {l+C [3V2+16 (1+a2) +6 8 -_/2- _+(+)+8 (~23

+40C 3 [2-3 (1+a 2 )+(1+a2) 3 1l/6

where C = G2/

As a2 varies from 0 to o the prior variances of the

bar stiffnesses increase and their correlations decrease.

6
Plots of r i (i=l,...,6) as functions of C for a = 0

(perfect stiffnesses correlation) are shown in fig. 8. The

same functions are plotted on semilogarithmic paper in

fig. 9 for a2 = 0.25 and in fig. 10 for a2 = 1.

The effectiveness of the experiments increases with

C (i.e., with the variance ratio aU2/o ) and with (l+a2 ),0 E

which for fixed C is proportional to the prior stiffness
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variances. When a 2  0 the stiffnesses are not perfectly

correlated (the correlation coefficient being 1/(l+a2)),

and this favors the experiments which induce deformations in

more than one bar; so the experiment (4), which is the only

one which deforms one bar gets the least reward from

increasing a2. At the other extreme (6) is by far the best

experiment, since it deforms considerably and simultaneously

all the bars; each of the experiments (1), (2), (3), (5)

stresses only two bars (see fig. 7).

If a = 0 the preference order of the experiments

remains the same for all C; instead the convenience of

performing one experiment versus another may change with C

when a2 > 0. This is due to the higher powers of C in the

expressions for r(W having non-zero coefficients if a 4 0;

nevertheless for all values of a 2 there is an initial range

for C in which the high power terms are negligible and the

preferential order is the same as for a = 0. The physical

explanation of this behavior is that as C increases the

measurements become more accurate (smaller measurement error

variance as compared to the prior variance) and more is

gained in terms of the effectiveness ratio (1.50) from

deforming more bars; at the same time it makes little

difference which bars are deformed and to what extent. On

the contrary, for small values of C the measurements are

quite noisy and the effectiveness of the experiment is
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controlled by the signal-to-noise strength, which increases

with the deformation. From fig. 7, experiment (4) imposes

a large deformation to bar 1, which fact makes (4) quite

competitive in the low range of C. (Also note that experi-

ment (4) can be performed on bar 1 before it is assembled

into the system.)

In closing this paragraph on the evaluation of

experiments we recall the major qualitative conclusions.

Experiments can be judged according to different criteria;

when using the ratio (1.47) as a measure of effectiveness

it was found that:

(i) The presence of systematic errors prevents one

from obtaining asymptotically deterministic estimates as

the number of observations increases, see fig. 3.

(ii) For scalar states of nature the relative

effectiveness of two experiments depends on their signal-

to-noise ratios, on the number of measurements in each

experiment, and on the percentages of systematic error in

the total measurement error (fig. 4).

(iii) For vector-valued states the same considera-

tions hold when measuring only one component of the state

vector X. When the measurements are functions of more

than one state component general conclusions are difficult

to derive. Nevertheless, if measurements are accurate it

is convenient to have an observation vector which is
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informative on the largest possible number of components of

X. Instead, if the measurements are unreliable one should

try to increase the signal strength, while the measurements

being noninformative on some state component becomes

relatively unimportant (figs. 7 - 10).

(iv) For vector valued states the relative effect-

iveness of two experiments depends also on the ranking

criterion; however, the qualitative considerations at

point (iii) are believed to be valid under all sensible

choices.

We considered here mainly experiment evaluation

criteria which measure the reduction of uncertainty. Other

criteria may be more appropriate, particularly for pre-

posterior analyses in a decision process; see the comments

which precede and follow equation (1.42).

1.3 OPTIMAL EXPERIMENT DESIGN

The first section of this chapter dealt with the

analysis of estimation experiments. In Section 1.2 some

evaluation criteria were introduced and a few principles

for improving the effectiveness of experiments were found

by working out specific examples. The design of optimal

experiments is considered briefly in the present section.
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First, we give a more precise definition of "experi-

ment", and we clarify in which sense the word "optimal" is

used.

Given an n-dimensional state vector X as the object

of estimation, and within the class of linear measurements

we call "design of an experiment" (or simply an "experiment",

denoted E) the collection of scalars

N, H. ,j i = 1,...,N; j = 1, ... ,n (I.81)

This set of variables defines the linear observation

equation:

Z = Z + H X + c

where Z = [Z ,...,Z ]' is the observation vector, H = [H..]

is the observation matrix, Z is a known vector (possibly-o

a function of E), and c is a random vector of non-controllable

errors. Two experiments E, and E 2 are said to be different,

Ei : E 2 , if they differ by at least one variable in the set

(1.81). This definition of experiment implicitly assumes

that given (N, H) both Z and the probability distribution-o

of E are defined uniquely. The design of an optimal experi-

ment consists in finding the parameter values N* and H*

which extremize a function of E. There are several levels
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at which this problem can be formulated, depending on the

choice of the objective function. Two possible formulations

are given below.

(i) Restricted formulation. Given a set S of

feasible designs, an experiment E* is optimal if no experi-

ment E E S exists such that E > E* according to a criterion

of the type L[a (E)] = min, where E is the posterior state-a -a

covariance. (See equations (1.43) - (1.46) for some ex-

amples). The criterion establishes a preference order for

the elements (N, H) of S, which makes the optimum problem

well posed in a mathematical sense.

This formulation has the drawback of accounting in a

simplistic way for the cost of experimentation, which

defines the feasible set S. Optimization problems of this

type are discussed at length by Fedorov (1972).

A dual (although not completely equivalent) restricted

formulation exists, in which a maximum is imposed to the loss

function L[Z (E)], resulting in a constraint on E. The-a

optimum experiment is the one which satisfies the constraint

at minimum cost. While the former is a cost-constrained

formulation, the latter might be called an informativeness-

constrained formulation.

(ii) Maximum expected utility formulation. The

maximization of the expected utility has become a classical

objective in Bayesian statistical decision theory (see for
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instance Raiffa and Schlaifer (1961); Raiffa (1968);

DeGroot (1970) chapter 8). In this formulation the optimal

experiment maximizes a function of the Bayes risk (see

Paragraph I.1.1), of the experiment cost, as well as of more

subjective attributes, called the expected utility. The

loss function L[E (E)] in the restricted formulation becomes-a

one of the arguments of the utility function.

The critical point of this formulation is the con-

struction of the utility function. Much work has been done

recently in'this area (see, among others: Raiffa (1968);

Fishburn (1968); Hampton, et al. (1973), but the problem has

not only a technical aspect: it requires answering difficult

questions such as what should be optimized and for whom the

experiment should be optimal (Churchman (1961); Rosenblueth

(1973).

Without going into the general theory of optimal

estimation experiments (the interested reader will find a

comprehensive review of methods and results in the afore-

mentioned book by Fedorov) two examples are presented here.

The first one completes Example 2 in Section 1.2 by finding

the optimal combination of three types of measurements

which reaches -a target level of informativeness at minimum

cost (restricted approach). The second example concerns a

problem of optimal estimation which is of interest in various

fields of engineering; in this case the objective is to
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maximize the expected utility.

EXAMPLE 4. A PROBLEM OF OPTIMAL EXPERIMENT DESIGN IN

SCALAR ESTIMATION

For preliminaries and notations refer back to

Example 2 in Section 1.2. The problem of optimal experiment

design, aimed at "best" estimating the scalar state X, is

given the following restricted formulation. Each scalar

measurement has a known cost associated with it, and an

experiment is optimal if its effectiveness ratio (1.57)

exceeds a prefixed target value at minimum cost. Let C.

(i = 1,...,K) denote the cost of the first measurement with

facility i, and C denote the cost of any additional mea-
2

surement with the same facility. The cost of the entire

experiment, C, is a function of the number of measurements

with each facility: n (i = 1,...,K). Explicitly:

K
C = [C. + (n.-1) C. + (C. -C. ) 6 (n.)] ; (1.82)

i. 1 12 12 11 1=1 12 2 1

where 0 if n > 0

6(n) =

1 if n =0.
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For the purpose of exemplification consider three facilities

being available (K=3), the target: r > 5 (or C <a2/25),

and the following measurement data:

Facility, i I P C C.

1 0.5 0 5 2

2 0.1 0.2 15 2

3 0.1 0.4 10 1

Table 2. Data for Example 4.

From equation (1.57) the condition r > 5 is equivalent to
3 -

25 n 25 n
n + 2 + > 12

4 + n
2

3 + 2n
3

(1.83)

with n , n , n non-negative integers. The objective
1 2 3

function is:

25 + 2n + 2n + n - 3 6(n ) - 13 6(n ) - 9 6(n ) = min.
1 2 3 1 2 3

(1.84)
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The problem (I.83, 1.84) has a single optimum at n 0,

n = 4, n = 0,where C = 21 and r = /26.
2 3 3

For each type of experiment Figure 11 displays the

informativeness measure Gm (see equation (1.57)) versusb i

the associated experiment cost C.. Although these curves do

not provide a direct way of finding the optimum strategy for

a fixed minimum value of am = a(m +m +m ), it is easy to
b b 1 2 3

see that experiments of type 1 predominate for small (less

than 6) and for very large a m values. Experiments of type 3

have best information-to-cost ratio for intermediate values,

say for 6 < a2m < 20. Finally, when aG2m exceeds 20 but isb b

not very large, experiments of type 2 give the highest reward

for fixed cost. The combined use of different types of

experiments is optimal near the transition values, and cer-

tainly when a m is very large.

EXAMPLE 5. OPTIMAL SAMPLING OF CONTINUOUS FUNCTIONS

Let Y be the generic point of an n-dimensional

region D c Rn, and let S(Y) be an unknown scalar function of

y, defined in D. From a Bayesian viewpoint S(Y) is a

random field with n-dimensional parameter. In second-moment

theory the prior information on S(Y) consists in the prior

(*) The case when S(-) is an unknown vector function can
be treated similarly.
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mean value function E[S(Y)I Sb (Y) ; Y D, and in the prior

covariance function

Covb '(Y Y ) = Cov[S(Y ),S(Y )] ; Y ,Y E D.
1 -- 2 i -2 ~ 1 -2.

(If S(-) is a vector function, Cov (-,-) is a matrix function.)

Let N be the number of points at which S(Y) is measured in

the experiment. These points are denoted Y *, Y *,..., y7 *1 -2 -

and are constrained to belong to a region DE C D. For fixed

N the set {Y.*} is called the "experiment trace". Assume

that the purpose of sampling is to reduce the variance of

the weighted spatial mean of S over a region DS C D:

q = f w(Y) S(Y) d Y, (1.85)

DS

where w(-) is a deterministic weight function. The prior

mean and variance of q are:

qb= f w(Y) Sb (Y) d Y ; (I.86a)

DS

Cr = f f w(Y ) w(Y ) Cov (Y ,Y ) d Y d Y (I.86b)b S S - -2 b -1 -2 -1 -2
D D
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Similarly, the posterior mean and variance are:

q = f w(Y) S (Y) d Y ; (I.87a)
a - a

y2 = f f w(Y) w(Y) Cov (Y ,Y ) d Y d Y , (I.87b)
a D S -1 a -1 -2 -1 -2

D D

where S a(-) and Cova(-,- are the posterior Bayesian mean

and the posterior error covariance functions of S(Y). In

accordance with equation (1.47) the effectiveness of the

experiment is measured by the ratio

r = ab/Ga . (1.88)

Under a cost-constraint (here associated with a constraint on

N) the optimal experiment is defined by the trace {Y*}

(i=l,...,N) which maximizes r. Alternatively and more gen-

erally, N is let free and optimized with {Y*}.
-i

Problems of this type arise when sampling material

properties of spatially distributed structural systems

(beams, plates, etc.), in soil sampling for settlement

estimation (Diaz Padilla and Vanmarcke, 1973), in the design

of raingage networks for best monitoring mean areal rainfalls
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(Bras, et al., 1974), in forestry surveying (Matern, 1960),

to name but a few fields of application.

For mathematical convenience , the problem is dis-

cretized by choosing a set of m representative points in D,

which we denote Y,. . . , Y. Also, for sake of notational

simplicity, let DS = D = D. To each point Y we associate

an influence coefficient a. (i=l,...,m) such that:

a. f d Y
i D

Then the prior and the posterior mean value and variance of

q become, in approximation:

qb b'

a ~- S-a

a2 v
- -b _ ;

2 '
a a -a -

Covb (Y.,Y.)

ij=l,...,m
j

where

(I. 89a)

(I.89b)

(i=1)

w(Y. a

(i=m)

(i=l)

Sb(Y.)

(i=m)
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Similarly for S and . The sample points Y*, ... Y* must

coincide with points in the set {Y. } ; but they need not be

distinct (i.e., one can sample more than once at the same

point). An example of discretization and of experiment

spectrum on the plane is shown in Figure 12.

A linear measurement model is assumed in the form:

Z. = Z + h - S(Y.) + E. ; Y. e {Y.} (j=,...,N), (I.90a)
1 o. -J J -J -1

or, in vector notation,

Z = Z + H S + E (I.90b)
-- o - --

where Z is a given N-vector, H is a given (N x m) matrix,-o

and 6 is a zero-mean error vector with diagonal covariance

matrix 0 = diag[a 2  ; E is assumed uncorrelated with S.

Within the class of linear estimators the error mean

square is minimized by the estimator (1.23). Straightforward

application of equations (1.23) and (1.26) with r = 0 yields:

S = S + E H'(H E H' + 0) (Z - Z - H S , (I.91a)-a b -b -b- - -b -- - -b
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-l
Z = Z - 4 H ' (H i H' + 0) H E (I. 91b)
-a -ie -b---b - - HZ-

This completes the second-moment analysis of a given

experiment. The optimal design problem requires finding

the sample size N and the (N x m) matrix H which maximize a

given utility function. The structure of H is constrained

by the condition:

~ ~ h if Z. measures S(Y.) ,
(H). = h 6 (Y. -Y.) 3 ~3

a -h3 ~ = {0 otherwise ,

where h is a given constant. Under these constraints the

measurement matrices H and the experiment traces {Y*.}

are in one-to-one relationship, so that optimizing with

respect to H is equivalent to optimizing with respect to

{y*}.

The utility function to be maximized over all the

possible choices of (N,H) is written parametrically in

the form:

U[E] = C(N,H) - CaV' Z V , (1.92)S--a-
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where C(O) is the experiment cost and C is a constant (but

as yet undefined) parameter giving the monetary equivalent

of a unitary change in the posterior variance of q. Although

(1.92) is not by itself a very general expression for the

utility function, solving the optimization problem para-

metrically with respect to C. gives a set of optimal solu-

tions in the form of the minimum posterior variance per

given experiment cost (the so-called transformation curve).

This allows one to make easy sensitivity analyses of ex-

periment cost versus variance reduction. Finally, depending

on the value of the tradeoff coefficient C the decision

maker considers appropriate, the best course of action is

chosen out of the set of potentially optimal solutions.

With this formulation,Bras, et al. (1974) have

studied the optimal location of raingage stations over a

given geographical region. The effectiveness of the design

was measured by the posterior variance of the mean areal

precipitation during a storm with specified general char-

acteristics. The precipitation intensity was modeled as a

two-dimensional random field with known mean and covariance

function.

Some numerical results are presented in the afore-

mentioned report, to which the reader is referred also for

a detailed account of the optimization procedure. The

maximization of (1.92) is carried out in two alternating
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stages: first N is fixed and H is optimized under this

constraint; then N is changed and H is optimized again,

until the best combination (N,H) is found. The most

difficult and time consuming step is the optimization of

H for given N. This is essentially a problem of integer

programming. A theorem in Fedorov (1972) proves useful for

defining a search strategy among all the possible choices

of H, which requires a relatively modest computation effort.

The essential feature which makes the whole optimization

algorithm operational is that it avoids using equation (I.91b)

for updating the posterior error covariance matrix whenever

H is modified to improve the design.

1.4. PROOF LOADING AND THE ANALYSIS OF CENSORED DATA

From the viewpoint of statistics, proof loading is

a way of collecting censored data on an unknown state of

nature. In the simplest situation a system with unknown

"resistance" R is observed while responding to a control

input. If the behavior is satisfactory it is R > RPL'

where RPL is the minimum resistance for survival.

In the context of structural safety, censored data

of this type are not collected to reduce the dispersion of

the state estimate error (as was the case for uncensored

data), but to assure a minimum range of safe performance
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and to detect the possible presence of major construction

defects.

The theory of proof loading for structural relia-

bility has not gone further than the so-called fundamental

case, which concerns single-mode-of-failure systems with

failure condition R - S < 0 (R = modal resistance, S =

modal load). In paragraph 1.4.1 this case is given a more

general formulation than it is commonly found in the litera-

ture. Some guidelines for the analysis of more complex

proof loading problems are given in paragraph 1.4.3. Para-

graph 1.4.2 introduces a general probabilistic model for

construction defects in structural systems. This model is

used in Example 6, which shows how the probability of differ-

ent defects combinations and the reliability of a series

system are modified by processing proof load data through

Bayes' theorem.

1.4.1 The Fundamental Case

Classical formulation. The fundamental problem of

reliability theory concerns a one-failure-mode system

reaching its limit state when the random load S equals the

random resistance R. As well known, the failure probability

of such a system is, in a time-invariant situation and with

obvious notations:
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00

Pf = f s(s) FR (s) d s . (I.93a)

0

P is also the failure probability without proof loading,

denoted Pf . Consider now the same problem with proof

loading, and denote RPL the minimum resistance required to

survive the experiment. Survival induces a truncation in

the probability density fR(-) at R = RPL. The reliability

consequences of survival are well known for this simple

case (Shinozuka, 1969; Shinozuka, Yang and Heer, 1969;

Sexsmith, 1969), the posterior failure probability being

(see Figure 13):

00

P = [1 - FR(RPL)-l f fS(s) [FR(s) - FR(RPL)] d s .(I.93b)
a RPL

The probability of failure during proof loading is:

PfPL = F R(R ) . (I.93c)

It is also easy to prove the following inequalities:
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P + P > P (I.94a)

P > P (I.94b)

which become equalities if P PL = 0. The larger RPL' the

larger Pf PL. Therefore, high proof loads may be uneconomical

due to the expected loss from proof loading failure; on the

other hand, the larger RPL the smaller Pf , which is desi-
a

rable if failure under service conditions involves a major

expected cost. The tradeoff between proof loading cost and

increased posterior reliability, and the associated optimal

choice of RPL are studied in the aforementioned papers by

Shinozuka and Sexsmith.

The fundamental problem in its classical formulation

is not easily extended to proof loading in a multidimensional

random space (several random load and/or resistance para-

meters). For this purpose the following generalization is

useful.

A generalized formulation. Let Gb(S) denote the

probability of failure under a modal load S, before proof

loading. Since failure may occur either for a too large

positive load, or for a too small negative load (for instance

a bar may fail in tension or compression, a beam may fail

for excessive positive or negative moment, and so on), S is
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not restricted in sign and Gb (S) may look like the solid

line in Figure 14. (Note that in general Gb (S) is not a

probability distribution.)

When negative values of S are neglected Gb (-) may

coincide with the prior CDF F R(.) of the classical formu-

lation. This is true only if failure of a system with

resistance R = r implies failure of all (otherwise identical)

systems with resistance O<R<r, for any r>O. As a consequence

Gb (-) is a nondecreasing function of S in the positive

semiaxis.

In the general case, the proof loading experiment

consists in applying a modal load S which attains all the

m M
values in the interval [SPL' SPL , with no sign restriction

on Sm and SL. The analysis of this problem requiresPL PL*

calculating the posterior probability of failure function

G ( .), and is considerably more complicated than the analysis

of the classical proof loading model. Formally one can use

Bayes' theorem:

Pr f L([S , ] M C(s)}
Ga(s) = Gb(s) , f (1.95)

Pr { L([S L, L

where L([a,bI) denotes survival whenathe proof load ranges

between a and b, and C(s) denotes failure under the load
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S = s. The difficulty of updating the failure function G

consists in finding explicit expressions for the fractional

term in (1.95). A general treatment is quite complicated

and perhaps unjustified for our purposes. The following

developments rest on two assumptions which are met in most

practical situations:

(i) (The safe interval is connected) . If the

system survives for S = s and for S = s2 > s1, it also

survives for all S in [s , s2l ; in particular:

L (SL n L (S ) implies L([SL S L ). (I.96a)

Stated differently, this condition says that the (unknown)

set of safe realizations of S is an interval on the S line.

(ii) (Scalar basic resistance parameter). There

exists an (unknown) scalar resistance parameter R* > 0

(for instance the resistance of the basic material) such

that

(a) to each value of R* corresponds a determi-

nistic (possibly empty or infinite) safe interval

[Sm(R*), SM (R*)] on the S line;

(b) r* < r* implies:
1 2

[Sm(r*), SDI (r*) 2 C [Sm'(r) , S 2M (r) (I.96b)

135



From conditions (a) and (b) (which correspond to

the common notion that safety increases with the resistance

parameters) one finds:

Gb [Sm(r*)= Gb [SM(r*) = FR* (r*)
b

(I. 96c)

where F R* (-) denotes the prior CDF of R*.
b m M
Under these assumptions the event L([SPL' SPL]) is

equivalent to the event L(SPL), where

S L if Gb (SL) > G (SL)

SPL

S L

(1.97)

otherwise

and Bayes' equation (1.95) can be restated in the simpler

form

Ga (s) = Gb (s)
Pr { L (SPL) C(s) }

Pr { L (S ) }
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Since

Gb (s) - Gb (SPL)
Pr L (SPL) I C(s) } = max 0, I (I. 98b)

Gb

and

Pr f L(SPL) } = 1 - Gb (SPL) , (I. 98c)

one can rewrite equation (I.98a) in the form:

Ga (s) = max { 0,

Gb (s) - Gb (SPL)

1 - Gb(SPL)

The posterior probability of failure function G a(-) is

shown as a dashed line in the example of Figure 14. The

prior, the posterior and the proof loading failure proba-

bilities are given by the following expressions:

b0

P f f s(S) G b(s) d s;(lO
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00

P = f(s) - G (s) d s ;
a - s

(I.100b)

(I. 100c)
PfPL = b (SPL

SPL being defined by equation (1.97).

The inequalities (1.94) and the remarks thereafter on the

optimal choice of SP (or of [ S ) still hold. When

the function G(*) can be identified with the CDF of the

system resistance equations (I.100) reproduce equations (1.93),

while equation (1.99) becomes:

F (s) = max 10~
R
a

FR b(s) - FR b(SPL)

1 -FR (SPL)

a well known result in the classical approach.

One may also allow for errors in the estimate of

the proof load intensity 5 PL by writing SPL = 
5 PL + F

where c is a random estimation error term. Assuming that

the PDF f (*) is known and that it vanishes outside the

interval [a,b], equations (1.98) become:

G (s) = G (S)a = b s

Pr f L(SPL + 6) I C(s)}
Pr { L(PL + E)}
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where

b

Pr{L(SPL+E)IC(s)} = f max , L[Gb(s)-Gb SPL+e)I}f (e)d e
Gb(s) a

b

Pr{L(SPL+e)} = [l-Gb SPL+e)]f (e)d e
a

Equations (I.100a,b) still hold, while equation (I.100c)

is replaced by:

b

Pf = f Gb(S PL+e)f (e)d e

a

The validity of inequalities (1.94) is retained.

Representation of the fundamental case in the space of the

basic random variables

When the fundamental problem (1 random load, 1

unknown resistance) is considered in the generalized formu-

lation, the results are more easily interpreted in the plane

of the basic random variables R* and S; see Figure 15a.

In this plane the safe region D is defined:

D = {(r*,s)Is E [Sm(r*),SM (r*)]} , (1.102)
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with no bound in the direction of increasing resistance.

The functions S = Sm (R*) and S = SM (R*) correspond to

limit state conditions; they depend on the particular

system under consideration and on the definition of failure.

Given the prior CDF, FR*(), the function Gb defined by

(I.96c) is the transform of FR* under the laws S = Sm(R*)

M -b
and S = S (R*); see Figure 15b. While this gives a geometri-

cal interpretation to the previous analysis, when working in

the SR* plane one can replace equation (I.100a) by

P = 1 - J d FR*(r*) d FS(s) . (1.103)
b D b

In the two-dimensional formulation there is no need for

introducing the function G, unless one wants to compute P

in two stages:

(i) Gb(s) = (failure probability given S=s) =

FR* [R*(s)]
b

(ii) equation (I.100a).

The effect of proof loading becomes clearer in the two-

dimensional representation: if the system survives a proof

loading range [S L' L], the minimum value that R* can have

is:
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RL = max { R*(S ), R*(S M
s t h h r i PL

so that the shaded area in Figure 15a does not contribute

to the posterior failure probability. The posterior CDF

of R* is:

FR*(r
a

for r* < R*PL

FR* (r*) - FR*(RPL)
b b

1 - FR*(RPL)
b

otherwise

from which the posterior failure probability can be computed:

Pf = 1 -

a
D (r*>R*L)

-PL'

d FR*(r*) d F (s)
a

1.4.2. A Stochastic,Model f or Construction Defects

The reliability of a structural system is the result
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of resistance and load uncertainties; "failure" results

from unusual overloads, or from unusual construction

defects, or from a combination of the two. The fact that

failure is a rare event makes its probabilistic analysis

difficult, and often questionable if the major causes of

possible future misfunctionings are not enumerated and mo-

deled properly. In particular it is important to realize

that many types of construction defects may exist, ranging

from a poor choice of the basic materials to gross manu-

facturing mistakes such as the use of an incorrect amount of

reinforcement or the incorrect execution of a welded joint,

and that these relatively rare, gross errors may be major

causes of catastrophic failures.

So far little has been done to model resistance

uncertainties other than those which arise from the usual

variability of the basic materials. A more general sto-

chastic model for construction errors is presented here.

Defects are classified into two basic categories: the

"standard" defects, which can be reproduced and studied in

the laboratory under controlled conditions, and the "gross"

defects which generate one or more subpopulations of

"outliers" within the overall resistance population, and

are caused primarily by human errors. Standard and gross

defects do not necessarily differ in magnitude, but they

originate from distinct mechanisms and belong to different
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statistical populations.

As an example consider the process of concrete

production. The basic materials shipped to the factory are

controlled in such a way that the relevant properties,

collected in the vector XM) = [X , . . . , X (M) have the
nM

statistical distribution shown in Figure 16a for the case

nM = 1. The properties of the concrete produced by the

factory, vector X (C) = [X1 (C) ... X n (]', depend in part

(M)
on X , in part on the manufacturing procedure. If the

manufacturing operations are executed correctly, the density

of (X(C) (M) x (M)x ) is shown hypothetically in Figure

16b, curve (a) (for nC = 1); the dispersion is due exclu-

sively to "standard" variations. If "gross" errors are

made, the same conditional density is exemplified by curve

(b).

Many random variables of interest to the safety

of engineering systems (and not necessarily related to

resistances) conform to composite models of this kind: for

example, wind velocities in tornadoes do not follow the

same probability law as wind velocities in convective storms;

tsunami sea waves are not statistically identical with wind-

induced waves. Similarly, the absence of reinforcing bars

in a concrete beam is a quite distinct event from their

misplacement; also, over- or under-production of a factory,

the change of machinery or personnel, the shortage of raw
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materials, may cause quality variations in the product,

which are statistically different from those of normal

production.

Returning to the concrete production problem, the

unconditional (on the type of production errors) probability

distribution of the generic concrete property XC) is:

f(XIC) x(M)) = (1 - G -(XC X (M); only "minor" errors)

+ PG f (C) Ix(M); "minor" + "gross" errors) ,

where PG is the probability that gross errors were made in

the manufacturing process. This unconditional density is

shown in Figure 16c. If two or more types of gross errors

need to be discriminated, a distinct conditional distri-

bution like (b) in Figure 16b should be introduced for each

type of error, and weighted by the associated error pro-

bability in the expression for the unconditional density.

The same model can be applied to the statistical

variations of the properties of structural concrete elements,

as well as to the resistance parameters of the entire system.

(E) (E) (E)For the generic element let X = [X ,.,X nE]' summa-
E

rize the relevant properties. Due to the possibility of

gross manufacturing errors (poor concrete vibration, partial
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absence of reinforcement, etc.) the density function of

X(E) for given concrete properties may look like the curve

in Figure 16d. (Again, the shape may be modified to account

for several different types of gross errors.) Finally, the

(S) (S) (S)system properties X = [X ,.Xn S)]' may be related to

the elements properties as shown in Figure 16e.

The unconditional densities of the properties of

concrete, of the structural elements, and of the system can

be found through successive integration:

f(x (C)) = f (C) IX(M) (M)) f((M)) - d (M)

all x(M)

f(x (E)) = f(x(E) I(C) x(C) - f(x(C)) - d (C)

all x(C)

f(x(S) = f(x S) X(E) = E) (E)) - d X(E)

all x(E)

Hypothetical configurations of these densities (assumed

univariate) are sketched in Figure 17.

The failure probability may be contributed to sub-

stantially by gross errors; if this is the case, one purpose

of experimenting is to detect the presence of gross errors
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and possibly also to discriminate among different types

of gross errors, if they exist. For instance, if the

laboratory test of a concrete cylinder yields the axial

resistance X(C) = -(C) shown in Figure 17b, the probability

that the batch of concrete is grossly defective is quite

small. Via Bayes' equation the posterior density of the

concrete resistance might look like the curve in Figure

17b'. This would also have the effect of reshaping the

densities of X (E) and X(S) in those parts which are contri-

buted to most by gross errors in concrete manufacturing.

However, for the purpose of discriminating gross errors at

the structural level, material tests do not help much unless

gross errors at early production stages occur at a much

higher rate than gross errors during elements manufacturing

and system assemblage. On the other hand, there are

economical penalties for proof loading the structural ele-

ments or the entire system, so that the best data collection

policy poses a problem of discrete optimal allocation of

limited resources.

Processing of Experimental Data

In what follows we consider the classical one-sided

formulation of the fundamental reliability problem (see

Paragraph 1.4.1), and we show how prior resistance distri-

butions of the compcsite type suggested above are modified
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through Bayesian processing of experimental data. (The

parallel development for the generalized formulation only

requires a more elaborate formalism.)

(a) Generalities

Let R denote any structural property of interest,

and assume that the prior CDF of R can be written in the

form:

ne

Fb(R) = P b F b(RIO) d Fb () , (1.105)

0 space

where 0 is a vector of distribution parameters and {e }

is the set of possible construction errors affecting R.

e1 ,...,en are exhaustive and mutually exclusive events.

According to equation (1.105) the distribution type of R

is assumed known, while the parameters are random functions

of the errors. The posterior CDF of R, given the information

Z, is:

nne

F (R) = P J F a(RIO) d F_ (le. , (1.106)

0 space

where
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d F (Ole ) oc d Fb(Oe.) - l(Z O), for fixed e.;

Pa. ccb

1 space

l(Z-1) d Fa -( i);

Fa(RIO) m Fb(RIO) l(ZIR), for fixed 0;

(I. 107a)

(I.107b)

(I. 107c)

l(Z 1) cc

all R

1(ZIR) - d F a(RIO).

and 1(-) denotes likelihood function.

The integrals in equations (1.105) and (1.106) are

the conditional prior and posterior distributions of R,

Fb(RIe ) and Fa(Re i). All the three posterior distributions:

Pa. (i l,...,ne), equation (I.107b);
I

Fa (O1e ) (i = 1,...,ne), equation (I.107a);

F a(R), equation (1.106)

are of interest: the first one for discriminating among

error types, the second one for making inferences about the

distribution of the resistance population (resistance of
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nontested structures under the present assumption that the

same unknown types of errors have been made in manufacturing

all the structures), the third one for making inferences on

the resistance of the structure being tested directly. In

fact, the posterior distribution of R for a system belonging

to the same statistical population, but not being subjected

to direct experimentation is:

n

F (R) = a. Fb(RIO) d F_ (Ole.). (1.108)

a space

The non-identity between the CDF (1.108) and the CDF (1.106)

agrees with the intuitive notion that the experiment is

more informative on the resistance of the system being

tested directly, than it is on any other system from the

same population.

The foregoing analysis simplifies if Fb(O|e ) is

conjugate with respect to the likelihood function l(ZIO),

and Fb(RIO) is conjugate with respect to l(ZIR).

Another case which leads to considerable simplifi-

cations is when Fb (Olei) is a step function defining the

deterministic relationship: 0 = O(e); then the integrals

over 0 are replaced by discrete summations and equations

(1.105) and (1.106) become:
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n,e
Fb (R) = b

ne

F (R) = Pa a.

pi c:

SFb (R I0 _ ) ;

SF_ (RIO.) ,

1 1(Z O) ;

Fa (RI O) o Fb (RIO) - 1(ZIR) ;

1(ZIo.) M: f

all R

1(ZIR) - d F (RIO.) .a -

(b) Data from proof loading experiments

The outcome Z of a (non-noisy) proof loading experi-

ment which measures R directly may have either of two forms:

R=K, with < RPL, in case of failure at load R, or (I.112a)

Z: .

R>L, in case of survival, (I.112b)

150

where

(1.109)

(I.110)

(I.llla)

(I.lllb)

(I. 111c)



where RL is the minimum resistance for survival of the

test.

In the first case the likelihood functions of R and

E are:

1(ZIR) m 6(R - K) (I.113a)

where 6(-) is the Dirac delta function, and, if F a(RIO) is

differentiable at K:

d F a(R 6
l(Z_10) cc a -

d R
R=R

(I.113b)

In the second case:

l(ZIR) CC {0 if R < RPL

1 if R > R PL,

l(Z I_) cc 1 - Fa RpL1)
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if F a(RIO) is continuous at RPLO

These equations are used next in connection with the

composite resistance model developed earlier for reinforced

concrete structures. The proof loading of a bridge deck

serves as a numerical example (Example 6).

(c) Application to proof loading of reinforced

concrete elements connected in parallel or

in series

Proof loading experiments can be made at different

stages of construction in order to detect different types

of gross errors and to improve the reliability of the sur-

vived items. So far we have considered one-mode-of-failure

systems, proof loaded after completion of construction.

However, the same analysis applies to experimental data

from earlier construction stages, or from structural sub-

systems.

We examine now the reliability consequences of

proof loading the elements of a series or of a parallel

system. As before, four construction phases are distin-

guished: basic materials selection, concrete manufacturing,

elements manufacturing, structure assemblage. When refer-

ence to a particular phase is needed, the following upper-

scripts are used: (M) for materials, (C) for concrete,

(R (E)(E) for elements, (S) for system. R and R. denote the
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resistance of the system and of the ith element, respectively.

At e.ach stage of construction "minor" errors are

introduced, while "gross" errors may or may not be introduced.

The following notation is used: G = presence of gross (and

minor) errors; M = presence of minor errors only. When

several such symbols appear in a sequence, they refer to

sequential construction phases, starting from the selection

of the basic materials; so f(R E) jM,G,M) denotes the pro-

bability density function of the resistance of element i,

given that minor variations are present in the material

properties and in the construction of the elements while

gross errors were introduced during the concrete production.

When necessary, an upperscript letter will be used to

identify the stage.

Prior distribution of the systems resistance. Prior

probabilities are assigned to each possible combination of

error types: (M), (G), (MM) , (GM), (MG), (G,G),....,

th
(G,G,G,G). Conditional on the i error combination, e.,

the elements resistances are independent, with common prior

probability distribution Fb (R(E)le ). The unconditional

(E)prior distribution of the resistance R. is therefore

(assuming, as before, that the same but unknown error com-

bination affects all the resistances):

153



Fb (R(E)) _ Pb(MMM) F b(R(E) IMMM)

+ P b(M,M,G) Fb(R IM,M,G)

+ ... + Pb(GGG) - Fb(R(E)IGG,G)

Assume for simplicity that Fb(R(E) le ) = F(R(E) le )

N(yi,a ) and that the errors in assembling the system are

independent of previous errors. For a parallel system the

following model is used. If only minor assembling errors

are made:

(R(S)IM(S)) = C
pPM

n

S.(E) + ;
i= PM

where s , a 2 ),
PM M PM

and the subscript p denotes "parallel"; if instead also

gross errors are introduced in the final construction stage:

(R(S)I G (S) C
p G

n

R (E) + F ,

ial G

where ~ , 2  ) 
G G PG
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Similarly, for a series system:

C S

= C

- min
i

" min
i

{ R(

{ R(E)a- I

where

S N( M M G ~ G G

For a parallel

distribution of R(S) is:
p

8

Fb(R (S) Pb(M S) P i.

system the unconditional prior

-(X )+Pb(G S )
M

(I. 117a)

where e = (M,M,M), e 2 = (M,M,G),...,e8 = (G,G,G); Pb

is the prior probability of the error combination e ;

Pb(A) is the prior probability of the event A;

X =

.(S) n P

(n CPM - aU + U2 1/2
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8

P 
b

((X G ) ,
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S
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R - np.-

= P 1 GX =
G (n C 2  . + a 2 )l/2

PG PG

n is the number of elements connected in parallel, and D(- )

is the standard normal CDF.

For a series system the same probability distri-

bution is:

8

F (R (S) Pb(M S) fPb n
b s bil b11

R S)- CSM r - ' d
- $(-L S ) d r

aS M

+ P(G b) _ bn
0

.R -,S CSG r. - pISGS G r G )d r
a5

(I.117b)
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where $ (-) is the standard normal PDF. Equations (I,117)

greatly simplify if no errors are introduced in the

assemblage phase and C = C= 1, in which case:

8 (S)
(S) ~ R -.. n p

F (R ) - P ( p ) ; (I.118a)
b p b_ n1/2 .

8 (S)
Fb (R ) - P R i n . (I.118b)

b=l 1

Posterior distribution of the systems resistance.

We examine now how the last two equations are modified by

proof loading one structural element. If failure occurs at

a load intensity K < RPL, the element is replaced by a new

one, and the experiment is not repeated; if the element

survives, two strategies are considered: either the element

is used, or it is replaced.

(a) The element fails at a load . <

The probabilities Pb. are updated as indicated by

equation (I.107b):

~a i 8 i

j=lbj ( ./]/
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The posterior CDF of the system resistance is:

8 (L)R -ny
F(Rn (S) P R.
a= . 1 /2 J1=1 in - 0

(I.120a)

for a parallel configuration, and

8 R (S) 1

FaS = - l-[1- ( S 12].a 1 i n'l/2,n 1r

n
(I. 120b)

for a series configuration. (These posterior distributions

are generalized in the obvious way for the prior CDF's

(1.117).) Equations (1.120) differ from the prior expressions

(1.118) only because of the revised error probabilities.

Recall that all elements are assumed to suffer from the same

(but unknown) set of error types. Therefore failure of one

element carries information about the resistance of all the

others.

(b) The element survives

The posterior error combination probabilities are:

Pa

Pb. {(1 -[, (RPL--1) /ari

8

P pb. { [ (RPL-a1)/C] i
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(bl) The element is replaced. Then the posterior

CDF of the system resistance is formally identical with

(I.120a) or (I.120b), with pa given by equation (1.121).

(b2) The element is not replaced. The CDF of the

resistance of the element being proof loaded, denoted

F aPL(-), is:

Fa PL(R(E)

0 if R (E) ' RPL'

F (R (E)) - F (RPL)a otherwise ,
1 - F(RPL

where F a(-) is the posterior CDF for the elements not

being loaded:

8

F (r) = p (r-y /c.
a a -i I

and pa is given by equation (1.121). Therefore the CDF

of the system resistance results:for elements connected

in parallel:
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F( (S) (
Fa(R )=

8

i=1 -
0

R - RPLp -

S(n-i) 1/2 -

F (R -r) d r
aPL P

for R (S)R
p - PL

(I.122a)

0, otherwise;

and for a series configuration:

8 R(-S).8 p J1- ((l-CD[ S ]1 )S -I

- afi a Yi=l

n-1
(1-F (R (S

aPL S

Equations (1.119) through (1.122) can be easily generalized

to the case when more than one element is proof loaded.

The example which follows is an application of the

foregoing results.

EXAMPLE 6. PROOF LOADING OF A MULTI-SPAN BRIDGE DECK

Consider a simply-supported n-span bridge structure

(series system with n elements). Before proof loading, the

possible error combinations and the parameters of the con-

ditional distribution of the "element" resistances (in terms
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of maximum load carrying capacity) are shown in Table 3.

The probability distribution of the generic element re-

sistance R(E) conditional on a given error combination

is normal; the resistances of different spans are inde-

pendent. The design load, SD' is fixed to be either 230

or 200 kips (second-moment reliability index (l -SD)/a 2=3 .5

and, respectively, 5.0 for the error combination M,M,M).

Any number m < n of spans can be proof loaded; the proof

load intensity is denoted SPL. Given the distribution of

the load, the posterior failure probability can be computed

through straightforward generalization of equations (1.119)

through (1.122). For n = 1,2,5,10,20; SD = 230,200 kips;

m = 0(l)n, and for several proof load values, the posterior

failure probability corresponding to the design load SD'

n

P = Pr iU (R(E) < ]
fa i=lD

is plotted in Figures 18 - 21. The values indicated in

these figures are conditional on proof load survival and on

a non-replacement policy. They were computed through

equation (1.121) and a generalization of equation (I.122b)

which allows for m 6 1.

The failure probability after proof loading the

whole bridge with SPL = 5 D is zero, and the probability that
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ie Pb Pi (kips) Cr (kips)

1 MMM 0.950800 300 20

2 M,M,G 0.019404 260 20

3 M,G,M 0.019404 250 30

4 G.M.M 0.009600 250 20

5 MGG 0.000396 230 30

6 G,M,G 0.000196 230 30

7 G,G,M 0.000196 220 30

8 G,G,G 0.000004 170 40

Table 3. Possible error combinations, {e)l; prior errors

probabilities 1Pb }; and resistance parameters

{ , a} for each set of error types.
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at least one span fails during proof loading is P P
~PL

P a -b where P b coincides with P a for m =0. The

results show that for reliable systems (second-moment

reliability index = 5.0) proof loading is not effective

unless SPL is close to SD. It is also noted that for long

bridges (Figure 21) survival of the first few spans reduces

the posterior failure probability by decreasing the pro-

bability of gross errors, while survival of the last few

spans reduces P by truncation of fa(R(S)) at SPL'

For n = 10, SD = 230 kips and S PL= 180 or 220 kips

the evolution of Pf as the number of proof loaded spans in
a

ranges from 0 to 10 is shown in Tables 4 and 5. Also given

are the posterior error probabilities Pa(MM,M); Pa (M,M,G);

P a(M,G,G) and P a(G,G,G), chosen as a representative subset

of the eight possible error combinations. The evolution of

P a(M,G,M) and of P a(G,M,M) was found to be similar to that of

P a(M,M,G); so too was the evolution of P a(G,M,G) and of

Pa(G,G,M) similar to that of Pa(M,G,G).

Although the posterior failure probability does not

vary considerably with m when SPL = 180 kips, the probability

that gross errors are simultaneously present, Pa(G,G,G),

decreases significantly with m, meaning that the proof

loading experiment was effective in discriminating between

presence and absence of such errors. When SPL = 220 kips

this fact is even more accentuated.
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SPL = 180 kips; SD 230 kips;

m Pf Pa (M,M, M) pa (M, , G) pa (M,G,G) pa (G, G, G)
aa

0 0.3892 -01 0.9508 0.1940 -01 0.3960 -03 0.4000 -05

1 0.3869 -01 0.9510 0.1941 -01 0.3772 -03 0.1606 -05

2 0.3846 -01 0.9513 0.1941 -01 0.3593 -03 0.6445 -06

3 0.3824 -01 0.9515 0.1942 -01 0.3422 -03 0.2587 -06

4 0.3802 -01 0.9517 0.1942 -01 0.3259 -03 0.1038 -06

5 0.3781 -01 0.9519 0.1942 -01 0.3104 -03 0.4168 -07

6 0.3760 -01 0.9521 0.1943 -01 0.2957 -03 0.1673 -07

7 0.3739 -01 0.9523 0.1943 -01 0.2816 -03 0.6715 -08

8 0.3719 -01 0.9525 0.1943 -01 0.2682 -03 0.2695 -08

9 0.3699 -01 0.9527 0.1944 -01 0.2554 -03 0.1082 -08

10 0.3679 -01 0.9529 0.1944 -01 0.2433 -03 0.4342 -09

Table 4. Example 6: m = number of proof-loaded spans;

probability; p a (e) = posterior probability of

SPL = proof load intensity; SD = design load;

Pf = posterior failure
a

the errors combination e.

n = number of spans.

H

n=10



SPL = 220 kips; SD = 230 kips; n = 10

m Pf ap (MMFG) (MG,G) pa (G, G, G)

0 0.3892 -01 0.9508 0.1940 -01 0.3960 -03 0.4000 -05

1 0.3456 -01 0.9551 0.1905 -01 0.2508 -03 0.4243 -06

2 0.3083 -01 0.9587 0.1869 -01 0.1588 -03 0.4498 -07

3 0.2759 -01 0.9619 0.1832 -01 0.1004 -03 0.4766 -08

4 0.2476 -01 0.9647 0.1796 -01 0.6352 -04 0.5047 -09

5 0.2228 -01 0.9671 0.1759 -01 0.4016 -04 0.5344 -10

6 0.2009 -01 0.9692 0.1723 -01 0.2538 -04 0.5656 -11

7 0.1814 -01 0.9711 0.1687 -01 0.1603 -04 0.5984 -12

8 0.1640 -01 0.9728 0.1652 -01 0.1013 -04 0.6331 -13

9 0.1485 -01 0.9743 0.1617 -01 0.6396 -05 0.6696 -14

10 0.1344 -01 0.9757 0.1582 -01 0.4039 -05 0.7081 -15

Table 5. Example 6: m = number of proof-loaded spans; pfa
= posterior failure

probability; pa (e) = posterior probability of the errors combination e.

SPL = proof load intensity; SD = design load; n = number of spans.
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Minor modifications would allow to replace the

deterministic design load with a random service load.

1.4.3 Proof Loading in Multidimensional Random

Spaces

The logical steps in the analysis of proof loading

data are not affected by more than one load or resistance

parameter being random or unknown. However, operational

complications may become prohibitive.

Let S = [S,...nS ]' be the vector of basic

random load parameters and R = [R ,..,RnR ]' the vector of

basic unknown resistances. By generalization of the function

G(S) in Paragraph 1.4.1, G(S) denotes the probability of

failure conditional on a given load vector; then the prior

probability of failure is:

P = f Gb(s) d F (s) (1.123)

S space

where F () is the CDF of the service load vector. If the

proof loading experiment consists in having S attaining all

the values inside the region D5 C RnS, the posterior pro-

bability of failure conditional on proof loading survival is:
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P G (s) d F (s) (1.124)
f a - S -

where, from Bayes' theorem:

. P r[L.(D.S )I C(S)]
G b'((s) (I.125)
a - b) - Pr[L(D )]

In equation (1.125), L(D ) denotes survival when S attains

all possible values in D , and C(s) denotes collapse under

the load s.

The probability ratio in equation (1.125) can be

computed conveniently after formulating the proof-loading

problem in the space of the basic variables which, for

simplicity of notations, we assume to coincide with R and

S. The following parallels the generalized analysis and

the two-dimensional representation of the fundamental

problem in Paragraph 1.4.1.

Let DR (s) be the set of safe realizations of R if

S = s. Then, conditional on survival under proof loading, R

belongs with probability 1 to the region

D R(D ) = {rlr & D R(s) for all s e D }
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and the last two probabilities in equation (1.125) can be

written as:

Pr[L(D )] = 1 - Pf
S fPL

Pr[L(D )IC(s)} =

D R(DS

DR(S) C D'(s)

d Fb (r)

d F b(r);

where the upperscript C denotes complementation.

One can also compute the posterior PDF of R,

being:

, if r 5 DR(DS),

fb( r){Pr[L(D5 )]}
, otherwise .

It is interesting to note that in general the pos-

terior density function (1.126) cannot be written as the

product of nR marginal densities, even if a priori the

components of R were independent. Stated differently, an

informative experiment (PfPL 4 0) introduces dependence

between the resistance parameters. For example, consider
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the case of two unknown resistance parameters RI and R2'

and of two random load parameters S and S2. During proof

loading the loads are varied along the perimeter of (and

possibly inside) the quadrilateral ABCD in Figure 22. The

boundaries of the safe regions DR(A), DR(B), DR(C), DR(D)

corresponding to the corner load points are shown in Figure

23. The intersection of these regions defines D R(D ) if

survival under S = s and under S = s2 implies survival

under all convex combinations S = a s + (1-a)s2 ; 0 < a < 1.

In the same figure the solid lines indicate the prior

marginal densities of R and R2, and the dashed lines indi-

cate qualitatively the corresponding posterior densities,

conditional on survival. The posterior densities of R11R 2

and R2 R, for a given prior joint density can also be found

easily (Veneziano, 1972).

1.5. DESIGN OF PROOF LOADING EXPERIMENTS

Using the Bayesian analysis developed in Section 1.4

it is straightforward to give a formal definition of the

optimal proof loading experiment. As in any problem of

decision making under risk two basic elements define the

optimal experiment:

(i) The set of the feasible actions (here the set of

feasible proof load experiments), A, with
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generic action aPL'

(ii) An expected utility function U(aPL), which

defines a preference order among the feasible

actions. Typical arguments of U(-) are the

prior, the posterior and the proof loading

failure probabilities Pf , Pf , Pf ; the
b a PL

cost of the experiment C(aPL); and the cost

C0 of making no experiment. The expected

utility function depends also on the level

(e.g., materials, elements, subsystem, system)

at which the experiment is made, and on the

policy of replacing or not the parts of the

system which survived the experiment.

Then the optimal experiment a* is defined to be the actionPL

in A which maximizes the expected utility.

If several experiments are made sequentially (for

instance one on each element of a system) the proof load

may vary from experiment to experiment, possibly accounting

for previous results. In this case one has to optimize a

proof loading strategy, say by defining the best rule of

the type:

a* a (a* a ,Il'PL 1 2 n-l 2'00' n-l
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where I. is an indicator of survival (I. = 0) and failure

th
(I. = 1) for the j experiment. In this enlarged framework
J

one might include the number of experiments in the set of

design variables.

The problem of optimizing a single proof load

experiment was discussed by Sexsmith (1969) and by Shinozuka

(1969) with respect to the fundamental case in its classical

formulation (see Paragraph 1.4.1). The writer is not aware

of studies of optimal proof loading experiments in a more

general context, with the exception of Bouton, et al. (1967)

and Campion, et al. (1972) who examine the problem at a

rather qualitative level.

Conceptually, the optimization of a single proof

loading experiment has the same degree of difficulty as

finding the optimal design of a structural system for maximum

expected utility. In the proof loading problem the defini-

tion of the optimal experiment a* requires identifying thePL rqie dniyn h

optimal set DR(DS) in which the posterior resistance density

is non-zero (see Paragraph 1.4.3); in the second problem the

optimal design of a structural system consists in finding

the optimal safe region D in R S space (Gavarini and

Veneziano, 1972). In both cases the objective is an implicit

function of the design variables. Unfortunately these

features make the problem practically unsolvable in its

generality. Manageable formulations can be arrived at in
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particular situations; a simple, yet nontrivial case is

studied in Example 7.

EXA.MPLE 7. OPTIMAL PROOF LOADING OF A SIMPLY-SUPPORTED,

ONE-SPAN BRIDGE DECK

In some countries (e.g., in Italy), before opening

a bridge to the traffic, the structure has to be inspected

and proof loaded under load intensities which are close to

the design values. In order to achieve high stresses in

some parts of the deck, it is common practice to load the

bridge with the maximum possible eccentricity. The "best"

combination of proof load intensity and eccentricity is

studied here with reference to a simply-supported, single-

span bridge.

(a) Mechanics

The relevant structural elements of the deck are

shown in Figure 24: the reinforced concrete slab is sup-

ported by four (statistically) identical beams, which in

turn are connected by transverse beams to ensure a proper

distribution of the loads. The response of the bridge to

concentrated loads depends on the torsional rigidity of the

deck, on the flexural rigidity of the beams and on the

stiffness of the transversal connectors.
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Simplified linear elastic models are often used in

practice: at one extreme, the infinite-torsional-stiffness

model (equiripartition of the load among the longitudinal

beams); at the other extreme the independent-beams model in

which each longitudinal beam carries completely and ex-

clusively the loads applied in its "influence region". The

influence regions cover the total surface of the deck without

overlapping. Other more realistic models assume uneven load

distributions among the beams. A simple and useful ideali-

zation views the transverse beams as infinitely rigid

connections. Instead, the deck has finite torsional stiff-

ness due to the finite bending stiffness of the longitudinal

beams (the torsional stiffnesses of the beams and of the

slab are neglected).

(b) Safe regions

Consider a concentrated load P applied at midspan,

with eccentricity X from the deck centerline. If the load

carrying capacities of the individual beams are the same,

say PM M2 M3 M M, the safe regions in the

plane IxIP corresponding to the three models introduced

above are shown in Figure 25. For each model, survival and

failure correspond respectively to points inside and outside

its safe region.

For P being the resultant of a load at midspan which

is uniformly distributed in the transversal interval
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[(2X - e/2), e/2] if X > 0, and in the transversal interval

[-e/2, (2X + f/2)] if X < 0, the safe regions are shown in

Figure 26. (Only the safe region corresponding to the in-

dependent-beams model is modified with respect to Figure 25.)

Focusing now on the infinitely-rigid-transversal-

beams model, the load carried by the most stressed beam is,

for both concentrated and distributed loads:

S = P/4 + 0.3 P li
d

where d is the distance between adjacent beams. Neglecting

failure for negative moments the safe region is defined by

the inequality:

p
P - M < 0 , (P > 0) .

0.25 + 0.3 1 0
d

A sketch of the safe region in P, PMIXI space is shown in

Figure 27. (The region is truncated in the positive di-

rection of the PM axis for representation convenience.)

If the beam resistances are allowed to be different,

the safe region D is properly defined in a space of higher

dimension. An idea of the geometry of these regions can be

given by drawing conditional safe regions (sections of D).
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For instance, suppose that failure may be caused by excessive

loading of the edge beams, but not of the interior beams.

The maximum load carrying capacities of the edge beams are

PM and P For any given value of P the safe region in
M1 M4"

P, PM4, X space is sketched in Figure 28. (Again, the safe

region is unlimited in the positive P direction.)

Both regions in Figures 27 and 28 are concave.

(c) Probabilistic model for resistances and the

effect of surviving a proof load experiment

The following analysis applies to failure being

caused by overloading either one of the edge beams. A

priori the maximum load carrying capacities PM and PM

are assumed to follow a bivariate Extreme type III dis-

tribution (Gumbel, 1958, 1965), with CDF:

Fb 1 M ' M 4)exp-[(-log Fb 1M 1))+(-log Fb 4M )) };m>l,

14 1 4 1 1 4 4

(1.127)

where the prior marginal CDF's F ( ) and Fb (-) have the

same Extreme type III form:

Fb 1 (p) = Fb (p) = Fb(p) = 1 - e- K P>O, K>Q.

(1.128)
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The expected values and the variances of the marginal

distributions are:

E[PM E[PM u F(1 + 1/K)

a = a = u2 [I'(1 + 2/K) - F 2(1 + 1/K)]

m, u and K are parameters of the joint distribution; m

controls the correlation coefficient, which is zero for

m = 1 (see equation 1.127).

Survival to a proof load experiment with parameters

P = PPL and X = XPL assures that the resistance point

(PM 1'P M) belongs to the intersection of the safe region

D in P, X, PM ' M4 space with the linear variety (P = PPL'

X = X PL). Such intersection, denoted D(PPLXPL), is an

open rectangle in the plane PM ' M (Figure 29). The re-

sistances P* and P* in Figure 29 are defined:
1 4

XP
P = max { o, PPL (0.25 - 0.3 ) } ;

1L d

(1.129)

XL
P = max 0 , PPL (0.25 + 0.3 --- )

d
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Conditional on proof load survival the joint PDF of the

resistances is

fa (PM ' M4 ) = ,

0 if (P ' M ) D(PPL' *PL

, otherwise.
b, , 'l M41 4

l-F (P )-Fb(P4)+Fb (P*,P)b(1*)4F 1414

For later use we give also the prior and the posterior

probabilities that the resistance of beam 1 exceeds P1 and

that simultaneously the resistance of beam 4 exceeds P4 :

Pr (PM >Pl) n m >M 4)I = 1 - Fb(Pl) - Fb(P4 ) + Fb ' (PP 4)

= e-(Pl/u) K + e~(4/u)K

K K 1/m
+ exp(-{ [-log(l-e~ P1/u) )m+[-l.og(l.-.e( 4/u) )m 1

(I.130a)
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Pra (PM 1) M 4 4 1-F a 1)-Fa2 (P4 )+Fa (P1 P4)

= P b > l C~ >P4 )} -e~(P*/u) +e(P /u) -
bPM> 1 (PM 4 e e

+exp(-{ [-log (l-e (P/u) K Hm+ [-log (l-e (P 4 /u) K

1/m

(I. 130b)

where = maxPiP* , i = 1, 4; P*, P* are defined by

equation (1.129).

(d) Probabilistic model for the maximum service

loads

We assume that the maximum loads sustained by the

edge beams during the design lifetime, P and P , have a

joint Extreme type I distribution (of the maximum type).

Following Gumbel (1965):

- -n a (PM-u) 1/n
F(PM,P ) = exp{-[e-n Il(P-u1) +e 4 4 4
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In terms of the reduced variables:

r 1 = a (P - u1 ); r = a 4(PM - u4 )

the density function is:

f (r1 ,r4 ) = e-n (r1+r 4 ) (e-n r 1 + e-n r 4 )- 2+1/n

.{n-l+(e-n r1 + e-n r 4 )l/n

-exp{-(e-n r1 + e-n r 4 )1/n} . (1.132)

n, af, a 4, U1 , u4 are parameters of the distribution. The

marginal mean values and standard deviations are (Gumbel,

1965):

E[P ]: u. + 0.577/a . , i = 1, 4
1 I

1 7

i 461

,i = 1, 4.
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n controls the correlation coefficient, whose value is

(Oliveira, 1961):

p = 1 - n-2

(e) Failure probabilities

The following equations are self-explanatory.

Prior probability of failure:

- 00 - 3

-u 0 1 u 4 4

(P > +u4 )] }d rm 4 a0441

Posterior probability of

f (rl,r ) f1-Pr I > +u
b 1 1

d r 4

failure:

P 
= 

a
-u 0

'Co

f(r1 ,r ){l-Pr [ +u
a 11

-u a4

,r
(PM > +u 4 )]}d rl d r .
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Proof loading probability of failure:

P =1- Prb PM >')) PM >P*)] . (1.135)fP 1 1 M44

For the probabilities Prb[-] and Pr a['], see equations (1.130).

(e) Numerical computations

For the problem under study the proof loading set

Dg (see Paragraph 1.4.3) coincides with the interval

[(XPL, ') (XPL' PPL)] in X P space, so that XPL and PPL

define completely the experiment. Instead of specifying a

utility function and carrying out the optimization directly,

one can solve the problem parametrically by calculating

Pf , and finding Pf and Pf as functions of XPL and P .
b a PLPLP

Since Pf depends implicitly on the design variables
a

(equation 1.134), a discrete parametrization was made with

respect to XPL and PPL' using the following distribution

parameters for the resistances and the loads:

In the joint CDF of the resistances, equation (1.127):

K = 10 =>V 1 = V4  0.12 ,

u = 95 =>Eb [PM Eb [PM ] Z 90.3 kips ,

m = 2 ,
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where V. denotes the coefficient of variation of P
J M.

In the joint CDF of the loads, equation (1.131):

i = ag 4= 0.2419 => a = 5.3 kips
j

u 1 = u4 = 50.61 => E[P0] = 53 kips

u = /T => P = 0.50

Corresponding to these parameter values, the prior failure

probability is, from equation (1.133), P = 0.0095.

Since it is practically impossible to apply heavy

concentrated loads, the intensity of the proof load re-

sultant, PPL, was constrained more severely for larger

eccentricities (Figure 30a). Within the set of allowable

experiments shown in this figure, six alternative proof tests

with different eccentricities and load intensities were

analyzed. The intensity and the position of the resultant

are shown in Figure 30, b through g, for the six cases.

The cost of making the experiment increases with PPL'

but is rather insensitive to XPL within the region of

admissible designs. Also, the cost does not increase signi-

ficantly with the number of proof loading experiments which

make use of the same load P PL with different eccentricities;
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for this reason, two additional experiments were considered,

in which the bridge was loaded twice with the maximum

allowed eccentricities (Figure 30, h and i). The proof

loading failure probabilities corresponding to the eight

cases are collected in Table 6. From these results, one

can deduce that:

(i) Small proof load intensities (say

PPL < 100 kips) have little effect on the

posterior probability of failure (cases 1,

2, 3).

(ii) For larger proof load intensities (say

PL 200 kips) the posterior probability

of failure is highly sensitive to the

eccentricity (compare 4 with 5), decreasing

with IXPLI. Although not shown directly by

the table, for large PPL (say PPL > 300 kips)

the opposite dependence of Pf on IXPLI is
a

expected.

(iii) Experiments with heavier loads (within the

range considered here) and smaller eccentri-

cities are more effective (compare 5 with 6).

(iv) Performing double tests with maximum eccentri-

cities is highly rewarded (compare 3 with 7,

and 5 with 8).
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MW MW

H

Table 6. Example 7: Proof loading failure probability p PL and posterior

failure probability p a. (Prior failure probability: pfb = 0.0095.)

Refer to Figure 30 for the definition of the experiments.

XPL = proof load eccentricity.

Experiment Fig. 30 XPL (ft) PPL (kips) pPL Pfa

1 b 0 100 0.0000019 0.0095

2 c 5 100 0.00057 0.0089

3 d 10 100 0.0220 0.0045

4 e 0 200 0.0031 0.0066

5 f 5 200 0.441 0.00074

6 g 0 300 0.146 0.00033

7 h +10 100 0.040 0.0014

8 i + 5 200 0.568 0.000016



Possibly using a larger set of experiments, and with

a given optimality criterion, the decision maker can close

the (nearly) optimal proof test parameters.
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resistances) correlation coefficient; S = normal-
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Example 1 in the text.
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Figure 3. Informativeness of equicorrelated noisy
measurements in scalar estimation.
p = common correlation coefficient; u 2  prior
estimation error variance; m = Fisher information
"matrix", equation (1.54); mc, = lim m. Refer to
Example 2 in the text. n-o
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+ e12

Figure 5. Simply supported 3-bars truss.

{6 } = set of compatible modal displacements;

{F.} = set of active external loads.

Example 3 in the text.
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0

'1 2 a(2 + a 2 )

a(2 + a2)
Y=

a(2 + a2) - 2

Figure 6. Example 3 (see also Figure 5). Relative
effectiveness of measuring twice the
hardness of the same bar versus measuring
once the hardness of bar 1, and once the hard-
ness of bar 2. pH = correlation coefficient
of measurement errors. For the definitions of
a2 and of a, see equations (1.59) and (1.73).
The first experiment is more informative in
the shaded region; the second experiment is
more informative elsewhere.

195



/ 1 4 A

a
/
/

/
/
/

/
/

/
/

2

/ /
/

N
N

N

N
N

N

N

3 A 4

/

/ 5

/ *

/
/

/
/
/
/

6

Figure 7. Six alternative load-deflection (stiffness)
experiments considered in Example 3.

196



50 1 1

a= 0
45

(Perfect stiffness
correlation)

40 -
6

35 -

30 -
6

r
1

25 -

4

20 - 3

15 - 1=2-

5
10 -

8

6
4

2

0
0 0.5 1.0 1.5 2.0 2.5 3.0

C = CY2 /2 Cr2
0 C

Figure 8. Informativeness of the experiments in Figure 7 as
a function of the variance ratio c; no manu-
facturing error (perfect stiffness correlation).
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Figure 9. Informativeness of the experiments in Figure 7 as
a function of the variance ratio c; manufacturing
error variance = 0.25 X material stiffness
variance (stiffness correlation coefficient = 0.8).
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Figure 10. Informativeness of the experiments in Figure 7
as a function of the variance ratio c; manu-
facturing error variance = material stiffness
variance (stiffness correlation coefficient =

0.5).

199



3
minimum required ' m. optimal policy - 2

24 ----

3
20

10 n -
22

n =3

2 -- -

2 n =1
0 '

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Cost, c.
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Paragraph 1.4.2.

204

(a)

(b)

(c)

(d)

(e)



(a)

f (X.C))

ith ai basic material property

(C+M)M

(C) G+(M)M (b')

(C)

-(C) .th
x i concrete property(b)

(C+E+M)M

-(E) G +(C+M) M

ith element property(c)

Sf(X.S))
(E+C+S+M) M

.th
1 system property

Figure 17. Unconditional densities for the model in
Paragraph 1.4.2. M
Notation: (-)G+(..) = the density is mostly

contributed by "gross" + "minor"
errors in () and by only "minor"
errors in (--).

(For simplicity onlyafew error ccnbinations
are indicated explicitly.)

205

(d)

f (XIM)

(S+E ) G + (M+C ) M



0.01

Pf
a

0.00]

0

150
80

- 200

-7

220

S PL

SD= 2 0 0  I
150

80

I n=1 0 1 n=2

Proof loaded spans, m

Figure 18. Posterior failure probability of an
n-span bridge after survival of m
spans under proof loading.

s design load; S = proof loadPL intensity.

206

S D= 2 3 0

- S =230 KIPS

150

180

230 220

PL

S D= 200

150

180

200

KIPS



I I I I I

SD 230 KIPS S

180
200

220

230

0 1 2 3 4 n=5

Proof loaded spans, m

Figure 19. Posterior failure probability of
bridge after survival of m spans
proof loading.

a 5-span
under

207

S D=200 KIPS

SPL

150

180

200

0 I 3 4
0 1 2 3 4 n=5

0.01

Pf
a

0.001



- SD= 230 KIPS S PL+
150
180
200

220 SD= 2 0 0 KIPS SPL

0.01 +

150

180

Pf
a

230

0.001-

2?0

0 2 4 6 8 n=10 0 2 4 6 8 n=10

Proof loaded spans, m

Figure 20. Posterior failure probability of a 10-span
bridge after survival of m spans under
proof loading.

208

I I



I I I I I L
~ S =230 KIPS SPL

150
180

200

220

230

[ I I I I I
0 4 8 12 16 n=20

I I I I- I

S D=2 00 KIPS SPL

180

00

0 4 8 12 16 n=20

Proof loaded spans, m

Figure 21. Posterior failure probability of a 20-span
bridge after survival of m spans under proof
loading.

209

0.01

0.001



S2
D

D S
C

SiBI1

Figure 22. During proof loading S = [S ,S I is given
values inside the quacrilatirai ABCD,
including the corner load points.

f (R )a 2

fb(R 2

C

B

DR (D S

A

D

D
A

fb(R )

'I - fa(Ri)

Figure 23. A posteriori and conditional on survival, R
belongs to D R(D ), intersection of the regions
DR (A), DR (B), D (C) D (D). Also indicated
are the prior a d the posterior marginal
distributions of the resistances R and R2 '

210

A



transversal
A beams

lo

-44-

ngitudinal
ams

Planimetric view

A

- P7

d d d

Section A - A

Figure 24.

Figure 25.

P I

4 P f

Pf

0
0

Structural members of the 1-span bridge
deck in Example 7.

Example 7. Safe regions for concentrated
loads;
1 - infinite-torsional stiffness-model;
2 - independent-beams-model;
3 - infinitely-rigid- transversal beams-

model.

1D3

D

D2

L-X
I I

-~ P

I.1 I
e/2

e/2 lxJ

211

-gX //bea-



w w

23
3

D
2

I
C/2 - "-J

IX I

30 e/2

Figure 26. Example Safe regions for distributed loads.
1 -infinite-torsional stiffness-model;
2- independent-beams-model;
3 - infinitely-rigid-transversal beams-model.

p

4 Pf

H

P f

0

Iw
'4-

II I

w w w ww w w w V

7.

X



0 e/2X

4

Figure 27. Safe region in XI P P space; P = common
beams resistance; infiNitely-rigid-trans-
versal beams-model.

-e/2 2 X

M

Figure 28. Unequal beams resistances. Intersection
of the safe region at a fixed PM value.

213



D(P PLXPL

.... ... . .

1

Figure 29. Intersection of D with the linear

variety:

P = PL'

X = XPL

214

p*
4

p



300 kips

PPI
(a)

X PL=0

P HO
(b) PL 2 ps I

XPL=10

(d) PL

I I
4,

XPL=5' I( PL=20 5

(f) PPL: 
2 0 0

I IKE

feasible design
region

x
PL

15'

X PL=5'

(C) P L100

I IKI I
X P =0
XPL 0

(e) PL 20 -4
I Id I

XPL=0

PPL=300

I
F

X =+10' X =+5'PL' PL' -

PL PL=20

1 1* I1F1 1 111 1TT
(h) (i)

Figure 30. Feasible proof load design region, (a); and
eight possible experiments, (b) through (i).

215



CHAPTER II

INDEPENDENT MODELS

The estimation problems studied in Chapter I are

characterized by a wait-and-see attitude: first the state

of nature specifies itself, then it is measured experimentally.

The present chapter focuses on a different class of problems

in which statistical evidence is used. Common to these

problems is that the experiment does not measure directly

the state of nature, either because reference is to the state

of nature at a future time, or because direct measurements

of it would have undesired consequences. Examples of the

former case are the various meteorological loadings on a

structure. As an example of the latter situation, one would

not make destructive tests on structural elements which are

to be used later for construction; however, one can collect

useful information by testing destructively other elements

from the same population.

The availability of indirect experimental information

of this type is characteristic of decision problems in which

the "future" has to be predicted from the "past". In mathe-

matical terms the "past" is contained in the outcome of an

experiment E, and the "future" is the outcome of an hypo-

thetical future experiment F. Any structural design requires
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prediction both of the properties of the system not yet in

existence, and of the environment in which it will be

operating.

Probabilistic models. Consider first the case in

which E and F consist ofrespectively,past and future

realizations of the same stationary, independent (white)

sequence {Y }. Indeed, because of the whiteness assumption,

there is no need for keeping the notion of time: the "past"

is simply a set of independent random variables with the

same probability distribution as any "future" realization

(consider the foregoing example of making destructive tests

on structural members). Conditional on the population

distribution F(Y) the "past" and the "future" are independent,

and in fact if F(-) is known there is no reason for collecting

statistical data. On the contrary, if F(-) is unknown, ob-

serving the past is informative on the distribution of the

sequence, and so also on its future realizations. The case

of E and F being regression experiments with independent

residuals fits the same scheme since the notion of time is

again irrelevant. This type of prediction problem is

studied in this chapter.

A different situation is faced when the observed

past and the predicted future belong to the same realization

of a process with memory. In this case observation of the
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past is informative on the future in two ways:

(i) If the process is ergodic or if data are

available from different realizations, one

can estimate the probabilistic structure of

the process (mean value, autocovariance

function, and so on), just as discussed above

for white sequences.

(ii) The available data are used to estimate the

past and the present and, through the memory

properties of the process, also to reduce

the prediction error. If the probabilistic

structure of the process is given a priori,

past measurements are used for prediction

only in the second modality; this brings one

back to an estimation problem of the type

discussed in Chapter I.

Problems of prediction from first-order autoregressive

processes are studied in Chapter III.

It is perhaps worth saying that estimation and pre-

diction are not mutually exclusive notions. In the example

of testing structural members, destructive tests on members

from the same population and nondestructive tests on the

members used for construction can be combined to reduce most

effectively the uncertainty of the resistance of the latter

group. A numerical example will be made in Paragraph 11.2.2.
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Example 6 in Chapter I dealt with a similar situation.

Prediction in restricted and extended forms. The

word "prediction" is used in the statistical literature with

different meanings. As remarked by Aitchison and Sculthorpe

(1965), most of the time "prediction" is given the meaning

of "prediction inference", the purpose being to make state-

ments about the outcome of F. Denote this outcome Y.

Based on a past experiment E, prediction in this sense may

consist in finding either the best point predictor Y(E),

or a prediction region D (E) in Y-space containing the

outcome of F with given probability P, or the full distri-

bution of Y conditional on the outcome of E (Bayesian

approach). We call this the restricted form of prediction.

The restricted form is appropriate for structural relia-

bility prediction.

The second way in which one can make statistical

predictions is to associate a utility measure U(D,Y) with

each future outcome Y and with each prediction region D in

Y-space. Then the problem is to define D as a function of

the outcome of E such that the expected utility is maximized.

Clearly the optimal decision D(E) depends on the utility

function. For instance, in a structural design problem

U(D,Y) might be defined as follows:
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U(D) + U S(D) if Y C- D;

U(D,Y) = -

(D) + UF (D) if Y 4 D,

where D is the safe domain of the system in the space of

the basic random vector Y (note: D is a design "variable");

-U(D) is the cost of a system with safe region D; Us(D) is

the utility of such a system not experiencing failure, and

UF(D) is the (negative) penalty for failure. We call this

the extended form of prediction (Aitchison and Sculthorpe

use the terminology: prediction problems of decision type).

The extended form is appropriate for structural design and

code-writing purposes. The available results are few (see

Aitchison and Sculthorpe, 1965; Aitchison, 1966; Guenther

and Terragno, 1964; Dunsmore, 1966, 1968, 1969). Our main

concern will be with the restricted formulation.

"Prior" knowledge. One additional preliminary

remark will be useful. Prediction problems with independent

sequences differ according to the degree of knowledge of

F(Y) before data are collected. A common assumption in

classical prediction theory is that the distribution type

is known, but not the parameters (parametric, or parameter-

free prediction). Results in the form of prediction regions

220



are available for particular types of population distribu-

tions (Proshan, 1953; Fraser and Guttman, 1956; Guttman,

1959; Goodman and Madansky, 1962; Thatcher, 1964; Chew,

1966; Aitchison and Sculthorpe, 1965; among others).

Another case which is considered by classical statistics is

that of complete ignorance of the distribution F(Y) (i.e.,

not even the shape of the distribution is known). This

assumption leads to the theory of nonparametric (or

distribution-free) statistical prediction. Important con-

tributions to it were made by Wilks(1941), Wald (1943),

Tukey (1967), Fraser (1951,1953), Danziger and Davis (1964),

Kemperman (1956); see also the review in Guttman (1970),

Chapter I-Z

From a Bayesian viewpoint the aforementioned states

of knowledge are only extreme cases out of a continuous

spectrum which ranges from complete ignorance to perfect

knowledge of F(-). Intermediate states of knowledge are

described through a "prior" probability distribution of the

parameters (which case parallels classical parametric in-

ference; see Aitchison (1964,1966); Aitchison and Sculthorpe

(1965); Guttman (1970)),or through a prior distribution over

all possible F(-) functions (which case parallels classical

nonparametric inference; see Ferguson (1973)).

In this chapter an impartial viewpoint is taken,

and results from both Classical and Bayesian inference are
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given. However, for conceptual as well as for practical

reasons the author's preference stays with the Bayesian

approach; some motivations for this preference are given in

Section 11.2.

Simple and simultaneous prediction. When F consists

of a single realization of the process at a specified

"future time", we say that prediction is "simple".

Statistical prediction for structural reliability

when the random quantities (say of the load-type) change

with time requires a more elaborate analysis. For a discrete-

time stochastic model the problem consists of predicting the

maximum of m future realizations from an available sample.

m may be fixed, or may be a random function of the "life

time" of the system. For a given m the problem is usually

called one of "simultaneous prediction". We shall deal with

simple prediction in the first part of the chapter (Sections

II.1 and 11.2), and with simultaneous prediction in the

second part (Section 11.3).

As already mentioned, the sample may consist of

censored observations; a simple problem of this type was

studied in Chapter I, Example 6. More will be said in this

chapter on a general Bayesian approach to prediction from

censored data (Paragraph 11.2.5).
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The organization of the chapter is as follows.

After an exposition of the basic elements of frequentist and

Bayesian prediction (Section II.1), Section 11.2 deals with

simple-prediction problems (one future realization) for

univariate (Paragraphs 11.2.1 and 11.2.2) and for multivariate

random sequences (Paragraphs 11.2.3 and 11.2.4). In both

cases the parametric and nonparametric frequentist approaches

are reviewed first and parallel Bayesian results follow.

Paragraph 11.2.5 deals briefly with prediction from censored

data. The last section (Section 11.3) treats problems of

simultaneous prediction for univariate sequences.

The chapter has the format of a review of distri-

bution theory; as a result, the reader who is interested in

the application-side of statistical prediction will find this

chapter less well "motivated" than Chapter I. On the other

hand such a reader will perhaps find it easier to apply the

results in this chapter, as opposed to the results in the

last chapter. The extensive tables in Appendices A, B and

C are intended to ease such applications. Examples are

used to clarify results more than to further develop the

theory; an exception in this sense is the application of

simultaneous prediction to damage accumulation and to

fatigue failure, a problem which is studied in Paragraph

11.3.4.
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11. 1 PRINCIPLES OF FREQUENTIST AND BAYESIAN PREDICTION

Consider the following problem of decision under

risk. A structural system must be designed to survive a

future vector-valued load Y with given probability P. The

properties of the system can be controlled deterministically

by the designer; instead, Y is modeled as a random reali-

zation point of a stationary independent sequence {Y }, at

a given future time. The marginal distribution of the

sequence is not known exactly. As an additional piece of

information, a sample of size n is available from the same

sequence. For instance one might have observed Y1 , Y2 ' ''''

Yn, and the problem might be to design a system which will

survive the next load event Y = Y n+l with probability P.

For any given system the set of points in Y-space

corresponding to survival is called the "safe region" (with

respect to Y). Let D denote this region. The problem of

design under reliability constraint consists in finding a

system whose safe region D contains Y with probability P.

A region with this property is said to have "P-content",

or "P-coverage"; in turn P is called the (probability)

content or coverage of D. Because Y is a "prediction vari-

able" whose value gets specified at a later time, D is often

referred to as a "prediction region".
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In problems of reliability analysis D is given and

the objective is to find the probability content of D.

A similar formulation for structural reliability

analysis and design holds when survival depends on a set of

future load realizations, say Yn+l' n+2' '''' Yn+m' if

survival requires that all these load vectors belong to a

region D in Y-space, then D is called a simultaneous pre-

diction region (of P-content, if survival occurs with

probability P).

The usefulness of prediction regions for probabilis-

tic structural analysis and design is therefore apparent.

Their construction follows different lines, depending on

whether one moves within the frequentist or the Bayesian

framework. Both these approaches to prediction are elegantly

reviewed by Aitchison and Sculthorpe (1965) under the

assumption that the generating sequence is white with known

distribution type but unknown parameters (parametric pre-

diction), or that both the distribution type and the para-

meters are unknown (nonparametric prediction). A concise

exposition of the frequentist and Bayesian approaches follows.

Frequentist approach

Under this approach, for each distribution parameter

there are only two possible states of knowledge before
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sampling: either the parameter's value is known, or we

are totally ignorant of it. Let 0 denote the vector of

unknown parameters. The experiment E consists of observing

' X2' **o' n, while the next realization Y = Yn+ is

the object of prediction.

Collect Ythrough Y into the observation vector

Z. With respect to the next observation the probability

content of a region D in Y-space is, for any given 0:

P(D10) = d F(YI0) (II.1)
D

where F(-10) is the conditional CDF of the sequence {Y }.

Since here 0 is not known, equation (II.1) cannot be used.

At most 0 can be estimated from Z. With this type of statis-

tical uncertainty the problem of constructing a prediction

region is that of finding a rule D = D(Z) such that for any

given - D has probability content P:

E z[P (D (Z)10)] = f (Z 10) f d F(Yj0) d Z = P. (11.2)

all Z D(Z)

D (Z) is called a parameter-free (or parametric) prediction

region of P-content. For the parallel formulation when
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prediction problems are in extended form see Aitchison and

Sculthorpe (1965).

From equation (11.2) it is apparent that D = D(Z)

is a decision rule which produces prediction regions having

expected content P, the expectation being taken over all

the possible observations Z. Logically this is not the pro-

per attitude if decisions are made after observing Z. On

the other hand classical statistics is incapable of account-

ing for parameters uncertainty in a different form. The

impass can be avoided by revising the frequentist inter-

pretation of probability and by using the so-called "fi-

ducial argument". By this argument, if before making any

observation the quantity (ZIO) is uncertain with distribu-

tion F(ZI0), after observing Z, say Z = Z*, the parameter

vector 0 is random with distribution

d F(01Z*) o d F(Z* 10) (now a function of 0).

Then a prediction region D(Z*) is of P-content if

P[D(Z*)] = f f d F*(Yj0) d F(O1Z*) = P.

all 0 D(Z*)
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(The fiducial approach will be given no further considera-

tion.)

We turn now to the case when nothing is known about

the marginal distribution of the sequence, F(Y). Following

the same reasoning as in the case of parametric prediction,

the probability content of a prediction region D for given

F(-) is:

P[DIF(-)] = d F(Y). (11.3)

D

In the frequentist approach the problem is to define a

decision rule D = D(Z) such that the probability content

(expected value with respect to Z) is P for any given CDF

F(Y):

EZ(P[D(Z)F(-)]) = f[ZIF(-)] f d F(Y) d Z = P.

all Z D(Z)

(11.4)

When defined through equation (II.4), D(Z) will be called

a distribution-free (or nonparametric) prediction region of

P content.

The same difficulties of parametric frequentist pre-

diction are present also in nonparametric frequentist
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prediction. Conceptually, the fiducial argument might be

used also when F(Y) is unknown, although additional compli-

cations are created by working in function space.

Bayesian approach

We consider only the case with known distribution

type and unknown parameters. Indeed, little work has been

done for the situation in which also the distribution type

is unknown, even within a given distribution family. For

methodological suggestions and some results see Smallwood

(1968), Wood, et al. (1974,) and Box and Tiao (1973),

Chapter 3. The very similar problem of model selection is

considered by Fedorov (1972) in the context of experiment

design.

For a known distribution type, say F (YIO), let

f(O) be the prior density function of the unknown parameters.

Then the prediction distribution of Y is:

F(YIZ) = f F 1((YI) f(OjZ) d 0 , (11.5)

all 0

where the conditional density f('IZ) is given by Bayes'

theorem:
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f (0_I Z) = f (_) -(Z ) (11.6)

f (Z)

The posterior predictive distribution of Y, equation (11.5),

contains all the necessary information for reliability

analysis and design. In particular, prediction regions of

given content are easily found.

For problems of Bayesian prediction in extended

form, see Aitchison and Sculthorpe (1965) and Dunsmore (1966,

1968, 1969).

The general considerations above hold also for

problems of simultaneous prediction. Two formulations can

be given:

(a) Define Y to be the collection of the next

m > 1 realizations, say:

n+1' 'n+m

The associated prediction regions of P-content,

D(Z),are defined in Y-space.

(b) For application to reliability problems it is

more convenient to have D(Z) defined in

Y.-space; then P is the probability that m

future realization points in Y -space will all
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fall inside D'(Z),. Equations (II.1) to (II.4)

are easily generalized to cover this definition

of prediction region.

In Section 11.3 consideration will be given to both defi-

nitions of D(Z).
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11.2 SIMPLE PREDICTION

In this section the "future" experiment consists of

a single observation from a univariate or multivariate

population. Prediction is made in terms of regions which

contain the outcome of the experiment with a given pro-

bability. For the Bayesian approach, the predictive

probability distribution is also derived.

11.2.1. Frequentist Prediction Intervals for

Univariate Sequences

Consider a univariate white sequence {Y. I for

which a sample of size n is available. The observation

vector Z is defined:

Z 1Y1

Z2

Z Y
n n

and the prediction variable is Y =n+l'

Since at least one distribution parameter is un-

known, no prediction interval can be constructed before

sampling. Parametric prediction intervals of P-expectation,

see equation (11.2), are explicitly given below for several

232



independent probabilistic models: Normal, ExpOnential,

Extreme type I, Poisson, Gamma, Lognormal. For the bi-

nomial case see Thatcher (1964). At the end of the

paragraph the construction of nonparametric prediction

intervals is also reviewed. In each case a measure of

penalty for statistical uncertainty, r, is calculated.

r is defined as the ratio between the length of the predic-

tion interval under limited information and the length of

the same interval when the distribution parameters are

known (or the sample size becomes infinite).

(a) NORMAL SEQUENCES - N (p; a2)

p and a unknown. The problem of constructing a

prediction interval of expected P content in the sense of

equation (11.2) was solved by Wilks (1941). Let

n n

(Z, 2 ) = ( (Z )2)
n i= i n-1

be a set of sufficient statistics for p and U2 . Wilks

proved that the interval:

^ N ^ N
(Z - - 5, Z + - SI (II.7)
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is of P expectation in the sense of equation (11.2) if and

only if

5N = (1 + l/n)1 / 2 t [(l+P)/21 (11.8)
P~ n-l

where t (y) is the y-fractile of the "Student's" t-

distribution with v degrees of freedom. In other words,

the variable R = (Y-Z)/S(i+l/n)1/2 has t-distribution with

(n-1) degrees of freedom. A number of similar results are

derived in this chapter for normal populations with only p

or only a unknown, as well as for different distribution

types. In each case the upperscript on S refers to the

population type (here, for instance, N stands for "normal")

and the subscripts indicate the parameters assumed unknown

(here both the location and the scale parameters).

Under perfect information (PI) on the population

parameters P and a, the central prediction interval of

P-content is:

(y - c[(i+P)/2] G, P + (Z[(l+P)/2] a], (11.9)

where 4(-) is the cumulative standard normal distribution.

A measure of penalty for imperfect information is therefore
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given by the ratio between 3 and = [(l+P)/2], or:P [(+I/] or:

I N ,(P.,n) .t [. (.l+P,)./2]
rN (Pn) -N Pr n = (1 + l/n)1 /2 1 t-l

N (P) 4c[(l+P)/2]

(II.10)

= ] 2 2Y
If Z = E[Z] = p, and S = E[S .2 , the quantity (II.10)

has also the geometric meaning of length ratio between the

central prediction intervals for limited and for perfect

N
statistical information. For any fixed value of P, r N (P,n)

is a decreasing function of n, approaching 1 as n -+ .

For one-sided prediction intervals equations (11.7)

are replaced by:

(Z - N
A 

-TNS, c),, or by (-c,r Z + P ( - SI (II.lla)

and

P = (1 + 1/n)1/2 - t (P) (II. llb)

Since for perfect information one-sided prediction intervals
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have the form:

(p - (P) aj, *), and (-co, yp + D(P) a],

the penalty ratio for finite sample sizes is, in accordance

with equation (11.10):

-N (P)
(P, ,a(n) ) = (1 + 1/n)1/ 2 tn-l 1.)
P 0 a(D(P) D(P)

p unknown, a known. This case (as well as the

following one) was studied by Proshan (1953) and by

Guttman (1955). When a is known, sufficient statistics
n

are n and the sample mean Z = Z./n, which define the
i=l p

central prediction interval of P-expectation:

A N A N
[Z - - a, Z + - a],u ~ yt

(II. 13a)

where

N /N = (1 + 1/n)
P

(II. 13b)
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The associated penalty for lack of information depends only

on the sample size n, being

N

rN = = p, (1 + 1/n)
P- ([ (1+P)/2]

(11.14)

NBy comparison with the ratio r in equation (II.10) one

can judge the importance of the population variance being

also unknown when p is unknown. As expected, for all P > 0

and for all finite n it is:

N N
r (P,n) > r (n).

Pyra yP

If one-sided prediction intervals are desired, equations

(11.13) are replaced by

[Z - a, o), or by (-o, Z + ];

= (1 + 1/n) 1 / 2 c (P).
yt

(II.15a)

(II. 15b)

The penalty ratio is still given by equation (11.14).
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v known, a unknown. In terms of the sufficient

2 1 n 2
statistics n and S - 3 (Z.-) ,n

(y - N - s, y + N - S]
Cr a

(II.16a)

is a central prediction interval of P-expectation if

N3 = t [(l+P)/2].
a n

This corresponds to the penalty ratio

N (P,n) t [(l+P)/2]
r (P,n) = .n

P [ (L+P)/2 Z

(II.16b)

(11.17)

Y L +P)/2]

The one-sided prediction intervals of P-expectation are:

[i - - S, o) and ( , + - S];

a = t (P) ,

(II.18a)

(II.18b)
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with associated penalty ratio:

-N
r (P,n) t (P)n (P)

N N N
The ratios r (P,n), r (n) and r (P,n) in equations

(11.10), (11.14) and (11.16) are related as:

N N N
r (P,n) = r (n) - r (P,n-l). (11.20)

(the same relationship holds for one-sided predictions).

Tabulated values of the penalty ratios and of the

N
coefficients N are collected in Appendix A (Tables Al

through All). For selected values of P and for n ranging

from 1 to 18 the penalty ratios are displayed in Figures

1, 2 and 3 (solid lines). The plots refer to central pre-

dictions. From the figures and from the more extensive

tables in Appendix A it is seen that when a is unknown and

n is fixed the penalty increases with P. This would not be

so if the values of the prediction intervals were always

related to normal CDF's (as opposed to cumulative t-

distributions). The importance of the distribution type can
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be measured by comparing the exact penalty ratios with the

corresponding "first-order" penalty ratios, which are

defined here as those resulting from replacing the t -

distribution by the normal distribution with the same first

two moments, N(0, v/(v-2)), in equations (11.10), (11.12),

(11.17, (11.19). Using the prime sign to denote "first

order":

for p and a known, (a)

(1 + 1/n)1/ 2  for p unknown, (b)

N' (n) 
(11.21)

(l + .2- )/2 (n>2), for a unknown, (c)n-2

[l + 3n-1 1/2
n(n-3) , (n>3), for P and a unknown. (d)

For the case of only p unknown, it is: rN (n) = rN' (n). The
P P

expressions (II.21c) and (II.21d) are tabulated in Appendix A

(Table A12) and plotted in Figures 1, 2, 3 (dashed lines).

The "first-order" penalty ratios are sometimes larger, some-

times smaller than the exact ratios, but they are increasingly

The present definition of "first-order" is not standard
in the statistical literature.
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unconservative as P gets larger (i.e., in the range of

interest to safety and reliability theory).

This discloses a problem of "statistical invariance"

in the sense of Ditlevsen (1973) and Veneziano (1974a),

since in the presence of statistical uncertainty it is

important whether one makes the assumption of the distri-

bution type before or after sampling.

Other "first-order" solutions to this prediction

problem are found in the literature. Recently Anderson

(1972), working with a Bayesian formulation, concluded that

the uncertainty in the variance has prediction effects which

are negligible when compared to those from an uncertain mean.

His results for the two extreme cases (1) of p being known,

and (2) of "diffuse" prior information on the mean yield

the following penalty factors:

for p known,

r(n) = (11.22)

(1 + 1/n)1 /2  for p unknown,

irrespective of the state of knowledge about a. In the

frequentist approach the same approximation would lead to

identical r values. The plots in Figures 1, 2 and 3 show

that this approximation is quite unsatisfactory; in fact,
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as we already pointed out, the variance being unknown is

generally a much more critical condition for prediction than

the mean value being unknown. Anderson's assumption has

been used by Ang (1973) to derive probabilistic design

formulas for simple systems in presence of statistical un-

certainty (for additional considerations, see Veneziano

(1974b)).

The effect of a being unknown may also be considered

from a different viewpoint. Suppose that the target of

sampling is to reach a penalty ratio r < 1.2. For central

prediction intervals the required minimum sample sizes are:

UNKNOWN Expected Content, P
PARAMETER(S) 0.75 0.90 0.99 0.999

p and a 7 9 15 21

4 6 12 18

1 3 3 3 3

TABLE 1. Minimum sample size for a penalty ratio r < 1.2

(equations (11.10), (11.14), (11.17)).

which values show again the importance of accounting correctly

for the state of knowledge about a.
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(b) EXPONENTIAL SEQUENCE

Fraser and Guttman (1956) related the problem of

constructing parametric prediction regions to a problem of

hypothesis testing. The idea was applied later by Guttman

(1959) to sampling from the exponential population with

density function

1 -Y/cf(Y) = -e (11.23)

n

and a unknown. In terms of the statistic ' = 1 Z
n i1 i'

Guttman found that the right-hand prediction interval of

P-expectation for the next observation is:

^ -EX
[Z - CY (P,n)], co) , (II. 24a)

EXwhere E (P,n) satisfies the equationa

EX
l-E (Pn)

[n/(n+w)]n+1 d w = P.

243



After integrating and solving explicitly for 3 EX:0*

EX -/
E (P,n) = (n+l) - n P (II.24b)

(see Table A13, part l,. in Appendix A) .

In accordance with previous definitions for normal

sequences, the penalty for imperfect information can be

measured by the ratio

IEX = (P,n) (n+ ) - n /n

r X (P n) = a=(
a ~ 1 + log (P) 1 + log (P)

(II. 25a)

EXHowever, since ' (P,n) is very close to 1 for the (large)a

values of P of interest to us, the inverse ratio of the

complements to 1 is a more indicative measure of penalty;

in this case:

rEX (P,n) log P log (P)

1 - E (P,n) n(l-P-l/n
a

(II.25b)
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The ratio (II.25b) is tabulated in Appendix A for right-

hand prediction intervals (Table A14, part 1) . Interest-

EX
ingly, for fixed P, r (P,n) in equation (II.25b) is an

increasing function of n, approaching 1 as n + o. (The

opposite trend was found for Normal sequences.) The minimum

values for P = 0.90 and for P = 0.99 are r E(0.90,l)=0.949

EX
and r E (0.99,1)=1.000, showing that little would be gained

by collecting further information (according to the present

definition of penalty).

Quite different is the case of left-hand prediction

intervals of P-expectation:

EX
[0, Z[l + SEX (P,n)]] , (II.26a)

for which one finds:

EX (P,n) = n(l-P)-l/n - (n+l) . (II.26b)

The penalty ratio (II.25a) becomes:

EX (n+l) - n (1-P) 1/n
r (P,n) = . (II.27)

1 + log (l-P )
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Values of 13X and of rE for left-hand predictions are given

in Tables Al3 and Al4 (parts 2 ). In contrast with

right-hand predictions the penalties are now quite large,

often exceeding those for normal populations.

Guttman (1959, 1970) considered the analogous pro-

blem when sampling from the shifted exponential population

f(Y) = - exp {-(Y-p)/a}

when p or p and a are unknown.

The exponential distribution is widely used for

modeling the time-to-failure of systems and subsystems (and

more generally the interarrival time of "rare" events).

Practical reasons impose limitations on the duration of a

laboratory life-test, so that it is typical that one ob-

serves only the lower r(r < n) times to failure (the lower

r order statistics) from a sample of size n. Goodman and

Madansky (1962) proved that for this situation the interval

^-1
[C(P,r) - X (n, r), co)
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^ -1
is of P-expectation if the statistic X (n,r) is defined as

follows in terms of the order statistics Z ( <Z (2) <- - <Z r)

r

X 1 (n,r) = r Z1 Z + (n-r) Z (r)J

and C(P,r) r(P-l/r 1)

By setting E(P,n,r) = 1 - C(P,r) one verifies that this

is a generalization of equations (11.26), which are re-

produced in the special case: r = n. More will be said

on prediction from censored data in Paragraph 11.2.5.

(c) EXTREME TYPE I SEQUENCE

The extreme type I distribution is of frequent use

in structural reliability since many potentially critical

events are extremes of random processes within its domain

of attraction. (Benjamin and Cornell (1971) pp 271-279;

Gumbel (1958) pp236-254). The form of the distribution is:

F(Y) = exp{-exp[-(Y-a)/b]} , b > 0.
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The parameters a and b can be estimated graphically or

analytically by the maximum likelihood criterion. The

latter approach, yielding the estimates a and b, was pursued

by Harter and Moore (1967, 1968). Following Antle and

Rademaker (1972), the statistic

E = (Yn+1 - a)/b

has a distribution which depends only on the number of past

observations, n. Write the left-hand prediction interval

of P-expectation in the form

A ElA
(-00, a + ab (P,n) b] (11.28)

Representative values of aEb(P,n)

and Rademaker through simulation.

P = 0.90, 0.95, 0.975, 0.98, 0.99;

and for P = 0.995 and n = 20(10)70,

Some of these values are reproduced

The maximum likelihood estimates of

After defining

were computed by Antle

~El
They tabulated a,b for

n = 10(10)70, 100, 0;

100, CO (their Table 1).

in Appendix A (Table A15).

a and b are biased.
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E[(a-a)/b] = g(n)

E [b/b] = 1/h (n),

Antle and Rademaker found the values of h(n) and g(n)h(n)

for n = 10(10)100 (their Table 2) via simulation. From

these data one can calculate the penalty ratio:

Elr ab(P,n) =a,b

A El A

E [a] + Ba,b(Pn) E[b}

El
a + a 'o)- b

ElEl (P, n)
+a b a

g(n) h (n)

a +El
b a,b

(11.30)

The ratio a/b depends only on the coefficient of variation V ,

being (see for example Benjamin and Cornell (1971), p 274):

a 1.282 - 0.577.
bvy

Elfoa/=1()0
Table A16 gives the values of ra, b(Pn) for a/b = 1(1)10,

n = 10, 20, 30 and for selected probability contents, P.

For each value of P and n the penalty ratio increases with

the dispersion of the population distribution.
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Unfortunately, Antle and Rademaker did not tabulate

a,b for sample sizes smaller than 10, which are frequent

if the extreme sequence collects rare events.

(d) POISSON SEQUENCE ,

Let X be the parameter of the Poisson process. The

observation consists of a single Poisson variable Z with

mean value nX; the variable to be predicted, Y, has Poisson

distribution with mean ml. If Z and Y count the number of

arrivals in a Poisson process, n and m are proportional to

the duration of the past and of the future observation

periods, t and tf . The left-hand prediction interval of

P-expectation is (see Aitchison and Sculthorpe (1965)):

[0, (P,n,m) - S] , (11.31)

where S2 = Z m/n, (II.32a)

P
f3 (P,n,m) = [min {:I /(n+m) (Z+l, ) > P} - 1/S ,(II.32b)

and I is the incomplete beta function tabulated by Pearson

(1934). Since P(*)S is an integer, it was found more
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convenient to tabulate the upper limit of the prediction

interval, instead of (-. The parameters Z, m/n = t /tp,

and P in equations (11.31) and (11.32) were assumed as the

independent variables and were given a set of representative

P
values. The corresponding values of .S are collected in

Table A17. For instance, if the ratio tf/tp is 0.5 and the

prediction interval must have 0.99 probability content, it

is .S = 4 if Z = 0; P. S = 5 if Z = 1; P -S = 6 if Z = 2;

P
f3 S = 9 if Z = 5, and so on. It is interesting to note

that even when Z = 0 the prediction interval may contain

nonzero integers.

The penalty ratio is also best referred to the

upper limit of the prediction interval; for Z = E[Z] = n X:

P (P,n,m) . S
r (P,n X,m X) = ; n X > 0.

i -m X
min -Y : (m X e >J

(11.33)

The denominator in equation (11.33) can be calculated from

tables of the cumulative Poisson distribution or, indirectly,

from inverse tables of the X2 distribution (Harter (1919)).

It gives the upper limit of the prediction interval for

perfect knowledge of X. Table A18 collects the values of
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the denominator in equation (11.33) for the same values of

m X and P considered in Table A17. The associated penalty

P
ratios are given in Table A19. Since r () is the ratio

of two integers, only qualitative conclusions can be drawn

from this table: for instance, the penalty tends to in-

crease with the ratio tf/tp (which, in a sense, weights the

uncertain future, tf , versus the known past, t ) and with

P, although a number of "local" exceptions can be found in

the table.

The right-hand interval of P-expectation was also

found by Aitchison and Sculthorpe. Their result is:

[K,o), where K = max {Y:In/(n+m) (Z,y) < 1 - P}

(11.34)

(e) GAMMA SEQUENCE

The main reference is again the fundamental paper

by Aitchison and Sculthorpe (1965). Let X be the unknown

parameter of the underlying exponential process (which

process needs not have any physical meaning). The experi-

ment consists of observing a variable Z with Gamma distri-

bution G(m, X), where m is known. The problem is to find a

prediction interval of P-expectation for a future observation
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Y distributed like G(K, X), with K known. When the "past"

experiment consists of observing n independent variables

from the statistical population of Y, it is m = n K. In

the sequel we assume that this is the case, so that m is a

multiple of K (this implies no loss of generality for the

results).

The mean and the standard deviation of Y are K/X

and K1 /2 /X. They are estimated by Z/n and by Z/(n K1/2)

respectively. Given Z, the left-hand prediction interval

of P-expectation can be written:

Z G Z
[0,- + G (n,K,P) ] . (II.35a)

n Xn K

Using Aitchison and Sculthorpe's results, one finds the

G
following expression for :

G (n,K,P) = n - (n+l) j - K (II.35b)
X ~B(m,K;P)

where B(m,K;P) is the P-fractile of the incomplete beta

distribution. It satisfies IB(m,K;P) (m,K) = P, and this

last function is tabulated by Pearson (1934). Under perfect

information the same interval would be:
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K G K1/2
- + (11.36)

where is given by:

S= -/2 1X2(KP) - K] (11.37)

and 1 2(-) satisfies:

F x2 (2K) [1X2 (K,P) ] = P (11. 38)

Therefore 1X 2(K,P) is obtained from the inverse cumulative

x 2 tables in Harter (1919).

The penalty ratio for imperfect information is

(n,K,P)
r G(n,K, P) = x

1G (KP)

n
B(mK;P) -(n+l)

x
2K
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All the foregoing results hold also for the right-hand

prediction interval of P-expectation:

G (nrK )IC)(11.40)
- 1(nKP)2

n K

after replacing P by (1-P).

For several values of K, n and P equations (II.35b),

(11.37) and (11.39) are tabulated in Appendix A (Tables

A20, A21, A22 for left-hand predition intervals; Tables A23,

A24, A25 for right-hand intervals). As K increases, the

shape of the distribution passes gradually from an exponen-

tial (K = 1) to a normal (K + oo); at the same time the

penalty ratios decrease for left-hand predictions and increase

for right-hand predictions.

(f) LOGNORMAL SEQUENCE

Let Y belong to a lognormal population with mean p

and variance U2. By definition Z = ln Y has normal distri-

bution with mean Z and variance U 2 . The relationships

between the parameters of the two distributions are as

follows:

255



exp+ ) ,

a 2 = exp (cT + 2 i) [exp (a) - 11

(II. 41a)

(II. 41b)

and inversely:

PZ = ln(P2 ln(o 2 
+ P2),lnz 2 2

U2 = -ln(.p2 ) + ln(j 2 + p2)z

(II.42a)

(II.42b)

Let Z = ln Y , Z2 = ln Y 2 ' '*. ''n = ln Yn be the logarithms

of n independent observations from the lognormal sequence.

When both P and a 2 are unknown Z and G2 are also unknownz z

(see equations (11.42)). The latter quantities are esti-
nn

1 n 2 1 n^ 2
mated by Z = - Z and by SZ ~n (Z -Z) One-

i=l 1
sided prediction intervals for Z = ln Y are then (see results

for the normal process):

CO -N
(- , Z + It a (P,n) S ]

[ - N[Z - a3 (P ,n) S, z O

256

and



Since the logarithmic transformation is continuous and

one-to-one, one-sided prediction intervals of P-expectation

for Y are found by transforming exponentially the limits of

the corresponding intervals for Z. This yields:

[0, exp{Z + 7 (P,n) - SZ

A N
[exp{Z - Ta (P,n) - S , 0).and (11.43)

These prediction intervals can be written in a more con-

venient form in terms of the following estimates of the mean

and of the variance of Y:

^ 1 2 A

Y = exp( i SZ + Z)

S = exp(SZ + 2Z)[exp(SZ) _1

Then the intervals (11.43) are the same as

^ LN
[0, Y + Pa (P,n) - S ]

yI,cJY

LN
and [Y - I (P,n) S , Co)

(11.44)
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if L is chosen as indicated below. For 'left-hand pre-

dictions:

LN
LN (P,n)

P' Ja

exp{ + . (P,n) - S - ex1P f~crZ'
x 2 2exp{Z} [exp{SZ} (exp{S z}

S2 + Z2 Z z

1) 1)1/2

exp{7 (P,n)V r C

exp{S Z Z

S~Z exp{S /2}
(11.45)

- 1)1/2

where 7 N (P,n) = (1 + 1/n)1 2 tn-1 (P) is tabulated in

Appendix A (Table All).

For right-hand predictions:

expfS 2/21
LN(3 (P,n)

ex

In both cases the penalty

the following expression:

- exp{-N (P,n)

P{SZ (exp{SI -

ratio r (P,n)
*P I a

. SZ
- (11.46)

1)1/2

is computed from

r L (Pn) = L (P,n)/ (P)
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where SLN(P) = lim LN (Pn)

LN LN
Both and r depend on S (besides varying

11,a yY Z
with n and with P). The variance of the normal sequence

{ln Y } is related directly to the coefficient of variation

of the lognormal population VY being, as well known:

n Y= [ln(V2 + 1)]/2

After relating in a similar way the estimate V of VY to

the estimate SZ of aln Y

S = [ln(V + 1)]l/2

LN LNB () and r (-) depend on V , n and P. Tables A26 and
yN ^ ~ YNA

A27 give values of P (Vy,n,P) and of r (Vy,n,P) for

left-hand prediction intervals; Tables A28 and A29 collect

the same quantities for right-hand prediction intervals. It

is interesting to note that for large coefficients of vari-

ation (say VY > 0.3) and for left-hand predictions the

penalty ratios are substantially higher than those for

normal populations with p and a unknown, due to the
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logarithmic transformation.

If PZ = Eln Y or aZ Cln Y are known, equations

LN
(11.45), (11.46) and (11.47) still hold for L (P,n) or for

LN Z
P (P,n), and for the associated penalty ratios after

replacing (P,n) by T 5 (P,n) or by N (P,n). Tabulated

values for these cases are also given in Appendix A

(Tables A30 through A37).

SOME APPLICATIONS TO RELIABILITY ANALYSIS AND DECISION

Some applications of the preceeding results (in-

cluding Tables Al - A37 in Appendix A) are suggested. For

convenience of exposition and for comparing the present

results with the "first-order" approximations (11.21) and

with Anderson's approximation, we shall refer to normal

populations (Tables Al - A13). However, the same use can

be made of the results for different populations.

The ratios in Tables Cl - C5 are penalty measures

with respect to perfect information, decreasing with the

sample size for fixed probability content P (for the

values of P considered there). Let U n be the expected

utility of making n observations. Un may be considered to

N
be a function of n through the penalty ratio r(.) (P,n),

with a typical trend as shown in Figure 4. On the other
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hand the cost of sampling, C, may evolve according to the

straight solid line in the same figure. The optimal sample

size is the (integer) value n* of n for which (Un - Cn) is

maximum. If sample values are historical data the function

Cn may look quite different, associating small costs with

values of n less or equal to the present availability of

data (n in Figure 4), and substantially higher costs with

sample sizes larger than n (collection of additional data).

Another use of the penalty ratios is as multipli-

cative factors for design values which are valid under

perfect parameters knowledge. For instance, if a design

value for given distribution parameters is the upper 99%

fractile of the normal distribution (i.e., p + 2.326 a),

the penalty factors and the design values when one or both

the location and the scale parameters are estimated from a

sample of finite size n are shown in Table 2 for selected

values of n.

The "first-order" solution does not provide finite

design values when o is unknown and n = 2, but for larger

sample sizes is preferable to Anderson's approximation.

When only p is unknown the exact and the approximate design

values coincide.

NOne can also use the tables of r1.) (P,n) and

N. (P,n) for reliability analysis. Consider a structure

whose state of survival depends only on the normal variable
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UNKNOWN SAMPLE PENALTY NEW DESIGN "FIRST-ORDER" "FIRST-ORDER";

PARAMETER(S) SIZE RATIO VALUE APPROXIMATION VARIABILITY OF

n EQ(II.21) S NEGLECTED

(Anderson (1972) )

2 16.759 Z + 38.98 S Z + 2.849 S

5 1.766 Z + 4.107 S Z + 3.600 S Z + 2.549 S

V and a
10 1.272 Z + 2.959 S Z + 2.762 S Z + 2.440 S

20 1.119 Z + 2.602 S Z + 2.515 S Z + 2.384 S

2 2.994 p + 6.965 S o + 2.326 S

5 1.447 p + 3.365 S p + 3.000 S p + 2.326 S

10 1.188 y + 2.764 S y + 2.640 S p + 2.326 S

20 1.087 p + 2.528 S p + 2.451 S p + 2.326 S

2 1.225 Z + 2.849 a Z + 2.849 a Z + 2.849 a

5 1.096 Z + 2.549 a Z + 2.549 a Z + 2.549 a

10 1.049 Z + 2.440 a Z + 2.440 a Z + 2.440 a

20 1.025 Z + 2.384 a Z + 2.384 a Z + 2.384 a

TABLE 2. Design values which include statistical uncertainty (see text) .



Y. Let and 2 denote the distances of the extremes of

the system safe interval on the Y axis from the estimated or

known mean of Y, in units of estimated or known standard

deviations of Y. The probability of failure is:

Pf = 2 - Pr(3I, n) - Pr (" 2 , n) ,

where Pr( , n) is the probability content of the 1-tailed

region corresponding to .= N for a sample of size n

and for the appropriate combination of known - unknown

parameters. Alternatively Pf can be calculated from tables

of the standard normal CDF, being:

Pf = [- /ry (Pl, n)] + N[-.2 (-)(P 2 , n)]

where P1 and P2 are defined implicitly:

N
P. = @[ ./r . (P., n)] ; i = 1,2.i i ( )

Suppose for example that the bending resistance of

a beam population has normal distribution. The applied

moment M is known, so that the safe interval on the resistance
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axis is [M,c). From the population, five beams are chosen

at random and their resistances are measured. With the

notations introduced earlier is the estimated value of

(ip-M)/a (p and a2 are the mean and the variance of the

resistance), and 2 = c. The failure probability of a beam

from the same population depends on and on the state of

knowledge about the distribution parameters. A few values

of Pf are collected in Table 3.

TABLE 3. Probability of

l, 2 = o and

text).

failure for

a sample of

selected values of

size n = 5 (see also

The values of P in Tables 4 and 5 correspond to the

same values of l and to the same combinations of known -

unknown parameters. They result respectively from using

the "first-order" approximation (11.21) and from neglecting
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KNOWLEDGE
OF

PARAMETERS 1.00 2.00 3.00 4.00

virc known- 0.159 0.023 0.00135 0.000032

-p unknown 0.181 0.034 0.0031 0.00013

a unknown 0.182 0.051 0.015 0.0052

P,a unknown 0.207 0.063 0.026 0.011



the uncertainty of S in the same approximation (i.e., when

using the approximation proposed by Anderson (1972)). The

"first-order" approximations (11.21) (Table 4) are con-

servative for small l values and become unconservative as

1 increases. If, in addition, one neglects the statistical

variability of S, the estimated reliability increases, this

making the approximations in Table 5 always unconservative

if a is unknown.

TABLE 4. Probabilities of failure from

approximation (11.21).

the "first-order"
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KNOWLEDGE
OF

PARAMETERS 1.00 2.00 3.00 4.00

1 unknown 0.181 0.034 0.0031 0.00013

a unknown 0.219 0.061 0.0101 0.0010

p,,a unknown 0.260 0.099 0.026 0.0051



KNOWLEDGE
OF

PARAMETERS 1.00 2.00 3.00 4.00

P unknown 0.181 0.034 0.0031 0.00013

a unknown 0.159 0.023 0.00135 0.000032

p,a unknown 0.181 0.034 0.0031 0.00013

TABLE 5. Probabilities of failure; "first-order" approxi-

mation and variability of S neglected (Anderson

(1972) ).

As anticipated before, the coefficients B and the

penalty ratios for non-normal populations can be used in

the same way.

It is interesting to compare the penalty ratios

r = /I when a sample of the same size n is available

from different populations. In Figure 5 the penalty ratios

for several distribution types and for various combinations

of known - unknown parameters are plotted as functions of n.

The curves refer to a left-hand prediction interval of

0.999-expectation and indicate clearly that the penalty

ratio is highly sensitive to the population type and to the

state of knowledge about the parameters. Curves (3), (6),

(7) and (8) refer to cases with both location and scale
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parameters unknown; only the location parameter is unknown

for curves (1), (4) and (5); curve (3) is for a case with

unknown variance. For all the remaining curves the location

and the scale parameters are both unknown, but they are

related deterministically (for instance through a known

coefficient of variation).

Although some overlapping exists and the results are

rather dispersed, the general tendency is that the penalty

increases from the location parameter being unknown to the

scale parameter being also unknown but with a deterministic

functional relationship between the two, to the case with

only the scale parameter unknown, and finally to both

parameters being unknown and independent.

Unfortunately, it does not seem that a distribution-

free approximation for r as a function of n can be found

easily without restricting substantially the distribution

type. For left prediction intervals and for exponentially

decaying densities like, say, exp{fY} with a given, the

penalty ratio increases with decreasing a (for example it

is larger for the exponential distribution than it is for the

normal). Of course, comparisons are meaningful only if the

state of knowledge about the parameters is similar.
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(g) DISTRIBUTION-FREE PREDICTION INTERVALS

So far the distribution type and possibly some

distribution parameters were assumed known (=> parametric

prediction). Under some conditions on the sample size, a

prediction interval for the next observation can be con-

structed also if no information is available on the popu-

lation distribution; i.e., neither on the parameters, nor

on the shape. In this type of statistical (nonparametric)

prediction, inferences rely exclusively on the information

from the sample. The only distributional property which is

usually required (and to which the following results are

conditional) is the continuity of the population CDF.

Given an ordered set of n independent observations

from the same unknown population: Z < Z(2) < ... < Z n)'

consider the (n+l) intervals: (-Co, Z (1 )] (Z (1 ) Z( 2 )]I''''

(Z , oo). After setting Z (0 ) -- and Z(n+1) = 0, the

difference [F(Z ()) - F(Z ( 1 )], with F(-) being the un-

known population CDF, is called the coverage of the jth

interval. Tukey (1947) proved that the sum of any r < n+l

coverages has Beta distribution I(r, n-r+l), where

t ft nI r-l n-r
It(r, n-r+l) = a (1-a) da, O<t<l (11.48)

0 (r-l)!(n-r)!
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is tabulated by Pearson (1934). In particular the expected

sum of any r coverages is

P(r,n) = r/(n+l) (11.49)

(Less general statements were proved earlier by Wilks (1941)

and by Wald (1943).) Equation (11.49) enables one to con-

struct distribution-free prediction intervals of P-expectation

if enough data are available. For instance, (Z (,)Z(n)] is

a central nonparametric prediction interval of expectation

(n-l)/(n+l) = 1 - , and (Z( 1 ),o) is a right-hand

prediction interval of expectation (1- -

n+l

Suppose that sampling is from a Normal population,

but that the experimenter has a poor knowledge of the dis-

tribution type; thus he decides to use a distribution-free

predictor. Keeping n, the sample size, to a minimum, a few

prediction intervals of P-expectation are considered in

Table 6 for different values of P. The entries of the table

are the values of n which make the nonparametric intervals

in the left column of P-expectation.
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TABLE 6. Minimum sample sizes for

nonparametric prediction

the construction of

intervals.

The quantity [Z (n) Z (1 ) ]/a, where a
2 is the popu-

lation variance, is called the "normalized range" of the

sample. For normal populations the expected normalized

range (ENR) was computed and tabulated by Tippett (1925)

for n = 2(1)1000. For instance it is: ENR(39) = 4.30117

and ENR(199) = 5.48876. The ratio

N (Pn) ENR (n)
F 2 [ (l+P) /2]

(II.50a)

for central predictions and the ratio

N P,n) ENR (n)

2D (P)
(II.50b)
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PREDICTION

INTERVAL 0.75 0.90 0.95 0.99 0.995 0.999

(Z , Z (n) 7 19 39 199 399 1999

(_00F Z (n)
(-o, Z( I

or 3 9 19 99 199 999

(Z( 1 ) ,o)



for 1-sided predictions are measures of the expected penalty

for not knowing the distribution shape when in fact the

distribution is normal. For the prediction intervals and

N
for the sample sizes in Table 6,rF has the following values.

PREDICTION

INTERVAL 0.75 0.90, 0.95 0.99 0.995 0.999

CENTRAL 1.176 1.121 1.097 1.065 1.057 -

1-SIDED 1.256 1.158 1.121 1.077 1.065 1.049

TABLE 7. Penalty factors for nonparametric prediction

intervals when sampling is from normal populations.

One might plot the points [n,rF(P,n)] in Figures 1,

2, 3 to compare with the analogous penalties when the dis-

tribution type is known but some or all the parameters are

not; however the major penalty in nonparametric prediction

is the very large required sample size (for central pre-

diction intervals: n > (1+P)/(l-P); for 1-sided predictions:

n > P/(l-P)).

Suppose now that the population has exponential dis-

tribution and that the purpose of sampling is to construct
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a 1-sided nonparametric prediction interval of P-expectation.

If the distribution type is unknown to the experimenter, the

minimum required sample sizes are those given in Table 6 for

1-sided predictions.

The mean of the smallest value among n independent

observations with exponential density: f(Z) = A exp(-XZ)

is (see Gumbel (1958), p 117):

Z = /A n (II.51a)(1)

and the mean of the largest value is, again from Gumbel,

p 116:

n

Z (n) 21A (II.51b)
i=l

Z In n + 0.57722 (large n)

Since the P-fractile of the exponential distribution is

-A1 ln(l-P), the penalty for not knowing the distribution

type can be defined:
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rF (P,n) = -n ln(P)

n

r+ (P, n)=

1 + In (I-P )

(II.52a)

for prediction intervals of

the type (Z(, o); and

for prediction intervals of

the type [0,Z (n)]

(II.52b)

For n having the values in Table 6 for 1-sided predictions,

the penalty ratios are given in Table 8.

PREDICTION
INTERVAL 0.75 0.90 0.95 0.99 0.995 0.999

(Z(1 )", ) 0.863 0.948 0.975 0.995 0.9975 0.9995

[0Z (n)] 2.157 1.404 1.304 1.157 1.133 1.098

SAMPLE SIZE 3 9 19 99 199 999

TABLE 8. Penalty factors for distribution-free prediction

intervals when sampling is from exponential

distributions.
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The penalty ratios for right-hand predictions are

always smaller than the corresponding ratios when the dis-

tribution type is known, and for the same sample size. This

is due to the particular shape of the left "tail" of the

exponential density. Conversely, the penalty ratios for

left-predictions always exceed the corresponding parametric

values. For the latter case (as for normal populations)

the lack of information on the distribution type is penalized

mostly by the large minimum sample size which is required to

construct prediction intervals of high expected content

(n > P/(l-P)).

The "paradox" of having penalty ratios smaller than

1 and of them decreasing when assuming no knowledge of the

distribution type motivates some skepticism on the validity

of the ratio r as an index of penalty for the "pathological"

case of the exponential distribution (see also comments on

this point in Goodman and Madansky (1962)).

Along the same lines one can define penalty ratios

for nonparametric prediction when the actual distribution

is Gamma, Extreme type I, lognormal or other, if the ex-

pected range is known. Useful references are Gupta (1960),

David (1954), Cox (1954), Singh (1967, 1972).
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11.2.2 Bayesian Prediction for Univariate Sequences

Not until recently has statistical prediction pro-

fited from Bayes' theorem. Important contributions are

authored by Aitchison (1964), Thatcher (1964), Lindley (1965),

Aitchison and Sculthorpe (1965), Guttman (1970).

The Bayesian approach to prediction was outlined

briefly in Section II.l. The quantity to be predicted, Y,

is considered to be random, with uncertainty contributed

both by the probabilistic model and by the lack of statis-

tical information. If the population distribution type is

known but not the vector of parameters 0, a prior distri-

bution for 0, f(®), is established which quantifies the

status of knowledge before sampling. This prior knowledge

is then combined with the information from the sample data,

Z, yielding a posterior distribution for 0, f(0|Z). This

is accomplished formally through equation (11.6), which is

rewritten here in terms of the likelihood function l(Z 0)

(for any given observation vector, l(Zj0) is proportional

to f(Z10)):

f(01Z) f(0) - 1(Z 10) (11.53)
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The posterior predictive density of Y is then cal-

culated through equation (11.5). The same equation gives

also the prior predictive density f(Y) after replacing

f(O IZ) by f (O). If desired, point and interval predictions

can be found a posteriori after specifying a prediction

criterion or a utility function (see Chapter I, Section 2).

The power of Bayesian analysis resides mainly in

its capability to combine information of different types

from different sources. However, closed-form results for

the posterior predictive distribution are known only for

particular likelihood functions (probabilistic models) and

prior distributions. In this sense, the case of vague

initial information ("diffuse" or "noninformative" prior)

and the case when the posterior distribution is of the same

type as the prior distribution (conjugate prior) are of

special interest.

The problem of selecting "correctly" the prior

distribution is not free of difficulties, and is still the

object of active research and of much debate. Savage (1962),

Jeffreys (1961) and Novick (1962) among others made early

and fundamental contributions in this area; conjugate prior

distributions were introduced by Raiffa and Schlaifer (1961)

and discussed by Lindley (1965) and by Draper and Guttman

(1968a,b). Recent reviews with vast bibliographies are in

Lindley (1971) and in Hampton, et al. (1973). Also
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informative is Chapter 6 in DeGroot (1970).

The results presented in this chapter are mostly

for conjugate prior distributions. Particular relevance is

given to the fact that the cases with conjugate priors can

be reduced to problems with diffuse priors by artificially

increasing the sample size and by modifying the sufficient

sample statistics. The characterization of the prior in-

formation through an equivalent sample may have useful

practical implications, as suggested by the experiments

conducted by Winkler (1967) and others. A concise account

of Bayesian prediction theory for Normal, Exponential,

Poisson and Gamma populations follows.

(a) NORMAL SEQUENCES

- unknown, a known. From Raiffa and Schlaifer (1961),

p 55, the likelihood function in terms of the sufficient
^l n

statistics Z - Z. and n is:
n i

l(y|JZ,n) m exp{- - (pZ2 . (II.54)
2U2

For a prior in the form of the normal density
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f () exp{- - y 2

0 2

the posterior density of p is also normal. Let a = a2/n'

then

f(pIZ,n) =
n+n' n' + nZ 2

1/2 exp{- [ - I1 .
/2~T a/(n+n) 2Y2 n + n'

(11.56)

From equation (11.5), after "integrating out" i:

1
f(YIZ) = expL -

V2~ T ( n+n'+l ) 1/2
n+n'

n + n'
Y-

2 (n+n' +l) 2

n' +nZ 2

n+n'

(11.57)

This is again in the form of a normal density with parameters:

n'p + n Z n + n' + 1
yy = - 2 _ = 2 . (11.58)

n - n n +r n
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The prior density (1.1.55) becomes more and more

"diffuse" as a increases or, equivalently, as n' decreases.

The noninformative situation is approached asymptotically

as n' -+ 0. Although (11.55) degenerates into an improper

density when n' -+ 0, the predictive density (11.57) does

not, becoming simply: N(Z; U2 (n+l)/n).

It is interesting to observe that for integer n'

n'u + n Z n + n' +

n + n' n + n'

would be the posterior predictive distribution if, starting

with a diffuse prior, a sample of size (n+n') were available,

with sample mean (n' p0 + n Z)/(n + n'). This shows, as

anticipated earlier, that the effect of assuming an informa-

tive conjugate prior with integer n' is to "increase the

sample size" and to modify the sufficient statistics. When

n' is not an integer the prior information "is worth more"

than [n'] observations and less than [n']+l observations

with sample mean p 0 . ([] = max integer function.)

If one is interested in prediction intervals of

probability content P, the following applies.
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Central prediction interval:

n' Po+ n Z n + n' + 1 1/2
- d[(1+P)/2] -+/n + n n + n'

n'y + n Z C. n + n' + 1 1/2

n + n' + n + n'

(11.59)

One-sided prediction intervals:

n'0 + n Z n + n' + 1/2
+ 0 (P) nn }/ ; or

n + n' n + n'

-00

n 0 + n Z .n. + n' + 1 11/2
00

n + n'

(II. 60a)

(II. 60b)

n + n'

These intervals coincide with the frequentist pre-

diction intervals of P-expectation when the prior is diffuse
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(n' = 0), and coincide with the frequentist results for a
n'. + n Z

sample size (n + n') and a sample mean n + n' when

the prior is informative of the conjugate type and n' is

integer.

This means that one can use the tables in Appendix A

also for Bayesian prediction, by entering them with a sample

size (n + n'). Interpolation should be used for non-integer

n'.

p known, a unknown. Again from Raiffa and Schlaifer

(1961) p 54, the likelihood function of h = 1/a 2 is:

l(hIS,n) c hn/2 exp- n h S2ex{2*

n

where n is the sample size and S - 1
n il (Z.-11) 2 is the

sample variance. The family of conjugate distributions is

Gamma-2:

fh( 1 n'-1) 1 h12f(h) ' h 7 exp{- - h n' }; h > 0; n',S' > 0,

for which the posterior density of h results:

f(hS,(n) hc h n"-,) 1 2f~h|S~n) o hexp{- y- h n" "},
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where n" =.n + n',

2 (n S2 + n'S ,(

Since f(YJh) OC hl/2 exp 1 h(Y-y) 2, the predictive

posterior density is:

=1

d0

f (Y[S,n) f(Y~h) f(hIS,n)

h 1 2 exp{- .- h(Y-p) 2}h

exp{- - h n"

n"-1)

d h.

The integrand is proportional to a joint Normal-Gamma density

for Y and h. After integrating with respect to h one finds

that (Y - i')/S" has a "Student's" t-distribution with n"

degrees of freedom; i.e.:

f (YIS,n) o [n" + ( 2 )2
s"t
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S,2 )/ + n').

d h

oc {O

1

(11.62)
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The considerations following equation (11.58) hold

also in the present case. In fact, as the prior density

becomes less informative (n' + 0, S' finite), a posteriori

(Y-1i)/S becomes t-distributed with n degrees of freedom,

and the Bayesian prediction intervals of P-content coincide

with the frequentist prediction intervals of P-expectation.

The frequentist results can be used also when the conjugate

prior is informative, in which case one should consider an

"equivalent" sample size n" = n + n' and an "equivalent"

sample variance S"2 = (n S2 + n' S2)/(n + n'). In other

words, the prior information "is worth" n' additional

2
sample data with sample variance S' 2

The notion of an informative conjugate prior being

equivalent to a diffuse prior plus a set of sample statistics

(here n', 0 ) when only p is unknown, (n',S,2 ) when only a

is unknown) is recurrent in Bayesian prediction. It may

also prove relevant to ease the application of Bayesian

ideas to engineering decisions; after all, it is not un-

usual that prior knowledge derives from previous sampling.

2
In a sense, p and S' represent what one believes prior to

sampling, while n' measures one's degree of belief in those

values (how many data points one would be willing to ex-

change for his prior information). In addition, this

interpretation of the prior knowledge (when applicable)
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makes clear the consequences of misestimating the prior

distribution within the conjugate family. This point is

elaborated further in what follows.

Consider first the case when the population mean is

2
known but the variance is not, and let n' and S' be the

0 0

"correct" prior parameters. If one choses the correct

value for n', but the incorrect value S' 2 ,2 + (AS' )2

0

for the equivalent prior sample variance, the posterior

variance of Y is, from equation (11.62):

n + n' n'
a S2 0 = 2 + 0 (AS')2

n + n' - 2 o n + n'- 2
0 0

(11.63)

where a 2 is the value of U 2 for S'2 = ,2 Therefore an

error in the equivalent prior sample variance is transferred

into the posterior predictive variance with a weighting

factor n'/ (n + n' - 2) . The quantity
0 0

ni As ' 2' 1/2

y= 1 + 0 (11.64)
n + n' + 2 c

0 Y 0
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is the factor by which the extremes of any prediction

interval are multiplied because of an error (AS)2 in the

estimation of S'2 For instance, for AS'/a = 0.8 and

20
n = n' = 5 (implying S' = 1.8 S' if s' = S) one finds

0 0

y = 1.183.

In the same way, when assuming the "correct" value

for S, 2, but a "wrong" value for n', say n' = n' +An',
0

one finds:

2=
y

nS2 + (fn' + An'.) S'

0

nS 2 + (n' + An') ' n + n' - 2
I 0 0Y =

nS2 + n' S,2 n + n' + An' -2
0 o 0

1/2

(11.65)

Similar results are easily derived also for the case: y

unknown, a known.
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. and a unknown. This case was studied by Aitchison

and Sculthorpe (1965) and is reported in Guttman (1970).

With respect to the likelihood function:

1(1,o Z_) =(2r) -n/2 -n exp{-[(n-l)S 2

n

where Z n i Z. ; S = (n-i)
i=l 1

+ n(Z-p)1/2CF2}

n
( Z2

(Zi- Z),

the conjugate family is of the Normal-Gamma type (see

Raiffa and Schlaifer (1961) p 55). If the prior parameters

are [P',n',(n'-l)S2 1, the joint prior density of p and G2

is:

f (p, a 2) -(n'+2) exp{-[(n'-1)S'2 + n' (i-y'f)2 /2c2}. (1I.66)

As n' and S' 2 tend to zero, this density becomes more and

more "flat", approaching the noninformative form (in the

sense of Jeffreys (1961)):

f (y,c 2 ) o 1/a2 . (11.67)
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The posterior distribution of (P,UY 2) is also of the Normal-

Gamma type, with parameters:

nt = n + n';

P" = n"~(n P' I

q =S,,2 (n"l-1)

+ nZ);

= (n'-l)S,2 + (n-1)S2 + n'nn")(Z

= [(n'-l)S'2 + n'P'2 ] + [(n-1)S 2 + nZ 2

- (n+n') P"

From equation (11.5) the posterior density of the next

observation from the same normal population is

f(YIZ) =
ni"

n" +1

11/2

2 1 +

r( n"-l ) (q 1/2

nil(Y-Pl)2 -n"/2n" (Y--")

(n"+1) q

(11.69)
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[q/'-l]/2 has t-which implies that .n"ni 1/2

distribution with (n"-l) degrees of freedom.

Prediction intervals are readily obtained:

Central prediction interval of P-content:

(p" - K, P" + K}, (II.70a)

1/2

where K = (n"+l)

n" (n "-l)
Stni [(1+P)/21 .

One-sided prediction intervals of P-content:

(-.o," + K']; or (N" - K', 00),

1/2
g (n"+l)11)

where K' = n ( tn"-l(P)
n"l (n"l-1)n

and t (P) denotes the P-fractile of the t-distribution with

v degrees of freedom.
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In the case of noninformative prior, equation (11.67),

these intervals reduce to the corresponding frequentist

intervals, equations (I.7) and (II.11). More generally the

prediction intervals for informative conjugate priors

correspond to the frequentist intervals when using an equiva-

lent sample size n", a sample mean p" and a sample variance

S" = q/(n"-l). This parallels analogous findings for the

cases when p or a are known. Again, one can use the tables

in Appendix A.

(b) EXPONENTIAL SEQUENCE

When sampling is from the exponential distribution

(11.23) the likelihood function is

l(ajZ) = a-n exp{-n Z/a}

n

where Z = n Z.. The associated conjugate prior family
i=l1

is (see Guttman (1970), p 130):

f(a) a -(n'+l) exp{-n'P'/a}

which approaches the diffuse density f(a) m 1/a as n' and
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p' tend to zero. From equation (11.53) the posterior

density has the form:

An +n: )n n n+n' A)

f(UIZ) = (n + n'1a') (n+n'+l) exp{-(nZ + n'y')/a}
f(n + n')

A

meaning that 2(nZ + n'p')/a is distributed like Chi-square

with 2(n + n') degrees of freedom. From equation (11.5) the

predictive density is:

f(YIZ) = (n + n') [1 + Y/(nZ + n'P')] (n+n'+1) (11.72)

One-sided prediction intervals of P-content are:

for right predictions:

(K, oo), where K = (nZ + n'I-') (P- - 1);

for left predictions:

[0, K1, where K = (nZ + n'y') - 11 .

(11.73)

(11.74)
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Like in sampling from normal populations, Bayesian

prediction intervals of given probability content for a

diffuse prior coincide with the corresponding frequentist

intervals, equations (I1.24) and (11.26). For an informa-

tive conjugate prior the frequentist results (and the tables

in Appendix A) hold after replacing n and Z by the "equiva-

lent" sufficient statistics (n + n') and ( nZ + n'i')/(n+n').

The following results for Poisson and for Gamma

sequences are due to Aitchison and Sculthorpe (1965).

(c) POISSON SEQUENCE

A Poisson sequence generates independent, identically

distributed exponential variates Z. with density function

X e~ X; Z > 0, X > 0. The likelihood function for X in
n

terms of the statistics n and Z - Z. is:
n I

_ -XnZ n (I7a
1(XIZ) = e - X (II.75a)

with Gamma conjugate family (see Raiffa and Schlaifer (1961),

p 53). For the prior density

f (X) cc e- Xn p ; 1 X > 0; nIy' > 0. (II.75b)

291



the associated posterior results in the form:

n'Zy + nZnZ)+ (n+n'-l)
f(X Z) exp-X(n' P + nZ) (nvi nZ)X

rF(n + n')

x > 0 . (II.75c)

From equation (11.5) the density of the prediction variable

Y having Poisson distribution with mean m X is:

f(YIZ) - r(n+n'+Y) 
mY!r(n+n') nl'p'+nZ+m

Y r- ^ , n+n'
n ' '+nZ -

n'p'+nZ+m

Therefore the left-hand prediction interval of P-probability

content is

[0, K], where K = min{y:Ib/(b+m) (n+n', y) > P} - 1. (11.77)

In equation (11.77), b = n'vi' + nZ, and I is the incomplete

beta function (tables in Pearson (1934)).

The corresponding right-hand prediction interval is:
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[K, o), where K = max{y:Ib/(b+m) (n+n', y) < 1-P}. (11.78)

When the prior is diffuse (n' + 0, yi' finite) the

prediction interval (11.78) reproduces the frequentist re-

sult, equation (11.34). (Replace (n'p'+nZ) by (n'+n) for

comparing the results.) On the contrary the interval (11.77)

does not reproduce equations (11.31) and (11.32) unless for

left-hand predictions one assumes n' ' = 1 as a noninforma-

tive condition and n'P' > 1 as an informative one. This

makes good sense; in fact for nZ = 0 and for a diffuse prior

the prediction interval [0, K] in equation (11.77) should

have a non-zero upper limit for high probability contents

(see also earlier comments on the frequentist results).

Under this condition on left-hand predictions the

tables in Appendix A can be used also for Bayesian pre-

dictions.

(d) GAMMA SEQUENCE

The results for Gamma sequences are closely related

to those for the Poisson process. If X is the parameter of

the underlying exponential process, the "past" experiment

E consists in observing a variable Z with distribution

G(m, x) and m known. X is a Bayesian random variable. The

293



"future" experiment F concerns the realization of a variable

with distribution G(K,X) and known K. Viewing E as a set

Z of n replicates of F it is: m =n K. The likelihood

function has the form of equation (II.75a) with n K in place

of n. Consequently the conjugate family is Gamma as in

equation (II.75b) where, for consistency of notations, one

must replace n' by n'K'. With the same substitutions the

posterior density of X is given by equation (II.75c).

Finally, the posterior predictive distribution has the form:

b a ~K-l
f(YIZ) = B a (11.79)

B (a, K) (b+Y)a-

where b = nKZ + n'K'P'; a = nK + n'K'; and B(p,q) is the

complete beta function:

B(p,q) = P(p)F(q)/r(p+q).

From equation (11.79) the following one-sided

prediction intervals of P-content result:

[0, K], where K = b l - B(aK;l-P) (11.80)
B(a,K;l-P)
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(B(a,K;P) is the P-fractile of the incomplete beta dis-

tribution); and

[K,cD), where K = b ( - B(a,K;P) (11.81)
B(a,K;P)

When the prior distribution becomes diffuse (n' + 0;

K',p' finite) b approaches nKZ and a approaches nK, which

coincide with what was denoted Z and, respectively, K in

the frequentist approach (equations (II.35a), (II.35b),

(11.40)).

Also for Gamma sequences the Bayesian intervals

coincide with the frequentist intervals after replacing the

sample statistics, here (nK, nKZ), by "equivalent" sample

statistics, here (nK+n'K', nKZ+n'K'p'). As a consequence,

with these substitutions one can use the tables for Gamma

populations in Appendix A.

SOME REMARKS AND EXEMPLIFIED APPLICATIONS

As we saw for a few population distributions, when

the conjugate prior degenerates to a noninformative density

the Bayesian prediction intervals of P-content coincide with

the corresponding frequentist intervals. We also noted
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that in the (conjugate) informative case one can still use

the frequentist results, referred to an "equivalent" set of

sufficient statistics. More exactly we found that the

information contained in the conjugate prior is the same

as that contained in an "equivalent" prior sample, which

Bayes' theorem "pools together" with the actual sample.

From a practical viewpoint, since the pooled statistics are

sufficient, tables for frequentist prediction and for

frequentist penalty ratios can be used also for Bayesian

analysis. Two examples follow.

EXAMPLE 1. FREQUENTIST VERSUS BAYESIAN PREDICTION

Consider sampling from the normal population N(p,a 2)

with both parameters unknown. Five samples are chosen at

2
random (n = 5), with statistics Z = 10 and S = 9. The

prior information is judged to be worth four additional

samples (n' = 4), with statistics P' = 14 and S'2 = 16.

The pooled statistics are, from equations (11.68):

n" = n + n' 9;

P = (nZ + n'p')/(n + n') = 11.778;

S,2 = q/(n" - 1) = 14.9.
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If a central prediction interval is desired, with content

P = 0.99, the frequentist answer is (use Table A8 for

P = 0.99 and n = 5):

iN A

(Z - 5.044 S, Z + 5.044 SI; or (-5.13, 25.13].

The Bayesian answer is (enter the same table with n = 9):

(i" - 3.537 S", P" + 3.537 S"]; or (-1.86, 25.42].

From the Bayesian viewpoint one can also construct a pre-

diction interval of 0.99-content based exclusively on prior

knowledge. In this case, using Table A8 with n = 4 one

finds:

(p' - 6.53-S', yp'+6.53 S']; or (-11.12, 39.12].

Note that, although the frequentist prediction

interval usually contains the Bayesian prediction interval

when the same sample is used for both, this is not a general

rule since Bayesian predictions depend also on the prior

statistics. It should also be said that if the sample
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statistics are "very different" from the equivalent prior

statistics one might want to check the experimental data

and/or to revise his prior beliefs. (This problem is

discussed by Savage (1972); see also Veneziano (1974c).)

EXAMPLE 2. COMBINED USE OF BAYESIAN ESTIMATION AND

PREDICTION

Reinforced concrete structures (parallel examples

can be made for timber and steel structures) often use

precast beams. The properties of the basic materials, the

geometry of the beams and the position of the reinforcement

are controlled during production. Nevertheless, even an

accurate control cannot remove all the statistical varia-

bility, so that the load-carrying capacity of each individual

beam is a random variable.

In order to reduce the uncertainty of the product,

a "here-and-now" predictive strategy is actuated at the

plant level, where the scope of sampling and of making

destructive tests is to evaluate the distribution parameters

of the resistance population with "minimum" uncertainty.

Later on, a "wait-and-see" (estimative) strategy is followed

by the consumer who tests nondestructively the beams de-

livered to him (for instance by measuring the beams'

stiffnesses and by relating them to their ultimate resistances.
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The consumer's purpose is to reduce the uncertainty on the

resistance of the beams he is going to use.

Therefore, the posterior predictive distribution of

the producer becomes prior information for the consumer.

At the final stage of construction all the tests (both those

performed by the producer and those performed by the consumer)

contribute to reduce the uncertainty on the resistance of

the beams.

Two problems arise: (i) how to combine the in-

formation from different experiments; and (ii) what is the

"best" overall testing policy. We restrict these questions

to the case of the producer and the consumer controlling only

the number of experiments, which are performed with fixed

modalities.

Let us focus on a single beam with unknown re-

sistance, R. The initial distribution of R (before any

testing) is assumed to be N(p;G 2 ) with r2- given and p

unknown. After the producer has measured the resistances

R (i=l,...,n 1 ) of n1 beams chosen at random from the

statistical population, the (predictive) distribution of

R is:

(A

(RIR1 ,...,IR n N(R;(l+l/n 1)Cr 2 (11.82)
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n

where R - 1 . Correspondingly the right-hand
n il R.

prediction interval of P-content is:

( N
(R P (P,n 1 ) c~o (II.83a)

(II. 83b)
N (P,n (1 + 1/n 1/2 ( P)

Suppose now that the consumer's measurements have the form:

Z R + c,

where Z and e are n2-vectors,

(11.84)

and

N_ ~ Nn2(0;0), where 0 =

1 p

p p
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After testing, the right-hand interval of P-content

becomes:

^R N*
(R* - 1 (n ,n 2,IFP) -Jo) , (II. 86a)

where, from Chapter I, equations (I.8a):

N* nP) N (
1y , 2' ~ Py (n

a2 (1+1/n 1 )
,P) 1 +

fa 2
F:

n 2-1/2

1 + (n2 -1) P

ni a 2 n2 -/
+ -

n1 +1 a 1 + (n 2 -1) P

A A

Since a priori it is E[R] = E[R*]

0 (II.86b)

= prior mean resistance,

the key quantity for deciding upon n1 and n2 is:

1 N* fn1
h = N (n, =1 +

) (P) 2 1P) +

CT 2

2

6:

1 + (n -1/2

1+ (n 2- 1)

(11.87)

301

= (P)



The smaller h, the smaller the posterior variance. h is a

decreasing function of n1 and n2, with limiting value

2
n 1 ,n 2 +o 03 p

-1/2
(11.88)

Different testing strategies (n 1 ,n2 ) can be compared through

the ratio

h -P

h n a 2

n + CY 2

1/2

n2

1 + ( n2-1 P

Assume for instance that G 2/U 2 = 4 and p = 0.4; also

assume a target ratio h/h 3 < 1.1. The solutions which are

candidates for optimality are collected in the following

table.
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0 15

1 10

2 9

3 8

6 7

Any other combination is either unfeasible (for

instance (n11n 2) with n2 <7), or suboptimal (for instance

(n 1 ,n2) with n2 > 15). If testing costs are given together

with the number of beams (the consumer's tests have to be

repeated on each beam, while the producer's tests do not),

one can chose the best strategy by direct comparison of the

costs.

(e) DISTRIBUTION-FREE PREDICTION INTERVALS

The difficulty of applying Bayesian ideas to non-

parametric prediction is to describe appropriately the prior

knowledge over a family of distribution functions. The

family may comprise all the possible distributions over a

given sample space, y, or a subset of them (like the subset

of the continuous distributions). In part the difficulty

can be overcome by considering a partition (B, ..,B) of y
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K

such that B. ( B. = # for i 7 j and B. = y. Then all
S J iel

the distributions over y can be generated by specifying the

probability contents P(BI ),...,P(BK) for all pos sible
K

partitions, under the restriction P(B.) > 0; P(B ) = 1.
1=

If one fixes the number of subsets K and the partition

(B1 ,... ,BK) of y, the joint distribution of the P(B. )'s is

not sufficient information to characterize the probability

distribution of P(A), where A is any subset of y.

Let us consider this restricted and simpler case

first. In the univariate case y coincides with the real

line, or with a subset of it. The conjugate prior for the

discrete model in which only the K exhaustive and mutually

exclusive events: Y G B1 1 ... ,Y E BK, are considered, has

Dirichlet form with parameters, say, O , . .,K. (This means

that P(B ),...P(BK) have the joint Dirichlet distribution

D(a , - .,aK ).) Let ac (i=l,. .. ,K) be the prior parameters

and consider an observation Z C y which belongs to the ith

set B . The posterior distribution of P(B l),...,P(BK) is

again jointly Dirichlet (and marginally Beta) with para-

(i) (i)
meters a ,..,K , where:

(i). .
J J

(i)
a. = a. + 1 for i = j.
J J
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This Bayesian property is easily generalized to n

observations and holds for any finite dimension of y. The
K

sum a = I a. is a measure of the confidence one has in
i=l

the prior best guess of the distribution. In fact, when

the parameters a . are integer-valued, a lends itself to the

interesting interpretation of an equivalent prior sample

size, with a observations located (anywhere) in B1 , a 2

observations anywhere in B2, and so on. The first two

moments of P(B ) are (see for instance Johnson and Kotz

(1972), Chapter 40 for a review of the properties of the

Dirichlet distribution):

E[P(B )] = a /a

(i =K)

E[P(B.I = x (.+
a(a + 1)

This discrete approach has been extended by

Ferguson (1973) to cover continuous distributions over y.

Ferguson starts with the following definition of the

Dirichlet process:
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"Let a be a non-null finite measure (non-

negative and finitely additive) on

We say P is a Dirichlet process on (y, 4 ) with

parameter a if for every K = 1,2,... and measur-

able partition (B, ... , BK) of y the distribution

of (P(B ),...,P(BK)) is Dirichlet, D ((B 1 ),...,

% (BK)) *It

Therefore, the prior information (which for the

Dirichlet process turns out to be in conjugate form) may

be defined through the joint distribution of P(B )

P(BK) for all K and for all measureable partitions

(B,. . .,BK ) of y. In the Dirichlet process this is done

by defining the parameter a as a set-to-scalar function.

The expected probability content of any set B c y is

a.(B) a.(B)
E[P(B)] = K

a (y) a (B.
i=l

A- is a cr -field of subsets of y.
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As for the discrete Dirichlet distribution, ox(y)

measures the degree of confidence in the prior best estimate

of the probability distribution (in units of number of

observations), which is:

F(Y) o a((-co,Y]).

A number of properties of the Direchlet process are

proved by Ferguson. In particular his Theorem 1 states

that the Bayesian property of the Direchlet distribution

carries over to the Dirichlet process as follows. Let P(B)

denote the probability content of the generic set B C y

for the true distribution. If the prior Dirichlet process

on (y,ok) has parameter a0, and Z1 ,Z2 ,.*.Zn is a population

sample, then the posterior distribution of P(-) is a
n

Dirichlet process with parameter a0 + 6Z., where 6Zi=1 i
denotes a measure on (y,&b) giving mass 1 to the point

Z; i.e.:

6 (A) = 1 if Z C A,

= 0 if Z A.
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n
Given the posterior parameter a9 + 16 , the

0 i=l Zi -
posterior best estimate of the distribution function can

be obtained for any given optimality criterion. For instance,

when the process is defined over the real axis R, Ferguson

shows that the best estimate of the distribution function

under a quadratic loss criterion is the expected distribution

function:

F 0 (=RY) + [1 - ] Fn(YIZ ,...,Zn '
a (R) + n a 0 (R) + n

(11.90)

where

ao ( (-COY])
F (Y)=0

a 0 (R)

is the best prior estimate, and

n

F (Y|Z ,...,Z ) 6 ((-OY])n l n n Z

is the "empirical CDF" of the sample. The posterior degree

of belief in the best estimate is measured by a0 (R) + n,

showing again that a 0(R) can be interpreted as an equivalent
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prior sample size.

Analogous results hold when y is a set in a higher

dimensional space.

Intervals (or regions in the multivariate analog)

of expected cover P are easily constructed if the parameter

a of the Dirichlet process is known. In fact, for every

interval A C y it is: E[P(A)] = a(A)/a (y), where a(y) is

a normalization constant. For y = R prediction intervals

of P-content are:

Central intervals:

[d1 , d21

where d = min{d:F(d) > (1-P)/2}

d2 = min{d:F(d) > (l+P)/2}

One-sided intervals:

(-oo, d2 1 '
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where d2 = min{d:F(d) > P} ; and

[d1 , o),

where d = min{d:F(d) > 1-PI1

In all cases it is:

n

F(d) = n ( ((-Co,d]) + Z ((-Cd]))
0 (R)iln Z

As a 0(R) + 0 the prior information becomes more and

more "diffuse", and the Bayesian prediction intervals

approach the corresponding frequentist intervals (see Para-

graph II.2.1(g)). When discussing nonparametric frequentist

prediction intervals we observed that a large penalty had to

be paid in terms of the mimimum required sample size. If

the Bayesian prior distribution is discrete with a probability

mass 1/a 0(R) concentrated at each of a (R) points (a (R)

integer), the required minimum sample size for the con-

struction of prediction regions of P-expectation is reduced

by a (R) with respect to the frequentist requirements (see
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Table 6).

EXAMPLE: CONSTRUCTION OF A NONPARAMETRIC BAYESIAN CENTRAL

PREDICTION INTERVAL OF 0.90 - EXPECTATION

Two types of prior distributions are considered and

specified through different prior parameters a0 of a

Dirichlet process: a concentrated-probability-mass distri-

bution as in Figure 6(a), and a distributed-probability

distribution as in Figure 6(b). -The prior (b) can be viewed

as a smoothed version of the prior (a). In both cases we

assume a 0 (R) = 14.

In order to construct a central interval of exactly

0.90 - expectation it must be a0(R) + n > 20, so that the

sample size n must be at least 6. An hypothetical measure

aSAMPLE from a sample of size 6 is shown in Figure 6(c).

The parameter a0 + a SAMPLE of the posterior Dirichlet pro-

cess is sketched in Figure 6(d) for the prior (a) and in

Figure 6(e) for the prior (b). In both cases the prior

information is "weighted" in the posterior information by

the factor a 0(R)/[a 0(R)+n] = 14/20 = 0.7, and the empirical

(sample) information by the factor n/[at (R)+n] = 0.3. The

central prediction intervals of 0.90 - expectation are

indicated on the same figures.
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11.2.3. Frequentist Prediction Intervals for

Multivariate: Sequences

Parametric results for multivariate prediction are

generally restricted to multinormal populations. Neverthe-

less, under the condition of independence, rectangular

prediction regions for non-normal vectors are easily ob-

tained from the univariate results. For instance, suppose

that the prediction vector Y has two independent components

Y 12and Y2 has exponential distribution EX(X), with X

unknown, and Y2 has lognormal distribution LN(y,a 2 ) with

both parameters unknown. Then the region

D =(Y 1Y2 )1 IEX n,P ); Y 2 E I LN(n,P }

(IEX(n,P is a prediction interval of expectation P for

YI, and ILN(n,P2) is a prediction interval of expectation

P2 for Y2 , given n independent observations from the 
two

populations) is of P-expectation if and only if P P2 = P.

In fact the events E 1 :y I EX(n,P1 ) and E2 :Y 2  LN (n,P 2)

are independent and

P = Pr(E 1 .n E2 ) Pr(E1 )Pr(E 2 =1 P2
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The idea is generalized in the obvious way to Y

having any finite number of components.

For the bivariate case one can also construct rec-

tangular probability charts. One such chart is shown in

Figure 7 (lower half) for Y being EX(X) with X unknown

and Y 2 being N(y1;a
2 ) with only yi unknown. The sample size

is n = 5. Each non-dotted rectangle has expected probability

content 0.001 and each dotted rectangle has expected content

0.003, so that any selection of m undotted and m dotted

rectangles has the property of 0.001(m + 3m)-expectation.

Rectangular probability charts of this type depend on the

sample size (which needs not be the same for Y and Y2)'

on the distribution types, and on the parameters being

known or unknown.

The chart in the upper half of Figure 7 corresponds

to perfect knowledge of the distribution parameters (n + 0).

Since little penalty is associated with the normal population

when only the location parameter is unknown, the rectangles

of the lower part of Figure 7 are elongated mainly in the

direction of the exponential variate, particularly for large

values of Y .

In each quadrant the unbounded regions have an

expected probability content 0.006 (the equivalent of six

undotted rectangles). Considering also the specular images
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of the external contours of the upper and lower charts,

the ratio between the areas with expected content (1-2x0.006)

= 0.988 for the cases n = 5 and n + w is 1.93, which is a

two-dimensional penalty measure for limited statistical

information at the probability level 0.988.

More complete results are given now for multinormal

populations.

(a) MULTINORMAL SEQUENCES

Let Y ~ NK(a;) be a K-dimensional normal prediction

vector with mean p and covariance matrix E. If p and Z are

known, the maximum-probability-density (and therefore

minimum-volume) central prediction region of P-content is

D N (P) = {YI(Y-1 E (Y-,P) < X 2 (p)} (11.91)D - 2 -

where X (P) denotes the P-fractile of the Chi-square
KN

distribution with K degrees of freedom. DN (P) as defined

by equation (II.91) is a K-dimensional ellipsoid, centered

in p. The points which satisfy the condition (11.91) as

an equality belong to a contour surface of the normal density

of Y.

The construction of similar central prediction
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regions of P-expectation when either y, or Z, or both p

and F are unknown was first studied by Fraser and Guttman

(1956) (see also the review paper by Chew (1966)). For

the derivation of the results collected here the reader is

referred to the original paper.

yand Z unknown. Let Z =Y ,...,Z =Y be a- -- 1 - -n -n

sample of size n from the population of Y, with sufficient

statistics:

n n
n; Z = n S = (n-1)

1=1 ~1 ~i=l
Z -.-Z) (Z .-Z)

A prediction region of P-expectation is:

N ^ A^ N 2
D Z(P)= {Y I(Y-Z) 'S (Y-Z) < (r3 ) }

( ) 2= (n - 1) (1 + 1/n) F (P) ,
,1 = n - K K,n-K

K > I = dimension of Y,
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n > K = sample size, and

FKn-K (P) = P-fractile of the F-distribution with K

and (n-K) degrees of freedom.

When K = 1, equation (11.92) coincides with the prediction

interval (11.7) since

3N -(1 + 1/n) -l/2
II,a

= t n[(l+P)/2] = [F1 (P) ] /2

The coefficient N (n,K,P) controls the size of the pre-

dictive region (the volume of D N(P) is proportional to

(S) ) . Under perfect information its value is, from
y, E

equation (11.91):

NN (K,P) = XK (P)

Paralleling the univariate case, a penalty ratio for im-

perfect information can be defined as follows:

N

r N (P(n,K,P) 
' ZN (KP)

(n2l K 1/2

F K,In-n n - '.(II. 93)

XK(P
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. known, E unknown. The central prediction ellip-

soid of P-expectation results:

N = {YI (Y-y) 'S -(Y < 0 2

where ( ) 2 n K FKnK+l(P) ;(n > K-l)
n K + K

n
-l

i= 1
(Z.-1) (Z.-P) .

The associated penalty ratio is:

N (n,K,P) n K .FK)n-K+/

r N(nK(P)KP) X n-K+l Krn-K+l
- 1 (KfP) X(P)

(11.95)

II unknown, P known. The central prediction region

of expected P-content is now:

DN (P) I -l(Y- Z) < N) 2 (11.96)
P P-
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where ( N) 2 = (1 + 1/n) X (p)

Interestingly enough, the penalty ratio when only

P is unknown is independent of K and P, and therefore

coincides with the univariate value:

N 1/2
r (n) = (1 + 1/n) (11.97)

The penalty ratios (11.93), (11.95), (11.97) are

related as

r N(n,K,P) = rN (n) - rN (n-l,K,P)
PE E

which equation generalizes the univariate result, equation

(11.20).

N N
Tables of (. and r N. for selected values of

n,K = 2(1)5,7,10,15,20,40 and for P = 0.99,

0.995, Q.999 are collected in Appendix B. The use of the

tables does not differ from the univariate case. It is

interesting to observe how the penalty ratios depend on the

dimension of Y. Plots of r N and of rN for P = 0.99 and
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and n < 20 are shown in Figures 8 and 9 (note difference in

scales). Both penalties increase considerably with K for

any fixed n; for instance, given a sample of size n = 10,

the first few penalty ratios for 1' and E unknown are:

Rectangular prediction regions

When K > I no obvious equivalents to one- or two-

sided prediction intervals exist. Definitions of one-sided

rectangular regions can be given, such as

D(P) = {Y|Y < Y.(n,K,P); i=l,...,K}
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N
K r (10,K,0.99)

1 1.323

2 1.525

3 1.778

4 2.133

5 2.683



(for each i the sign < may be replaced by >),; also, two-

sided rectangular prediction regions can be defined as:

D(P) = {Y1Y (nK,P) < Y < Y .(n,K,P); i=l,...,K}
i

However, in no case do results exist with the generality

of those for ellipsoidal regions. The appeal of rectangular

regions is that they uncouple the prediction intervals of

the components of Y.

When the covariance matrix E is diagonal, one can

use the one-dimensional results, as described earlier.

If E is given and has equicorrelated structure:

(=){=::-ij

p C

for i = j

.- . for i 3 j

(11.98)

prediction regions of the type

N
D(P) = {YIY < Z. + 1A.} , or

- - V y 1

(II. 99a)

A N
D(P) = {YIY.i > Z. - 3 r.10 1
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can be used, where:

n

Z. n Z. .

(Z = ith component of the jth observation),

N (n,K,P) = (1 + 1/n) N (KP),

and N (K,P) satisfies:

N

(I.
-00

N
P (-

- -- f(y*) d y*

00

f .N~e + 1l/2
-00

- U)/(-P) 1/2 ](u)du = P

(D[-] and (-) are the standard normal CDF and PDF, and

Y* = (Y-)/a .U )

Gupta (1963) tabulated P as a function of K (his n),

p, and N (-) (his h) for K = 1(1)12, p ranging discretely

from 0.1 to 0.9, and for N (-) = -3.5(0.1)3.5. The result
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(11.99) is important in connection with some known inequali-

ties of the normal integral over multidimensional rectangles

(Slepian (1962); Sidak (1968); Tong (1970)) which allow one

to obtain bounds on the probability content of rectangular

regions in K-space for correlation structures other than

(11.98).

For any correlation structure and for all combinations

of P and E known or unknown, conservative two-sided rectangu-

lar regions can be constructed in several ways (see Chew

(1968) for a different use of the same results).

1. Circumscribed rectangles. The (hyper)rectangle

which circumscribes the ellipsoid {fY (Y-p-) ' 1 (Y-p) < q }

and has sides parallel to the coordinate axes is:

D* = {Y|(p.-qu.) < Y. < (p.+qa.i); i=l,...,K}.

If one replaces the regions (11.92), (11.94) and (11.96) by

the two-sided rectangles:

N* ^ N
D (P) = {YlY.-Z. I I (n,K,P) - S.;
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th ^ 2 th
(where Z. is the i component of Z and S. is the i

diagonal element of S);

DN* (P) ={Y Iy.. < N (i=l,...,K)}

and

D (P) = { Y-z < S (n,K,P) a.; (i=l, ...,K)}
PI I i ^ I - '

the new regions have expected content greater than P (the

values of in the preceeding expressions are those

tabulated in Appendix B). Nevertheless, for practical

applications to problems of structural safety (for instance

Y might be a load vector) this underestimation of the

expected content may not be a critical factor, particularly

if the components of Y are not highly correlated. When Y.

and Y. are uncorrelated for i $ j, the expected content of
J

the circumscribed rectangle for a given expected content P

of the inscribed ellipsoid is, for a few selected values of

K and P, and for n - w:
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K P = 0.75 P 0.90 P = 0.99 r 0.999

2 0.8174 0.9372 0.9952 0.999598

3 0.8773 0.9632 0.99773 0.999834

5 0.95075 0.9882 0.999485 0.9999703

10 0.99605 0.999364 0.9999855 0.9 6470

20 0.9999788 0.9s804 0.97823 0.99678

TABLE 9. Expected content of circumscribed rectangles;

P = expected content of the inscribed K-dimensional

ellipsoid.

Sometimes the penalty associated with this conservatism is

balanced by the simplicity of the rectangular geometry which,

as observed earlier, uncouples the prediction intervals for

each component of Y. (Of course, one-sided rectangular

regions which are tangent to the prediction ellipsoids are

even more on the conservative side.)

2. Use of a Bon.ferroni' s inequality. (see

Lieberman (1961)). When P and E are both unknown, the event

E :Y -Z' < S tnK 2K-1+P (II.100)
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occurs with expected probability (K-l+P)/K. When using

a Bo ferroni's inequality (see Feller (1967),p 110) one

can prove that

K

P < Pr{ n E.} < P + AP
i=l

where

K-1 K

AP = X
i-l j=i+l

Pr{.nf E.}

(the bar denotes complementation) and Pr{E. f 1.} can be
1 J

found from tables of the bivariate t-integral (see references

in Chew (1968) p 327; see also Hahn and Hendrickson (1971),

and references therein).

In analogous way, prediction intervals for p known

and Z unknown are:

2K-1+PI~~1 I<tn-K+j 2K }i' (11.101)

and for p unknown and E known:
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Y -p < (1 + 1/n) 1/ (I 2K-l', i . (II.102)

3. Other results. When E is unknown and S has

equicorrelated structure with correlation coefficient p,

one can use known percentage points of the largest absolute

value of K equicorrelated "Student's" t-variates (Hahn and

Hendrickson (1971)) to construct exact two-sided rectangular

prediction regions. Similarly one can use tables of the

largest signed value of K equicorrelated t-variates

(Krishnaiah and Armitage (1966)) to construct one-sided

rectangular prediction regions.

Denote u(K,v,p;P) the P-fractile of these maximum

distributions (v = number of degrees of freedom of the t-

distribution). Two-sided prediction intervals for each

component of Y are:

^ 1/2
[Y.- Z. < S. - u(K,n-K,p;P) - (1 + 1/n)

when p is unknown, and
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Y.y < l S. - u(K,n-K+l,p;P)

when -p is known. Similar results hold for one-sided

prediction intervals.

EXAMPLE

Eight independent samples are available from a

bivariate normal population, with both p and Z unknown.

The sample statistics are:

n = 8; Z

5

6

4

;

2

2

4

From equation (11.92) and from Table Bl in Appendix B,

the elliptical central prediction region of 0.99 expected

content is:

1/3 -1/6 (Y1 -5)

.D N (0.99) = {Y [(Y -5), (Y -6)] <28. 68 .

-1/6 1/3 ( Y 2 -6)

(11.103)
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The squares of the principal semiaxes of the prediction

ellipse are {S 1 + S22 11 22) 2 + 4 S12 1/2} x 28.68/2,

22
or (12.461) and (8.612)2. The area of the ellipse is

337.14. After assuming E = S, the penalty ratio (11.93)

N
is, from Table B 1 : (8,2,0.99) = 1.765. This means

that the area of the prediction ellipse under perfect in-

formation and with Z = S is 337.14/(r N 2 = 108.22.

The circumscribed rectangle is defined by the in-

equalities:

5 - 2 '28 .6 8 < Y 1< 5 + 2/'2 8.6 8
- 1 -

6 - 2/28.68 < Y < 6 + 2/28.58

with an area of 458.88; i.e., 1.361 times the area of the

prediction ellipse.

Using Bonferroni's inequality the prediction rec-

tangle is defined by:

5 - 2/9/8 t6 3.99 < Y < 5 + 2/9/8 t6 39

6 - 2V9~18 t6 ( 
3 .99 2 < 6 + 2/9~7 t6 3.99
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or:

-4.158 < Y < 14.158 ,

-3.158 < Y < 15.158 ,

with area 335.46, being 0.995 times the area of the

ellipse (11.103).

Finally, if one uses the tables in Hahn and Hendrick-

son for p = 0.5, K = 2, v = 6 and P = 0.99 one finds

u(2,6,0.5;0.99) = 4.21, so that a prediction rectangle of

0.99 expectation is

5 - 8.42/98 < Y < 5 + 8.42/_78 , or -3.931 < Y < 13.931

6 - 8.42/7 < Y2 < 6 + 8.42/vT7 , or -2.931 < Y2 < 14.931

The area of this rectangle is 319.03, i.e., 0.946 times the

area of the ellipse (11.103).

These four prediction regions are shown in Figure 10.
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(b) DISTRIBUTION-FREE PREDICTION REGIONS

Multivariate nonparametric prediction generalizes

logically the univariate theory. However, it presents

additional difficulties, the most part of geometrical

nature. Particularly worth of mention in this area are

early studies by Wald (1943) and by Tukey (1947).

Wald proposed a method, later called that of

"successive elimination", for the definition of prediction

regions of given expectation, provided that enough data are

available and that the population has continuous (but other-

wise unknown) joint CDF.

Wald's method is introduced through a simple bi-

dimensional application (see also Guttman (1970) p 8).

Let (X ,Yl),...,(Xn'Y ) be a set of n observation

pairs, with the order statistics X < X 2) < ... < X n)

with respect to X. Choose two positive integers r1 and s

such that

r 1 >, s 1 < n, and r < S -3
1 -1 -1 - 1

Eliminate the observations (X.,Y.) with X.' < X or with
ii io- (re)

x. - X~ ) Order the remaining observations with respect
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to Y: Y) < (2) (s 1 -r1 -1). Choose two more

positive integers r2 and s2 satisfying:

r2> 1, s 2 < s 1 -r1-1, and r2 < s2~1.

Then Wald proves that the probability content of the region

D = {(XY) (X < X < X ; Y < Y < Y }
i) w - (s (r2) -(s2

has Beta distribution with parameters (p,q) = (s2-r2 '

n-s2+2+1).

of D is

In particular the expected probability content

E[P(D)1 = s2 -r 2

n+ 1

EXAMPLE:

Construct a two-,dimensional region of expected

content E[P] = 2/3 using the 29 data points in Figure 11.
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Since we want that s2 - r2 =20 in order that

E[P(D)] = 20/30 = 2/3, a possible choice is:

r = 2, s1 = 29;

r 2 = 3, s2 = 23.

These values satisfy the inequalities given earlier. The

associated rectangular prediction region is shown in Figure

11. The construction is generalized easily to the case of

regions with more than two dimensions.

Tukey (1947) extended Wald's method to the construc-

tion of regions of any prefixed shape, also including un-

bounded regions (such as one-sided rectangles). Tukey's

starting point was the definition of (n+l) "statistically

equivalent blocks" as sample statistics; then he proved that

any collection of r such blocks has Beta-distributed proba-

bility content with parameters (p,q) = (r,n+l) (and therefore

the expected content is r/(n+l)). For the construction of

the "blocks" refer to the original paper by Tukey and to the

later developments in Fraser (1953) and in Kemperman (1956).
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Sample size requirements and penalty factors. The

minimum sample size for the construction of nonparametric

prediction regions of given content P depends on the shape

of the region. For instance, when using Wald's method as

in the example above, it must be:

n - 3 > P, or n > P + 3 (K = 2)
n + 1 1 - P

which for P = 0.90 gives n > 39 and for P = 0.99 gives

n > 399. The sample size requirements for the construction

of similar regions in a K-dimensional space is:

n > (P + 2K - 1)/(1 - P), increasing linearly with K.

Computing expected penalty ratios when sampling

from a certain distribution but using a nonparametric pre-

diction region is more complicated than for the univariate

case. When the components of the K-dimensional prediction

vector Y' = [Y .. **,YK] are normal and independent, two-

sided prediction regions of the type discussed earlier, with

n = (P + 2K - 1)/(l - P) have expected volume:

E([Vol] = E[(Y -Y (1) ) 2 (n-2) 2 ( ) ' K (n-2K+2) K(1)

K K
= 11 E[(Y. -Y. )] = H a.-ENR(n-2j+2)

j=1 i(n-2j+2) 3(1) j= 3
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where a'. is the r.m.s. of Y. and ENR(n) is the expected
J J

normalized range for a normal sample of size n, as tabulated

by Tippett (1925).

For instance, for rectangular prediction regions

of 0.90 expectation with n = (P + 2K - 1)/(1 - P), one

finds the following expected volume or length for K = 1,

or area for K = 2) as K ranges from 1 to 4 (in units of

K
II a.).

j=l 3

Expected normalized Volume of prediction Penalty
K n volume, E [Vol] ellipsoid-perfect ratio

information, r(K)
V P'

1 19 3.69 3.29 1.12

2 39 18.32 14.47 1.13

3 59 97.27 65.47 1.14

4 79 537.67 298.70 1.16

TABLE 10. K-variate nonparametric prediction when sampling

from multinormal populations.

Table 10 gives also the normalized volumes of central ellip-

soid regions of 0.99-content under perfect information.
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These volumes are:

Vg = 2c5(0.95) , for K =1; V = x 2(0.90), for K=2;

2
4 = w[X32(0.90] ,/2 for K=3; V = [X4 (. 90) , for K=4.vP 4 [3Q9) P.K3 I 2 2X(09

The penalty ratios in the last column are defined:

r(K) = (E[Vol]/Vp P) l/K

In comparing the penalty ratios one should note that they

refer to different sample sizes and that in fact the main

penalty for not knowing the distribution type is the high

minimum value of n.

11.2.4. Bayesian Prediction for Multivariate

Sequences

The Bayesian literature on multivariate parametric

prediction (like the frequentist literature on the same

subject) is confined to multinormal populations (see

Guttman (1970); Zellner (1971), p 72; see also Geisser (1965)

for the Bayesian estimation of multinormal parameters).
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On the other hand nonparametric Bayesian prediction regions

can be constructed through a simple generalization of the

univariate theory in Paragraph II.2.2 (e).

(a) MULTINORMAL SEQUENCE

Prediction for the normal population NK (y ,) when

both p and Z are unknown is studied by Guttman (1970), p 135.

No reference was found for the somewhat simpler cases when

only the location or the scale parameter is unknown; these

cases are worked out below.

1 unknown, . known. This is the simplest case. The

likelihood function in terms of the sufficient sample

statistics:

n

n; Z = n -
i=l

is:

1 ( In, Z) c exp{- (p-Z)' (Z)
- - ~2 - - - - -

For a prior in the form of a normal density:
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f I 'k1/2 -K/ 2. - /2 pl, -o
f( ny ) = no (2) Il exp{ 2 -o)

(11.104)

the posterior density is also normal, of the type f'(y |n vi,)

with parameters:

n 1= n + n 0 ;

L = (n + no) (no0 + n Z). (11.105)

From equation (11.5), after integrating with respect to p,

one finds that Y has multinormal distribution:

n +1
Y ~ N (

- K -l n - ,or

n + nZ n + n +1
N K -I ; 0) . (11.106)

n + n n + n

jjknown, L unknown. The likelihood function of E1,

given a sample Z1 ,. . .' n' is:

337



n -1
exp{- - tr[ E S]}- I-1 -n/2

where

n

S = n

The conjugate prior family, indexed by n and S , is:

-1cc E-1 n +1 no
exp{ - tr[E S I}2 - -o

for which the posterior density results:

- 1 +1

f(E n,Sn ,S ) c

ni
exp{- -tr [

2 -[ l

n = n0 + n;

S = (n S + no S)/(n + n ). (II.107)

After the necessary integration, the predictive posterior

density is:
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1/2

f (YIn 1 ,S1 ) 1 c

- 1 -
T -(nl-1)

[1 + ---(Y-') 'S_ 1(-yn - ---

(11.108)

which means that the quantity [(n+n -K+1)/(n+n )] 1/2 _ P

has K-variate t-distribution with v = (n+n o-K+l) degrees

of freedom amd covariance matrix ~

L and L unknown. (Guttman (1970) .) Given a set of

independent observations ,i ... ,Z n from the normal population

NK (,Z), the likelihood function of p and is:

-l I -ncc l1) n/2
l~y E I ,ZS) I E |

where

exp{ -YtrE [(n-1) S+n (Z-y) (Z-y)']1 -l - A

n

Z = n Z.
i=l -~

n

S = (n-1) (Z.-Z) (Z.-Z)

The conjugate prior, also in terms of yp and is:
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-exp{- . trZ 1 [ (n -1) S + no (j-)'

where

I

n = equivalent prior sample size;

= prior estimate of p;

S = prior estimate of E.

The posterior density has the same form: f(pZ 1 n 1 ,11S1 ),

with parameters:

n 1 = n0 + n;

nojo + n Z
l no + n

+n

- = .+ . [(n -1)S +(n-1)S+ 
-1 n 0+n-1 0 --o - no +n

(11.109)

(Z- )(Z-- )'].

Guttman (1970) gives also the posterior predictive density

for the next observation Y. He finds that
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nl. (n 1 K) 1/2

n1+1

has multivariate t-distribution with (n -K) degrees of

n1 -K
freedom and covariance matrix nl-K- Sn I-K-2 -l

In all the three cases analyzed before, an initial

knowledge in the conjugate form is equivalent to a set of

sufficient sample statistics:

for p unknown- and E known,

for p known and E unknown,

(II.llOa)

(II. 110b)

for p and E unknown. (II.110c)

This agrees with earlier findings in univariate Bayesian

prediction, Paragraph 11.2.2. When the prior becomes diffuse,

i.e., when n0 + 0 and S + 0, Bayesian and frequentist pre-o -o

diction regions coincide. In any case, if the prior knowledge

is expressed in the form of an equivalent prior sample,
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equations (I1.110), the frequentist results and the tables

in Appendix B can be used also for Bayesian prediction, by

entering them with the following sets of equivalent posterior

statistics:

[n0+n; (no +n )/ (no+n)],

[no+n; (no S +nS) / (no+n) ],

when P is unknown

and Z is known;

when p is known

and Z is unknown;

(II. llla)

(II. lllb)

np.+nZ 1

fn0-+n; n +n [n +n-1 (n o-l)So+(n-l)S

n nn n +
+ (Z-p ) (Z-P)

n0 +n - -0 -

when P and E are unknown. (II.lllc)

(If n0 is fractional, interpolate between the closest

integral approximations.)

EXAMPLE

A central prediction region of 0.999-expectation is

desired for a normal vector Y = [Y1 ,Y 2 ]'. Both p and E are
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unknown. The prior information is judged to be worth six

sample points (n =6), with mean value:

10 4

15 I , and covariance matrix: S

A sample of size n = 5 is observed, with sufficient

statistics:

Z[
83

14

4 3
and S =.

3 7

The posterior mean and the posterior covariance matrix are

found from equations (I.109):

4

9

9.091

14.545

4.691
, nd S -

3.745

From the tables in Appendix B one finds:
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N (5,2,0.999) = 21.799;

N (6 , 2,0 .9 9 9 ) = 13.366;

N (11,2,0.999) = 6.303.

Therefore the frequentist, the prior Bayesian, and the

posterior Bayesian prediction regions are:

Frequentist:

Prior Bayesian:

Posterior Bayesian:

{Y (Y-z) 'S (Y- ) < 21.799 2

--- 0{Y (Y-0 ) 's0 (Y-) < 13.366 }

{Y (Y-py) 'S (Y-i ) '6.303 2

These three regions are shown in Figure 12. The penalty

ratios associated with them are, from the tables in

Appendix B:
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Frequentist: N (5,2,Q.999) = 5.864 ;

N
Prior Bayesian: r (6,2,0.999) = 3.595 ;

NPosterior Bayesian: r (11,2,0.999) 1.696

(b) DISTRIBUTION-FREE PREDICTION REGIONS

Along the lines of Ferguson (1973) it is not

difficult to generalize the theory of univariate nonpara-

metric Bayesian prediction to the multivariate case. In

fact the Dirichlet process defined by Ferguson applies

equally well when sampling is from a K-variate population

with continuous density function. Formally one needs to

replace y in Paragraph 11.2.2 by R K, the K-dimensional

Euclidean space. Then, if a denotes the parameter of the

Dirichlet process, and (B1 ,..., Bm) is a measurable partition

of R K, the joint distribution of the probability coverages

(P(B 1 ),...P(Bm)) is Dirichlet, with parameters a(B 1 ),...,

o(B M).
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Since the Dirichlet process indexed by a is the

conjugate family for nonparametric Bayesian inference, the

prior knowledge can be usefully assumed in the form of a

Dirichlet process with parameter a. Then, given a set of

n independent observations , ... n, the posterior para-

meter is, from Ferguson's theorem 3:

n

a~ 0a + cZ

where 6 is defined as in Paragraph II.2.2(e). The

K K
measures a0 (R ) and a 1 (R ) = Ot (R )+n quantify (in units of

observations) the prior and the posterior degrees of belief

in the best estimates of the probability distribution over

K
R.

A result similar to (11.90) holds for the best

estimate of the posterior distribution under a quadratic

loss criterion, giving this function as a weighted sum of

the prior best estimate of the distribution and of the em-

pirical distribution function of the sample.

Prediction regions of P-expectation can be constructed

easily, since for any measurable set A C RK it is:

E [P (A)] =o(, (A) /a (RK
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if a is the parameter of the Dirichlet process.

11.2.5. Prediction from Censored Data

In Chapter I, Section 4, we analyzed censored data

in the context of estimation theory, with particular em-

phasis on the applications to proof loading of structural

systems. Expressions were found for the prior, for the

posterior and for the "proof loading" failure probabilities.

Here we present the general formulation and two

examples of processing censored data for statistical

(Bayesian) prediction. An additional case, concerning

censored sampling from exponential populations, was covered

in Paragraph II.2.1(b).

Consider having n censored observations from a

univariate statistical population with CDF FY(-). The

censored information on the generic realization Y. is:

Y. = Z if Y. < Zmax (II.112a)

Y. > Z ma otherwise . (i=l,...,n) (II.112b)a.ma

In a parametric Bayesian approach (FY(-10) known, but not

the vector of parameters 0) all the observations of the

347



type (II.112a) can be processed as indicated in Paragraph

11.2.2. The resulting posterior distribution of the unknown

parameters 0 is denoted F a '(0). The posterior distribution

of 0 which accounts also for one observation of the type

(II.112b) is, from Bayes' theorem:

d~a~(~ ~da ~ Pr [Y>Z~ I]d F ,() =d F ()Pr [Y>Zx

Pa I> max]

1 - F (Z (0)
=d F (0) Y max'- ,

1-F (Z )
Ymax

(11.113)

F (-) =
a

all 0

F (- 0) d F a,(O) .

The posterior predictive CDF, FYa" (-), is therefore:

F (-) =Y ,,a all 0

F(|)[l - F (Z (0)1 d F ,(0)
all Y . max.a -

f [ - F l (Zmx 10)] d Fa ()
all m
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If n < n is the number of observations of the type (II.112b),

the posterior distribution of 0 is found by applying in-

ductively equation (11.113):

d F = d F ,(O) FYzmaxa) r
1a - F (Z x)j

(11.115)

from which the posterior predictive CDF, Fy (-), is:

F () =
a all 0

FY(-10) d F (0) .-a - (11.116)

If Y denotes a "resistance" variable, and the distribution

of the associated "load" S, FS(-), is known, the probability

of failure in a time-invariant situation is:

P = j Fy (Z) d Fs(Z)

0 a

A completely analogous formalism applies to multi-

variate situations in which, however, one may have also

partially censored sample data.
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EXAMPLE 1. NORMAL SEQUENCE

Suppose sampling is from a normal white sequence

with unknown mean and variance (0' [po 2 ]) and that the

prior F(O) is in the form of a conjugate Normal-Gamma (NG)

2
distribution with parameters [ip',n',(n-l)S' 1; see equation

(11.66). After processing the (n-n) observations with

values Y. Z. < Z (i=l,...,n-T), the posterior distri-

bution Fa () is again NG with parameters [y",n", (n"-l)S',2

where:

n" =n' + n - n ;

y" = [n'i' + (n-T) Z]/n";

(n11-1)S112 = '-l) S'2 + (n-T-l) S2 + n'(n-T) (_)2

n'+n-n

n-n

and Z= (n-n) Z.
1=1

n-n
2 - -l ^2

S = (n-n-1) (Z.-Z)

i=l
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Denoting NG[a, 2 JppI, nl, qI the Normal-Gamma density with

parameters pln 1 ,q, evaluated at (p,c2); and denoting (D(-)

the standard normal CDF,

from equation

the posterior density of 0 is,

(11.115) :

fa (P, a2) NG[,cT2 P"on", (n"-l)S" 2]{l -

S (n"+

n

D[(ZmaxP)/FI

exp{-[ n"-l) S"12 + n" (-_") 2]/2cr2l

00

j J exp (-t 2 /2)
(Zma-)

and the predictive posterior CDF results, from equation

(11.116) :

fa (ip', C2)= S
0 space
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EXAMPLE 2. EXPONENTIAL SEQUENCE

In a recent paper Pierce (1973) computed the posterior

density function of the predictive CDF, F (Y), when aa

censored sample is known from the two-parameter negative

exponential population:

f (Y I ,a) = ~exp[-(Y-y )/a] ; y.a > 0; Y > p,

with both p and a unknown. For the case with p = 0 and &

unknown, see Paragraph II.2.1(b).

Prediction for the exponential distribution is of

special interest in reliability theory because the time-to-

failure of stochastic systems is often associated with

Poisson events. Also, since these events are rare, data are

typically available in censored form (i.e., censored by the

present time).

Pierce made a Bayesian analysis for the case when the

prior is noninformative: f(-pa) a- , and at least two

"failures" (two uncensored data) are available. (If not,

the posterior density is also improper.) Denote

Z < Z2) Z(n-n) the first (n-n) > 2 order statis-

tics. In terms of the sufficient statistics:
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n-n

s (Z -Z ) + n (Zn-)

Pierce found:

f (P I nn,, Z , S) = K (Z
(1)

,S) (n-n-2)! T -n+n-1 Pn-l

- f T/Y
n--2

i=0

- PT/(Y-Z ( 1 )

where P S

)

[-T log P /Y]

n-n-2

I
i=0

= 1 - F
a

[-T log P / (Y-Z ) ]

)

i} 1 (11.117)

'

T = S - n (Y-Z (1 ) ;

= {(n-n-2) In' [S-n++l- (S+n Z ) ) -n+E+1 -1
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This result can be generalized to those informative

cases in which the prior knowledge can be expressed through

a set of equivalent prior sample statistics (see Paragraph

0 -o 0 0 -0 0
II.2.2(b)): n , n , Z (i=l,...,n -n ), S . Then equa-

tion (11.117) holds after the following substitutions:

n -+ n' = n + n0

-0n n n + n

Z Z M
(1) (1)

n-n

(n'-n' > 2)

in {Z Z }

no -n

S .S' =

i=l

+ n (Z (n-n)Z (1) + n (Z o_-o -Z'(nn)(n-n )()

11.3. SIMULTANEOUS PREDICTION

Calculating the reliability of a structural system

with respect to future events is a problem of prediction.

354

(ZO -Z l)

;

;

(Z -Z' )I



Suppose that nature is modeled (for the aspect of interest)

as a sequence of independent random events with known dis-

tribution. Then finding Pf(T) = Pr system failure in

[0,T] as a function of T might be called a problem of

probabilistic prediction. If instead uncertainties of a

statistical nature exist on the parameters of the distribu-

tion (and possibly also on the distribution type), the same

problem becomes one of statistical prediction.

Conditional on a given probabilistic model being a

correct representation of "nature" the reliability of a

system depends on the statistical uncertainty of the model

parameters. The purpose of the present section is to study

the effect that statistical uncertainty has on (structural)

reliability when failure occurs either as a no-memory first-

crossing event (e.g., when the load process overcomes first

the system resistance), or as the conclusion of a damage

accumulation process (fatigue). In both cases calculating

the system reliability requires predicting several future

observations from the same process; in the jargon of statis-

tics theory this is a problem of "simultaneous prediction".

In the special case when the reliability function

R(T) = 1 - rf(T) is constant with time, the problem becomes

one of simple prediction (see Section 11.2).
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A general approach to time-dependent reliability analysis,

including statistical uncertainty.

Depending on the structural system (e.g., brittle

or ductile), on the failure criterion (e.g., first-crossing,

fatigue, low-cycle damage accumulation, maximum economic

loss), and on the disturbances (earthquakes, high wind

pressures, foundations settlements, live loads, etc.) a

variety of stochastic models can be formulated for relia-

bility analysis, with different levels of sophistication and

complexity.

Also when the model parameters, vector 0, are given,

it is seldom possible to derive the probability of failure

function P (TIO) in closed form. When the statistical

uncertainty on 0 is added, even fewer analytical solutions

are known. However, the general methodology is straight-

forward, as is shown next by following the Bayesian approach.

Let A be the present state of knowledge, and denote

F 0 (0A) the probability distribution of the model parameters

conditional on it. F0 (0A) can be derived from Bayesian

statistics methods, or else may be given directly. The

(statistical) reliability function: R(TIA) = Pr {survival

in [0,T], given A} is obtained through convolution:

R(TJA) = 1 - Pf(TIA) = 1 - f Pf(TIO)dF0 (1A).(II.ll8)
0 space
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If A = perfect information, supporting the value

0 = 0*, then f 0 (0 A) = J (0-*) (Dirac-delta function), and

equation (11.118) yields the (probabilistic) reliability

function:

R(TIA) = 1 - Pf(TIA) = 1 - Pf(TIO*). (11.119)

In the following paragraph independent reliability

models are considered for the case of failure occurring as

a first-crossing event with no damage accumulation, and an

alternative procedure for statistical reliability analysis

is presented. A more detailed (frequentist and Bayesian)

analysis of the same models is the object of Paragraphs

11.3.2 and 11.3.3.

Correlated sequences are studied in Chapter III.

11.3.1. Independent Models for Time-Dependent

Reliability

Consider a structural system with deterministic

"resistance" R and 0-1 damage function (i.e., either the

system performs satisfactorily, or else it fails, without

passing through intermediate damage conditions). The

environment is modeled as a stationary white sequence {Y.}
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of either sustained "loads" (model S in Figure 13), or of

instantaneous "loads" (model P in the same figure). The

exact times at which the load intensity changes in model

S, or at which the point events occur in model P, may be

deterministic or random. If {Y.I is independent of the

interarrival times, one can replace [0,T] in the definition

of failure by the number N of events during the same time

interval. Again, N may be deterministic or stochastic. In

both cases the first problem which needs to be solved is

to find the probability of failure P f(N) as a function of

the number of events. In fact if the time t. at which

the ith event occurs is known it is:

Pf S(T) = Pf(NTS); and Pf (T) = Pf(NTP), (11.120)

where the subscripts S and P refer to the model (see Figure

13), and NTS and NTP are the values of N such that:

tN < T < tN+l (11.121)

(in the models S and P, respectively).
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If instead the arrival times are random, the re-

lation (11.121) defines the probability distributions of

NTS and NTP given T, say:

PTS(N) = Pr {exactly N events occur in model S during

[0,T]} ;

P TP(N) = Pr {exactly N events occur in model P during

[0,T]} .

In this case the probability of failure as a function of

time is:

CO

P (T) = P f (N) - PTS(N) ; (II.122a)
S N~ l S

CO

P (T) = I Pf (N) - PTP(N) . (II.122b)
P N=l P

Note that in model S at least one occurrence must be con-

sidered for any T since t1 = 0, while this is not true for

model P. As a consequence in model S there is a nonzero

probability of failure at time T = 0.

As shown above, the evolution in time of P f and

P depends on the variability of the occurrence times. For
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deterministic arrivals, for highly regular (but random)

arrival times, for highly regular (but random) event

clusters, and for Poisson-type occurrences the qualitative

evolution of P is sketched in Figure 14, cases ab,c,df S

respectively.

All these cases are generated through equations

(11.122) by the same function P f(N) and by different dis-

crete distributions P TS(N). From here arises the importance

of studying the functions Pf (N) and Pf (N).

After replacing [0,T] by the number of events N in

[0,T], computing the structural reliability R(NIA) as a

function of N does not necessarily require using equation

(11.118). In a Bayesian approach (a parallel analysis could

be done for the frequentist viewpoint) an alternative and

equally general procedure consists in finding the uncon-

ditional (with respect to 0) predictive distribution of the

next N realizations [Y ,...,Yn Y from the sequence {Y }:

FY(ZjA) = F (y I)d F (Q1A) , (11.123)
- all 0 -

Then the reliability is computed as:

R(NIA) = d FY(ZIA). (11.124)
Safe region in -

Y space
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In both procedures (equation (11.118) with N in

place of T, and equations (11.123) and (11.124)) one has to

integrate over 0; however equations (11.123) and (11.124)

may have advantages over equation (11.118) if the integral

(11.123) has closed-form solution. This happens for parti-

cular states of knowledge A, and for particular probabilistic

models; one such case is when A is the collection of n in-

dependent realizations from the same normal sequence which

generates the future observations Y (Paragraph 11.3.2).

If {Y } is, as assumed here, an independent station-

ary sequence, and the marginal distribution of Y. is known,

the probabilistic reliability R(N) after N "Bernoulli trials"

is:

R(N) = 1 - P f(N) = [1 - P N(1)]N (II.125)

where P f(l) is the probability that Y > R for any i. On

semilog paper the reliability R(N) plots linearly against N.

Paragraphs 11.3.2 and 11.3.3 deal (implicitly or

explicitly) with the modifications that statistical uncer-

tainty induces on equation (11.125). The concluding para-

graph considers the effects of statistical uncertainty on

reliability models with fatigue-type failure modes.
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11.3.2. Simultaneous Frequentist Prediction for

Univariate Sequences

The independent models in Paragraph 11.3.1 are stu-

died here under the assumption that the distribution para-

meters (possibly also the distribution shape) are estimated

from limited data with the methods of classical statistics.

For univariate sequences the problem of simultaneous

prediction consists in finding an open or closed interval

on the real line (or more generally a region in R N) in which

all N future realizations (or the N-dimensional future

realization) of the process will fall with given probability.

This is in complete analogy with what was done in Section

11.2 for simple prediction. When the simultaneous pre-

diction interval (region) coincides with the safe interval

(region) of the system, the same probability may be inter-

preted as a reliability with respect to the next N random

events.

We first discuss the construction of simultaneous

prediction intervals and regions for normal sequences and

then we present some results for nonnormal populations.

(a) NORMAL SEQUENCES (see Lieberman (1961); Chew (1968).)

Let a sample of size n be available from the in-

dependent normal sequence {Y }, Y. - N(pia 2 ), and denote
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Z , . . .,ZN the observed values.

y and G unknown. When both the location and the

scale parameters are unknown, the sufficient sample statis-

tics are

n

n; Z - n Z. In I
i=11

n
2 1

;S =

i=l

^ 2
(Z.-z)a.

Denote Y' = [Y 1 ... , YN the vector of future observations

and let Z' Z[1,...,1], with N components. Lieberman

(1961) found that the statistic d = Y-Z has multivariate

t-distribution with (n-1) degrees of freedom and covariance

n2-___ 2
matrix n(n-3) S R (n > 3), R being the correlation matrix:

1 p

p

p p

p

p

1

,fP = l/ (n+1)
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The structure of R shows that in presence of statistical

uncertainty on 4 and a the components of d are not indepen-

dent, as instead they would be if p and a were known (in

fact R -+ I as n - w).

A direct consequence of the result above is that the

ellipsoid in Y-space:

1n+1 2
(Y-Z)'Rl(Y-Z) < n N S F (P) (11.126)- -- - - - n N,n-l

has expected content P.

For the purpose of reliability analysis and design,

having a prediction region in RN like the ellipsoid (11.126)

is not of much help. If failure occurs when the first event

of the type Y > R (or IYJ > R) occurs, it would be more

useful to dispose of a one-sided (or of a two-sided) interval

on the real line, containing all the next N realizations

Y,...,YN with a given probability P. This corresponds to

constructing cuboidal prediction regions of P-expectation

in RN, and to this end the following results are useful.

Gupta and Sobel (1957) showed that the integral

h h

P(h) = .... f f(t ,... ,tN) d t 1 **d tN-00 -00
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where t 1 . . ., tN have jointly N-variate t-distribution with

(n-i) degrees of freedom and common correlation coefficient

P = p, i / j, can be written as

P (h) = { + [P1/2 y 1 (y)N d y }n.- (S)d S. (II.127)

0

In equation (11.127) $() and 4(-) are the PDF and the CDF

of the standard normal variate. Also, gm(S) is the probabil-

ity density function of S, where m S2 is a Chi-square variate

with m degrees of freedom:

mm/2 Sm-1 -m S2/2

1 ( m ) 2 (m/2)-l
2

Extending previous tables and using equation (11.127),

Hahn (1970) computed the one-sided 100 P percent prediction

limit for P = 0.90, 0.95 and 0.99; for n = 4(1)12, 15 (5)30,

40, 60, o and for a future sample size N = 1(1)6(2)12, 15, 20.

N
Figure 15 shows the factors 3 (P,n,N) such that

N

Pr n Y. < + fN (P,n,N)S = P
i=1
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for P = 0.99 and for several values of n and N (solid lines).

These factors are taken from the tables computed by Hahn.

Under perfect information (n + c) it would be

N /N (Pco,N) = 4D(P 1/)

where c1(y) is the y-fractile of the standard normal distri-

bution. Therefore the penalty ratio for statistical un-

certainty, defined in accordance with Section 11.2, is:

N
N N (P,n,N)

rN (P,n,N) = 'a
c(P.l/Ny

(11.128)

The computation of N (-) is tedious, especially

for large values of P. For practical applications it would

be advisable to have some simple approximations. One way of

obtaining approximate values for N is suggested by the

well-known fact (see, e.g., Tong (1970)) that the probability

N

Pr{ . (Y. < R)}i=l 1 -
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is a decreasing function of the correlation coefficients

pi .between Y. and Y .. Since these coefficients are all

equal and positive, replacement of the true correlation

matrix R by the identity matrix (uncorrelated variables)

gives a conservative estimate of the reliability. The ap-

proximate value for 13 (.) is:

N (P,n,N) = t (P1 /N) (1 + 1/n) /2, (11.130)
yCr n-

where t (y) is the y-fractile of the "Student's" t-

distribution with V degrees of freedom.

For all values of P, n, and N it is () >

N
N (-). The approximation (11.130) is

believed to be quite good for large values of P (i.e., in

the range of interest to structural reliability) and for

moderate to large sample sizes, n. In fact the correlation

coefficient is (n+l)~A (which is quite small for, say,

n > 10), and it is known that the probability (11.129) when

Y has equicorrelated normal distribution is insensitive to

the presence of small correlation coefficients when P is

large (see Chapter I, Example 1). The same is believed to

be true when Y has N-variate t -distribution.n-l

In Tables Cl - C4 (Appendix C) the values of

(P,n,N) are computed for P = 0.90, 0.99, 0.999, 0.9999;
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n = 2(1)12, 15(5)30, 40, 60, co and for a "future" sample

size N = 1(1)5, 10, 20. For P = 0.90 and P = 0.99 (Tables

Cl and C2) the approximate values (in parenthesis) are

compared with the exact values from Hahn. For P = 0.99 some

approximate values are also plotted in Figure 15 (dashed

lines).

These comparisons show that replacing R by I

yields quite good (and always conservative for reliability

N
purposes) approximations to 3 (). The only cases in

N -Nwhich the discrepancy between () and 6 () is con-

siderable is when n and P are both "small", a joint condition

which rarely occurs in structural reliability.

Tables C5 - C7 collect the values of the penalty

N
ratio r for P = 0.99, 0.999, 0.9999 and for the same

combinations of n and N. For P = 0.99 these ratios use the

N
exact 3 values from Hahn's tables (with the exception of

n = 2, 3), while for P = 0.999 and P = 0.9999 and for

n = 2, 3 the ratios are calculated from the approximation

(11.130). The same ratios for P = 0.999, 0.9999 are plotted

in Figures 16 and 17 against the available sample size n

for a future number of observations N = 1, 3, 10, 20. The

curves for N = 1 correspond to simple prediction intervals.
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For the case of two-sided prediction intervals

centered on the sample mean, Chew (1968) proposed two

N
approximations to 3 (P,nN). Both of them are conserva-

tive, suggesting to replace the exact value with an upper-

bound. The stricter of the two approximations is based on

a Bonferroni's inequality (see Chapter II, Paragraph II.2.3(a))

which for one-sided prediction intervals yields:

N (P,n,N) < (1 + 1/n) 1/2t ( N - 1 + P
yk , C n-l N

Hahn compared this approximation with the exact values for

P = 0.90, 0.95, 0.99 and for several choices of n and N.

He found that the approximation is in general accurate, if

one excludes the combination: N large - n small. He also

found that the same approximation improves with increasing

P, in analogy with the presently proposed upper bound,

equation (11.130).

p known, a unknown. Define d = Y-p with generic

component d. = Yi--y. From Chew (1968), d has N-variate

t-distribution with n degrees of freedom, mean zero, and

covariance matrix n s2 1N where
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n
2 1 ~'2

S 2=- (Z.-y)
n .r

is the sample variance. Therefore the prediction interval

N
(-Cot 11 + a (P,n,N) SI (II. 131a)

contains the future N realizations with probability P if

N (-) satisfies:
aN

-00

N+n N
FI -T~ L 2) - (N+n) /2

N2(1+ n t
(nxr) I' (n/2) i=l

Sd t 1 ... d tN = P . (II.131b)

Unfortunately the multivariate t-density in the integrand

cannot be factored into N marginal densities, although t

and t. are uncorrelated for i , j.

For the uncorrelated case, inverse tables of

N (Pn,N) for P = 0.95, 0.99, n = 5(1)35, and N = 1(1)10

have been published by Krishnaiah and Armitage (1966); the

same tables include the values of () for equicorrelateda
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t-distribution with p .. = p = 0.0(0,.1)0.9 (i 3 j). More

extensive tables, including the values P = 0.90 and

P = 0.975 have been collected by the same authors in an

unpublished report.

As for the cases considered previously, simple

approximations can be devised, which use more accessible and

extensive tables. Three of them are given and compared

below.

(i) Assume independence of the future observations; then:

N N /N (P,n,N) N (P,n,N) = t (P /N. (II.132a)
UY C. n

The subscript i stands for "independence".

(ii) (Chew (1968)). From the cuboid which circumscribes

the mean-centered ellipsoid with exact content P:

N N /N (P,n,N) < 13 (Pn,N) = [N F (P) 1 . (II.132b)

This value for 13 (-) was proposed by Chew for two-

sided prediction intervals; more conservatism is

therefore expected when using the same approximation
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in one-sided prediction, as is done here.

(iii) (Chew (1968)). Using a Bonferroni' s inequality

yields, for one-sided prediction intervals:

N N N - 1 + P r12
N (P,n,N) < S (P,n,N) = tn N ). (II.132c)

2 n

The subscripts 1 and 2 in (II.132b, c) identify the

approximations.

In Table 11 these three approximations are compared

with the exact values for P = 0.99; n = 1, 2, 5, 10 and

N = 1, 2, 5, 10, 20. Approximations (a) and (c) are quite

accurate and practically identical. On the contrary approxi-

mation (b) is usually very conservative, particularly for

large values of N and n.

Tables C8 - C10 in Appendix C collect the values of

N (P,n,N) for P = 0.99, 0.999, 0.9999; n = 1(1)11, 14(5)29,

39, 59,co and for N = 1(1)5, 10, 20. Tables C9 and C10 were

obtained from equation (II.132a), and therefore their values

are approximate. Instead, Table C8 collects the exact values

computed by Krishnaiah and Armitage (values in parenthesis)

and compares them with the approximation (II.132a) - The
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Mr 1w1

APPROXIMATION (see equations (11.132))

K
_______ _______ - 7 1 1 1 1 1

(a) , (c) (b) (a) , (c) (b) (a) , (c) (b) (a) , (c) (b) (a) , (c) (b)

2 10 20

1 31.821 63.655 63.657 100.000 - 169.765 318.309 246.09 636.6 352.39

2 6.965 9.925 9.925 14.071 - 22.282 22.327 31.528 31.60 44.587

5 3.365 4.037 4.032 5.158 5.030 7.416 5.893 10.050 6.869 13.820

10 2.764 3.162 3.169 3.888 3.720 5.310 4.144 6.964 4.587 9.391

(a)

1 2 5 10 20

1 --- --- -- -

2 -- - -- -- -

5 3.36 4.00 4.90 5.61

10 2.76 3.16 3.69 4.09

(b)

(a) Approximate values of (0.99,N,n) from equations (11.132)

(b) Exact values from Krishnaiah and Armitage (1966).

L'J

LA)

TABLE 11.



agreement is quite satisfactory and supports the use of

equation (II.132a), particularly for large values of P

(for high "reliabilities"). The associated (approximate)

penalty factors for statistical uncertainty:

rN (P,n,N) = t(P 1/N)/(P 1/N

are displayed in Tables Cll - C13 and plotted versus n in

Figures 18, 19 and 20 for selected values of N. The penalty

increases with N, although it "stabilizes" as the number of

N
future events becomes large. Of course, for obtaining G(O),

the penalty factors must be multiplied by the value of N(-)

under perfect information: N (PN) =5(Pl/N), which for

given P is also an increasing function of N (see last row

in Tables C8 - C10).

-P unknown, a known. Again from Chew (1968) the
1 n

distribution of d = Y - Z (d = Y 1 - Z.) is multi-
i=1

variate normal with zero mean, variances

a = (1 + 1/n)a 2 and common correlation coefficientd.

Cov[d ,d.] 1
p. (i / j).

C2d. Pij n + 1
I
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The value of -N for which the content of the simultaneous
rn

prediction interval

, Z N
(-00 , z + 3 1 (P ,n,N) a] (II. 133a)

is P can be found as:

S(P,n,N) = (1 + 1/n)1/2 (PN' n + ) (II. 133b)

where (P,N,p) is the value of 3 in equation (1.41) of

Chapter I, such that DN(p,6) = P. Of course, equation

(II.133b) can be used also to find P for given N (-),, in

which case the integral (1.41) in Chapter I should be

evaluated for

= (1 + 1/n)-1/2 N(-) (1 + 1/nV -/ 2 P - Zl

and for p = 1/(n + 1).

P is given in Tables C14 and C15 for n = 1(1)4, 7, 9;

N = 2.50, 3.50, and for N = 1(1)12. The values under

perfect information (n + o) are:
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P = QN N
PI

and are given in the last column of the same tables.

For values of n larger than 3 or 4 (correlation

coefficient between d and d less than 0.25), an accurate

and conservative approximation to rN is obtained by assuming

p. .= 0, in which case:

N N 1/2rN (P,n,N) = r (n) = (1 + 1/n)

The values of P which correspond to the independence

assumption,

P. = ON [N (1 + 1/n) 1/2] (11.134)
1 y

are smaller than the exact values. P. is given in parenthesis

in Tables C14 and C15. The agreement of P. with the correct

values is in general good and increases with n (with de-

N
creasing correlation, as expected) and with N (with in-

creasing content P). For values of P very close to 1, say

for P > 1 - 104 , the independence approximation (11.134) is

quite satisfactory for applications to structural reliability.
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For given n, N and P, and for two-sided prediction

intervals Chew (1968) proposed two approximations to N

The first approximation, written here for one-sided

predictions, is:

N (P n,N) = [(1 + 1/n) X (P) 1 1/2

where X2(p) is the P-fractile of the Chi-square distribution

N
with N degrees of freedom. This expression for 3 corres-

1-i

ponds to a prediction cuboid in the outcome space RN of Y,

circumscribing the mean-centered ellipsoid of P-content.

N
N is therefore a conservative approximation (i.e., larger
111

than the exact value).

The second approximation uses a Bonferroni's in-

equality, yielding, for one-sided predictions:

N (P,n,N) = (1 + 1/n) /2 (D( N - 1 + P

P 2 N

A third approximation can be generated by assuming

independence between different components of d. In this case:

N (P,n,N) = (1 + 1/n)1 2 1)(P /). (11.135)
P-i
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For P = 0.995, n = 4, N = 1(l)12,Table 12 compares the

Nexact value of [3 (which can be obtained from the tables in
P

N N N
Gupta, 1963) with the approximations [ , [ and [3 , and

N ill 2 'i
with the value of [ under perfect statistical information

(n + oo)

[3 _ (J p/N)
PI

N N
The approximations [3 and [3 are both very accurate (the

2 Pi
accuracy increases with P). Instead, the approximation [

is much less satisfactory.

EXAMPLE

Consider a system with deterministic resistance R,

which is designed to resist a sequence of ten normal in-

dependent load events with a [ value of 4.265. In other

words, the resistance is chosen so that R = 'p + 4.265 a,

where P and a2 are the (estimated or known) mean and vari-

ance of the load sequence. Under perfect statistical in-

formation, p and a2 are known and the reliability of the

system evolves with N as indicated by the curve "n = co" in

Figure 21.
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N SN N N N N

1 2.88 2.88 3.97 2.88 2.58

2 3.13 3.14 3.99 3.14 2.81

3 3.28 3.28 4.13 3.28 2.94

4 3.38 3.38 4.32 3.38 3.02

5 3.45 3.46 4.48 3.46 3.09

6 3.51 3.51 4.65 3.51 3.14

7 3.56 3.56 4.82 3.56 3.19

8 3.61 3.61 4.98 3.61 3.23

9 3.64 3.65 5.12 3.65 3.26

10 3.67 3.68 5.27 3.68 3.29

11 3.71 3.71 5.41 3.71 3.32

12 3.73 3.73 5.54 3.73 3.34

TABLE 12. Values of N (0.995,4,N) is equation (II.133a).

Exact value: col. 1; approximations:

3, 4; perfect statistical information:
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Suppose now that P and q are unknown and that R is

to be chosen as

R = Z + 4.265 S ,

2
where Z and S are the usual unbiased estimates from a given

sample of size n. Using the approximation (11.130) the

expected reliability of the system is:

R(N) = {tn-l [4.265(1 + 1/n) -1/2]}

for n = 5:

for n = 10:

for n = 20:

R(N) = 0.991154N

R(N) = 0 .9 9 8 5 7 9N

R(N) = 0.999734N

These three reliability functions are also plotted in Figure

21a. The high sensitivity of R(N) to the available statis-

tical information is apparent.
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For the case with, pa known and a unknown the resis-

tance is

R = y + 4.265 S

n
2 1 2.

where S 2= 1 (Z. - P) 2 The evolution of the relia-
nI

bility with N for the sample sizes n = 5, 10, 20, w is

shown in Figure 21b. Again, the curve "n = oo" corresponds

to perfect knowledge of the load process parameters. R(N)

was calculated from the approximate expression (corresponding

to the independence assumption leading to equation (II.132c)):

R(N) = [tn (4.265) ] .

Finally, if p is unknown and a is known it is:

R = Z + 4.265 a. The reliability evolves with N as shown

in Figure 21c for the available sample sizes: n = 1, 2,

4, 9, o.

Note that Figures 21a and 21b are quite similar. The

results in Figure 21c, however, are much less dependent on n.

This says again that it is the uncertainty in a and not that

in p that really matters.
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(b) EXTREME TYPE I SEQUENCE

The problem of finding the one-sided prediction

interval of P-content for the maximum Y(N) of N future

observations from a white extreme type I sequence with

distribution

FY(y) = exp{-exp[-(y-a)/b]} ; b > 0, -w < a < w.(II.136)

was investigated by Antle and Rademaker (1972). In their

study a and b were assumed unknown and had to be estimated

from an available sample of size n.

The problem is of interest in reliability theory if

the potentially critical events are generated by some

limiting process within the domain of attraction of the dis-

tribution (11.136); for example by an exponential, normal

or gamma process.

Using the maximum likelihood estimators a and b

proposed by Harter and Moore (1967, 1968), the statistic

E = [(Y (N)-a)/b-log N] has a distribution which depends only

on n. Antle and Rademaker calculated through simulation

the P-fractile e P,n of E for n = 20(10)70, 100, w; and for

P = 0.90, 0.95, 0.975, 0.98, 0.99; and also for n = 20 (10)70,

100, o; and P = 0.995. The upper P-confidence limit for
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Y N) was given by them in the form:

Y N) (P) a +Pn b + b log N.

For perfect information (n +o) it is: a -+ a; b -+ b, and

Y (P) = a + b[El(P) + log N],

where El(P) is the P-fractile of the extreme type 1 dis-

tribution.

The penalty for imperfect information (n finite) is

defined, in accordance with equation (11.30) (but not in

accordance with the definition for normal sequences):

El
ra,(P,n,N) =

E[a] + E[b] (e + log N)

a + b(e + log N)

g(n) + h(n) (eP + log N) +

+ (epn+ log N)
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where the functions g(n) and h(n), defined by equation

(11.29), are tabulated by Antle and Rademaker for

n = 10(10)100.

Table C16 in Appendix C gives the values of

r Eb(P,n,N) for a/b = 1(1)10; for n = 10(10)40, 60; fora,b

P = 0.99, 0.995 (n = 10 is not considered for P = 0.995)

and for N = 1(1)10(5)30, 40, 60.

Prediction intervals for values of P greater than

0.995 are not calculated by Antle and Rademaker. For

P > 0.995 one might, in approximation, replace the prediction

interval of P-content for N future realizations with the

prediction interval of PN'/N-content for N' > N realizations.

N' can be chosen so that PN'/N equals 0.99 or 0.995. The

approximation is believed to be on the unconservative side.

EXAMPLE

Find the 0.999 upper confidence limit for the next

six realizations of an extreme type I sequence of which forty

past sample values are available.

By choosing N' = ION = 60, it is PN'/N Z 0.99 for

which the upper confidence limit is:

a + b(e 0 .9 9 ,4 0 + log 60) = a + b(4.79+4.08) = a + 8.87 b.
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By choosing N' = 5N= 30, it is P ~ 0.995 and

the upper prediction limit becomes:

a + b(e0.995,40 + log 30) = a + b(5.68+3.40) = a + 9.08 b.

The simulation approach used by Antle and Rademaker

is quite appealing when exact analytical prediction methods

are unfeasible. If independent sequences with given marginal

distribution can be generated easily (see for instance

Fishman (1973) Chapter 8) and parameter estimators are

available, prediction confidence levels for the maximum of

the next N realizations based on n past observations can be

found by simulation. The simulation approach is even more

attractive when the sequence of past and future realizations

has a (possibly complex) probabilistic correlation structure,

for which case an exact analytical solution is very rarely

workable (see Chapter III) .
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(c) OTHER INDEPENDENT MODELS

In white normal sequences neglecting the correlation

between distinct future events caused by limited statistical

information leads to slightly conservative but otherwise

accurate results. This fact has important implications. If

the same is true also for nongaussian sequences, then approx-

imate but accurate simultaneous prediction intervals for the

next N realizations can be constructed using the simple-

prediction results in Section 11.2. With respect to perfect

statistical information the penalty ratio for a prediction

region with content P, a past sample size n, and a future

sample size N would be simply:

r(P,n,N) = r(P 1N,nl), (11.137)

and the function r(P,n,l) is tabulated in Appendix A for

a wide variety of distributions. In agreement with the normal

case the approximation (11.137) should improve as P and/or n

increase; in any case it should give slightly conservative

penalties.

The use of the penalty factor r(Pl/N,n,l) does not

differ from that of r(P,n,l); see Section 11.2.
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Using the approximation (11.137) Table C17

compares the penalty factors for white sequences with dif-

ferent marginal distributions, for P = 0.99, 0.999; for

N = 2, 10; and for an available sample size

n = 1(1)10(5)30(10)60.

For the lognormal sequence V is the sample coeffi-

cient of variation. The true value is related to the

variance of the normal sequence {ln Y } as:

aln Y = [ln(VY 2 + 1)] /2

For usual values of VY the penalty factor for

lognormal sequences is considerably larger than the corres-

ponding penalty for normal sequences. A comparison with the

exponential and Gamma processes is not easy, due to the

different parameters being assumed known or unknown.

(d) DISTRIBUTION-FREE PREDICTION INTERVALS

Nonparametric simultaneous prediction is considered

only for completeness, in that the problem can be found

treated in the literature by several authors; see for instance

Danziger and Davis (1964). Their results are quoted by

Chew (1968) and are reported here.
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The only distributional assumption is that the

population has continuous but otherwise unknown density

function. With Z < Z < Z denoting the(1) Z(2) < 0 (n)

available order statistics from a sample of size n, Danziger

and Davis show that the probability that at least K out of

the next N observations will fall between Z (r) and Z (r2

is:

P(Nr 1 1 r 2 1 K,N) =

N N-i+r 1+n-r 2 i+r2 -r 1 -l

i=K N-i i

n+N

N

if 1 < r1 < r2 < n. This general result can be specialized

to find the probability that all the next N events will fall

between Z (r1 ) and Z (r 2

P (nr r2'N,N) N+r 2 -r 1 -

N

n + N
N .

Of course, for N = 1 one finds that the probability that the

next observation will fall between Z (r ) and Z r2) is:
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P (n,r 1 ,r2l,1) = (r2  rl )/(n + 1)

a familiar result from simple prediction (see Paragraph

II.2.1(g)).

For instance, let n = 100, r1 = 5, r2 = 95. The

probability that all N future observations will fall inside

(Z(5 )' Z( 9 5 )] is given in the following table for N = 1(1)10.

N P(100,5,95,N,N) N P(100,5,95,N,N)

1 0.891 6 0.509

2 0.795 7 0.457

3 0.710 8 0.411

4 0.635 9 0.369

5 0.568 10 0.332

TABLE 13. Simultaneous prediction probabilities for the

nonparametric interval (Z (5), Z(95) I and n = 100.
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II.3.3. Simultaneous Bayesian Prediction for

Univariate Sequences

In simultaneous Bayesian prediction with a conjugate

prior one can take full advantage of the initial information

being equivalent to a prior sample. The size n' of the

sample equals the number of observations that one would

exchange for his prior information; n', together with the

remaining sufficient sample statistics, characterizes fully

the initial state of knowledge.

The immediate consequence of this observation is

that when the prior is of the conjugate type the frequentist

results apply after pooling together the actual sample

statistics with the equivalent prior sample statistics. The

combination rules for this "pooling operation" are given in

Paragraph 11.2.2 for various independent sequences. For

instance equations (11.58), (11.61) and (11.68) for normal

sequences, equations (11.73) and (11.74) for exponential

sequences, and so on.

As for simple prediction, Bayesian simultaneous

prediction intervals for noninformative priors of particular

types given in Section 11.2 coincide with the corresponding

frequentist intervals.
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EXAMPLE

Consider sampling from the normal population

N(',a 2 ) with both P and U2 unknown. The prior density

f(p,a 2) is assumed in conjugate form (see equation (11.66))

with parameters:

n' = 9; 1i' = 80; S,2 = 16.

A sample of size 6 is available, with sufficient

statistics:

1^ 2
n 6; Z = 75; S =10.

Using equation (11.68) the prior parameters and the

sufficient sample statistics are combined to give the

following sufficient posterior statistics:

n= 15; P" = 78; S"2 = 4.3752

The left-sided prediction interval of 0.9999 content

for the next ten observations is, using the approximation
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(11.130) with n" = 15 in place of n (see also Table C4 in

Appendix C):

(-0, 78 + 6.507 e 4.3751, or (-o, 106.4681.

11.3.4. Applications of Simultaneous Prediction to

Probabilistic Fatigue Failure

Up to this point the critical event was considered

to be of the first-crossing type: given N future realiza-

tions of an independent "load" process: Y*l ,2'' ON'

failure occurs if max {Y. I or max. {IY.l} exceeds a given
1 1 1

"resistance" threshold. For this type of failure events

an important finding was that in most situations the

assumption of independence of the future realizations (re-

garded here as Bayesian variables) was adequate and slightly

conservative.

In general, both these properties are lost in

fatigue-type failure modes, as indicated by the following

example. This is explained by the fact that sums of random

variables have distributions which are highly affected by

correlation. Another result is that the uncertainty in the

mean of the process, which was often negligible for first-
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crossing failure, becomes a determinant factor against

fatigue-failure events.

Consider a stationary white sequence {Y } of "load"

variables. The damage caused by each.load accumulates in

the system, until failure occurs when the total accumulated

damage exceeds a fatigue-resistance limit.

In a linear, memoryless (in the sense specified

next) model, the damage state variable d experiences jumps

at the load events occurrence times, and each jump depends

exclusively on the intensity of the load which is causing

it. In more sophisticated and perhaps realistic models the

system performance (constitutive laws, damage accumulation

rate, threshold of failure, etc.) may depend in a more

complex fashion on the past history and on the present

level of accumulated damage.

Consider the very simple case of the damage state

variable being a linear combination of the past load in-

tensities:

N(t)

d(t) = 06 Y. . (11.140)
ial at1
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Here N(t) is the number of load "cycles" to which the

system has been exposed up to time t, and a... aN(t) are

given constants. For fixed N(t), d(t) is a random

variable which depends linearly on the intensity of the

events in [O,t]. If d denotes the level of damage atMAX

which failure occurs, the reliability at time t is

N(t)

R[N(t)] = Prjd(t) < dMAX =Pr a iYX <i dMAX
i=1

To illustrate the effect of parametric statistical

uncertainty of the load sequence on R(t), suppose that {Y }

is a white stationary normal process, with Yi - N(p,a2).

If gi and a are known and a. = a for all i, it is:

d
R (N) = _[( - N (II.141a)PI

If - is unknown, ,c is known, and a sample of size n

is available from the load population with sample mean Z:
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dMAX /N(N+n)
R (N) = -- N Z)/ /a(V n)

11 a /
(II.141b)

If p is known and a is unknown one finds (using well-

known properties of the multivariate t-distribution; see for

instance Box and Tiao (1973), p 118):

d
R (N) = t [ ( MAX - N y)/S N] , (II.141c)

) fl a

where S2 is the usual unbiased variance estimator.

2
Finally, if p and a are both unknown and Z and S

are unbiased estimates of P and a2 :

dMAX ^ _,____~n

R (N) = t [ ( - N Z)/S /N (N+n)y n-i n
(II.14ld)

In equations (II.141c,d) t (-) is the CDF of the t-distribution

with v degrees of freedom.

All the expressions above are obtained readily from

the simultaneous prediction results in Paragraph 11.3.2.

Using these expressions for design, one can choose the
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resistance level dMX which corresponds to a prefixed

probability of failure P within N load events. For a

design equation

MAX N - +
ax (11.142)

(or analogously, with p replaced by Z and for a replaced

by S if these parameters are unknown) the penalty factors

on S with respect to its value under perfect knowledge

of p and a are:

for y unknown and a known:

r (N,n) N + n
P n

(independent of P) ; (II.143a)

for p known and a unknown:

t (P)
r (P,n) = n

0 (P)
(independent of N); (II. 143b)

for p_ and di unknown:

r (P,N,n) N + n
n

tn-l (P)

c (p)
(II.143c)
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When N = 1 these penalty factors coincide with those found

in Paragraph 11.2.1 for simple prediction.

Typically, in "high cycle" fatigue problems both

N and n are large. This means that r (P,n) is very close

to 1. On the contrary the penalty for unknown location

parameter, r (N,n), may be much larger than 1, depending on

the ratio N/n. This is, in a sense, a situation opposite to

that of simple prediction (N = 1) and of simultaneous

prediction with a first-crossing failure mode. In the last

two cases a being unknown generally has a much larger penalty

than p being unknown.

Numerical results. Consider the resistance design

equation (the same as in equation (11.142), with Nd in place

of N):

A. = N p + V ad , (11.144)a d d

where Nd is a given design number of load repetitions and 3

is a safety coefficient for the case of perfect knowledge of

the load process parameters. For selected values of Nd'

p (or ') , a (or S) and , the arguments of the cumulative

normal and t-distribution in equations (11.141) are plotted
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versus N in Figures 22a,b,c. V = U/11 is the coefficient of

variation of the loads. In each figure the steepest line

is the argument of 4 and of t in equations (II.141a,c),

while the remaining lines give the argument of 0 and of

t in equations (II.141b,d), for different values of n.

In each case the failure probability can be read on the

appropriate lateral scale (for very large n, the scales of

tn and tn-1 almost coincide with the normal scale, and are

omitted).

For instance one finds (see Figure 22a) that

corresponding to a reliability RP (100) = 0.999 for perfect

knowledge it is:

The (common) value of N for which all the arguments

plotted in Figures 22 are 0 and the reliability is 0.5 is

N(0.5) = Nd + V-V d, increasing linearly with 3 and, for
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n R (100) R (100) R (100)

10 0.817 0.9933 0.805

30 0.925 0.9973 0.920

70 0.973 0.9981 0.971



fixed 3, with the coefficient of variation. The fact that

for N = Nd the argument values ( if p is known, f(l+N/n)- 1 / 2

if p is unknown) do not depend on V and are linear in S

implies that in the vicinity of Nd the sensitivity of

R(.) (N) to N decreases with V. In turn this says that if

N is random its uncertainty has more effect on the system

reliability for smaller V.

A quadratic model of damage accumulation. The line-

arity of the damage increment in the load intensity postulated

by the foregoing model may be rather unrealistic. Often the

damage increment caused by one load cycle increases more

than linearly with the intensity of the load.

Consider the quadratic damage accumulation law:

N

d(N) = Y
i=l

As before, {Y. } is a sequence of normal variates from an

independent process. The resistance dMAX is known.

In the case of perfect knowledge of the process

parameters p and U 2 the distribution of d(N)/u 2 is noncentral

Chi-square with N degrees of freedom and noncentrality para-

meter X = N y2 /C 2 = N/V 2 , denoted X X2 (X). The properties of

this distribution are reviewed in Johnson and Kotz (1970)
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Chapter 28. Therefore, for perfect knowledge of the process

parameters, the reliability is

RPI(N) = X2(N/V2, d2MAX/a') (11.145)

L

where X I(X,-) is the CDF of the X() distribution.

For convenience of language, the cases with unknown

parameters are treated using the Bayesian terminology. In

all cases the prior distribution is assumed noninformative

(see Paragraph 11.2.2), so that the same conclusions would

be reached by following the frequentist approach.

P unknown, a known. If a sample of size n is avail-

able, the next N realizations have multinormal predictive

distribution with mean

1

.1

1

Z = sample mean,

and covariance matrix
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/ 2 /n F 2/n

a 2/n

(1+1/n) c.2

Equivalently, the prediction vector Y =

written:

Y. = Yt + Y
I 1 0

where Y ~ N(Z;o 2 )

Cov[Y#,Yfl =
1 3

Y = (-Z)

Cov[Y#,Y
1 0

= 0

~ N(O;a 2/n) ,

for i,j = 1,...,N.
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Then one can write:

N N N

d (N) = (Y* + Y ) 2 _ 2 + N Y + 2Y Y*. (11.146)
1 i=1 0 0 L

The three terms in the right hand side are analyzed separate-

ly and their contributions to the uncertainty of d(N) are

compared.

When divided by a2, the first term in the right hand
N 2

side of equation (11.146), V , is distributed like

X 2 (N Z 2 _ 2 (N/V . Since the mean and the

variance of y'2 M) are:

E[X'2 (X)] = X + v; Var[X'2 (X)] = 2(v + 2X)

it is

N

E [ Y* ] = 2 (N + N/V ) N (&2 + Z2
i=1 ~=&( / 2

I

N
" 2 2"(2 2

Var[ [ Y*2 ] = 2a' (N + 2N/V ) = ZNc 2 (a2 + 2Z).
i=1'

(II. 147a)
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The distribution of , Y 2 is X; therefore the
J 0

second term in the right hand side of equation (11.146),

N Y , has mean and variance:

E[N Y 2] Nj (2 Var[N Y 2 = 2 N 2. (II.147b)
o n 0 n

N

Consider now the third term, 2 Y Y*. Since N0 1

is in general quite large (meaning a small coefficient of
N

variation for 2 Y*.) and Y is a zero-mean variable, the
i=l

distribution of this term is dominated by the (normal)

distribution of Y0 . This is even more so if Y* has itself
01

small sample coefficient of variation: V =aZ.
N

The distribution of 2 Y* is N(N Z; N Cy2 ); the
i=l1

distribution of 2 Y is N(0; 4a 2 /n). Since Y and Y* are
0 0

independent for j = 1,...,N, it is:

N

E[2 Y { Y*] = 0

N

Var[2 Y Y*] = N 2 2 (4cj2/n) + N C 2 (4 a 2/n)

403



4 ' 2,
n N 9' (N Z

(large N). (II.147c)

As observed earlier, the

strongly affected by the

(normal). Therefore, in

shape of the distribution is

shape of the distribution of Y

approximation:

N
2Y N(O,4 2 22

2 Y Y ~ Nj(0, - N 2 Z ).
i0 n

A comparison of the variances, equations (II.147a,

b,c), shows that the variance of the third term dominates

for moderate to large N values. Instead, the mean value of

d(N) in equation (11.146) is mostly contributed by the first

term. Therefore for large N we find again, as in the linear

damage accumulation model, that the mean of d(N) is not

significantly affected by the uncertainty of the parameters,

while the variance of d(N) depends strongly on the un-

certainty of the mean (here on the posterior variance
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Var[ IZ] = Var[Y0 1 = Q2/n). This corresponds to linearizing

the quadratic model as follows:

(11.148)d (N) = E [d (N) I y=Z] + E 3{d (N)y} -(-Z)
-y u= Z

According to equation (11.148) all the uncertainty of d(N)

comes from the term Y = (P-Z) N(0,Cy2 /n). The approximation

(11.148) improves with N and is believed to be applicable

also to damage accumulation laws other than the quadratic one

(and perhaps also to nonnormal sequences). However, for

damage laws like

N
e

d(N) = Y
i= 1

e e given,

the accuracy of the linearized model (11.148) decreases with

2. In particular, for the combination: large-?, moderate-N

one should account also for the uncertainty in Y* and for

higher order terms in Y .
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P known, a~ unknown. Given an independent sample of

size n, the posterior distribution of Y is multivariate-t

with n degrees of freedom, mean

and covariance matrix

n 2
n-2 -N

n
2 -l

S =n
i=l

In analogy with equation (11.146) one can express the damage

after N load cycles as:

N N

d(N) = Y (Y. - 2 + )
i=l i=l1

N N

(Y. - 2 + N p2 + 2p
i=l1 i=1

(Y. - yi).1

(11.149)
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The first term in the right hand side of equation

(II.149) is related to an F-variate; in fact

N

S(Y - y)2
i=l

N 2  ~FN~nTherefN S

Therefore:

N

E[1
(Y. - )2= N S2  n

( N S n - 2

N

Var[
i=l

2
2 2 4 2n (N + n - 2)

(Y. - y)(]- N S)
N (n - 2) 2(n - 4)

(II.150a)

The second term in (11.149) is a known constant,

and the third term is related to a t-variate, being:

N

(Y. -. P)
i=S V

sv

t n
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Therefore:

N

E[2-P (Y - )] = 0

ial

N
4

Var [2p (Y i-) = 42 -p 2  n = 4N -, (II.150b)
i=n - 2 V n - 2

where V = S/y.

From these results and from equation (11.149) the

expected damage is

E[d(N)] = N(y 2 + S 2  n
n - 2

For large N (e.g., N = 10,000), relatively small n

(say n < 100) and large V (say V > 0.5), the variance of

the first term in equation (11.149) dominates, increasing

with the square of N. For small N (e.g., N = 100), rela-

tively large n (say n > 50) and small coefficients of

variation (say V < 0.2), the variance of the third term

dominates, with linear dependence on N.
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For the first combination of parameters the variance

of d(N) becomes comparable (in order of magnitude, although

remaining generally smaller) with the variance of the damage

when yP is unknown and a is known. For the second combina-

tion the variance of d(N) when a is unknown is substantially

smaller than when yp is unknown. These results are in

qualitative agreement with earlier conclusions for the linear

damage accumulation model. The case with both location and

scale parameters unknown is expected to behave roughly like

the case with only p unknown.

As a final consideration, one might choose other

types of independently additive damage functions, such as

N

d(N) = g(Y.) , (II.151)
. l

where g(-) has, say, one of the forms sketched in Figure 23.

With reference to Figure 23, whenever Y. < Y the

damage level does not increase, generating an "endurance

limit" at YE; instead, a discrete jump occurs if Y > YE'

In Figure 23(a) the jump is linear in (Y - Y E), in 23(b)

it is constant (d(N) -counts the number of exceedances of the

threshold value YE in N trials), and in Figure 23(c) the

damage contributed by the ith cycle is constant beyond the
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transition interval [YE' M In case (b), if the "crossing

events": Y* > YE are rare one can use the approximation of

independent trials which proved itself accurate for first-

crossing failure events (=>predictive Bernoulli process,

see Paragraph 11.3.2).

For the damage accumulation law (11.151) and the

functions g(-) in Figure 23 the importance of p being un-

known should be somewhere between the cases of fatigue-

failure and of first-crossing failure, depending on the

endurance limit YE'
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content. Sampling is from independent Normal, Log-
normal, Exponential, Gamma and Poisson sequences.
The following table associates each curve with a
population distribution and with a set of unknown
parameters.
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CURVE SAMPLING DISTRIBUTION
(Fig. 5) AND UNKNOWN PARAMETERS

(in parenthesis) (*)

La N (1)=LN (.z V+O)

2 N (q) =LN (a',VO)

3 N (ji, )=LN (1Z r qz'V±)

4 LN(yZ'V=0 .3)

5 LN(yz'V=0.5)

6 LN(yz'az'V='.l)

7 LN(yz,az,V=0. 3 )

8 LN(yz' z,V=O. 5)

9 EX(cy)=G(X,k=l)

10 G(X,k=2)

11 G(Xk=5)

12 G(X,k=10)

13 P(Xft f/tp=2)

14 P(Xt f/tp=l)

15 P(Xt f/tp=0.5)

Association of the plots in Figure 5 with the population

distribution. Unknown parameters and parameters with given

values are indicated in parenthesis.

(*) N = Normal, LN = Lognormal, EX = Exponential
G = Gamma, P = Poisson.
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Figure 7. Lower half: rectangular probability chart; Y ~ EX(X) with X
unknown; Y 2 N(-p,a 2 ) with P unknown. Sample size = 5. Each
non-dotted rectangle has probability content 0.001; each dotted
rectangle has 0.003 content.
Upper half: the same chart for perfect knowledge of the dis-
tributions parameters.
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Figure 8. Penalty ratios for central prediction regions of
0.99 content. Sampling is from an N-variate
normal population with p and Z unknown.
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Figure 9. Penalty ratios for central prediction regions of
0.99 content. Sampling is from an N-variate
normal population with p known and Z unknown.
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(2)

6 -Y

5

Figure 10. Two-dimensional prediction regions. The ellipse
and the inner square are of 0.99 content; the
other two squares are conservative approxima-
tions. Refer to Paragraph 11.2.3 in the text.
(1) from tables in Hahn and Hendrickson (1971);
(2) from a Bonferroni's inequality.
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Figure 12. Frequentist and Bayesian prediction ellipses of
0.99 expectation. Example in Paragraph 11.2.4.
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Y.
t I = t 2 3* t i

Model S time
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R -

o t t2 ' ' i

Model P

Figure 13. Realizations of simple independent "load"
processes {Y }.

Pf CT)

(a) time, T

f5 (T)

(c) T

Pf~ C T)

(b)

P f S(T)

Se

(d)

Figure 14. Qualitative evolution of the failure probability
for different correlation structures of the
interarrival times; model S in Figure 13.
(a) deterministic arrival times; (b) highly
regular (but random) interarrival times;
(c) highly regular (but random) events clusters;
(d) Poisson arrivals.
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Figure 15. Simultaneous prediction from independent normal sequences with P and
u unknown. One sided prediction intervals of 0.99 content.
Solid lines: exact results from Hahn (1970)
Dashed lines: independence approximation, equation (11.130)
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Figure 16. Approximate penalty ratios when constructing one-
sided simultaneous prediction intervals of 0.999
content (N = number of future observations).
Sampling is from normal populations with unknown
mean and variance. See comments following
equation (11.130).
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Figure 17. Approximate penalty ratios when constructing
one-sided simultaneous prediction intervals of
0.9999 content (N = number of future observa-
tions) . Sampling is from normal populations
with unknown mean and variance. See comments
following equation (11.130).
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Figure 18. Penalty ratios when constructing one-sided
simultaneous prediction intervals of 0.99
content (N = number of future observations).
Sampling is from normal populations with known
mean and unknown variance. Solid curves: exact
values from Krishnaiah and Armitage (1966);
da'shed curves: approximate values.
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Figure 19. Approximate penalty ratios when constructing
one-sided simultaneous prediction intervals of
0.999 content (N = number of future observa-
tions). Sampling is from normal populations
with known mean and unknown variance.
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Figure 20. Approximate penalty ratios when constructing
one-sided simultaneous prediction intervals of
0.9999 content (N = number of future observa-
tions). Sampling is from normal populations
with known mean and unknown variance.
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n=5

n=0

n=20

2 4 6 8 10 12 14

Number of future loading events, N

Figure 21(a). Probability of failure as a function of the
number of future loading events, N. The
load sequence is normal and independent,
with unknown mean and variance. From the
sequence, a sample of size n is available,
yielding the unbiased parameters estimates Z
and S2 . The resistance is R = + 4.265 S.
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Number of future loading events, N

Figure 21(b). Probability of failure as a function of
the number of future loading events, N.
The load sequence is normal and independent,
with known mean and unknown variance. From
the sequence, a sample of size n is avail-
able, yielding the unbiased estimate Z.
The resistance is R = ' + 4.265 0.
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Figure 21(c). Probability of failure as a function of
the number of future loading events, N.
The load sequence is normal and independent,
with unknown mean and known variance. From
the sequence, a sample of size n is available,
yielding the unbiased estimate S2 . The
resistance is R = + 4.265 S.

439



10

8

6

4

a

200 Argument of 5 and tn in

70 equations (II.141a,c), and

n=30 argument of 5 and t n- in

equations (II.141b,d) for n

n=10

-4--4 0.1

100 110 120

0.5

-i- Ti0.9

Number of load repetitions, N 1- D(a) 1 2 3 4 5

Figure 22(a). Fatigue failure probability; arguments 1- t 6 9(a)
of 0, tn and t in equations (II.141).3 1-t (a)

H ; 29
Nd = 100; y =10; V = 0.2; = 3.00 1-tl 0 (a)

> dMAX = 1060. P 1-t 9 (a)

0.99

0.999

10 2

2

0

0

-2

-4
QA 90



10

8

n=co

6 - 2000

700

4 - 300

a n=100

2-

0

-2 -

-4

900 950 1000 1050 1100

Number of load repetitions, N

Figure 22 (b) . Fatigue failure. Arguments of (P, t n and t n-1 in equations
(11.141).

N d = 1000; p=10; V = 0.4; =3.00 => d MX/a = 10,379.



10

000

8 n=oo

700

6
300

4
n=10 0

a

2

0

-2

-4

900 950 1000 1050 1100

Number of load repetitions, N

Figure 22(c). Fatigue failure. Arguments of (D, tn and tn-l in equations (11.141)

Nd = 1000; P = 10; V = 0.2; $ = 3.00 => d MAX/a = 10,190.



g (Y) 
(

1

0
Y.j

y

y.

y
E

(b)

g (Y

YE M

(c)

Figure 23. Damage accumulation
to equation (11.151)

functions. Refer
in the text.

443

0

(a)

g (Yi)



CHAPTER III

FIRST-ORDER AUTOREGRESSIVE MODELS

Knowledge of natural phenomena is seldom so accurate

to justify a deterministic model in which, given the present,

the future is known with certainty. On the other hand,

independent models of the type studied in Chapter II

(independence of the future from the present and from the

past) may not be supported by solid statistical evidence.

For example, in the area of structural safety, processes

like the interarrival times and the intensities of meteoro-

logical loads on buildings and the time-dependent resistance

of mechanical systems generally exhibit serial correlation

and are best described by probabilistic models with memory.

The degree of serial correlation may be assumed known, or

may be estimated from statistical data.

One of the simplest and most commonly used proba-

bilistic models with memory hypothesizes a Markovian de-

pendence between the states of the system at different times.

This chapter studies the relevance of statistical uncer-

tainty in first-order autoregressive processes (a simple

subclass of Markov processes), when some of the parameters

are unknown. The statistical information is contained in

the (known) realization of the process from an initial time,
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t = 0, to the present. As for the case of independent

sequences, simple and, to a lesser extent, simultaneous

prediction are studied.

A distinctive characteristic of processes with

memory is that the predictive distribution depends on the

prediction lead. In fact, past information is used for

prediction in two distinct ways. First, it allows one to

estimate the unknown parameters of the process, and in

this sense there is little difference with the case of

independent sequences. Second, and peculiar to processes

with memory, one can use knowledge of the present to estimate

more accurately events in the near future, due to serial

dependence. This fact motivates the distinction between

prediction at lead 1 (Section III.1) and prediction at lead

e > 1. The latter problem is studied in-Section 111.2.

A Bayesian approach is followed, using both "diffuse"

and conjugate prior distributions of the unknown parameters.

III.1 SIMPLE PREDICTION OF THE NEXT OBSERVATION

Consider the Gauss Markov sequence {Y I generated

by the first-order linear difference equation:

Y. = + Y + E.; i = 1,2,...; Yo given, (II1.1)1- 0 i -l
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where t3 and are constant parameters and {E. } is an

independent sequence of N(O, 2 ) variates. Y and

Y = [Y , ... ,Y n ' are known. Y denotes the present state,

and the problem consists of finding the posterior distribu-

tion of Yn+l' given Y0 , Y and the prior distribution of the

unknown parameters. For both the cases of diffuse and

conjugate prior the following conditions are studied:

(a) or , a unknown;

(b) o, S unknown, a known.

III.1.1 "Diffuse" prior; 0, l and a unknown

The noninformative prior distribution of the un-

known parameters is assumed (with Zellner (1971), p 186)

in the "diffuse" form:

f (6 r,61 ,a) 1 1/a , a > 0. (111.2)

(Note that considering the density (111.2) "noninformative"

is not standard in the statistical literature.) Given the

initial state Y and the sample Y, the likelihood function

for 0, l and a is:
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n

fo'(~0  ra1 y 0 ,Y) 1' ( (111.3)
cx 2x i 1

which, when combined with the prior density (111.2), yields

the posterior density:

n

f , Y_) c n1 ep~1 i ~ Y1 i 2- ,(III4)
0 0 C~~n+1 2a2 i-1 'o1i1

meaning that the posterior distribution of 0, 3 and h = a 2

is of normal-gamma type (see Raiffa and Shlaifer (1961),

p. 57).

Let

1 Y
0

1

1

Yn

Y n-l

H [i Y ];n

E= [Klf' *I-n I~
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Then:

Y= _ + _ I

Yn+1 n+1

and the posterior distribution of 1 (after integrating out

a from the joint density (111.4)) is ivariate-t with mean _

V 2 -1 2and covariance matrix -2 S(H'H), where F, v and S

are sample statistics, defined as follows:

= (H'H) H'Y (assume det H'H 3 0)

v = n-2

2 -1 ^
v S = Y' [I-H(H'H) H'JY = (Y-H (Y-H

With the posterior density function (III.4) for the unknown

parameters,,the posterior predictive distribution of Yn+l

(see ZelIner (1971), p. 72) is t with v = n-2 degrees of

freedom, mean value
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n+1 - H (111.5)

and variance (for n > 4)

"V a-2bY +nY 2

-+ 2 [1+H (H'H)l'hI n-2 S2 (1+ n )-v-2 - - - n-4 na - b 2 (111.6)

where

n-1

a = I Y.2
i= 0

n-1

b= Y
i=0

From equation (111.6) it is seen that the prediction variance

is the sum of two terms:

(1) n-2 S2 , being the posterior predictive variance
n-4

of Cn+l;

(2) n-2S 2 H(H'H)l H', being the posterior variance of H .
n-4
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From the posterior distribution of Yn+1 a left-

hand prediction interval of P-content for Yn+1 :

(--...0, (o+ Yn) + % (P,n,a,b,Y n) S]

where

o U(P,n,a,b,Y) = t 2 (P) [1
a-2Y b+nYn2  1/2

+ n n
n a - b2

For 9 oil and a known, the same interval would be:

(-0, (Uo+ Y n) + f3P (P) c@, where P 1 (P) = ( .

Therefore one can define the penalty ratio for imperfect

information as follows:

tn(;) n(
r o 1 ra(P ,n ,a,b ,Y ). = D n-2P)

a-2Y b+nY 2 11/2
+ n n

n a - b 2
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For example, if a = n and b = 0, it is:

(P) 2 1/2

r (Pnn,0,Y n) = t 2 ( 1 + -2 (111.9)
, 1 (P) n

The prediction penalty is minimum when Yn = 0. For

the case when Yn = 1, n = 3(1)12,16(5)31,41,61, and

P = 0.99, 0.999, 0.9999 the penalty factors (111.9) are

collected in Table 1. For any given value of Y the

penalty (111.9) exceeds the corresponding penalty for a

white normal sequence with p and U2 unknown (see Chapter II,

Paragraph II.2.2(a) and Appendix A), due to the fact that

6 is assumed unknown. However, this does not imply that

the variances of Yn+l in the two models are similarly

ordered.

Parallel expressions and similar conclusions can

be deduced for central and right-hand prediction intervals.

111.1.2 "Diffuse" prior; , unknown, G known

The condition "a known" makes the prediction

problem considerably simpler. Consistently with equation

(111.2) we assume, as noninformative prior, the improper

distribution:
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d F (a 1) m d 69 d .

As in Paragraph III.1.1, define the statistic

S = (H'H) _H'Y (assume det (H_'I) : 0). Then the posterior

distribution of = [' is bivariate normal with mean

S and covariance matrix oa('R) , implying that the pos-

terior predictive distribution of Yn+l is also normal, with

mean

n+l H- o+ n

and variance

2
2 2 _1^ 2a-2bYn +nY n

a n2[1 + H(H'H) H'] = 1 + abn n 2

(for the definition of a and b, see equation (111.6)).

If large realizations of Yn+l are of concern, the

left-hand prediction interval of P-content is:

(-<x>, (o + l Yn) + 5 5 (P,n,a,b,Y n) -a]

452



where

a-2bY +nY 2 1/2
(P,nra,b,Y ) = (P) 1 +n

PO,1 n n a - b2

The penalty ratio for imperfect information does not depend

on the content P, being:

a-2bY +nYn21/

r (n,a,b,Y ) = 1 + 2

For example, when a = n and b = 0, this penalty

becomes (compare with equation (111.9)):

f + Y
2 1/2

r (n,n,O,Y n) = 1 +n
ods inn n

and is minimum for Yn = 0
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111.1.3 Conjugate prior; , l and a unknown

We follow again Zellner (1971), pages 70 and 186,

and Raiffa and Shlaifer (1961),page 57.

For the likelihood function (111.3), the conjugate

prior density is:

ni

f (r , a an +1 exp{-
2a2 i-l

1 1 2

S1 1 2 (IexpII
a 2 Cy2

where

N) = n - 2 ii = (~1,li~1) ~!l~1

2 - with

1 Y
0

1

1
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are "equivalent prior statistics".

The density (III.10) is formally similar to the

posterior density (111.4). for diffuse prior.

The posterior density obtained by combining the

prior (III.10) with the likelihood (111.3) is also of the

same type. In fact, let [2 ' [ ' n21 ' be the vector

of observed sample values, and define

H-
-2

L

1

1

1

Y n

Y

* -

Then, in terms of

^ R -l + H

+= =22 111g5

-1
M = ((!242 -2-2

V 2 ^= + ^ ^

v = n 1+ n.2 -2
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The posterior density of (rp, ,) is:

f ( i f I Y ,1 2 1 2
f 0 0 "aj 1 1Y2.) cc n 1 +4n 2 -1 x{ v

a: 2 -

As a consequence, Y is distributed like t with

v n 1 + n2 - 2 degrees of freedom, mean value

Yn2+ = H + 6 Yn2

and variance (for v > 2)

V

2 +=
n 2+1 2

2 -
S(1 +H M H')

n 1 +n2-2 2l

n 1+n2-4

a+2bYn+ (n +n2)Yn2
+
(n1 +n2 ) a-b

2

where

2
+ Y

i=1 '

n -
n2~

Y + I
i i=0

y.
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After making the appropriate substitutions, prediction

intervals of given content and penalty ratios are found in

the same way as for a diffuse prior distribution (see

Paragraph III.1.1). The practical effect of the conjugate

prior is to enlarge the data set, the effective number of

observations passing from n2 to n + n 2 '

111.1.4 Conjugate prior; o and unknown, o known

In this case the conjugate prior distribution is

normal, with density:

1
f (0) cc exp - (-3 ) 'H H - )}

2Cy2 - -L =1=1-

where = [ 1 ' ,

1

1

Y1
0

Y 
n
n-1

r

(H ~ is a positive-definite symmetric matrix, and is

the prior mean of : (RR) Y ,HY 1  ]'.
1 n
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Although one might give directly the prior mean

vector and the prior covariance matrix - Y 
2 (H'H -

one would find some difficulties in interpreting the

physical meaning of these prior parameters. Instead it

seems more natural to specify the "best estimates" of the

values Yo Y1 ,... ,Y . (Besides, in any case one must
o' 1 n

give Y , the last realization before additional observa-
n

tions are made.)

Denote Y = [,...Y1' the actual sample and let:

n2

1Y

n,
lY

1Y
n 2

Given Y, the posterior distribution of 3 is also normal,

with density

f (6 Y) cc exp -( -)'M( -) ,2a 2

where M = H' H + H'H
=- -- 1 !2-

= M (2
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As a consequence, the predictive distribution of Y isn2+1

normal, with mean value io + 1 Yn2 and variance

+ 2c 2 (+I M~H = +a+2bY + (n +n)Y

C12 (1+H M~1 H') =2 1+ a.2bYn + 1~l+ 2 )Yn

(n1+n2 )a -
b2

For the definition of a and b see the case with a unknown

in Paragraph 111.1.3. Obvious replacements provide pre-

diction intervals and penalty factors from the results for

diffuse prior. Again, the prior being in conjugate form

has the practical effect of increasing the number of

observations, from n2 to n1 + n2.

The foregoing results hold when the initial state

Y and the following sequence of n realizations: Y 1 '. .

are known. No restriction is imposed on Bl (as it is clear

from the type of "diffuse" prior used); in particular IlI

could be larger than 1, corresponding to an unstable

process (see, e.g., Box and Jenkins (1970), p. 346) .

Sometimes it is more appropriate for physical reasons

to assume that sampling is from a stationary and stable

process, in which case the initial conditions at time t = 0 -

so far given by Y0 and therefore deterministic - are ex-

pressed in probabilistic terms, through the (unknown)

marginal normal distribution of the process (see Zellner
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(1971),p. 188 and references therein). As might be ex-

pected, Zellner finds that in this case the prediction

effects of modifying thed initial conditions and of varying

the prior distribution of the unknown parameters decrease

as the sample size increases.

If the prior is assumed of the following truncated

type, which is appropriate for a stable process:

1/a for 1~Yl < 1 ,

0 for > ,1-

the posterior density of ( ,Saa) is of the same (but

truncated) form as was found in Paragraph III.1.1 (see

equation (111.3), with non-zero values only in the interval

l < 1.

111.2 SIMPLE PREDICTION AT LEAD e

If distinct realizations of the sequence, say Y.

and Y. with i # j, were independent, the predictive distri-
J

bution of Y , given Y , Y 1 1 ... , Y would be the same for

all C > 1. This is not the case with autoregressive

sequences.
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When fitting a first-order autoregressive model to

statistical data the parameter of interest is generally

1 (see equation (III.l)).

For the purpose of exemplifying prediction at a time

lag I from the last observation (prediction of Yn+e ), we

consider the case when is known (in particular assume

0 = 0), while both a and Bl are unknown. The following

are unbiased estimators of and acz

Y0 LYl1

H'Y

,where H= ; Y=
H'H

[ n-1 n

and

2 1
S - (Y-H )'(Y-H ); where v = n -1.

V ------

Given Y , f and a, the joint distribution of

Y1,...,Y n is:
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f(YjY ,. 0 1 cc -1 ep I
a n 2(, 2

Cn s i xpa f
an

When seen as a function of

2
V S

0 -^) 2

and a for given Y 0 and Y,

this function is proportional to the parameters

likelihood. For the "noninformative"

f (W, Ja)

prior density:

cc 1/a

the joint posterior density of

1,Y) cc
a n+l

and a is then:

2
(H -Y)exp{- 1 VS +

2a 2
H'H} (111.11)

We introduce now the conditional independence

approximation:

f( 1 1 aIY ,Y) Sf( 1y_ ,Y) - f(a Y ,Y)
1 o -'0-
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Integrating the density (III.11) with respect to a

one finds that ($ ,Y) has a marginal t-distribution with

v = n - 1 degrees of freedom, mean value and variance

(for n > 3):

V2 S 2  (H1'H)~ 1
v-2- -

;

i.e., that

2 -n/2
2 01~91)

f ( 1 1YO ,Y) [v S + ] .ll J
0 H'H

Integrating the density (III.11) with respect to

' ,c 0 ,Y) is found to have inverted-gamma density:

1f (aIY ,Y) c - exp
0- n I(n-l) S2

2a2

For given , Y n+e can be estimated by

Y
n
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The mean value of Y given the autoregressive

parameter ,, is

Y n

and the prediction error when using the estimate Y A

can be written

e Y
e n+C

where

- n+Y I^ = e + (K -s ) yn

e = Y
e IS1 n+C 1 n

Since for given a and the second moment of the

prediction error is

2e

E[et~,^ 1 = a 21( AP

1--

the unconditional second moment of the prediction error can

be written (assuming approximate independence of a and
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2 O

E[e I = V i
0 -00

2e
e. ^ 2 2

2 + n
1

,Y) f (OIY', Y) d d a

= j 00
2e

2 - 1 -13  e ^d 2 2
S 21 + -e) 2Yn2n-3 1- 2

- f(SIY_,Y) d .

The t-density of (,I1YO,Y) is nonzero in the

range (-oo,o); therefore as e increases the integral diverges

(the second term in the integrand approaches infinity for

Y > 1). However, in many cases it is known that the

process is stable, i.e., that 1Y < 1. For a prior dis-

tribution of (So) with constant density l/a over the

interval 1 (-1,1) and zero density elsewhere the posterior

density of l is truncated t, being zero for I lY > 1. In

this case the second moment of the prediction error is finite:

2 n 21Ee =S2-, + -n Y2 ' 1,n),
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where

n-i 1 fI 1 -

n-3 c -1 1-

e 2
Y2 . 1- ) 

Ci_

1
c =f

-i t

2 -- n/2

2
(n-1) S

+

2

1 + 2
(n-1) S2

2 -n/2

(n-1) S2

-n/2
d .

S in equation (111.12) is the scale parameter of

the posterior density of ,, which satisfies:

(n-1) S 2s i

(Y'Y) (H'HI-)-(H'Y) 2

(H'H) 2

Y

H'H

This final approximation is accurate for moderate

to large values of n. When = 1 one finds:

n-i 1 ^ 2

Y( = --- ; Y 2 (-) Var(l) : - (1 - ) .
n-3 n-3
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Table 2 collects values of Y 1 () and Y2  for

= 1(1)10,. = 0(0.3)0.9, and for n = 4(1)10,15,20,30,60.

The second term in equation (111.12) accounts ex-

plicitly for the "initial conditions", Yn, and is zero for

Y= E[n = 0. In any case it is: Y2 + 0 as co+ , due

to the condition|S | < 1. On the contrary, when and n

are fixed, y increases with e, approaching a finite

asymptote when (+ o. One may therefore conclude that the

main contribution to the prediction error variance comes

from the first term in equation (111.12), unless Yn is

significantly different from zero and at the same time e

and n are very small.

When n +oit is: a andS2 2 with

probability 1, and the second moment of the prediction error

approaches the prediction variance under perfect information:

2e

lim E[e2 ] = a C) = 2
ns t o e "i-

irrespective of the "initial conditions", Y n
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For finite n, the penalty ratio (for imperfect

statistical information) on the prediction error mean

square is:

2 ,2

^2
1-

21
1-

2
Y n2

1 (' 1 ,n) + n2 2 (e,',n)S

= "2 1/2
Denoting Yn n (l l /S the deviation of Yn from

E[Y = 0 in units of standard deviations (and in terms

2
of the statistics S and 8l) ,the r.m.s. penalty ratio

becomes:

r ( , ,n, n [r1 (, l ,n) + Y2 r 2 n) ] (111.13)

where

r ((,3l,n)

2r 2 (C r1 n)

^2

~2e

1

= 7 - 'lC'n)
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Values of the function r ((,31 ,n,Yn) for selected values

of the arguments are collected in Table 3.

It should be emphasized that the penalty ratio

(111.13) refers to the r.m.s. of the prediction error. The

construction of prediction regions of given content requires

knowledge of the full distribution of Yn+e* In approximation

one might assume that the prediction error e. = Ynn+C 1 n

has t-distribution with n-l degrees of freedom. This approx-

imation is motivated by the fact that eg has indeed t-

distribution for f = 1, and for any f when Pl is known to be

zero (=>independent normal sequence). The distribution of

e is no longer of t-type when ? e 1 and Bl is unknown;

however the approximation should be useful for practical

purposes, at least when the sample size n is moderate to

large, so that Sl has small posterior variance.

Under this distribution assumption the penalty

ratio for one-sided prediction intervals of P-content at

lead C is:

1/2

r(P,,3 1 ,n,n) = -n-3 (2 tnn(P) ) (111.14)
r t c n-1 p t(P) rela

(for two-sided central predictions, replace P by P/2).
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Table 4 collects the factors [(n-3)/(n-l)l1 /2 t n-l(P)/(P)

for n = 4(1)10,15,20,30,60 and for P = 0.99, 0.999, 0.9999.

An application follows, including an approximate

extension to simultaneous prediction.

EXAMPLE. AN APPLICATION TO TIME-DEPENDENT STRUCTURAL

RELIABILITY ANALYSIS

Consider a structural loading process, modeled as

a stable normal Markov chain with known initial state Y0,

0 = 0, unknown "noise" variance c
2 and unknown regression

coefficient 1. The realization of the process from Y

to Y is available, yielding the unbiased parameters

2
estimates S and . Given the ultimate resistance of the

system, Y1A X' we want the probability of failure before or

at time n+e, where ? = 1,2,....

Before addressing this problem, let us first consider

the prediction distribution at lead e and the resistance

level which corresponds to a given reliability P at time

n+(. This is the P-fractile of the prediction distribution

at lead e; note that if e > 1, no consideration is given yet

to the behavior (i.e., failure, or-not) -of the system in the

interval [n+l, n+e-11.
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Under perfect knowledge of G 2 and the mean

forecast at lead e is: = e Y' and the left-hand

prediction interval of P-content is:

(0 2e 2 1/2
(-z, l Yn + C D (P)(U - l )/( 1 - (III. 15a)

For the case of limited information with unknown a2 and

1 the same interval is approximately:

^ + n-3 1/2
'C 1 1Yn + S(g)

^22 1/2
-(1 - S~~., / 1 ) ] . (III. 15b)

2 1, ^
For instance, if P = 0.999, n = 10, S2 = ,l = 0.3,

Y= 1.048 (=> ~n 1), the interval (III.15b) becomes a
n n

function of e only:

t ~2 to 1/2
1.048 X 0.3 + 3.973 r (1,0.3,l0,l)fl-0.3 .

The upper limits of these prediction intervals and the

corresponding penalty ratios, equation (111.14), are collected
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in Table 5 for e = 1(1)10. The values for perfect informa-

tion are obtained by replacing n = 10 by n = x. As one

might expect, the penalty increases with e, approaching an

asymptotic value as e - oo.

We pass now to the problem of simultaneous prediction

which arises in the reliability analysis of the system

during the time interval (n, n+e]. In Chapter II, in which

white sequences were considered, it was shown that for

simultaneous prediction intervals with large probability

content ( = reliability) P and with small correlation of

the prediction variables, the hypothesis of independent

future realizations produced accurate approximations. In

that case correlation was due exclusively to the parameter

uncertainty. If we make the same assumption of independence

in this chapter, the predictive joint distribution of Yn+1'

... ,Y n+e is simply the product of the marginal predictive

distributions which, due to the nonstationarity of the

Markov model, depend on 6. For perfect knowledge of the

parameters 1 and a, such as would result from a sample of

size n + co, and assuming approximate independence, the

probability of failure before the (n+e+l)th loading event is:

Pf (I)=1- D d(d.)
n=o i=1
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1 2 2 1/2
where d = (max - . n 2i 1/2

The same probability when a and O are estimated from a

sample of size n is, in approximation:

e
Pf () =1 - tn( i( '

n n=1

where

n-l (i^2 ^2i 1/2

d.r= (Y - n Y )L1max n
S - r la(i,01,n yn)

In the present case it is: S = 1, = 0.3, Y = 1.048,

Y = 1. For a resistance Y = 3.50, 4.50, 5.50 then max

evolution of the failure probability with e is shown in

Table 6 for the cases n = o (perfect information) and n = 10.

The ratio Pf (e)/Pf___ (V) between the probabilities
n= 10no

of failure in the two hypotheses of imperfect and perfect

information is nonnegligible, and increases dramatically with

Ymax (with the system reliability). The ratio is approximate-

ly 13 for Ymax = 3.50, 150 for Y = 4.50, and 5000 for

Ymax = 5.50. These results agree qualitatively with earlier
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findings for independent sequences.

The last development of the present example shows

an approximate extension of the results for simple pre-

diction to solve simultaneous prediction problems. The

extension rests on the assumption of independence between

Yn+i and Yn+j when i 3 j. This assumption should not be

critical when IY) << 1 as in the example above, and when

constructing simultaneous prediction intervals of large

content P, as it is often the case in structural reliability

analysis and design. For example, in the case studied

numerically, the assumption of independence should have

little (and conservative) effects on the analysis of the

system with resistance Ymax = 5.50.

An easy, although tedious way of checking the error

introduced by the assumption of independence might be to

simulate numerically sequences of future realizations:

Yn+l' Yn+2'''' Yn+e for given a2, Sl and Yn' and to com-

pare the resulting reliability for different system re-

sistance levels with the approximate analytical results, as

given by Table 6.
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111. 3 NOISY UNCENSORED AND CENSORED OBSERVATIONS IN MARKOV

PROCESSES; AN APPLICATION TO DETERIORATING SYSTEMS

In this section we consider the estimation and

prediction of the resistance R(t) of a deteriorating struc-

tural system. R(t) is a stochastic process, which is

observed at discrete times through noisy sampling (generating

uncensored noisy observations) or through proof loading tests

(generating censored data) . More precisely, proof loading

experiments generate observations which are censored at an

unknown level; in fact they are in the form

R(t ) > S if the system survives the application

of a load S. at time t.; or

R(t.) = S . if the system fails at time t . under

a load intensity S . .

S. may be deterministic or random, depending on the modali-

ties of the experiment. The resistance R(t) is modeled as

a Markov process, which is described next in greater detail.
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111.3.1 The resistance model

A stochastic function X(t) which is uniquely defined

by its random initial value X = X(t ) is called a "purely

deterministic random process". The estimation (and pre-

diction) of this degenerate class of random processes was

treated in Chapter I. A purely deterministic random model

for the resistance of deteriorating systems was proposed and

studied by Turkstra (1970). However, in presence of damage

accumulation and wear-out, and particularly for systems

operating under random environmental conditions, knowledge

of R(t ) is not sufficient to define deterministically the

process R(t) at any later time. This fact leads to modeling

R(t) as a (nondeterministic) random process.

Two phenomena are particularly important in the

deteriorating process: (i) the weakening of the structure

due to damage accumulation; this phenomenon is caused by

the repeated action of external loads; (ii) the natural

wear-out (or strengthening) of the materials in absence of

damage from external loads; the latter phenomenon is due to

aging, and is controlled by environmental conditions like

temperature, humidity, concentration of corrosive chemicals,

etc. (see Gertsbakh and Kordonskiy (1969)). Depending on

the circumstances one of these two phenomena may prevail on

the other. In combination, they typically generate resistance
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curves of the type shown in Figure 1(a) and (b).

In case (a) the structure weakens considerably

during the initial life period (0 - 1), after which adapta-

tion takes place (1 - 2). A third phase is characterized

by rapid wear-out due to aging, and terminates with failure

(point 3). In case (b) the same features are distinctive of

the last two phases, but the system experiences an initial

strengthening. These curves represent possible mean trends

of the resistance process; uncertainty is present, however,

particularly in the last phase of rapid wear-out.

A mathematical model for this behavior might be a

nonstationary Markov process with an absorbing barrier at

R = Rfailure* If the process is observed only at discrete

times, say at t = 0, 1, 2,... (for instance: 0 = after

construction; 1 = after 1 year from construction; 2 = after

2 years, etc.), one might use the following continuous

state, discrete time nonstationary model:

R = R + at(Rt- 1 - Rt 1  + (111.16)

where {R } is the sequence of a priori mean values at times

t = 0, 1, 2,...; a tI is a sequence of known coefficients

and {et} - O'TEt)} is a sequence of zero-mean second-moment

variables, independent among themselves and independent of
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the resistance process.

If = 0 for all t, the model degenerates into a
Et

purely deterministic random process,.in that a specific and

unique history {R t} corresponds to each given initial value

R0 . Depending on the coefficients (a } the random process0 t

may be of explosive type (at > 1 for all t), may propagate

the initial "error" R - R without modification (a = 1),o o t

or may damp out the initial "error" in a geometric fashion

(0< at < 1); see Figure 2. Cases with at < 0 are also shown

in Figure 2.

When instead {U2 } / 0 , the sequence {st} produces

random perturbations around the trends indicated in Figure 2.

Another particular case generated by equation (111.16)

is when {ati = l0}. The model becomes: Rt =t t

corresponding to independent random deviations from the mean

trend.

The foregoing discussion shows the wide spectrum of

models generated by equation (111.16). Appropriate choices

of the coefficients a tI and the introduction of nonstation-

arities in the disturbances may induce qualitatively and

quantitatively different characteristics within separate time

intervals, if so desired.

A similar model for the random resistance of deter-

iorating structures has been proposed recently by Kameda and

Koike (1974).
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111.3.2 Propagation of the mean and of the variance

(a) No observation

Let equation (111.16) define a second-moment Markov

process, with initial mean R and initial variance a2. If

no observation is made in the interval (O,t], the mean and

the variance at lead t are found through the recursive

(predictive) relations:

R + : :-1 -1 I

2 2 2 2
a.=a. a. + a . ; j = 1, 2,.. , ,

i 1 J-1 FJ

(III.17a)

(III.17b)

which, as it is easy to verify, yield:

t

Rt Rt + (R = R ) a. , (III.18a)
t t 0 0il

t t-1 t
2 2 2 + 2 2  + 2
t i j j i=j+l t

(III.18b)
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The covariance between R . and R., with i < j, is:

2
Cov[R. ,RI = a. I1 a . (III. 18c)

k i+l

Note that the sign of the correlation depends on the number

of negative coefficients ak (with k ranging from i+1 to j).

For reasons of safety it may be advisable to reduce

the variance U2 in equation (III.18b). This can be done int

various ways: the two procedures considered herein are:

(i) direct or indirect noisy measurements (the case of exact

measurements being a trivial particular case); and (ii) proof

loading experiments, yielding censored information. The

processing of noisy measurements is studied hereafter, while

the use of censored data is postponed until Paragraph 111.3.3.

(b). Direct or indirect noisy measurements

The sampling procedure is assumed to be of the

following type. At each discrete time t = 1,2,... two

courses of action are possible:

(i) To make one or more measurements of the re-

sistance R and of related quantities,

resulting in a measurement vector Z. In this

case it is assumed that t is related to Rt as:
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t -t t (111.19)

where Zt and h are given vectors, and

(tt is a second-moment vector of

possibly correlated, zero-mean error terms,

with covariance matrix -t . and 6. are

assumed independent when i j , and independent

of the resistance Rt.

(ii) To make no measurement, which corresponds to

assuming h = 0 in equation (111.19).-t

The scheme above leads to the so-called Kalman

filter and Kalman prediction algorithms (for the original

derivation see Kalman (1960) and Kalman and Bucy (1961)).

Before quoting the explicit expressions for the mean and the

variance of the resistance at time t, given the observation

vectors {Z., i=l, ... , t}, it is convenient to generalize
-1

equations (III.16), (111.17), (III.18) and (111.19) to the

case of the system resistance being described by a vector

sequence {Rt}, instead of a scalar sequence as considered

so far. Then the Kalman equations will be given for the

vector case.

There are many instances in which the resistance is

best described by a vector, the obvious one being when the
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system is composed of n separate elements, the ith element

having resistance R. at time t.
It

Another case in which the vector representation is

useful is when at each time t = 0, 1, ... failure may occur

in any of several modes, each associated with a specific

loading condition. In th-is case the sequence {R. } monitors

th
(at discrete times) the resistance in the i mode.

If equation (111.16) is rewritten:

Et -t + -t t-l Et-) + -t -t (II.20)

where {R } is a given n-dimensional sequence; {At is a_ztt

given (n X n) matrix sequence, {B I is a known (n X m)

matrix sequence, and {t} is an independent sequence of

(0,0) random m-vectors, equations (111.17) become:

R. = R. + A.(R. - R. ) , (III.21a)
-3 -3 -3 -3 -1 -3 -1

E. = A. E. A! + B.O.B! . (III.21b)
-] -3 -3-1 -j -J-J-J

The stable or unstable, exponential or oscillatory

character of the process shown graphically in Figure 2 for
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the scalar case depends now on the eigenvalues of the

matrices At (on the poles of the system); for instance, if

A = A for all t, the condition for asymptotic stability is=t

that all the eigenvalues of A lie inside the unitary disk in

the complex plane. A behavior of the type shown in Figure 2

could be associated separately with the component of Rt along

each eigendirection in n-space.

The stability of the process is linked to the physical

significance of the noise terms . If they refer to the

uncertainty in the time evolution of the material properties

the matrix A might realistically produce an unstable process

in which the perturbances increase with time. If instead

the noise terms refer to the effects of "secondary loads",

the matrix A might propagate the accumulated damage without

magnification.

The generalization of equations (111.18) reads:

t

R = t + ( H A.)(R - ) (III.22a)
i=l -1 0

t t t-1 t t

E = (H A.)Z ( H A.)' + B.( T[ A) .( E) H
-t . 1 -3.-i -3 . . -3- -3 . A.) B.i=l i= j=l- i=j+ - i=j+1-i -J

+ -t BT (III.22b)
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Cov[R.,R.] = i A )E. < j (III.22c)
- - k=i+1=k-

Equations (111.22) hold for the case of no observations.

When observations are made, the measurement vector

at time t is written, generalizing equation (111.19):

Z =Z + H R +6 , (111.23)
t -ot -t Z: -t

where Z and 0 are as before, and H is a given (m X n)

measurement matrix. If no measurement is made at time t,

let Ht = 0 in equation (111.23) (noninformative measurement).

Kalman filter for discrete-time processes

The Kalman filter for discrete-time processes is a

recursive algorithm, each step of which consists of two

phases: (i) a prediction phase through which, given the

first two moments (or the distribution) of R. - conditional

on the observations up to time j-1, one finds the predictive

moments (or the predictive distribution) of R., conditional
-J

on the same observations; (ii) an estimation (or correction)

phase in which one uses the observations (if any) at time j

to revise the outcome of the prediction phase. Analytically,

for the Markov process (111.20) observed through (111.23)
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these two phases at the generic step j are:

(i) Prediction phase

+ A. (R. .
-J -i--l]--l (III.24a)-iR.-)

A- + B. 0. B!
-3 -3 -3

(III. 24b)

where the conditional sign -je stands

(ii) Estimation (correction)

-l+ii. 43K! . (Z.
-J

-H. R.
-J -J3j-J

),(III.25a)R. .j =R..

-j - iJ-1
F,-j I i j

-l
+ 0.) H.

--J -J

(III.25b)
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These last equations are structurally identical with

those already encountered in estimation of time-independent

models; see Chapter I, equations (I.7) and (1.8). Equations

(111.25) above are written in a form which separates the

correction (second term) from the forecast (first term).

In the case of no measurement (H. 0) these equations

reduce to: R.1 . = R. . , and E E... For comments
-3 _1, -=j [I- - [ -j I -16

on equations (111.25), see the remarks following equations

(1.7) and (1.8) in Chapter I. We recall explicitly the

important fact that equation (III.25b) does not contain the

information set {Z ,Z.}, so that E is computable
-J -I i

before knowing the outcome of the experiment. This fact

allows one to compare a priori different sampling strategies

and to optimize the sampling experiment if the objective is

to minimize, in some sense, the posterior variance.

If the initial moments are in the form R and
-ojo

E 1the algorithm starts with a prediction step; if instead

possible measurements at time t = 0 are not included in the

initial moments, the algorithm starts with an estimation

step at t = 0. When the initial conditions are given in the

form of a multinormal distribution, and { } and { I are

normal sequences, then {R . } and {R I are also normal

sequences, so that equations (111.24) and (111.25) character-

ize fully the resistance process at time j = 1,2,... .
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It should also be said that the case of R being a

continuous Markov process in time can be analyzed in a similar

way: if measurements are made continuously in time, the mean

of R(t) evolves according to a linear vector differential

equation of the first order, while the covariance matrix

satisfies a forward quadratic differential equation of the

Riccati type (see Kalman (1960) and Kalman and Bucy (1961)).

Again, while Z(t) is precomputable, R(t) is not. An ex-

tension of this classical formulation of the Kalman filter to

process censored data is proposed in the next paragraph.

I1I.3.3 Propagation of the resistance distribution

when observations are censored

Consider for simplicity the case with scalar re-

sistance. The logic of the Kalman algorithm is retained

when observations are censored; in fact also in this case

two computational phases can be distinguished at each dis-

crete observation time: a prediction phase, and an estimation

or correction phase. Nevertheless, some basic differences

have to be noted.

Since observations have truncating effects on the

resistance distribution, the informativeness of an observation

like Rt I St (or: Rt > t + et, with Ot a noise term)

depends strongly on the shape of the distribution of Rt
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conditional on the previous observations, and cannot be

assessed from the first two moments only. Contrary to the

case with uncensored data, also when measurement errors,

initial conditions and propagation errors have normal dis-

tribution, {Rt|t,} is not, in general, a normal sequence.

The conclusion is that when data are in censored form one

must work with full probability distributions, which fact

makes the estimation and prediction analyses much more

elaborate.

Physically one can view the sequence of proof loadings

as the creation - at discrete times - of an artificial ab-

sorbing barrier for the failure - no failure process (see

Figure 3).

The prediction phase is the same whether data are

noisy or not. It consists of finding the distribution of

R , given the distribution of R and the process

equation (111.15). In general this requires convolution:

r-R.-6
F (r) = f (s) * F(i.+ ) .II2)R J- )d (111.26)

ii- 0 j j-l1jj-l 3- a.

The estimation phase depends on the observation

model. If the load intensity S. is known, the CDF of R.1 .

is simply:
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FR (r)[l - F (S.)] for r > S,R jIj1RjIj_

FR (r) (III.27a)

0 otherwise.

If instead the proof load intensity is uncertain,

say S. = S. + 6., where S. and S. are the true and the
S J J J

observed intensity values, respectively, and 0. denotes the
J

estimation error, a convolution operation is again required:

r

1' -l
F (r) = F (r) - [1 - FR (s)] f 5 (s)d s.

(III.27b)

In this second case the "truncation effect" decreases with

increasing dispersion of .

The resistance sequence satisfies equations (III.26)

and (III.27) if the structure is subjected to no other loads

than proof loads. If other environmental actions are present,

this would correspond to neglecting them whenever the system

survives, and to reconstructing the system if it happens to

fail, with the same resistance distribution it had at the

moment of collapse. This is, of course, a quite artificious
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assumption. Moreover, one would like to profit from the

information about the performance of the system during the

periods between proof loading experiments. E.g., if the

system is known to have survived a violent windstorm, one

might. want to use this piece of information in judging a

posteriori the system resistance. (For an application of

this concept to offshore platform structures, see Marshall

and Bea (1974).) In generalevents of this type produce

censored information like R(t) > S(t), and thus can be

treated in the same way as was indicated earlier for proof

loading. A quantitative difference between "natural" and

"artificial" proof loading is that for the former events the

uncertainty on the load intensity is larger (e.g., the

maximum wind pressure during a windstorm, the peak ground

acceleration during an earthquake, and so on), besides the

fact that modeling natural events as single load applications

may be an oversimplification.

If a natural event of large magnitude has occurred

close to (but before) a planned proof loading experiment,

one may decide to cancel the experiment or to modify it in

order to make it more informative when combined with the

data already available. If instead the natural event was of

small magnitude, its effect on the subsequent reliability

may be neglected, and the artificial proof loading may be

performed as on schedule.
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The study of first-order autoregressive models does

not exhaust the problem of quantifying statistical uncertainty

in random processes with memory. This class of Markov models

was chosen because analytically tractable and because re-

current in stochastic modeling of engineering systems. The

vast literature on Kalman filtering and Kalman prediction

(see for example the Special Issue on Linear-Quadratic

Gaussian Problem, IEEE Transactions on Automatic Control,

Vol. AC-16, No. 6, Dec. 1971) addresses to the same type of

models.
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TABLE 1. Penalty for one-sided prediction intervals of
content P at lead 1. First-order autoregressive
process with , and a unknown. n available
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BETA1 = 0.0

4 5 6 7 8 9 10 15 20 30 60

1 3.0CC 2.000 1.667 1.500 1.400 1.333 1.286 1.167 1.118 1.074 1.035
2 3.623 2.377 1.952 1.733 1.598 1.506 1.438 1.260 1.177 1.111 1,052
3 3.911 2.543 2.072 1.827 1.674 1.568 1.490 1.283 1.186 1.115 1.053
4 4.082 2.640 2.139 1.878 1.713 1.599 1.515 1.293 1.188 1.115 1.053
5 4.197 2.703 2.183 1.910 1.738 1.619 1.531 1.298 1.189 1.115 1.053
6 4.279 2.749 2.214 1.933 1.756 1.632 1.541 1.301 1.189 1.115 1.%53
7 4.341 2.782 2.237 1.949 1.768 1.642 1.548 1.303 1.189 1.115 1.053
8 4.389 2.808 2.254 1.962 1.777 1.649 1.554 1.305 1.189 1.115 1.053
9 4.426 2.828 2.268 1.972 1.785 1.654 1.558 1.306 1.189 1.115 1.053
10 4.456 2.844 2.279 1.979 1.790 1.659 1.561 1.307 1.189 1.115 1.053

(a) yl(C, 0, n)

BETAL = 0.0

4 5 6 7 8 9 10 15 20 30 60

1 1.000 0.500 0.333 0.250 0.200 U.167 0.143 0.083 0.059 0.037 0.018
2 0.096 0.083 0.072 0.062 0.054 0.046 0.040 0.020 0.008 0.003 0.001
3 0.057 0.048 0.041 0.034 0.029 0.024 0.020 0.008 0.002 0.000 0.000
4 0.038 0.032 0.026 0.022 0.018 0.015 0.012 0.004 0.000 0.00iC 0.000
5 0.027 0.023 0.018 0.015 0.012 0.010 0.008 0.003 0.000 0.000 0.000
6 0.021 0.017 0.C14 0.011 0.009 0.007 0.006 0.002 0.000 0.OOC 0.000
7 0.016 0.013 0.010 0.008 0.007 0.005 0.004 0.001 0.0C 0.000 0.000
8 0.013 0.010 0.008 0.007 0.005 0.004 0.003 0.001 0.000 0.000 0.000
9 0.010 0.008 0.0C7 0.005 0.004 0.003 0.003 0.001 0.000 0.010 0.00

10 0.008 0.007 0.005 0.004 0.003 0.003 0.002 0.001 0.000 0.000 0.000

(b) y 2 (', 0, n)

Table 2. First-order autoregressive sequence. Coefficients y1 (e,3 ,n) and
y2 (,r,n) in the expression for the second moment of t e prediction
error at lead e, equation (111.12).
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BETAL = 0.30

4 5 6 7 8 9 10 15 20 30 60

1 3.000 2.000 1.667 1.500 1.400 1.333 1.286 1.167 1.118 1.074 1.035
2 3.684 2.432 2.009 1.795 1.664 1.576 1.512 1.346 1.273 1.207 1.145
3 4.010 2.631 2.163 1.923 1.776 1.675 1.602 1.408 1.319 1.237 1.163
4 4.207 2.749 2.252 1.996 1.838 1.730 1.650 1.438 1.338 1.247 1.166
5 4.339 2.828 2.310 2.043 1.878 1.764 1.680 1.456 1.347 1.251 1.167

6 4.434 2.884 2.351 2.076 1.905 1.788 1.700 1.467 1.353 1.252 1.167

7 4.5C6 2.925 2.382 2.101 1.926 1.805 1.715 1.475 1.356 1.253 1.168
8 4.561 2.957 2.405 2.119 1.941 1.818 1.726 1.480 1.359 1.253 1.168
9 4.605 2.983 2.424 2.134 1.953 1.828 1.734 1.485 1.360 1.254 1.168

10 4.640 3.003 2.439 2.145 1.962 1.835 1.741 1.488 1.361 1.254 1.168

(a) y1(e, 0.3, n) E03_ _ _

BETA1 = C.30

n 4 5 6 7 8 9 10 15 20 30 60

1 0.910 0.455 0.303 0.227 0.182 0.152 0.130 0.076 0.054 0.034 0.016
2 0.076 0.069 0.063 0.058 0.054 0.050 0.046 0.034 0.024 0.014 0.006

3 0.C62 0.055 0.049 0.044 0.040 0.036 0.033 0.022 0.014 0.007 0.002
4 0.042 0.038 0.034 0.030 0.027 0.025 0.022 0.014 0.008 0.003 0.001
5 0.032 0.028 0.025 0.022 0.019 0.017 0.016 0.009 0.005 0.001 0.000
6 0.024 0.021 0.018 0.016 0.014 0.013 0.011 0.007 0.003 0.001 -0.000
7 0.018 0.016 0.014 0.012 0.011 0.010 0.009 0.005 0.002 0.000 0.00
8 0.015 0.013 0.011 0.010 0.009 0.007 0.007 0.004 0.001 0.000 0.000
9 0.012 0.010 0.009 0.008 0.007 0.006 0.005 0.003 0.001 0.000 0.000

10 0.010 0.008 0.007 0.006 0.005 0.005 0.004 0.002 0.001 0.0)0 0.000

(b) y2 (e, 0.3, n)

Table 2 (continued). First-order autoregressive sequence. Coefficients Y (2, ,n)

and Y2(e' ,n) in the expression for the second moment of
the prediction error at lead e, equation (111.12).
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BETAL = 0.60

4 5 6 7 8 9 10 15 20 30 60

1 3.000 2.000 1.667 1.500 1.400 1.333 1.286 1.167 1.118 1.074 1.035
2 3.906 2.622 2.2C6 1.996 1.870 1.796 1.739 1.599 1.541 1.482 1.419
3 4.378 2.946 2.489 2.255 2.113 2.036 1.975 1.816 1.749 1.670 1.577
4 4.674 3.148 2.666 2.416 2.263 2.185 2.119 1.946 1.868 1.770 1.648
5 4.878 3.286 2.787 2.526 2.364 2.286 2.217 2.031 1.944 1.829 1.683
6 5.026 3.385 2.876 2.607 2.437 2.359 2.287 2.091 1.996 1.868 1.701
7 5.138 3.460 2.943 2.667 2.492 2.415 2.341 2.136 2.035 1.894 1.712
8 5.224 3.519 2.996 2.714 2.535 2.458 2.383 2.170 2.064 1.913 1.717
9 5.293 3.565 3.038 2.752 2.568 2.493 2.416 2.197 2.088 1.928 1.721

10 5.349 3.602 3.072 2.783 2.596 2.521 2.443 2.220 2.1C6 1.939 1.723

(a) y1 (e, 0.6, n)

BETA1 = 0.60

4 5 6 7 8 9 10 15 20 30 60

1 0.640 0.320 0.213 0.160 0.128 0.107 0.091 0.053 C.038 0.024 0.011
2 0.C70 0.068 0.066 0.064 0.062 0.060 0.058 0.050 0.042 0.032 0,016
3 0.068 0.062 0.058 0.055 0.053 0.053 0.052 0.047 0.041 0.031 0.014
4 0.044 C.044 0.046 0.045 0.044 0.046 0.045 0.041 0.037 0.027 0.011
5 0.039 0.038 0.039 0.039 0*037 0.039 0.039 0,036 0.032 0.022 0.008
6 0.030 0.030 0.033 0.033 0.031 0.033 0.033 0.030 0.027 0.018 0.005
7 0.026 0.026 0.028 0.027 0.026 0.028 0.028 0.025 0.022 0.015 0.004
8 0.021 0.021 0.023 0.023 0.022 0.024 0.024 0.021 0.019 0.012 0.003
9 0.018 0.017 0.019 0.019 0.018 0.020 0.020 0.018 0.016 0.010 0.UQ2

10 0.015 0.014 0.016 0.016 0.015 0.017 0.017 0.015 0.013 0.008 0.001

(b) Y2 (e, 0.6, n)

Table 2 (continued). First-order autoregressive sequence. Coefficients y1 (i, in)
and Y2 ( ' n) in the expression for the second moment of
the prediction error at lead e, equation (111.12).



BETAl = 0.90

n 4 5 6 7 8 9 10 15 20 30 60

1 3.000 2.000 1.667 1.500 1.400 1.333 1.286 1.167 1.118 1.074 1.035
2 4.576 3.166 2.7C6 2.470 2.332 2.240 2.176 2.020 1.964 1.911 1.865
3 5.5S5 3.957 3.432 3.161 3.003 2.902 2.832 2.671 2.624 2.577 2.539
4 6.311 4.535 3.974 3.680 3.513 3.408 3.337 3.184 3.153 3.117 3.092
5 6.841 4.976 4.395 4.087 3.916 3.810 3.739 3.597 3.585 3.563 3.552
6 7.248 5.324 4.733 4.416 4.242 4.136 4.067 3.939 3.945 3.937 3.938
7 7.568 5.606 5.011 4.687 4.512 4.407 4.341 4.225 4.249 4.254 4.266
8 7.824 5.839 5.244 4.915 4.739 4.636 4.572 4.469 4.510 4.526 4.546
9 8.033 6.033 5.441 5.109 4.933 4.832 4.770 4.680 4.737 4.762 4.788

10 8.205 6.198 5.611 5.276 5.101 5.001 4.942 4.863 4.935 4.969 4.998

(a) yl(P, 0.9, n) ,1
BETAl = C.90

4 5 6 7 8 9 10 15 20 30 60

1 0.190 0.095 0.063 0.048 0.038 0.032 0.027 0.016 0.011 0.007 0.003
2 0.144 0.107 0.082 0.068 0.058 0.050 0.045 0.028 0.020 0.014 0.008
3 0.165 0.128 0.104 0.089 0.079 0.070 0.063 0.043 0.032 0.024 0.015
4 0.162 0.132 0.111 0.098 0.088 0.080 0.073 0.053 0.042 0.032 0.021
5 0.151 0.127 0.110 0.099 0.090 0.083 0.077 0.059 0.048 0.038 0.026
6 0.135 0.117 0.104 0.095 0.088 0.082 0,077 0.061 0.052 0.043 0.030
7 0.119 0.105 0.C95 0.088 0.083 0.078 0.074 0.061 0.054 0.046 0.034
8 0.103 0.093 0.086 0.C81 0.077 0.C73 C.070 0.060 0.055 0.048 0.036
9 0.088 0.081 0.077 0.073 0.070 0.068 0.066 0.058 0.055 0.049 0.038

10 0.075 0.071 0.068 0.066 0.064 0.062 0.061 0.056 0.054 0.049 0.039

(b) y 2 (e, 0.9, n)

Table 2 (continued). First-order autoregressive sequence. Coefficients y(i, ,n)
and Y2 (e' ,n) in the expression for the second moment of
the predic ion error at lead 1, equation (111.12).

110



e 4 5 6 7 8 9 10 15 20 30 60

1 1.732 1.414 1.291 1.225 1.183 1.155 1.134 1.080 1.057 1.036 1.017
2 1.903 1.542 1.397 1.317 1.264 1.227 1.199 1.122 1.085 1.054 1.026
3 1.978 1.595 1.439 1.352 1.294 1.252 1.220 1.133 1.089 1.056 1.026
4 2.020 1.625 1.463 1.370 1.309 1.265 1.231 1.137 1.C90 1.056 1.026
5 2.049 1.644 1.478 1.382 1.318 1.272 1.237 1.139 1.090 1.056 1.026
6 2.069 1.658 1.488 1.390 1.325 1.278 1.241 1.141 1.091 1.056 1.026
7 2.084 1.668 1.496 1.396 1.330 1.281 1.244 1.142 1.091 1.056 1.026
8 2.095 1.676 1.501 -1.401 1.333 1.284 1.246 1.142 1.091 1.056 1.026
9 2.104 1.682 1.506 1.404 1.336 1.286 1.248 1.143 1.091 1.056 1.026

1C 2.111 1.687 1.510 1.407 1.338 1.288 1.249 1.143 1.091 1.056 1.026

EETA1 = 0.0 YN = 1.00

4 5 6 7 8 9 10 15 20 30 60

1 2.000 1.581 1.414 1.323 1.265 1.225 1.195 1.118 1.085 1.054 1.026
2 1.928 1.568 1.423 1.340 1.285 1.246 1.216 1.131 1.089 1.056 1.026
3 1.992 1.610 1.453 1.364 1.305 1.262 1.229 1.136 1.090 1.056 1.026
4 2.030 1.635 1.472 1.378 1.316 1.270 1.236 1.139 1.090 1.056 1.026
5 2.C55 1.651 1.484 1.388 1.323 1.276 1.240 1.140 1.C90 1.056 1.026
6 2.074 1.663 1.493 1.394 1.328 1.280 1.244 1.141 1.091 1.056 1.026
7 2.C87 1.672 1.499 1.399 1.332 1.283 1.246 1.142 1.091 1.056 1.026
8 2.098 1.679 1.504 1.403 1.335 1.286 1.248 1.143 1.091 1.056 1.026
9 2.106 1.684 1.5C8 1.406 1.337 1.287 1.249 1.143 1.091 1.056 1.026

10 2.113 1.688 1.511 1.408 1.339 1.289 1.250 1.143 1.091 1.056 1.026

Table 3. First-order autoregressive sequence. Penalty ratios r (P, 6 ,nYria

in equation (111.13).

BETA1 = YN = 0.00.0



4 5 6 7 8 9 1C 15 2C 30 60

1 2.646 2.000 1.732 1.581 1.483 1.414 1.363 1.225 1.163 1.106 1.051
2 2.002 1.646 1.497 1.408 1.346 1.300 1.264 1.158 1.100 1.060 1.027
3 2.035 1.654 1.495 1.401 1.337 1.290 1.253 1.147 1.093 1.057 1.026
4 2.058 1.663 1.498 1.402 1.336 1.288 1.250 1.145 1.091 1.056 1.026
5 2.075 1.671 1.502 1.404 1.337 1.288 1.250 1.144 1.091 1.056 1.026
6 2.088 1.678 1.506 1.406 1.338 1.289 1.250 1.144 1.091 1.056 1.026
7 2.C99 1.683 1.509 1.408 1.340 1.290 1.251 1.144 1.091 1.056 1.026
8 2.107 1.688 1.512 1.410 1.341 1.290 1.252 1.144 1.091 1.056 1.026
9 2.113 1.691 1.515 1.412 1.342 1.291 1.252 1.144 1.C91 1.056 1.026

10 2.119 1.694 1.516 1.413 1.343 1.292 1.253 1.144 1.091 1.056 1.026

BETAI = 0.0 YN = 3.00

Table 3 (continued).

1 3.464 2.550 2.160 1.936 1.789 1.683 1.604 1.384 1.283 1.186 1.092
2 2.118 1.768 1.,612 1.514 1.443 1.387 1.341 1.200 1.118 1.068 1.029
3 2.104 1.726 1.561 1.461 1.389 1.335 1.292 1.165 1.097 1.058 1.026
4 2.104 1.711 1.542 1.440 1.369 1.316 1.274 1.154 1.092 1.056 1.U26
5 2.108 1.705 1.533 1.430 1.360 1.307 1.266 1.150 1.C91 1.056 1.026
6 2.113 1.703 1.529 1.426 1.355 1.302 1.262 1.148 1.091 1.056 1.026
7 2.118 1.702 1.527 1.423 1.352 1.300 1.259 1.147 1.091 1.056 1.026
8 2.122 1.703 1.526 1.421 1.351 1.298 1.258 1.146 1.091 1.056 1.026
9 2.125 1.703 1.525 1.421 1.350 1.297 1.257 1.146 1.091 1.056 1.026

10 2.12E 1.704 1.525 1.420 1.349 1.297 1.257 1.145 1.091 1.056 1.026

EETA1 = YN = 2.000.00

604 5 6 7 8 9 10 15 20 30



4 5 6 7 8 9 10 15 20 30 60

1 1.732 1.414 1.291 1.225 1.183 1.155 1.134 1.080 1.057 1.036 1.017
2 1.838 1.494 1.358 1.283 1.236 1.202 1.178 1.111 1.081 1.052 1.025
3 1.911 1.548 1.403 1.323 1.272 1.235 1.208 1.133 1.096 1.062 1.029
4 1.957 1.582 1.431 1.348 1.293 1.255 1.225 1.144 1.103 1.065 1.030
5 1.987 1.604 1.450 1.364 1.307 1.267 1.236 1.151 1.107 1.067 1.031
6 2.009 1.620 1.463 1.375 1.317 1.275 1.244 1.155 1.110 1.068 1.031
7 2.025 1.632 1.472 1.383 1.324 1.281 1.249 1.158 1.111 1.068 1.031
8 2.037 1.640 1.48C 1.389 1.329 1.286 1.253 1.161 1.112 1.068 1.031
9 2.047 1.647 1.485 1.393 1.333 1.290 1.256 1.162 1.113 1.068 1.031

10 2.055 1.653 1.490 1.397 1.336 1.292 1.259 1.164 1.113 1.068 1.031

BETA1 = 0.30 YN = 1.00

4 5 6 7 8 9 10 15 20 3C 60

1 2.000 1.581 1.414 1.323 1.265 1.225 1.195 1.118 1.085 1.054 1.026
2 1.859 1.517 1.381 1.306 1.257 1.223 1.197 1.127 1.092 1.059 1.028
3 1.927 1.566 1.421 1.340 1.287 1.250 1.221 1.142 1.102 1.065 1.030
4 1.967 1.594 1.443 1.359 1.304 1.264 1.234 1.150 1.107 1.067 1.031
5 1.995 1.613 1.458 1.372 1.315 1.274 1.243 1.155 1.109 1.068 1.031
6 2.015 1.626 1.469 1.380 1.322 1.280 1.248 1.158 1.111 1.068 1.031
7 2.029 1.636 1.477 1.387 1.328 1.285 1.253 1.161 1.112 1.068 1.031
8 2.041 1.644 1.483 1.392 1.332 1.289 1.256 1.162 1.113 1.068 1.31
9 2.050 1.651 1.488 1.396 1.336 1.292 1.258 1.164 1.113 1.068 1.031

10 2.057 1.656 1.492 1.399 1.338 1.294 1.260 1.165 1.113 1.068 1.031

Table 3 (continued).

EETA1 = YN = 0.00.30



l 4 5 6 7 8 9 IC 15 20 20 60

1 2.646 2.000 1.732 1.581 1.483 1.414 1.363 1.225 1.163 1.106 1.051
2 1.920 1.584 1.449 1.372 1.321 1.283 1.255 1.171 1.125 1.080 1.037
3 1.975 1.618 1.472 1.389 1.333 1.293 1.262 1.171 1.121 1.074 1.033
4 2.000 1.629 1.478 1.392 1.335 1.293 1.261 1.168 1.118 1.071 1.032
5 2.019 1.638 1.483 1.395 1.337 1.294 1.261 1.167 1.116 1.069 1.031
6 2.032 1.645 1.488 1.398 1.338 1.295 1.262 1.167 1.115 1.069 1.031
7 2.C43 1.651 1.4S1 1.400 1.340 1.296 1.263 1.167 1.115 1.068 1.031
8 2.051 1.656 1.494 1.403 1.342 1.298 1.264 1.167 1.115 1.068 1.031
9 2.058 1.660 1.497 1.404 1.343 1.299 1.264 1.167 1.114 1.068 1.031

10 2.064 1.663 1.499 1.406 1.344 1.300 1.265 1.168 1.114 1.068 1.031

BETAl = 0.30 YN = 3.00

4 5 6 7 8 9 10 15 20 20 60

1 3.464 2.550 2.160 1.936 1.789 1.683 1.604 1.384 1.283 1.186 1.092
2 2.017 1.690 1.555 1.475 1.420 1.378 1.345 1.241 1.178 1.113 1.052
3 2.052 1.701 1.553 1.467 1.407 1.362 1.326 1.216 1.152 1.089 1.038
4 2.052 1.686 1.534 1.445 1.385 1.340 1.304 1.198 1.136 1.078 1.033
5 2.057 1.680 1.524 1.434 1.373 1.327 1.292 1.187 1.127 1.073 1.032
6 2.061 1.677 1.518 1.427 1.365 1.320 1.284 1.181 1.122 1.070 1.031
7 2.C65 1.675 1.515 1.422 1.360 1.315 1.279 1.177 1.119 1.069 1.031
8 2.069 1.675 1.513 1.420 1.357 1.312 1.276 1.175 1.118 1.069 1.031
9 2.073 1.675 1.512 1.418 1.356 1.310 1.275 1.174 1.117 1.069 1.031

10 2.C76 1.675 1.511 1.417 1.354 1.309 1.273 1.173 1.116 1.068 1.031

Table 3 (continued).

U-1
0>
H

EETA1 = C.30 YN = 2. 00



4 5 6 7 8 9 10 15 20 30 60

1 1.732 1.414 1.291 1.225 1.183 1.155 1.134 1.080 1.057 1.036 1.017
2 1.695 1.389 1.274 1.212 1.173 1.149 1.131 1.084 1.065 1.044 1.C21
3 1.714 1.406 1.293 1.230 1.191 1.169 1.151 1.104 1.083 1.059 1.029
4 1.744 1.431 1.317 1.254 1.214 1.193 1.174 1.125 1.103 1.073 1.036
5 1.772 1.454 1.340 1.275 1.234 1.213 1.195 1.143 1.119 1.085 1.041
6 1.795 1.474 1.358 1.293 1.250 1.230 1.211 1.158 1.132 1.094 1.045
7 1.814 1.489 1.373 1.307 1.263 1.244 1.224 1.170 1.142 1.101 1.047
8 1.829 1.501 1.385 1.318 1.274 1.254 1.235 1.179 1.150 1.107 1.049
9 1.841 1.510 1.394 1.327 1.282 1.263 1.244 1.186 1.156 1.111 1.050

10 1.850 1.518 1.402 1.335 1.289 1.270 1.250 1.192 1.161 1.114 1.050

8ETA1 = 0.60 YN = 1.00

4 5 6 7 8 9 10 15 2C 30 60

1 2.OCO 1.581 1.414 1.323 1.265 1.225 1.195 1.118 1.C85 1.054 1.026
2 1.718 1.416 1.303 1.242 1.202 1.179 1.160 1.110 1.087 1.061 1.030
3 1.735 1.429 1.316 1.254 1.214 1.193 1.175 1.126 1.103 1.074 1.036
4 1.757 1.447 1.335 1.272 1.232 1.212 1.194 1.144 1.119 1.086 1.041
5 1.783 1.467 1.354 1.291 1.249 1.229 1.211 1.159 1.133 1.096 1.045
6 1.804 1.484 1.37C 1.306 1.263 1.244 1.225 1.171 1.143 1.103 1.047
7 1.821 1.497 1.383 1.317 1.274 1.255 1.236 1.180 1.151 1.108 1.049
8 1.835 1.508 1.393 1.327 1.282 1.264 1.245 1.188 1.158 1.112 1.050
9 1.845 1.516 1.401 1.334 1.289 1.271 1.252 1.194 1.163 1.115 1.050

10 1.854 1.523 1.4C8 1.341 1.295 1.277 1.257 1.198 1.167 1.118 1.051

Table 3 (continued).

U,
0
tj

BETAJ = 0.60 YN = 0.0



4 5 6 7 8 9 10 15 20 30 60

1 2.646 2.000 1.732 1.581 1.483 1.414 1.363 1.225 1.163 1.106 1.051
2 1.787 1.496 1.388 1.328 1.288 1.264 1.244 1.185 1.152 1.111 1.056
3 1.796 1.495 1.383 1.321 1.281 1.261 1.243 1.190 1.161 1.118 1.057
4 1.795 1.492 1.386 1.326 1.286 1.268 1.251 1.198 1.169 1.123 1.057
5 1.816 1.506 1.397 1.335 1.293 1.277 1.259 1.204 1.174 1.126 1.056
6 1.829 1.514 1.406 1.343 1.300 1.283 1.265 1.209 1.178 1.127 1.055
7 1.842 1.523 1.413 1.348 1.304 1.288 1.270 1.212 1.180 1.128 1.054
8 1.852 1.529 1.418 1.353 1.308 1.292 1.273 1.214 1.182 1.128 1.053
9 1.860 1.533 1.422 1.356 1.310 1.294 1.275 1.216 1.183 1.128 1.053

10 1.866 1.537 1.425 1.359 1.312 1.296 1.277 1.217 1.184 1.129 1.052

U, EETA1 = 0.60 YN = 3.00

4 5 6 7 8 9 10 15 20 30 60

1 3.464 2.550 2.160 1.936 1.789 1.683 1.604 1.384 1.283 1.186 1.092
2 1.896 1.621 1.519 1.460 1.418 1.395 1.372 1.299 1.253 1.190 1.098
3 1.892 1.600 1.489 1.427 1.385 1.368 1.349 1.289 1.251 1.188 1.092
4 1.856 1.565 1.468 1.410 1.370 1.357 1.340 1.283 1.246 1.182 1.083
5 1.869 1.568 1.466 1.406 1.364 1.352 1.335 1.277 1.240 1.174 1.075
6 1.870 1.564 1.463 1.402 1.359 1.347 1.329 1.270 1.234 1.167 1.068
7 1.877 1.564 1.461 1.398 1.354 1.342 1.324 1.264 1.227 1.160 1.063
8 1.880 1.562 1.458 1.394 1.349 1.337 1.318 1.258 1.221 1.154 1.059
9 1.883 1.562 1.456 1.391 1.345 1.332 1.314 1.252 1.216 1.150 1.057

10 1.885 1.561 1.454 1.388 1.341 1.329 1.310 1.248 1.212 1.146 1.055

Table 3 (continued).

BETAI = 0,60 YN = 2.00



4 5 6 7 8 9 10 15 20 30 60

1 1.732 1.414 1.291 1.225 1.183 1.155 1.134 1.080 1.057 1.036 1.017

2 1.590 1.323 1.22.3 1.168 1.135 1.113 1.096 1.057 1.042 1.027 1.015
3 1.506 1.267 1.180 1.132 1.104 1.085 1.072 1.041 1.032 1.022 1.015
4 1.451 1.230 1.151 1.108 1.083 1.066 1.055 1.031 1.026 1.020 1.016

5 1.413 1.205 1.132 1.092 1.069 1.054 1.044 1.024 1.023 1.020 1.018
6 1.385 1.187 1.120 1.081 1.060 1.046 1.038 1.021 1.022 1.021 1.021
7 1.365 1.175 1.111 1.075 1.054 1.042 1.C34 1.020 1.023 1.024 1.025
8 1.351 1.167 1.106 1.071 1.051 1.040 1.033 1.021 1.026 1.027 1.030
9 1.340 1.161 1.103 1.069 1.050 1.039 1.033 1.023 1.029 1.032 1.035

10 1.332 1.158 1.102 1.068 1.050 1.040 1.034 1.026 1.033 1.037 1.040

EiTAI = 0.90 YN = 1.00

4 5 6 7 8 9 10 15 20 30 60

1 2.000 1.581 1.414 1.323 1.265 1.225 1.195 1.118 1.085 1.054 1.026
2 1.717 1.436 1.316 1.250 1.207 1.177 1.154 1.095 1.069 1.047 1.027

3 1.619 1.370 1.270 1.213 1.177 1.152 1.133 1.084 1.065 1.047 1.030
4 1.546 1.321 1.233 1.183 1.152 1.130 1.115 1.075 1.061 1.047 1.033
5 1.492 1.283 1.205 1.159 1.132 1.113 1.100 1.068 1.058 1.048 1.037
6 1.452 1.254 1.182 1.141 1.116 1.100 1.088 1.062 1.057 1.050 1.042
7 1.421 1.232 1.165 1.127 1.104 1.090 1.080 1.059 1.057 1.052 1.046
8 1.397 1.215 1.153 1.116 1.095 1.082 1.073 1.057 1.058 1.056 1.051
9 1.378 1.202 1.143 1.108 1.089 1.077 1.069 1.056 1.060 1.059 1.056

10 1.364 1.192 1.136 1.103 1.084 1.074 1.067 1.056 1.063 1.064 1.061

Table 3 (continued).

Ul

YN = 0.0EETA1 = 0.90



e4 5 6 7 8 9 10 15 20 30 60

1 2.646 2.000 1.732 1.581 1.483 1.414 1.363 1.225 1.163 1.106 1.051

2 2.051 1.731 1.564 1.468 1.401 1.351 1.312 1.203 1.149 1.104 1.061

3 1.917 1.642 1.51C 1.430 1.374 1.332 1.299 1.205 1.158 1.117 1.074

4 1.801 1.562 1.452 1.385 1.338 1.304 1.276 1.198 1.160 1.124 1.085

5 1.710 1.493 1.399 1.342 1.303 1.274 1.251 1.188 1.159 1.129 1.093

6 1.635 1.435 1.354 1.303 1.270 1.246 1.228 1.177 1.156 1.132 1.101

7 1.575 1.387 1.315 1.270 1.241 1.221 1.206 1.166 1.153 1.134 1.107
8 1.526 1.348 1.283 1.242 1.217 1.200 1.188 1.157 1.150 1.136 1.113
9 1.487 1.315 1.256 1.219 1.197 1.183 1.172 1.149 1.148 1.138 1.118

10 1.454 1.289 1.235 1.200 1.181 1.168 1.160 1.142 1.146 1.140 1.123

U,
0 EETA1 C.90 YN = 3.00

4 5 6 7 8 9 10 15 20 30 60

1 3.464 2.550 2.160 1.936 1.789 1.683 1.604 1.384 1.283 1.186 1.092
2 2.511 2.134 1.907 1.773 1.675 1.600 1.540 1.364 1.270 1.193 1.116

3 2.332 2.016 1.841 1.732 1.651 1.588 1.537 1.383 1.299 1.224 1.144
4 2.159 1.897 1.757 1.668 1.602 1.550 1.508 1.379 1.309 1.242 1.165
5 2.020 1.789 1.674 1.600 1.546 1.504 1.470 1.365 1.309 1.252 1.181
6 1.901 1.695 1.599 1.536 1.492 1.457 1.430 1.346 1.304 1.257 1.193
7 1.803 1.613 1.532 1.479 1.442 1.414 1.392 1.326 1.297 1.259 1.2)2
8 1.720 1.544 1.474 1.428 1.397 1.375 1.357 1.307 1.289 1.259 1.209
9 1.651 1.486 1.425 1.385 1.359 1.340 1.327 1.289 1.281 1.258 1.214

10 1.594 1.436 1.383 1.348 1.326 1.311 1.300 1.274 1.273 1.257 1.219

Table 3 (continued).

EETA1 = 0*90 YN = 2.00



n 0.99 0.999 0.9999

1/2
TABLE 4. Values of ( n-

equation (111. 1

tn-l (P) /Q (P) in
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1.909

1.641

1.477

1.376

1.309

1.262

1.227

1.135

1.095

1.060

1.028

4

5

6

7

8

9

10

15

20

30

60

1.127

1.139

1.121

1.103

1.089

1.078

1. 070

1. 044

1.033

1.021

1. 010

3 .446

2. 478

2.01.6

1.760

1.604

1.500

1.425

1.244

1.170

1.103

1. 049



TABLE 5. 0.999 fractiles of the predictive distributions
at lead P for a sample size n = w and for
n = 10. Example following equations (111.15)
in the text.
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PERFECT PENALTY
e INFORMATION n. 10 RATIO

n =eq. (III.14)

1 3.404 4.845 1.466

2 3.320 4.833 1.469

3 3.268 4.881 1.498

4 3.247 4.912 1.514

5 3.241 4.943 1.525

6 3.240 4.960 1.531

7 3.240 4.980 1.537

8 3.239 4.992 1.541

9 3.239 5.001 1.544

10 3.239 5.008 1.546



S 3.50 IY MAX= 4.50 Y AX= 5.50

P ) Pf (e) Pf (C) - V)Pf Pf V)
n= co n=10 n= co n=10 n= co n=10

1 7.30 - 4 7.23 - 3 1.42 - 5 1.64 - 3 1.08 - 7 4.20 - 4

2 1.29 - 3 1.37 - 2 2.64 " 3.20 " 2.21 " 8.45 "

3 1.75 " 2.02 " 3.64 " 4.83 " 3.10 " 1.30 - 3

4 2.19 " 2.69 i" 4.55 " 6.55 " 3.92 " 1.77 "

5 2.62 " 3.37 " 5.44 " 8.34 " 4.70 " 2.28

6 3.04 " 4.05 " 6.32 " 1.01 - 2 5.46 " 2.80

7 3.45 I" 4.74 " 7.20 " 1.20 " 6.22 " 3.32

8 3.87 " 5.44 " 8.08 " 1.38 " 6.98 " 3.86

9 4.29 " 6.14 " 8.96 " 1.57 " 7.74 " 4.41

10 4.71 " 6.83 " 9.84 " 1.76 " 8.50 " 4.96 "

Probability of system failure within the next
in Section 111.2.

e loading events.6.TABLE

Ul
C

Example
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0 1 2 3 time

Figure 1. Mean resistance curves in deteriorating
systems.
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Figure 2. Evolution of the resistance with time in deteriorating
systems; dependence on the autoregressive coefficients
{at}. See equation (111.16) and following comments.
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R,S realization of the resistance process

proof loading
acceptance level

time

natural load process

Figure 3. Proof loading of systems with time-
dependent resistance.
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APPENDTX A

This appendix contains tables of simple-prediction

limits for univariate stationary independent sequences with

given marginal distribution but one or more unknown para-

meters. P denotes the desired probability content of the

prediction interval and n is the available sample size.

In the frequentist approach the tables can be used directly;

see Paragraph 11.2.1. For using the same tables in Bayesian

prediction with "diffuse" or conjugate prior, refer to

Paragraph 11.2.2.

Values of the penalty ratios corresponding to the

same prediction intervals are given also. For their

definition and use the reader is referred to Section 11.2

in the text.
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0 W W

N
n rN(n)

1 1.414
2 la 225
3 1.155
4 1.11A
5 1.095
6 1.080
7 1.069
8 1.061
9 1.054
10 1.049
11 L 044
12 1.41
13 1.038
14 1.035
15 1,033
16 1.031
17 1.029
18 lo027
19 1."26
20 1.025
30 1.017
40 1.012
60 10008
120 1.004

00 1.000

Table Al. Penalty ratios in simple prediction when a sample of size n is available from
a normal population with unknown mean and known variance.
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Probability content, P
n

.7 50 1 1.90 0.*9500 O.9900 0.9950 0.'q990

1 2.2099 3--839 6a482 24:,713 45.358 193.452
2 1.394 1.775 2.195 3.853 5.019 9.602
3 1.237. 1.431 1.624 2.268 2o655 3A 927
4 1.169 1.296 1.417 1.787 1.994 2.616
5 1.131 1.225 1.311 1.565 1.701 2.087
6 1n107 1' 181 1o248 1 439 L 538 L 811
7 1.r9p 1.152 1.20 6 1.359 1.436 1.643
8 1.078 1.131 1.177 1.303 1.365 1.532
9 1 069 1: 115 1A 154 1 262 1.314 1.453

10 1. '6? 1. 1'2 1.137 1.230 1.276 1. 394
11 1.056 1.092 1.123 1.206 L 246 1r348
12 1.051 1.084 1.112 1.186 1.221 1.312
13 1.047 1.077 1.102 1.169 1.201 1.282
14 L 043 1h 071 l094 1,156 11,185 1 258
15 1. f4r 1.1066 1.087 1.144 1.171 1.238
16 1.038 1.062 1.082 1.134 1.159 1.220
17 1036 IU058 1>076 1 125 1.148 1.205
18 1. 33 1.n54 1.072 1.117 1.139 1.192
19 1.032 1.051 1.068 1.111 1. 131 1' 180
20 1.030 1.049 1.064 1.115 1.123 1.179
30 1.020 1.032 1.042 1.068 1.079 1.108
40 L-015 L 024 I031 L 350 1059 1> 079
60 1 1. 016 1.020 1.33 1.'38 1.051
120 1.005 1.008 1.010 1.016 1. 019 1.025

OOOC I 000 OGO 0- 1)) 1.000 1.000

Table A2. Penalty ratios r N (P,n) for central prediction intervals of P-content.
Sampling is from a normal population with known mean and unknown variance;
n is the sample size. See equation (11.17) in the text.
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Probability content, P

n
0.7500 0.9000 0.9500 0.9900 0.9950 n.99QO

2 2.571 4.702 7.939 30- 267 55,552 236,930
3 1.610 2.050 2.535 4.449 5.796 11.087
4 1.383 1.600 1.815 2.535 2.%69 4.390
5 111280 1 420 1, 552 L 958 ? 185 ?r866
6 1.222 1.323 1.417 1.691 1.837 2.254
7 1.183 1.263 1.335 1.539 1.644 1.936
8 1:157 1 222 1.280 1.441 1.523 1.743
9 1.137 1.192 1.240 1.373 1.439 1.615

10 1.121 1.169 1.210 1- 323 1 379 1. 524
11 1.109 1.151 1.187 1.285 1.333 1.456
12 1.099 1.136 1.169 1.255 1.297 1.403
13 1091 1 .125 1,154 1 231 1268 1n361
14 1.084 1.115 1.141 1.210 1.244 1.327
15 1.077 1.106 1.130 1.194 1.224 1.299
16 1.072 1 099 1.121 1.179 1.207 1.276
17 1.'768 1.02 1.113 1.167 1.192 1.255
18 1.064 1-087 1-106 1A56 1179 le 238

6f 1.082 1.100 1.146 1.168 1.223
20 1.057 1.077 1.094 1.138 1.159 1.209
21 1 054 L 073 L1089 L 131 1,150 1.197
31 1.)36 1.049 1.059 1.085 1.097 1.125
41 1.027 1.036 1.044 1.063 1.071 1,092
61 1 018 1.024 1.029 1.041 1.n47 1.060
121 1.00 1.012 1.014 1.020 1.023 1.029

00 1.000 1000 1u000 1-000 1-000 L000

Table A3. Penalty ratios r (Pn) for central prediction intervals of
Sampling is from 5 normal population with unknown mean and
the sample size. See equation (II.10).

P-content.
variance; n is

W W 1W

U,
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Probability content, P
n

0.7500 0.9000 09500 09900 0A9950 09990

1 1.484 2.401 3.838 13.681 24.712 103.013
2 1.211 1.471 1,775 2, 994 3o853 7, 225
3 1.139 1.278 1.430 1.952 2.267 3.305
4 1.099 1.196 1.296 1. 611 1.787 2.321
5 1 079 1,151 1- 225 1 L447 1,565 1.907

6 1.065 1.123 1.181 1.351 1.439 1.685
7 1.055 1.104 1.152 1.289 1.358 1,.549
8 1 047 1.390 1.131 1.245 1.302 1.457
9 1.043 1.079 1.114 1.213 1.262 1.391

10 1.039 1 070 L9102 1 188 Ia230 Lo341
11 1.034 1.063 1.092 1.169 1.206 1.303
112 1.031 1.058 1.083 1. 153 1.186 1,272
13 1L 030 1 053 11077 1- 139 1.169 1.247
14 1,027 1.049 1.071 1.128 1.156 1.2?6
15 1.025 1.046 1.066 1.119 Jo144 1208
16 1.024 1.043 1.061 1.110 1.134 1.193
17 1.022 1.040 1.058 1.104 1.125 1.180
18 1 021 1 037 1) 054 L11097 1:168
19 1.021 1.036 1.051 1.092 1.111 1.158
20 1.019 1.*034 1.049 1.087 1.104 1.150
30 1 013 1 022 L, 032 1. 056 1.068 1.095
40 1.10 1.016 1.024 1.042 1.050 1.070
60 1.007 1.011 1.016 1.028 1r033 1v046
120 1.004 1.005 1.008 1.014 1.016 1.023

C> 1.000 1.000 1.000 1.000 1.000 1.000

-TTable A4. Penalty ratios r (P,n) for one-sided prediction intervals of P-content.
Sampling is from a normal population with known mean and unknown variance;
n is the sample size. See equation (11.19)
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W W Mr

Ptobability content, P
n

G' 7500 02 9000 0,39500 0.9900 0.9950 0.9990

2 1.817 2.941 4.701 16.755 30. 265 126.165
3 L, 398 1,699 2v050 3.458 4.449 8.343
4 1.269 1.429 1.599 2.183 2.535 3.695
5 1.204 1.310 1.420 1n 765 L,958 2o 543
6 1.165 1.244 1.323 1.563 1.691 2.060
7 1.139 1.201 1.263 1.445 1.538 1.802
8 1 119 1- 171 ho222 1,367 1e441 1o642
9 1.104 1.149 1.192 1.312 1.373 1.535

10 1.094 1.131 1.169 1.272 1.323 1.458
11 L 085 1*118 1 150 1.241 1.285 1.401
12 1.076 1.1r7 1.136 1.216 1.255 1.356
13 1.070 1.098 1.124 1r 196 1,,231 lt320
14 1.066 1.090 1.114 1.179 1.210 1.290
15 1.060 1.084 1. 106 1.165 1.194 1.266
16 1,057  1,078 LS098 1n153 lo179 1.245
17 1.(53 1. 073 1.092 1.143 1.167 1.227
18 1.050 1.068 1.087 1.134 1.156 1.212
19 1 047 1.064 1.081 1.126 1.146 1.199
20 1.046 1.061 1.077 1.119 1.138 1.187
21 1.043 1 058 1b073 1, 112 14 130 1, 177
31 1.030 1.138 1.048 1.073 1.085 1.113
41 1.023 1.029 1.036 1.054 1.062 1.083
61 1, 016 10 19 1.024 1036 1,,041 1.054
121 1.P09 1.10 1.12 1.018 1.020 1.027

00 1.000 1.000 1.000 1.000 1.000 1e 000

Table A5. Penalty ratios r (P,n) for one-sided prediction intervals of P-content.
Sampling is from ' normal population with unknown mean and variance; n is
the sample size. See equation (11.12).
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W W W ww

Probability content, P
n

0.7500 0.9000 0.9500 0.9900 0.9950 0.9990

1 1.627 2.326 2.772 3.643 3.970 4.654
2 1.409 2.014 2.401 3.155 3.438 4.031
3 L2 328 1 899 2o263 2. 974 3o'241 3r,800
4 1.286 1.839 2.191 2. 880 3.138 3. 679
5 1.260 1.802 2.147 2.822 3.075 3.605
6 1-?42 L-776 2,117 2.782 3.032 3.555
7 1.230 1.758 2.095 2.754 3.001 3.518
8 1.220 1.744 2.079 2, 732 2,-977 3o491
9 1.212 1.734 2.066 2.715 2.959 3.469
10 1.206 1.725 2.056 2.702 2.944 3.452
11 1c 201 L 718 2047 2,690 25 932 3437
12 1.197 1.712 2.040 2.681 2.922 3.425
13 1.194 1.707 2.034 2.673 2.913 3.415
14 L191 1-702 2.029 2.666 2.905 3.406
15 1.188 1.699 2.024 2.660 2.899 3.399
16 1.186 1.695 2 020 245655 20 P93 3n392
17 1,184 1.692 2.017 2.651 2.888 3.386
18 1.182 1.690 2.014 2.646 2.q84 3.381
19 L180 1 687 2,,011 22 643 20880 3o 376
20 1.179 1.685 2.019 2.639 2.876 3.372
30 1.169 1.672 1.993 2.618 2.853 3.345
40 I165 1-665 1.984 2.608 2.842 3.332
6n 1.16i 1.658 1.976 ?.597 2.830 3.318

120 1.155 1.652 1.968 2o587 2; 819 3,305
O 1.150 1.645 1.960 2.576 2.807 3.291

Table A6. Coefficients N (P,n) in equations (11.13); to be
central prediction intervals of P-content when a

used for constructing
sample of size n is

available from a normal population with unknown mean and known variance.

uL
N)
N,

W MW MW 1W



W

Probability content, P

n
0,751n 0.90(0 0.9500 0.9900 0.9950 10.9990

1 2; 414 61 314 12,706 63c657 127,319 636o632
2 1.603 2.920 4.303 9.925 14.089 31.599
3 1.423 2.353 3.182 5.841 7.453 12.923
4 1-344 2,132 2,777 4.604 5.598 8.610

5 1.301 2.015 2.571 4.032 4.773 6.869
6 1.273 1.943 2.447 3. 707 4,317 5n 959
7 1,254 1.894 2.365 3.499 4.029 5.408
8 1.240 1.860 2.306 3.355 3.832 5.042
9 U730 1 833 2,262 3- 250 3o690 4.781

10 1.221 1.812 2.228 3.169 3.581 4.587

11 1.214 1.796 2.201 3.106 3,497 4.437
12 1".209 1, 782 2.179 3.055 3.428 4.317
13 1.204 1.771 2.160 3.012 3.373 4.220
14 1.200 1.761 2,145 2 977 3.326 4o140
15 1.197 1.753 2.131 2.947 3.286 4.073
16 1.194 1.746 2.120 2.921 3.252 4.015
17 1: 191 1 , 740 2 110 21898 3222 3.965
18 1.189 1.734 2.101 2.878 3.197 3.922
19 1.187 1.729 2.093 2.861 3.174 3*883
20 1- 185 1.725 2.086 2.845 3.153 3.850
30 1.173 1.697 2.042 2.750 3.030 3.646
40 1.167 1-684 2.021 2o 704 22 971 3o 551
60 1.161 1.671 2.000 2.660 2.915 3.460

120 1.156 1.658 1.980 2.617 2.860 3.373
00 1 150 1,645 1. 960 2m576 21 807 3.291

Table A7. Coefficients N (P,n) in equations (11.16); to be
central prediction intervals of P-content when a

used for constructing
sample of size n is

available from a normal population with unknown mean and known variance.
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Probability content, P
n

0,7500 0.9000 0.9500 0.9900 n-.9950 0.999i

2 2.957 7.733 15.562 77.963 155.933 779-712
3 1: 851 3.372 4.968 11.460 16.269 36.487
4 1.591 2.631 3.558 6.530 8.333 14.448
5 1.473 20335 3o042 5 044 6- 132 9e 432
6 1.415 2.176 2.777 4.355 5.156 7.419

7 1.361 2.077 2.616 3.963 4.615 6.370
8 1330 2,009 2-508 3. 712 4,274 5.736
9 1.307 1.96- 2.431 3.537 4.040 5.315

10 1.290 1.922 2.372 3.408 3.870 5-015
11 1.276 1.893 ?.327 3.31A, 3.741 4.7ql
12 1.264 1.869 2.291 3.233 3.639 4.619
13 1!254 1 850 2,261 3-170 3*558 4 480
14 1.246 1.833 2.236 3.118 3.491 4.368
15 1.239 1.819 2.215 3.075 3.435 4.276
16 1 233 1- 807 2,197 3 037 3.387 4.198
17 1.228 1.796 2.181 3.005 3.346 4.131
18 1.224 1.787 2.168 2.978 3n 311 4 073
19 1.220 1.779 2.156 2.953 3.2811 4.024
20 1.216 1.772 2.145 2.932 3.252 3.979
21 1-213 1-765 2.135 2 912 3*228 34940
31 1.192 1.725 ?.075 2.794 3.078 3.704
41 1.182 1.704 2.046 2.737 3.007 3.594
61 1: 171 1-684 2.017 2,682 2.938 3.488
121 1.161 1.665 1.988 2.628 2.872 3.387

1 1.150 1.645 1.960 2.576 2,807 3-291

Table A8. Coefficients
central predi

SN P,n) in equations (11.7); to
ction intervals of P-content when

be used for
a sample of

constructing
size n is

available from a normal population with unknown mean and variance.
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U,

Uj

Table A9.

Probability content, P
n

0.7500 0.9000 0.9500 0.9900 0.9950 019990

1 h.953 1.813 2.326 3.289 3.643 4.370
2 0.825 1.570 2.015 2.849 3o155 3o784
3 0.778 1.480 1.899 2.686 2.975 3.568
4 0.754 1.433 1.839 2.601 2.880 3.455
5 O 738 l.404 lo802 2,548 2f 822 3r 385
6 1.728 1.385 1.777 2.512 2.782 3.338
7 0.721 1.371 1.759 2.487 2.754 3.303
8 10 715 1-360 lo745 2,467 2.732 3.277
9 '.710 1.351 1.734 2.452 2.715 3.257

10 0.707 1.345 1.725 2.440 2.702 3t241
11 0.704 1.339 1.718 2.429 2.691 3.227
12 0.702 1.334 1.712 2.421 2.681 3.216
13 (1699 1 330 1707 2-414 2,673 3,207
14 1.698 1.327 1.703 2.408 2.666 3.198
15 0.696 1.324 1.699 2.402 2.660 3.191
16 0:695 L,321 1696 2-398 2.655 3.185
17 .694 1.319 1.693 2.393 2.651 3.180
18 0.692 1.317 1.690 2.390 2.647 3c175
19 0.692 1.315 1.688 2.386 2.643 3.170
20 I.691 1.314 1.686 2.383 2.640 3.166
30 0,685 1o303 1,672 2364 2.619 3cI41
40 f.682 1.298 1.665 2.355 2.608 3.128
60 9.680 1.293 1.659 2.345 2.597 3.116
120 0,677 1.287 L9652 2,336 2.587 3.103

0 X.674 1.282 1.645 2.326 2.576 3.090

Coefficients N (P,n) in equations (11.15); to be used for constructing one-
sided predicti8n intervals of P-content when a sample of size n is available
from a normal population with unknown mean and known variance.



Probability content, P

n 0.7500 0.9000 0.9500 0.9900 019950 0.9990

1 1.030p 3.078 6.314 31.821 63.657 318.310
2 0.816 1.886 2.920 6.965 9o925 22v326
3 0.765 1.638 2.353 4.541 5.841 10.213
4 0.741 1.533 2.132 3.747 4.604 7.173
5 0 727 1 476 2015 3 n365 4n032 5c,893
6 11.718 1.440 1.943 3.143 3.707 5.208
7 0.711 1.415 1.895 2.998 3.499 4.785
8 0: 706 1 397 Io860 2.896 3.355 4.501
9 0.7133 1.383 1.833 2.821 3.250 4.297

10 0.700 1.372 1.812 2c764 3,-169 4o 144
11 0.697 1.363 1.796 2.718 3.106 4.025
12 0.695 1.356 1.782 2.681 3.055 3.930
13 0- 694 1-350 1o771 2- 650 3.012 3c852
14 1.692 1.345 1.761 2.624 2.977 3. 787
15 0.691 1.341 1.753 2.602 2.947 3.733
16 0, 690 1337 1o746 2.583 2.921 3.686
17 1.689 1.333 1.740 2.567 2.898 3.646
18 0.688 1.330 1.734 22 552 2,878 3o610
19 0.688 1.328 1.729 2.539 2.861 3.579
20 0.687 1.325 1.725 2.528 2.845 3.552
30 0_ 683 1s310 L,697 24457 2a750 3o385
4f) 1.681 1.303 1.684 2.423 2.704 3.307
60 0.679 1.296 1.671 2.390 2.660 3.232
120 0. 677 1: 289 13658 2.358 ?.617 3.160

7 0.674 1.28? 1.645 2.326 2.576 3.090

Table A10. Coefficients (P,n) in equations (11.18); to be used .for constructing
one-sided prediction intervals of P-content when a sample of size n is
available from a normal population with known mean and unknown variance.
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Probability content, P
n

0. 7500 01 q000 0,19500 0o 990o Or 9950 0M9990

2 1.225 3.770 7.733 38.973 77.964 389.848
3 0A 942 2n178 3372 8R 042 11o460 25c,780
4 '.855 1.831 2.631 5.177 6.53! 11.418
5 0.812 1.679 2.335 4.105 5.043 7.858
6 0: 785 1 594 2.176 3.635 4.355 6.365
7 -.768 1.539 2.077 3.360 3.963 5.568
8 0.754 1.501 2*010 3c 180 3.711 5e075
9 0.744 1.473 1.961 3.053 3.536 4.744

10 0.737 1.451 1.922 2.959 3.409 4.507
11 0-.731 1- 433 1,893 2c 887 3c 310 4o328
12 ;.725 1.419. 1.869 2.829 3.233 4.109
13 0.721 1.407 1.849 2.782 3.170 4e 078
14 O:718 1.397 1.833 2.743 3.118 3.987
15 0.715 1.389 1.819 2.710 3.075 3.911
16 0.712 1- 382 1c807 2c,682 3,0A38 3I848
17 1.710 1.376 1.797 2.658 3.'106 3.793
18 .708 1.370 1.788 2.637 2.977 3.746
19 1-706 1,-365 1o779 2,618 2,o953 3.704
2 0705 1.361 1.772 2.632 2.932 3.667
21 0.703 1.356 1.766 2.587 20912 3.636
31 0.694 1.331 1.724 2.496 2.794 3.439
41 0.689 1.319 1.704 2.452 2.737 3.347
61 0, 685 1, 307 1685 2410 2,682 3,,258
121 -. 680 1.294 1.665 2.368 2.628 3.173

00 0.674 1.282 1.645 2.326 2.576 3.090

Table All. Coefficients " (P,n) in equations (II.11); to be used for constructing one-
sided predicti& aintervals of P-content when a sample of size n is available
from a normal population with unknown mean and variance.
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n ra r,

3 1.7321
4 1.4142 1.9365
5 1.2910 1 5492
6 1.2247 1.3944
7 1.1832 1.3093
8 11547 1.72550
9 1.1339 1.2172
10 1.1180 1.1892
11 1,1055 1 1677
12 1.n954 1.1507
13 1.0871 1.1368
14 11)801 1.1253
15 1.0742 1.1155
16 1.0690 1 1072
17 1.0646 1.100n
18 1.0607 1.0938
19 10572 10882
20 1.0541 1.*0833
30 1.0351 1.0535
40 1,0260 1.0394
60 1.0171 1.0258
120 1.0084 10127

L 0 1.0000 1.0OOP

Table A12. "First-order" penalty ratios when predicting from independent normal
sequences with unknown variance and known or unknown mean; see equations
(II.21c,d).
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Table A13 (Part 1).

(Ji

Coefficients E (P,n) in equations (11.24); to be used for right-a
hand prediction when a sample of size n is available from an
exponential population with unknown parameter.

C.750C 0.9000 0.9500 0.9900 0.9950 0.9990 0.9995 0.9999

1 0.6667 0.8889 0.9474 0.9899 0.9950 0.9990 0.9995 0.9999
2 0.6906 0.8918 0.9480 0.9899 0.9950 0.9990 0.9995 0.9999
3 C.6981 0.8928 0.9483 0.9899 0.9950 0.9990 0.9995 0.9999
4 0.7017 0.8932 0.9484 0.9899 0.9950 0.9990 0.9995 0.9999
5 C.7039 0.8935 0.9484 0.9899 3.9950 0.9990 0.9995 0.9999
6 0.7053 0.8937 0.9485 0.9899 0.9950 0.9990 0.9995 0.9999
7 0.7063 0.8938 J.9485 0.9899 0.9950 0.9990 0.9995 0.9999
8 0.7071 0.8939 0.9485 0.9899 0.9950 0.9990 0.9995 0.9999
9 0.7077 0.8940 0.9486 0.9899 0.9950 0.9990 0.9995 0.9999

10 C.7C81 0.8941 0.9486 0.9899 0.9950 0.9990 0.9995 0.9999
1 0.7123 0.8946 0.9487 0.9899 0.995u 0.9990 0.9995 0.9999

w1 1 wW
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Table Al3 (Part 2). Coefficients EX (P,n) in equations (11.26); to be used for left-
hand prediction when a sample of size n is available from an
exponential population with unknown parameter.

0.7500 C.90J0 0.9500 0.9900 0.9950 0.9990 0.9995 0.9999

1 2.COC 8.000 18.000 98.000 198.00 998.01 1997.9 9996.3
2 1.00C 3.325 5.944 17.000 25.284 60.246 86.441 196.98
3 0.762 2.463 4.143 9.925 13.544 26.000 33.797 60.629
4 0.657 2.113 3.459 7.649 10.042 17.494 21.749 34.998
5 0.598 1.924 3.103 6.559 8.427 13.905 16.865 25.547
6 0.560 1.807 2.885 5.927 7.510 11.974 14.297 20.849
7 0.533 1.726 2.739 5.515 6.922 10.779 12.733 18.093
8 0.514 1.668 2.634 5.226 6.514 9.971 11.688 16.298
9 0.499 1.624 2.555 5.013 6.215 9.390 10.942 15.043

10 0.487 1.589 2.493 4.849 5.986 8.953 10.385 14.118
15 0.452 1.489 2.316 4.390 5.355 7.773 8.898 11.717
20 0.435 1.440 2.232 4.178 5.066 7.251 8.247 10.698
25 0.425 1.412 2.183 4.057 4.902 6.956 7.883 10.136
30 0.419 1.393 2.150 3.977 4.795 6.768 7.650 9.780
40 0.411 1.37C 2.111 3.881 4.665 6.540 7.371 9.357
50 0.406 1.356 2.087 3.824 4.589 6.408 7.209 9.113

C .386 1.303 1.996 3.605 4.298 5.908 6.601 8.210

1W wW 1wW 1W 1W



Table A14

(I'

EX(Part 1). Penalty ratios rE (P,n) (see equation (II.25b))
prediction intervals of content P. Sampling is
exponential population with unknown parameter.

for right-hand
from an

0.7500 C.9000 0.9500 0.9900 0.9950 0.9990 0.9995 0.9999

1 0.863 0.948 0.975 0.995 0.998 1.000 1.000 1.000
2 C.930 0.974 0.987 C.997 0.999 1.000 1.000 1.000
3 0.953 0.983 0.991 0.998 0.999 1.000 1.000 1.000
4 0.964 C.987 0.994 0.999 0.999 1.000 1.000 1.000
5 0.972 0.990 0.995 0.999 1.000 1.000 1.000 1.000
6 0.976 J.991 0.996 0.999 1.030 1.000 1.000 1.000
7 0.980 0.993 0.996 0.999 1.000 1.000 1.000 1.000
8 0.982 0.993 0.997 0.999 1.000 1.000 1.000 1.000
9 0.984 0.994 0.997 0.999 1.000 1.000 1.000 1.000

10 0.986 0.995 0.997 1.000 1.000 1.000 1.000 1.000
0 1.0CC 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table A14 (Part 2). Penalty ratios r X(P,n) (see equation (11.27)) for left-hand
prediction intervals of content P. Sampling is from an
exponential population with unknown parameter.

0.7500 0.9000 0.9500 0.9900 0.995U 0.9990 0.9995 0.9999

1 5.177 6.142 9.019 27.183 46.065 168.93 302.67 1217.6
2 2.589 2.552 2.978 4.715 5.882 10.198 13.095 23.993
3 1.S73 1.891 2.076 2.753 3.151 4.401 5.120 7.385
4 1.700 1.622 1.733 2.122 2.336 2.961 3.295 4.263
5 1.547 1.477 1.555 1.819 1.961 2.354 2.555 3.112
6 1.448 1.387 1.446 1.644 1.747 2.027 2.166 2.539
7 1.380 1.325 1.372 1.530 1.610 1.825 1.929 2.204
8 1.330 1.281 1.320 1.450 1.515 1.688 1.771 1.985
9 1.291 1.247 1.280 1.390 1.446 1.589 1.658 1.832

10 1.261 1.220 1.249 1.345 1.393 1.515 1.573 1.720
15 1.171 1.143 1.160 1.218 1.246 1.316 1.348 1.427
20 1.127 1.106 1.118 1.159 1.179 1.227 1.249 1.303
25 1.101 1.C84 1.094 1.125 1.140 1.178 1.194 1.235
30 1.C84 1.070 1.078 1.103 1.116 1.146 1.159 1.191
40 1.C63 1.052 1.058 1.076 1.085 1.107 1.117 1.140
50 1.050 1.C41 1.046 1.061 1.068 1.085 1.092 1.110
00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table A15. Coefficients El (P,n) in equation (11.28).ab

Antle and Rademaker, 1972).

Probability content, P

n 0.9CO 0.950 0.975 0.990 0.995

10 2.64 3.59 4.51 6.00
20 2.41 3.24 4.04 5.12 6.18
30 2.33 3.06 3.89 4.90 5.86

2.25 2.97 3.68 4.60 5.30

U-1

(From



a/b v P C.900 0.950 0.975 0.990 0.995

1 0.813 1.270 1.319 1.349 1.438
2 0.497 1.207 1.255 1.287 1.372
3 0.358 1.167 1.212 1.244 1.323
4 C.280 1.141 1.182 1.213 1.285
5 0.230 1.121 1.159 1.188 1.256
6 0.195 1.106 1.141 1.169 1.231
7 0.169 1.095 1.127 1.153 1.212
8 0.149 1.C86 1.116 1.140 1.195
9 0.134 1.078 1.106 1.129 1.180

10 0.121 1.C72 1.C98 1.119 1.168

1 0.813 1.114 1.137 1.149 1.168 1.219
2 0.497 1.C87 1.109 1.123 1.142 1.189
3 0.358 1.070 1.091 1.104 1.124 1.167
4 C.280 1.059 1.078 1.091 1.109 1.149
5 0.230 1.051 1.C68 1.080 1.098 1.134
6 0.195 1.045 1.061 1.072 1.089 1.122
7 0.169 1.040 1.055 1.065 1.081 1.112
8 0.149 1.036 1.050 1.060 1.075 1.104
9 0.134 1.033 1.C45 1.055 1.069 1.097
10 0.121 1.030 1.042 1.051 1.064 1.090

1 0.813 1.065 1.064 1.089 1.099 1.137
2 0.497 1.049 1.052 1.073 1.084 1.118
3 0.358 1.040 1.043 1.062 1.073 1.104
4 0.280 1.034 1.037 1.054 1.065 1.093
5 0.230 1.C29 1.032 1.048 1.058 1.084
6 0.195 1.025 1.029 1.043 1.053 1.076
7 0.169 1.023 1.026 1.039 1.048 1.070
8 0.149 1.020 1.023 1.036 1.044 1.065
9 0.134 1.019 1.021 1.033 1.041 1.060

Ic 0.121 1.017 1.C20 1.030 1.038 1.056

Table A16. Penalty ratios r b(P,n)a,b
from equation (11.30).

n is the size of the sample from an Extreme

type I population with unknown parameters a and

b.
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Table A17. Upper limits of left prediction intervals when sampling
from a Pois-son Population with unknOAhi 1a-rameter -
Z is the number of events observed during the "past" time interval
t ; tf is the "future" time interval during which the number of
o~currences, Y, must be predicted. For other values of Z see
continuation of the table.

Probability content, P

tf/tp 2.7530 C.9000 C.9500 C.9900 0.9950 0.999i 0.9995 0.9999

j. i 14 24 31 4*
5.C0 7 12 16 25 29 33 41 **
2.G' 3 5 7 11 13 17 19 22
1.,0 1 3 4 6 7 9 10 13
0.50 1 2 2 4 4 6 6 9
,.2J * 1 2 3 4 5
0.LC 1 1 2 2 3 3
0.u5* 1 1 2 2 3
3.C2 I 1 1 1 2
0 .01 1 1 1

Z=0



Z=l Probability content, P

Z tf/t tf/tp 0.7500 C.9000 0.9500 0.9900 0.9950 0.9990 0.9995 0.9999

10.00 10.0CO 27 40 49 ** ** ** **
5.00 5.00 14 20 25 35 40 ** **

2.00 2.00 6 9 11 16 17 22 24 28
1.00 1.Co 3 5 6 9 10 12 13 16
0.50 0.50 2 3 3 5 6 7 8 10
0.20 0.20 1 1 2 3 3 4 5 6
0.10 0.10 ** 1 1 2 2 3 3 4
0.05 0.C5 ** 1 1 2 2 2 3
0.02 0.02 ** ** 1 1 2 2 2

0.01 0.01 ** ** ** 1 1 1 1 2

Z=2 Probability content, P

Z tf/t t f/t C.7500 0.9000 0.9500 C.9900 0.9950 0.9990 0.9995 0.9999

20.00 10.00 40 ** ** ** ** ** ** **
10.00 5.00 20 28 33 45 49 ** ** **

4.00 2.00 8 12 14 19 21 26 28 33
2.00 1.00 4 6 8 11 12 15 16 19
1.00 0.50 2 4 4 6 7 9 10 11
0.40 0.20 1 2 2 3 4 5 5 6
0.20 0.1C ** 1 1 2 3 3 4 5
0.10 0.05 ** 1 1 2 2 3 3 3
0.04 0.02 ** 1 1 1 2 2 2
0.02 0.C1 ** ** ** 1 1 1 2 2

Table A17 (cont.) . Upper limits of left prediction
with unknown parameter; Z=l and

intervals for Poisson sequences
Z=2.
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Probability content, P

Zt /t t f/tp 0.7500 C.9000 0.9500 0.9900 0.995U 0.9990 0.9995 0.9999

50.00 10.0 ** ** ** ** ** ** ** **
25.00 5.00 38 48 ** ** ** ** **
10.00 2.00 15 20 23 29 32 38 40 45
5.00 1.00 8 11 12 16 18 21 22 25
2.50 0.50 4 6 7 9 10 12 13 15
1.00 0.20 2 3 3 5 5 7 7 8
0.50 0.10 1 2 2 3 4 5 5 6
0.25 C.C5 1 1 1 2 3 3 4 4
0.10 0.02 1 1 1 2 2 2 3
0.05 0.C1 ** ** 1 1 1 2 2 2

Z=10 Probability content, P

Ztf/tp tf/tp 0.7500 0.9000 C.9500 0.9903 0.995u- 0.9990 0.9995 0.9999

20.00 2.00 27 33 37 44 48 ** ** **
10.00 1.00 14 17 19 24 26 30 31 35
5.00 0.50 7 9 11 14 15 17 18 20
2.00 0.20 3 4 5 7 8 9 10 11
1.00 0.10 2 3 3 4 5 6 6 7
0.50 C.C5 1 2 2 3 3 4 5 5
0.20 0.02 ** 1 1 2 2 3 3 4
0.10 0.01 ** 1 1 1 2 2 2 3

Table A17 (cont.). Upper limits of left prediction intervals for Poisson sequences
with unknown parameter; Z=5 and Z=10.

Ln.

Z=5



Probability content, P

Ztf/tp tf/tp 0.7500 0.9000 0.9500 0.9900 0.995) 0.9990 0.9995 0.9999

20.00 1.CO 25 30 32 38 40 45 47 **
10.00 0.50 13 16 18 21 22 26 27 30
4.00 0.20 6 7 8 10 11 13 14 15
2.OC 0.10 3 4 5 6 7 8 9 10

1.00 0.05 2 2 3 4 5 6 6 7
0.40 O.C2 1 1 2 3 3 4 4 5
0.20 0.01 1 1 2 2 3 3 3

Z=49 Probability content, P

Zt f/tp tf/tp 0.7500 0.9000 0.9500 0.9900 0.9950 0.9990 0.9995 0.9999

24.50 0.50 29 33 36 41 43 48 49 **
9.80 0.20 12 15 16 19 20 23 24 26

4.90 0.10 6 8 9 11 12 14 15 16
2.45 0.05 3 5 5 7 8 9 10 11
0.98 0.02 2 2 3 4 4 5 6 7
0.49 0.01 1 1 2 3 3 4 4 5

Table A17 (cont.). Upper limits of left prediction intervals for Poisson sequences
with unknown parameter; Z=20 and Z=49.
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Probability content, P

M X 0.7500 C.9000 0.9500 0.9900 0.9950 0.9990 0.9995 0.9999

O.CL 0 0 0 0 1 1 1 1
0.02 0 0 0 1 1 1 1 2
0.C4 0 0 0 1 1 1 2 2
O.C5 0 0 0 1 1 2 2 2
0.10 0 0 1 1 1 2 2 3
0.20 0 1 1 2 2 3 3 3
0.25 0 1 1 2 2 3 3 4
0.40 1 1 2 2 3 3 4 4
0.49 1 1 2 3 3 4 4 5

0.50 1 1 2 3 3 . 4 4 5
0.S8 2 2 3 4 4 5 6 6

1.QC 2 2 3 4 4 5 6 6
2.00 3 4 5 6 6 8 8 9
2.45 3 5 5 7 7 8 9 10
2.50 3 5 5 7 7 9 9 10
4.00 5 7 8 9 10 11 12 13
4.90 6 8 9 11 11 14 15 15
5.00 6 8 9 11 12 14 15 15
9.80 12 14 15 18 19 21 22 23
10.00 12 14 15 18 19 21 22 24

20.00 23 26 28 31 32 35 36 39
24.50 28 31 33 37 38 41 42 46
25.00 29 32 33 37 39 42 43 47

Table A18. Upper limits of left prediction intervals
parameter X.

for Poisson
(denominator in equation (11.33).) m X

value of the Poisson distribution.

sequences with known
is the expected
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Z=1 Probability content, P

Ztf/t tf/tp 0.7500 0.9000 0.9500 0.9900 0.9950 0.9990 0.9995 0.9999

10.00 10.00 2.25 2.86 3.27
5.00 5.00 2.33 2.50 2.78 3.18 3.33
2.00 2.CO 2.00 2.25 2.20 2.67 2.83 2.75 3.00 3.11

1.00 1.00 1.50 2.50 2.00 2.25 2.50 2.40 2.17 2.67

0.50 0.50 2.00 3.00 1.50 1.67 2.00 1.75 2.00 2.00

0.20 0.20 1.00 2.00 1.50 1.50 1.33 1.67 2.00

0.10 0.10 1.00 2.00 2.00 1.50 1.50 1.33

0.05 0.05 1.00 2.00 1.00 1.00 1.50

0.02 0.02 1.00 1.00 2.00 2.00 1.00
0.01 .*CI 1.00 1.00 1.00 2.00

Z=2 Probability content, P

Ztf/t tf/tp 0.7500 0.9000 0.9500 0.9900 0.9950 0.9990 0.9995 0.9999

20.00 10.00 1.74
10.00 5.CO 1.67 2.00 2.20 2.50 2.58
4.00 2.CO 1.63 1.71 1.75 2.11 2.10 2.36 2.33 2.54
2.00 1.00 1.33 1.50 1.60 1.83 2.00 1.88 2.00 2.11

1.00 0.50 1.00 2.00 1.33 1.50 1.75 1.80 1.67 1.83
0.40 0.20 1.00 2.00 1.CO 1.50 1.33 1.67 1.25 1.50
0.20 0.10 * 1.00 1.00 1.00 1.50 1.00 1.33 1.67
0.10 0.C5 1.00 2.00 2.00 1.50 1.50 1.00
0.04 0.02 1.00 1.00 2.00 1.00 1.00
0.02 0.01 1 1.00 1.00 1.00 2.00 1.00

Table A19. Values of the penalty ratio (11.33) for Poisson sequences with unknown
parameter. A is the number of events observed during the "past" time
interval t ; prediction is for the number of events during the "future"
time interVal t f. For other values of Z see continuation of the table.
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Probability content, P

Ztf/tp t f/tp 0.750C C.9000 0.9500 0.9900 0.9950 0.9990 0.9995 0.9999

50.OC 10.CO
25.00 5.CC) 1.31 1.50
10.00 2.00 1.25 1.43 1.53 1.61 1.68 1.81 1.82 1.88

5.00 1.00 1.33 1.38 1.33 1.45 1.50 1.50 1.47 1.67
2.50 0.50 1.33 1.20 1.40 1.29 1.43 1.33 1.44 1.50

1.00 0.20 1.00 1.50 1.00 1.25 1.25 1.40 1.17 1.33

0.50 0.10 1.00 2.00 1.00 1.00 1.33 1.25 1.25 1.20
0.25 0.05 1.00 1.00 1.00 1.5J 1.00 1.33 1.00
0.10 0.02 1.00 1.00 2.00 1.00 1.00 1.00
0.05 0.01 1.00 1.00 1.00 1.00 1.00

Z=10 Probability content, P

Zt f/tp tf/tp 0.7500 0.9000 0.9500 0.9900 0.9950 0.9990 0.9995 0.9999

20.00 2.40 1.17 1.27 1.32 1.42 1.50
10.00 1.00 1.17 1.21 1.27 1.33 1.37 1.43 1.41 1.46
5.00 0.50 1.17 1.13 1.22 1.27 1.25 1.21 1.20 1.33
2.00 0.20 1.00 1.00 1.00 1.17 1.33 1.13 1.25 1.22
1.00 0.10 1.00 1.50 1.00 1.00 1.25 1.20 1.00 1.17
0.50 0.C5 1.00 2.00 1.00 1.00 1.01 1.00 1.25 1.00
0.20 0.02 1.00 1.00 1.00 1.00 1.00 1.00 1.33

0.10 0.01 **** 1.00 1.00 2.00 1.00 1.00 1.00

Table A19 (cont.). Values of the penalty ratio (11.33) for Poisson sequences with
unknown parameter; Z=5 and Z=10.
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Ztf/t tf/t 0.7500 0.9000 0.9500 0.9900 0.9950 0.9990 0.9995 0.9999

20.00 1.00 1.09 1.15 1.14 1.23 1.25 1.29 1.31
10.00 0.50 1.C8 1.14 1.20 1.17 1.16 1.24 1.23 1.25
4.00 0.20 1.20 1.00 1.00 1.11 1.10 1.18 1.17 1.15
2.UC 0.10 1.00 1.00 1.00 1.00 1.17 1.00 1.13 1.11
1.00 0.05 1.00 1.00 1.00 1.00 1.25 1.20 1.00 1.17
C.40 0.02 1.00 1.00 1.00 1.50 1.00 1.33 1.00 1.25
0.20 0.01 * 1.00 1.CO 1.00 1.00 1.00 1.00 1.00

Z=49 Probability content, P

Ztf/t tf/tp 0.7500 0.9000 0.9500 0.9900 0.9950 0.9990 0.9995 0.9999

24.50 0.50 1.04 1.06 1.09 1.11 1.13 1.17 1.17
9.80 0.20 1.00 1.07 1.07 1.06 1.05 1.10 1.09 1.13
4.90 0.10 1.00 1.00 1.00 1.00 1.09 1.00 1.00 1.07
2.45 0.05 1.00 1.00 1.00 1.00 1.14 1.13 1.11 1.10
0.98 0.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.17
0.49 0.1C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A19 (cont.). Values of the penalty ratio
unknown parameter; Z=20 and

(11.33)
Z=49.

for Poisson sequences with

L,
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n= 1

1.7500 C.9000 0.9500 0.9900 1.9950 0.9990 0.9995 0.9999

1 2100 8 00 18000 98300 198000 998 00 1998.00 9998.00
2 1.51 4.39 7.57 21.14 31.66 73.62 105.96 243.12
3 1.35 3.58 5.65 12.88 17.40 32.62 42, 12 71o.84
4 Io28 3.19 4.85 9.99 13.09 23.03 25.85 42.51
5 1.23 2.96 4.40 8.53 10.74 17.34 20.79 31.02
6 1.19 2080 4o14 773 9o46 14.70 17' 37 24o97
7 1.18 2.71 3.96 7.13 8.71 13.08 15.22 21.17
8 1.16 2.64 3.77 6.67 8.14 11.91 13.72 18.52
9 1, 15 2? 57 3o66 6 35 7,67 11,05 12.63 16.99

10 1.14 2.51 3.56 6.13 7.31 10.41 11.85 15.64
15 1.10 2.34 3.26 5.38 6.29 8.60 9r62 1222
20 1o 08 2.26 3.10 4.94 5.77 7.74 8.59 10.67
25 1.06 2.20 2.99 4.68 5.50 7.21 7.99 9.76
30 1.05 2o, 18 2,391 4,56 525 6.89 7-49 9.18
40 1.04 2.13 2.82 4.35 5.$i2 6.40 6.99 8.36
50 1.03 2.09 2.75 4.22 4.7 6.06 6.66 7.95

Table A20. Values of the parameter S(n,k,P) in equation (11.35) for the construction
of left-hand prediction intervals when sampling is from a Gamma sequence.
The shape parameter of the Gamma distribution, k, is known while the
parameter X of the underlying exponential distribution is unknown. n is
the available sample size; here n=l. For other values of n, see continua-
tion of the table.
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n = 2

k 7500 0,9000 019500 019000 009950 009990 0.9995 0.9999

1 1.00 3.32 5.94 17.00 25.28 60.26 86.44 197.00

2 0994 2a 56 4o02 8,47 1096 18.94 23.49 37.97

3 f.91 2.30 3.46 6.60 8.23 12.80 15.11 21.66

4 0.90 2.16 3.17 5.76 7.03 1039 12r02 16,,47
5 0.89 2.09 3.01 5.30 6.35 9.09 10.37 13.81
6 0.89 2.03 2.90 4.96 5.93 8.30 9.37 12.25

7 0,88 1. 99 2o,82 4q75 5,62 7o72 8.73 11,17
8 t.88 1.96 2.74 4.57 5.40 7.36 8.25 10.47
9 0.88 1.94 2.69 4.42 5.20 7.04 7.85 9.87

10 Ch87 191 2,65 4,30 5.04 6.76 7.54 9.39
15 0.86 1.84 2.53 3.98 4.72 6.03 6.65 8.10
20 0.86 1.81 2.44 3o78 4-u38 5,361 6.17 7,-41
25 0.85 1.78 2.38 3.68 4.19 5.37 5.86 6.98

Table A20 (cont.). Values of the parameter G (n,k,P) in equation (II.35) for
hand prediction from Gamma sequences. Sample size: n=2.
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n= 5

k .7500 0.9000 0.9500 0.9900 1. 9950 0.9990 ,99,95 0.9999

1 0,)60 1.92 3.10 6.56 8.43 13.91 16.87 25.55
2 0.65 1.76 2.63 4.86 5.89 8.64 9.88 13.27

3 0.68 1,69 2e45 4,29 5,10 7oI4 8o07 I0 o40

4 0.69 1.66 2.36 3.97 4.69 6.41 7.18 9.35
5 0.69 1.64 2.28 3.80 4.43 5.97 6.64 8.23

7 0 70 1.,60 2020 3,56 4t 14 5,45 6.02 7.35
10 0. 71 1.56 2.12 3.37 3.88 5.04 5.52 6.67

Table A20 (cont.). Values of the parameter S G(n,k,P) in equation (11.35) for
hand prediction from Gamma sequences. Sample size: n=5.
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n = 10

0.7500 0.9000 0.9500 0.9900 0.9950 0.9990 0.9995 0.9999

1 0.49 1.59 2.49 4.85 5.99 8.95 10,.38 14.12
2 0.57 1.54 2.27 4.00 4.76 6.64 7.50 9.56
3 0.60 1, 51 2,17 3n68 4.32 5.83 6.51 8.12
4 0.62 1.49 2.11 3.48 4.08 5.40 5.99 7.32
5 0.63 1.48 2.07 3o35 3.89 513 5,66 6o90

n = 20

0.7500 C.900 0.9500 0.9900 0.9950 0.9990 0.9995 0.9999

1 0.44 144 2o23 4418 5.07 7,25 8.25 10c70
2 0.51 1.44 2.10 3.65 4.25 5.81 6.50 8.0v

n = 50

0.7500 C.9030 0.9500 0.9900 0.9950 0.9990 0.9995 0.9999

1 0.41 1.36 2.C9 3.82 4.59 6.41 7.21 9.11

Table A20 (cont.). Values of the parameter G(n,k,P) in equation (11.35)
hand prediction from Gamma sequences. Sample sizes:
n=20, n=50.

for left-
n=10,
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0,, 7500 0.9000 0.9500 0.9900 0.9950 1.9991 0.9995 0.9q99

1 0.386 1.303 1.996 3.605 4.299 5-908 6,601 8210
2 0.490 1.336 1.940 3.280 3.840 5.115 5.656 6.899
3 0.531 1.341 1.903 3.121 3.622 4.751 5.226 6.309
4 0,555 Lu340 1a877 3c023 3o489 42531 4a967 5-957
5 1.570 1.339 1.858 2.954 3.396 4.380 4.79 5.717
6 0.581 1.337 1.842 2.902 3.327 4.268 4.658 5.539
7 0- 589 1,335 10830 2A861 3.273 4.181 4.556 5.401
8 0.594 1.333 1.820 2.828 3.229 4.111 4.474 5.290
9 0.600 1.332 1.811 2.801 3o193 4*7052 4a406 5-198

1C 0.605 1.330 1.804 2.777 3.162 4.103 4.348 5.121
15 0.620 1.324 1.778 2.697 3.056 3.835 4.152 4.858
20 0o628 1,320 1762 2,649 2,993 3 735 4.036 4,703
25 0.633 1.317 1.750 2.615 2.949 3.667 3.956 4.597
30 0.638 1.314 1.742 2.591 2.917 3.616 3.898 4.519
40 0o648 1311 lo730 2.556 2.871 3.545 3.815 4.4 1
50 0.656 1.308 1.721 2.532 2.840 3.497 3.759 4.336

0 0.674 1.282 lo645 2a326 2,576 3,090 3o291 3n719

Table A21. Values of the parameter S G(kP) in equations (II.361 and (11.37) for the
construction of left-hand prediction intervals when sampling is from a
Gamma sequence with known parameters.

.

-1



n = 1

O z7500 C.9000 0.9500 0.9900 0.9950 0.9990 0 .9995 p3.9999

1 5.18 6.14 9.02 27.18 46.06 168.:92 302,68 1217<71
2 3.08 3.29 3.90 6.45 8.25 14.39 18.73 35.24
3 2.54 2.67 2.97 4.13 4.80 6.87- 8.06 11.39
4 2 31 2, 38 2.58 3231 3o75 5,8 5-20 7n 14
5 2.16 2.21 2.37 2.89 3.16 3.96 4.34 5.43
6 2.05 2.09 2.25 2.66 2.84 3.44 3.73 4.51
7 2.00 2o03 216 2.49 2.66 3.13 3.34 3.92
8 1.95 1.98 2.07 2.36 2.52 2.90 3.07 3.50
9 1.92 1.93 2.02 2,,27 2.40 2,73 2 -87 3,27

10 1.88 1.89 1.97 2.21 2.31 2.6 2.73 3.05
15 1.78 1.77 1.83 1.99 2.06 2.24 2.32 2.52
20 1.72 1I 71 1 76 L3 86 1 93 2. 07 2. 13 2.27
25 1.67 1.67 1.71 1.79 1.87 1.97 2.02 2.12
30 1.65 1.66 1.67 1.76 1.80 1.91 1o92 2 03
40 1. 60 1.63 1.63 1.70 1.75 1.81 1.83 1.91
50 1.57 1.60 1.60 1.67 1.68 1.73 1.77 1.83

Table A22. Values of the penalty ratio
prediction from Gamma seque

r (n,k,P)
aces. The

in equation (11.39) for left-hand
shape parameter k is known. while

the parameter X of the underlying exponential distribution is not. n is
the available sample size; here n = 1. For other values of n, see
continuation of the table.
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n= 2

kP 0.7500 C.9000 0.9500 0.9900 0.9950 0.9990 0Q9995 00 999,

1 2.59 2.55 2.98 4.72 5.88 10.20 13.09 23.99
2 1.92 1.92 2.07 2.58 2.85 3t70 4,15 5c50
3 1.71 1.72 1.82 2.11 2.27 2.69 2.89 3.43
4 1.62 1.61 1.69 1.91 2.02 2.?9 2.42 2.76
5 156 1 56 lo62 1L79 Lo87 208 2c17 2,42
6 1.53 1.52 1.57 1.71 1.78 1.94 2.01 2.21
7 1.49 1.49 1.54 1.66 1.72 1.85 1.92 2.07
8 1o48 1:,47 1051 1 62 1.67 1.79 1.84 1.98
9 1.47 1.46 1.48 1.58 1.63 1.74 1.78 1.90
10 1.44 1.44 1.47 1.55 Ia59 1o69 1473 La 8 3
15 1.39 1.39 1.42 1.48 1.54 1.57 1.60 1.67
20 1.37 1.37 1.38 1.43 1.46 1.50 1.53 1.58
25 1:)34 1q35 1 36 1v41 1a42 1o46 1a48 1,52

Table A22 (cont.) . Values of the penalty Gratio r (n,k,P) in equation (11.39) for
left-prediction from Gamma sequences. Sample size: n = 2.
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n = 5

P 7500 C 9000 O3950O 0,9900 0.9950 0.9990 0.9995 0.9999

1 1.55 1.47 1.55 1.82 1.96 2.35 2.56 3.11
2 1o33 1332 1v36 1.48 1.53 1.69 1.75 1.92
3 1.28 1.26 1.29 1.37 1.41 1.50 1.54 1.65
4 1.24 1.24 1.26 1.31 1,34 141 145 L,52
5 1.21 1.22 1.23 1.29 1.30 1.36 1.39 1.44
7 1.19 1.20 1.20 1.24 1.26 1.30 1.32 1.36

10 1417 1.7 1118 1_21 1o23 126 1q27 1.30

Table A22 (cont.). Values of the penalty ratio r (n,k,P) in equation (11.39) for
left-prediction from Gamma sequences. Sample size: n = 5.
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n = 10

0.7500 C.9000 0.9500 0.9900 0.9950 0.9990 0o9995 0r 9999

1 1.27 1.22 1. 25 1. 35 1.39 1. 51 1.57 1.72
2 1.16 1.15 1.17 1.22 1.24 1o30 lo33 lo 39
3 1.13 1.13 1.14 1.18 1.19 1.23 1.25 1.29
4 1.12 1.11 1.12 1.15 1. 17 1.19 1.21 1.23
5 1 11 1l 11 1,11 lo 13 Il 15 117 1.18 le21

n = 20

0.7500 0.9000 0.9500 0. 9900 t. 9950 0.9990 .9995 0.9999

1 L14 to 11 1012 1a16 1018 Ln23 1o25 1.30
2 1.04 1. 08 1.08 1. 11 1. 11 1. 14 1.15 1.17

n = 50

0.7500 0.9000 0.9500 0.9900 0.9950 0.9990 0.9995 009999

1 1.n6 1.04 1.05 1.06 1.07 1.08 1.09 1.11

Table A22 (cont.). Values of the penalty ratio r (n,k,P)
left-prediction from Gamma sequences.
n = 20, n = 50.

in equation (11.39) for
Sample sizes: n = 10,
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n=l

k 7500 0:9000 09500 o; 9900 0.9950 0.9990 0.9995 0.9999

1 0.67 0.89 0.95 0.99 0.995 0.999 0.9995 0.9999
2 0 73 12 07 1019 1.33 1.35 1.39 1.40 1.41
3 0.76 1.17 1.33 1.53 1.58 1.64 1.66 1.69
4 0.78 1.23 1o42 1o67 tu 74 1 84 In 86 191
5 0.79 1.27 1.48 1.77 1.85 1.98 2.02 2.09
6 0.80 1.31 1.54 1.86 1.95 2.10 2.15 2.23
7 Ov 81 L 34 1.59 193 2 03 2 20 2.25 2.35
8 0.82 1.36 .1.62 1.99 2.10 2.29 2.34 2.45
9 0.83 1.38 1.65 2.04 2.16 2.36 2o42 2- 57

10 0483 1.40 1.67 2.09 2.21 2.43 2.50 2.63
15 0.85 1.46 1.77 2.25 2.40 2.67 2.76 2.94
20 0.87 1. 49 1082 2,,35 2o52 2. 83 2,94 3 15
25 0.88 1.53 1.87 2.42 2.62 2.95 3."7 3.31
30 0.89 1.56 1.91 2.49 2.69 3.05 3.17 3.43
40 0089 158 195 2o58 2o79 3 :18 3.32 3.60
50 0.90 1.59 1. 98 2.64 2.86 3.26 3.42 3.74

Table A23. V7 1 f: -h- t% 4- G v 1- 'DI
GL ues o rae er %J n e, fl.,I L I J eqL uL." %JIL 0 J .L. V-n .% rJe n r" % n J

of right-hand prediction intervals when sampling is from a Gamma sequence.
The shape parameter, k, is known, while the parameter X of the underlying
exponential distribution is not. n is the available sample size, here
n = 1. For other values of n, see continuation of the table.
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n = 2

k P 0.7500 C.9000 0.9500 0.9900 0.9950 0.9990 Oo9995 0109999

1 0.69 0.89 0.95 0.99 0.995 0.999 0.9995 0.9999
2 0.73 1.06 1.18 1.32 1.35 1.39 139 1c41
3 0.75 1.14 1.30 1.51 1.56 1.64 1.66 1.69
4 0.76 1.19 1.38 1.64 1.171 1.82 1.85 1.89
5 Oo77 1122 1q43 1'73 1032 1-94 1C99 2?o07
7 ".78 1.26 1.50 1.86 1.97 2.15 2.21 2.32

10 3.79 1.32 1.58 1.99 2.12 2.35 2.43 2.57
15 0780 1L36 L65 24:0 2.27 2.55 2.65 2.83
20 1.80 1.39 1.70 2.19 2.37 2.69 2.79 3.02
25 0.80 1.41 1.73 2.27 2o45 2o78 2o9l 3o15

Table A23 (cont.). Values of the parameter G (n,k,P) in equation (II.40) for right-
prediction from Gamma sequences. Sample size: n = 2.
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n = 5

N047500 C- 9000 0.9500 0.9900 0.9950 0.9990 0.9995 1.9999

1 0.70 0.89 0.95 0.99 0.995 0.999 0.9995 009999
2 0o73 1 05 1.17 1.32 1.34 1.38 1.39 1.41
3 0.74 1.12 1.28 1.49 1.55 1.63 1.65 1.69
4 0.75 L15 134 1o62 L,69 1 -80 1384 In 90
5 1.75 1.18 1.39 1.70 1.79 1.93 1.98 2.05
7 0.75 1.22 1.44 1.80 1.91 2.11 2.18 2.31

10 O-,75 L.25 1050 1 o93 206 2-30 2.38 2.51

Table A23 (cont.). Values of the parameter G (n,k,P) in equation (II.40)for right-
prediction from Gamma sequences. Sample size: ian = 5.
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n =10

0.7500 0.9000 0.9500 0.99C0 1.9950 0.999) 0.9995 -.9999

1 0.71 089 0095 0%99 03995 0 999 009995 0.9999
2 0.74 1.04 1.17 1.31 1.34 1.38 1.39 1.40
3 1.74 1.10 1.27 1.48 1.54 1.63 1.65 1.68
4 0.75 14 15 1,33 1o60 1,67 1,79 1.82 1.88
5 ).75 1.18 1.38 1.68 1.77 1. 90 1.95 2.04

n = 20

P 0.7500 C.9000 0.9500 0-9900 0.9950 OC9990 0.9995 0n 9999

1 1.71 0.90 0.95 0.99 0.995 0.999 0.9995 0.9999
2 0.74 1.04 1o16 1 31 lu34 138 139 Lv40

n = 50

0.7500 C.9000 0.9500 0.9900 0.9950 0.9991 0.9995 0.9999

1 0.71 C, 90 0,95 0- 99 0.995 0-999 0(9995 079999

Table A23 (cont.) . Values of the parameter G(n,k,P) in equation (11.40) for right-
prediction from Gamma sequences. Sample sizes: n = 10, n = 20,
n = 50.
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Table A24. Values of the parameter OFI(k,P) for the construction of right-hand
prediction intervals wheh sampling is from a Gamma sequence with known
parameters.

0.7500 0.9000 029500 009900 0v 9950 0, 9990 0,9995 0.09999

1 3.712 0.895 0.949 0.990 0.995 0.9990 0.9995 0.9999
2 0.734 1038 1163 L 309 U341 L-382 1.392 1--404
3 0.735 1.096 1.260 1.480 1.537 1.622 1.646 1.682
4 0.732 1.128 1.317 1.588 1.664 1.786 1.822 1.884
5 04 730 1 148 1o355 Io664 1754 1 905 1.953 2.037
6 1.727 1.163 1.383 1.721 1.822 1.998 2.055 2.158
7 0.725 1.174 1.404 1.765 1.876 2.071 2,136 2.256
8 0723 1.182 1.421 1.801 1.920 2.132 2.203 2.338
9 0.721 1.189 1.435 1.831 1.956 2.182 2.260 2.408
1c 0.719 1195 1,447 1856 1e987 2 226 2,309 2m468
15 ).713 1.214 1.486 1.942 2.093 2.377 2.478 2.678
20 0.709 1.224 1.508 1.994 2.157 2.469 2.582 2.808
25 0.3706 Uo231 1 524 2 029 2, 201 2.533 2.654 2.899
30 0.704 1.236 1.535 2.055 2.233 2.580 2.708 2.967
40 0.700 1.243 1.550 2.092 2a279 2 647 2,783 3 064
50 0.697 1.248 1.561 2.117 2.310 2.693 2.836 3.131
00 0.674 1.282 1.645 2.326 2.576 3.090 3.291 3.719
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n= 1

07500 C-9000 009500 009900 0,9950 0 9990 Oo9995 0o9999

1 0.94 0.99 1.00 1.00 1.00 1.00 1.00 1.00
2 0.99 1L03 1002 102 1001 lOl In01 lo00
3 1.03 1.07 1.06 1.03 1.03 1.01 1.01 l.ci
4 1.06 1.19 1.08 1.05 1.05 1.03 1.02 1.01
5, 1, 08 1e 11 1109 1.06 1.05 1.04 1.03 1.03
6 1.10 1.13 1.11 1.08 1.07 1.05 1.05 1.03
7 1.12 1.14 1.13 1009 1108 1 06 l 05 104
8 1.13 1.15 1.14 1.10 1.09 1.07 1.06 1.0 5
9 1.15 1.16 1.15 1.11 1.10 1.08 1.07 1.07

10 1n15 1, 17 1,15 113 1,11 1 ,09 1.08 1.07
15 1.19 1.20 1.19 1.16 1.15 1.12 1.11 1.10
20 1.23 1.22 1.21 1.18 1.17 1.15 1.14 1_12
25 1.325 1 24 1.23 1.19 1.19 1.16 1.16 1.14
30 1.26 1.26 1.24 1.21 1.20 1.18 1.17 1.16
40 1.27 1,a27 1, 26 lo 23 1o22 1o20 1019 l 18
50 1.29 1.27 1.27 1.25 1. 24 1.21 1. 21 1. 19

Table A25. Values of the penalty Gratio rX(n,k,P) for right-hand prediction from Gamma
sequences. The shape parameter k is known, while the parameter X of the
underlying exponential distribution is not. n is the available sample
size, here n = 1. For other values of n, see continuation of the table.
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n = 2

k 0.7500 C.9010 0.9500 0.9900 0.9950 0.9990 0.9995 0.9099

1 0.97 0o,99 1,00 1q00 1.00 1.00 1.00 1.00
2 1.99 1.02 1.01 1.01 1.01 1.01 1.00 1.00
3 1.02 1.04 1.03 1.02 1001 1001 ISM 1 00
4 1.04 1.06 1.05 1.03 1.03 1.02 1.02 1.00
5 1.06 1.06 1.06 1.04 1.041 1.02 1.02 1.02
7 L 08 1 07 1.07 1.05 Ia05 1.04 1CA3 1.03

10 1.10 1.10 1.09 1.07 1.07 1.06 1.05 1.04
15 1.12 1.12 1.11 1.08 1.08 1.07 1.07 106
20 1. 13 L,14 1.13 1.10 1.10 1.09 1.08 1.08
25 1.13 1.15 1.14 1.12 1.11 1.10 1.10 1.09

Table A25 (cont.). GValues of the penalty ratio rX(n,k,P) for right-prediction
Gamma sequences. Sample size: n = 2.
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n = 5

k P 0.7500 0.9000 0.9500 0.9900 0.9950 0.9990 0.9995 0.9999

1 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00
2 0.99 1.01 1.01 1.01 1.00 1.00 1.00 1.00
3 1101 1 02 1.02 1.01 1.01 1.00 1.10 1.0
4 1.02 1.02 1.02 1.02 1.02 1.01 1.01 1.01
5 1.03 1.03 1,03 lo02 1002 1 01 101 I,0 1
7 1.03 1.04 1.03 1.02 1.f2 1.02 1.02 1.02

10 1.04 1.05 1.04 1.04 1.04 1.03 1.03 1.02

GTable A25 (cont.). Values of the penalty ratio rX(n,k,P) for right-prediction from
Gamma sequences. Sample size: n = 5.
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n = 10

0.7500 0.9000 0.9500 0.9900 0.9950 0.9990 0.9995 0.9999

1 100 LOO 1-00 1 n00 1oo 1.03 1.00 1.00

2 1.00 1.00 1.01 1.00 1.00 1.Oi 1.00 1.00

3 1.01 1.01 1.01 1.00 1.00 100 100 1000
4 1.02 1.02 1.01 1.01 1.00 1.00 1.00 1. l
5 1.03 1.03 1.02 1.01 1.01 1.00 1.00 1.00

n = 20

017500 019000 009500 019900 009950 0:9990 0-9995 019999

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 100 100 10 100 1 0 1000 1OO 1:00 1.00

n = 50

0.7500 J0.9000 0.9500 0.9900 0.9950 0.9990 0.9995 0.9999

i 1000 1:30 L _00 1100 10.00 1.00 1.00

Table A25 (cont.) .

un
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G
Values of the penalty ratio r (n,k,P) for right-prediction from
Gamma sequences. Sample sizes: n = 10, n = 20, n = 50.



I n 11 0.7500 I 0.9000 I 0.9500 1 0.9900 1 0.9950 1 0.9990 I 0.9995 I
---------------------------------- - ----

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
31
41
61

121
00

II
II
II
II
II
II
II
II
II
11
II
II
II
II
II
II
II
II
II
II
It
II
II
I!
II

1.177
0.893
0.807
0.764
0.737
0.721
0.707
0.698
0.690
0.684
0.679
0.674
0.671
0.668
0.665
0.663
0.661
0.659
0.658
0.656
0.649
0.643
0.639
0.634
0.628

3.921
2.164
1.799
1.642
1.554
1.499
1.458
1.430
1.407
1.387
1.374
1.363
1.352
1.344
1.336
1.330
1.323
1.319
1.315
1.309
1.286
1.272
1.261
1.247
1.235

8.950
3.468
2.649
2.331
2.162
2.057
1.986
1.934
1.895
1.864
1.839
1.819
1.801
1.787
1.774
1.764
1.753
1.745
1.738
1.730
1.688
1.667
1.646
1.627
1.606

114.365
9.390
5.470
4.310
3.764
3.458
3.254
3.114
3.008
2.928
2.865
2.815
2.771
2.736
2.706
2.679
2.655
2.635
2.618
2.601
2.507
2.456
2.413
2.365
2.321

916.461
14.681
7.317
5.430
4.601
4.143
3.854
3.654
3.508
3.398
3.312
3.242
3.184
3.135
3.094
3.059
3.029
3.001
2.978
2.956
2.827
2.765
2.705
2.646
2.590

49.972
14.614
9.131
7.099
6.085
5.470
5.108
4.783
4.562
4.407
4.277
4.170
4.084
4.011
3.946
3.890
3.844
3.803
3.764
3.548
3.440
3.343
3.245
3.153

98.758
20.117
11.438
8.514
7.114
6.294
5.767
5.394
5.120
4.915
4.752
4.618
4.509
4.418
4.338
4.269
4.213
4.162
4.115
3.849
3.719
3.602
3.484
3.377

Table A26. Values of the coefficient (V n,P) in equation (11.45) for left-hand

prediction in lognormal sequdnces with unknown mean and variance. Vy is
the estimated coefficient of variation of the lognormal population and
n is the sample size. For other values of Vy, see continuation of the
table.

Un

VY = 0.05LEFT PREDICTION INTERVAL



LEFT PREDICTION INTERVAL V 0.10

In P11 0,7500 1 0.9CCO 1 0,9500 1 0.9900 1 C,9950 1 0.9990 1 0.9995 1

1 2 11 1.131 1 4.088 I 10.478 I 432.784
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
31
41
61

121
00

II
II
II
11
II
11
II
II
II
II
II
II
II
II
II
11
II
II
II
11
II
II
II
II

0.847
0.761
0.718
0.692
0.675
0.662
0.653
0.645
0.639
0.635
0.630
0.627
0.624
0.621
0.619
0.617
0.615
0.614
0.612
0.605
0.599
0.595
0.590
0.584

2.151 1
1.769 1
1.606 1
1.515 1
1.459 1
1.417 1
1.388 1
1.364 1
1.345 I
1.331 I
1.320 I
1.308 I
1.300 I
1.293 1
1.286 1
1.279 I
1.275 1
1.271 1
1.265 I
1.241 I
1.228 1
1.216 I
1.202 I
1.190 I

3.574
2.671
2.329
2.149
2.038
1.964
1.909
1.869
1.836
1.810
1.789
1.771
1.756
1.743
1.732
1.721
1.712
1.705
1.697
1.653
1.632
1.610
1.590
1.569

11.097
5.923
4.537
3.909
3.562
3.335
3.179
3.062
2.974
2.906
2.851
2.803
2.765
2.732
2.703
2.677
2.656
2.637
2.618
2.517
2.463
2.417
2.365

I ******* 1 ******* I ******* I
19.292
8.265
5.873
4.879
4.343
4.011
3.784
3.619
3.496
3.399
3.321
3.257
3.203
3.157
3.118
30085
3.055
3.030
3.005
2.864
2.796
2.731
2.667

109.458
19.179
10.732
7.980
6.684
5.923
5.483
5.094
4.833
4.651
4.499
4.375
4.275
4.191
4.117
4.053
4.000
3.953
3.909
3.664
3.542
3.434
3.325

335.602
29.157
14.105
9.875
8.000
6.946
6.288
5.830
5.497
5.252
5.057
4.898
4.771
4.663
4.570
4.490
4.425
4.366
4.311
4.006
3.857
3.725
3.591

2.318 1 2.607 I 3.222 I 3.472 1

Table A26 (cont.). Values of the coefficient LNo(Vy,n,P) in equation (11.45) for
left-prediction in lognormay'sequences with unknown mean and
variance. Estimated coefficient of variation: Vy = 0.10.

U,



LEFT PRECICTION INTERVAL k= 0.20
--n ---------- .9-------.--------.-9------.99----9-- - -------- -------

I n P' 11 0.7500 1 O.9CCO 1 0,9500 1 0.9900 1 0.9950 1 0.9990 1 0.9995 1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
31
41
61

121
00

II
II
II
II
II
II
IT
II
II
II
II
II
11
II
II
II
II
II
II
II
II
II
II
II
II

1.045
0.760
0.676
0.634
0.609
0.593
0.579
0.571
0.563
0.558
0.553
0.548
0.546
0. 543
0.540
0.538
0.536
0.534
0.533
0.531
0.524
0.518
0.515
0.510
0.504

4.473
2.131
1.712
1.538
1.441
1.383
1.339
1.309
1.284
1.264
1.250
1.238
1.226
1.218
1.210
1.204
1.196
1.192
1.188
1.181
1.157
1.143
1.132
1.117
1.104

14.787
3.815
2.723
2.330
2.128
2.006
1.924
1*864
1.820
1.784
1.756
1.734
1.714
1.698
1.684
1.672
1.660
1.651
1.643
1.635
1.588
1.565
1.542
1.521
1.498

15.996
7.028
5.068
4.241
3.801
3.518.
3.328
3.187
3.081
3.000
2.935
2.878
2.834
2.795
2.760
2.730
2.706
2.684
2.662
2.545
2.483
2.430
2.372
2.319

35.502
10.766
6.955
5.534
4.808
4.372
4.081
3.872
3.718
3.598
3.501
3.423
3.357
3.302
3.254
3.215
3.178
3.148
3.119
2.950
2.870
2.794
2.719
2.649

673.651
35.188
15.278
10.282
8.185
7.028
6.385
5.833
5.471
5.222
5.017
4.851
4.718
4.607
4.511
4.427
4.359
4.298
4.241
3.928
3.776
3.641
3.506
3.381

67.561
22.401
13.643
10.317
8.596
7.576
6.891
6.406
6.056
5.782
5.561
5.385
5.238
5.112
5.004
4.917
4.839
4.766
4.365
4.175
4.006
3.837
3.688

Table A26 (cont.). Values of the coefficient LN (Vy,n,P) in equation (11.45) for
left-prediction in lognormay sequences with unknown mean and
variance. Estimated coefficient of variation: Vy = 0.20.

Lii



In 11~ I 0,7500 1 0.9000 1 0.9500 I 0.9900 1 0.9950 1 O.S990 1 0.9995 1
....-....-..............------------------------------------------

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
31
41
61

121
00

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

Table A26 (cont.).

0.895
0.613
0.532
0.494
0.470
0.455
0.442
0.434
0.427
0.422
0.418
0.414
0.411
0.408
0.406
0.404
0.402
0.401
00400
0.398
0.391
0.386
0.383
0.378
0.373

5.439
2.104
1.612
1.417
1.311
1.248
1.201
1.169
1.143
1.121
1.106
1.094
1.081
1.072
1.065
1.058
1.050
1.046
1.041
1.035
1.009
0.995
0.983
0.968
0.955

31.623
4.403
2.855
2.350
2.101
1.954
1.857
1.787
1.736
1.695
1.662
1.637
1.614
1.596
1.580
10567
1.554
1.543
1.534
10525
1.473
1.447
1.422
1.398
1.374

35.896
10.193
6.444
5.065
4.381
3.961
3.686
3.486
3.338
3.226
3.137
3.061
3.001
2.949
2.904
2.864
2.831
2.803
2.774
2.622
2.542
2.475
2.401
2.335

138.785
19.215
10.041
7.273
5.997
5.275
4.812
4.490
4.256
4.078
3.936
3.822
3.727
3.648
3.581
3.525
3.474
3.431
3.390
3.158
3.050
2.948
2.849
2.756

136.635
33.328
17.911
12.725
10.193
8.889
7.826
7.158
6.712
6.355
6.070
5.845
5.661
5.501
5.364
5.254
5.156
5.065
4.576
4.343
4.142
3.943
3.761

443.110
62.669
27.811
18.003
13.680
11.363
9.909
8.930
8.248
7.730
7.322
7.004
6.742
6.520
6.333
6.183
6.048
5.925
5.264
4.960
4.695
4.437
4.211

U,

Values of the coefficient 'L (Vy,n,P) in equation (11.45) for
left-prediction in lognormal'sequences with unknown mean and
variance. Estimated coefficient of variation: Vy = 0.40.

4-

LEFT PREDICTION INTERVAL Vy= 0.40



LEFT PREDICTION INTERVAL Vy= 0.05

I n ' II 0.7500 1 0.9000 1 0.9500 1 0.9900 I 0.9950 I 0.9990 I 0.9995 1
----------------------------- --------- ------

I 2 II 1.875 I 3.175 I 5.572 I 49.272 I 353.883 1 ******* I *******
1.752 1 2.159 I 4.045 1 5.669 1
1.457 I 1.649 1 2.357 1 2.825 1
1.330 1 1.451 1 1.857 1 2.097 1
1.258 1 1.346 I 1.622 I 1.777 I
1.214 1 1.281 I 1.490 1 1.600 I
1.181 1 1.237 1 1.402 I 1.488 1
1.158 I 1.204 I 1.342 1 1.411 I
1.139 1 1.180 I 1.296 I 1.355 I
1.124 I 1.160 1 1.261 I 1.312 I
1.113 I 1.145 I 1.234 1 1.279 I
1.104 I 1.132 I 1.213 1 1.252 I
1.095 1 1.121 1 1.194 1 1.229 1
1.088 I 1.112 1 1.179 1 1.211 1
1.082 I 1.105 I 1.166 I 1.195 I
1.077 I 1.098 1 1.154 1 1.181 1
1.072 1 1.092 1 1.144 I 1.170 I
1.068 I 1.086 I 1.135 I 1.159 1
1.065 I 1.082 1 1.128 1 1.150 1
1.060 I 1.077 I 1.120 1 1.141 I
1.041 I 1.051 I 1.080 1 1.092 I
1.030 I 1.038 I .1.058 1 1.067 I
1.021 1 1.025 I 1.040 I 1.044 I
1.010 1 1.013 I 1.019 I 1.022 I
1.000 1 1.000 I 1.000 1 1.000 I

I
I

5.851 1 29.246 I
4.635 1 5.957 I
2.896 1 3.387 1
2.252 1 2.521 1
1.930 I 2.107 1
1.735 I 1.864 1
1.620 I 1.708 I
1.517 I 1.597 1
1.447 I 1.516 I
1.398 I 1.456 I
1.357 I 1.407 1
1.323 1 1.368 I
1.295 1 1.335 I
1.272 1 1.308 I
1.252 I 1.285 I
1.234 1 1.264 I
1.219 I 1.248 I
1.206 I 1.233 1
1.194 I 1.219 I
1.125 1 1.140 I
1.091 I 1.101 I
1.060 I 1.067 1
1.029 1 1.032 1
1.000 1 1.000 1

Table A27. Values of the penalty ratio rLN( y,n,P) in equation (11.47) for left-hand
prediction in lognormal sequen6es with unknown mean and variance. VY is
the estimated coefficient of variation and n is the sample size. For
other values of VY, see continuation of the table.

(Ji

M,

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
31
41
61

121
00

II
II
II
11
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
11
II

1.423 1
1.285 I
1.217 1
1.174 1
1.148 1
1.126 I
1.111 1
1.099 1
1.089 1
1.082 1
1.074 I
1.069 I
1.064 I
1.060 1
1.056 I
1.053 I
1.050 I
1.049 I
1.045 I
1.033 I
1.023 I
1.017 I
1.009 I
1.000 I

--- ---- PROW,



LEFT PREDICTION INTERVAL Vy= 0.10
- ------------------------ ---------- --------------

I P II 0.7500 I 0.9000 I 0.9500 I 0.9900 I 0.9950 I 0.9990 1 0.9995 I

I 2 II 1.936 I 3.437 1 6.679 I 186.673 1 ******* I ******* I ******* I
1 3 11 1.449 1 1.808 1 2.278 I 4.787 I 7.401 1 33.969 I 96.667 I
I 4 II 1.302 I 1.487 1 1.703 I 2.555 1 3.171 I 5.952 I 8.398 I
I 5 II 1.230 1 1.350 I 1.484 1 1.957 I 2.253 1 3.330 I 4.063 I
1 6 II 1.184 I 1.273 1 1.370 1 1.686 I 1.872 1 2.476 1 2.844 1
I 7 11 1.156 I 1.226 1 1.299 1 1.537 1 1.666 1 2.074 I 2.304 1
1 8 II 1.133 I 1.191 I 1.252 I 1.438 1 1.539 I 1.838 1 2.001 I
I 9 II 1.118 I 1.167 1 1.217 I 1.371 I 1.452 I 1.701 I 1.811 I
1 10 II 1.104 I 1.147 I 1.191 1 1.321 1 1.388 1 1.581 I 1.679 1
1 11 II 1.094 1 1.130 1" 1.170 1 1.283 1 1.341 1 1.500 1 1.583 1
I 12 II 1.086 I 1.119 I 1.154 I 1.253 I 1.304 I 1.443 I 1.513 I
I 13 II 1.078 I 1.109 1 1.140 1 1.230 1 1.274 I 1.396 I 1.457 1

S I 14 II 1.073 I 1.100 1 1.129 I 1.209 1 1.249 I 1.358 I 1.411 1
I 15 II 1.068 I 1.093 I 1.119 1 1.193 1 1.229 I 1.327 I 1.374 I
1 16 II 1.063 1 1.087 1 1.111 I 1.178 1 1.211 1 1.301 I 1.343 1
I 17 11 1.060 1 1.081 I 1.104 1 1.166 1 1.196 1 1.278 I 1.316 I
1 18 II 1.056 I 1.075 I 1.097 I 1.155 I 1.184 1 1.258 I 1.293 I
I 19 II 1.053 I 1.072 1 1.091 1 1.146 1 1.172 I 1.241 I 1.275 I
1 20 11 1.051 I 1.068 1 1.087 I 1.137 1 1.162 I 1.227 1 1.258 1
1 21 II 1.048 1 1.063 1 1.082 1 1.129 I 1.153 I 1.213 I 1.242 I
I 31 II 1.035 I 1.043 1 1.054 I 1.086 1 1.099 1 1.137 1 1.154 I
1 41 II 1.025 I 1.032 I 1.040 I 1.062 I 1.073 I 1.099 I 1.111 I
1 61 II 1.018 I 1.022 1 1.026 1 1.042 1 1.048 I 1.066 1 1.073 1
I 121 II 1.010 1 1.010 I 1.014 1 1.020 I 1.023 I 1.032 I 1.034 I
I o II 1.000 I 1.000 I 1.000 1 1.000 I 1.000 1 1.000 I 1.000 1

------------ -----

LN
Table A27 (cont.). Values of the penalty ratio rL o(Vy1 n,P) in equation (11.47) for

left-prediction in lognormal sdquences with unknown mean and
variance. Estimated coefficient of variation: Vy = 0.10.



LEFT PREDICTION INTERVAL

I II 0.7500 I 0.9000 I 0.9500 1 0.9900 I 0.9950 I 0.9990 I 0.9995 I

I 2 II 2.071 I 4.050 1 9.869 I ******* I ******* I ******* I ******* I
I 3 II 1.506 1 1.930 I 2.546 1 6.899 I 13.404 I 199.265 1 ******* I
I 4 II 1.339 I 1.550 I 1.818 I 3.031 I 4.065 I 10.409 1 18.320 1
I 5 II 1.257 I 1.393 I 1.555 I 2.186 I 2.626 I 4.519 I 6.074 1
1 6 II 1.207 I 1.305 1 1.420 1 1.829 1 2.089 I 3.041 I 3.700 I
1 7 II 1.175 1 1.252 1 1.339 I 1.639 1 1.815 I 2.421 I 2.797 1
1 8 II 1.148 I 1.212 I 1.284 I 1.517 I 1.651 1 2.079 1 2.331 1
1 9 II 1.132 I 1.186 1 1.244 1 1.436 I 1.541 I 1.889 1 2.054 1
1 10 II 1.117 I 1.163 I 1.215 1 1.374 I 1.462 I 1.725 I 1.869 I
I 11 II 1.105 I 1.144 1 1.191 I 1.329 I 1.404 I 1.618 I 1.737 1
1 12 II 1.096 I 1.132 1 1.172 I 1.294 1 1.358 I 1.545 1 1.642 I
I 13 II 1.087 I 1.121 I 1.157 1 1.266 I 1.322 I 1.484 1 1.568 I

U1 I 14 II 1.081 I 1.110 1 1.144 I 1.241 1 1.292 I 1.435 1 1.508 I
I 15 II 1.076 1 1.103 1 1.133 1 1.222 1 1.267 I 1.396 I 1.460 I
I 16 II 1.070 1 1.096 1 1.124 I 1.205 1 1.247 I 1.363 1 1.420 I
1 17 II 1.066 I 1.090 I 1.116 I 1.191 I 1.229 I 1.334 I 1.386 I
I 18 II 1.063 1 1.083 I 1.108 1 1.178 I 1.214 I 1.309 I 1.357 I
1 19 II 1.059 1 1.079 I 1.102 1 1.167 I 1.200 1 1.289 1 1.333 1
1 20 II 1.057 I 1.075 I 1.097 1 1.158 I 1.188 1 1.271 1 1.312 1
I 21 II 1.054 I 1.070 I 1.091 1 1.148 I 1.177 1 1.254 1 1.292 1
I 31 II 1.039 I 1.048 1 1.060 1 1.098 I 1.114 I 1.162 1 1.184 I
I 41 II 1.028 1 1.035 I 1.045 1 1.071 I 1.084 I 1.117 1 1.132 I
1 61 II 1.020 I 1.025 1 1.029 1 1.048 I 1.055 I 1.077 1 1.086 1
I 121 II 1.011 I 1.011 I 1.015 1 1.023 I 1.027 1 1.037 I 1.041 1
I 0 II 1.000 I 1.CO I 1.COO I 1.000 1 1.000 I 1.000 1 1.000 1

----------------------------- --- -------------- ------

Table A27 (cont.). Values of the penalty ratio rLN (Vy,n,P) in equation (II.47) for
left-prediction in lognormal sequences with unknown mean and
variance. Estimated coefficient of variation: Vy = 0.20.

VY = 0.20



LEFT PREDICTION INTERVAL VY= 0.40

I n 11 0.7500 I 0.9000 I 0.9500 I 0.9900 I 0.9950 I 0.9990 I 0.9995 I
-------------------------------- IW ------------ ----------------------

I 2 II 2.397 1 5.694 1 23.024 I ******* I
3 II 1.643 I 2.203
4 II 1.427 I 1.687
5 II 1.323 I 1.483
6 II 1.258 1 1.373
7 II 1.218 1 1.306
8 II 1.185 I 1.257
9 II 1.164 1 1.224

10 II 1.145 1 1.196
11 11 1.131 1 1.174
12 11 1.120 I 1.158
13 II 1.108 1 1.145
14 II 1.101 1 1.132
15 II 1.094 I 1.123
16 II 1.087 1 1.115
17 II 1.083 I 1.108
18 II 1.078 1 1.099
19 II 1.073 I 1.095
20 11 1.071 I 1.090
21 II 1.066 I 1.083
31 II 1.048 1 1.057
41 II 1.034 1 1.042
61 II 1.025 I 1.029

121 II 1.014 I 1.014
00 11 1.000 I 1.000

Table A27 (cont.).

3.206
2.078
1.711
1.530
1.423
1.352
1.301
1.264
1.234
1.210
1.192
1.175
1.162
1.150
1.141
1.131
1.124
1.117
1.110
1.072
1.054
1.035
1.018
1.000

15.373
4.365
2.760
2.169
1.876
1.696
1.579
1.493
1.430
1.382
1.344
1.311
1.285
1.263
1.243
1.226
1.212
1.200
1.188
1.123
1.089
1.060
1.028
1.000

******* I ******* I ******* I

50.352
6.971
3.643
2.639
2.176
1.914
1.746
1.629
1.544
1.479
1.428
1.387
1.352
1.324
1.299
1.279
1.260
1.245
1.230
1.146
1.107
1.069
1.034
1.000

36.329
8.861
4.762
3.383
2.710
2.363
2.081
1.903
1.785
1.690
1.614
1.554
1.505
1.463
1.426
1.397
1.371
1.347
1.217
1.155
1.101
1.048

I *******
I 105.219
I 14.881
1 6.604
1 4.275
I 3.248
1 2.698
I 2.353
I 2.121
I 1.959
I 1.835
I 1.739
I 1.663
I 1.601
1 1.548
I 1.504
I 1.468
1 1.436
I 1.407
I. 1.250
1 1.178
1 1.115
I 1.053

1.000 I 1.000 I

LNValues of the penalty ratio rL a(Vy,n,P) in equation (11.47) for
left-prediction in lognormal s6quences with unknown mean and
variance. Estimated coefficient of variation: Vy = 0.40.

U,
01%
00~

I



RIGHT PREDICTION INTERVAL

I n II 0.7500 I 0.9000 1 0.9500 I 0.9900 I 0.9950 I 0.9990 I 0.9995 1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
31
41
61

121
00

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

1.153
0.899
0.819
0.780
0.756
0.740
0.727
0.719
0.712
0.706
0.702
0.697
0.694
0.692
0.689
0.687
0.685
0.683
0.682
0.680
0.673
0.668
0.664
0.659
0.654

3.291
1.986
1.687
1.556
1.480
1.434
1.399
1.375
1.354
1.338
1.326
1.316
1.307
1.299
1.293
1.288
1.282
1.278
1.275
1.269
1.249
1.237
1.227
1.215
1.204

6.122
2.974
2.368
2.119
1.984
1.899
1.842
1.799
1.767
1.741
1.720
1.704
1.689
1.677
1.666
1.658
1.649
1.642
1.636
1.630
1.594
1.577
1.559
1.543
1.525

16.337
6.322
4.287
3.554
3.183
2.967
2.820
2.717
2.639
2.579
2.532
2.494
2.461
2.434
2.411
2.390
2.372
2.357
2.343
2.330
2.257
2.218
2.184
2.146
2.111

18.664
8.318
5.321
4.262
3.744
3.442
3.245
3.106
3.003
2.924
2.862
2.811
2.769
2.733
2.703
2.676
2.654
2.634
2.617
2.600
2.503
2.456
2.410
2.365
2.322

19.051
13.806
8.297
6.205
5.206
4.648
4.287
4.065
3.861
3.719
3.618
3.532
3.460
3.402
3.353
3.309
3.270
3.238
3.210
3.183
3.031
2.954
2.885
2.813
2.746

19.051
15.978
9.808
7.177
5.917
5.215
4.766
4.463
4.241
4.073
3.945
3.841
3.755
3.685
3.625
3.572
3.526
3.489
3.455
3.423
3.242
3.151
3.069
2.985
2.909

LNTable A28. Values of the coefficient y V,nP) in equation (II.46) for right-hand
prediction in lognormal sequences with unknown mean and variance. V y is
the estimated coefficient of variation of the lognormal population and n
is the sample size. For other values of Vy, see continuation of the table.

U,

Vy= 0.05



RIGHT PREDICTION INTERVAL
--------- ------ ----- - ----- -.---- -- -- -- ---

P ';1 0,7500 1 0.9000 1 0.9500 1 0.9900 1 0,9950 I 0.9990 I 0.9995 1
- n -----------

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
31
41
61

121
00

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

1.086
0.857
0.785
0.749
0.727
0.713
0.701
0.693
0*687
0. 682
0.677
0.673
0.671
0.668
0.666
0.664
0.662
0.661
0.660
0.658
0.651
0.646
0.643
0.639
0.634

2.883
1.813
1.556
1.442
1.376
1.335
1.304
1.283
1.265
1.250
1.240
1.231
1.222
1.216
1.211
1.206
1.200
1.197
1.194
1.189
1.171
1.161
1.152
1.141
1.132

4.911
2.630
2.134
1.926
1.811
1.739
1.689
1.652
1.625
1.603
1.585
1.570
1.558
1.547
1.538
1.530
1.523
1.517
1.512
1.506
1.475
1.460
1.445
1.430
1.415

8.911
5.039
3.642
3.087
2.797
2.625
2.506
2.423
2.358
2.309
2.270
2.239
2.212
2.190
2.170
2.153
2.138
2.125
2.114
2.103
2.042
2.009
1.981
1.949
1.919

9.092
6.210
4.377
3.624
3.234
3.000
2.846
2.736
2.654
2.590
2.540
2.499
2.464
2.435
2.411
2.389
2.371
2.354
2.340
2.327
2.247
2.208
2.170
2.132
2.096

9.096
8.405
6.199
4.965
4.299
3.905
3.642
3.477
3.323
3.215
3.137
3.071
3.015
2.969
2.931
2.896
2.866
2.841
2.818
2.797
2.676
2.614
2.558
2.501
2.446

9.096
8.858
6.955
5.565
4.778
4.304
3.990
3.771
3.608
3.483
3.387
3.308
3.242
3.188
3.142
3.102
3.066
3.037
3.011
2.986
2.843
2.772
2.707
2.639
2.578

Table A28 (cont.). Values of the coefficient LN Y(Vy,n,P) in equation (11.46) for
right-prediction in lognormai sequences with unknown mean and
variance. Estimated coefficient of variation: Vy = 0.10.

Ln
-1
0>

VY = 0.10



RIGHT PREDICTION INTERVAL

I n P II 0.7500 I 0.9000 1 0.9500 I 0.9900 1 0.9950 I 0.9990 I 0.9995 1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
31
41
61

121
00

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
11
II
II
II
II
II
II
II
II

0.965
0.779
0.720
0.691
0.672
0.660
0.650
0.644
0.638
0.634
0.631
0.627
0.625
0.623
0.621
0.619
0.618
0.616
0.616
0.614
0.609
0.604
0.602
0.598
0.594

2.239
1.518
1.329
1.242
1.192
1.160
1.136
1.120
1.106
1.094
1.086
1.079
1.073
1.068
1.063
1.060
1.055
1.053
1.050
1.047
1.032
1.024
1.017
1.008
1.001

3.296
2.079
1.747
1.600
1.517
1.464
1.428
1.401
1.380
1.364
1.350
1.339
1.330
1.322
1.315
1.309
1.304
1.299
1.295
1.291
1.268
1.256
1.244
1.233
1.222

4.181
3.349
2.682
2.364
2.186
2.076
1.998
1.943
1.900
1*867
1.841
1.819
1.800
1.785
1.772
1.760
1.749
1.741
1.733
1.725
1.682
1.659
1.639
1.616
1.595

4.183
3.759
3.057
2.672
2.452
2.312
2.216
2.147
2.094
2.053
2.021
1.994
1.971
1.952
1.935
1.921
1.909
1.897
1.888
1.879
1.824
1.798
1.771
1.745
1.720

4.183
4.158
3.756
3.318
3.020
2.823
2.682
2.591
2.503
2.440
2.394
2.354
2.321
2.293
2.269
2.248
2.229
2.213
2.199
2.186
2.109
2.069
2.033
1.995
1.959

4.183
4.180
3.948
3.550
3.239
3.023
2.866
2.752
2.664
2.594
2.540
2.495
2.456
2.425
2.397
2.373
2.352
2.334
2.318
2.303
2.215
2.170
2.128
2.085
2.045

Table A28 (cont.). Values of the coefficient LN (Vy,n,P) in equation (11.46) for
right-prediction in lognormai sequences with unknown mean and
variance. Estimated coefficient of variation: Vy = 0.20.

(.n
-- I
Hj

VY = 0.20



RIGHT PREDICTION INTERVAL

1. 0.7500 1 0.9000 .0.9500 0.9900 1 0.9950 1 0.9990 1 0,9995 1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
31
41
61

121
o

II
II
II
II
II
II
11
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
11
II

Table A28 (cont.).

0.771
0.649
0.608
0.588
0.575
0.567
0.560
0.555
0.551
0*548
0.546
0.543
0.542
0.540
0.539
0.538
0.537
0.536
0.536
0.535
0.531
0.527
0.5:5
0.523
0.520

1.434
1.097
0.992
0.941
0.911
0.892
0.878
0.868
0.859
0.852
0.847
0.843
0.839
0.836
0.833
0.831
0.828
0.827
0.825
0.823
0.814
0.809
0.804
0.799
0.794

1.745
1.368
1.215
1.140
1.096
1.068
1.048
1.032
1.021
1.012
1.004
0.998
0.992
0.988
0.984
0.981
0.977
0.975
0.972
0.970
0.956
0.950
0.943
0.936
0.929

1.832 1
1.755 I
1.591 1
1.482 1
1.412 1
1.366 1
1.332 1
1.308 I
1.288 I
1.272 I
1.260 1
1.250 1
1.241 1
1.233 I
1.227 1
1.221 I
1.216 I
1.211 1
1.208 I
1.204 1
1.182 I
1.170 1
1.160 I
1.148 I
1.138 1

1.832
1.811
1.694
1.588
1.514
1.462
1.425
1.396
1.374
1.357
1.342
1.330
1.320
1.311
1.304
1.297
1.292
1.287
1.282
1.278
1.252
1.239
1.227
1.214
1.201

1.832 I
1.832 I
1.811 I
1.749 I
1.685 1
1.633 I
1.591 I
1.562 I
1.532 1
1.510 1
1.493 1
1.478 1
1.466 1
1.455 I
1.446 1
1.437 I
1.430 1
1.423 1
1.418 I
1.412 1
1.380 1
1.363 I
1.348 I
1.331 I
1.315 I

1.832
1.832
1.825
1.787
1.734
1.686
1.645
1.612
1.585
1.563
1.545
1.529
1.516
1.504
1.494
1.485
1.477
1.471
1.465
1.459
1.424
1.406
1.389
1.370
1.353

U,
__J

Values of the coefficient LN tvy,n,P) in equation (11.46) for
right-prediction in lognormai sequences with unknown mean and
variance. Estimated coefficient of variation: Vy = 0.40.

VY= C.4C



RIGHT PREDICTION INTERVAL V1 = 0.05

I n 11 0,7500 1 0.9000 1 0.9500 1 0.9900 1 0.9950 1 0.9990 1 0.9995 1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
31
41
61

121
00

II
II
II
II
II
11
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

1.764 I
1.374 I
1.253 1
1.193 I
1.156 1
1.132 I
1.112 I
1.100 1
1.088 I
1.080 1
1.073 1
1.066 1
1.062 I
1.058 1
1.053 1
1.051 1
1.048 1
1.045 1
1.044 I
1.041 I
1.030 I
1.021 1
1.015 I
1.008 I
1.000 I

2.733 I
1.649 I
1.401 1
1.292 I
1.229 1
1.191 I
1.161 1
1.141 1
1.125 1
1.111 1
1.101 I
1.093 I
1.085 1
1.079 1
1.074 1
1.069 I
1.064 1
1.061 I
1.058 1
1.054 1
1.037 1
1.027 I
1.019 1
1.009 1
1.000 I

4.014 1
1.950 I
1.552 I
1.389 1
1.301 1
1.245 1
1.208 1
1.179 1
1.159 I
1.142 1
1.128 1
1.117 I
1.107 1
1.099 1
1.093 1
1.087 I
1.081 I
1.077 I
1.073 1
1.069 1
1.045 I
1.034 1
1.022 I
1.011 1
1.000 I

7.738 1
2.994 1
2.030 I
1.683 I
1.508 I
1.405 1
1.336 1
1.287 I
1.250 1
1.221 1
1.199 I
1.181 1
1.165 1
1.153 I
1.142 I
1.132 I
1.123 I
1.116 1
1.110 1
1.104 I
1.069 I
1.050 I
1.034 I
1.016 I
1.000 I

8.039 I
3.583 I
2.292 1
1.836 1
1.613 I
1.482 I
1.398 1
1.338 I
1.293 1
1.259 I
1.233 1
1.211 I
1.193 1
1.177 1
1.164 I
1.153 1
1.143 I
1.134 I
1.127 I
1.120 I
1.078 1
1.058 I
1.038 I
1.019 1
1.000 I

6.938
5.028
3.022
2.260
1.896
1.693
1.561
1.481
1.406
1.355
1.318
1.286
1.260
1.239
1.221
1.205
1.191
1.179
1.169
1. 159
1.104
1.076
1.051
1.025

6.549
5.493
3.372
2.467
2.034
1.793
1.639
1.535
1.458
1.400
1.356
1.321
1.291
1.267
1.246
1.228
1.212
1.200
1.188
1.177
1.114
1.083
1.055
1.026

1.000 I 1.000 1

Table A29. Values of the penalty ratio r L(Vy,n,P) in equation (11.47) for right-hand
prediction in lognormal sequences with unknown mean and variance. V is
the estimated coefficient of variation and n is the sample size. For
other values of Vy, see continuation of the table.
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RIGHT PREDICTION INTERVAL VY= 0.10

I n P 1 .0.7500 1 0.9C00 1 0.9500 1 0.9900 1 0.9950 1 0.9990 I 0.9995 1

1 2 1! 1.714 1 2.547 I 3.471 I 4.643 I 4.338 I 3.719 I 3.529 I
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
31
41
61

121
00

II
II
II
II
II
II
II
II
II
I!
II
II
II
II
II
I!
II
II
II
II
11
II
II
XI

1.352
1.239
1.183
1.147
1.125
1.106
1.094
1.084
1.076
1.069
1.062
1.058
1.055
1.051
1.048
1.045
1.043
1.041
1.039
1,028
1.020
1.015
1.008
1.000

1.602
1.375
1.274
1.216
1.180
1.152
1.134
1.118
1.105
1.096
1.088
1.080
1.075
1.070
1.066
1.061
1.058
1.055
1.051
1.035
1.026
1.018
1.008
1.000I

1.859 1
1.509 1
1.361 I
1.280 I
1.229 I
1.194 I
1.168 1
1.148 1
1.133 1
1.120 I
1.110 I
1.101 1
1.093 1
1.087 I
1.082 1
1.076 I
1.072 I
1.068 I
1.065 1
1.043 1
1.032 I
1.021 I
1.011 I
1.000 1

2.626 1
1.897 I
1.609 I
1.457 1
1.367 1
1.306 I
1.262 I
1.229 I
1.203 I
1.183 I
1.167 1
1.152 1
1.141 1
1.131 I
1.122 1
1.114 1
1.107 1
1.102 I
1.096 I
1.064 1
1.047 1
1.032 1
1.015 I
1.000 I

2.963 1
2.088 1
1.729 I
1.543 1
1.432 I
1.358 I
1.305 I
1.266 I
1.236 I
1.212 I
1.192 I
1.176 I
1.162 1
1.150 1
1.140 1
1.131 1
1.123 I
1.117 1
1.110 1
1.072 1
1.053 I
1.035 1
1.017 1
1.000 1

3.436 I
2.534 I
2.030 1
1.758 1
1.596 I
1.489 1
1.422 I
1.359 1
1.314 1
1.283 I
1.255 1
1.233 1
1.214 I
1.198 1
1.184 1
1.172 1
1.162 I
1.152 1
1.144 1
1.094 I
1.069 1
1.046 1
1.022 I
1.000 1

3.436 1
2.698 I
2.159 I
1.853 I
1.670 1
1.548 I
1.463 1
1.399 I
1.351 I
1.314 I
1.283 1
1.258 I
1.237 1
1.219 I
1.203 I
1.190 I
1.178 1
1.168 1
1.158 I
1.103 I
1.075 1
1.050 I
1.024 I
1.000 1

Ln

LNTable A29 (cont.). Values of the penalty ratio r ya(Vy,n,P) in equation (11.47) for
right-prediction in lognormal sequences with unknown mean and
variance. Estimated coefficient of variation: VY= 0.10



RIGHT PREDICTION INTERVAL VY 0.20

I 1 0.7500 1 0,9000 1 0,9500 1 0,9900 1 0.9950 1 0.9990 1 0.9995 1

I 2 II 1.625 1 2.237 1 2.698 I 2.621 I 2.432 I 2.136 I 2.045 I
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
31
41
61

121
00

II
II
II
II
II
II
II
II
II
II
II
II
II
II
I!
II
II
II
'I
II
II
II
II
II

1.312 I
1.213 I
1.163 I
1.131 I
1.111 i1
1.095 I
1.084 I
1.075 I
1.068 I
1.062 1
1.056 1
1.052 1
1.049 1
1.045 1
1.043 I
1.041 I
1.038 I
1.037 I
1.035 1
1.025 I
1.018 I
1.013 I
1.007 1
1.000 I

1.517
1.328
1.241
1.190
1.159
1.135
1.119
1.105
1.093
1.085
1.078
1.072
1.067
1.062
1.059
1.054
1.052
1.049
1.046
1.031
1.023
1.016
1.008
1.000

1.702 1
1.430 1
1.310 I
1.242 1
1.199 1
1.169 1
1.147 1
1.130 I
1.116 I
1.105 I
1.096 1
1.089 1
1.082 I
1.077 1
1.072 1
1.067 1
1.063 1
1.060 I
1.057 1
1.038 1
1.028 1
1.019 1
1.010 I
1.000 1

2.099 1
1.681 1
1.482 1
1.370 1
1.301 1
1.253 I
1.218 1
1.191 1
1.170 I
1.154 1
1.140 I
1.129 I
1.119 1
1.111 1
1.103 1
1.097 1
1.091 1
1.086 I
1.081 1
1.055 1
1.040 1
1.027 I
1.013 I
1.000 1

2.185 I
1.777 1
1.553 1
1.425 1
1.344 1
1.288 I
1.248 I
1.217 I
1.194 I
1.175 I
1.159 I
1.146 I
1.134 1
1.125 1
1.117 1
1.110 I
1.103 I
1.097 1
1.092 I
1.060 I
1.045 1
1.030 I
1.015 I
1.000 I

2.123
1.917
1.694
1.542
1.441
1.369
1.323
1.278
1.246
1.222
1.202
1.185
1.171
1.158
1.148
1.138
1.130
1.123
1.116
1.077
1.056
1.038
1.019

2.044
1.930
1.736
1.584
1.478
1.401
1.346
1.302
1.268
1.242
1.220
1.201
1.185
1.172
1.160
1.150
1.141
1.133
1.126
1.083
1.061
1.041
1.019

1.000 1 1.000 1

LN nP neuto 1.7 oTable A29 (cont.). Values of the penalty ratio rL,,Cy ,aI
right-prediction in lognormal sequences with unknown mean and
variance. Estimated coefficient of variation: Vy = 0.20.
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RIGHT PREDICTION INTERVAL vy 0.40

I ~ 1 0,7500 1 0.9000 1 0.9500 I 0.9900 1 0.9950 I 0.9990 I 0,9995 1
------------------------- -----------------

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
31
41
61

121
00

II
II
II
II
11
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
I!

1.483
1.247
1.170
1.131
1.106
10090
1.077
1.068
1.060
1.055
1.050
1.045
1.042
1.040
1.037
1.035
1.033
1.031
1.030
1.028
1.020
1.015
1.011
1.006
1.000

1.806
1.382
1.249
1.186
1.148
1.124
1.106
1.093
1.082
1.073
1.067
1.062
1.057
1.053
1.049
1.046
1.043
1.041
1.039
1.036
1.025
1.019
1.013
1.006
1.000

1.878
1.472
1.307
1.227
1.180
1.149
1.127
1.111
1.099
1.088
1.080
1.074
1.068
1.063
1.059
1.055
1.052
1.049
1.046
1.044
1.029
1.022
1.014
1.007
1.000

1.610
1.543
1.399
1.303
1.242
1.201
1.171
1.149
1.132
1.118
1.107
1.099
1.091
1.084
1.078
1.073
1.069
1.065
1.062
1.058
1.039
1.029
1.020
1.010
1.000

1.525
1.508
1.410
1.322
1.260
1.217
1.186
1.162
1.144
1.129
1.117
1.107
1.099
1.092
1.085
1.080
1.075
1.071
1.067
1.064
1.042
1.032
1.021
1.010
1.000

1.393
1.393
1.378
1.331
1.282
1.242
1.210
1.188
1.166
1.149
1.136
1.125
1.115
1.107
1.100
1.093
1.088
1.083
1.079
1.074
1.050
1.037
1.025
1.012
1.000

1.354
1.354
1.349
1.321
1.282
1.246
1.216
1.192
1.172
1.155
1.142
1.130
1.120
1.112
1.104
1.098
1.092
1.087
1.082
1.078
1.052
1.039
1.026
1.013
1.000

Table A29 (cont.). Values of the penalty ratio r LN(Vy,nP) in equation (.47) for
right-prediction in lognormal sequences with unknown mean and
variance. Estimated coefficient of variation: Vy = 0.40.
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LEFT PREDICTION INTERVAL Vy= 0.05
---------- -- --- ---------------- W--- -- -------

I n ' II 0.7500 I 0.9C00 I 0.9500 I 0.9900 1 0.9950 1 0.9990 I 0.9995 1
------------------------ ----------------

I 1 II 0.951 1 3.139 1 7.034 1 74.245 I 438.757 1 ******* I ******* I

I 2 II 0.768 1 1.856 1 2.965 1 7.896 1 12.191 I 39.003 I 73.211 I
I 3 II 0.718 I 1.599 I 2.350 1 4.822 1 6.424 I 12.644 1 17.241 I
I 4 II 04694 I 1.491 I 2.115 I 3.894 1 4.897 1 8.177 I 10.204 I
I 5 II 0.680 I 1.432 I 1.992 1 3.460 1 4.223 I 6.491 1 7.767 I
I 6 II 0.671 1 1.396 I 1.916 1 3.212 1 3.848 1 5.631 I 6.575 1
I 7 II 0.664 I 1.370 1 1.866 1 3.051 I 3.611 I 5.115 1 5.879 I
1 8 11 0.659 I 1.352 I 1.829 I 2.939 1 3.449 1 4.775 I 5.426 1
I 9 II 0.656 I 1.337 I 1.801 I 2.856 I 3.331 I 4.533 I 5.110 I
1 10 II 0.653 1 1.326 1 1.779 1 2.794 1 3.241 1 4.353 1 4.877 I

I 11 11 0.651 1 1.317 1 1.763 1 2.744 I 3.170 I 4.215 1 4.698 I
1 12 II 0.649 I 1.310 1 1.748 1 2.704 I 3.114 I 4.104 I 4.558 I

S I 13 11 0.648 1 1.304 1 1.737 I 2.670 1 3.066 I 4.014 1 4.444 I
1 14 II 0.646 1 1.299 I 1.726 1 2.642 1 3.028 1 3.940 I 4.349 I
1 15 II 0.645 I 1.295 1 1.718 I 2.618 1 2.995 I 3.878 1 4.270 1
I 16 II 0.644 I 1.291 1 1.711 I 2.597 1 2.966 I 3.824 1 4.203 I
I 17 II 0.643 I 1.287 1 1.704 1 2.580 I 2.941 1 3.778 I 4.145 I
1 18 II 0.642 I 1.284 I 1.698 I 2.564 1 2.919 I 3.737 I 4.095 I
I 19 II 0.642 I 1.282 I 1.693 1 2.550 I 2.900 I 3.702 I 4.050 I
I 20 II 0.641 I 1.278 1 1.689 1 2.538 I 2.883 I 3.671 1 4.012 1
1 30 II 0.637 1 1.263 I 1.660 I 2.461 1 2.779 I 3.482 1 3.778 1
I 40 II 0.635 1 1.256 1 1.646 1 2.425 1 2.729 I 3.395 I 3.670 I
1 60 II 0.633 1 1.249 1 1.633 1 2.390 I 2.681 1 3.311 I 3.567 I
I 120 II 0.631 1 1.242 I 1.620 1 2.355 1 2.634 1 3.230 1 3.469 I
I c II 0.628 I 1.235 I 1.606 1 2.321 1 2.590 1 3.153 1 3.377 I

-------- ---- -------------------

LN
Table A30. Values of the coefficient L (V ,n,P) for left-hand prediction in lognormal

sequences. In the associated normal sequence the mean is assumed known and
the variance is unknown. V is the estimated coefficient of variation of
the lognormal population. Yor other values of Vy, see continuation of the
table.



LEFT PREDICTION INTERVAL V = 0.10
--n-----.----I-.------.------.------.------.99----.995---------------

InP 11 0.7500 I 0.9000 I 0.9500 1 0.9900 I 0.9950 1 0.9990 I 0.9995 1
-- -- ----- - ---- -

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
30
40
60

120
00

II
II
II
II
II
I!
II
11
II
II
II
I!
11
II
II
II
II
II
II
11
II
11
II
II
II

0.904
0.722
0.673
0.649
0.636
0.627
0.620
0.615
0.612
0.609
0.607
00605
0.604
0.602
0.601
0.600
0.599
0.598
0.598
0.597
0.593
0.591
0.589
0.587
0.584

3.208
1.828
1.561
1.450
1.391
1.353
1.327
1.308
1.294
1.282
1.273
1.266
1.260
1.254
1.250
1.246
1.242
1.239
1.237
1.234
1.218
1.211
1.204
1.197
1.190

7.895
3.015
2.349
2.100
1.970
1.891
1.838
1.800
1.771
1.748
1.731
1.716
1.704
1.693
1.684
1.677
1.670
1.664
1.659
1.654
1.624
1.610
1.596
1.583
1.569

207.264
9.035
5.141
4.057
3.565
3.288
3.110
2.986
2.896
2.828
2.774
2.730
2.693
2.663
2.637
2.615
2.596
2.579
2.564
2.551
2.469
2.429
2.392
2.355
2.318

15.262
7.112
5.230
4.436
4.004
3.735
3.552
3.420
3.320
3.242
3.179
3.127
3.084
3.048
3.016
2.989
2.965
2.944
2.925
2.812
2.757
2.705
2.655
2.607

74.822
15.972
9.415
7.196
6.120
5.491
5.084
4.798
4.588
4.426
4.299
4.195
4.109
4.038
3.977
3.925
3.878
3.838
3.803
3.590
3.492
3.398
3.309
3.222

202.505
23.756
12.268
8.862
7.304
6.427
5.869
5.486
5.206
4.994
4.827
4.693
4.582
4.491
4.413
40346
4.288
4.236
4.192
3.925
3.802
3.685
3.575
3.472

Table A30 (cont.). Values of the coefficient LN (Vy,n,P) for left-prediction in~az(yfP)frlf-rdcinn
lognormal sequences. In the associated normal sequence the mean is
known and the variance is not. Estimated coefficient of variation
of the lognormal population: Vy = 0.10.

0,



LEFT PREDICTION INTERVAL

I n II 0.7500 I 0.9000 1 0.9500 1 0.9900 1 0.9950 1 0.9990 I 0.9995 I

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
30
40
60

120
00

II
II
II
II
1!
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

0.817
0.638
0.590
0.567
0.554
0.546
0.539
0.534
0.531
0.529
0.526
0.524
0.523
0.521
0.520
0.519
0.518
0.518
0.518
0.517

10.513
0.511
0.509
0.507
0.504

3.363
1.776
1.490
1.374
1.311
1.272
1.245
1.226
1.211
1.199
1.190
1.182
1.176
1.171
1.166
1.162
1.158
1.155
1.153
1.149
1.134
1.126
1.119
1.112
1.104

10.140
3.130
2.354
2.074
1.930
1.844
1.787
1.745
1.114
1.689
1.671
10655
1.642
1.630
1.621
1.613
1.606
1.599
1.594
1.589
1.557
1.542
1.528
1.513
1.498

12.110
5.899
4.432
3.804
3.460
3.244
3.096
2.988
2.908
2.843
2.792
2.750
2.714
2.684
2.658
2.636
2.616
2.599
2.584
2.490
2.445
2.402
2.360
2.319

25.099
8.859
6.025
4.932
4.364
4.019
3.788
3.624
3.500
3.405
3.328
3.265
3.213
3.169
3.132
3.098
3.070
3.045
3.022
2.888
2.824
2.763
2.704
2.649

337.159
26.818
12.796
8.994
7.322
6.398
5.819
5.423
5.136
4.919
4.750
4.613
4.500
4.408
4.328
4.261
4.201
4.150
4.105
3.836
3.713
3.596
3.486
3.381

48.849
18.385
11.804
9.167
7.787
6.948
6.389
5.991
5.693
5.463
5.280
5.129
5.006
4.901
4.812
4.735
4.667
4.609
4.261
4.104
3.956
3.817
3.688

LN -rdcini
Table A30 (cont.). Values of the coefficient yz (Vy,n,P) for left-prediction in

lognormal sequences. In the associated normal sequence the mean is

known and the variance is not. Estimated coefficient of variation

of the lognormal population: Vy = 0.20.

1W

Vy= 0.20



4W MW

LEFT PREDICTION INTERVAL ,Vy* 0.40

I n FII 0.7500 I 0.9000 1 0.9500 1 0.9900 I 0.9950 I 0.9990 I 0.9995 I
------------- -------------- ---- ---------

17.534
3.406
2.379
2.035
1.865
1.763
1.698
1.650
1.614
1.587
1.565
1.547
1.533
1.520
1.510
1.501
1.493
1.485
1.479
1.474
1.438
1.422
1.406
1.39C
1.374

23.055
7.950
5.372
4.386
3.876
3.566
3.358
3.210
3.101
3.014
2.946
2.889
2.842
2.803
2.769
2.740
2.714
2.691
2.672
2.551
2.494
2.439
2.387
2.335

76.010
14.308
8.190
6.208
5.262
4.715
4.362
4.117
3.934
3.796
3.686
3.595
3.523
3.461
3.409
3.362
3.322
3.289
3.257
3.074
2.988
2.907
2.829
2.756

******* I
******* I

85.144 I
25.131 1
14.635 I
10.815 I
8.914 I
7.8C0 1
7.072 I
6.562 1
6.186 I
5.898 I
5.669 I
5.484 1
5.333 1
5.205 I
5.097 1
5.002 I
4.920 I
4.851 1
4.434 I
4.249 I
4.076 1
3.914 1
3.761 I

LN
Table A30 (cont.). Values of the coefficient 60 (Vyn,P) for left-prediction in

lognormal sequences. In the associated normal sequence the mean is

known and the variance is not. Estimated coefficient of variation

of the lognormal population: Vy = 0.40.

Ln
0,
C0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
30
40
60

120
00

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

0.668
0.497
0.452
0.431
0.419
0.411
0.405
0.401
0.398
0.395
0.393
0.391
0.390
0.389
0.388
0.387
0.386
0.385
0.385
0.384
0.381
0.379
0.377
0.376
0.373

3.735
1.685
1.365
1.238
1.171
1.130
1.102
1.081
1.066
1.054
1.044
1.036
1.029
1.024
1.019
1.015
1.010
1*007
1.005
1.002
0.985
0.978
0.970
0.963
0.955

245.331
45.071
22.151
15.059
11.828
10.027
8.897
8.124
7.565
7.144
6.815
6.549
6.336
6.155
6.003
5.874
5.759
5.663
5.097
4.848
4.618
4.405
4.211

MW



LEFT PREDICTION INTERVAL V = 0.05

1I 0. 7500 1 0,9000 1 0,9500 I 0.9900 1 0,9950 1 0,9990 I 0.9995 1
------------------------------ ----------

1 1 II 1.515 1 2.542 1 4.379 1 31.987 I 169.422 I ******* I ******* I
I 2 II 1.223 1 1.503 1 1.846 I 3.402 I 4.707 1 12.371 1 21.681 I
1 3 II 1.143 1 1.295 I 1.463 1 2.078 1 2.481 1 4.010 1 5.106 I
1 4 II 1.105 1 1.207 1 1.317 1 1.678 1 1.891 1 2.594 I 3.022 1
I 5 11 1.083 1 1.160 I 1.240 1 1.491 I 1.631 1 2.059 I 2.300 I
I 6 II 1.069 I 1.130 1 1.193 1 1.384 1 1.486 1 1.786 1 1.947 I
I 7 II 1.058 I 1.110 I 1.162 I 1.314 I 1.394 I 1.622 I 1.741 I
I 8 II 1.050 1 1.095 I 1.139 1 1.266 I 1.332 1 1.514 1 1.607 I
1 9 II 1.045 I 1.083 I 1.121 I 1.231 I 1.286 1 1.438 1 1.513 I
1 10 11 1.041 I 1.074 1 1.108 I 1.204 I 1.251 I 1.381 I 1.444 I
1 11 II 1.036 1 1.067 1 1.097 1 1.182 1 1.224 1 1.337 1 1.391 1
I 12 II 1.033 1 1.061 I 1.088 I 1.165 1 1.202 1 1.302 I 1.350 I

yn I 13 11 1.031 I 1.056 I 1.081 1 1.150 1 1.184 1 1.273 1 1.316 1
0 1 14 II 1.028 1 1.052 1 1.075 I 1.138 I 1.169 I 1.250 1 1.288 IH

I 15 II 1.027 I 1.048 1 1.070 1 1.128 I 1.156 I 1.230 1 1.265 I
I 16 II 1.025 I 1.045 1 1.065 1 1.119 I 1.145 I 1.213 I 1.245 I
I 17 II 1.023 I 1.042 I 1.061 I 1.112 1 1.136 I 1.198 I 1.227 1
I 18 II 1.022 I 1.039 I 1.057 I 1.105 1 1.127 1 1.185 I 1.213 I
I 19 II 1.022 I 1.038 I 1.054 I 1.099 1 1.120 1 1.174 I 1.199 1
I 20 II 1.020 1 1.035 1 1.052 1 1.093 1 1.113 I 1.164 I 1.188 I
1 30 II 1.014 1 1.023 1 1.033 1 1.060 1 1.073 1 1.105 I 1.119 1
1 40 II 1.011 1 1.017 1 1.025 1 1.045 1 1.054 1 1.077 I 1.087 1
I 60 11 1.008 I 1.011 1 1.017 1 1.029 I 1.035 I 1.050 I 1.056 I
1 120 II 1.005 I 1.006 1 1.008 1 1.015 I 1.017 I 1.025 1 1.027 1
I 0 II 1.000 I 1.000 I 1.000 1 1.000 I 1.000 I 1.000 I 1.000 I

------------------------ --------------------

Table A31. Values of the penalty ratio rb (V ,n,P) for left-hand prediction in log-
normal sequences. In the associated normal sequence the mean is known
but the variance is not. V is the estimated coefficient of variation of
the lognormal population. *or other values of VY, see continuation-of the
table.



LEFT PREDICTION INTERVAL Vy= 0.10

I n P 11 0.7500 1 0.9000 1 0.9500 1 0.9900 1 0,9950 1 0,9990 1 0.9995 1
--------- ------ ------------- -------------

I 1 II 1.548 1 2.696 I 5.032 I 89.399 1 ******* I ******* I ******* I
1 2 II 1.236 1 1.537 1 1.922 I 3.897 I 5.855 1 23.220 1 58.329 1
I 3 II 1.151 1 1.313 1 1.497 I 2.217 1 2.728 I 4.957 1 6.843 I
I 4 II 1.111 I 1.219 I 1.338 1 1.750 1 2.007 I 2.922 1 3.534 I
I 5 II 1.088 1 1.169 I 1.256 I 1.538 1 1.702 1 2.233 1 2.553 1
I 6 11 1.073 I 1.137 1 1.205 1 1.418 I 1.536 I 1.899 1 2.104 1
1 7 II 1.061 I 1.115 I 1.172 I 1.341 I 1.433 1 1.704 I 1.851 I
I 8 II 1.053 I 1.100 1 1.147 1 1.288 1 1.363 I 1.578 I 1.690 I
1 9 11 1.048 1 1.088 I 1.129 I 1.249 1 1.312 1 1.489 1 1.580 I
1 10 II 1.043 1 1.078 1 1.114 I 1.220 I 1.274 1 1.424 1 1.500 1
I 11 II 1.038 1 1.070 I 1.103 I 1.196 1 1.244 1 1.374 1 1.438 1
1 12 II 1.035 I 1.064 I 1.094 1 1.177 1 1.220 I 1.334 1 1.391 1

un I 13 II 1.033 I 1.059 I 1.086 I 1.162 I 1.200 I 1.302 I 1.352 1
0 1 14 II 1.030 1 1.055 1 1.079 I 1.149 I 1.183 I 1.275 1 1.320 1

1 15 II 1.028 I 1.051 1 1.074 I 1.137 1 1.169 I 1.253 I 1.294 1
I 16 II 1.026 1 1.048 I 1.069 I 1.128 1 1.157 1 1.234 1 1.271 I
1 17 II 1.025 I 1.044 1 1.065 1 1.120 1 1.147 I 1.218 I 1.252 I
I 18 11 1.023 1 1.041 1 1.061 1 1.112 I 1.137 1 1.204 I 1.235 1
1 19 11 1.023 I 1.040 I 1.057 I 1.106 I 1.129 1 1.191 1 1.220 I
I 20 II 1.022 1 1.037 1 1.054 1 1.100 I 1.122 1 1.180 1 1.208 1
I 30 II 1.015 I 1.024 1 1.035 I 1.065 1 1.079 I 1.114 I 1.130 1
I 40 11 1.012 1 1.018 1 1.026 1 1.048 1 1.058 1 1.084 I 1.095 I
1 60 II 1.008 1 1.012 I 1.018 I 1.032 I 1.038 1 1.055 I 1.062 I
I 120 II 1.005 I 1.006 I 1.009 I 1.016 I 1.018 1 1.027 I 1.030 1
I if 1.000 1 1.000 1 1.000 I 1.000 1 1.000 I 1.000 I 1.000 I

----------------------------------------- ------- --------

Table A31 (cont.). Values of the penalty ratio ra (V ,n,P) for left-prediction in
lognormal sequences. The associated normal sequence has known
mean and unknown variance. Estimated coefficient of variation of
the lognormal population: Vy = 0.10.

MW



1W 1W 1W

LEFT PREDICTION INTERVAL VY. 0.20
..-.---- 9----------------------
I n P' 11 0,7500 1 0,9000 1 0,9500 1 0.9900 1 0.9950 1 0.9990 1 0.9995 I

I 1 II 1.620 I
1 2 II 1.265 I
1 3 II 1.169 1
I 4 II 1.124 I
1 5 I 1.098 I
I 6 II 1.081 1
I 7 II 1.068 1
I 8 II 1.059 1
I 9 11 1.054 1
1 10 II 1.048 I
I 11 II 1.042 I
1 12 II 1.039 I
I 13 II 1.037 I
I 14 II 1.033 I
I 15 II 1.031 I
I 16 II 1.029 I
I 17 II 1.028 1
I 18 II 1.026 I
1 19 II 1.026 1
I 20 II 1.024 .1
I 30 II 1.017 1
I 40 II 1.013 1
1 60 11 1.009 1
I 120 11 1.006 1
I 0 II 1.000 1

3.045 I 6.767 I 963.371 1 ******* I ******* I
1.608
1.350
1.244
1.188
1.152
1.128
1.110
1.097
1.086
1.077
1.071
1.065
1.060
1.056
1.052
1.049
1.046
1.044
1.041
1.027
1.020
1.013
1.C07
1.000

2.089
1.571
1.384
1.288
1.231
1.192
1.165
1.144
1.127
1.115
1.104
1.096
1.088
1.082
1.077
1.072
1.067
1.064
1.061
1.039
1.029
I.020
1.010

5.223 1
2.544 1
1.911 1
1.641 1
1.492 1
1.399 1
1.335 I
1.289 1
1.254 1
1.226 1
1.204 1
1.186 I
1.170 1
1.158 1
1.146 1
1.137 I
1.128 1
1.121 I
1.114 I
1.074 I
1.054 1
1.036 1
1.018 I

9.476
3.345
2.275
1.862
1.648
1.517
1.430
1.368
1.321
1.285
1.257
1.233
1.213
1.197
1.182
1.170
1.159
1.150
1.141
1.090
1.066
1.043
1.021

99.731 1
7.933 1
3.785 1
2.660 1
2.166 1
1.892 1
1.721 1
1.604 1
1.519 I
1.455 I
1.405 I
1.364 I
1.331 I
1.304 1
1.280 I
1.260 1
1.243 I
1.228 I
1.214 I
1.135 1
1.098 I
1.064 I
1.031 1

******* I
579.484 1
13.246 1
4.985 I
* 3.201 I
2.486 I
2.112 I
1.884 I
1.733 I
1.624 I
1.544 I
1.481 1
1.432 I
1.391 1
1.357 I
1.329 I
1.305 I
1.284 1
1.265 I
1.250 I
1.155 I
1.113 I
1.073 I
1.035 1

1.000 1 1.000 I 1.000 1 1.000 I 1.000 I

Table A31 (cont.). Values of the penalty ratio ra (V ,n,P) for left-prediction in
lognormal sequences. The associated normal sequence has known
mean and unknown variance. Estimated coefficient of variation of
the lognormal population: VY = 0.20.

Ln
00

1W 1W



Lj S 9

LEFT PREDICTION INTERVAL VY= 0.40

I n P II 0.7500 1 0.9C00 1 0.9500 I 0.9900 I 0.9950 I 0.9990 1 0.9995 I
--------------------------------------------- ------ ---- --------

I 1 II 1.791 1 3.910 I 12.766 1 ******* I
1.332 1 1.764 I
1.211 I 1.429 I
1.154 I 1.296 1
1.122 1 1.226 I
1.101 I 1.183 I
1.085 1 1.153 I
1.073 1 1.132 I
1.066 1 1.116 I
1.059 I 1.103 1
1.053 I 1.092 I
1.048 I 1.084 1
1.046 1 1.077 1
1.041 1 1.072 1
1.039 1 1.067 I
1.037 I 1.062 I
1.034 1 1.058 1
1.032 1 1.054 1
1.032 1 1.052 1
1.030 I 1.049 1
1.021 I 1.032 1
1.016 1 1.024 1
1.011 1 1.016 I
1.007 I 1.008 I
1.000 1 1.000 1

2.480
1.732
1.482
1.358
1.284
1.236
1.202
1.175
1.155
1.140
1.126
1.116
1.107
1.099
1.093
1.087
1.081
1.077
1.073
1.047
1.035
1.023
1.012
1.000

******* I ******* I ******* I
9.873 I 27.577 I ******* I
3.404 I 5.191 I 22.638 1
2.301 I 2.971 I 6.682 I
1.878 1 2.252 I 3.891 1
1.660 1 1.909 I 2.876 1
1.527 I 1.711 I 2.370 1
1.438 I 1.583 1 2.074 I
1.375 1 1.494 I 1.880 1
1.328 I 1.427 I 1.745 1
1.291 1 1.377 1 1.645 I
1.262 1 1.337 I 1.568 I
1.237 1 1.304 1 1.507 I
1.217 I 1.278 I 1.458 1
1.200 1 1.256 I 1.418 I
1.186 I 1.237 I 1.384 I
1.174 I 1.220 1 1.355 1
1.162 I 1.205 I 1.330 I
1.153 I 1.193 I 1.308 1
1.144 1 1.182 I 1.290 I
1.092 1 1.115 I 1.179 I
1.068 1 1.084 I 1.130 1
1.045 1 1.055 I 1.084 I
1.022 1 1.026 1 1.041 I
1.000 1 1.000 I 1.000 1

Table A31 (cont.). Values of the penalty ratio rZ VLn,P) for left-prediction in
lognormal sequences. The associated normal sequence has known
mean and unknown variance. Estimated coefficient of variation of

the lognormal population: Vy = 0.40.

L

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
30
40
60

120
00

II
II
II
II
II
II
11
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
11
11

* ** ** **
58.255
10.702
5.260
3.576
2.809
2.381
2.113
1.929
1.796
1.696
1.618
1.555
1.504
1.462
1.425
1.395
1.368
1.345
1.210
1.151
1.097
1.046
1.000

W



L j

RIGHT PREDICTION INTERVAL Vg Y 0.05

S I It 0.7500 1 0.9000 1 0.9500 I 0.9900 I 0.9950 1 0.9990 I 0.9995 I

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
30
40
60

120
00

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

0.951
0.784
0.737
0.715
0.703
0.694
0.688
0.683
0.680
0.678
0 .675
0.673
0.672
0.670
0.669
0.669
0.668
0.667
0.667
0.666
0.662
0.660
0.658
0.657
0.654

2.736
1.735
1.519
1.427
1.376
1.345
1.323
1.307
1.294
1.284
1.276
1.270
1.265
1.260
1.257
1.253
1.250
1*247
1.245
1.243
1.229
1.223
1.217
1.211
1.204

5.172
2.607
2.134
1.946
1.846
1.784
1.743
1.712
1.689
1.671
1.657
1.645
1.635
1.626
1.619
1.613
1.608
1.603
1.598
1.595
1.571
1.559
1.548
1.536
1.525

15.170
5.616
3.886
3.272
2.968
2.789
2.671
2.587
2.525
2.478
2.440
2.409
2.383
2.362
2.343
2.327
2.314
2.302
2.291
2.281
2.222
2.193
2.165
2.138
2.111

18.260
7.463
4.840
3.934
3.495
3.241
3.076
2.960
2.876
2.810
2.759
2.717
2.682
2.653
2.629
2.608
2.589
2.572
2.558
2.545
2.466
2.428
2.392
2.356
2.322

19.051
12.815
7.628
5.755
4.877
4.383
4.070
3.856
3.700
3.582
3.490
3.416
3.355
3.304
3.261
3.224
3.193
3.164
3.139
3.118
2.984
2.922
2.861
2.803
2.746

19.051
15.127
9.075
6.676
5.551
4.923
4.529
4.260
4.067
3.921
3.807
3.716
3.642
3.579
3.527
3.482
3.443
3.410
3.379
3.353
3.193
3.117
3.044
2.975
2.909

Table A32. Values of the coefficient Baz (V yn,P) for right-hand prediction in lognormal
sequences. In the associated normal sequence the mean is assumed known and
the variance is unknown. V is the estimated coefficient of variation of
the lognormal population. Yor other values of V , see continuation of the
table.
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W W W

RIGHT PREDICTION INTERVAL Vy= 0.10 -

I n P 11 0.7500 1 0.9000 I 0.9500 I 0.9900 I 0.9950 1 0.9990 1 0.9995 I
--------- ----------------- I.---,--------- - - -------- - - -

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16,
17
18
19
20
30
40
60

120
00

L,
00
M~

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

0.904
0.753
0.710
0.690
0.678
0.671
0*665
0.661
0.658
0.656
0.653
010651
0.650
0.649
0.648
0.647
0.646
0.645
0.645
0*645
0.641
0.640
0.638
0.636
0.634

2.438
1.597
1.409
1.329
1.284
1.256
1.237
1.222
1.211
1.203
1.196
1.190
1.185
1.181
1.178
1.175
1.172
1.170
1.168
1.166
1.154
1.148
1.143
1.137
1.132

4*275
2.332
1.939
1.779
1.693
1.640
1.604
1.578
1.558
1.542
1.530
1.519
1.511
1.503
1.497
1.492
1.487
1.483
1.479
1.476
1.455
1.445
1.435
1.425
1.415

8.717
4.578
3.342
2.868
2.626
2.481
2.385
2.316
2.265
2.226
2.194
2.169
2.148
2.129
2.114
2.101
2.090
2.079
2.070
2.062
2.012
1.988
1.965
1.942
1.919

9.080 I
5.733 I
4.042 I
3.378 1
3.042 1
2.843 I
2.712 I
2.619 I
2.551 1
2.498 I
2.456 I
2.423 1
2.394 I
2.370 I
2.350 I
2.333 1
2.317 I
2.304 1
2.292 1
2.281 I
2.216 1
2.185 1
2.154 1
2.125 1
2.096 1

9.096
8.120
5.828
4.671
4.068
3.712
3.480
3.319
3.200
3.110
3.038
2.980
2.933
2.893
2.859
2.830
2.805
2.782
2.762
2.745
2.639
2.588
2.539
2.492
2.446

9.096
8.709
6.603
5.262
4.534
4.101
3.819
3.622
3.478
3.368
3.282
3.213
3.155
3.107
3.067
3.032
3.002
2.976
2.952
2.931
2.805
2.745
2.687
2.631
2.578

LN
Table A32 (cont.). Values of the coefficient 6a (Vy,n,P) for right-prediction in

lognormal sequences. In the associated normal sequence the mean
is known and the variance is not. Estimated coefficient of
variation of the lognormal population: Vy = 0.10.
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W W W ww

RIGHT PREDICTION INTERVAL Vy= 0.20

TI O 'I 07500 I 0.9000 I 0.9500 1 0,9900 1 0.9950 I 0.9990 I 0.9995 I------ -- -- -- -- -------- -- - - - -------

U.
00~

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
30
40
60

120
00

II
II
II
II
II
II
II
II
I!
II
II
II
II
II
I!
II
II
II
II
II
II
II
II
II
II

0.818
0.693
0.658
0.641
0.631
0.625
0.620
0.616
0.614
0.612
0.610
0.609
0.608
0.607
0.606
0.605
0.604
0.604
0.604
0.603
0.600
0.599
0.597
0.596
0.594

10953 1
1.360 I
1.218 1
1.155 I
1.121 1
1.099 1
1.084 1
1.073 1
1.064 I
1.057 I
1.052 I
1.047 I
1.043 1
1.040 1
1.038 I
1.035 I
1.033 I
1.031 1
1.030 I
1.028 I
1.019 I
1.014 I
1.010 1
1.005 1
1.001 I

3.008
1.882
1.609
1.494
1.431
1.391
1.365
1.345
1.330
1.318
1.309
1.301
1.295
1.289
1.284
1.280
1.277
1.273
1.270
1.268
1.252
1.244
1.237
1.229
1.222

4.175
3.150
2.514
2.230
2.076
1.982
1.918.
1.871
1.837
1.810
1.789
1.771
1.756
1.744
1.733
1.724
1.716
1.709
1.702
1.697
1.662
1.644
1.628
1.612
1.595

4.183
3.608
2.893
2.535
2.337
2.214
2.132
2.072
2.028
1.993
1.966
1.943
1.924
1.908
1.895
1.883
1.872
1.863
1.855
1.848
1.804
1.782
1.761
1.740
1.720

4.183
4.134
3.640
3.192
2.906
2.721
2.593
2.501
2.432
2.378
2.335
2.299
2.270
2.245
2.225
2.206
2.191
2.176
2.164
2.153
2.085
2.052
2.020
1.989
1.959

4.183
4.175
3.866
3.437
3.131
2.923
2.777
2.671
2.592
2.529
2.479
2.439
2.405
2.376
2.352
2.331
2.312
20296
2.282
2.269
2.191
2.153
2.116
2.080
2.045

Table A32 (cont.). Values of the coefficient 69 (V 1 nP) for right-prediction in
lognormal sequences. In the associated normal sequence the mean
is known and the variance is not. Estimated coefficient of
variation of the lognotmal population: Vy = 0.20.
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W W W

RIGHT PRECICTION INTERVAL Vy Vx0.40

I nP II 0.7500 1 0.9000 I 0.9500 I 0.9900 1 0.9950 1 0.9990 I 0.9995 I

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
30
40
60

120
00

II
II
II
II
II
II
'I
II
II
II
II
II
II
I!
II
II
11
11
II
'I
II
II
11
II
II

0.675
0.590
0.565
0.553
0.546
0.542
0.539
0.536
0.535
0.533
0.532
0.531
0.530
0.529
0.528
0.528
0.527
0.527
0.527
0.526
0.524
0.523
0.522
0.521
0.520

1.312
1.009
0.927
0.890
0.869
0.855
0.846
0.839
0.833
0.829
0.826
0.823
0.821
0.819
0.817
0.816
0.814
0.813
0.812
0.811
0.805
0.802
0.799
0.797
0.794

1.682
1.280
1.145
1.084
1.049
1.027
1.012
1.001
0.992
0.986
0.980
0.976
0.972
0.969
0.966
0.964
0.962
0*960
0.958
0.957
0.947
0.943
0.938
0.934
0.929

1.832
1.715
1.536
1.430
1.367
1.325
1.296
1.274
1.258
1.245
1.235
1.226
1.219
1.213
1.208
1.203
1.199
1.195
1.192
1.190
1.172
1.163
1.154
1.146
1.138

1.832
1.795
1.653
1.543
1.472
1.424
1.390
1.365
1.345
1.330
1.318
1.308
1.299
1.292
1.285
1.280
1.275
1.271
1.267
1.263
1.242
1.232
1.221
1.211
1.201

1.832
1.831
1.798
1.724
1.656
1.603
1.563
1.531
1.507
1.487
1.471
1.458
1.446
1.436
1.428
1.421
1.414
1.408
1.403
1.399
1.370
1.356
1.342
1.328
1.315

1.832
1.832
1.820
1.770
1.711
1.660
1.620
1.588
1.562
1.541
1.524
1.509
1.497
1.487
1.478
1.470
1.463
1.456
1.451
1.446
1.414
1.399
1.383
1.368
1.353

Table A32 (cont.). Values of the coefficient L(Vy,n,P) for right-prediction in
lognormal sequences. In the associated normal sequence the mean
is known and the variance is not. Estimated coefficient of
variation of the lognormal population: Vy = 0.40.
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W

RIGHT PREDICTION INTERVAL VY = 0.05
- - - - - - - - - - - - - - - -

qQ 7-

I 11 0*7500 1 0*9000 1 0*9500 1 0.9900 1 C,9950 I Oo9990 1 0.9995 1n ------------- ---
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
30
40
60

120
00

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

1.455
1. 199
1.128
1.094
1.074
1.062
1.052
1.045
1.041
1.037
1.032
1.030
1.028
1.025
1.024
1.022
1.021
1.020
1.020
1.018
1.013
1.010
1.007
1.004
1.000

2.272
1.441
1.261
1.185
1.143
1.117
1.098
1.085
1.075
1.066
1.060
1.055
1.050
1.047
1.044
1.041
1.038
1.035
1.034
1.032
1.021
1.016
1.010
1.005
1.000

3.391
1.709
1.399
1.276
1.210
1.170
1.143
1.123
1.107
1.095
1.086
1.078
1.072
1.066
1.062
1.058
1.054
1.051
1.048
1.046
1.030
1.022
1.015
1.007
1.000

7.185
2.660
1.841
1.550
1.406
1.321
1.265
1.225
1.196
1.174
1.156
1.141
1.129
1.119
1.110
1.102
1.096
1.090
1.085
1.081
1.052
1.039
1.026
1.013
1.000

7.865
3.214
2.085
1.694
1.506
1.396
1.325
1.275
1.239
1.210
1.188
1.170
1.155
1.143
1.132
1.123
1.115
1.108
1.102
1.096
1.062
1.046
1.030
1.015
1.000

6.938
4.667
2.778
2.096
1.776
1.596
1.482
1.404
1.348
1.305
1.271
1.244
1.222
1.203
1.188
1.174
1.163
1.152
1.143
1.136
1.087
1.064
1.042
1.021
1.000

6.549
5.200
3.120
2.295
1.908
1.693
1.557
1.465
1.398
1.348
1.309
1.278
1.252
1.230
1.213
1.197
1.184
1.172
1.162
1.153
1.098
1.072
1.047
1.023
1.000

Table A33. Values of the penalty ratio r (V, n,P) for right-hand prediction in log-
normal sequences. In the associated normal sequence the mean is known
but the variance is not. V is the estimated coefficient of variation of
the lognormal population. Yor other values of VY, see continuation of the
table.
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W W W

RIGHT PREDICTION INTERVAL V 0.10

I~P I 0.7500 I 0.9000 1 0.9500 1 0.9900 1 0,S950 1 0,9990 I 0.9995 I
- ----------------------------- --.-------. -------

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
'I
II
II
II
II

1.427
1.188
1.121
1.089
t.070
1.058
1.049
1.043
1.039
1.035
1.031
1*028
1.027
1.024
1.023
1*021
1.020
1.019
1.019
1.017
1.012
1.009
1.007
1.004

00 II 1.000 I

2.154 1 3.021 1
1.412 1 1.648 1
1.246 1 1.370 1
1.174 I 1.257 1
1.135 I 1.197 I
1.110 1 1.159 1
1.093 1 1.134 1
1.080 1 1.115 1
1.071 I 1.101 I
1.063 1 1.090 I
1.057 I 1.081 1
1.052 I 1.074 1
1.048 1 1.068 1
1.044 I 1.062 I
1.041 1 1.058 1
1.039 1 1.054 I
1.036 1 1.051 I
1.034 1 1.048 I
1.032 I 1.045 1
1.030 I 1.043 I
1.020 1 1.028 1
1.015 1 1.021 1
1.010 I 1.014 1
1.C05 1 1.007 1
1.000 1 1.000 I

Table A33 (cont.). Values of the penalty ratio r LN(V ,n,P) for right-prediction in
lognormal sequences. The asso~ialed normal sequence has known
mean and unknown variance. Estimated coefficient of variation of
the lognormal population: Vy = 0.10.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
30
40
60

120

Lii

10

4.542 1
2.385 1
1.741 1
1.494 I
1.368 1
1.293 1
1.242 1
1.207 I
1.180 I
1.160 1
1.143 1
1.130 1
1.119 1
1.110 1
1.102 1
1.095 1
1.089 1
1.083 I
1.079 I
1.075 1
1.049 1
1.036 1
1.024 I
1.012 1
1.000 1

4.332
2.735
1.928
1.612
1.451
1.356
1.294
1.250
1.217
1.192
1.172
1.156
1.142
1.131
1.121
1.113
1.106
1.099
1.094
1.088
1.057
1.042
1.028
1.014
1.C00

3.719 I
3.320 1
2.383 1
1.910 I
1.663 I
1.518 I
1.423 1
1.357 I
1.308 I
1.271 1
1.242 I
1.219 I
1.199 I
1.183 1
1.169 I
1.157 1
1.147 1
1.137 I
1.129 I
1.122 1
1.079 I
1.058 1
1.038 I
1.019 1
1.000 I

3.529
3.378
2.561
2.041
1.759
1.591
1.481
1.405
1.349
1.307
1.273
1.246
1.224
1.205
1.190
1.176
1.164
1.154
1.145
1.137
1.088
1.065
1.042
1.021
1.000
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W W W

RIGHT PREDICTION INTERVAL VY 0.20
--------------------------------------- ---------- ---------- ---------

I n P I1 0.7500 1 0.9000 1 0.9500 1 0,9900 1 0.9950 I 0.9990 I 0.9995 1
--------. 37-----.9------.4-2----.----I-2.432 2.----------------

1 1 11 1,378 1 1,952 1 2.462 1 2,617 1 2,432 1 2.136 1 2.045 1

H

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
30
40
60

120

II
II
II
I!
II
II
II
II
Il
II
II
II
II
II
II
II
II
II
II
II
II
II
II

1.168
1.108
1.080
1.063
1.052
1.044
1.038
1.035
1.031
1.027
1.025
1.024
1.022
1.020
1.019
1.018
1.017
1.017
1.016
1.011
1.008
1.006
1.004

1 00 II 1.000 I

1.358
1.216
1.154
1.120
1.098
1.083
1.072
1.063
1.056
1.051
1.046
1.043
1.039
1.037
1.034
1.032
1.030
1.029
1.027
1.018
1.013
1.009
1.004
1.000

1.541
1.317
1.223
1.171
1.139
1.117
1.101
1.089
1.079
1.071
1.065
1.060
1.055
1.051
1.048
1.045
1.042
1.040
1.038
1.025
1.019
1.012
1.006
1.000

1.975 I
1.576 I
1.398 I
1.302 I
1.242 I
1.202 I
1.173 1
1.151 1
1.135 1
1.121 1
1.110 1
1.101 1
1.093 1
1.086 I
1.080 1
1.076 I
1.071 1
1.067 I
1.064 I
1.042 1
1.031 1
1.020 1
1.010 I
1.000 1

2.098
1.682
1.474
1.359
1.287
1.239
1.205
1.179
1.159
1.143
1.130
1.118
1.109
1.101
1.095
1.088
1.083
1.079
1.074
1.048
1.036
1.024
1.012
1.000 I

2.110 1
1.859 1
1.630 I
1.484 1
1.389 I
1.324 I
1.277 1
1.241 I
1.214 1
1.192 I
1.174 I
1.159 I
1.146 I
1.136 1
1.126 I
1.118 I
1.111' 1
1.105 I
1.099 1
1.064 I
1.048 I
1.031 1
1.016 1
1.000 I

2.041
1.890
1.681
1.531
1.429
1.358
1.306
1.267
1.237
1.212
1.192
1.176
1.162
1.150
1.140
1.131
1.123
1.116
1. 110
1.071
1.052
1.034
1.017
1.000

Table A33 (cont.). Values of the penalty ratio ry (V ,nP) for right-prediction in
lognormal sequences. The associated normal sequence has known
mean and unknown variance. Estimated coefficient of variation
of the lognormal population: Vy = 0.20.
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W W W

RIGHT PREDICTION INTERVAL Vy= 0.40

I n 11 0.7500 1 0.9000 1 0,9500 1 0,9900 I 0.9950 I 0.9990 1 0,9995 1----------------------------------------- ------

I I II 1.298 I 1.653 I 1.810 1 1.610 I 1.525 I 1.393 1 1.354 I
I 2 11 1.134 I 1.271 I 1.377 1 1.508 I 1.494 I 1.393 I 1.354 1
I 3 II 1.087 I 1.168 I 1.232 I 1.350 1 1.376 1 1.368 I 1.345 I
1 4 II 1.064 1 1.120 I 1.166 I 1.257 1 1.285 I 1.312 I 1.308 I
I 5 II 1.051 I 1.094 I 1.129 1 1.201 1 1.225 1 1.260 1 1.265 1
I 6 II 1.042 1 1.077 I 1.105 1 1.165 I 1.185 I 1.219 I 1.227 1
I 7 II 1.036 1 1.065 1 1.089 1 1.139 1 1.157 I 1.189 I 1.197 1
I 8 II 1.031 1 1.057 I 1.077 1 1.120 1 1.136 1 1.165 1 1.173 1
I 9 II 1.028 I 1.050 I 1.068 1 1.106 1 1.120 I 1.146 1 1.154 I
I 10 II 1.025 I 1.045 1 1.061 I 1.095 I 1.107 I 1.131 1 1.139 1
1 11 II 1.022 I 1.040 I 1.055 1 1.086 I 1.097 I 1.119 1 1.126 I
I 12 11 1.020 1 1.037 1 1.050 I 1.078 I 1.088 I 1.109 1 1.116 1

U I 13 II 1.019 I 1.034 1 1.046 1 1.072 I 1.081 I 1.100 I 1.107 1
1%0 I 14 11 1.017 I 1.031 1 1.042 I 1.066 1 1.075 I 1.093 1 1.099 1

1 15 II 1.016 I 1.029 I 1.040 I 1.062 I 1.C70 1 1.086 1 1.092 I
1 16 II 1.016 I 1.027 I 1.037 1 1.058 I 1.065 1 1.081 1 1.086 1
I 17 II 1.015 I 1.025 1 1.035 I 1.054 I 1.061 I 1.076 1 1.081 I
1 18 11 1.014 1 1.024 1 1.033 I 1.051 1 1.058 I 1.071 1 1.076 I
1 19 II 1.014 1 1.023 1 1.031 I 1.048 1 1.055 I 1.068 I 1.072 1
I 20 I 1.013 1 1.021 1 1.029 1 1.046 1 1.052 I 1.064 I 1.069 I
1 30 1 1.C09 1 1.014 I 1.019 1 1.030 1 1.C34 1 1.042 I 1.045 I
I 40 II 1.007 1 1.011 I 1.014 1 1.022 1 1.025 1 1.032 I 1.034 1
I 60 11 1.005 I 1.007 1 1.010 1 1.015 I 1.017 I 1.021 1 1.022 I
I 120 II 1.003 1 1.C04 I 1.005 I 1.007 1 1.008 I 1.010 1 1.011 I
I o II 1.000 1 1.000 I 1.000 1 1.000 I 1.000 1 1.000 I 1.000 1

Table A33 (cont.). Values of the penalty ratio ra (V ,nP) for right-prediction in
lognormal sequences. The associated normal sequence has known
mean and unknown variance. Estimated coefficient of variation
of the lognormal population: Vy = 0.40.
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1W W

LEFT PREDICTION INTERVAL V )x 0.05

I 11 I 0.7500 1 0.9000 1 0.9500 1 0,9900 1 0.9950 1 0.9990 I 0.9995 1
--------------- -- --- - - ---------------- ---- ------

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
30
40
60

120
00

I!
II
II
II
II
II
II
II
II
II
II
II
II
11
II
II
II
II
II
II
II
II
I!
II
II

0.904
0.778
0.730
0.707
0.692
0.681
0.674
0.668
0.664
0.660
0.657
0.655
0.653
0.652
0.650
0.649
0.648
0.647
0.646
0.645
0.639
0.636
0.634
0.631
0.628

1.780
1.529
1.438
1.388
1.360
1.340
1.326
1.314
1.307
1.299
1.292
1.289
1.285
1.281
1.277
1.275
1.272
1.270
1.268
1*267
1.257
1.250
1.247
1.240
1.235

2.321
1.992
1.870
1.807
1.769
1.743
1.723
1.710
1.698
1.689
1.682
1.675
1.670
1.666
1.662
1.659
1.656
1.653
1.651
1.649
1.634
1.627
1.620
1.613
1.606

3.375
2.887
2.709
2.616
2.561
2.521
2.496
2.473
2.458
2.443
2.430
2.423
2.415
2.408
2.403
2.398
2.393
2.388
2.385
2.383
2.364
2.351
2.344
2.331
2.321

3.774
3.225
3.024
2.921
2.857
2.814
2.783
2.759
2.741
2.726
2.713
2.704
2.695
2.687
2.681
2.675
2.670
2.666
2.662
2.658
2.635
2.623
2.612
2.601
2.590

4.618
3.937
3.691
3.561
3.485
3.428
3.394
3.362
3.342
3.321
3.304
3.294
3.283
3.273
3.266
3.259
3.253
3.245
3.242
3.238
3.212
3.194
3.184
3.166
3.153

4.956
4.222
3.956
30816
3.734
3.673
3.636
3.602
3.581
3.558
3.540
3.529
3.517
3.506
3.499
3.491
3.484
3.477
3.473
3.469
3.440
3.421
3.410
3.391
3.377

Table A34. Values of the coefficient LN(Vy,n,P) for left-hand prediction in lognormal
sequences. The associated nrmal sequences have unknown mean and known
variance. V is the coefficient of variation of the lognormal population.
For other values of Vy, see continuation of the table.
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0 S

LEFT PREDICTION INTERVAL Vyz= 0.10

I II 0*7500 I 0.9000 I 0.9500 I 0.9900 1 0.9950 1 0.9990 1 0.9995 I
-------------------- -- ------1 -- - ------------

II
II
II
II
II
II
II
II
I!
II
II
II
II
II
II
II
IT
II
II
II
II
II
II
II
II

0.857
0.732
0*685
0.662
0.647
0.637
0.630
0.624
0.620
0.616
0.613
0.611
0.609
0.607
0.606
0.605
0.604
0.603
0.602
0.601
0.595
0*592
0.590
0.587
0.584

1.749
1.489
1.396
1.346
1.317
1.296
1.282
1.270
1.263
1.254
1.247
1.244
1.240
1.236
1.233
1.231
1.228
1.226
1.223
1.222
1.212
1.205
1.202
1.195
1.190

2.318
1.970
1.842
1.777
1.737
1.710
1.690
1.676
1.664
1.654
1.647
1.640
1.635
1.631
1.626
1.623
1.620
1.617
1.615
1.612
1.598
1.590
1.583
1.576
1.569

3*469
2.930
2.736
2.635
2.575
2.532
2.506
2.481
2.465
2.449
2.435
2.427
2.419
2.411
2.406
2.401
2.395
2.390
2.387
2.385
2.364
2.350
2.342
2.329
2.318

3.920
3.302
3.081
2.967
2.897
2.850
2.816
2.790
2.770
2.755
2.740
2.730
2.720
2.712
2.705
2.699
2.693
2.689
2.685
2.680
2.656
2.643
2.631
2.618
2.607

4.898
4.107
3.825
3.679
3.593
3.530
3.491
3.455
3.433
3.409
3.391
3.379
3.367
3.356
3.348
3.341
3.333
3.325
3.321
3.317
3.288
3.268
3.257
3.237
3.222

5.301
4.435
4.128
3.968
3.874
3.806
3.763
3.725
3.701
3.675
3.655
3.642
3.629
3.617
3.609
3.600
3.591
3.584
3.580
3.575
3.542
3.521
3.509
3.488
3.472

Table A34 (cont.). Values of the coefficient
lognormal sequences. The
mean and known variance.
population: Vy = 0.10.

SLN(V,n,P) for left-prediction in
associated normal sequences have unknown
Coefficient of variation of the lognormal

(n

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
30
40
60

120
00

a LA W W W W M



0

LEFT PREDICTION INTERVAL Vy= 0.20
---------------------------------- ~----------

I n P II 0.7500 I 0.9000 1 0.9500 1 0.9900 1 0.9950 I 0.9990 1 0.9995 I

I 1 II 0.771 1 1.691 1 2.319 I 3.685 I 4.254 1 5.561 1 6.125 I
I 2 II 0.648 I 1.415 I 1.930 I 3.028 1 3.479 1 4.497 I 4.930 1

I 3 II 0.602 I 1.317 I 1.791 I 2.799 I 3.209 1 4.133 I 4.524 I
1 4 II 0.579 I 1.265 I 1.721 I 2.681 1 3.073 I 3.948 I 4.316 1
I 5 II 0.565 I 1.235 I 1.678 1 2.612 I 2.990 1 3.839 1 4.196 1
I 6 II 0.555 1 1.213 I 1.649 I 2.563 1 2.933 I 3.760 I 4.109 I
I 7 II 0.548 I 1.199 I 1.627 I 2.532 I 2.894 I 3.711 I 4.055 I
I 8 II 0.543 1 1.187 I 1.612 I 2.504 I 2.863 I 3.668 I 4.006 I
I 9 II 0.539 I 1.179 1 1.599 I 2.486 I 2.839 I 3.640 I 3.975 1
I 10 II 0.535 I 1.171 I 1.589 I 2.467 I 2.821 I 3.610 1 3.943 I
I 11 II 0.532 I 1.163 I 1.581 I 2.451 I 2.805 I 3.587 I 3.917 I
I 12 II 0.531 I 1.160 I 1.574 I 2.442 I 2.792 I 3.573 1 3.901 I
I 13 II 0.529 I 1.156 1 1.569 1 2.433 1 2.781 I 3.558 I 3.885 1

(_n
k I 14 II 0.527 I 1.152 I 1.564 I 2.424 I 2.772 I 3.544 I 3.869 I
U11 1 15 II 0.525 I 1.148 I 1.559 I 2.419 I 2.763 1 3.535 I 3.860 1

I 16 II 0.524 I 1.146 I 1.556 1 2.412 I 2.756 I 3.526 1 3.848 1
1 17 II 0.523 I 1.143 I 1.553 I 2.405 1 2.750 1 3.517 I 3.837 I
1 18 11 0.522 1 1.141 1 1.549 1 2.400 I 2.044 I 3.506 I 3.828 1
I 19 II 0.521 I 1.139 I 1.547 I 2.396 I 2.740 1 3.501 1 3.823 1
I 20 II 0.520 1 1.138 I 1.545 1 2.394 1 2.734 I 3.497 I 3.817 1
I 30 II 0.515 I 1.127 1 1.529 1 2.370 1 2.706 I 3.460 1 3.776 I
I 40 11 0.512 1 1.120 1 1.521 I 2.355 1 2.691 I 3.436 I 3.749 I
I 60 11 0.510 I 1.117 I 1.513 I 2.346 1 2.677 1 3.423 I 3.735 I
I 120 II 0.507 I 1.110 1 1.506 1 2.330 I 2.662 I 3.399 1 3.708 I
I o II 0.504 1 1.104 1 1.498 I 2.319 I 2.649 I 3.381 I 3.688 I

--------------------------------------------------- --------------- ------------

Table A34 (cont.). Values of the coefficient S (Vy,n,P) for left-prediction in
lognormal sequences. The associated normal sequences have unknown
mean and known variance. Coefficient of variation of the lognormal
population: Vy = 0.20.
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is a a W

LEFT PREDICTION INTERVAL % = 0.40

p
I 11I 0.7500 1 0.9000 1 0.9500 1 0,9900 1 0,9950 I 0,9990 1 0,9995 I

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
30
40
60

120
0o

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
*11
II
II
II
II
II
II
II

0.623
0.506
0.463
0.442
0.429
00420
0.414
0.408
0.405
00401
0.399
0.397
0.395
0.394
0.392
0.391
0.390
0.389
0.389
0.388
0.383
0.380
0.378
0.376
0.373

10588
1.282
1.177
1.122
1.090
1.068
1.054
1.040
1.032
10024
1.016
1.013
1.008
1.004
1.001
0.998
0.995
0.993
0.991
0.990
0.979
0.971
0.968
0.961
0.955

2.335
1.865
1.703
1.622
1.573
1.541
1.516
1.499
1.485
1.474
10465
1.457
1.451
1.446
1.441
1.437
1.433
1.430
1.427
1.425
1.407
1.398
1.390
10382
1.374

40207
3.265
2.955
2.799
2,709
2.645
2.605
2.569
2.546
2.522
2.502
2.490
2.479
2.467
2.461
2.452
2.444
2.437
2.432
2.429
2.400
2.380
2.369
2.350
2.335

5.086
3.903
3.517
3.326
3.212
3.135
3.082
3.041
3.009
2.985
2.962
2.946
2.931
2.918
2.907
2.898
2.889
2.882
2.876
2.869
2.831
2.811
2.794
2.774
2.756

7.322
5.478
4.894
4.605
4.439
4.319
4.246
4.181
4.140
4.096
4.062
4.041
4.019
3.999
3.985
3.972
3.958
3.943
3.936
3.929
3.876
3.841
3.822
3.787
3.761

8.381
6.205
5.523
5.186
4.994
4.856
4.771
4.695
4.648
4.598
4.559
4.534
4.509
4.485
4.470
4.454
4.437
4.422
4.415
4.405
4.343
4.303
4.282
4.242
4.211

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I -
I
I
I
I
I
I
I
I
I
I

LN
Table A34 (cont.). Values of the coefficient PZ(Vy,n,P) for left-prediction in

lognormal sequences. The associated normal sequences have unknown
mean and known variance. Coefficient of variation of the lognormal
population: Vy = 0.40.
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W W

LEFT PRECICTION INTERVAL Vy= 0.05

I I II 0.7500 1 0.9000 I 0.9500 1 0.9900 1 0.9950 1 0.5990 I 0.9995 I

u,

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
30
40
60

120
00

II
II
II
II
II
II
11
II
II
II
II
II
II
II
II
11
II
II
II
II
II
II
II
II
II

1.440
1.239
1.163
1.126
1.102
1.085
1.074
1.064
1.058
1.052
1.047
1.044
1.041
1.038
1.034
1.033
1.031
1.030
1.028
1.027
1.017
1.013
1.009
1.005
1.000

1.442
1.238
1.164
1.124
1.101
1.085
1.074
1.064
1.058
1.052
1.046
1.044
1.040
1.037
1.035
1.033
1.030
1.029
1.027
1.026
1.018
1.012
1.010
1.004
1.000

1*445
1.240
1.164
1.125
1.101
1.085
1.073
1.064
1.057
1.052
1.047
1.043
1.040
1.037
1.035
1.033
1.031
1.029
1.028
1.026
1.017
1.013
1.008
1.005
1.000

1.454 I
1.244 I
1.167 1
1.127 I
1.103 1
1.086 1
1.075 1
1.066 1
1.059 1
1.053 I
1.047 I
1.044 1
1.041 1
1.037 1
1.035 1
1.033 1
1.031 I
1.029 I
1.028 1
1.027 I
1.018 1
1.013 1
1.010 I
1.004 1
1.000 1

1.457
1.245
1.168
1.128
1.103
1.086
1.075
1.065
1.058
1.053
1.048
1.044
1.041
1.038
1.035
1.033
1.031
1.029
1.028
1.026
1.018
1.013
1.009
1.004
1.000

1.465
1.249
1.171
1.130
1.105
1.087
1.076
1.066
1.060
1.053
1.048
1.045
1.041
1.038
1.036
1.034
1.032
1.029
1.028
1.027
1.019
1.013
1.010
1.004
1.c00

1.468
1.250
1.171
1.130
1.106
1.088
1.077
1.067
1.060
1.054
1.048
1.045
1.042
1.038
1.036
1.034
1.032
1.030
1.029
1.027
1.019
1.013
1.010
1.004
1.000

Table A35. Values of the penalty ratio rLN(Vy,n,P) for left-hand prediction in log-
normal sequences. The associaled normal sequences have unknown mean and
known variance. V is the coefficient of variation of the lognormal
population. For other values of VY, see continuation of the table.
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W W W a W a

LEFT PREDICTION INTERVAL Vy= 0.10-----.----. 9----9--.9---.9----9-------- - - .99-----------
I n P 11 0.7500 I 0.9000 1 0.9500 I 0.9900 1 0.9950 1 0.9990 1 0.9995 1

----------------------------- -------------

I I II 1.468 1
I 2 II 1.253 I
I 3 11 1.173 1
1 4 II 1.133 1
I 5 II 1.108 I
I 6 II 1.089 I
I 7 II 1.078 1
1 8 II 1.068 I
I 9 II 1.061 1
I 10 11 1.055 I
I 11 II 1.050 1
I 12 II 1.046 1
I 13 II 1.043 I
I 14 II 1.040 I
I 15 II 1.036 1
1 16 II 1.035 I
1 17 II 1.033 I
I 18 II 1.031 I
1 19 11 1.030 1
1 20 II 1.028 1
I 30 II 1.018 I
1 40 II 1.013 1
I 60 II 1.010 I
1 120 II 1.005 I
I 00 II 1.000 1

1.470 I
1.252 I
1.173 I
1.131 1
1.107 I
1.089 I
1.078 1
1.068 1
1.061 1
1.055 I
1.048 I
1.046 I
1.042 I
1.039 1
1.036 1
1.035 1
1.032 I
1.030 I
1.029 I
1.028 1
1.019 I
1.013 I
1.010 I
l.C04 I
1.000 I

1.478 I 1.496 1 1.504 I 1.520 I 1.527 I
1.256
1.174
1.133
1.107
1.090
1.077
1.068
1.061
1.054
1.050
1.046
1.042
1.039
1.037
1.035
1.033
1.031
1.029
1.028
1.018
1.014
1.009
1.005

1*264 I
1.180 I
1.136 1
1.111 I
1.092 1
1.081 1
1.070 I
1.063 I
1.056 I
1.050 I
1.047 I
1.043 I
1.040 I
1.038 I
1.035 I
1.033 I
1.031 I
1.030 I
1.029 I
1.020 I
1.014 I
1.010 1
1.004 I

1.000 1 1.000 1

1.267
1.182
1.138
1.112
1.093
1.080
1.070
1.063
1.057
1.051
1.047
1.044
1.040
1.038
1.036
1.033
1.031
1.030
1.028
1.019
1.014
1.009
1.C04
1.000

1.274 1
1.187 1
1.142 I
1.115 I
1.095 I
1.083 1
1.072 I
1.065 I
1.058 1
1.052 1
1.049 I
1.045 I
1.041 I
1.039 I
1.037 1
1.034 I
1.032 I
1.031 1
1.029 1
1.020 I
1.014 I
1.011 1
1.005 1
1.000 I

1.277
1.189
1.143
1.116
1.096
1.084
1.073
1.066
1.059
1.053
1.049
1.045
1.042
1.040
1.037
1.034
1.032
1.031
1.030
1.020
1.014
1.011
1.005
1.000

Table A35 (cont.). Values of the penalty ratio r (V ,n,P) for left-prediction in
lognormal sequences. The associaled normal sequences have unknown
mean and known variance. Coefficient of variation of the lognormal
population: Vy = 0.10.
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40V

LEFT PREDICTION INTERVAL Vy= 0.20

I n II 0*7500 I 0.9000 I 0.9500 I 0.9900 I 0.9950 1 0.9990 I 0.9995 1

I 1 II 1.528 1 1.531 I 1.547 1 1.589 1 1.606 I 1.645 I 1.661 I
I 2 II 1.284 I 1.281 I 1.288 I 1.306 I 1.313 I 1.330 1 1.337 1
I 3 II 1.193 I 1.192 1 1.196 I 1.207 1 1.212 1 1.223 I 1.227 1
I 4 II 1.148 1 1.145 1 1.149 1 1.156 1 1.160 I 1.168 1 1.170 I
1 5 II 1.120 1 1.118 I 1.120 I 1.127 1 1.129 1 1.136 I 1.138 I
I 6 II 1.100 1 1.099 I 1.100 1 1.105 1 1.107 I 1.112 1 1.114 I
I 7 II 1.087 1 1.086 I 1.086 1 1.092 1 1.093 1 1.098 1 1.099 1
I 8 II 1.076 I 1.075 I 1.076 I 1.080 I 1.081 I 1.085 I 1.086 I
I 9 II 1.068 1 1.068 1 1.067 1 1.072 1 1.072 1 1.077 I 1.078 I
1 10 11 1.061 I 1.060 I 1.061 I 1.064 I 1.065 1 1.068 I 1.069 1
I 11 II 1.055 I 1.053 1 1.055 I 1.057 I 1.059 1 1.061 I 1.062 I
I 12 II 1.052 I 1.051 I 1.051 I 1.053 I 1.054 1 1.057 I 1.058 1
I 13 II 1.048 1 1.047 I 1.047 I 1.049 I 1.050 I 1.052 I 1.053 1

k I 14 It 1.044 1 1.043 I 1.044 I 1.045 1 1.046 1 1.048 I 1.049 I
% I 15 II '1.041 I 1.040 I 1.041 I 1.043 1 1.043 I 1.046 I 1.047 I

I 16 II 1.039 I 1.038 I 1.038 I 1.040 I 1.041 1 1.043 1 1.044 I
I 17 11 1.037 I 1.035 I 1.036 I 1.037 1 1.038 1 1.040 I 1.041 I
1 18 II 1.035 I 1.033 1 1.034 I 1.035 1 1.036 I 1.037 I 1.038 I
1 19 II 1.033 I 1.031 I 1.032 I 1.034 I 1.034 I 1.036 I 1.037 I
I 20 II 1.031 1 1.030 1 1.031 1 1.032 I 1.032 I 1.034 I 1.035 1
1 30 II 1.020 I 1.021 I 1.020 I 1.022 I 1.022 I 1.024 I 1.024 1
I 40 II 1.015 I 1.014 I 1.015 I 1.016 I 1.016 1 1.016 1 1.017 1
1 60 II 1.011 I 1.011 1 1.010 I 1.012 I 1.011 1 1.012 I 1.013 I
I 120 II 1.006 I 1.005 I 1.005 1 1.005 I 1.005 I 1.005 I 1.006 I
I o II 1.000 I 1.000 1 1.000 1 1.000 1 1.000 I 1.000 1 1.000 I

Table A35 (cont.). Values of the penalty ratio rE (V ,n,P) for left-prediction in
lognormal sequences. The associa ed normal sequences have unknown
mean and known variance. Coefficient of variation of the lognormal
population: vy = 0.20.
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0 0 0

LEFT PREDICTION INTERVAL VY 0.40
--------.--------.--------.--------.--------.- 9--------------- ------
1 P 11 I 0.7500 1 0.90C0 1 0.9500 1 0.9900 1 0.9950 1 0.9990 1 0.9995 1

--------- n - - - - - - --- --------- -- --- - - -

C>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
30
40
60

120
00

II
II
II
11
II
11
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

1.670
1.356
1.242
1.185
1.150
1.124
1.108
1.094
1.085
1.076
1.069
1.064
1.059
1.055
1.050
1.048
1.046
1.043
1.041
1.039
1.025
1.018
1.014
1.007
1.000

1.662
1.342
1.232
1.175
1.142
1.118
1.103
1.089
1.081
1.072
1.064
1.060
1.056
1.051
1.048
1.045
1.042
1.040
1.037
1.036
1.025
1.017
1.014
1.006
1.000

1.700
1.358
1.240
1.181
1.146
1.122
1.104
1.092
1.081
1.073
1.067
1.061
1.056
1.053
1.049
1.046
1.044
1.041
1.039
1.037
1.024
1.018
1.012
1.006
1.000

1.802
1.398
1.265
1.199
1.160
1.133
1.116
1.100
1.090
1.080
1.072
1.067
1.062
1.057
1.054
1.050
1.047
1.044
1.042
1.040
1.028
1.019
1.014
1.006
1.000

1.845
1.416
1.276
1.207
1.165
1.137
1.118
1.103
1.092
1.083
1.075
1.069
1.063
1.059
1.055
1.051
1.048
1.045
1.044
1.041
1.027
1.020
1.014
1.006
1.000

1.947 1
1.457 I
1.301 1
1.225 1
1.180 I
1.148 I
1.129 1
1.112 I
1.101 1
1.089 I
1.080 I
1.075 I
1.069 I
1.063 I
1.060 I
1.056 I
1.052 I
1.048 I
1.047 I
1.045 I
1.031 1
1.021 I
1.016 I
1.007 1
1.000 I

1.990
1.473
1.312
1.231
1.186
1.153
1.133
1.115
1.104
1.092
1.082
1.077
1.071
1.065
1.062
1.058
1.053
1.050
1.048
1.046
1.031
1.022
1.017
1.007
1.000

Table A35 (cont.). Values of the penalty
lognormal sequences.

LNratio rpz(V ,n,P) for left-prediction in
The associated normal sequences have unknown

mean and known variance. Coefficient of variation of the lognormal
population: VY = 0.40.

------------------------------ -

__ "WO 0 , I I

a 0 a W Wr 1W



0 9 0

RIGHT PREDICTION INTERVAL Vy= 0.05

1 * p 11 0..500 1 0.9000 1 0.9500 1 0.9900 1 0.9950 1 0,9990 1 0.9995 1
-- --- ------------------------------------------------------------------------------

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
30
40
60

120
00

II
II
II
II
11
II
11
II
II
II
II
II
II
II
II
II
11
II
II
II
II
II
II
II
II

0.909
0.793
0.749
0.727
0.714
0.703
0.697
0.692
0.688
0.684
0.681
0*680
0.678
0.676
0.674
0.673
0.672
0*671
0.670
0.669
0*664
0.661
0.659
0.657
0.654

1.672
1.459
1.381
1.338
1.314
1.296
1. 284
1.274
1.268
1.260
1.254
1.252
1.248
1.244
1.242
1.240
1.237
1.235
1.234
1.233
1.224
1.218
1.215
1.209
1.204

2.111
1.846
1.746
1.694
1.662
1.640
1.624
1.612
1.603
1.595
1.589
1.584
1.579
1.576
1.572
1.570
1.567
1.564
1.563
1.561
1.549
1.543
1.536
1.531
1.525

2*907
2.548
2.413
2.342
2.299
2.268
2.249
2.231
2.219
2.208
2.197
2.192
2.186
2.180
2*176
2.172
2.168
2.165
2.162
2.160
2.145
2.135
2.129
2.119
2.111

3.189
2.799
2.651
2.574
2.526
2.493
2.470
2.452
2.437
2.427
2.417
2.409
2.403
2.397
2.392
2.388
2.383
2.380
2.378
2.374
2.357
2.348
2.339
2.330
2.322

3.755
3.302
3.131
3.040
2.986
2.946
2.921
2.898
2.884
2.868
2.856
2.849
2.841
2.834
2.829
2.824
2.819
2.813
2.811
2.808
2.789
2.776
2.769
2.756
2.746

3.971
3.495
3.315
3.219
3.162
3.119
3.093
3,069
3.054
3.038
3.025
3.017
3.009
3.001
2.996
2.991
2.985
2.980
2.978
2.975
2.954
2.940
2.933
2.919
2.909

Table A36. Values of the coefficient LN(V ,n,P) for right-hand prediction in log-
normal sequences. The associated normal sequences have unknown mean and
known variance. V is the coefficient of variation of the lognormal
population. For o her values of Vy, see continuation of the table.
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w w

RIGHT PREDICTION INTERVAL Vy= 0.10

11 0.7500 1 O.9c00 I 0,9500 1 0,9900 1 0.9950 1 0.9990 1 0,9995 -I ------------------------ 1------

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
30
40
60

120
00

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
I!
II
II
II
II
I!
II

0.866
0.761
0.721
0.701
0.688
0.679
0.673
0.668
0.665
0.661
0.659
0. 657
0.656
0.654
0.652
0.651
0.650
0.650
0.649
0.648
0.643
0.640
0.639
0.636
0.634

1.542
1.357
1.288
1.251
1.229
1.213
1.203
1.193
1.188
1.181
1.176
1.174
1.170
1.167
1.165
1.163
1.161
1. 159
1.158
1.157
1.149
1.144
1.141
1.136
1.132

1.919
1.693
1.607
1.562
1.534
1.515
1.501
1.491
1.483
1.476
1.471
1*466
1.462
1.459
1.456
1.454
1.452
1.449
1.448
1.446
1.435
1.430
1.425
1.420
1.415

2.577
2.284
2.172
2.113
2.077
2.051
2.035
2.020
2.010
2.000
1.992
1.987
1.982
1.977
1.974
1.971
1.967
1.964
1.962
1.961
1.948
1.939
1.934
1.926
1.919

2.802
2.489
2.368
2.305
2.266
2.238
2.219
2.204
2.192
2.183
2.175
2.169
2.163
2.159
2.154
2.151
2.148
2.145
2.143
2.140
2.125
2.118
2.111
2.103
2.096

3.242
2.891
2.756
2.684
2.640
2.608
2.588
2.569
2.558
2.545
2.535
2.530
2.523
2.517
2.513
2.509
2.505
2.501
2.499
2.497
2.481
2.470
2.464
2.454
2.446

3.406
3.042
2.901
2.825
2.780
2.747
2.726
2.707
2.695
2.682
2.671
2.665
2.659
2.652
2.648
2.644
2.639
2.635
2.634
2.631
2.614
2.603
2.597
2.586
2.578

Table A36 (cont.). Values of the coefficient SPZ(Vy1 nP) for right-prediction in
lognormal sequences. The associated-:normal sequences have unknown
mean and known variance. Coefficient of variation of the lognormal
population: Vy = 0.10.
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0

RIGHT PREDICTION INTERVAL

W W

VZ= 0.20
-~~~ -- -- - - - - - - - - - ---- -- - ------ -- -- --

I n P' 11 0.7500 1 0.9CCO 1 0.9500 1 0.9900 1 0.9950 1 0.9990 1 0.9995 1
--- - ---------- -- - -- " ---- - - -

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
30
40
60

120
00

11
II
II
1!
II
II
II
II
II
II
II
II
II
II
II
11
11
II
II
II
II
II
II
II
II

0.787
0.700
0.667
0.650
0.640
0.632
0.627
0.623
0.620
0.617
0.615
0.614
0.612
0.611
0.609
0.609
0.608
0.607
0.607
0.606
0.602
0.599
0.598
0.596
0.594

1.319
1.177
1.124
1.095
1.077
1.065
1.057
1.C50
1.045
1.040
1.036
1.034
1.032
1.029
1.027
1.026
1.024
1.023
1.022
1.021
1.015
1*010
1.008
1.004
1.001

1.595
I.431
1.367
1.333
1.312
1.298
1.287
1.280
1.273
1.268
1.264
1.261
1.258
1.255
1.253
1.251
1.250
1.248
1.247
1.246
1.237
1.233
1.229
1.226
1.222

20045 I
1.850 I
1.773 1
1.732 1
1.707 1
1.689 I
1.677 1
1.667 I
1.660 I
1.653 1
1.647 1
1.643 I
1.640 1
1.636 I
1.634 1
1.632 I
1.629 I
1.627 1
1.626 1
1.625 I
1.616 1
1.610 I
1.606 1
1.600 1
1.595 1

2.189
1.987
1.907
1.864
1.837
1.819
1.806
1.795
1.787
1.781
1.775
1.771
1.767
1.764
1.761
1.758
1.756
1.754
1.753
1.751
1.741
1.735
1.730
1.725
1.720

2.456
2.245
2.160
2.114
2.086
2.065
2.052
2.040
2.032
2.024
2.018
2.014
2.010
2.006
2.003
2.000
1.998
1.995
1.994
1.992
1.982
1.975
1.971
1.964
1.959

2.551
2.337
2.251
2.203
2.175
2.154
2.141
2.128
2.121
2.112
2.106
2.102
2.098
2.094
2.091
2.088
2.085
2.083
2.081
2.080
2.069
2.062
2.058
2.051
2.045

LN
Table A36 (cont.). Values of the coefficient pZ(Vy,n,P) for right-prediction in

lognormal sequences. The associated normal sequences have unknown
mean and known variance. Coefficient of variation of the lognormal
population: Vy = 0.20.
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9S 9

RIGHT PREDICTION INTERVAL Vy 0.40

1 1 0,7500 1 0.9000 1 0.9500 1 0.9900 1 0.9950 1 0,9990 1 0.9995 1
------------------------------------------

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
30
40
60

120
00

II
II
II
II
II
II
II
II
1!
II
I!
II
11
II
II
II
II
11
II
II
II
II
II
II
II

0.654
0*595
0.571
0.560
0.552
0.547
0.543
0.540
0.539
0.537
0.535
0.534
0.533
0.532
0.531
0.531
0.530
0.530
0.529
0.528
0.525
0.524
0.523
0.521
0.520

0.986
0.903
0.870
0.853
0.842
0.834
0.829
0.825
0.822
0.819
0.816
0.815
0.813
0.812
0.811
0.810
0.809
0.808
0.807
0.807
0.803
0.800
0.799
0.796
0.794

1.138
1.049
1.013
0.994
0.982
0.974
0.968
0.963
0.960
0.957
0.954
0.952
0.951
0.949
0.948
0.947
0.946
0.945
0.944
0.943
0.939
0.936
0.934
0.932
0.929

1.353
1.264
1.227
1.207
1.195
1.186
1.180
1.175
1.171
1.167
1.164
1.162
1.161
1.159
1.158
1.157
1.155
1.154
1.153
1.153
1.148
1.145
1.143
1.140
1.138

1.414
1.327
1.291
1.271
1.258
1.249
1.243
1.238
1.234
1.231
1.228
1.226
1.224
1.223
1.221
1.220
1.219
1.218
1.217
1.216
1.211
1.209
1.206
1.204
1.201

1.516
1.436
1.402
1.382
1.370
1.361
1.356
1.351
1.347
1.344
1.341
1.339
1.337
1.336
1.334
1.333
1.332
1.331
1.330
1.330
1.325
1.322
1.320
1.317
1.315

1.548
1.472
1.438
1.420
1.408
1.399
1.394
1.389
1.385
1.382
1.379
1.377
1.376
1.374
1.373
1.372
1.370
1.369
1.369
1.368
1.363
1.360
1.359
1.355
1.353

Table A36 (cont.). Values of the coefficient LN (Vy,n,P) for right-prediction in
lognormal sequences. The asiociated normal sequences have unknown
mean and known variance. Coefficient of variation of the lognormal
population: Vy = 0.40.
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9

RIGHT PREDICTION INTERVAL VY 0.05

I I 0.7500 1 0.900 1 0.9500 1 0.9900 1 0.9950 I 0.9990 1 0.9995 1
---------------------------- -----~---------------

I 1 II 1.389 I 1.388 I 1.384 I 1.377 1 1.374 I' 1.368 1 1.365 I
I 2 II 1.213 I 1.212 1 1.210 1 1.207 1 1.205 I 1.203 1 1.201 I
1 3 II 1.146 1 1.147 I 1.145 I 1.143 I 1.142 I 1.140 I 1.140 I
I 4 II 1.112 I 1.111 I 1.111 1 1.109 I 1.109 I 1.107 1 1.107 I
1 5 II 1.091 1 1.091 1 1.090 1 1.089 1 1.088 I 1.087 1 1.087 1
1 6 II 1.076 1 1.076 1 1.076 1 1.074 1 1.074 I 1.073 1 1.072 I
I 7 II 1.066 I 1.066 I 1.065 1 1.065 1 1.064 1 1.064 1 1.063 1
I 8 I 1.058 1 1.058 1 1.057 1 1.057 1 1.056 I 1.056 I 1.055 1
1 9 II 1.052 I 1.052 I 1.051 I 1.051 I 1.050 I 1.050 I 1.050 1
1 10 II 1.046 I 1.047 1 1.046 1 1.046 I 1.045 I 1.045 I 1.044 I
I 11 II 1.042 1 1.041 1 1.042 I 1.041 I 1.041 1 1.040 I 1.040 1
I 12 II 1.039 I 1.039 I 1.038 1 1.038 1 1.038 I 1.038 I 1.037 I
1 13 II 1.037 1 1.036 I 1.036 I 1.035 1 1.035 1 1.035 I 1.035 1

oC 1 14 II 1.034 I 1.033 I 1.033 1 1.032 1 1.032 1 1.032 1 1.032 I
n I 15 II 1.031 1 1.031 I 1.031 1 1.031 1 1.030 I 1.030 1 1.030 1

1 16 II 1.030 I 1.030 I 1.029 1 1.029 1 1.028 I 1.028 I 1.028 I
1 17 II 1.028 I 1.027 1 1.028 1 1.027 I 1.027 1 1.027 I 1.026 1
I 18 II 1.027 1 1.026 I 1.026 1 1.025 I 1.025 1 1.025 I 1.025 1
I 19 11 1.025 I 1.024 I 1.025 I 1.024 1 1.024 1 1.024 1 1.024 1
I 20 II 1.024 I 1.024 I 1.024 1 1.023 1 1.023 1 1.023 I 1.023 I
1 30 II 1.015 1 1.016 1 1.015 1 1.016 1 1.015 I 1.016 1 1.016 I
I 40 II 1.011 1 1.011 I 1.011 1 1.011 1 1.011 1 1.011 1 1.011 1
I 60 II 1.008 1 1.009 I 1.007 I 1.008 I 1.008 I 1.008 I 1.008 I
1 120 II 1.004 1 1.004 1 1.004 1 1.004 1 1.004 1 1.004 I 1.004 1
I o II 1.000 1 1.000 1 1.000 1 1.000 1 1.000 I 1.000 1 1.000 1

Table A37. Values of the penalty ratio rL (Vy,n,P) for right-hand prediction in log-
normal sequences. The associated normal sequences have unknown mean and
known variance. V is the coefficient of variation of the lognormal
population. For oJher values of V , see continuation of the table.
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0

RIGHT PREDICTION INTERVAL Vy= 0.10

I n 11 I 0,7500 I 0.9000 1 0,9500 1 0.9900 1 0.9950 1 0.9990 1 0.9995 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
30
40
60

120
00

$
0

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

1.367
1.201
1.138
1.106
1.086
1.072
1.062
1.055
1.049
1.044
1.040
1.037
1.035
1.032
1.029
1.028
1.027
1.025
1*024
l.023
1.015
1.011
1.008
1.004
1.000

1*363
1.199
1.138
1.105
1.086
1.072
1.063
1.055
1.050
1.044
1.039
1.037
1.034
1.032
1.029
1.028
1.026
1.025
1.023
1.022
1.015
1.011
1.008
1*004
1.000

1.357
1.197
1.136
1.104
1.084
1.071
1.061
1.054
1.048
1.043
1.039
1.036
1.033
1.031
1.029
1.028
1.026
1.024
1.023
1.022
1.015
1.011
1.007
1.004
1.000

1.342
1.190
1.132
1.101
1.082
1.069
1.060
1.053
1.047
1.042
1.038
1.035
1.033
1.030
1.029
1.027
1.025
1.023
1.022
1.022
1.015
1.010
1.008
1.003
1.000

1.337
1.187
1.130
1.100
1.081
1.068
1.059
1.052
1.046
1.042
1.038
1.035
1.032
1.030
1.028
1.026
1.025
1.023
1.022
1.021
1.014
1.010
1.007
1.003
1.000

1.326 I
1.182 I
1.127 I
1.097 I
1.079 I
1.066 I
1.058 1
1.051 1
1.046 I
1.041 I
1.037 I
1.034 I
1.032 I
1.029 1
1.028 1
1.026 I
1.024 I
1.022 I
1.022 1
1.021 I
1.014 1
1.010 I
1.008 I
1.003 1
1.000 I

1.321
1.180
1.125
1.096
1.078
1.065
1.057
1.050
1.045
1.040
1.036
1.034
1.031
1.029
1.027
1.026
1.024
1.022
1.022
1.021
1.014
1.010
1.008
1.003
1.000

Table A37 (cont.). Values of the penalty ratio r (V*,n,P) for right-prediction in
lognormal sequences. The associa ed normal sequences have unknown
mean and known variance. Coefficient of variation of the lognormal
population: Vy = 0.10.

0 W 9 W



* 9 9 0

RIGHT PREDICTION INTERVAL Vy= 0.20
- -- - -.-..-.-.-- - - - -- _- -

In. iI 0.7500 I0.9000 1 0.9500 1 0,9900 1 0.9950 1 0.9990 1 0.9995 1

1.317
1.176
1.123
1.094
1.077
1.064
1.056
1.049
1.044
1.039
1.035
1.033
1.031
1.028
1.026
1.025
1.023
1.022
1.021
1.020
1.014
1.009
1.008
1.003
1.000

1.306 I
1.171 1
1.119 1
1.091 1
1.074 I
1.063 I
1.054 1
1.048 I
1.042 1
1.038 I
1.035 1
1.032 1
1.030 I
1.028 I
1.026 I
1.024 1
1.023 I
1.022 I
1.021 1
1.020 1
1.013 I
1.010 1
1.006 I
1.003 I
1.000 1

1.282
1.160
1.112
1.086
1.070
1.059
1.052
1.045
1.041
1.036
1.032
1.030
1.028
1.026
1.025
1.023
1.021
1.020
1.019
1.019
1.013
1.009
1.007
1.003
1.000

1.272
1.155
1.109
1.084
1.068
1.057
1.050
1.044
1.039
1.035
1.032
1.029
1.027
1.025
1.024
1.022
1.021
1.020
1.019
1.018
1.012
1.009
1.006
1.C03
1.000

1.254
1.146
1.103
1.079
1.065
1.054
1.048
1.042
1.038
1.033
1.030
1.028
1.026
1.024
1.023
1.021
1.020
1.019
1.018
1.017
1.012
1.008
1.006
1.003
1.000

1.247
1.142
1.100
1.077
1.063
1.053
1.047
1.041
1.037
1.033
1.030
1.028
1.026
1.024
1.022
1.021
1.019
1.018
1.018
1.017
1.012
1.008
1.006
1.003
1.000

Table A37 (cont.). Values of the penalty ratio rp (V ,n,P) for right-prediction in
lognormal sequences. The associated normal sequences have unknown
mean and known variance. Coefficient of variation of the lognormal
population: V = 0.20.

(n
C>0_j

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
30
40
60

120
00

II
II
II
II
II
II
II
II
1!
II
II
TI
II
II
II
II
II
II
II
II
11
II
II
II
II

1.325
1.179
1.123
1.095
1.077
1.064
1.056
1.049
1.044
1.039
1.036
1.033
1.031
1.029
1.026
1.025
1.024
1.023
1.022
1.020
1.013
1.010
1.007
1.004
1.000
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MW

RIGHT PREDICTION INTERVAL Ve 0.40

I P II 0.7500 I 0.9000 1 0.9500 I 0.09900 1 0.9950 I 0.9990 0.9995 1

I 1 11 1.257 1 1,242 1 1,224 1 1.189 1 1.177 1 1,153 1 1.144 1

000

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
30
40
60

120
00

II
11
II
II
11
II
II
II
II
II
II
II
II
II
11
II
II
II
II
II
II
II
II
II

1.143
1.099
10077
1.062
1.052
1.045
10040
1.036
1.032
1.029
1.027
1.025
1.023
1.021
1.020
1.019
1.018
1.017
1.016
1.011
1. 008
1.006
1.003
1.000 I

1.137
1.096
1.074
1.061
1.051
1.045
1.039
1.035
1.031
1.028
1.026
1.024
1.022
1.021
1.020
1.019
1.018
1.017
1.016
1.011
1.008
1.006
1.003
1.000

1.129
1.091
1.070
1.057
1.048
1.041
1.037
1.033
1.029
1.027
1.025
1.023
1.021
1.020
1.019
1.018
1.017
1.016
1.015
1.010
1.007
1.005
1.003
1.000

1.111
1.079
1.061
1.050
1.042
1.037
1.032
1.029
1.026
1.024
1.022
1.020
1.019
1.018
1.017
1.016
1.015
1.014
1.013
1.009
1.007
1.005
1.002
1.000

1.105
1.075
1.058
1.047
1.040
1.035
1.031
1.027
1.025
1.023
1.021
1.019
1.018
1.017
1.016
1.015
1.014
1.013
1.013
1.008
1.006
1.004
1.002
1.000

1.092
1.066
1.052
1.043
1.036
1.031
1.027
1.025
1.022
1.020
1.019
1.017
1.016
1.015
1.014
1.013
1.012
1.012
1.011
1.008
1.006
1.004
1.002
1.000

1.088 1
1.063 1
1.049 1
1.041 I
1.034 1
1.030 I
1.026 1
1.024 I
1.021 I
1.019 I
1.018 1
1.017 I
1.015 1
1.015 1
1.014 I
1.013 1
1.012 1
1.012 I
1.011 I
1.008 1
1.005 I
1.004 1
1.002 1
1.000 1

Table A37 (cont.). Values of the penalty ratio rLN(V ,n,P) for right-prediction in
lognormal sequences. The assoialed normal sequences have unknown
mean and known variance. Coefficient of variation of the lognormal
population: Vy 0.40.
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APPENDIX B

The tables in this appendix contain simple-prediction

limits and associated penalty ratios for k-variate inde-

pendent normal sequences with k > 1. For k = 1 see

Appendix A. The values refer to ellipsoidal prediction

regions centered on the mean. n denotes the available

sample size and P is the desired probability content of

the region.

For using the tables in Bayesian prediction with

"diffuse" or conjugate prior see Paragraph II.2.4(a).

609



k=2 Probability content, P

n 0.7500 0.9100 0.9500 0.99n0 .995 09

3 6.325 16 248 32o619 1634291 326 598 1632t-992
4 3.354 5.809 8.441 19.268 27.318 61.207
5 2.701 4.181 5.529 9.930 12.624 21.799
6 2n415 3- 552 4.4500 7C246 8.756 13.366
7 2.254 3.220 3.984 6.034 7.087 10.090
8 2.151 3.015 3.674 5.355 6o179 8O419
9 2.078 2.876 3.468 4.924 5.613 7.422

10 2.025 2.776 3.322 4.627 5.228 6.765
11 1,984 2700 3o212 4-410 4,950 6i303
12 1.952 2.640 3.127 4.244 4.740 5.961
13 1.925 2.592 3.059 4.115 4.576 5.696
14 1903 2, 553 3oV,03 4 010 4.445 5.487
15 1.884 2.519 2.957 3.924 4.337 5.318
16 1.868 2.492 2.918 3.851 4c,247 5.179
17 1.855 2.467 2.884 3.790 4.171 5.061
18 1.843 2.446 2.855 3.737 4.105 4.960
19 1;832 2-428 2,968 3.691 4n049 4t875
20 1.823 2.412 2.807 3.651 3.999 4.799
21 1.815 2.397 2.787 3.615 3.955 4.734
22 L 807 2 384 2769 3 583 3.917 4.674
32 1.759 2.31 3 2.658 3.389 3.680 4.323
42 1.736 2.263 2.604 3.297 3-568 4n161
62 1.712 2.224 2.551 3.2,17 3.461 4.0n4

122 1.688 2.184 2.499 3.120 3.356 3.858
00 lt1665 2,146 2o448 3 0 35 3--255 3 718

Table Bl. Values of N (k,n,P) such that the prediction ellipsoid (11.92) has pro-

bability content P. Sampling is from a k-variate normal population with

unknown mean vector p and covariance matrix E. (For the case k=l see Table

A8 in Appendix A.)
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k=3 Probability content, P

n 0 7500 0 9000 0,9500 0 9900 0 9950 009990

4 9.605 24.554 49.262 246.550 493.179 2465.665
5 4,765 8 122 11o747 26j721 37o869 84c819
6 3.707 5.608 7.356 13.108 16.640 28.689

7 3.245 4.643 5.822 9.266 11.170 167998
8 2,984 4.136 5.056 7.549 8.838 12.525
9 2.816 3.823 4.598 6.593 7.577 10.263

10 2.699 3 611 4,295 5,988 6o795 8.924
11 2.612 3.459 4.078 5.573 6.266 8.047
12 2.546 3.343 3.917 5.270 5.884 7.431
13 2 493 3 252 3:.792 5040 5.597 6.975
14 2.450 3.179 3.691 4.860 5.373 6.627
15 2.414 3.119 3.610 4.714 5, 194 6 350
16 2.384 3.068 3.542 4.594 5.1,47 6.128

17 2.358 3.026 3.484 4.494 4.924 5.943
18 2,336 2-989 3I435 4 409 4o821 5,790
19 2.316 2.957 3.392 4.336 4.73? 5.655
20 2.300 2.929 3.355 4.272 4.655 5.544
21 2:284 2. 905 3:-322 4,217 4.588 5.445
22 2.270 2.883 3.292 4.167 4.529 5.357
23 2.258 2.863 3.266 4.124 4 476 5C 281
33 2.181 2.739 3.104 3.856 4.156 4.821
43 2.142 ?.679 3.025 3.729 4.005 4.612
63 2,104 2-618 2.947 3-605 3,859 4-408

123 2.065 2.559 2.871 3.485 3.719 4.219
0 2.027 2.500 2.796 3.368 3.583 4.032

Table B1 (cont.).
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k=4 Probability content, P

n 0.7500 0.9000 0.9500 0.9900 0.9950 0.999n

5 12.836 32.741 65.665 328.622 657c267 3286C329

6 6.141 10.384 14.985 34.028 48.214 1P7.969

7 4.675 6.989 9.130 16.202 20.551 35.405

8 4, 032 5, 687 7.,093 11 217 13o504 20 514
9 3.669 5.03 6.076 9."01 10.518 14.869

10 3.434 4.582 5.470 7.770 8.910 12.028

11 3, 271 4- 296 5 n068 6 994 7.915 10.352

12 3.149 4.089 4.782 6.461 7.243 9.260

13 3.055 3.933 4.568 6.073 6.760 8,493
14 2.981 3.810 4.402 5.779 6.396 7.928

15 2.920 3.711 4.270 5.548 6.113 7.497

16 2 870 3-630 4a,161 5n 362 5t 886 7,153

17 2.828 3.562 4.071 5.209 5.700 6.876

18 2.711 3.504 3.994 5.081 5.545 6.648

19 2,759 3 454 31 929 41 972 5.415 6.456

20 ?.732 3.411 3.873 4.879 5.303 6.293

21 2.708 3.373 3.823 4.798 5o206 6153
22 2.686 3.340 3.780 4.727 5.121 6.033

23 2.667 3.309 3.741 4.664 5.046 5.923

24 2 649 3 283 3,706 4n608 4o 979 5o833
34 2.540 3.115 3.491 4.266 4.576 5.265

44 2.486 3.032 3.385 4.103 4.386 5.007
64 2c 431 2, 951 3o282 3, 945 4.202 4.759

124 2. 375 2.869 3.180 3.792 4.026 4.523

0 2.320 2.789 3.080 3.644 3n855 4.299

Table B1 (cont.).
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k=5 Probability content, P

n g.75oo n90'0 0.950) 0.9900 0.9950 0.999T

6 16.039 40-860 81933 410-009 820o111 4100T184
7 7.499 12.622 18.188 41.259 58.451 130.885
8 5.624 8.347 10.877 19.251 24.408 42.031
9 4-798 6-709 8,337 13-133 15.796 23.970

10 4.331 5.847 7.71 10.420 12.162 17.162
11 4.028 5.315 6.315 8.917 10 209 13.754
12 3.816 4.954 5.815 7.969 9.003 11.746
13 3.659 4.693 5.458 7.319 8.189 10.438
14 3.537 4,495 5.191 6 846 7-603 9c519
15 3.440 4.339 4.983 6.487 7.163 8.846
16 3.362 4.214 4.818 6.206 6.821 8.331
17 3 296 4 111 4o682 5n979 6.546 7.922
18 3.241 4.025 4.569 5.793 6.322 7.591
19 3.193 3.951 4.474 5.637 6.135 7c321
20 3.152 3.888 4.392 5.514 5.977 7.095
21 3.116 3.833 4.321 5.390 5.842 6.899
22 3-084 3-784 4.260 5-291 5- 725 6o733
23 3.55 3.742 4.25 5.205 5.622 6.590
24 3.031 3.704 4.156 5.128 5.531 6.460
25 3008 3c670 4-113 5,060 5.451 6.349
35 2.864 3.456 3.843 4.643 4.964 5.677
45 2.791 3.351 3.711 4.445 4,734 5%370
65 2.720 3.246 3.581 4.252 4.512 5.077

125 2.647 3.142 3.453 4.066 4.299 4.798
0 2,574 3' 039 3,327 3,884 4o093 4.528

Table Bl (cont.).
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k=7 Probability content, P

n 0.750n 1.900f 0.9500 0.9900 0.9950 0.9990

8 22,400 56,984 114.245 571.662 1143.488 5716.957
9 1V.186 17.055 24.538 55.597 78.755 176.330

10 7.492 11.029 14.328 25-283 32,038 55c136
11 6.300 8.716 10.786 16.9A)9 21.317 30.790

12 5.621 7.496 9.019 13.208 15.392 21.675

13 5,179 6. 742 7o964 11c160 12.752 17c 129
14 4.867 6.228 7.263 9.869 11.125 14.464

15 4.636 5.856 6.764 8.985 10.027 12.729

16 4- 456 5:572 6.389 8.341 9.238 11.517
17 4.314 5.350 6.098 7.853 8.646 10.625

18 4.196 5. 171 5,865 7T-470 8184 9.944
19 4.099 5.023 5.674 7.161 7.814 9.403

20 4.G15 4.899 5.516 6.907 7.512 8.970

21 3,944 4 793 5381 6.695 7o260 8.612

22 3.883 4.7O2 5.266 6.514 7.047 8.310
23 3.829 4.623 5.166 6.359 6.865 8055
24 3-782 4.554 5.078 6.224 6.706 7.833
25 3.740 4.491 5.001 6.106 6.569 7.644
26 3.702 4,437 4,933 6m001 6-447 7r480
27 3.667 4.388 4.871 5.918 6.338 7.328
37 3.450 4.077 4.487 5.340 5.682 6.448
47 3.,340 3-924 4.300 51068 5,371 6.042
67 3.230 3*770 4.115 4.814 5.071 5.654

127 3.119 3.618 3.932 4.548 4.782 5n285
3o006 3.467 3.751 4.298 4.503 4.928

Table Bi (cont.).
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k=10 Probability content, P

n 0.7500 0.9000 0.9500 0.9900 0.9950 0.9990

11 31.886 81.035 162.441 812.793 1625.479 8128.035

12 14.185 23.656 33.995 76.958 109.000 244.024

13 10n263 15-010 19n454 34,248 43o380 74.602
14 8.515 11.683 14.411 22.506 27.020 40.904
15 7.513 9.923 11.892 17.326 20.167 28o355
16 6:859 8.833 10.385 14.462 16.500 22.114

17 6.395 8.088 9.382 12.658 14.241 18.460

18 6.048 7,545 8:665 11420 124718 16c089
19 5.778 7.132 8.127 10.520 11.623 14.429
20 5.563 6.808 7.708 9.836 10.800 13.212

21 5..386 6: 544 7T373 9,298 10,159 12.282

22 5.239 6.327 7.097 8.866 9.646 11.549
23 5.112 6.144 6.868 8.509 9.226 10958
24 5-004 5.988 6.673 8.210 8.875 10.465

25 4.910 5.853 6.506 7.957 8.580 10.058

26 4.829 5-736 6o361 7c739 8n326 9,709
27 4.756 5.634 6.234 7.549 8.105 9.408

28 4.690 5.542 6.121 7.382 7.914 9.151
29 4e 631 5-461 6,021 7-235 7o743 8.921
30 4.580 5.387 5.931 7.104 7.592 8.724

40 4.243 4.925 5.371 6.300 6.675 7o517
50 43072 4.693 5.094 5.915 6.241 6.954
70 3.899 4.462 4.822 5.541 5.820 6.426
130 3.722 4-230 4o550 5o175 50413 51-924

3.543 3.999 4.279 4.818 5.019 5.441

Table B1 (cont.).
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k=15 Probability content, P

n 0 7500 0 9000 0-.9500 0,9900 0.9950 0.9990

16 47.638 120.977 242.482 1213.251 2426.543 12133.211
17 20-815 34.605 49,685 112n400 159.183 356.346
18 14.841 21.6r0 27.944 49.102 62.175 106.914
19 12.166 16.580 20.402 31.762 38A107 57 640
20 10.622 13.921 16.627 24.122 28.51 39.379
21 9.607 12.263 14.362 19.898 22.673 30.328
22 8-885 11,128 125852 17235 19i361 25n033
23 8.343 10.298 11.769 15.407 17.126 21.601
24 7.920 9.666 10.956 14.076 15.521 19.208
25 7,578 9-166 1.O,321 13p063 14.312 17.447

26 7.297 8.759 9.811 12.268 13.370 16.098

27 7.063 8.423 9.392 11.625 12-614 15G038
28 6.861 8.139 9.041 11.095 11.996 14.178
29 6.687 7.898 8.743 10.652 11.481 13.474
30 6 537 7T687 8488 10-273 1L044 12-885
31 6.405 7.505 8.263 9.948 10.669 12.369
32 6.286 7.344 8.069 9.666 10.344 11.935
33 6-182 7200 7o896 9,416 10.059 11.567
34 6.088 7.072 7.74n 9.196 9.808 11.227
35 6.003 6.956 7.601 9.000 9o584 10c936
45 5.450 6.223 6.732 7.792 8.222 9.183
55 5.167 5.854 6.300 7.211 7.572 8.373
75 4. 877 5 482 5,867 6.640 6.o94? 7599
135 4.58n 5.106 5.436 6.082 6.328 6.849

Co 4.271 4.723 4.999 5.530 5.728 6.136

Table Bl (cont.).
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k=20 Probability content, P

n 0:7500 0:9000 0.9500 0;9900 0.9950 0.9990

21 63.363 160.848 322.378 1612.990 3226.309 16130.281
22 27,426 45.527 65*340 14? 762 209.257 468.416
23 19.403 28.170 36.405 63.912 81.913 139.085
24 15.796 21.459 26.366 40.981 49.151 74.313
25 13.708 17.894 21.332 30.883 35.892 50.348
26 12.331 15.666 18.310 25.299 28.807 38.491
27 1L1346 14- 139 16n291 21 775 24,441 31561
28 11.606 13.020 14.840 19.356 21.493 27.068
29 10.024 12.162 13.749 17.592 19.375 23.935
30 9,557 1.L483 12.894 16.248 17.779 21.621

i 9.16Q 10.933 12.206 15.192 16.534 19.867
32 .8.844 10.477 11o642 14,337 15o536 18n466
33 8.567 10.090 11.168 13.634 14.717 17.343
34 8.325 9.760 10.765 13.042 14.035 16.426
35 8:117 9472 1Mb419 12:539 13.456 15.646
36 7.931 9.221 10.116 12.105 12.958 14.979
37 7.767 9.000 9.849 11.728 12.526 14.419
38 7)620 8.804 9.615 11.394 12.149 13.916
39 7.489 8.627 9.405 11.100 11.814 13.481
40 7.368 8o468 9o214 10.. 837 11, 517 13o096
50 6.589 7.453 8.023 9.216 9.699 10.784
60 6.186 6.938 7.427 8.429 8.827 9.720
P0 5,768 6. 416 6,827 7:655 7o978 8.686

14) 5.335 5.880 6.222 6.891 7.145 7.683
o4.881 5.331 5.605 6.129 6.325 6n738

Table Bi (cont.).
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k=40 Probability content, P

n 0.7500 0.9000 0.9500 0.9900 0.9950 0.9990

41 126.180 320.135 641.580 3210,006 6420,395 32100e687
42 53.826 89.146 127.853 288.982 409.218 916.027
43 37.598 54.376 70.175 123.021 155.703 267.634
44 30,259 401901 50,142 77-747 93,201 140,817
45 25.981 33.704 40.078 57.820 67.146 94.083
46 23.147 29.197 34.012 46.792 53.222 70.987
47 21104 26a087 29.944 39.825 44.640 57.532
48 19.561 23.799 27.019 35.033 38.839 48.783
49 18.339 22.043 24 803 31a531 34*661 42n685
50 17.352 20.645 23.065 28.856 31.509 38.202
51 16.530 19.504 21.661 26.750 29.046 34.766
52 15,834 18: 550 20n502 25)041 27a066 32.054
53 15.241 17.747 19.527 23.629 25.440 29.862
54 14.726 17.051 18.695 ?2.444 24.081 28o046
55 142271 16.447 17.976 21.429 22.927 26.529
56 13.867 15.920 17.351 20.552 21.932 25.207
57 13.508 15-453 16.796 19,790 21,070 24,095
58 13.189 15.33 16.304 19.113 20.309 23.124
59 12.895 14.657 15.861 18.516 19.639 22.259
60 12-632 14o314 15a467 17981 19C040 21.519
T.886 12.115 12.931 14.647 15.347 16.926
80 9.959 10.975 11.637 13.004 13.552 14o777

100 8.974 9.787 10.308 11.360 11.772 12.675
160 7.916 8.541 8.929 9.697 9.989 10.608

0 6:753 7 197 74467 7 980 8n171 8n 579

Table BI (cont.).
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k=2 Probability content, P

n 9.7500 1.9000 0.9500 0.9900 0.9950 0.9990

2 5-477 14-071 28e249 141.414 282.843 1414.213
3 3.000 5.196 7.550 17.234 24.434 54.745
4 2.466 3.816 5.047 9 065 11o524 19o900
5 2.236 3.288 4.167 6.708 8.106 12.374
6 2.108 3.012 3.726 5.644 6.630 9.439
7 2,028 2. 843 3%464 5:049 5o825 7,937
8 1.972 2.728 3.291 4.671 5.325 7.041
9 1.931 2.647 3.167 4.411 4.984 6.450

in 1t900 2: 585 3,076 4.222 4.739 6.035
11 1.875 2.537 3.004 4.078 4.554 5.727
12 1.855 2.498 2A948 3,965 4a410 5n489

13 1.838 2.466 2.901 3.874 4.294 5.301
14 1.824 2.439 2.863 3.799 4.199 5.149
15 L812 2n417 2c831 34736 4n120 5o024
16 1.803 2.398 2.8n3 3.683 4.053 4.919
17 1.794 2.381 2.779 3.637 3.996 4.828
18 1,786 2,367 2.893 3.598 3.946 4.751
19 1.779 2.354 2.740 3.563 3.903 4.683
20 1.773 2.342 2,723 3l532 3o865 4o625
21 1.767 2.332 2.708 3.5n5 3.830 4.571
31 1.732 2.268 2.618 3.338 3.624 4.257
41 1716 2,237 2c574 3,258 3,526 4.112
61 1.699 2.206 2.531 3.181 3.433 3.972
121 1.681 2.176 2.489 3.107 3.342 3,842

0 1,665 2.146 2.448 3.035 3.255 3.718

Table B2. Values of NE(k,n,P) such that the prediction ellipsoid (11.94) has pro-

bability content P. Sampling is from a k-variate normal population with

known mean vector and unknown covariance matrix.

Table A7 in Appendix A.)

(For the case k=l see

w w
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k=3 Probability content, P

n 0.7500 n.9000 o.95O 01.9900 0.9950 .9

3 8.591 21.962 44.061 221.521 441.112 225.357
4 4.349 7.414 10.723 24.393 34.569 77.429

5 3,432 5-192 6.811 12 136 15,406 26i 561
6 3.135 4.343 5.446 8.667 10.448 15.900
7 2.813 3.899 4.767 7.117 8.332 11.808

8 2,671 3.627 4o362 6.255 7.188 9.737
9 2.573 3.443 4.095 5.719 6.479 8.509

10 2.501 3.311 3.905 5c335 5.999 7&705
11 2.446 3.212 3.764 5.063 5.654 7.139

12 2.402 3.134 3.654 4.857 5.394 6.722

13 2367 3,071 3o566 4 695 50191 6o402

14 2.337 3.120 3.495 4.565 5.?29 6.148
15 2.313 2.977 3.436 4.457 4.896 5.945
16 2,292 2. 941 3,386 4.368 4.786 5.776
17 2.273 2.911 3.343 4.292 4.692 5.635
18 2.257 2.883 3-306 4226 4,612 5 511
19 2.244 2.859 3.274 4.171 4.543 5.410

20 2.232 2.838 3.246 4.120 4.483 5.320
21 2,220 2, 819 3o220 4n076 4.429 5-240
22 2.211 2.802 3.197 4.137 4.382 5.170

32 2.149 2.699 3.058 3.799 4.094 4.750
42 21118 2.648 2.990 3.686 3.959 4.560
62 2.088 ?.598 2.924 3.576 3.829 4.373
122 2.057 2 549 2.859 3o471 3.703 4o202

0 2.n27 2.500 2.796 3.368 3.583 4.032

Table B2 (cont.).
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k=4 Probability content, P

n 1.7500 0.9000' O.9500 0.9900 0.9950 0.9990

4 11.717 29.889 59.944 299.989 600.000 2999.986

5 5.685 9.614 13.873 31.504 44.637 99.960

6 4,373 6 538 8o540 15.155 19.224 33.118
7 3.811 5.362 6.687 10.575 12.731 19.341

8 3.481 4.746 5.764 8,539 9o978 14o106

9 3.274 4.369 5.216 7.409 8.495 11.468

10 3.131 4.113 4.85? 6.696 7.578 9.911
11 3025 3, 9?8 4,594 6. 207 6o959 8o896

12 2.944 3. 790 4. 40 2 5.852 6. 514 8.185

13 2.880 3.680 4.253 5.583 6.179 7.659

14 2,827 3.593 4.134 5.372 5.919 7.259

15 2.784 3.521 4.037 5.202 5.710 6.939

16 2.748 3,462 3c956 5t:062 5-o540 6,,682
17 2.716 3.411 3.888 4.945 5.398 6.471

18 2.690 3.366 3.830 4.846 5.278 6.293

19 2n667 3 329 34 779 42 761 5.,175 6.141
20 2.645 3,296 3.735 4.687 5.086 6.012

21 2.627 3.266 3.696 4.623 5.008 51,900

22 2: 611 3.240 3.662 4.565 4.940 5.799

23 2.596 3.216 3.631 4.515 4.879 5.715
33 2.503 3 070 3 440 4 205 4 510 5 189
43 2.458 2.999 3.348 4.057 4.337 4.951

63 2.412 2.928 3.257 3.915 4.170 4.722
123 2, 366 ?, 858 3,167 3c,777 4 009 4.505

00 2. 320 2. 789 3. 08f 3.644 3.855 4.299

Table B2 (cont.) .
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k=5 Probability content, P

n 0.7500 0.9000 0.9500 0.9900 029950 019990

5 14.849 37.829 75.855 379.595 759.276 3796.043
6 7.014 11.807 17.013 38.594 549676 1221432
7 5.303 7.870 10.255 18.150 23.12 39.627
8 4.552 6.365 7.909 12.459 14.985 22.740
9 43130 5.575 6o742 9-935 11o596 16o363

10 3.857 5.089 6.046 8.537 9.774 13.169
11 3.667 4.759 5.586 7.656 8.650 11.286
12 37526 4:-522 5e259 7-053 7.891 10.059
13 3.417 4.342 5.015 6.614 7.346 9.196
14 3.331 4.202 4.825 6.281 6,936 8o565
15 3.261 4.088 4.674 6.020 6.617 8.082
16 3.203 3.995 4.550 5.810 6.362 7.698
17 3c154 3,917 4447 5 638 6e153 7389
18 3.113 3.851 4.361 5.494 5.980 7.135
19 3.076 3.794 4.286 5.372 5.833 6.924
20 3.044 3745 4-.222 5. 266 5.707 6.741
21 3.v'16 3.7P1 4.166 5.175 5.599 6.585
22 2.991 3.663 4.117 5.095 5,503 6o451
23 2.970 3.629 4.072 5.124 5.420 6.330
24 2.950 3.598 4.033 4.962 5.345 6.226
34 2.824 3-407 3c789 4.578 4,895 5c598
44 2.761 3.314 3.671 4.396 4.682 5.312
64 2.699 3.222 3.554 4.220 4.478 5.039

124 2: 636 3-130 3n440 4050 4.282 4.779
1 2.574 3.039 3.327 3.884 4.093 4.528

Table B2 (cont.).
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k=7 Probability content, P

n 0.7500 09000 0:9500 0n9900 0A9950 009990

7 21.119 53.725 107.711 538.968 1078.091 5390.000
8 91663 16v179 23o278 52n744 74c713 167o282
9 7.144 10.516 13.661 24.106 30.547 52.570

10 6.032 8.345 10.327 16.189 19.452 29.480
11 5 401 7-202 8-665 12-689 14.788 20.825
12 4.991 6.497 7.674 10.754 12.288 16.506
13 4.702 6.017 7.016 9.535 10.747 13o974
14 4.489 5.670 6.549 8.699 9.708 12.325
15 4.323 5.406 6.198 8.092 8.962 11.173
16 4192 5' 200 5,926 7.632 8,402 10,376
17 4.84 5.034 5.708 7.270 7.965 9.679
18 3.995 4.896 5.531 6.980 7.617 9.165
19 3o919 4-781 5,383 6741 7.331 8.754
20 3.54 4.683 5.257 6.541 7.093 8.414
21 3.798 4.599 5.151 6.371 6c892 8c127
22 3.749 4.526 5.057 6.225 6.720 7.885
23 3.706 4.462 4.976 6.098 6.571 7.675
24 3. 667 4.404 4o904 5-987 6,441 77496
25 3.633 4.354 4.841 5.889 6.326 7.340
26 3.601 4.309 4.783 5.802 6.224 7.196
36 3-405 4.023 4e,428 5.269 5.606 6.363
46 3.305 3.883 4.255 5.015 5.315 5.978
66 3.206 3.742 4.085 4.768 5,034 5o612

126 3.107 3.604 3.917 4,530 4.763 5.264
1 3.006 3.467 3.751 4.298 4.503 4.928

Table B2 (cont.).

C.'

(.AJ

w mw mv1 1w



v

k=10 Probability content, P

n 0.7500 0.9000 0.950n 0.9900 0.9950 0.999A

10 30.529 77.585 155.525 778r190 1556o277 7782c-023
11 13.628 22.728 32.662 73.939 104.723 234.450
12 9.889 14.464 18.747 33.002 41.802 71.889
13 8226 11:287 13o922 21,743 26^104 39517
14 7.275 9.6C8 11.514 16.776 19.527 27.455
15 6.654 8.569 10.075 14.030 16.008 21.453
16 6-215 7 860 9.118 12.301 13.840 17.940
17 5.887 7.344 8.433 11.115 12.379 15.660
18 5.632 6o951 7o921 10.254 11.329 14c064
19 5.429 6.644 7,522 91598 10o540 12o894
20 5.262 6.393 7.204 9.084 9.925 12.001
21 5.123 6.188 6.941 8.671 9.434 11.295
22 5005 6 015 6,723 8,330 9,032 10o727
23 4.903 5.867 6.538 8.044 8.696 10.254
24 4.815 5.740 6.380 7.803 8.413 9863
25 4a 738 5.629 6.242 7.594 8.170 9.528
26 4.670 5.532 6.121 7.413 7.959 9.238
27 4.609 5o446 6*015 7-254 7o776 8,-992
28 4.554 5.369 5.920 7.114 7.613 8.771
29 4.506 5.300 5.835 6.988 7.469 8.583
39 4-191 4v 864 5o305 6-223 6&593 7.424
49 4.032 4.647 5.044 5.857 6.179 6.885
69 3.871 4.431 4.787 5.502 5a779 6:380
129 3.708 4.214 4.532 5.155 5.392 5.902

0 3.543 3.999 4.279 4.818 5.019 5.441

Table B2
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k=15 Probability content, P

n 0.7500 0.9000 0.9500 n.9900 0.9950 0.9990

15 46.216 117.365 235.242 1177C027 2354.092 11770,863
16 20.229 33.630 48.285 109.233 154.698 346.316
17 14.446 21.024 27.198 47.792 60.516 104.062
18 11-858 16-160 19,885 30-957 37A142 56o181
19 11.366 13.586 16.226 23.540 27.374 38.430
20 9.386 11.981 14.032 19.441 22.152 29.631
21 8,690 10-883 12.570 16.856 18.936 24.483
22 8.167 10.082 11.521 15.083 16.765 21.146
23 7.760 9.471 109735 13,792 15o207 18, 820
24 7.431 8.988 10.120 12.810 14.034 17.118
25 7.160 8.595 9.628 12.038 13.120 15.797
26 6.935 81-271 9-,222 11 416 12,o387 14.767
27 6.742 7.997 8.883 10.902 11.788 13.932
28 6.575 7.765 8.596 10.473 11.288 13o248
29 6-431 7.562 8.350 10.106 10.864 12.675
30 6.304 7.387 8.133 9.792 10.501 12.175
31 6.190 7,232 7c945 9,518 10G186 11-753
32 6.190 7.094 7.779 9.276 9.910 11.396
33 6.000 6.971 7.629 9.063 9.667 11.066
34 5s919 6.859 7.495 8874 9 450 10.783
44 5.391 6.155 6.658 7.707 8.132 9.083
54 5.121 5.801 6.243 7.146 7.504 8o298
74 4,845 5.446 5.828 6.596 6.897 7.549
134 4.563 5.087 5.416 6.059 6.305 6.824

00 4.271 4: 723 4;,999 5- 530 5o728 6,1A36

Table B2
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k=20 Probability content, P

n C.75'0 .9000 0.9500 I'.9900 1.9950 0.9990

20 61 906 157: 150 314n 967 1575. 907 3152a 125 15759,,391
21 26.823 44.526 63.9414 144.514 214.657 458.120
22 18.995 27.577 35.639 62.566 79.209 136.157
23 15-,477 21,,025 25833 40-153 48.158 72.811
24 13.441 17.546 20. 918 30.283 35.195 49.370
25 12.100 15.373 17.968 24.826 28,268 37,,771
26 11.141 13.884 15.997 21.383 24.000 30.992
27 10. 421 12.794 14.582 19.019 21.120 26.597
28 9 855 11,958 13.518 17T296 19n049 23532
29 9.412 11.296 12.684 15.984 17.49 21.270

30 9.024 10.761 12.014 14.953 16.273 19.554
31 8 709 10 : 317 11,,465 14,-118 15.299 18.184
32 8.440 9*940 11.003 13.432 14.499 17.086
33 8.205 9.620 10.610 12.854 13,833 16-190
34 8.003 9.339 10.273 12.364 13.268 15.427
35 7.823 9.096 9.979 11.941 12.781 14.775
36 7-664 8 880 9.718 11 572 12,360 14*228
37 7.521 8.690 9.491 11.247 11.992 13.737
38 7.395 8.518 9.287 10.960 11.665 13.312
39 7t 277 8n365 9C101 10,704 11.375 12.935
49 6.524 7.379 7.944 9.125 9.603 10.677
59 6.135 6.881 7.365 8.360 8o754 9,640
79 5.733 6.376 6.785 7.608 7.928 8.633

139 5.316 5.859 6.199 6.866 7.120 7.656
4:-881 5,331 5o605 6. 129 6m,325 6r738

Table B2
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k=40 Probability content, P

n 1.7510 n.900n 0.9500 0.9900 0.9950 0.9990

40 124 669 316o301 633o896 3171:567 6343o465 31716.055
41 53.196 88.103 126.357 285.602 404.432 905.312
42 37.169 53.755 69.373 121.615 153.924 264o575
43 29921 40.444 49.581 76.879 92.159 139.243
44 25.697 33.336 39.640 57.188 66.412 93.055
45 22.900 28884 33c648 46:291 52o653 70-2218
46 21.883 25.814 29.630 39.418 44.172 56.930

47 19.360 23.555 26.741 34.674 38.441 48.283
48 18155 21 821 24n554 31o214 34313 42.256
49 17.181 20.442 22.838 28.572 31.198 37.826

50 16.371 19.316 21.452 26.402 28.766 34o430

51 15.684 18.374 20.308 24. 804 26.810 31.751
52 15.100 17.582 19.345 23.409 25.203 29.584

53 1 4n591 16,895 18.524 22,239 23861 27,790

54 14.143 16.300 17.815 21.237 22.721 26.291
55 13.745 15.780 17.198 20.371 21.739 24.985
56 13 391 15,319 16,650 19,618 20.887 23.886

57 13.*77 14.905 16.165 18.950 20.136 22.927

58 12.787 14.534 15.728 18.361 19.475 22o073

59 12.528 14.197 15.339 17.833 18.884 21.342
69 10.809 12.030 12.840 14.543 15.238 16.806

79 9, 897 10-908 11.565 12-923 13468 14c686
99 8.929 9.739 10.257 1.304 11.714 12.612

159 7.891 8.515 8.901 9.666 9.958 10.575
0 6-753 7 197 7,467 7T980 8.171 8.579

Table B2 (cont.).
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k=2 Probability content, P

n 0, 7500 0% 9000 0-9500 0 9900 0 ;9950 01)9990

1 2.355 3.035 3.462 4.292 4.603 5.257
2 2? 039 2 628 2o998 3 717 3-,987 4.553

3 1.922 2.478 2.827 3.514 3.759 4.293
4 1.861 2.399 2.737 3.393 3.639 4,156
5 1,824 2.351 2.681 3.324 3.566 4.072

6 1.798 2.318 2.644 3.278 3.516 4.015
7 1.780 2, 294 2e617 3, 244 3o480 3o 974
8 1.766 2.276 2.596 3.219 3.453 3.943

9 1.755 2.262 2.580 3.199 3.431 3.919
10 1,746 2,,251 2,567 3. 183 3.414 3.899

11 1.739 2.242 2.557 3.170 3.400 3.883

12 1.733 2.234 2.548 3.159 3.388 3o869
13 1.728 2.227 2.540 3.149 3.378 3.858

14 1.723 2.221 2.534 3.141 3.369 3.848
15 1e 720 2, 217 2.528 3. 134 3,3362 3; 839
16 1.716 2.212 2.523 3.128 3.355 3.832

17 1.713 2.208 2.519 3.123 3.350 3.825
18 17711 2- 205 2a515 34 118 3.344 3.819
19 1.708 2.2n,? 2.511 3.114 3.340 3.814
20 1.706 2.199 2.508 3.110 3I336 3a809

30 1.692 2.182 2.488 3.085 3.309 3.779
40 1.686 2.173 2.478 3.072 3.296 3.764
60 1 679 2- 164 2.468 3060 3o282 3,748

120 1.672 2.155 2.458 3.047 3.269 3.733
O 1.665 2.146 2.448 3.035 3.255 3.718

Table B3. Values of N (k,n,P) such that the prediction el
P-

lipsoid (11.96) has pro-

bability content P. Sampling is from a k-variate normal population with

unknown mean vector and known covariance matrix. (For the case k=1 see

Table A6 in Appendix A.)
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k=3 Probability content, P

n 0.7500 0 9000 0r9500 0.9900 0.9950 0.9990

1 2.866 3.536 3.953 4.764 5.067 5.703
2 2,482 3n062 3o424 4.125 4.388 4.939
3 2.340 2.887 3.228 3.889 4.137 4.656
4 2.266 2.796 3o125 3766 4o006 4.508
5 2.220 2.739 3.162 3.690 3.925 4.417
6 2.189 2.701 3.020 3.638 3.870 4.355
7 2,166 2e 673 2o989 3-601 3c830 4o3il
8 2.150 2.652 2.965 3.573 3.80NI 4.277
9 2.136 2.636 2.947 3.551 3.777 4.250

10 2125 2.622 2.932 3.533 3.758 4.229
I1 2.117 2.612 2.920 3.518 3.742 4.212
12 2.109 23602 2,910 3,506 3o729 4-197
13 2.113 2.595 2.901 3.496 3.718 4.185
14 2.098 2.588 2.894 3.487 3.709 4.174
15 2,093 2. 582 2o887 3-479 3700 4.165
16 2.089 2.577 2.882 3.472 3.693 4.156
17 2.085 2.573 2.877 3.466 3.687 4,149
18 2 082 2.569 2.872 3.461 3.681 4.143
19 2.079 2.565 2.868 3.456 3.676 4.137
20 2.077 2 562 2o865 3452 3,671 4ol32
30 2.060 2.542 2.842 3.424 3.642 4.099
40 2.052 2.531 2.830 3.410 3.627 4.082
60 2-043 2 521 2,819 3,396 3o613 4.066
120 2.35 2.511 2.807 3.382 3.598 4.049

00 2.027 2.500 2.796 3.368 3.583 4-032

Table B3 (cont.).
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k=4 Probability content, P

n 0 7500 0.9000 0.9500 0.9910 0.9950 0.9990

1 3.281 3.945 4.356 5.153 5-452 6o079
2 2.842 3.416 3.773 4.463 4.721 5.265
3 2.679 3.221 3.557 4.207 4.451 4.964
4 2o594 31 118 3.444 4'*074 4o310 4r806
5 2.542 3.055 3.374 3.991 4.223 4.7')9
6 2.506 3.013 3.327 3.936 4.164 4.643
7 2-481 2 982 3a293 3,895 4.121 4.596
8 2.461 2.958 3.267 3.865 4.089 4.560
9 2.446 2.940 3.247 3.841 4o063 4v531

10 2.434 2.9?5 3.231 3.821 4.043 4.509
11 2.424 2.913 3.217 3.806 4.026 4.490
12 2:415 2,903 3I206 3- 792 4 012 4 474
13 2.408 2.895 3.197 3.781 4.0011 4.461
14 2.402 2.887 3.188 3.772 3.990 4.450
15 2.396 2e 881 3181 3- 763 3.981 4.440
16 2.392 2.875 3.175 3.756 3.974 4.431
17 2.388 2.870 3.170 3.749 3o967 4,423
18 2.384 2.866 3.165 3.743 3.960 4.417
19 2.381 2.862 3.160 3.738 3.955 4.411
20 2378 2c 858 3o156 3,734 3,,950 4c405
30 2.359 2.835 3.131 3,704 3.919 4.370
40 2.349 2.824 3.119 3.689 3.903 4.352
60 2-340 2: 812 3)106 3 674 3.887 4.335

120 2.330 2.801 3.093 3.659 3.871 4.317
0 2.320 2.789 3.080 3.644 1 3855 4r.299

Table B3 (cont.).
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k=5 Probability content, P

n 0.7500 0.9000 0.9500 0.99()0 0.9950 '.9990

1 3.640 4.298 4.705 5,493 5-788 6o403
2 3.152 3.722 4.075 4.757 5.12 5.545
3 2.972 3.509 3.842 4.485 4.726 5.228
4 2,878 3:398 3,720 4,342 4o576 5.062
5 2.820 3.329 3.645 4.255 4.483 4.960
6 2.780 3.282 3.594 4.195 4.421 4.890
7 2.752 30249 3.557 4.152 4.375 4.840
8 2.730 3.223 3.529 4.120 4.341 4.802
9 2.713 3203 3,507 4 094 4.314 4,773
10 2.7110 3.187 3.490 4.074 4.292 4.749
11 2.688 3.174 3.475 4.057 4.275 4.729
12 2-679 3 163 3t463 44043 4,260 4.713
13 2.671 3.154 3.453 4.031 4.247 4.699
14 2.664 3.146 3.444 4.020 4.236 4,687
15 2.658 3.139 3.436 4.011 4.227 4.676
16 2.653 3.132 3.430 4.003 4.?19 4.667
17 2.649 3 127 3-424 33997 4o?11 4,659
18 2.644 3.122 3.418 3.990 4.205 4.652
19 2.641 3.118 3.414 3.985 4.199 4.645
20 2-637 3,114 3c409 3 980 4.194 4.640
3 2.616 3.089 3.382 3.948 4.160 4.603
40 2.606 3.077 3.368 3.932 4o144 4n584
60 2.595 3.064 3.355 3.916 4.127 4.565
120 2.585 3.052 3.341 3.900 4.110 4.547

0 2-574 3,039 3n327 3n884 4,093 4n528

Table B3
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k=7 Probability content, P

n 1,7500 1.9000 0.9500 0.9900 0.9950 P*9990

1 4 251 4. 903 5o305 6c078 6.369 6o970
2 3.682 4.246 4.594 5.264 5.515 6.036
3 3.471 4.003 4.331 4.963 5.200 5.691
4 3 361 3 876 4.194 4.805 5.035 5.510
5 3.293 3.798 4.109 4.708 4.933 5.399
6 3.247 3.745 4 052 4,642 4o864 5323
7 3.214 3.706 4.010 4.595 4.814 5.269
8 3.189 3.677 3.979 4.559 4.776 5.227
9 3169 3. 654 3,954 4-531 4.747 5-195

in 3.153 3.636 3.934 4.518 4.723 5.169
11 3.140 3.621 3.918 4.489 4.703 5f148
12 3,129 3.608 3.904 4.474 4.687 5.130
13 3.120 3.598 3.893 4.460 4.673 5.115
14 3.112 3o589 3v883 4;449 4e661 5n101
15 3.115 3.581 3.874 4.439 4.651 5.090
16 3.099 3.574 3.866 4.430 4.642 5.080
17 3n093 3 567 3v860 4o4?3 4.634 5.071
18 3.189 3.562 3.854 4.416 4.627 5.064
19 3.084 3.557 3.848 4.410 4.620 5v057
23080 3.552 3.844 4.404 4.614 5*050
30 3.056 3.524 3.813 4.369 4.578 5.010
40 3044 3:510 3e798 4'351 4t559 4,990
60 3.n31 3.496 3.782 4.334 4.541 4.969
120 3.019 3.4P1 3.767 4.316 4.522 4.949

030006 3 467 3-i751 4-298 4.503 4.928

Table B3 (cont.).
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k=10 Probability content, P

n 0.7510 i .9M f 0.9500 0.9900 0.9950 0.9990

1 5-010 5:655 6.051 6.813 7.098 7.694
2 4.339 4.897 5.241 5.900 6.147 6.663
3 4.091 4.617 4o941 5 563 5.795 6o 282
4 3.961 4.471 4.784 5.386 5.611 6.083
5 3.881 4.380 4.687 5.277 5.498 5.960
6 3-826 4;319 4.622 5-204 5,421 5.877
7 3.787 4.275 4.574 5.151 5.365 5.816
8 3.757 4.241 4.539 5.110 5.323 5o771
9 3,734 4.215 4.510 5.078 5.290 5.735

10 3.716 4.194 4.488 5.053 5.264 5.706
11 3.700 4s177 4.469 5-032 5o242 5,683
12 3.687 4.162 4.454 5.114 5.224 5.663
13 3.676 4.150 4.441 5.000 5.208 5.646
14 3.667 4-139 4,429 4-987 5195 5.632
15 3.659 4.130 4.419 4.976 5.184 5.619
16 3.652 4.122 4.411 4.966 5.173 5o608
17 3-645 4.115 4.403 4.957 5.164 5.598
18 3.640 4.108 4.396 4.950 5.156 5.590
19 3.635 4- 103 4o390 4,943 5,149 5*582
20 3.63n 4.097 4.385 4.937 5.143 5.575
30 3.601 4.065 4.350 4.897 5.102 5.531
40 3 587 4o048 4,332 4i878 5o081 5.508
60 3.572 4.032 4.315 4.858 5.061 5.486
120 3.557 4.015 4.297 4.838 5.040 5c463

0 3-543 3.999 4.279 4.818 5.*19 5.441

Table B3
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k=15 Probability content, P

n 07500 0.9001 0.9500 0.9900 0.9950 0.9990

1 6.040 6.679 7.070 7.821 8.100 8.678
2 5.231 5.784 6.122 6.773 7.015 7.515
3 4, 932 5,453 5o,772 6,386 6,614 7,085
4 4,775 5.280 5.589 6.183 6.404 6.860
5 4.678 5.174 5.476 6.058 6.274 6.722
6 43613 5-,101 52400 5.973 6.186 6.628
7 4.566 5.149 5.344 5.912 6.123 6.560
8 4.530 5.009 5.302 5.866 6o075 6,508
9 4.502 4.978 5.269 5.830 6.137 6.468

10 4.479 4.953 5.243 5.800 6.007 6.435
11 4, 461 4,933 5o221 5-776 5o982 6a409
12 4.445 4.916 5.203 5.756 5.961 6.387
13 4.432 4.901 5.188 5.739 5.944 6.368
14 4-421 4,889 5.174 5.724 5.929 6.351
15 4.411 4.878 5.163 5.712 5.915 6.337
16 4.402 4-868 5,153 5.701 5.904 &n325
17 4.395 4.861 5.144 5.691 5.894 6.314
18 4.388 4.852 5.136 5.682 5.885 6.304
19 4;382 4-846 5,129 5,674 5,876 6.295
20 4.376 4.839 5.122 5.667 5.869 6.287
30 4.341 4.801 5.082 5.622 5.822 6,237
40 4-324 4.781 5.061 5.599 5.799 6.212
60 4.306 4.762 5.040 5.576 5.775 6.187
120 4.289 43742 5e020 5553 5n751 6o161

Co 4.271 4.723 4.999 5.530 5.728 6.136

Table B3 (cont.).
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k=20 Probability content, P

n 0.7500 0.9000 0.9500 0.9900 0.9950 0.9990

1 6.9-172 7.539 7.927 8.667 8.944 9.529
2 5.977 6.529 6.865 7.506 7.746 8.252
3 5-636 6A156 6,472 7 077 7.303 7.780
4 5.457 5.960 6.267 6.852 7.071 7.533
5 5.346 5.840 6.140 6.714 6o928 7381
6 5.272 5.758 6.054 6.620 6.831 7.278
7 5.218 5.699 5.992 6.552 6.761 7.203
8 5177 5,654 5o945 6o500 6.,708 7,147
9 5.145 5.619 5.909 6.460 6.667 7.102

10 5.119 5.591 5.879 6.428 6.633 7.067
11 53098 5,568 5*855 6n401 6.606 7.038
12 5.08P 5.549 5.834 6.379 6.583 7.013
13 5.065 5.532 5.817 6.360 6,563 6c992
.14 5.059 5.518 5.802 6.344 6.547 6.974
15 5.041 5.506 5.789 6.330 6.532 6.959
16 5s031 5,495 5778 6,:317 6a519 6m945
17 5.*022 5.486 5.768 6.306 6.508 6.933
18 5.014 5.477 5.759 6.297 6.498 6.923
19 5:007 5-470 5.751 6288 6.489 6.913
20 5.001 5.463 5.744 6.280 6.481 6.904
30 4.961 5.419 5.698 6.230 6.429 6o849
40 4.941 5.397 5.675 6.205 6.403 6.822
60 4.921 5.375 5.652 6.179 6.377 6.794
120 4,901 54353 5o629 6A154 6o351 6,766
0 4.881 5.331 5.605 6.129 6.325 6.738

Table B3
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k=40 Probability content, P

n 0.7500 0.90C0 0.9500 0.9900 0.9950 0.9990

1 9.55f 10.178 10.560 11.285 11.555 12.133
2 8.270 8.815 9.145 9.773 10.007 10.507
3 7-797 8-311 8-622 9.214 9.435 9.906
4 7*550 8.047 8.349 8.922 9.135 9.592
5 7.397 7.884 8.180 8,742 8.951 9f398
6 7.294 7.774 8.066 8.619 8.825 9.266
7 7.219 7.694 7.983 8.531 8.735 9.171
8 7,162 7,634 7.920 8-464 8,666 9.099
9 7.118 7.587 7.871 8.412 8.613 9.043

10 7.082 7.549 7.832 8.369 8.569 8.998
11 7 053 7.517 7.799 8.335 8.534 8.961
12 7.029 7.491 7.772 8.306 8.504 8.929
13 7.008 73469 7.749 8n281 8479 8*903
14 6.990 7.450 7.729 8.260 8.457 8.880
15 6.974 7.433 7.712 8.242 8.439 8.860
16 67961 7-419 7c697 8,226 8e422 8.843
17 6.949 7.406 7.684 8.211 8.408 8.828
18 6.938 7.394 7.672 8.199 8.395 8o814
19 6-928 7.384 7.661 8.187 8.383 8.812
2f 6.920 7.375 7.652 8.177 8.372 8.791
30 6.864 7 316 7c591 8-112 8o306 8r 721
40 6.837 7.287 7.560 8.079 8.272 8.686
60 6.809 7.257 7.529 q.046 8.238 8.650

120 6&781 7 227 7o498 8"013 8o205 8.615
, 6.753 7.197 7.467 7.98n 8.171 8.579

Table B3

ON'
wA
ON'

1w 1w

(cont.) .



k=2 Probability content, P

n .7500 0.9000 0.9500 0.9900 0.9950 .999r

3 3-799 7 571 13.326 53 806 100o333 439t269
4 2.115 2. 707 3.448 6.349 8.392 16.464
5 1.622 1.948 2.259 3.272 3.878 5.864
6 L451 1-655 1,838 2o388 2.690 3.595
7 1.354 1.500) 1.627 1.988 2.177 2.714
8 1.292 1.405 1.501 1.765 12898 2265
9 1.248 1.340 1.417 1.623 1.724 1.996

10 1.216 1.293 1.357 1.525 1.606 1.820
11 1. 192 1- 258 1,2312 12 45- 1 521 1, 696
12 1.172 1.230 1.277 1.399 1.456 1.604
13 1.156 1.208 1.250 1.356 1.406 1.532
14 1 143 1. 189 1e227 L 321 1.365 1.476
15 1.132 1.174 1. 208 1.293 1.332 1.431
16 1.122 1.161 1.192 1.269 13305 12 393
17 1.114 1.150 1.178 1.249 1.281 1.361
18 1.107 1.140 1.166 1.231 1.261 1.334
19 L 100 L 131 1o213 1,216 L,244 10 311
20 1.095 1.124 1.147 1.203 1.229 1.291
21 1.090 1.117 1.139 1.191 1.215 1.273
22 V 085 1:1111 1,131 10181 1.203 1.257
32 1.057 1. 173 1.086 1.117 1.131 1.163
42 1.043 1.054 1.064 1.086 Io096 1-119
62 1.028 1.036 1.042 1.057 1.063 1.077
122 1.014 1.018 1.021 1.028 1.031 1.038

00 12.000 1r 000 1noQo 1 000 1.000 L- 000

Table B4. Values of the penalty ratio r N (k,n,P) in equation (11.93). These values
apply to the ellipsoidal -r- prediction region (11.92) and to samplin
from a k-variate normal population with unknown mean vector and covariance
matrix. (For the case k=l see Table A3 in Appendix A.)
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k=3 Probability content, P

n 0 7500 On9000 0 9500 0.9900 0.9950 0.9990

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
33
43
63

123
00

4.739
2- 351
1.829
1.601
1.472
1.389

1.289
1.256
1U230

1.191
1.176
1.164
1152
1.143
1.135
1127
1.120
1.114
1.076
1*057
1038
1.019
1.000

9.820
3, 248
2.243
1.857
1.654
1.529
1-444
1.383
1.337
1, 301
1.271
L1 247
1. 227
1.210
1.- 196
1.183
1.171
1.162
1.153
1. 145
1.196
1.071
1047
1. f24
1.000

17.622
42 202
2.631
2.083
1.809
1.645
1,536
1.459
1.401
1.356
1.320
1291
1.267
1*246
1t 229
1.213
1.200
1.188
1.178
1n168
1.110
1.082
1ca054
1.027
1.000

73.196
7.933
3. 892
2.-751
2.241
1.957
1:778
1.654
1.565
1.496
1.443
1:400
1.364
1.334
1-309
1.287
1.268
1.252
1.237
1224
1.145
1.107
1 070
1.035
1.000

137. 649
10.569
4.644
3118
2.467
2.115
10896
1.749
1.642
1.562
1.500
1450
1.409
1.374
1 346
1.321
1.299
1.281
1.264
1 249
1.160
1.118
1,077
1.038
1.000

611.468
21.0 34
7.115
4o215
3. 116
2.545
2:213
1.996
1.843
1.730
1.643
1 575
1*520
1.474
1.436
1.402
1v375
1*350

1-310
1.196
1.144
1.093
1.046
c1 000

A A A A A I.

Table B4 (cont.).
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k=4 Probability content, P

n 0.7500 0.9000 0.9500 0 .990p n*9950 0.9990

5 5.532 11.738 21.318 90t 191 170- 503 764o469
6 2.646 3.723 4.865 9.339 12.507 25.116
7 2.015 2.506 2.964 4.447 5.331 8.236
8 1738 2039 2303 3-079 3n503 4 772
9 1.581 1.794 1.973 2.470 2.728 3.459

10 1.480 1.643 1.776 2.133 2.311 2.798
11 1,410 1 540 1.645 1.920 2.053 2.4)8
12 1.357 1.466 1.552 1.773 1.879 2.154
13 1.317 1.410 lo483 1-667 U,754 1U976
14 1.285 1.366 1.429 1.586 1.659 1.844
15 1.258 1.330 1.386 1.523 1.586 1.744
16 1: 237 1 301 1351 1-472 1527 1.664
17 1.219 1.277 1.322 1. 43f 1.479 1.599
18 1.203 1.256 1.297 1.394 1.439 1u546
19 l1 189 1.238 1.276 1.365 1.405 1.502
20 1.178 1.223 1.257 1.339 1.376 1.464
21 1.167 1 209 1--241 1 317 1: 350 1,431
22 1.158 1.197 1.227 1.297 1.328 1.4.13
23 1.149 1.186 1.214 1.280 1.309 1.378
24 1,142 1-1177 1203 1-265 1,,292 1.357
34 1.o95 1.117 1.133 1.171 1.187 1.225
44 1.071 1.087 1.099 1.126 1.138 1, 165
64 1-048 1.058 1.065 1.083 1.190 1. 107

124 1.024 1. 029 1.0 32 1.041 1.044 1.052
00 1.000 1 000 11000 1000 1 000 c1 000

Table B4 (cont.).
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k=5 Probability content, P

n n.7501 1.90f0 0.9500 n.9900 0.9950 0.9q99)

6 6n231 13c446 24.,625 105n565 200385 9050580
7 2.913 4.153 5.466 10.623 14.282 28.9N8
8 2.185 2.747 3.269 4.957 5.964 9.283
9 1-864 2,208 2.506 3.381 3.860 5.294

10 1.683 1.924 2.125 2.683 2. 972 3.790
11 1.565 1<749 1.898 2:296 2o494 3-038
12 1.483 1.630 1.748 2.052 2.200 2.594
13 1.422 1.544 1.640 1.884 2.001 2.305
14 1.-374 1. 479 1. 560 1< 763 Ie858 2.102
15 1.337 1.428 1.498 1.67nl 1.750 1.954
16 1.306 1.387 1.448 1.598 1.667 1r-840
17 10281 1.353 1.407 1.539 1.600 1.750
18 1.259 1.324 1.373 1.491 1.545 1.677
19 1.241 1.300 1 345 Io451 1.499 l 617
20 1.225 1.279 1.320 1.417 1.460 1.567
21 1.211 1.261 1.299 1.388 1.427 1.524
22 1.:198 1-245 1c280 1-362 1o399 1.487
23 1.187 1.231 1.264 1.34, 1.374 1.455
24 1.178 1. 219 1.249 1.320 1.352 1.427
25 1A69 1.208 1.236 1.303 1.332 1.402
35 1.113 1.137 1.155 1.196 1.213 1.254
45 1.085 1:103 1 115 1o 144 1, 157 to 186
65 1.057 1. f68 1.(76 1.095 1.103 1.121

125 1.028 1.034 1.038 1.047 1.050 1.060
00 loOo 1:000 1;000 L3000 1.000 1.000

Table B4 (cont.).
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k=7 Probability content, P

n 0.7500 0.9000 0.9500 0.9900 0.9950 0.9990

8 7.451 16.437 30.457 133.016 253.927 1159.982
9 3.388 4. 919 6.542 12.936 17.489 35.778

10 2- 492 3-.181 3,2820 15-882 Ta 114 lba 187
11 2.096 2.514 2.876 3.934 4.512 6.247
12 1.870 2.162 2.405 3.073 3.418 4.398
13 1- 723 1 945 2 123 2. 596 2.832 3.475
14 1.619 1.797 1.936 2.296 2.470 2.935
15 1.542 1.689 1.803 2.090 2o227 2c583
16 1.482 1.607 1.703 1.941 2.051 2.337
17 1.435 1.543 1.626 1. 817 1.920 2.156
18 1-396 1--492 1,563 1 738 Io817 2.,018
19 1.363 1.449 1.513 1.666 1.735 1.908
20 1.336 1.413 1.470 1.607 1.668 1.820

- 21 1o312 1: 383 1, 435 1- 558 1.612 1.747
22 1.292 1.356 1.404 1.516 1.565 1.686
23 1.274 1.334 1.377 1.479 1o524 lo634
24 1.258 1.314 1.354 1.448 1.489 1.589
25 1.244 1.295 1.333 1.421 1.459 1.551
26 L 232 1,280 1,315 1 396 1o432 1a518
27 1.22n 1.266 1.299 1.375 1.407 1.487
37 1.148 1.176 1.196 1.242 1.262 1.308
47 1-111 1 132 1 146 1.179 1.193 1.226
67 1.174 1.088 1.097 1.118 1.126 1.147

127 1.037 1.044 1.048 1; 058 lo062 1--072
oo1.101 01000 1. Ofin 1.n0i 1.1 no-

Table B4 (cont.)



k=10 Probability content, P

n 0.7500 0.9000 0.9500 0.9900 0.9950 0.9990

11 9.Xm1 20.265 37.962 168.711 323.867 1493.963
12 4.004 5.916 7.945 15.974 21.718 44.852
13 2. 897 3,754 4-o546 7. 109 8.643 13.712
14 2.403 2.922 3.368 4.672 5.384 7.518
15 2.121 2.482 2.779 3.596 4i0 18 5-s212
16 1.936 2.209 2.427 3.12 3.288 4.065
17 1.805 2.023 2.193 2.627 2.837 3.393
18 1,707 1- 887 2;025 2- 370 2e534 2o 957
19 1.631 1.784 1.899 2.184 2.316 2.652
20 1.570 1.702 1.801 2.042 2.152 2.428
21 L 520 1:,636 L-723 1-930 2.024 2.258
22 1.479 1.582 1.659 1.840 1.922 2.123
23 1.443 1.537 1.605 1.766 bo838 2o014
24 1.412 1.497 1.559 1. 714 1.768 1.924
25 1.386 1.464 1.521 1.652 1.710 1.849
26 1- 363 1 435 La487 L;606 1o659 1i 785
27 1.342 1.4C9 1.457 1.567 1.615 1.729
28 1.324 1.386 1.431 1.532 1.577 1.682
29 L 307 L 366 L 407 1-502 1.543 1.640
30 1.293 1.347 1.386 1.475 1.513 1.604
40 1.198 1.232 1.255 1.308 1,330 L 382
50 1.149 1.174 1.191 1.228 1.243 1.278
70 1.100 1 116 1o127 1, 150 L160 1181
130 1.51 1.058 1.063 1.74 1.079 1.089

I0 1.000 1.000 1.000 1.000 1.000 1.000

Table B4 (cont.).



k=15 Probability content, P

n 0: 750) 0. 9000 04 9500 0o9900 0.9950 0.9990

16 11.154 25.615 48.506 219.380 423.661 1977.395
17 4.-.874 7D-327 9. 939 20. 324 27.792 58.075
18 3.475 4.574 5.590 8.879 10.855 17.424
19 2.849 3.511 4.081 5.743 6o653 9,394
20 2.487 2.948 3.326 4.362 4.897 6.418
21 2.240 2.597 2.873 3.598 3.959 4.943
22 2: 080 2z 356 2.571 3Q 116 34 380 4,,080
23 1.953 2.181 2.354 2.786 2.991 3.520
24 '. 55 2.047 2.192 2.545 2.710 3.130
25 1.-774 1- 941 2. 065 2 362 2.499 2.843

26 1.709 1.855 1.963 2.218 2.334 2.624
27 1.654 1.783 1.879 2.102 2S202 2o451
28 1.607 1.723 1.808 2.0)6 2.094 2.311
29 1.566 1.672 1.749 1.926 2.004 2.196
30 1 531 1 628 1 698 1 858 L 928 20 100
31 1.500 1.589 1.653 1.799 1.863 2.016
32 1.472 1.555 1.614 1.748 1.806 1.945
33 U -447 1 525 1,,579 1 703 1.756 1.885
34 1.425 1.497 1.548 1.663 1.712 1.830
35 1.406 1.473 1.521 1.627 1,673 l.782
45 1.276 1.318 1.347 1.409 1.436 1.497
55 1.210 1.239 1.260 1.304 1.322 1.365
75 1 142 1, 161 1*174 1, 201 1,212 Lz 238
135 1.172 1. 081 1.087 1. 1 0 1.105 1.116

C 1.000 1.000 1.000 1.000 1.000 1.000

Table B4 (cont.) .
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k=20 Probability content, P

n 0-17500 0.9000 0.9500 0.9900 0.9950 0.9990

21 12.983 30.172 57.513 263.190 510.124 2393,944
22 5o619 8.540 11.657 24.110 33.086 69.519
23 3.976 5.284 6.495 10.428 12.793 20.642
24 3.237 4n 025 4-704 6 687 7,771 11 029
25 2.809 3.357 3.806 5.039 5.675 7.472
26 2.526 2. 39 3.266 4.128 4.555 5.713
27 2-325 2, 652 2. 906 3.553 3n864 4.684
28 2.173 2.442 2. 647 3.158 3.398 4.017
29 2.054 2.281 2.453 2.870 3.063 3a552
30 1 958 2.154 2.300 2.651 2.811 3.209
31 1.1879 2.051 2.178 2.479 2.614 2.949
32 1.812 1-965 2n077 2,339 2.456 2o741
33 1.755 1.893 1.992 2.225 2.327 2.574
34 1.706 1.831 1.921 2.128 2.?19 2.438
35 1 663 1- 777 1 859 2v046 2.128 2.322
36 1.625 1.730 1.805 1.975 2.049 2.223
37 1.591 1.688 1.757 1.914 1.981 2140
38 1561 1.651 1.715 1.859 1.921 2.065
39 1.534 1.618 1.678 1.811 1.868 2.001
40 1.510 1- 589 Lc644 1,768 1o821 1-944
50 1.35n 1.398 1.431 1.594 1.533 1.600
60 1.268 1.301 1.325 1.375 1.396 1.443
80 L 182 1 204 L1218 1: 249 L 261 1.289

140 1.093 1.103 1.110 1.124 1.130 1.140
00 1.000 1.000 1.000 1.000 1L000 1U000

Table B4 (cont.)



k=40 Probability content, P

n 751 i.9000 0.9500 0.990 0.9950 0.9990

41 18 686 44 480 85o919 402 258 785 785 3741a756
42 7.971 12.386 17.122 36.213 50.084 106.775
43 5.568 7.555 9.398 15.416 19.056 31.196
44 4,481 5-683 6-715 9,743 11.407 16.414
45 3.847 4.683 5.367 7.246 8.218 10.967
46 3.428 4.057 4.555 5.864 6a514 8275
47 3.125 3.625 4.010 4.991 5.463 6.7.6
48 2.897 3.307 3.618 4.390 4.753 5.686
49 21716 3 063 3.322 33951 4.242 4n976
50 2.570 2.869 3.089 3.616 3.856 4.453
51 2.448 2.710 2.901 3.352 3.555 4.052
52 2,345 2 577 2,746 3:138 3.313 3.736
53 2.257 2.466 2.615 2.961 3.114 3.481

in 54 2.181 2.369 2.504 2.813 2c947 3a269
55 2.113 2.285 2.407 2.685 2.806 3.092
56 2.054 2.212 2.324 2.575 2.684 2.938
57 2-000 2147 2o249 2o480 2,579 2,809
58 1.953 2.089 2.183 2.395 2.486 2.695
59 1.910 2.036 2.124 2.370 2.404 2.595
60 1. 871 l 989 2,071 2n253 2.330 2.508
70 1.612 1.683 1.732 1.835 1.878 1.973
80 1.475 1.525 1.558 1.630 12659 1722

1ma 1.329 1.360 1.380 1.424 1.441 1.477
160 1.172 1.187 1.196 1.215 1.223 1.236

O 1000 1 000 L000 1:-00 1.000 1-000

Table B4 (cont.).



k=2 Probability content, P

n (.7500 0.9000 0.9500 0.9900 0.9950 0.9990

2 3.290 6.556 11.540 46.598 86.891 380.418
3 1.802 2.421 3.084 5.679 7.506 14.726
4 11 481 1,778 2, 062 2o987 3a540 5c 353
5 1.343 1.532 1.702 2.21r 2.490 3.329
6 1.266 1.403 1.522 1.860 2.037 2.539
7 1,218 1 325 L.415 L 664 1.790 2.135
8 1.184 1.271 1.344 1.539 1.636 1.894
9 1.160 1.233 1.294 1.454 lo531 L-1735

10 1.141 1.204 1.256 1.391 1.456 1.623
11 1.126 1.18? 1.227 1.344 1.399 1.541
12 L 114 L 164 1c?04 l. 307 15355 1-477
13 1.104 1.149 1.185 1.277 1.319 1.426
14 1.096 1. 137 1.170 1.252 1.290 1.385
15 L 089 L 126 1I156 L 231 1.266 1.351
16 1.'83 1.117 1.145 1.214 1.245 1.323
17 1.077 1.109 1.135 1.199 1.228 11299
18 1. 073 1.103 1.182 1.185 1.212 1.278
19 1.068 1.097 1.119 1.174 1.199 1.260
20 1,065 1 091 1112 1: 164 1-,187 Lo244
21 1.161 1.086 1.106 1. 155 1.177 1. 230
31 1.140 1.057 1.069 1.100 1.113 1.145
41 1,031 1.042 lo052 1 074 1.083 1.106
61 1.020 1.028 1.034 1.048 1.055 1.069
121 1.010 1.014 1.017 1.024 L 027 1,-034

O 1.000 1.00 1.000 1.010 1.00i 1.010

Table B5. Values of the penalty ratio
apply to the ellipsoidal

N
r (k,n,P) in equation (11.95).

prediction region (11.94)
These values

and to sampling
from a k-variate normal population with known mean and unknown covariance
matrix. (For the case k=l, see Table A2 in Appendix A.)
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k=3 Probability content, P

n .7500 0.9000 0.9500 0.9900 0.9950 0.9990

3 4.239 8.783 15.761 65.468 123.117 546.913
4 2.146 2.965 3.836 7.242 9.648 19.202
5 1 694 2-076 2 436 3: 603 4.300 6.587
6 1.498 1.737 1.948 2.573 2.916 3.943
7 1.388 1.559 1.705 2.113 2.326 2o928
8 1.318 1.451 1.560 1.857 2.006 2.415
9 .270 1.377 1.465 1.695 1.808 2.110

10 L,234 U324 Io397 1 584 Ie674 Io 911
11 1.207 1.284 1.346 1.503 1.578 1.770
12 1.185 1.253 1.307 1.442 1.505 1.667
13 1, 168 1 228 1,,276 1,394 1.449 1.588
14 1.153 1.2P8 1.250 1.355 1.404 1.525
15 1.141 1.191 1.229 1.323 1 367 1: 474
16 1.131 1.176 1.211 1.297 1.336 1.432
17 1.122 1.164 1.196 1.274 1.310 1.398
18 1,114 1 153 10183 1,255 l287 1o367
19 1. 117 1.143 1.171 1.238 1.268 1.342
20 1.101 1.135 1.161 1.223 1.251 1.319
21 1J096 le 128 1% 152 le- 210 1.236 1.299
22 1.091 1.121 1.144 1.198 1.223 1.282
32 1.060 1.079 1.094 1.128 1A143 J178
42 1.045 1.059 1.070 1.094 1.105 1.131
62 1.030 1.039 1.046 1.062 1.069 1.085
122 1 015 tP 019 1.I023 10030 1,01.34 I042

.1.O 0 1.I0 1. i00 l.n

Table B5 (cont.) .



k=4 Probability content, P

n 0.7500 0.9000 0.9500 0.9900 0.9950 009990

4 5.050 111.716 19.461 82.333 155.647 697.860
5 2.450 3.447 4.504 8.646 11.5T9 23 253
6 1-884 2.344 2.773 4.159 4.987 7.704
7 1.638 1.922 2.171 2.902 3.303 4.499

8 1.500 1,702 1 871 2 343 2o588 3c281
9 1.411 1.566 1.693 2.033 2.204 2.668

10 1.350 1.475 1.575 1.838 1.966 2.306
11 1.. 304 1 408 1 492 1,704 1.805 2.069

12 1.269 1.359 1.429 1.606 1.690 1.904
13 1.241 1.320 1.381 1.532 1603 1782

14 1.218 1.288 1.342 1.474 1.535 1.689
15 1.200 1.262 1.311 1.428 1.481 1.614
16 1 184 1 241 1*284 1-389 1.437 1 554
17 1.171 1.223 1.262 1.357 1.400 1.505
18 1.159 1.207 1.243 1.330 1.369 1.464
19 1. 149 1 193 1 227 17307 1.342 1.429
20 1.140 1.182 1.213 1.286 1.319 1.398
21 1.132 1.171 1.200 1.269 1,299 1373
22 1.125 1.161 1.189 1.253 1.281 1.349

23 1.119 1.153 1.179 1.239 1.266 1.329
33 1,079 11101 1.117 1154 1170 1,207
43 1. 5q 1.075 1,087 1.113 1.125 1.152
63 1.03P 1.050 1.057 1.074 1.082 1.099
123 1,020 1025 1-028 1-037 1.040 1.048

m 1.n0 1.0"0 1. -On1.000 1.000 1.000

Table B5 (cont.).



k=5 Probability content, P

n 0.7500 0.9000 0.9500 0 0900 0 9950 00 990

5 5.769 12.448 22.799 97.735 185.521 838.406
6 2.725 3. 885 5.113 9 937 132360 27, 041
7 2.060 2.590 3.r82 4.673 5.623 8.752
8 1.768 2.094 2.377 3.208 3.661 5.022
9 1-604 L 834 2- 026 2- 558 2, 833 3o 614

1 1.498 1.675 1.817 2.198 2.388 2.908
11 1.425 1.566 1.679 1.971 2.113 2.493
12 1370 1o488 1.581 1.816 1.928 2.222
13 1.328 1.429 1.507 1.703 1.795 2.031
14 1.294 1.383 1a450 1o617 I,695 l 892
15 1.267 1.345 1.405 1.550 1.617 1.785
16 1.244 1.315 1.368 1.496 1.554 1.700
17 L 225 1 289 IL337 1 452 1m50 4 1r632
18 1.209 1.267 1.311 1.414 1.461 1.576
19 1.195 1.249 1.288 1.383 1.425 1-,529
20 L 183 1.232 1.269 1.356 1.395 1.489
21 1.172 1.218 1.252 1.332 1.368 1.454
22 1.162 L 205 1,,237 1-312 1o345 1o425
23 1.154 1.194 1.224 1.294 1.324 1.398
24 1.146 1.184 1.212 1.277 1.306 1.375
34 15: 097 1, 121 1o139 1 179 1e196 1.236
44 1.'73 1.091 1.103 1.132 1.144 1.173
64 1.049 1.060 1.068 1.087 1.094 1--113
124 1, 024 1. 030 1.034 1.043 1.046 1.055

1.000 1.000 1.000 1.000 1.00 1.000

Table B5 (cont.)
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k=7 Probability content, P

n 0 7500 0.19000 0:9500 0. 9900 0o9950 009990

7 7.025 15.497 28.715 125.399 239.405 1093.642
8 3: 215 4o 667 6,206 12,272 16o591 33, 942
9 2.376 3.033 3.642 5.619 6.783 10.667
10 2.006 2.407 2.753 3.767 4.320 5.981
11 Ln797 2n077 2.310 2.952 3.284 4.225
12 1.660 1.874 2.046 2.502 2.729 3.349
13 1.564 1.736 1871 27218 2,387 2,835
14 1.493 1.635 1.746 2.024 2.156 2.501
15 1.438 1.559 1.652 1.883 1.990 2.267
16 1,394 Ln 500 in 580 L 776 1o866 2.095
17 1.359 1.452 1.522 1.692 1.769 1.964
18 1.329 1.412 1.474 1.624 1.691 1860
19 1:304 1.379 1.435 1.568 1.628 1.776
20 1.282 1.351 1.402 1.522 1.575 1.707
21 1263 L 326 1v373 1 -,482 1.530 Io649
22 1.247 1.305 1.348 1.448 1.492 1*610
23 1.233 1.287 1.326 1.419 1.459 1.557
24 1 220 1 270 IL307 1 393 1.430 1.521
25 1.209 1.256 1.290 1.370 1.405 1.489
26 1.198 1.243 1.275 1.350 1382 1,460
36 1.133 1.161 1.180 1.226 1.245 1.291
46 1.099 1.120 1.134 1.167 1.180 1.213
66 1067 10080 L 089 1s109 11118 11139
126 1.033 I.o40 1.044 1.054 1.058 1.068

CO 1. 000 1. 000 1.000 1.000 1.000 1.000

Table B5 (cont.).
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k=10 Probability content, P

n 0.7500 0.9000 0.9500 0.9900 0.9950 00.9990

10 8-618 19,402 36.346 161.528 311.079 1430.365
11 3. 847 5.684 7.633 15.347 20.866 43.093
12 2 792 3n 617 4.381 6 850 8v 329 13. 213
13 2.322 2 823 3.254 4, 513 5 201 7o263
14 2.053 2.403 2.691 3.482 3.891 5.046
15 1.878 2.143 2.354 2.912 3.189 3.943
16 L. 754 1, 966 2 131 2. 553 2o758 3.297
17 1.662 1.837 1. 971 2.3417 2.466 2.878
18 1.590 1.738 1.851 2.128 2.257 2.585
19 1, 53? 1.661 1.758 1.992 2.100 2.370
20 1.485 1.599 1.683 1.886 1.978 2.206
21 1,446 1.547 1.622 IL800 10880 2,076
22 1.413 1.504 1.571 1.729 1.799 1.972
23 1.384 1.467 1.528 1.670 1.733 1.885
24 1 359 1,435 Io491 1 620 1.676 1.813
25 1.338 1.408 1.459 1.576 1.628 1.751
26 1.318 1.383 1.431 1.539 13586 1*698
27 1.301 1.362 1.406 1.506 1.549 1.653
28 1.285 1.343 1.383 1.477 1.517 1.612
29 1-272 1 325 1,,364 1,,451 1o488 Io578
39 1.183 1.216 1.240 1.292 1.314 1.365
49 1.138 1.162 1.179 1.216 1.231 1.266
69 1093 1 108 1.A19 1-142 1.151 1.173
129 1.z)47 1.054 1.059 1.070 1.074 1.085

O0 1.000 1.000 1.000 1.000 1: 000 O000

Table B5 (cont.).
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k=15 Probability content, P

n 0.75-j1 3.9000 0.9500 f).990P n9950 .9991

15 10, 821 24 851 47o058 212Q830 411o011 1918 342
16 4.736 7.121 9.659 19.751 27.-09 56.439
17 3.382 4.452 5.441 8.642 10.566 16.959
18 2 776 3,-422 3--978 5i 598 6.485 9.156
19 2.427 2. 877 3.246 4.257 4.779 6.263
20 2.198 2.537 2.807 3.515 3c,868 4o829
21 2.035 2.304 2.514 3.048 3.306 3.990
22 1.912 2.135 2.305 2.727 2.927 3.446
23 1 817 2 005 2.147 2 494 2o655 3o067
24 1.740 1.9n3 2.024 2.316 2.450 2.788
25 1.677 1.820 1.926 2.177 2.291 2.574
26 1 624 1 751 1 845 2. 064 2.163 2.407

L 27 1.579 1.693 1.777 1.971 2.058 2.270
28 1.540 1.644 1.720 1.894 1971 2o159
29 1.506 1.601 1.670 1.827 1.897 2.066
30 1.476 1.564 1.627 1.771 1.833 1.984
31 1,449 1, 531 10589 1 721 1.778 1 915
32 1.426 1.50 2 1.556 1.677 1.730 1.857
33 1.405 1.476 1.526 1.639 1.688 1.803
34 1,386 1. 452 1.499 1:-605 1.650 1.757
44 1.262 1.30 3 1.332 1.394 1.420 1.480
54 1.199 1.228 1.249 1.292 1: 310 lo352
74 1.134 1.153 1.166 1.193 1.204 1.230

134 1.068 1.077 1.083 1.096 1. 101 1.112
L1000 1U000 1a000 1-000 1 000 1.1000

Table B5 (cont.)



k=20 Probability content, P

n 0.7500 r.900 0 0.950(' 0.*9900 0.995( 5.9990

20 12e684 29,478 56,190 257, 139 498.395 2338 899
21 5.496 8.352 11.40f) 23.580 32.359 67.991
22 3.892 5.173 6.358 10.209 12.524 20.207
23 3-171 3 944 4,609 6.552 7.614 10.806
24 2.754 3.291 3.732 4.941 5.565 7.327
25 2.479 2.884 3.205 4o051 4,470 5o606
26 2.283 2.604 2.854 3.489 3.795 4.600
27 2.135 2.400 2.601 3.103 3.339 3.947
28 2009 2.243 2,412 2z822 3,012 3c493
29 1.926 2.119 2.263 2.608 2.765 3.157
30 1.849 2.019 2.143 2.440 2.573 2.902
31 L,784 1935 2,045 2.304 2.419 2.699
32 1.729 1.865 1.963 2.192 2.292 2.536
33 1.681 1.804 1893 2a097 2e187 2v403
34 1.640 1.752 1.833 2.017 2.098 2.290
35 1.603 1.706 1.780 1.948 2.121 2.193
36 lo570 1-666 1V734 L 888 1-954 2c112
37 1.541 1.630 1.693 1.835 1.896 2.039
38 1.515 1.598 1.657 1.788 1.844 1.976
39 1 491 1569 1.624 1.747 1.799 1.920
49 1.337 1.384 1.417 1.489 1.518 1.585
59 1.257 1.291 1314 1-364 1384 1431
79 1.175 1.196 1.210 1.241 1.254 1.281

139 1.089 1.099 1.106 1.120 1.126 1.136
1000 1COOO iono 1L000 13000 11000

Table B5 (cont.).
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k=40 Probability content, P

n 0.7500 1.900 0.9500 0.9900 0.9950 0.9990

40 18,462 43, 948 84.890 397- 441 776.370 3696.922
41 7.878 12.241 16.922 35.790 49.498 105.526
42 5.504 7.46q 9.290 154240 18.839 30,840
43 4.431 5.619 6.640 9.634 11.279 16.231
44 3.805 4.632 5.301 7.166 8.128 10.847
45 3 391 4,013 4o5O6 50801 6o444 8,186
46 3.O92 3.587 3.968 4.938 5.406 6.636
47 2.867 3.273 3.581 4.345 4,.705 5.628
48 2689 31032 3.288 3.912 4.200 4.926
49 2.544 2.840 3.058 3.580 3.818 4.409
50 2.424 2.684 2o873 3m320 3,521 4e013
51 2.323 2.553 2.720 3.108 3.281 3.791
52 2.236 2.443 2.591 2.934 3.',85 3.448
53 2A161 2 347 2o481 2,787 2 920 3-239
54 2.094 2.265 2.386 2.661 2.781 3.065
55 2.035 2.193 2.303 2.553 2.661 2 912
56 1-983 2.128 2.230 2.458 2.556 2.784
57 1.936 2.071 2.165 2.375 2.464 2.672
58 1.894 2,019 2,106 2-301 2o383 2o573
59 1.855 1.973 2.054 2.235 2.311 2.488
69 1.601 1.671 1.719 1.822 1.865 1.959
79 1- 466 1. 516 1,549 L 619 1648 1.712
99 1.322 1.353 1.374 1.417 1.434 1.470
159 1.169 1.183 1.192 1.211 1.219 Io233

00 L000 1.000 1.000 1.090 1.000

Table B5 (cont.).



APPENDIX C

Collected in this appendix are tables of simul-

taneous prediction limits and associated penalty ratios

when sampling from independent and stationary univariate

sequences. The distribution type of the sequence is known,

but at least one distribution parameter is unknown. N

denotes the number of future observations, n the available

sample size and P the desired content of the prediction

interval. For the use of these tables see Paragraph 11.3.2.
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1 2 3 4 5 10 23

2 3.770 7.733 11.145 15.562 ***** 38.973 ******

3 2.178 3.372 4.134 4.969 5.485 8.042 ******

4 1.831 2.631 3.091 3.558 3.826 5.077 6.418
(2.48) (2.87) (3.15) (3.36) (4.02) (4.64)

5 1.679 2.335 2.692 3.041 3.237 4.105 4.984
(2.24) (2.57) (2.80) (2.98) (3.52) (4.04)

6 1.594 2.176 2.482 2.777 2.938 3.635 4.299
(2.11) (2.40) (2.61) (2.76) (3.25) (3.71)

7 1.539 2.C77 2.352 2.616 2.758 3.360 3.921
(2.02) (2.29) (2.48) (2.63) (3.08) (3.50)

8 1.5C1 2.010 2.268 2.508 2.638 3.180 3.672
(1.96) (2.22) (2.40) (2.54) (2.96) (3.36)

9 1.473 1.961 2.203 2.431 2.552 3.053 3.500
(1.'2) (2.17) (2.34) (2.47) (2.87) (3.26)

10 1.451 1.922 2.154 2.372 2.488 2.959 3.377
(1.88) (2.13) (2.29) (2.42) (2.81) (3.18)

11 1.433 1.893 2.119 2.327 2.439 2.887 3.280
(1.86) (2.09) (2.26) (2.38) (2.76) (3.11)

12 1.419 1.869 2.09C 2.291 2.399 2.829 3.204
(1.84) (2.07) (2.23) (2.35) (2.71) (3.06)

15 1.389 1.819 2.039 2.215 2.313 2.710 3.047
(1.79) (2.01) (2.16) (2.28) (2.62) (2.95)

20 1.361 1.772 1.982 2.145 2.240 2.602 2.910
(1.75) (1.96) (2.11) (2.21) (2.54) (2.85)

25 1.344 1.745 1.935 2.105 2.193 2.541 2.830
(1.72) (1.93) (2.07) (2.18) (2.49) (2.79)

30 1.333 1.727 1.912 2.079 2.165 2.503 2.765
(1.71) (1.91) (2.05) (2.15) (2.46) (2.75)

40 1.319 1.7C6 1.883 2.048 2.136 2.455 2.723
(1.69) (1.89) (2.02) (2.12) (2.42) (2.70)

60 1.307 1.685 1.865 2.018 2.107 2.412 2.672
(1.67) (1.86) (1.99) (2.09) (2.38) (2.65)

1 1.282 1.645 1.812 1.960 2.036 2.326 2.559

Table Cl. One-sided simultaneous prediction intervals of
0.90-content for normal sequences wit unknown mean
and variance. Approximate values of y a(0. 9 0,n,N)
from equation (11.130). In.parenthesis'are the
exact values from Rahn (1970). n = available sample
size; N = future sample size. Missing values are
due to limitations in the available tables of the
"Student's" t-distribution.
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n1 3 4 5 10 20

2

3

4

5

6

7

8

9

10

12

15

20

25

30

40

60

00

38.973

8.042

5.C77

4.105

3.635

3.360

3. 180

3.C53

2.887

2.829

2.710

2. 602

2.541

2.503

2.455

2.412

2.326

77.964

11.460

6.530
(6.30)
5.043

(4.94)
4.355

(4.30)
3.963

(3.93)
3.711

(3.69)
3.536

(3.52)
3.409

(3.39)
3.310

(3.30)
3.233

(3.22)
3.075

(3.07)
2.932

(2.93)
2.852

(2.85)
2.802

(2.80)
2.741

(2.74)
2.684

(2.68)

2.576

7.524
(7.07)
5.647

(5.46)
4.812

(4.70)
4.338

(4.27)
4.033

(3.99)
3.830

(3.79)
3.674

(3.65)
3.555

(3.54)
3.471

(3.45)
3.284

(3.27)
3.117

(3.11)
3.029

(3.32)
2.968

(2.97)
2.901

(2.90)
2.833

(2.83)

2.713

****** 155.936

16.269

8.333
(7.63)
6.132

(5.83)
5.155

(4.99)
4.615

(4.51)
4.273

(4.20)
4.040

(3.99)
3.870

(3.83)
3.740

(3.71)
3.640

(3.61)
3.435

(3.42)
3.252

(3.24)
3.151

(3.14)
3.088

(3.08)
3.013

(3.01)
2.941

(2.94)

2.807

389.847

25.781

11.420
(9.43)
7.858
(7.04)
6.365

(5.94)
5.568

(5.30)
5.075

(4.90)
4.744

(4.62)
4.507

(4.41)
4.328

(4.25)
4.189

(4.13)
3.911

(3.88)
3.667

(3.65)
3.536

(3.52)
3.452

(3.44)
3.354

(3.35)
3.262

(3.26)

3.090

779.696

36.486

14.449
(10.76)

9.432
(7.95)
7.419

(6.64)
6.370

(5.90)
5.736

(5.43)
5.314

(5.09)
5.014

(4.85)
4.791

(4.67)
4.618

(4.52)
4.276

(4.22)
3.979

(3.95)
3.319

(3.80)
3.719

(3.71)
3.601

(3.59)
3.492

(3.49)

3.291

Table C2. One-sided simultaneous
0.99 content for normal
and variance. Approxim

prediction intervals of
sequences wit . unknown mean

ate values of 1 0.99,nN)
from equation (11.130). In parenthesis are the
exact values from Hahn (1970). n = available sam]
size; N = future sample size. Missing values are
due to limitations in the available tables of the
"Student' s" t-distribution.
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8.989
(8.07)
6.518

(6.13)
5.433

(5.22)
4.843
(4.70)
4.462

(4.37)
4.209

(4.14)
4.024

(3.97)
3.885

(3.84)
3.769

(3.74)
3.553

(3.53)
3.354

(3.34)
3.247

(3.24)
3.161

(3.17)
3.098

(3.09)
3.025

(3.02)

2.878



1 2 3 4 5 11 20

2 389.E47 779.696 ****** * ***** 3898.40 7796.70
3 25.781 36.486 * *** * ****** 81.637 115.461
4 11.420 14.449 ***** **** ****** 24.820 31.305
5 7.858 9.432 ***** ****** ****** 14.274 17.028
6 6.365 7.419 8.096 8.614 9.041 10.456 12.074
7 5.568 6.370 6.874 7.259 7.574 8.574 9.709
8 5.C75 5.736 6.152 6.459 6.693 7.488 8.363
9 4.744 5.314 5.660 5.935 6.145 6.788 7.505
10 4.5C7 5.014 5.323 5.559 5.726 6.303 6.916
11 4.328 4.791 5.071 5.275 5.434 5.943 6.487
12 4.189 4.618 4.866 5.058 5.204 5.673 6.163
15 3.911 4.276 4.495 4.565 4.699 5.164 5.539
20 3.667 3.979 4.160 4.293 4.406 4.714 5.018
25 3.536 3.819 3.982 4.100 4.191 4.487 4.746
30 3.452 3.719 3.898 4.003 4.066 4.320 4.580
40 3.354 3.601 3.749 3.848 3.927 4.161 4.385
60 3.262 3.492 3.623 3.719 3.788 4.002 4.209
0 3.C9C 3.291 3.403 3.481 3.540 3.719 3.891

Table C3. One-sided simultaneous prediction intervals of
0.999-content for normal sequences with unknown mean
and variance. Approximate values of I,,(0.999,n,N)
from equation (11.130). n = available sample size;
N = future sample size. Missing values are due
to limitations in the available tables of the
"Student's" t-distribution.
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1 2 3 4 5 10 20

2 3898.40 77S6.70 ***** **** ****** 38984.9 77968.5
3 81.637 115.461 ***** ***** ****** 258.653 365.145
4 24.E2C 31.3C5 ****** ****** ****** 53.565 67.526
5 14.274 17.028 ****** ****** ****** 25.557 30.422
6 10.456 12.074 ****** ****** ****** 16.785 19.331
7 8.574 9.7C9 ****** ****** ****** 12.861 14.491
8 7.488 8.363 8.888 9.334 9.599 10.723 11.895
9 6.788 7.5C5 7.958 8.275 8.538 9.381 10.311
10 6.303 6.916 7.289 7.551 7.793 8.495 9.258
11 5.943 6.487 6.841 7.067 7.259 7.865 8.512
12 5.673 6.163 6.453 6.682 6.821 7.411 7.860
15 5.164 5.539 5.763 5.939 6.068 6.5117 6.926
20 4.714 5.018 5.200 5.349 5.446 5.790 6.096
25 4.487 4.746 4.905 5.038 5.109 5.405 5.676
30 4.320 4.580 4.732 4.839 4.930 5.184 5.423
40 4.161 4.3E5 4.532 4.627 4.698 4.920 5.128
60 4.C02 4.209 4.333 4.416 4.477 4.679 4.871
00 3.719 3.891 3.988 4.056 4.107 4.265 4.417

Table C4. One-sided simultaneous prediction intervals of
0.9999-content for normal sequences with unknown

an and variance. Approximate values of

y,,(0.9999,nN) from equation (11.130). n -

available sample size; N = future sample size.
Missing values are due to limitations in the
available tables of the "Student's" t-distribution.
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1 2 3 4 5 10 20

2 16.755 (30.266) ** 5* (55.553) ****** (126.16) (236.92)
3 3.457 (4.449) **** (5.796) ****** (8.343) (11.087)
4 2.183 2.446 2.606 2.718 2.804 3.052 3.270
5 1.765 1.918 2.013 2.077 2.130 2.278 2.416
6 1.563 1.669 1.732 1.778 1.814 1.922 2.018
7 1.445 1.526 1.574 1.607 1.633 1.715 1.793
8 1.367 1.432 1.471 1.496 1.518 1.586 1.650
9 1.313 1.366 1.397 1.421 1.438 1.495 1.547

10 1.272 1.316 1.345 1.364 1.379 1.427 1.474
11 1.241 1.281 1.305 1.322 1.334 1.375 1.419
12 1.216 1.250 1.272 1.286 1.300 1.337 1.373
15 1.165 1.192 1.205 1.218 1.227 1.256 1.282
20 1.119 1.137 1.146 1.154 1.161 1.181 1.200
25 1.C92 1.106 1.113 1.119 1.126 1.139 1.155
30 1.C76 1.087 1.095 1.097 1.101 1.113 1.127
40 1.055 1.064 1.069 1.072 1.074 1.084 1.091
60 1.037 1.040 1.043 1.047 1.049 1.055 1.060
00 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table C5. One-sided simultaneous prediction for normal
sequences with unknown mean and variance. Values

-_Nof the penalty ratio rV ,(0.99,n,N) in equation
(11.128) (in parenthesis: approximate values).
n = available sample size; N = future sample size.
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1 2 3 4 5 10 20

2 126.164 236.918 ****** 4**** ****** 1048.24 2003.78
3 8.343 11.087 ****** ****** ****** 21.951 29.674
4 2.696 4.390 ****** ***** ****** 6.674 8.045
5 2.543 2.E66 **** ****** ****** 3.838 4.376
6 2.060 2.254 2.379 2.475 2.554 2.812 3.103
7 1.8C2 1.936 2.020 2.085 2.140 2.305 2.495
8 1.642 1.743 1.808 1.856 1.891 2.013 2.149
9 1.535 1.615 1.663 1.705 1.736 1.825 1.929
1 0 1.459 1.524 1.564 1.597 1.618 1.695 1.777
11 1.401 1.456 1.490 1.515 1.535 1.598 1.667
12 1.356 1.403 1.430 1.453 1.470 1.525 1.584
15 1.266 1.299 1.321 1.311 1.327 1.389 1.424
20 1.187 1.209 1.222 1.233 1.245 1.268 1.290
25 1.144 1.160 1.170 1.178 1.184 1.207 1.220
30 1.117 1.130 1.145 1.150 1.149 1.162 1.177
40 1.C85 1.094 1.102 1.105 1.109 1.119 n1.127
60 1.C56 1.061 1.065 1.068 1.070 1.076 1.082

00 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table C6. One-sided simultaneous prediction for normal
sequences with unknown mean and variance.
Approximate values of the penalty ratio r P(0.999,
n,N) in equation (11.128). n = available sample
size; N = future sample size.
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Table C7. One-sided
sequences

simultaneous prediction for normal
with unknown mean and variance.

A proximate values of the penalty ratio

rR,,(0.9999,n,N) in equation (11.128). n =
available sample size; N = future sample size.

662

1 2 3 4 5 10 20

2 104 8 .24 2C03.78 **** **** ****** 9140.65 17651.9
3 21.951 29.674 **** ****** ****** 60.645 82.668
4 6.674 8.045 ***** ****** ****** 12.559 15.288
5 3.838 4.376 ***** ****** ****** 5.992 6.887
6 2.812 3.103 ****** ***** ****** 3.936 4.376
7 2.305 2.4S5 ****** ****** ****** 3.015 3.281
8 2.013 2.149 2.229 2.301 2.337 2.514 2.693
9 1.825 1.929 1.995 2.040 2.079 2.200 2.334

10 1.695 1.777 1.828 1.862 1.897 1.992 2.096
11 1.598 1.667 1.715 1.742 1.767 1.844 1.927
12 1.525 1.584 1.618 1.647 1.661 1.738 1.779
15 1.399 1.424 1.445 1.464 1.477 1.526 1.568
20 1.268 1.290 1.304 1.319 1.326 1.358 1.380
25 1.207 1.220 1.230 1.242 1.244 1.267 1.285
30 1.162 1.177 1.187 1.193 1.200 1.215 1.228
40 1.119 1.127 1.136 1.141 1.144 1.154 1.161
60 1.C76 1.082 1.087 1.089 1.090 1.097 1.103

00 1.000 1.000 1.000 1.000 1.000 1.00 1.000



1 2 3 4 5 10 20

1 31.821 63.657 ****** 127.32 ****** 318.31 636.62

2 6.965 9.925 ****** 14.089 **** 22.327 31.598

3 4.541 5.841 6.730 7.453 8.040 10.214 12.924

4 3.747 4.604 5.155 5.598 5.950 7.173 8.610

5 3.365 4.032 4.455 4.773 5.030 5.893 6.869
(4.00) (4.39) (4.67) (4.90) (5.61)

6 3.143 3.7C7 4.058 4.317 4.530 5.208 5.959
(3.68) (4.01) (4.25) (4.44) (5.03)

7 2.998 3.499 3.802 4.029 4.207 4.785 5.408
(3.48) (3.77) (3.98) (4.15) (4.67)

8 2.896 3.355 3.633 3.833 3.993 4.501 5.041
(3.34) (3.61) (3.80) (3.95) (4.42)

9 2.821 3.250 3.503 3.690 3.837 4.297 4.781
(3.24) (3.49) (3.66) (3.80) (4.23)

10 2.764 3.169 3.404 3.581 3.720 4.144 4.587
(3.16) (3.39) (3.56) (3.69) (4.09)

11 2.718 3.106 3.335 3.497 3.621 4.025 4.437
(3.10) (3.32) (3.48) (3.60) (3.98)

14 2.624 2.977 3.180 3.326 3.440 3.787 4.140
(2.97) (3.17) (3.31) (3.42) (3.76)

19 2.539 2.861 3.042 3.174 3.273 3.579 3.883
(2.86) (3.04) (3.16) (3.26) (3.56)

24 2.492 2.797 2.965 3.090 3.184 3.467 3.745
(2.79) (2.96) (3.08) (3.17) (3.46)

29 2.462 2.756 2.922 3.038 3.130 3.396 3.659
(2.75) (2.92) (3.03) (3.12) (3.39)

39 2.426 2.747 2.865 2.976 3.060 3.313 3.557

59 2.391 2.662 2.810 2.917 3.003 3.235 3.463

0_ 2.326 2.576 2.713 2.807 2.878 3.090 3.291

Table C8. One-sdied simultaneous prediction intervals of
0.99-content for normal sequences with known mean
and unknown variance. Approximate values of

U3(0.99,n,N) from equation (II.132a). In paren-
thesis are exact values from Krishnaiah and
Armitage (1966), equations (11.1311.
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1 2 3 4 5 10 20

1 318.31 636.62 ***** ****** ***** 3183.00 6366.20
2 22.33 31.6C ****** ****** ****** 70.70 99.99
3 10.21 12.92 ***** ***** ****** 22.20 28.00
4 7.17 8.61 ***** ****** ****** 13.03 15.54
5 5.89 6.87 7.49 7.98 8.37 9.68 11.18
6 5.21 5.96 6.43 6.79 7.09 8.02 9.08
7 4.78 5.41 5.80 6.09 6.31 7.06 7.89
8 4.50 5.04 5.37 5.63 5.83 6.44 7.12
9 4.3C 4.78 5.07 5.30 5.46 6.01 6.59

10 4.14 4.59 4.85 5.05 5.20 5.69 6.21
11 4.02 4.44 4.68 4.86 5.00 5.45 5.92
14 3.79 4.14 4.27 4.42 4.55 5.00 5.36
19 3.58 3.88 4.06 4.19 4.30 4.60 4.90
24 3.47 3.74 3.90 4.02 4.11 4.40 4.65
29 3.40 3.66 3.84 3.94 4.00 4.25 4.51
39 3.31 3.56 3.70 3.80 3.88 4.11 4.33
59 3.23 3.46 3.59 3.69 3.76 3.97 4.17

00 3.09 3.29 3.40 3.48 3.54 3.72 3.89

Table C9. One-sided simultaneous prediction intervals of
0.999-content for normal sequences with known
mean and unknown variance. Approximate values of
6i(0.999,n,N) from equation (II.132a).
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Table C10. One-sided simultaneous prediction intervals of
0.9999-content for normal sequences with known
mean and unknown variance. Approximate values of
SN(0 .9999,n,N) from equation (II.132a).
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1 2 3 4 5 10 20

1 3183.0 6366.2 ***** ***** ***** 31831. 63662.
2 70.7C 99.99 ****** ****** **** 224.00 316.23
3 22.20 28.CO ***** ****** ****** 47.91 60.40
4 13.03 15.54 ****** ***** ****** 23.33 27.77
5 9.68 11.18 ***** ***** ****** 15.54 17.90
6 8.02 9.08 ****** ****** ****** 12.03 13.56
7 7.C6 7.89 8.38 8.80 9.05 10.11 11.22
8 6.44 7.12 7.55 7.85 8.10 8.90 9.78
9 6.C1 6.59 6.95 7.20 7.43 8.10 8.83

10 5.69 6.21 6.55 6.77 6.95 7.53 8.15
11 5.45 5.92 6.20 6.42 6.55 7.12 7.65
14 5.00 5.36 5.58 5.75 5.88 6.30 6.71
19 4.60 4.90 5.07 5.22 5.31 5.65 5.95
24 4.4C 4.65 4.81 4.94 5.01 5.30 5.57
29 4.25 4.51 4.65 4.76 4.85 5.10 5.34
39 4.11 4.33 4.48 4.57 4.64 4.86 5.06
59 3.97 4.17 4.30 4.38 4.44 4.64 4.83
1 3.72 3.89 3.99 4.06 4.11 4.27 4.42



1 2 3 4 5 10 20

1 13.68 (24.71) **v*** (45.36) ***** (103.01) (193.44)
2 2.9'9 (3.85) ****** (5.02) ****** (7.23) (9.60)
3 1.95 (2.27) (2.48) (2.66) (2.79) (3.31) (3.93)
4 1.61 (1.7S) (1.90) (1.99) C2.07) (2.32) (2.62)
5 1.45 1.55 1.62 1.66 1.70 1.82 (2.09)
6 1.35 1.43 1.48 1.51 1.54 1.63 (1.81)
7 1.29 1.35 1.39 1.42 1.44 1.51 (1.64)
8 1.25 1.30 1.33 1.35 1.37 1.43 (1.53)
9 1.21 1.26 1.29 1.30 1.32 1.37 (1.45)

10 1.19 1.23 1.25 1.27 1.28 1.32 (1.39)
11 1.17 1.20 1.22 1.24 1.25 1.29 (1.35)
14 1.13 1.15 1.17 1.18 1.19 1.22 (1.26)
19 1.09 1.11 1.12 1.13 1.13 1.15 (1.18)
24 1.C7 1.C8 1.09 1.10 1.10 1.12 (1.14)
29 1.C6 1.07 1.08 1.08 1.08 1.10 (1.11)
39 1.C4 (1.C5) (1.06) (1.06) (1.06) (1.07) (1.08)
59 1.03 (1.03) (1.04) (1.04) (1.04) (1.05) (1.05)

0 1.CC 1.00 1.00 1.00 1.00 1.00 1.00

Table Cl. One-sided simultaneous prediction intervals of
0.99-content for normal sequences with known mean
and unknown variance. Values of ra(0.99,n,N).
In parenthesis are approximate values from using
equation (II.132a).
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Table Cl2. One-sided simultaneous prediction
0.999-content for normal

intervals of
sequences with known

mean and unknown variance. Approximate values
of tN(0.999,n,N).
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1 2 3 4 5 10 . 20

1 103.01 193.44 ***8** ****** ***** 855.88 1636.1
2 7.23 9.60 **** ****** ****** 19.01 25.70
3 3.31 3.93 ***** ***** ****** 5.97 7.20
4 2.32 2.62 ***** **** ****** .50 3.99
5 1.91 2.09 2.20 2.29 2.36 2.60 2.87
6 1.69 1.81 1.89 1.95 2.00 2.16 2.33
7 1.55 1.64 1.70 1.75 1.78 1.90 2.03
8 1.46 1.53 1.58 1.62 1.65 1.73 1.83
9 1.39 1.45 1.49 1.52 1.54 1.62 1.69

10 1.34 1.39 1.43 1.45 1.47 1.53 1.60
11 1.3C 1.35 1.37 1.40 1.41 1.47 1.52
14 1.23 1.26 1.26 1.27 1.29 1.34 1.38
19 1.16 1.18 1.19 1.20 1.21 1.24 1.26
24 1.12 1.14 1.15 1.15 1.16 1.18 1.20
29 1.10 1.11 1.13 1.13 1.13 1.14 1.16
39 1.07 1.08 1.09 1.09 1.10 1.11 1.11
59 1.05 1.05 1.06 1.06 1.06 1.07 1.07

0 1.0 .0 1.G0 1.00 1.00 1.00 1.00 1.00



1 2 3 4 5 10 20

1 P 5 5 .8 E 1636.13 *** ****** ***** 7463.3 14412.9
2 19.01 25.70 **** ****** ***** 52.52 71.59
3 5.7 7.2C * ***** ****** 11.23 13.67
4 3.50 3.99 ****** ***** ****** 5.47 6.29
5 2.60 2.87 ****** ***** ****** 3.64 4.05
6 2.16 2.33 ****** ****** ****** 2.82 3.07
7 1.90 2.03 2.10 2.17 2.23 2.37 2.54
8 1.73 1.83 1.89 1.94 1.97 2.U9 2.21
9 1.62 1.69 1.74 1.78 1.81 1.90 2.00
10 1.53 1.60 1.64 1.67 1.69 1.77 1.85
11 1.47 1.52 1.55 1.58 1.60 1.67 1.73
14 1.34 1.38 1.40 1.42 1.43 1.48 1.52
19 1.24 1.26 1.27 1.29 1.29 1.32 1.35
24 1.18 1.20 1.21 1.22 1.22 1.24 1.26
29 1.14 1.16 1.17 1.17 1.18 1.20 1.21
39 1.11 1.11 1.12 1.13 1.13 1.14 1.15
59 1.07 1.C7 1.08 1.08 1.08 1.09 1.09
1 1.CO 1.00 1.00 1.00 1.00 1.00 1.00

Table C13. One-sided simultaneous prediction intervals of
0.9999-content for normal sequences with known
mean and unknown variance. Approximate values
of rN(0. 9999 N).
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N7 1 2 3 4 7 9 *

1

2

3

4

5

6

7

8

9

10

11

12

0.961

*.931
(0.924)
0. 906

(0.889)
. 0.884
(0.854)
0.866
(0 821)

0. 85()
(0.790)
0 834

(0.759)
G0 821

(0.73 )
0.808
(0.702)
0.797
(0.675)
0.786
(0649)
n.776

(0.624)

0.979

0. 961
(0.959)
0- 943

(n.939)
0.928
(0.921)
0.914
(0 901)
0.901
(0.882)
0.888
(0.864)
0,-876
(0.846)
0.864
(0.829)
0.853
(0.812)
0.843
(0 795)
0. 833
(0.779)

0.985

(-.975

0-957
(0.955)
0.944
(0.94n)
0.931

(0.926)
0.920
(0.912)
0.909
(0.898)

0Q-898
(3.885)
0.887

(0.871)
0.877

(0.858)
0.868

(0845)
0.859

(0.832)

0.987

975

0.962

0,951
(O.950)
0.939
(02938)
0.928
(0.926)
0.918

(1.915)
07, 909

(0.9n- 3)
0.900
(0.892)
0. 891

(0.8840)
0.881

(0,,869)
'.872

(0.8581
A L __________ L __________ __________

0-1990

'0.981

0.971

0.962

0.953

.944
(0.943)
0.936

(0.934)
02927
(0.925)
0.918

(0,916)
0.910

(0*907)
0.902
(0, 899)
l.894
(0.890)

0- 991

0,982

0.974

0- 965

0.957

0.948

1.940

0.932
(0.931)
0,924

(0.923)
0.916
(0.915)
0.909
(0 907)
".902
(0.899)

Table C14. Probability content P of the interval (II.133a) for N (1) = 2.50 and for
several values of n and N. In parenthesis, approximate values from
equation (11.134). (Where approximate values are missing they coincide
with the exact ones up to the precision of the table.)

0- 9938

0.9876

0.9815

0.-9754

0.9693

0.9633

0.9574

0.9514

0%9455

0.9397

0.9338

P .9281

1.0



n 2 3 4 7 9 00

1 0.9933 0.9978 0.9988 0.9991 0.9995 0.9995 0.99977

2 0 S873 0:9957 0.9976 0.9983 0.9989 0.9991 1.99954

(0.9867)
3 0.9829 0.9936 0:9963 0-9974 0,9983 0 9987 0,99931

(O.9802)
4 0.9768 0.9915 0.9951 0.9965 0.9978 0.9982 0.99908

(0 9136)
5 0.9723 1.9895 0.9940 0.9957 0.9973 0.9978 0.99885

(0.9671) (0.9893) (0.9939)
6 0 9660 0.9877 0.9928 0.9948 0.9968 0.9973 0.99862

(0.9607) (0.9872) (0.9927)
7 0.9640 0,9858 0,9917 0,9939 0 9963 0A9969 0-99839

(0.9543) (0.9851) (0.9915)
8 0.96C2 0.9839 0.9905 0.9931 0.9958 0.9964 0.99816

(0- 479) (09830) (0-9903)
9 0.9564 1.9820 0.9894 0.9922 0.9953 0.9960 0.99793

(0.9416) (0.9809) (0.9891) (0.9921)
10 0 9528 0.9802 0.9882 0.9914 0.9948 0.9956 n.99770

(0.9354) (0.9788) (0.9879) (0.9913) (0.9947) (0.9955)

11 0.9497 0- 9786 0c9872 0.9907 0.9943 09952 0-99747
(0.9291) (0.9767) (0.9867) (0.9905) (0.9942) (0.9951)

12 0.9467 0.9769 0.986.1 0.9898 0.9938 0.9947 0.99724
(09229) (Mh9746) (0-9855) (09896) (0.9936) (0.9946)

Probability content
several values of n
equation (11.134).
with the exact ones

P of the interval (II.133a) for N (-) = 3.50 and for
and N. In parenthesis, approximate values from
(Where approximate values are missing they coincide
up to the precision of the table.)

N

04

Table C15.



10 20 30 40 60

1 1.438 1.168 1. C99 1.068 1.040
2 1.408 1.158 1.094 1.064 1.038
3 1.394 1.153 1.C91 1.063 1.037
4 1.385 1.150 1.C89 1.062 1.037
5 1.378 1.148 1.088 1.061 1.036
6 1.373 1.146 1.C87 1.060 1.036
7 1.369 1.145 1.087 1.060 1.036
8 1.365 1.143 1.086 1.060 1.036
9 1.362 1.142 1.C85 1.059 1.035
10 1.360 1.142 1.085 1.059 1.035
15 1.35 1.138 1.C83 1.058 1.035
20 1.344 1.136 1.082 1.057 1.034
25 1.340 1.135 1.CS1 1.057 1.034
30 1.336 1.134 1.C80 1.056 1.U34
40 1.331 1.132 1.080 1.056 1.034
60 1.324 1.130 1.C78 1.055 1.033

P = 0.990 A/B = 2.0

lN 20 30 40 60

1 1.372 1.142 1.084 1.057 1.034
2 1.352 1.136 1.C81 1.056 1.033
3 1.343 1.133 1.079 1.055 1.032
4 1.336 1.131 1.078 1.054 1.032
5 1.332 1.130 1.C77 1.054 1.032
6 1.328 1.129 1.C77 1.053 1.032
7 1.325 1.128 1.C76 1.053 1.032
8 1.323 1.127 1.076 1.053 1.031
9 1.321 1.126 1.076 1.052 1.031

10 1.319 1.126 1.C75 1.052 1.031
15 1.313 1.124 1.C74 1.052 1.031
20 1.308 1.122 1.073 1.051 1.031
25 1.305 1.121 1.073 1.051 1.031
30 1.303 1.120 1.072 1.051 1.031
40 1.299 1.119 1.C72 1.050 1.030
60 1.294 1.118 1.071 1.050 1.030

Table C16. Left-hand simultaneous prediction interval when
sampling is from the Extreme Type I distribution
(11.136) with a anl b unknown. Each table collects
penalty factors rEb (P,n,N) for fixed P and a/b
ratios. Other va Aes of P and a/b are considered
in the continuation of the table.

671

P = C.990 A/B = 1.0



p = 0.990 A/B =

1f0 20 30 40 60

1 1.323 1.124 1.C73 1.050 1.029
2 1.310 1.120 1.071 1.049 1.029
3 1.303 1.118 1.070 1.048 1.029
4 1.299 1.117 l.C70 1.C48 1.028
5 1.296 1.116 1.069 1.048 1.028
6 1.293 1.115 1.069 1.048 1.028
7 1.291 1.114 1.068 1.047 1.028
8 1.290 1.114 1.068 1.047 1.028
9 1.288 1.113 1.068 1.047 1.028
10 1.287 1.113 1.068 1.047 1.028
15 1.282 1.112 1.067 1.047 1.028
20 1.279 1.111 1.C66 1.046 1.028
25 1.277 1.110 1.066 1.046 1.028
30 1.275 1.109 1.066 1.046 1.028
40 1.272 1.109 1.065 1.046 1.028
60 1.269 1.108 1.065 1.046 1.028

P 0.990 A/B 4.0

IC 20 30 40 60

1 1.285 1.109 1.065 1.044 1.026
2 1.277 1.107 1.064 1.044 1.026
3 1.272 1.106 1.063 1.043 1.026
4 1.269 1.105 1.063 1.043 1.026
5 1.267 1.104 1.062 1.043 1.026
6 1.265 1.104 1.062 1.043 1.026
7 1.264 1.103 1.062 1.043 1.026
8 1.263 1.103 1.062 1.043 1.026
9 1.261 1.103 1.C62 1.043 1.026

10 1.261 1.103 1.061 1.043 1.026
15 1.257 1.102 1.061 1.042 1.026
20 1.255 1.101 1.061 1.042 1.025
25 1.253 1.101 1.061 1.042 1.025
30 1.252 1.1Ou 1.060 1.042 1.025
40 1.250 1.100 1.060 1.042 1.025
60 1.248 1.099 1.060 1.042 1.025

Table C16 (cont.) .
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3. C



N n 10 20 30 40 60

1 1.256 1.098 1.058 1.040 1.023
2 1.250 1.097 1.057 1.039 1.023
3 1.247 1.396 1.057 1.039 1.023
4 1.245 1.095 1.057 1.039 1.023
5 1.243 1.095 1.057 1.039 1.023
6 1.242 1.095 1.057 1.039 1.023
7 1.241 1.C94 1.057 1.039 1.023
8 1.240 1.094 1.056 1.039 1.023
9 1.239 1.094 1.056 1.039 1.023
10 1.239 1.094 1.056 1.039 1.023
15 1.236 1.093 1.056 1.039 1.023
20 1.235 1.093 1.056 1.039 1.023
25 1.234 1.093 1.056 1.039 1.023
30 1.233 1.093 1.056 1.039 1.023
40 1.231 1.092 1.056 1.039 1.024
60 1.229 1.092 1.055 1.039 1.024

P 0.990 A/= 6.0

10 20 30 40 60

1 1.231 1.C89 1.053 1.036 1.021
2 1.228 1.C88 1.052 1.036 1.021
3 1.226 1.088 1.052 1.036 1.021
4 1.224 1.C87 1.052 1.036 1.021
5 1.223 1.C87 1.052 1.036 1.021
6 1.222 I.C87 1.052 1.036 1.021
7 1.222 1.087 1.052 1.036 1.021
8 1.221 1.C87 1.052 1.036 1.022
9 1.221 1.087 1.052 1.036 1.022

10 1.220 1.087 1.052 1.036 1.022
15 1.219 l.C86 1.052 1.036 1.022
20 1.218 1.086 1.052 1.036 1.022
25 1.217 1.C86 1.052 1.036 1.022
30 1.216 1.086 1.052 1.036 1.u22
40 1.215 1.086 1.052 1.036 1.022
60 1.214 1.086 1.052 1.036 1.U22

Table C16 (cont.) .
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P=0.990 A/B = 5.C



P = 0.990 A/A = 7.0

10 20 30 40 60

1 1.212 1.081 1.048 1.033 1.019
2 1.209 1.081 1.048 1.033 1.019
3 1.2C8 1.081 1.048 1.033 1.020
4 1.207 1.C81 1.048 1.033 1.020
5 1.206 1.081 1.048 1.033 1.020
6 1.206 1.081 1.048 1.033 1.020
7 1.205 1.C81 1.048 1.033 1.020
8 1.205 1.081 1.048 1.033 1.020
9 1.205 1.C80 1.048 1.033 1.020

10 1.204 1.080 1.048 1.033 1.020
15 1.203 1.080 1.048 1.034 1.020
20 1.203 1.C80 1.048 1.034 1.020
25 1.202 1.080 1.048 1.034 1.020
30 1.202 1.080 1.048 1.034 1.020
40 1.201 1.080 1.048 1.034 1.020
60 1.200 1.080 1.048 1.034 1.021

P = C.990 A/B 8.0

10 2C 30 40 60

1 1.195 1.C75 1.044 1.030 1.018
2 1.193 1.075 1.044 1.030 1.018
3 1.193 1.075 1.045 1.031 1.018
4 1.192 1.075 1.045 1.031 1.018
5 1.192 1.075 1.045 1.031 1.018
6 1.191 1.075 1.045 1.031 1.018
7 1.191 1.075 1.045 1.031 1.019
8 1.191 1.C75 1.045 1.031 1.019
9 1.191 1.075 1.045 1.031 1.019

10 1.191 1.075 1.045 1.031 1.019
15 1.190 L.C75 1.045 1.031 1.019
20 1.190 1.075 1.045 1.031 1.019
25 1.189 1.075 1.045 1.032 1.019
30 1.189 1.075 1.045 1.032 1.019
40 1.189 1.075 1.045 1.032 1.019
60 1.188 1.075 1.045 1.032 1.019

Table C16 (cont.).
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P = 0.990 A/B 9.0

to 2C 30 40 60

1 1.180 1.C69 1.C41 1.028 1.016
2 1.180 1.070 1.041 1.028 1.017
3 1.180 1.070 1.042 1.029 1.017
4 1.179 1.C70 1.042 1.029 1.017
5 1.179 1.070 1.042 1.029 1.017
6 1.179 1.070 1.042 1.029 1.017
7 1.179 1.070 1.042 1.029 1.017
8 1.179 1.070 1.042 1.029 1.017
9 1.179 1.070 1.042 1.029 1.017
10 1.179 1.070 1.042 1.029 1.018
15 1.178 1.071 1.042 1.029 1.018
20 1.178 1.C71 1.042 1.030 1.018
25 1.178 1.071 1.043 1.030 1.018
30 1.178 1.C71 1.043 1.030 1.018
40 1.178 1.071 1.043 1.030 1.018
60 1.178 1.071 1.043 1.030 1.018

P = C.990 A/B = 10.0

10 20 30 40 60

1 1.168 1.064 1.038 1.026 1.015
2 1.168 1.065 1.039 1.026 1.016
3 1.168 1.065 1.039 1.027 1.016
4 1.168 1.066 1.039 1.027 1.016
5 1.168 1.C66 1.039 1.027 1.016
6 1.168 1.066 1.039 1.027 1.016
7 1.168 1.066 1.039 1.027 1.016
8 1.168 1.066 1.C40 1.027 1.016
9 1.168 1.066 1.040 1.027 1.016

10 1.168 1.066 1.C40 1.028 1.016
15 1.168 1.066 1.040 1.028 1.017
20 1.168 1.067 1.040 1.028 1.017
25 1.168 1.067 1.C40 1.028 1.017
30 1.168 1.067 1.040 1.028 1.017
40 1.168 1.067 1.040 1.028 1.017
60 1.168 1.067 1.041 1.028 1.017

Table C16 (cont.).

675



20 33 40 60

1 1.219 1.137 1.C96 1.059
2 1.205 1.128 1.090 1.056
3 1.198 1.124 1.C87 1.054
4 1.194 1.121 1.C85 1.053
5 1.191 1.119 1.084 1.052
6 1.188 1.118 1.083 1.051
7 1.186 1.116 1.C82 1.051
8 1.134 1.115 1.C81 1.051
9 1.183 1.114 1.C81 1.050
10 1.181 1.114 1.C80 1.050
15 1.177 1.111 1.C78 1.049
20 1.174 1.109 1.C77 1.048
25 1.171 1.107 1.076 1.047
30 1.170 1.106 1.075 1.047
40 1.167 1.105 1.C74 1.046
60 1.164 1.103 1.073 1.046

P C.995 A/B = 2.0

20 30 40 60

1 1.189 1.118 1.C83 1.051
2 1.180 1.112 1.079 1.049
3 1.175 1.109 1.077 1.048
4 1.172 1.107 1.075 1.047
5 1.169 1.106 1.074 1.046
6 1.167 1.105 1.074 1.046
7 1.166 1.104 1.073 1.045
8 1.165 1.103 1.073 1.045
9 1.163 1.102 1.072 1.045

10 1.163 1.102 1.072 1.045
15 1.159 1.100 1.070 1.044
20 1.157 1.098 1.069 1.043
25 1.155 1.097 1.C69 1.043

30 1.154 1.C96 l.C68 1.043
40 1.152 1.095 1.067 1.042
60 1.149 1.094 1.C66 1.042

Table C16 (cont.).
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P = 0.995 A/B = 1.0



20 30 40 60

1 1.167 1.104 1.073 1.045
2 1.160 1.100 1.070 1.043
3 1.156 1.098 1.068 1.042
4 1.154 1.096 1.068 1.042
5 1.152 1.095 1.C67 1.042
6 1.151 1.094 1.066 1.041
7 1.150 1.094 1.066 1.041
8 1.149 1.093 1.066 1.041
9 1.148 1.093 1.065 1.041

10 1.147 1.092 1.065 1.040
15 1.145 1.091 1.064 1.040
20 1.143 l.C90 1.063 1.039
25 1.142 1.089 1.063 1.039
3C 1.141 1.088 1.062 1.039
40 1.139 1.087 1.062 1.039
60 1.137 1.086 1.061 1.038

P 0.995 A/= 4.0

S 20 30 40 60

1 1.149 1.093 1.065 1.040
2 1.144 1.090 1.063 1.039
3 1.141 1.C88 1.062 1.038
4 1.139 1.087 1.061 1.038
5 1.138 1.086 1.061 1.038
6 1.137 1.086 1.060 1.038
7 1.136 1.085 1.060 1.037
8 1.136 1.085 1.060 1.037
9 1.135 1.C85 1.C60 1.037
10 1.135 1.084 1.059 1.037
15 1.133 1.083 1.059 1.037
20 1.131 1.C82 1.058 1.036
25 1.130 1.082 1.058 1.036
30 1.130 1.C81 1.057 1.036
40 1.128 1.081 1.057 1.036
60 1.127 1.080 1.056 1.035

Table. C16 (cont.) .
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A/8 = 3.0P = 0.995



"* nN 20 30 40 60

1 1.134 1.C84 1.058 1.036
2 1.131 1.C82 1.057 1.035
3 1.129 1.081 1.056 1.035
4 1.127 1.080 1.056 1.035
5 1.127 1.C79 1.056 1.035
6 1.126 1.079 1.C55 1.034
1 1.125 l.C78 1.055 1.034
8 1.125 1.C78 1.055 1.034
9 1.124 1.078 1.055 1.034

10 1.124 1.078 1.055 1.034
15 1.122 1.077 1.054 1.034
20 1.121 1.076 1.054 1.034
25 1.121 1.076 1.053 1.033
30 1.120 1.075 1.053 1.033
40 1.119 1.075 1.053 1.033
60 1.118 1.074 1.052 1.033

P = 0.995 A/B = 6.0

20 30 40 60

1 1.122 1.076 1.053 1.033
2 1.120 1.075 1.052 1.032
3 1.118 1.074 1.C52 1.032
4 1.117 1.C74 1.052 1.032
5 1.117 1.073 1.051 1.032
6 1.116 1.073 1.051 1.032
7 1.116 1.072 1.051 1.032
8 1.115 1.072 1.051 1.032
9 1.115 1.072 1.051 1.032

10 1.115 1.072 1.051 1.032
15 1.114 1.071 1.050 1.031
20 1.113 1.071 1.050 1.031
25 1.112 1.070 1.050 1.031
30 1.112 1.070 1.050 1.031
40 1.111 1.070 1.049 1.031
60 1.110 1.069 1.049 1.031

Table C16 (cont.) .
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A/B = 5.0P=0.995



20 30 40 60

1 1.112 1.070 1.049 1.030
2 1.111 1.069 1.048 1.030
3 1.110 1.069 1.048 1.030
4 1.1C9 1.068 1.048 1.030
5 1.108 1.068 1.048 1.030
6 1.108 1.068 1.048 1.030
7 1.108 1.067 1.047 1.029
8 1.107 1.067 1.047 1.029
9 1.107 1.067 1.047 1.029
10 1.107 1.067 1.047 1.029
15 1.106 1.066 1.C47 1.029
20 1.106 1.066 1.047 1.029
25 1.105 1.066 1.047 1.029
30 1.105 1.066 1.046 1.029
40 1.104 1.065 1.046 1.029
60 1.104 1.C65 1.046 1.029

P 0.995 A/B = 8.0

20 30 40 60

1 1.104 1.065 1.045 1.028
2 1.103 1.064 1.045 1.028
3 1.102 1.064 1.045 1.028
4 1.101 1.063 1.045 1.028
5 1.101 1.063 1.044 1.028
6 1.101 1.063 1.044 1.028
7 1.ICI 1.063 1.044 1.028
8 1.100 1.063 1.044 1.028
9 1.100 1.063 1.044 1.028

10 1.100 1.063 1.044 1.027
15 1.099 1.062 1.044 1.027
20 1.099 1.062 1.C44 1.027
25 1.099 1.062 1.044 1.027
30 1.C99 1.062 1.044 1.027
40 1.098 1.062 1.044 1.027
60 1.098 1.061 1.043 1.027

Table C16 (cont.).
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20 30 40 60

1 1.097 1.C60 1.042 1.026
2 1.C96 1.060 1.042 1.026
3 1.05 1.060 1.042 1.026
4 1.095 1.059 1.042 1.026
5 1.095 1.C59 1.042 1.026
6 1.095 1.059 1.042 1.026
7 1.094 1.059 1.042 1.026
8 1.094 1.059 1.042 1.026
9 1.094 1.059 1.041 1.026
10 1.094 1.059 1.041 1.026
15 l.0S4 1.C59 1.C41 1.026

20 1.093 1.059 1.041 1.026
25 1.093 1.058 1.041 1.026
30 1.093 1.058 1.041 1.026
40 1.093 1.058 1.041 1.026

60 1.092 1.058 1.041 1.026

P = 0.995 A/B = 10.0

20 30 40 60

1 1.090 1.056 1.039 1.024

2 1.090 1.056 1.039 1.024
3 1.089 1.056 1.039 1.024
4 1.089 1.056 1.039 1.024
5 1.C89 1.056 1.039 1.024
6 1.089 1.056 1.039 1.024
7 l.C89 1.056 1.039 1.024
8 1.089 1.056 1.039 1.024
9 1.089 1.056 1.039 1.024
10 1.C89 1.C56 1.039 1.024
15 1.088 1.055 1.039 1.024
20 1.088 1.055 1.039 1.024
25 1.088 1.055 1.039 1.024
30 1.088 1.055 1.039 1.024
40 1.088 1.055 1.C39 1.024
60 1.088 1.055 1.039 1.024

Table C16 (cont.) .
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I (k, X) CLNUZ -+ 4- LN LN
Tz 1z -Pa

n k=2 k=3 k=4 k=5 V =0.25 Y7=0.1 V7=0.3 V7=0.1 y=0.

1 46.06 8.25 4.80 3.75 3.16 1.66 ***** ***** ***** *****
2 5.88 2.85 2.27 2.02 1.87 1.34 5.86 16.00 ***** *****
3 3.15 ***** ***** ***** ***** 1.23. 2.73 4.15 7.40 25.66
4 2.34 ***** ***** ***** ***** 1.17 2.01 2.60 3.17 5.30

5 1.96 1.53 1.41 1.34 1.30 1.14 1.70 2.05 2.25 3.09
6 1.75 ***** ***** ***** ***** 1.12 1.54 1.77 1.87 2.35
7 1.61 ***** ***** ***** ***** 1.10 1.43 1.61 1.67 1.99
8 1.52 ***** ***** ***** ***** 1.09 1.36 1.50 1.54 1.78

9 1.45 ***** ***** ***** ***** 1.08 1.31 1.43 1.45 1.64
10 1.39 1.24 1.19 1.16 1.14 1.07 1.27 1.37 1.39 1.54
15 1.25 ***** ***** ***** ***** 1.05 1.17 1.23 1.23 1.31
20 1.18 1.10 ***** ***** ***** 1.03 1.12 1.16 1.16 1.22

25 1.14 ***** ***** ***** ***** ***** ***** ***** ***** *****
30 1.12 ***** ***** ***** ***** 1.02 1.08 1.10 1.10 1.13
40 1.09 ***** ***** ***** ***** 1.02 1.06 1.08 1.07 1.10
50 1.07 ***** ***** ***** ***** ***** ***** ***** ***** *****
60 ***** ***** ***** ***** ***** 1.01 1.04 1.05 1.05 1.06

Table C17. Penalty factors for left-hand simultaneous intervals of P=0.99-content for
the next N=2 observations. Comparison is between Gamma sequences with given
shape factor k=l(l)5 and lognormal sequences with known or estimated coeffi-
cient of variation VY. For lognormal sequences the associated normal popu-
lation has unknown mean (first lognormal column), unknown variance (following
two columns) or both mean and variance unknown (last two columns). Other
combinations of P and N are considered in the continuation of the table.

H



n_ k Jk=2___k=3 k=4 [_k=5 IVY=0.251 vNy=Qoi Vy=0.3 __ V =~l =03____ ______ xi~ihixzZ

168.93
10.20
4.40
2.96

2.35
2.03
1.82
1.69

1.59
1.52
1.32
1.23

1.18
1.15
1.11
1.08

14.39
3.70

1.69

1.30

1.14

6.86
2.69

1.50

1.23

* ** **

5.08
2.29

1.41

1.19

* ** * *

* ** * *

3.96
2.08

1.36
*****

1.17

1.71
1.36
1.24
1.18

1.15
1.12
1. 11
1.09

1.08
1.07
1.05
1.04

1.03
1.02

1.01

23.22
4.96
2.92

2.23
1.90
1.70
1.58

1.49
1.42
1.25
1.18

1.11

1.08

1.06

13.26
5.00

3.21
2.49
2.11
1.89

1.74
1.63
1.36
1.25

1.16
1.11

1.07

33*97
5.95

3.33
2.48
2.07
1.84

1.69
1.58
1.33
1.23

1.14
1.10

1.07

19.21

6.29
3.79
2.85
2.37

2.09
1.89
1.47
1.32

1.19
1.14

1.09
___________ I ______________ .1 ______________ 1 _______________ I ______________ .1 ______________ A ______________ A _____________ A ______________

Table C17 (cont.).

1
2
3
4

5
6
7
8

9
10
15
20

25
30
40
50
60

m0*0

tN3

P=0.99; N = .10.

S LNy - LNU --- - ' LN ar' (k , X)



I'(k, X) z LN ZLN Z

n EX k=2 k=3 k=4 k=5 vy=0.251 9=O.1 9Y=0.3 1y=0. 1Vy=0.3

18.73
4.15

1.75

1.33

1.15

8.06
2.89

1.54

1.25

5.20
2.42

1.45

1.20

* ** **

4.34
2.17

1.39

1.18

1.74
1.37
1.25
1.19

1.15
1.12
1.11
1.09

1.08
1.08
1.05
1.04

1.03
1.02

1.01

58.33
6.84
3.53

2.55
2.10
1.85
1.69

1.58
1.50
1.29
1.21

1.13
1.10

* ** **

1.06

27.40
7.25

4.08
2.97
2.43
2.11

1.91
1.77
1.43
1.30

1.18
1.13

1.08

96.66
8.40

4.06
2.84
2.30
2.00

1.81
1.68
1.37
1.26

1.15
1.11

1.07

43.25

9.42
4.92
3.45
2.74

2.35
2.09
1.56
1.37

1.22
1.15

1.10

Table C17 (cont.).

1
2
3
4

5
6
7
8

9
10
15
20

25
30
40
50
60

302.69
13.10
5.12
3.29

2.56
2.17
1.93
1.77

1.66
1 .57
1.35
1.25

1.19
1.16
1.12
1.09

co

-

P = 0.999; N = 2.



1' (k , X)

A A A
n k=2 k=3 k=4 k=5 Vy=0.25 Vy=0. Vy=0.3 V =0.1 Vy=0.3

_____ (EX) __ _ _ __ _ _ __ _ _ __ _ _ __ _ _ Vy eL yyy

1 ***** 35.24 11.39 7.14 5.43 1.78 ***** ***** ***** *****
2 23.99 5.50 3.43 2.76 2.42 1.39 ***** ***** ***** *****
3 7.39 ***** ***** ***** ***** 1.26 18.36 ***** ***** *****
4 4.26 ***** ***** ***** ***** 1.19 6.CO 23.14 24.51 *****

5 3.11 1.92 1.65 1.52 1.44 1.15 3.65 6.32 7.09 33.58

6 2.54 ***** ***** ***** ***** 1.13 2.75 4.90 4.13 10.58

7 2.20 ***** ***** ***** ***** 1.11 2.29 3.57 3.03 5.86
8 1.99 ***** ***** ***** ***** 1.10 2.02 2.88 2.49 4.12

9 1.83 ***** ***** ***** ***** 1.09 1.84 2.48 2.17 3.25

10 1.72 1.39 1.29 1.23 1.21 1.08 1.71 2.21 1.96 2.75

15 1.43 ***** ***** ***** ***** 1.05 1.44 1.70 1.51 1.81

20 1.30 1.17 ***** ***** ***** 1.04 1.30 1.45 1.34 1.52

25 1.23 ***** ***** ***** ***** 1.03 1.23 1.34 1.26 1.39

30 1.19 ***** ***** ***** ***** 1.03 1.18 1.26 1.20 1.30

40 1.14 ***** ***** ***** ***** 1.02 1.13 1.19 1.15 1.21

50 1.11 ***** ***** ***** ***** ***** ***** ***** ***** *****
60 ***** ***** ***** ***** ***** 1.01 1.08 1.12 1.C9 1.13

Table C17 (cont.).

a'

I'm
- NP- LN -r1 0-- LN 1

N = 10.P = 0.999;


