PROBABILISTIC MODELS, WITH APPLICATION TO STRUCTURAL RELIABILITY
by
DANIELE VENEZIANO
LAUREA IN ARCHITECTURE, University of Florence, Italy (1970)

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
Massachusetts Institute of Technology September, 1974

Signature of Author . .

$$
\begin{aligned}
& \text { Department of Civil Engineering, } \\
& \text { August } 12,1974
\end{aligned}
$$

Certified by.

Accepted by Chairman, Departmental Committee on Graduate Students of the Department of Civil Engineering
to my father

ABSTRACT

STATISTICAL ESTIMATION AND PREDICTION IN PROBABILISTIC MODELS, WITH APPLICATION TO STRUCTURAL RELIABILITY

by

DANIELE VENEZIANO

Submitted to the Department of Civil Engineering on August 12, 1974 in partial fulfillment of the requirements for the degree of Doctor of Philosophy

When modeling engineering systems it is common practice to neglect statistical uncertainty on the model parameters. Such an uncertainty originates from one estimating the parameters of the model from limited data; as a result, given the estimates, the true parameters values remain unknown. Statistical uncertainty can be reduced (in the limit: removed) by collecting additional information.

The model itself may be probabilistic, in which case statistical uncertainty superimposes to the uncertainty of the model itself. The combination of statistical and model uncertainties is known in the statistics literature as a problem of statistical prediction. If instead the model is deterministic, all the uncertainty has statistical nature, leading to problems of statistical estimation.

Both problems of statistical estimation and prediction are studied; their relevance to the reliability of engineering systems is quantified and illustrated through examples. It is found that the uncertainty from poor statistical information may dominate the response of the model (say with regard to failure-no failure events). This is particularly true in the tail behavior of the model since the occurrence probability of "rare" events may be modified substantially. Problems of statistical prediction are studied for univariate and multivariate, memoriless and serially dependent probabilistic models, and from both the viewpoints of Classical and Bayesian statistics. Data are considered to be either in censored or in uncensored format. In discussing estimation, the important problem is addressed of designing sampling experiments in an optimal way. This problem arises when estimating unknown functions of continuous (possibly multidimensional) parameter from a finite number of (possibly
noisy) observations; a solution has potential applications to diverse fields like soils, hydrology, biological systems surveillance and quality control.

Thesis Supervisor:
C. Allin Cornell

Title:
Professor of Civil Engineering

The author takes pleasure in acknowledging Professor C.A. Cornell for providing stimulating and wise guidance during his three years of graduate work at M.I.T. This thesis is the outcome of a close cooperation with Professor Cornell, whose specific contributions to it are too many to mention explicitly here.

The author wishes also to thank Professor E.H. Vanmarcke who supervised his research work during the first year of graduate study at M.I.T., and Professor I. Rodriguez-Iturbe who gave him the opportunity to work on a Water Resource project.

The wish is expressed that this thesis is the start of an even more intense and fruitful cooperation.
Page
Title page 1
Abstract 3
Acknowledgements 5
Table of Contents 6
List of Tables 12
List of Figures 16
List of Symbols 21
INTRODUCTION 22
Uncertainty in probabilistic modeling 22
Safety and statistical uncertainty 31
CHAPTER I. DETERMINISTIC MODELS 38
I. 1 ELEMENTS OF BAYESIAN AND NON-BAYESIAN ESTIMATION THEORY; UNCENSORED DATA 41
I.l.1 Bayesian and non-Bayesian estimation 42
I.l. 2 Linear observation model; measurement error covariance known 49
I.I. 3 Linear observation model; measurement error covariance unknown 66
I.l.4 Some additional considerations and extensions 71
EXAMPLE 1: Effect of noisy measurementson the reliability of series,parallel and series-parallelsystems76
I. 2 EXPERIMENT EVALUATION 86
EXAMPLE 2: Systematic and random measure- ment errors in scalar estimation 93
EXAMPLE 3: Stiffness estimation of a three bars truss 100
I. 3 OPTIMAL EXPERIMENT DESIGN 117
EXAMPLE 4: A problem of optimal experi- ment design in scalar esti- mation 121
EXAMPLE 5: Optimal sampling of continuous functions 123
Page
I. 4 PROOF LOADING AND THE ANALYSIS OF CENSORED DATA 130
I.4.1 The fundamental case 131
I.4.2 A stochastic model for construction defects 141
EXAMPLE 6: Proof loading of a multi-span bridge deck 160
I.4.3 Proof loading in multidimensional random spaces 166
I. 5 DESIGN OF PROOF LOADING EXPERIMENTS 169
EXAMPLE 7: Optimal proof loading of a simply-supported, one-span bridge deck 172
REFERENCES 186
FIGURES 190
CHAPTER II. INDEPENDENT MODELS 216
INTRODUCTION 216
II. 1 PRINCIPLES OF FREQUENTIST AND BAYESIAN
PREDICTION 224
II. 2 SIMPLE PREDICTION 232
II.2.1 Frequentist Prediction Intervals for Univariate sequences 232
(a) Normal sequence 233
(b) Exponential sequence 243
Page
(c) Extreme type I sequence 247
(d) Poisson sequence 250
(e) Gamma sequence 252
(f) Lognormal sequence 255
SOME APPLICATIONS TO RELIABILITY ANALYSIS AND DECISION 260
(g) Distribution-free prediction intervals 268
II.2.2 Bayesian prediction for univariate sequences 275
(a) Normal sequences 277
(b) Exponential sequence 289
(c) Poisson sequence 291
(d) Gamma sequence 293
SOME REMARKS AND EXEMPLIFIED APPLICATIONS 295
(e) Distribution-free prediction intervals 303
II.2.3 Frequentist prediction intervals for multivariate sequences 312
(a) Multinormal sequences 314
(b) Distribution-free prediction regions 330
II.2.4 Bayesian prediction for multivariate sequences 335
(a) Multinormal sequences 336
(b) Distribution-free prediction regions 345

Page

II.2.5 Prediction from censored data 347
II. 3 SIMULTANEOUS PREDICTION 354
II.3.1 $\begin{aligned} & \text { Independent models for time- } \\ & \text { dependent reliability }\end{aligned} \quad 357$
$\begin{array}{lll}\text { II.3.2 Simultaneous frequentist prediction } & \begin{array}{l}\text { Simu } \\ \text { for univariate sequences }\end{array} & 362\end{array}$
(a) Normal sequences 362
(b) Extreme type I sequences 382
(c) Other independent models 386
(d) $\begin{aligned} & \text { Distribution-free prediction } \\ & \text { intervals }\end{aligned} 387$
II.3.3 Simultaneous Bayesian prediction for
univariate sequences $\quad 390$
II.3.4 Applications of simultaneous prediction to probabilistic fatigue failure 392

REFERENCES 411
FIGURES 417

CHAPTER III. FIRST-ORDER AUTOREGRESSIVE MODELS 444
III.1 SIMPLE PREDICTION OF THE NEXT OBSERVATION 445
III.1.1 $\beta_{0}, \beta_{1}, \sigma$ unknown; "diffuse" prior 446
III.I.2 $\underset{\substack{\beta_{\text {prior }}}}{\beta_{i}} \beta^{\text {unnnown, } \sigma \text { known; "diffuse" }} 451$
III.1.3 $\beta_{0}, \beta_{1}, \sigma$ unknown; conjugate prior 454
III.1.4 $\underset{\underset{\text { prior }}{ } \beta_{\text {íl }}}{\beta}$ unknown, σ known; conjugate 457
III. 2 SIMPLE PREDICTION AT LEAD $\ell 460$
$\begin{array}{ll}\text { EXAMPLE: } & \begin{array}{ll}\text { An application to time-dependent } \\ \text { structural reliability analysis }\end{array} \\ & 470\end{array}$
Page
III. 3 NOISY UNCENSORED AND CENSORED OBSERVATIONS IN MARKOV PROCESSES; AN APPLICATION TO DETERIORATING SYSTEMS 475
III.3.1 The resistance model 476
III.3.2 Propagation of the mean and of the variance 479
III.3.3 Propagation of the resistance distribution when observations are censored 487
REFERENCES 492
TABLES 493
FIGURES 509
BIOGRAPHY 512
APPENDIX A 516
APPENDIX B 609
APPENDIX C 655

LIST OF TABLES

Page
CHAPTER I
Table l. Prior normalized safety margin, andprior and posterior failure probabilitiesfor the series system in Figure 1.83
Table 2. Data for Example 4. 122Table 3. Error combinations, prior error combina-tions probabilities, and resistanceparameters for each error combination.Example 6.162
Table 4. Example 6: Posterior failure probability and posterior error combinations probabilities.164
Table 5. Example 6: Posterior failure probabilityand posterior error combinations proba-bilities.165
Table 6. Example 7: Proof loading and posterior failure probabilities. 184
CHAPTER II
Table l. Minimum sample size for a penalty ratio $r \leq 1.2$. Sampling is from normal populations with unknown mean and/or variance. 242
Table 2. Design resistance values for normal loads with unknown mean and/or variance.262
Table 3. Dependence of the failure probability on the parameters being unknown and on the coefficient β_{1}. Example in Paragraph II.2.1.264
Table 4. Dependence of the failure probability on the parameters being unknown and on the coefficient β_{1}. "First order" approximation (II.22).265

Table 5. Dependence of the failure probability on the parameters being unknown and on the coefficient β_{1}. Approximation in Anderson (1972).

Table 6. Minimum sample sizes for the construction of nonparametric prediction intervals.

Table 7. Penalty factors for nonparametric prediction intervals when sampling is from normal populations.

Table 8. Penalty factors for nonparametric prediction intervals when sampling is from exponential populations.

Table 9. Expected content of k-dimensional rectangles which circumscribe ellipsoids of expected content P.

Table l0. k-variate nonparametric prediction when sampling from multinormal populations.

Table 1l. Exact and approximate simultaneous prediction coefficients when sampling from a normal population with unknown variance.

Table 12. Exact and approximate values of the coefficient $\beta_{\mu}^{N}(\cdot)$ in equation (II.133a).
Table 13. Simultaneous prediction probabilities of the nonparametric interval (Z (5), Z (95)]
for a sample of size 100 .

CHAPTER III

Table 1. First-order autogregrssive process. Penalties for one-sided predictions at lead 1.

Table 2. Coefficients $\gamma_{1}(\cdot)$ and $\gamma_{2}(\cdot)$ in equation 494
Table 3. Penalty ratios $r_{\beta_{1}, \sigma}(\cdot)$ in equation
Page
Table 4. Values of $[(n-3) /(n-1)]^{1 / 2} t_{n-1}(P) / \Phi(P)$ in equation (III.14). 506
Table 5. 0.999 fractiles of the predictive distribution at lead ℓ for sample sizes $\mathrm{n}=\infty$ and $\mathrm{n}=10$. 507
Table 6. Probability of system failure within the next l loading events. Example in Section III. 2. 508
APPENDIX A
Tables of penalty factors and coefficients β forsimple parametric prediction
Tables AI-Al2 - Normal populations 517
Tables Al3-Al4 - Exponential populations 529
Tables Al5-Al6 - Extreme type I populations 533
Tables Al7-Al9 - Poisson populations 535
Tables A20-A25 - Gamma populations 543
Tables A26-A37 - Lognormal populations 561
APPENDIX B
Tables Bl-B5. Penalty factors and coefficients β for simple parametric prediction when sampling is from multinormal populations. 610
APPENDIX C
Tables of penalty factors and coefficients β forsimultaneous parametric prediction.
Tables Cl-Cl3 - Normal populations 656
Tables Cl4-Cl5 - Expected content P of the interval (II.133a) 669
Table Cl6 - Extreme type I populations 671Table Cl7 - Comparison of approximatepenalty factors for simultaneousprediction from Gamma and log-normal populations681

LIST OF FIGURES

Page

CHAPTER I

Figure 1.	Reliability of an N-series system with equicorrelated normal element resistances.	190

Figure 2. (a) n-parallel system; (b) n-series-	
	191

Figure 3. | Informativeness of scalar estimation |
| :--- |
| experiments. | 192

Figure 4. Informativeness of alternative
estimation experiments. 193

Figure 5. Simply supported 3-bars truss;	
	194

Figure 6. Relative effectiveness of hardness
measurements for the truss in Figure 5. 195
Figure 7. Six stiffness experiments considered in Example 3. 196
Figure 8. Informativeness of the experiments in Figure 7 for perfect stiffnesscorrelation.

Figure 9. Informativeness of the experiments in Figure 7 for a stiffness correlation coefficient 0.8.198
Figure 10. Informativeness of the experiments in Figure 7 for a stiffness correlation coefficient 0.5. 199
Figure ll. Informativeness versus cost of three alternative experiments. Example 4 in the text.

Figure 12. Discrete sampling of a continuous twodimensional function.
Figure 13. The fundamental case of proof 202 loading in the classical formulation.Figure 14. Generalized formulation of thefundamental case of proof loading.202
Figure 15. (a) Two-dimensional representationof the fundamental problem.(b) Prior and posterior resistance CDFand prior and posterior failurefunctions.203
Figure 16. Conditional density functions for the resistance model in Paragraph I.4.2. 204
Figure 17. Unconditional density functions for the resistance model in Paragraph I.4.2. 205
Figure 18. Posterior failure probability of a l- and 2-span bridge after proof loading. 206
Figure 19. Posterior failure probability of a $5-s p a n$ bridge after proof loading. 207
Figure 20. Posterior failure probability of a lo-span bridge after proof loading. 208
Figure 2l. Posterior failure probability of a 20-span bridge after proof loading. 209
Figure 22. Proof loading region in S space. 210Figure 23. Prior and posterior (after survivalto proof loading) marginal resistancedensities in a two-dimensional case.210
Figure 24. Structural members of the l-span bridge deck in Example 7. 211
Figure 25. Safe regions for concentrated loads; bridge deck in Example 7. 211
Figure 26. Safe regions for distributed loads; bridge deck in Example 7. 212

Page

Figure 27.	Safe region in $\|X\| P P_{M}$ space; bridge deck in Example 7.	213
Figure 28.	Bridge deck in Example 7 with unequal beams resistances. Intersection of the safe region.	213
Figure 29.	Intersection of the safe region; fixed P and X.	214
Figure 30.	Feasible proof load design region and 8 possible proof loading experiments.	215
CHAPTER II		
Figure 1.	```Penalty ratios for simple prediction; sampling is from univariate normal populations.```	417
Figure 2.	```Penalty ratios for simple prediction; sampling is from univariate normal populations.```	418
Figure 3.	```Penalty ratios for simple prediction; sampling is from univariate normal populations.```	419
Figure 4.	Choice of the optimal sample size for prediction purposes.	420
Figure 5.	Penalty ratios for simple prediction; sampling is from normal, lognormal, exponential, gamma and Poisson populations.	421
Figure 6.	Construction of nonparametric Bayesian prediction intervals.	423
Figure 7.	Rectangular probability charts with and without statistical uncertainty.	424
Figure 8.	```Penalty ratios for simple prediction; sampling is from N-variate normal populations.```	425

Page
Figure 9. Penalty ratios for simple prediction; sampling is from \mathbb{N}-variate normal populations. 426
Figure lo. Two-dimensional prediction regions. 427
Figure ll. Example of Wald's "successive elimination method". 428
Figure 12. Frequentist and Bayesian prediction ellipses; example in Paragraph II.2.4. 429
Figure 13. Realizations of simple independent lead processes. 430
Figure 14. Qualitative evolution of the failure probability for different correlation structures of the interarrival times; model S in Figure 13. 430
Figure 15. Simultaneous prediction factor for stationary independent normal sequences. 431
Figure l6. Penalty ratios for simultaneous pre- diction intervals; stationary independent normal sequences. 432
Figure 17. Penalty ratios for simultaneous prediction intervals; stationary independent normal sequences.Figure 18. Penalty ratios for simultaneousprediction intervals; stationaryindependent normal sequences.
Figure 19. Penalty ratios for simultaneousprediction intervals; stationaryindependent normal sequences.435
Figure 20. Penalty ratios for simultaneousprediction intervals; stationaryindependent normal sequences.436
Figure 21. Probability of failure as a function of the number of future loading events. 437
Figure 22. Fatigue failure probabilities for stationary independent normal load sequences. 440
Figure 23. Damage accumulation functions in equation (II.151). 443
CHAPTER III
Figure 1. Mean resistance curves in deteri- orating systems. 509
Figure 2. Time evolution of the resistance in deteriorating systems and its dependence on the autoregressive coefficients in equation (III.16). 510
Figure 3. Proof loading of systems with time- dependent resistance. 511

$f(\cdot)$	- prabability density function (PDF)
F($\cdot 1$	- probability cumulative distribution function (CDF)
$\Phi(\cdot)$	- standard normal CDF
I(.)	- likelihood function
$\mu, \underline{\mu}$	- mean value, mean vector
$\sigma, \underline{\Sigma}$	- variance, covariance matrix
ρ	- correlation coefficient
ν	- degrees of freedom
P_{f}	- failure probability
b (subscript)	- prior (in Bayesian sense)
a (subscript)	- posterior (in Bayesian sense)
PL (subscript)	- Proof Loading
PI (subscript)	- Perfect Information
N (upperscript)	- Normal population
EX (upperscript)	- Exponential population
G (upperscript)	- Gamma population
El (upperscript)	- Extreme type I population
LN (upperscript)	- Lognormal population
P (upperscript)	- Poisson population

INTRODUCTION

Uncertainty in probabilistic modeling

As a necessary premise to a work dealing with statistical modeling, the uncertainties in mathematical analogs to natural mechanisms are reviewed and classified. We shall not differentiate probabilities on account of their meaning; i.e., depending on whether they are factual, logical or evaluative. Instead, our classification will concern the object of probability statements, and in particular how they relate to mathematical models of nature.

The classical question should be addressed first, whether nature is deterministic or stochastic. The prevalent belief of scientists is that nature is deterministic: to say it with Laplace, that all natural events follow "the great (deterministic) laws of nature" and that an intelligence provided with absolute knowledge could establish such laws, predict the future with certainty and reconstruct events in the past with the same degree of confidence.

But can one prove the existence of "the great laws of nature"? Can one test the hypothesis of a deterministic against a stochastic nature? The answer being no, the original problem belongs to the speculative domain of
metaphysics and has no "correct" general solution, in the sense of a demonstrable one. Indeed, having an answer to this problem is not important to what follows, except for its constituting a reference viewpoint, at all times interchangeable with the opposite one.

In this sense and with this arbitrariness, let us assume that natural phenomena are the output of a deterministic natural system whose future behavior will "resemble its past". This last assertion, called "the principle of uniformity of nature", is essential to natural sciences in that it provides the basis for scientific induction and prediction. The primary objective of natural sciences is to produce mathematical analogs to natural systems (system identification problem) and to describe their present state (state reconstruction or state estimation problem) at least to the extent which is relevant to the phenomena under study (definition of boundaries).

For the purpose of illustration consider a discrete sequence of events generated by a recursive "law of nature" of the type:

$$
\begin{equation*}
e_{j}=f\left(e_{j-1}, e_{j-2}, e_{j-3}\right), \tag{1}
\end{equation*}
$$

where e_{j} denotes the magnitude of the $j^{\text {th }}$ event and f is a deterministic function. Given $\left\{e_{j}\right\}$, but with f unknown, the mathematical modeling of the natural mechanism might start from assuming some boundaries (e.g., e_{j} does not depend directly on e_{k}, for $k<j-8$) and then proceed hypothesizing a mathematical structure within these boundaries; for instance $e_{j}=f_{1}\left(e_{k}, \underline{\theta} ; j-8<k<j\right) . f_{l}$ is a given class of functions of $\left\{e_{k}\right\}$, indexed by the parameter $\underline{\theta}$, and $\underline{\theta}$ is estimated from the available data. Finally, in an experimental situation, predictions from the model are confronted with the outcome of nature. In absence of agreement one returns to a previous stage, redefining the boundaries, or the mathematical structure, or the parameters.

The foregoing example was kept simple on purpose. In most circumstances natural systems are quite complex, without well-defined boundaries, and little information is available on their mathematical structure. A more practical approach might then be to construct a probabilistic analog, in which the mathematical structure is defined in terms of only few parameters and reflects our level of understanding the natural system, while the randomness accounts for the lack of complete knowledge or for the unwillingness of modeling the system in greater detail. (This is only a gross classification of possible approaches; for instance it
does not differientiate between structured (parametric) and nonstructured (nonparametric) uncertainty, which distinction is considered unnecessary for the moment). Thus, in modeling the sequence introduced earlier one might restrict the search to a simple mathematical representation of the type:

$$
\begin{equation*}
e_{j}=\tilde{q}\left(e_{j-1}\right) \tag{2}
\end{equation*}
$$

where \tilde{g} is a stochastic relation to be determined. Because of the limitation in the arguments of \tilde{g}, the model (2) cannot describe exactly the actual process (1); hence its probabilistic character. The most one can do is to find the function \tilde{g} which leads to the closest (in some probabilistic sense) representation of (l) through a stochastic first-order difference equation. As before one might start from hypothesizing a structured relation, say $\tilde{g}_{1}\left(e_{j-1}, \underline{\theta}\right)$, and proceed sequentially towards the "best" form of \tilde{g} and towards the "best" set of parameters $\underline{\theta}$. Let

$$
\begin{equation*}
e_{j}^{*}=\tilde{q}^{*}\left(e_{j-1} \underline{\theta}^{*}\right) \tag{3}
\end{equation*}
$$

denote the optimal solution, optimality being judged by an observer who knows the true law, equation (1). This final
condition ensures that (3) is a correct probabilistic model in the sense that long-run relative frequencies from (1) coincide with the probabilities in (3). Given $e_{j-1}, e_{j} *$ is a random variable; its uncertainty originates from the imperfect description of the constitutive law (1) by model (3) ; it might be called probabilistic uncertainty. A reduction in probabilistic uncertainty requires a modification of the model, say by using $e_{j}=\tilde{g}\left(e_{j-1}, e_{j-2}\right)$ instead of $e_{j}=\tilde{g}\left(e_{j-1}\right)$. If one chooses a third or higher order model: $e_{j}=\tilde{g}\left(e_{j-1}, e_{j-2}, e_{j-3}, \ldots\right)$ the optimal choice is $\tilde{g}=f$, with no probabilistic uncertainty.

Going back to a model of the type (2) with optimal choice (3), assume that \tilde{g}^{*} is known. For instance \tilde{g}^{*} might be a first-order autoregressive normal sequence, with correlation and variance as unknown parameters (vector $\underline{\theta}$). From a finite set of data the estimate $\hat{\hat{\theta}}$ of $\underline{\theta}^{*}$ is obtained. The stochastic model

$$
\begin{equation*}
e_{j}=\tilde{g}\left(e_{j-1}, \underline{\hat{\theta}}\right) \tag{4}
\end{equation*}
$$

which is optimal under the condition $\hat{\hat{\theta}}=\underline{\theta^{*}}$, is no longer correct for prediction purposes due to the fact that $\underline{\theta}^{*} \mid \underline{\hat{\theta}}$ is a random vector in a fiducial or Bayesian sense. (Note that (4) may still be correct for describing the past.)

A correct predictive model would be:
$\left.e_{j}=\tilde{G}^{*}\left(e_{j-1}, \hat{\theta}\right)=\int_{\text {all } \underline{\theta}^{*}} \tilde{g}^{*}\left(e_{j-1}, \underline{\theta}^{*}\right) d{\underset{\underline{\theta}}{ }} \mid \hat{\underline{\theta}}^{(} \underline{\theta}^{*}\right)$,
which accounts for the uncertainty in $\underline{\theta}^{*}$ through a modification of the model $\left(\tilde{G}^{*} \neq \tilde{g}^{*}\right)$. For instance, if the probabilistic model \tilde{g}^{*} is a first-order autoregressive normal sequence with unknown variance, e_{j} has "Student's" t predictive distribution, for an appropriate choice of the variance estimator (see Chapter III).

The uncertainty of the model parameters, which originates from the finite amount of available data, might be called statistical uncertainty. In prediction, it combines with probabilistic uncertainty through a rule of the type (5). The qualitative result is an increased prediction uncertainty. Statistical uncertainty is reduced by processing more information; in fact this reduces the variance of $\left(\theta_{i} *-\hat{\theta}_{i}\right)$ if $\hat{\theta}_{i}$ is a consistent estimator. In other words, additional information reduces the (statistical) uncertainty on the probabilistic uncertainty which is given, say, by the "correct" but unknown stochastic relation (3).

Consider relaxing the assumption that \tilde{g}^{*} is known, and replace the optimal model by some consistent estimator $\hat{\tilde{g}}$, e.g., within a class of first-order autoregressive models that contain the Gaussian model as a special case. Then $\underline{\hat{\theta}} \rightarrow \underline{\theta}^{*}$ and $\hat{\tilde{g}} \rightarrow \tilde{g}^{*}$ with probability 1 in the limit case of an infinite amount of available information. Nevertheless, for limited information the model obtained from equation (5) with $\hat{\tilde{g}}$ in place of \tilde{g}^{*} is not correct for prediction, due to the neglected (say fiducial or Bayesian) uncertainty of $\tilde{g} * \mid \hat{\tilde{g}}$. For instance one might accept on statistical ground the hypothesis that $\left\{e_{j}\right\}$ is a normal sequence, but this does not exclude that the true sequence has a different marginal distribution. If γ indexes the possible exact models, one should use the following as a prediction model:

$$
\begin{equation*}
e_{j}=\hat{\tilde{G}}\left(e_{j-1}\right)=\int_{\text {all }} \tilde{G}_{\gamma}^{*}\left(e_{j-1}, \hat{\theta}_{\gamma}\right) d F_{\gamma}(\gamma), \tag{6}
\end{equation*}
$$

where $\tilde{G}_{\gamma}^{*}(\cdot)$ is given by equation (5) with $\tilde{g}^{*}, \underline{\theta}^{*}$ and $\hat{\hat{\theta}}$ indexed by γ.

The uncertainty on the model has the same statistical nature as the uncertainty on the parameters for a fixed model.

To summarize briefly: the assumption was made that natural systems are deterministic; however the use of descriptive probabilistic models may be necessitated by the complexity of a detailed deterministic analysis. Two types of uncertainties are always present when such models are inferred from a finite set of data: (i) a probabilistic uncertainty, which is inherent in the model itself, due to its being an approximation to the actual deterministic system; (ii) a statistical uncertainty, with origin in the finite amount of available data. Statistical uncertainty has itself two components, one at the level of the model, the other at the level of the parameters. Probabilistic and statistical uncertainties combine in a rather complex way to provide prediction models; see equations (5) and (6).

No essential modification is induced by assuming that natural systems are themselves random, except for the fact that deterministic models should be ruled out. Perfect modeling would produce mathematical analogs with probabilistic, but without statistical uncertainty. In models inferred from limited data statistical and probabilistic uncertainties would again combine, with the net result of increasing the prediction uncertainty.

Under the hypothesis of stochastic natural systems the notion of probabilistic uncertainty is related to what Good (1965) calls "physical" probability and Benjamin and Cornell (1970) call "fundamental" probability; these labels refer to an uncertainty which is intrinsic in the natural mechanism, and therefore irreducible in prediction. However, identity between the present definition of probabilistic uncertainty (which refers to the model) and "physical" or "fundamental" uncertainty (which refers to the natural system) holds conditionally on the model selected corresponding exactly to the stochastic law of nature. This was not the case, for instance, when a process like (1), with no physical or fundamental uncertainty, was approximated by a first-order autoregressive process of the type (2) which, according to the present definition, has nonzero probabilistic uncertainty.

Analyzing uncertainties on models as opposed to doing it directly on nature evades the question whether probability is a constitutive property of nature (this viewpoint is supported by the physical and fundamental probabilities of Good, Benjamin and Cornell), or it is due to our incomplete state of knowledge, as in Laplace's view.

Going one step further one might ask whether subjective probabilities can be viewed also as the superposition of "model" uncertainties and statistical uncertainty about
the correct "model". In this case "model" stands for physiological or psychological structure, being the physical or mental counterpart of a stochastic mathematical model (or class of models, like equation (2)). In this sense, "absolute certainty" (or "equiprobability of exclusive events", etc.) might be just one of such mental "models". Research in this area would be valuable to assess the relative merit (not the correctness, which cannot be established) of the model-uncertainty notion versus the idea of an irreducible uncertainty in nature.

Safety and statistical uncertainty

In the analysis of structural safety it is customary to assume some probabilistic model for the unknown quantities and to neglect statistical uncertainties both in the model and in the parameters, as second-order variations. The arbitrariness of this assumption discredits the claim that a probabilistic approach to safety is more rational than a nonprobabilistic approach. In the former one assumes a probabilistic model; in the latter one assumes a deterministic model; the difference might be called quantitative more than qualitative. The author addressed the problem of rescuing probabilistic methods from the accusation of
arbitrariness in a recent study (Veneziano (1974)). After criticizing the deductive character of the present theory of probabilistic safety, some lines were indicated along which a more general inductive theory might be developed. Although still within a strictly deductive logic, the inclusion of statistical uncertainty in probabilistic models is a step in this direction.

The relevance of statistical uncertainty in state estimation and prediction is studied quantitatively in the following three chapters, with particular emphasis on safety implications. A basic problem in structural safety is that of finding the predictive distribution of unknown quantities (such as resistances and loads) at a future time, when the system performance, say failure or nonfailure, is of concern. To solve this problem, a mathematical model is assumed for the time evolution of these unknown quantities (state of the model). The model may be deterministic or stochastic; in any case it contains unknown parameters, which control the evolutive law, or the present state, or both. If no statistical information were available, the predictive distribution of the state (and so the safety of a system depending on it) would be undefined.

This prediction problem has important particular cases and extensions which depend mainly on the choice of the mathematical model.

A very special and important case is when the state evolution in time is assumed deterministic (in particular, state $=$ const.), with unknown present state. Statistical information consists of partial, and/or noisy, and/or censored observations of the state. In "deterministic" models of this type any prediction problem reduces then to a problem of statistical estimation.

In Chapter I, classical estimation theory for noisy observations is reviewed and applied to several problems in the area of Civil Engineering. In the same chapter the theory is extended to censored data, such as those from acceptance tests and from proof loading of structural systems.

The optimal design of estimation experiments is discussed and examplified; in particular, a problem which is given consideration is that of designing optimal sampling networks for the estimation of spatially continuous, unknown state functions with possibly multidimensional parameter (for instance the compressibility of a soil as a function of three geographical coordinates).

Clearly, since the state is unknown but not random, all the estimation uncertainty is statistical in nature, and can be reduced (to zero, in the limit) by collecting additional information.

The simplest models with stochastic time dependence assume that the state evolves at discrete times like a stationary, independent sequence. The marginal distribution type of the sequence may be assumed known with unknown parameters (parametric or parameter-free prediction) or may be itself unknown (nonparametric or distribution-free prediction). In both cases statistical information consists of an independent sample from the same statistical population; again, the sample may be noisy or censored.

For these models the simplest prediction problem asks for the distribution of the state at a future time (say the distribution of the next value in the random sequence), but one can imagine situations in which the joint distribution of many future observations is needed; for instance, when computing the reliability of a system subjected to m > 1 independent loading events. Not only does statistical uncertainty cause the predictive distribution to be of different type than that assumed for the sequence, but it also introduces correlation among distinct future observations. Finding the joint predictive distribution of the state at different times is known as a problem of simultaneous (as opposed to "simple") statistical prediction.

Independent models and related prediction problems are studied in Chapter II. For each marginal distribution considered, a penalty measure for statistical uncertainty is defined and tabulated, allowing one to make reliability analyses and designs which account for statistical uncertainty. The penalty may be quite large both in terms of estimated failure probability, and of design safety factors for a given reliability. The penalty increases with the level of reliability and with decreasing statistical information.

An impartial position is held with respect to Classical and Bayesian approaches, although the Bayesian logic seems more natural for handling prediction problems.

A third class of models hypothesizes that the state evolves according to a stochastic process with memory. The same prediction problems which were mentioned for white sequences can be defined here, but the difficulty of finding exact analytical solutions for the predictive distribution increases considerably. In Chapter III attention is restricted to first-order autoregressive models. In this case, when the process is known and the unknown state is estimated from noisy observations one can use the well-known Kalman filter and Kalman prediction algorithms. The
extension of the algorithms to cover censored information is presented and applied to the prediction of resistance parameters in deteriorating systems. Some cases with unknown process parameters are also studied, and a penalty measure for statistical uncertainty is defined, as for the independent models in Chapter II.

REFERENCES

I. Benjamin, J.R. and Cornell, C.A. (1970): Probability, Statistics and Decision for Civil Engineers, Chapter 4, McGraw-Hill, New York.
2. Good, I.T. (1965): The Estimation of Probabilities, Research monograph No. 30, Massachusetts Institute of Technology Press, Cambridge, Massachusetts.
3. de Laplace, P.S.: A Philosophical Essay on Probabilities. Trans. by F.W. Truscott and F.L. Emory, from the 6th French Edition; Chapters 2 and 3, Dover Publications, New York, 1952.
4. Veneziano, D. (1974): "Note on an Inductive Approach to Safety". Submitted to: Proceedings of the American Society of Civil Engineers, J. Structural Division.

CHAPTER I

DETERMINISTIC MODELS

In this chapter we discuss the problem of estimating an unknown but non-random state of nature. The terminology "deterministic models" refers to the evolution of the state in time; the evolution being deterministic, estimation of the present leads automatically to prediction of the future. In structural reliability, data collection and statistical estimation can be used to reduce the uncertainty on natural properties (resistance, elastic moduli, etc.), on soil parameters of structural interest before construction (profile, compressibility, bearing capacity, etc.), on the overall characteristics of elements and subsystems after construction (member and joint stiffnesses, dead loads, geometrical variables, etc.).
"Statistical estimation" is used here in a non standard sense in that the object of estimation are not the parameters of a probabilistic model, but rather the present state of a physical system; the two problems are, however, mathematically identical.

A flexible and general formulation of the estimation problem is one which allows for information being available on the state of nature before experimenting. This leads naturally,
although not necessarily, to Bayesian theory, in which evidence from new data is combined with quantified prior beliefs through Bayes' theorem, yielding quantified posterior beliefs. Most of the results in this chapter are valid under Bayesian inference, but methods of non-Bayesian estimation theory are also considered.

Necessary for applying the techniques of statistical estimation theory is that the state of nature has at least partial observability. In the case of complete non-noisy observation, the state is known with certainty after the experiment; therefore the interest of estimation theory lies in the less trivial cases of noisy or partial non-noisy observations (Sections I.1, I.2, I.3), and of censored, noisy or non-noisy data (Sections I.4, I.5). These are the kinds of data which are available most often, and which are considered in this chapter. However, there is no logical necessity for experimental evidence not to conform to different formats.

The distinction between uncensored and censored data is mathematically relevant, and also corresponds to different goals of experimentation. Uncensored data are collected by devices which measure directly the quantities of interest, although possibly with disturbances. Examples are the measurement of mechanical properties of materials sampled from a structure after construction and the laboratory tests on soil specimens. In both cases experimental data are in
the form of direct point measurements of the state of nature, which is an unknown function of one or more natural variables. Local disturbances in the system caused by the sampling procedure are generally neglected. Even with non-noisy measurements (which is rarely a realistic hypothesis) the state of the system at nearby points remains uncertain. Making "best guesses" and quantifying the residual uncertainties are among the goals of estimation theory.

In other cases data are collected in a censored format. Typical is the proof loading of a structure under prefixed loading conditions. In general the system survives, which fact insures a minimum resistance level via truncation of the resistance distribution. The reasons for collecting information of this type are both to increase the reliability of those systems which survived the experiment, and to detect possible causes of future disastrous failures by observing an anomalous behavior. In some cases this is also a way of demonstrating the meeting of legal requirements for minimum resistance. An obvious economic advantage of proof loading over direct methods of measuring resistance is that the experiment is destructive selectively, with survival of those systems whose performance under experimentation was satisfactory.

The organization of the chapter is as follows. The first three sections deal with estimation from uncensored
data. After reviewing basic results of Bayesian and Classical estimation theory (Section I.l) some criteria of experiment evaluation are introduced in Section I.2. The evaluation criteria allow one to assign informativeness measures to a given experiment and to compare a priori different experiments. This leads naturally to problems of optimal experiment design which are discussed briefly in Section I.3. Examples are used both to illustrate possible applications of the quoted results to (structural) reliability problems, and to suggest developments in directions of engineering interest. In the latter sense they may appear to be incomplete, as indeed they are.

I. 1 ELEMENTS OF BAYESIAN AND NON-BAYESIAN ESTIMATION THEORY; UNCENSORED DATA

Consider a system with an unknown finite dimensional state vector $\underline{X}=\left[X_{1}, X_{2}, \ldots, x_{n}\right]^{\prime}$ (for instance, X_{i} may be the resistance of the ith structural member or the compressibility of the ith soil stratum). In many cases \underline{X} is defined from a continuous and possibly vector-valued state function $\mathrm{X}(\cdot)$ through appropriate discretization. Another meaning that \underline{X} may have is as a collection of parameters in a polynomial approximation to $X(\cdot)$. However, the analysis which follows applies also (in the limit) to the full function $X(\cdot)$. For
this, \underline{X} collects the values of $X(\cdot)$ at a finite number of points. Since the length of \underline{X} and the points at which $X(\cdot)$ is sampled by \underline{X} are arbitrary, this covers in the limit the case of continuous estimation. Since \underline{x} is not random the uncertainty on its actual value is purely statistical (see Introduction). The purpose of making experiments is to reduce this uncertainty by providing additional information. In Section I.l we give some state estimators and the uncertainty in the state after experimentation. This is done concisely, without proofs. Proofs can be found in classical texts on estimation theory, which the reader is referred to. For applications see Sections I. 2 and I.3.
I.1.1 Bayesian and non-Bayesian estimators

The problem in this paragraph is to define common rules (estimators) for obtaining point estimates of \underline{X} from a given amount of information, including in particular the observations of experiments.

The ingredients of a statistical estimation rule are:
(i) the prior uncertainty on the state vector X ;
(ii) the observation model;
(iii) the estimation criterion.

In Bayesian estimation theory the first two elements define the posterior probability distribution of \underline{x}. Let the prior probabilities be given in the form of the $\operatorname{PDF} \mathrm{f}(\underline{\mathrm{X}})$,
and denote $l(\underline{Z} \mid \underline{X}) \propto f(\underline{Z} \mid \underline{X})$ the likelihood function coresponcing to the measurement model ($\underline{Z}=$ vector of measurements). Then, from Bayes' theorem, the posterior PDF of the state is:

$$
\begin{equation*}
f(\underline{X} \mid \underline{Z}) \propto f(\underline{X}) \cdot 1(\underline{Z} \mid \underline{X}) \tag{III}
\end{equation*}
$$

$f(\underline{X} \mid \underline{Z})$ is an exhaustive descriptor of the state of knowledge after experimentation and can be used for posterior reliability evaluations. If desired, posterior confidence regions (regions in state space which contain X with a given probebility) can be found from it. Also, given the error loss function

$$
\begin{aligned}
L(\underline{\tilde{x}}) & =L[\underline{X}-\hat{X}(\underline{Z})] ; \\
\underline{X} & =\text { true state, } \\
\hat{\hat{X}}(\underline{Z}) & =\text { posterior estimate of } \underline{x}, \\
\underline{\tilde{x}} & =\underline{x}-\underline{\hat{X}}(\underline{Z}), \text { error, }
\end{aligned}
$$

one can find an optimal estimator $\hat{X}(\cdot)$ as any law which minimizes the Bayes risk (= the a prior expected loss):

After writing $f(\underline{X}, \underline{Z})=f(\underline{X} \mid \underline{Z}) \cdot f(\underline{Z})$ it is easy to see that the same estimator minimizes the conditional Bayes risk (= the posterior expected loss):

$$
B[\underline{\hat{x}}(\underline{Z}) \mid \underline{Z}]=\underset{\underline{x}}{E}[L(\underline{\tilde{x}}) \mid \underline{Z}]=\int_{a l \underline{x} \underline{x}} L[\underline{x}-\underline{\hat{x}}(\underline{Z})] f(\underline{x} \mid \underline{Z}) d \underline{x} .
$$

There is no unique, best choice for the estimator of \underline{x}. Different choices of $L[\cdot]$ produce different optimal estimators. Commonly used Bayes loss functions and the associated optimal point estimators are:
(i) $L(\underline{\tilde{x}})=\|\underline{\tilde{x}}\|_{\underline{S}}^{2} \quad$ (Squared error loss function),
where $\left||\underline{\tilde{x}}|^{2}\right.$ denotes the generalized squared norm of the estimation error with respect to the symmetric positive matrix \underline{S} :

$$
\mid \underline{\tilde{x}} \|_{\underline{S}}^{2}=[\underline{x}-\underline{\hat{x}}(\underline{Z})] \text { ' } \underline{s}[\underline{X}-\underline{\hat{X}}(\underline{Z})] .
$$

The associated optimal estimator is called the minimum-variance-of-error estimator, denoted $\hat{X}_{M V}(\cdot)$. It is easy to show (see for instance Sage and Melsa (1971), Par. 6.2) that $\hat{X}_{M V}(\underline{Z})$ coincides
with the posterior mean estimator $\hat{\hat{x}}_{\mathrm{PM}}(\cdot)$, and therefore is independent of S .
(ii) $L(\underline{\tilde{X}})=\lim _{\varepsilon \rightarrow 0} \begin{cases}0 & \text { for }| | \underline{\tilde{x}}| |=\left(\underline{\tilde{X}}^{\prime} \underline{\tilde{x}}\right)^{1 / 2}<\varepsilon / 2 \\ 1 / \varepsilon & \text { for }| | \underline{\tilde{x}}| | \geq \varepsilon / 2\end{cases}$
(limit uniform cost function)
The conditional Bayes risk attains its minimum value when $\underline{\hat{x}}(\cdot)$ satisfies

$$
\left.\frac{\partial \underline{f(\underline{x} \mid \underline{Z})}}{\partial \underline{x}}\right|_{\underline{x}=\underline{\hat{x}}(\underline{Z})}=\underline{0}
$$

i.e., when $\underline{\hat{X}}(\underline{Z})$ equals the maximum posterior estimate, $\hat{\hat{X}}_{\text {MAP }}(\underline{Z})$.
(iii) $L(\underline{\tilde{X}})=\left.\max | | \underline{\tilde{X}}\right|_{\underline{S}} \quad$ (maximum-absolute-value-of-
error loss function)
This criterion is applicable when $f(\underline{X} \mid \underline{Z}) \equiv 0$ outside a bounded region, in which case the optimal estimator is the minimax estimator, also called the minimum-error estimator.

(iv) $L(\underline{\tilde{X}})=||\underline{\tilde{x}}||$
 (absolute-value-of-error loss

function)

When \underline{X} is a scalar the associated optimum estimator $\hat{X}_{\text {ABS }}(\cdot)$ corresponds to a median value of the posterior density. Analogous results do not exist for the multidimensional case, since there is no standard definition of the median of multivariate distributions.

In general these Bayesian point estimators differ the one from the others. However, for symmetrical and unimodal posterior densities it is true that: $\hat{\underline{x}}_{\operatorname{MV}}(\cdot)=\hat{\underline{x}}_{\operatorname{MAP}}(\cdot)=$ $\hat{\underline{x}}_{A B S}(\cdot)$.

All the loss functions considered above are "homogeneous" in the sense that they penalize the error vector \underline{X} irrespective of the actual value of the state vector \underline{X} (and of the estimate $\hat{X}(\underline{Z})=\underline{X}-\underline{\tilde{X}})$. Although this is common in estimation theory and leads to statistically meaningful "best" estimates of \underline{X} (like the posterior mean, the maximum posterior estimate, and so on), it is not a necessity of Bayesian estimation. One can easily think of estimation problems in which $L(\cdot)$ is markedly nonhomogeneous, reflecting the unequal consequences of an estimation error for different true states of nature.
(v) Linear-minimum-variance estimator

Let $\underset{\underline{X}}{\underline{X}}=E\left[(\underline{X}-\underline{\hat{X}}(\underline{Z}))(\underline{X}-\underline{\hat{X}}(\underline{Z}))^{\prime}\right]$ be the second moment matrix of the estimate error. An estimator which minimizes the trace of $\frac{S_{X}}{X}$ is called a minimum-mean-square-error estimator. ${ }^{-}$The GaussMarkov theorem states that if \underline{x} and \underline{Z} are random vectors with second moment matrices:

$$
\begin{aligned}
& E\left[\underline{X} \underline{X}^{\prime}\right]=\underline{S}_{\underline{x}}, \\
& E\left[\underline{Z} \underline{Z}^{\prime}\right]=\underline{S}_{\underline{z}}, \\
& E\left[\underline{X} \underline{Z}^{\prime}\right]=\underline{s}_{\underline{X}} \underline{z}^{\prime}
\end{aligned}
$$

and if $\operatorname{det} \frac{S_{Z}}{\underline{Z}} \neq 0$, the linear (in \underline{Z}) minimum-mean-square- $\frac{Z}{\text { errror }}$ estimator $\hat{\hat{X}}(\cdot)$ is:
with associated second moment error matrix:

Also, if the condition for unbiasedness

$$
\begin{equation*}
E[\underline{\hat{X}}]=\underline{S}_{\underline{X} \underline{Z} \underline{S}_{\underline{Z}}^{-1} E[\underline{Z}] \quad(=E[\underline{X}]), ~(=E)} \tag{I.4}
\end{equation*}
$$

is satisfied, then \hat{X} is the (unbiased) linear-minimum-variance estimator, denoted \hat{X} (•). For LMV a proof of the theorem, see Liebelt (1967), Par. 5.3.
(vi) Maximum likelihood estimator

When the conditional measurement density $f(\underline{Z} \mid \underline{X})$ is known, the maximum likelihood estimator $\hat{X} \quad(\underline{Z})$ is defined to be the vector which maximizes $f(\underline{Z} \mid \underline{X})$. Under conditions of differentiability and unimodality a necessary and sufficient condition for $\hat{X}_{M L}(\underline{Z})$ is:

$$
\begin{equation*}
\left.\frac{\partial F(\underline{Z} \mid \underline{X})}{\partial \underline{X}}\right|_{\underline{X}=\underline{X}_{M L}(\underline{Z})}=\underline{0} \tag{I.5}
\end{equation*}
$$

This estimator is particularly appealing when no a priori information on \underline{X} is available, or when the posterior Bayesian density $f(\underline{X} \mid \underline{Z})$ is difficult to compute.
(vii) Least-squares estimators
Consider the measurement model
$\underline{Z}=g(\underline{X})+\underline{\varepsilon}$
where ε is a zero-mean random noise vector. A
least-squares estimator $\frac{\hat{X}}{L S}(\cdot)$ can be defined by
the quadratic condition:
where $\underline{R}=\underline{R}^{\prime}>0$.
A more general form of the optimality criterion
for least-squares estimators will be considered
at the end of the next paragraph.

I.1.2 Linear observation model; measurement error

covariance known
The measurement vector \underline{Z} being a stochastic linear function of \underline{x} defines a particularly simple and important case. From what will be said in this paragraph the linear observation model is mathematically very convenient and should be used always when meaningful in the physical context. It is also the obvious model when \underline{Z} measures \underline{X} directly.

Let

$$
\begin{equation*}
\underline{Z}=\underline{Z}_{0}+\underline{H} \underline{X}+\underline{\varepsilon}, \tag{I.6}
\end{equation*}
$$

where \underline{Z}_{0} is a given m-vector, \underline{H} is a given ($m \times n$) measurement matrix and $\underline{\varepsilon}$ is a zero-mean noise vector. The posterior Bayesian density is given by equation (I.l), where ($\underline{Z} \mid \underline{X}$) follows the same distribution type as ε, differing only in the location parameter. The special case when both the prior density $f(\underline{X})$ and the noise density $f(\underline{E})$ are normal is of considerable practical and theoretical interest. Let

$$
\begin{gathered}
\underline{X} \sim N_{n}\left(\underline{X}_{b} ; \underline{\underline{E}}_{b}\right), \underline{\varepsilon} \sim N_{m}(\underline{0} ; \underline{\theta}), \\
\operatorname{Cov}[\underline{X}, \underline{\varepsilon}]=\underline{0} .
\end{gathered}
$$

Then, from equation (I.6):

$$
\begin{aligned}
& (\underline{Z} \mid \underline{X}) \sim N_{m}(\underline{Z}+\underline{H} \underline{X} ; \underline{\theta}), \\
& \underline{Z} \sim N_{m}\left(\underline{Z}_{0}+\underline{H} \underline{X}_{b} ; \underline{H} \underline{\Sigma}_{b} \underline{H}^{\prime}+\underline{\theta}\right)
\end{aligned}
$$

From direct substitution into equation (I.l) one finds (see for instance Bryson and Ho (1969), Par. 12.7) that the posterior distribution of \underline{x} is also Gaussian with parameters:

$$
\begin{align*}
E[\underline{X} \mid \underline{Z}]=\underline{X}_{a} & =\underline{\Sigma}_{a}\left\{\underline{H}^{\prime} \underline{\theta}^{-1}\left(\underline{Z}-\underline{Z}_{0}\right)+\underline{\Sigma}_{b}^{-1} \underline{X}_{b}\right\} \tag{I.7}\\
& =\underline{x}_{b}+\underline{\Sigma}_{a} \underline{H}^{\prime} \underline{\theta}^{-1}\left(\underline{Z}-\underline{Z}_{0}-\underline{H} \underline{X}_{b}\right) \tag{b}\\
& =\underline{X}_{b}+\underline{\Sigma}_{b} \underline{H}^{\prime}\left(\underline{H} \underline{\Sigma}_{b} \underline{H}^{\prime}+\underline{\theta}^{-1}\left(\underline{Z}-\underline{Z}_{0}-\underline{H} \underline{X}_{b}\right) ;\right. \tag{c}
\end{align*}
$$

(a)
and

$$
\begin{align*}
\operatorname{Var}[\underline{X} \mid \underline{Z}]=\underline{\Sigma}_{a} & =\left(\underline{\underline{b}}^{-1}+\underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}\right)^{-1} \tag{a}\\
& =\underline{\Sigma}_{b}-\underline{\Sigma}_{b} \underline{H}^{\prime}\left(\underline{\theta}+\underline{H} \underline{\Sigma}_{b} \underline{H}^{\prime}\right)^{-1} \underline{H} \underline{\Sigma}_{b}, \tag{I.8}
\end{align*}
$$

where the indicated inverses are assumed to exist. The last identity in equations (I.8) comes directly from the matrix inversion lemma, see Householder (1953). For the case of present interest the lemma proves the equality:

$$
\left(\underline{A}+\underline{B}^{\prime} \underline{C} \underline{B}\right)^{-1}=\underline{A}^{-1}-\underline{A}^{-1} \underline{B}^{\prime}\left(\underline{B} \underline{A}^{-1} \underline{B}^{\prime}+\underline{C}^{-1}\right)^{-1} \underline{B}_{\underline{A}^{-1}} .
$$

Again, the indicated inverses are assumed to exist (for the use of generalized inverses in the foregoing results, see Deutsch (1965) Par. 7.2).

The relative advantage of using either of equations (I.8) comes from comparing the dimensions of the matrices under the inversion signs, which are the same as the
dimensions of \underline{x} and \underline{Z}. This point is discussed more below. For the special case of a scalar state and a scalar noisy measurement ($n=m=1$); i.e., for
$\mathrm{Z}=\mathrm{Z}_{0}+\mathrm{hX}+\varepsilon ; \mathrm{X} \sim \mathrm{N}\left(\mathrm{X}_{\mathrm{b}} ; \sigma_{\mathrm{b}}^{2}\right) ; \varepsilon \sim \mathrm{N}\left(0 ; \sigma_{\varepsilon}^{2}\right) ; \operatorname{Cov}[\mathrm{X}, \varepsilon]=0$,
equations (I.7b) and (I.8) become:

$$
\begin{gather*}
x_{a}=x_{b}+h \frac{\sigma_{a}^{2}}{\sigma_{\varepsilon}^{2}}\left(z-z_{o}-h x_{b}\right) ; \tag{I.9}\\
\sigma_{a}^{2}=\left(\frac{1}{\sigma_{b}^{2}}+h^{2} \frac{1}{\sigma_{\varepsilon}^{2}}\right)^{-1}=\frac{\sigma_{\varepsilon}^{2}}{h^{2}+\sigma_{\varepsilon}^{2} / \sigma_{b}^{2}} \tag{I.10}
\end{gather*}
$$

Equations (I.7) and (I.8) play an important role in Bayesian and Classical linear estimation theory, and will be used repeatedly in the sequel. It seems therefore fruitful to pause for some comments.

The posterior mean (I.7b) or (I.7c) is a linear function of the "innovation vector" ($\underline{Z}-\underline{Z}-\underline{H} \underline{X}_{b}$), meaning that the difference $\left(\underline{x}_{a}-\underline{x}_{b}\right)$ is proportional to the deviation of the observations from their prior expected value $\left(\underline{Z}_{\mathrm{O}}+\underline{H}_{\mathrm{X}_{\mathrm{b}}}\right)$; see equation (I.6). The revision of the state mean, $\left(\underline{X}_{a}-\underline{X}_{b}\right)$, also depends on the matrix product $\underline{\Sigma}_{a} \underline{H}^{\prime} \underline{\theta}^{-1}$ (on $h \frac{\sigma_{a}^{2}}{\sigma_{\varepsilon}^{2}}$ in the scalar case), being larger for a smaller
error covariance matrix $\underline{\theta}^{(*)}$. This means that measurements which are statistically affected by small errors are given more credibility than measurements with highly dispersed errors. The difference $\left(\underline{x}_{a}-\underline{x}_{b}\right)$ is also "proportional" to the signal-to-noise strength which is measured by the observation or modulation matrix $\underset{H}{ }$; see equation (I.6). Finally the presence of $\underline{\Sigma}_{\mathrm{a}}$ in equation (I.7b) indicates that Bayes' rule weights more the observations when the prior uncertainty about the value of \underline{X} is larger (when $\underline{\Sigma}_{\mathrm{a}}$ is larger); a statement which makes good sense.

Passing to the posterior error covariance, equations (I.8), if $\underline{\theta}$ is positive definite, $\underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}$ is at least positive semidefinite, so that $\Sigma_{-a}^{-1} \geq \sum_{b}^{-1}$ (meaning that $\Sigma_{\mathrm{a}}^{-1}-\Sigma_{\mathrm{b}}^{-1}$ is positive semidefinite). Assuming $\underline{\Sigma}_{\mathrm{b}}>0$, the same is true for \sum_{-b}^{-1} and $\sum_{-a} \leq \sum_{-b}$ (meaning that $\sum_{b}-\sum_{a}$ is positive semidefinite). The foregoing inequalities state formally that the uncertainty does not increase by processing more information, again an intuitively obvious fact.

An important feature of equations (I.7) and I.8) is that while the computation of the posterior mean requires knowing the outcome \underline{Z} of the experiment, the posterior error covariance matrix does not depend on the numerical value
(*) If \underline{A} and \underline{B} are square matrices of the same dimension we say that \underline{A} is larger than \underline{B}, written $\underline{A}>\underline{B}$ if the difference ($\underline{A}-\underline{B}$) is positive definite.
of the observations, and therefore is precomputable (before the experiment).

$$
\text { If } \underline{\theta}=\operatorname{diag}\left[\sigma_{\dot{i}}^{2}\right] \text { equation (I.8b) presents the }
$$

practical advantage over equation (I.8a) that one can process recursively one scalar observation at a time, thus reducing the matrix inversion to the trivial operation of inverting scalars. Another advantage of using equation (I.8b) is that when \sum_{b}^{-1} is positive semidefinite (which corresponds to the case of partially "diffuse" prior) the matrix ($\left.\underline{\mathrm{S}}_{\mathrm{b}}^{-1}+\underline{H} \underline{\theta}^{-1} \underline{H}\right)$ may be singular. In any case, numerical difficulties are expected in the inversion of \sum_{a}^{-1} if both the prior and the observations carry little information on some linear combination of the state variables.

Intuitively speaking, if the absolute entries of \underline{H} are not much larger than 1 and the prior distribution has little dispersion as compared to the measurement noise covariance, $\underline{\Sigma}_{\mathrm{b}}^{-1}$ is "large" with respect to $\underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}$, and $\Sigma_{\mathrm{a}} \approx \underline{\underline{b}}$. This is immediately clear in the scalar case. Also, since the product $\underline{\Sigma}_{\mathrm{a}} \underline{H}^{\prime} \underline{\theta}^{-1}$ is "small", it is $\underline{X}_{\mathrm{a}} \approx \underline{\mathrm{X}}_{\mathrm{b}}$, meaning that little is learned from measurements with large noise perturbations.

At the other extremum, if the prior uncertainty is "large" when compared to the covariance of the measurement error (accurate experiments), it is $\left.\underline{\Sigma}_{\mathrm{a}} \approx \underline{\mathrm{H}}^{\prime} \underline{\theta}^{-1} \underline{\mathrm{H}}\right)^{-1}$ (assume existance of the inverse) and, from equation (I.7b):

$$
\begin{aligned}
& \underline{X}_{a} \approx \underline{X}_{b}+\left(\underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}\right)^{-1} \underline{H}^{\prime} \underline{\theta}^{-1}\left(\underline{Z}-\underline{Z}_{0}\right)-\left(\underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}\right)^{-1} \underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}_{b} \\
&=\left(\underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}\right)^{-1} \underline{H}^{\prime} \underline{\theta}^{-1}\left(\underline{Z}-\underline{Z}_{0}\right) \\
&=\underline{H}^{\prime}\left(\underline{H} \underline{H}^{\prime}\right)^{-1}\left(\underline{Z}-\underline{Z}_{O}\right)
\end{aligned}
$$

The last equality holds under the assumption: det (HH') $=0$. The point of this derivation is to show that for accurate experiments prior beliefs receive little weight in the posterior probabilities. (In processing accurate measurements one should use equations (I.7c) and (I.8c), which do not require inverting $\underline{\theta}$).

From equations (I.8a) and (I.10) it is seen that the critical comparison which decides on the effectiveness of an experiment is between $\underline{\Sigma}_{b}^{-1}$ (or $1 / \sigma_{b}^{2}$) and $\underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}$ (or $h^{2} / \sigma_{\varepsilon}^{2}$). The latter matrix product, denoted M, is known as the Fisher information matrix of the experiment. It is easy to show that \underline{M} is positive semidefinite. In fact, after assuming $\underline{\theta} \geq 0$, one may write:

$$
\underline{M}=\underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}=\left(\underline{\theta}^{-1 / 2} \underline{H}\right)^{\prime}\left(\underline{\theta}^{-1 / 2} \underline{H}\right) .
$$

Since any matrix of the form $\underline{A}^{\prime} \underline{A}$ is positive semidefinite, the property $\underline{M} \geq 0$ follows.

Two generalizations of equations (I.7) and (I.8)
are indicated next; they concern the case of correlation between the state \underline{X} and the measurement errors $\underline{\varepsilon}$, and the case of repeated observations from possibly different linear models. Finally, equations (I.7) and (I.8) are specialized for a noninformative ("diffuse") prior.
(i) Correlation between the state vector and the measurement errors

Uncorrelation between \underline{X} and $\underline{\varepsilon}$ is a rather "robust" assumption, in the sense of being justified in most problems of state estimation. However, depending on the modalities of the experiment, there may be cases in which this is not true.

When the measurement error vector $\underline{\varepsilon}$ and the state vector \underline{x} are correlated a priori, say $\operatorname{Cov}[\underline{X}, \underline{\varepsilon}]=\underline{\Gamma} \neq \underline{0}$, some easy algebra generalizes equations (I.7c) and (I. 8b) into:

$$
\begin{equation*}
\underline{x}_{a}=\underline{x}_{b}+\left(\underline{\Sigma}_{b} \underline{H}^{\prime}+\underline{\Gamma}\right)\left(\underline{H} \underline{\Sigma}_{b} \underline{H}^{\prime}+\underline{H} \underline{\Gamma}+\underline{\Gamma}^{\prime} \underline{H}^{\prime}+\underline{\theta}\right)^{-1}\left(\underline{Z}-\underline{Z}_{\mathrm{O}}-\underline{H}^{X_{b}}\right) ; \tag{I.ll}
\end{equation*}
$$

$\underline{\Sigma}_{\mathrm{a}}=\underline{\Sigma}_{\mathrm{b}}-\left(\underline{\Sigma}_{\mathrm{b}} \underline{H}^{\prime}+\underline{\Gamma}\right)\left(\underline{\mathrm{H}} \underline{\Sigma}_{\mathrm{b}} \underline{H}^{\prime}+\underline{H} \underline{\Gamma}+\underline{\Gamma}^{\prime} \underline{H}^{\prime}+\underline{\theta}\right)^{-1}\left(\underline{H}_{\Sigma_{\mathrm{b}}}+\underline{\Gamma}^{\prime}\right)$.

For a scalar state variable and $\operatorname{Cov}[\mathrm{X}, \varepsilon]=\gamma$ these equations yield:

$$
\begin{gather*}
x_{a}=x_{b}+\frac{h+\gamma / \sigma_{b}^{2}}{h^{2}+2 h \gamma / \sigma_{b}^{2}+\sigma_{\varepsilon}^{2} / \sigma_{b}^{2}}\left(z-z_{o}-h x_{b}\right) \tag{I.13}\\
\sigma_{a}^{2}=\sigma_{b}^{2}\left[1-\frac{\left(h+\gamma / \sigma_{b}^{2}\right)^{2}}{h^{2}+2 h \gamma / \sigma_{b}^{2}+\sigma_{\varepsilon}^{2} / \sigma_{b}^{2}}\right) \tag{I.14}
\end{gather*}
$$

(ii) Repeated linear measurements

A second easy generalization of equations (I.7) and (I.8) concerns the case of multiple observations according to the model:

$$
\begin{equation*}
\underline{Z}_{i}=\underline{Z}_{i}+\underline{H}_{i} \underline{X}+\underline{\varepsilon}_{i} ; \quad i=1,2, \ldots, k, \tag{I.15}
\end{equation*}
$$

where \underline{Z}_{i} is an m_{i}-measurement vector, \underline{H}_{i} is an ($m_{i} \times n$) observation matrix, ${\underset{\sim}{O}}_{i}$ is a given vector and the $\underline{\varepsilon}_{i}$'s are noise vectors with first and second-moments:

$$
\begin{aligned}
E\left[\underline{\varepsilon}_{i}\right] & =\underline{0} \\
\operatorname{Cov}\left[\underline{\varepsilon}_{i}, \underline{\varepsilon}_{j}\right] & =\underline{\theta}_{i} \delta_{i j} \\
\operatorname{Cov}\left[\underline{\varepsilon}_{i}, \underline{x}\right] & =\underline{0}
\end{aligned}
$$

Define:

$$
\underline{z}=\left(\begin{array}{l}
\underline{Z}_{1}^{1} \\
\vdots \\
\underline{\underline{Z}}_{K}
\end{array}\right) ; \underline{Z}_{O}=\left(\begin{array}{l}
\underline{Z}_{O_{1}} \\
\vdots \\
\underline{Z}_{O}
\end{array}\right) ; \underline{H}=\left(\begin{array}{l}
\underline{H}_{1} \\
\vdots \\
\underline{H}_{K}
\end{array}\right) ; \underline{\varepsilon}=\left(\begin{array}{l}
\varepsilon_{1} \\
\vdots \\
\underline{\varepsilon}_{K}
\end{array}\right) \text {. }
$$

Then:

$$
\mathrm{E}[\underline{\varepsilon}]=\underline{0} ; \operatorname{Cov}[\underline{\varepsilon}, \underline{\varepsilon}]=\underline{\theta}=\operatorname{diag}\left[\underline{\theta}_{i}\right]
$$

Entering equations (I.7a,b) and (I.8a) with the foregoing notations yields:

$$
\begin{gather*}
\underline{x}_{a}=\underline{\Sigma}_{a}\left(\sum_{i=1}^{K} \underline{H}_{i}^{\prime} \underline{\theta}_{i}^{-1}\left(\underline{Z}_{i}-\underline{Z}_{i}+\underline{\Sigma}_{b}^{-1} \underline{x}_{b}\right)\right) \tag{a}\\
=\underline{x}_{b}+\sum_{a}\left(\sum_{i=1}^{K} \underline{H}_{i} \underline{\theta}_{i}^{-1}\left(\underline{Z}_{i}-\underline{Z}_{i}-\underline{H}_{i} \underline{X}_{b}\right)\right) ;(b) \tag{I.16}\\
\underline{\Sigma}_{a}=\left(\underline{\Sigma}_{b}^{-1}+\sum_{i=1}^{K} \underline{H}_{i}^{\prime} \underline{\theta}_{i}^{-1} \underline{H}_{i}\right)^{-1} \tag{I.17}
\end{gather*}
$$

Alternatively (and with operational advantages) the equivalents of equations (I.7c) and (I.8b) can be written in recursive form:

$$
\begin{align*}
& \underline{x}_{a}=\underline{x}_{b_{i}}+\underline{\Sigma}_{b_{i}} \underline{H}_{i}^{\prime}\left(\underline{H}_{i} \underline{\Sigma}_{b_{i}} \underline{H}_{i}^{\prime}+\underline{\theta}_{i}\right)^{-1}\left(\underline{Z}_{i}-\underline{Z}_{O_{i}}-\underline{H}_{i} \underline{x}_{b_{i}}\right) ; i=1, \ldots, K, \\
& \underline{x}_{b_{i}}=\underline{x}_{a_{i-1}} ; i=2, \ldots, k, \tag{I.18}\\
& \underline{\Sigma}_{\mathrm{a}}{ }_{\mathrm{i}}=\underline{\Sigma}_{\mathrm{b}_{i}}-\underline{\Sigma}_{\mathrm{b}_{i}} \underline{H}_{i}^{\prime}\left(\underline{\theta}_{\mathrm{i}}+\underline{H}_{\mathrm{i}} \quad \underline{\Sigma}_{\mathrm{b}} \underline{H}^{\prime}\right)^{-1} \underline{H}_{\mathrm{i}} \quad \sum_{\mathrm{b}_{i}} ; \quad i=1, \ldots, \mathrm{~K},
\end{align*}
$$

$\underline{\Sigma}_{b_{i}}=\underline{\Sigma}_{a_{i-1}} ; \quad i=2, \ldots, k$,
with given initial conditions: $\underline{x}_{b_{1}}=\underline{X}_{b} ;{\underline{\Sigma_{b}}}=\underline{\Sigma}_{b}$.
(iii) Diffuse prior state probabilities

The prior distribution of \underline{X} is said to be diffuse if $f(\underline{X}) \propto$ constant. Then from equation (I.1):
$f(\underline{X} \mid \underline{Z}) \propto 1(\underline{Z} \mid \underline{X})$

$$
=(2 \pi)^{-n / 2}|\underline{\theta}|^{-1 / 2} \exp \left\{-\frac{1}{2}\left(\underline{Z}-\underline{Z}_{0}-\underline{H} \underline{X}\right)^{\prime} \underline{\theta}^{-1}\left(\underline{Z}-\underline{Z}_{0}-\underline{H} \underline{X}\right)\right\} .(I .19)
$$

By direct substitution one can verify the following identy for the quadratic form in the exponent of equation (I.19):

$$
\left(\underline{Z}-\underline{Z}_{0}-\underline{H} \underline{X}\right)^{\prime} \underline{\theta}^{-1}\left(\underline{Z}-\underline{Z}_{0} \underline{H} \underline{X}\right)=(\underline{Z}-\underline{\hat{Z}})^{\prime} \underline{\theta}^{-1}(\underline{Z}-\underline{\hat{Z}})+(\underline{x}-\underline{\hat{X}})^{\prime} \underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}(\underline{x}-\underline{\hat{X}}),
$$

where

$$
\begin{aligned}
& \left.\underline{\hat{X}}=\underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}\right)^{-1} \underline{H}^{\prime} \underline{\theta}^{-1}\left(\underline{Z}-\underline{Z}_{0}\right) \\
& \underline{\hat{Z}}=\underline{H} \underline{\hat{X}}+\underline{Z}_{0}
\end{aligned}
$$

and the Fisher information matrix $\underline{M}=\underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}$ is assumed to be positive definite. Since $(\underline{Z}-\underline{\tilde{Z}})^{\prime} \underline{\theta}^{-1}(\underline{Z}-\underline{\tilde{Z}})$ is not a function
of \underline{X} for given \underline{Z}, we conclude:

$$
\begin{equation*}
f(\underline{X} \mid \underline{Z}) \propto \exp \left\{-\frac{1}{2}(\underline{X}-\underline{\hat{X}})^{\prime} \underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}(\underline{X}-\underline{\hat{X}})\right\}, \tag{I.20}
\end{equation*}
$$

meaning that $(\underline{X} \mid \underline{Z})$ has normal distribution with parameters:
$\mathrm{E}[\underline{\mathrm{x}} \mid \underline{\mathrm{Z}}]=\underline{\mathrm{x}}_{\mathrm{a}}=\underline{\hat{\mathrm{x}}}$

$$
\begin{gather*}
=\left(\underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}\right)^{-1} \underline{H} \underline{\theta}^{-1}\left(\underline{Z}-\underline{Z}_{0}\right)=\underline{H}^{\prime}\left(\underline{H} \underline{H}^{\prime}\right)^{-1}\left(\underline{Z}-\underline{Z}_{0}\right) \tag{I.21}\\
\operatorname{Var}[\underline{\mathrm{X}} \mid \underline{\mathrm{Z}}]=\underline{\Sigma}_{a}=\left(\underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}\right)^{-1} . \tag{I.22}
\end{gather*}
$$

(The last equality in equation (I.21) requires the condition $\left.\operatorname{det}\left(\underline{H}^{\prime} \underline{H}^{\prime}\right) \neq 0\right)$. Note that analogous results were found above as approximations to the case of informative prior and accurate measurements. For $\underline{Z}_{O}=\underline{0}$ and for measurement errors having spherical normal distribution ($\underline{\theta}=\sigma^{2} I_{m}$) equation (I.20) reproduces a well-known result in linear regression theory (see Box and Tiao. (1973) page 115).

$$
f(\underline{X} \mid \underline{Z})=(\sqrt{2 \pi} \cdot \sigma)^{-n}\left|\underline{H}^{\prime} \underline{H}\right|^{1 / 2} \exp \left\{-\frac{1}{2}(\underline{x}-\underline{\hat{X}})^{\prime} \underline{H} \underline{H}^{\prime} \underline{H}(\underline{X}-\underline{\hat{X}})\right\},
$$

where now $\underline{X}=\left(\underline{H}^{\prime} \underline{H}\right)^{-1} \underline{H}^{\prime} \underline{Z}$.

The posterior parameters, equations (I.21) and (I.22), could
also be derived by letting $\Sigma_{b}{ }^{-1}=\underline{0}$ in equations (I.7) and (I.8). The posterior covariance coincides with the inverse of the information matrix, and the posterior mean is independent of the measurement dispersion.

For the linear Gaussian model considered above \underline{X}_{a} is the best Bayesian estimator under several criteria: posterior mean $\left(\hat{X}_{P M}=\underline{x}_{a}\right)$; maximum posterior estimate $\left(\hat{X}_{M A P}=\underline{X}_{a}\right)$; absolute-value-of-error $\left(\hat{X}_{A B S}=\underline{x}_{a}\right)$. For all these cases the Bayesian estimator error covariance is \sum_{a}.

If a priori the first two moments of \underline{x} are known, but not its full prior probability distribution, the estimators (I.7) and (1.11) no longer possess the properties that we found for the Gaussian model. However, the estimators (I.7) and (I.11) are attractive because they use only the first two moments of \underline{x} and $\underline{\varepsilon}$, and because the resulting error covariance is independent of the measurement vector \underline{Z}, and therefore is precomputable. Later in this chapter we shall see that they correspond to the linear-minimum-mean-square-of-error estimator. For non-normal prior and/or non-normal measurement error some nonlinear estimators may exist with lower estimate error mean square. Under a second moment characterization of \underline{x} and $\underline{\varepsilon}$ the estimators (I.7) and (I.11) are often called pseudo-Bayes estimators.

A brief discussion of non-Bayesian point estimators for the linear measurement model (I.6) follows.
(i) Linear-minimum-variance estimator

The Gauss-Markov theorem (cfr. equations (I.2) and (I.3)) does not require any functional relationship between \underline{Z} and \underline{x}. Here we specialize the claim of the theorem for the linear observation model (I.6), for which we define:

$$
\underline{Z}^{*}=\underline{Z}_{-\underline{Z}_{0}}-\underline{H}_{-} \underline{X}_{b} ; \quad \underline{X}^{*}=\underline{X}-\underline{X}_{b}
$$

Then, in the notations which precede equation (I.2):

$$
\begin{aligned}
& \underline{S}_{\underline{X}}^{\underline{Z}} \underline{Z}^{*}=\operatorname{Cov}[\underline{X}, \underline{Z}]=\underline{\Sigma}_{b} \underline{H}^{\prime}+\underline{\Gamma} \\
& \underline{S}_{\underline{Z} *}=\operatorname{Var}[\underline{Z}]=\underline{H} \underline{\Sigma}_{b} \underline{H}^{\prime}+\underline{\Gamma}^{\prime} \underline{H}^{\prime}+\underline{H} \underline{\Gamma}+\underline{\theta},
\end{aligned}
$$

where $\underline{\Gamma}=E\left[\underline{X}^{*} \underline{\varepsilon}^{\prime}\right]=\operatorname{Cov}[\underline{X}, \underline{\varepsilon}]$.

From equations (I.2) and (I.3):

$$
\begin{gathered}
\underline{\hat{X}}^{*}=\left(\underline{\Sigma}_{\mathrm{b}} \underline{H}^{\prime}+\underline{\Gamma}\right)\left(\underline{H} \underline{\Sigma}_{\mathrm{b}} \underline{H}^{\prime}+\underline{\Gamma}^{\prime} \underline{H}^{\prime}+\underline{H} \underline{\Gamma}+\underline{\theta}\right)^{-1} \underline{Z}^{*} ; \\
\left(\underline{\hat{X}}=\hat{X}^{*}+\underline{X}_{\mathrm{b}}\right) ; \\
\underline{S}_{\tilde{X}} \underline{\mathrm{X}}^{*}=\underline{S}_{\tilde{X}}=\underline{\Sigma}_{\mathrm{b}}-\left(\underline{\Sigma}_{\mathrm{b}} \underline{H}^{\prime}+\underline{\Gamma}\right)\left(\underline{H} \underline{\Sigma}_{\mathrm{b}} \underline{H}^{\prime}+\underline{\Gamma}^{\prime} \underline{H}^{\prime}+\underline{H} \underline{\Gamma}+\underline{\theta}\right)^{-1}\left(\underline{H} \underline{\Sigma}_{\mathrm{b}}+\underline{\Gamma}^{\prime}\right) . \text { (I.24) }
\end{gathered}
$$

The reason for introducing the new variables X^{*} and \underline{Z}^{*} is to have $E\left[\underline{Z}^{*}\right]=E\left[\underline{\hat{X}}^{*}\right]=E\left[\underline{X}^{*}\right]=\underline{0}$, so that equation (I.4) holds and \hat{X} is the linear-minimum-variance estimator (and not only the linear minimum-mean-square-error estimator).

As already anticipated in discussing Bayesian estimation equations (I.23) and (I.24) are identical with equations (I.ll) and (I.l2). They hold under no distribution assumption, a property which makes $\hat{\underline{X}}_{\text {LMV }}$ a very convenient distribution-free estimator (see Anderson (1972) for some structural engineering applications of the scalar form (I.9) (I.10)).

Equations (I.23) and (I.24) reproduce equations (I.7) and (I.8) when $\underline{\Gamma}=\underline{0}$, and the Bayesian results for diffuse prior, equations (I.21) and (I.22), when, in addition, $\Sigma_{\mathrm{b}}^{-1}=\underline{0}$.
(ii) Maximum likelihood estimator

Equation (I.5) is the condition for maximum likelihood when ($\underline{Z} \mid \underline{X}$) has unimodal distribution. For the linear observation model (I.6) with Gaussian errors the conditional distribution of the observations is $N_{m}(\underline{Z}+\underline{H} \underline{X} ; \underline{\theta})$. Therefore maximizing $f(\underline{Z} \mid \underline{X})$ is equivalent to minimizing the quadratic form:

$$
\left|\left|\underline{Z}-\underline{Z}_{0}-\underline{H} \underline{x}\right|\right|_{\underline{\theta}^{-1}}^{2}=\left(\underline{Z}-\underline{Z}_{0}-\underline{H} \underline{X}\right)^{\prime} \underline{\theta}^{-1}\left(\underline{Z}-\underline{Z}_{0}-\underline{H} \underline{X}\right) .
$$

This condition is satisfied if

$$
\underline{X}=\hat{X}_{M L}(\underline{Z})=\left(\underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}\right)^{-1} \underline{H}^{\prime} \underline{\theta}^{-1}\left(\underline{Z}-\underline{Z}_{0}\right)=\underline{H}^{\prime}\left(\underline{H} \underline{H}^{\prime}\right)^{-1}\left(\underline{Z}-\underline{Z}_{0}\right) .
$$

We conclude that in this case the maximum likelihood estimator coincides with the Bayes posterior mean for diffuse prior, equation (I.2l). The estimate error covariance is the same as in equation (I.22).

Note that these results are independent of the prior information on \underline{X}, so that from a Bayesian viewpoint the maximum likelihood estimator is efficient only if $\underline{\Sigma}_{\mathrm{b}}^{-1}=\underline{0}$. (An estimator is said to be efficient if it minimizes the error mean square). Otherwise the Bayes posterior mean and the linear-minimum-variance estimators have smaller error covariance.
(iii) (Weighted) least-squares estimators

Given the linear observation model (1.6), let the optimality condition for the estimator have the weighted quadratic form:
$J=\frac{1}{2}\left(\left(\underline{\hat{x}}-\underline{X}_{b}\right)^{\prime} \underline{\underline{E}}_{b}^{-1}\left(\underline{\hat{X}}-\underline{X}_{b}\right)+\left(\underline{Z}-\underline{Z}_{0}-\underline{H} \underline{\hat{x}}\right)^{\prime} \underline{\theta}^{-1}\left(\underline{Z}-\underline{Z}_{0}-\underline{H} \underline{\hat{x}}\right)\right)=\min _{\hat{\hat{x}}}(I .25)$
As before, \underline{x}_{b} is the prior mean vector and \underline{X}_{b} is the prior covariance matrix of $\underline{x}, \underline{\theta}$ is the covariance of the zero-mean
measurement error vector $\underline{\varepsilon}$, and $\operatorname{Cov}[\underline{X}, \underline{\varepsilon}]=\underline{0}$. In equation (I.25), J is the sum of a penalty term for the weighted distance of the observation from its expected posterior value. Of course, $\underline{\Sigma}_{\mathrm{b}}$ and $\underline{\theta}$ may be replaced by different matrices, but when they are chosen as indicated above, the weighted-least-squares estimator $\hat{\underline{X}}_{\mathrm{LS}}(\underline{Z})$ coincides with the posterior Bayes mean, equation (I.7), and with the linear-minimum-variance estimator. In fact, in order that d J/d $\underline{\hat{x}}=\underline{0}$ it must be:

$$
\begin{equation*}
\underline{\hat{x}}(\underline{z})=\hat{x}_{L S}(\underline{z})=\underline{x}_{b}+\underline{\Sigma}_{a} \underline{H}^{\prime} \underline{\theta}^{-1}\left(\underline{z}-\underline{Z}_{0}-\underline{H} \underline{x}_{b}\right) \tag{I.26}
\end{equation*}
$$

with the error covariance \sum_{a} in equation (I.8).
If $\underline{\Sigma}_{\mathrm{b}}$ and $\underline{\theta}$ in equation (I.25) are replaced by different matrices the weighted-least-squares estimator is still given by equation (I.26) with the obvious substitutions, but now $\hat{\underline{x}}_{\text {LS }}$ is inferior to the estimators $\hat{\underline{x}}_{\mathrm{LMV}}$ and X_{a} 。

In summary, for the linear observation model (I.6) the estimator (I.7) satisfies the linear-minimum-mean-square-of-error and the least-squares criteria, the latter in the form (I.25). If in addition the prior distribution of \underline{x} and the distribution of the measurement error ε are multivariate normal, then (I.7) shares some desirable Bayesian properties, such as being the maximum posterior (density)
estimator, the absolute-value-of-error estimator, and the posterior mean. For a diffuse prior X_{a} in equation (I.21) has analogous properties being, in addition, the maximum likelihood estimator.
I.1.3 Linear observation model; measurement error covariance unknown

The estimation problem with the linear experiment model (I.6) and unknown measurement error covariance $\underline{\theta}$ is significantly more involved than the same problem when $\underline{\theta}$ is known. Nevertheless, simple Bayesian solutions can be found in particular situations.

One case which lends itself to an easy, although approximate, treatment is when the prior information on $\underline{\theta}$ has the discrete form:

$$
P(\underline{\theta})=\sum_{j=1}^{n j} P_{j} \delta\left(\underline{\theta}-\underline{\theta}_{j}\right)
$$

where $\sum_{j} P_{j}=1, \delta(\underline{A})=\left\{\begin{array}{ll}0 & \text { if } \underline{A} \neq \underline{0} \\ 1 & \text { if } \underline{A}=\underline{0}\end{array}\right.$, and $\left\{\underline{\theta}_{j}\right\}$ is a set of
known matrices.
Under the conditions $\underline{\varepsilon} \sim N_{m}(\underline{0}, \underline{\theta}) ; \underline{X} \sim N_{n}\left(\underline{X}_{b}, \underline{\Sigma}_{b}\right)$; $\operatorname{Cov}[\underline{X}, \underline{\varepsilon}]=\underline{0}$, and under the simplifying assumption that (I.27) is also the posterior distribution of $\underline{\theta}$ (this assumption is legitimate for measurements carrying little
new information) the posterior mean of the state is given by
$\underline{x}_{a}=\sum_{j=1}^{n j} P_{j} \underline{X}_{a}=\underline{x}_{b}+\sum_{j=1}^{n j} P_{j}\left(\sum_{a_{j}} \underline{H}^{\prime} \underline{\theta}_{j}^{-1}\left(\underline{Z}-\underline{Z}-\underline{H} \underline{X_{b}}\right)\right)$,
where $\quad \underline{\Sigma}_{a}=\left(\underline{\Sigma}_{b}^{-1}+\underline{H}^{1} \underline{\theta}_{j}^{-1} \underline{H}\right)^{-1}$

The associated error covariance of the estimate is:

$$
\underline{\Sigma}_{a}=\sum_{j=1}^{n j}\left(p_{j} \underline{\Sigma}_{a j}+\left(\underline{x}_{a}-\underline{x}_{a_{j}}\right)\left(\underline{x}_{a}-\underline{x}_{a_{j}}\right)^{\prime}\right)
$$

For a diffuse prior on \underline{x} equations (I.28), (I.29), (I.30)
still hold with $\underline{\Sigma}_{b}^{-1}=\underline{0}$.
The posterior mean (I.28) is not any longer the maxi-mum-posterior estimate, but it still retains the property of being the linear-minimum-variance estimator. The foregoing problem is solved exactly in Aoki (1967) Par. III.2.D.d for the scalar case with $n_{j}=2$.

The difficulty of solving the general problem is illustrated by considering the maximum likelihood criterion. Using the general linear observation model (I.15) with $m_{i}=m$ and $\underline{\theta}_{i}=\underline{\theta}(i=1, \ldots, k)$ and following Sage and Melsa (1971) Par. 6.5, one finds:

$$
\begin{align*}
& \hat{\underline{x}}_{\mathrm{ML}}=\left(\sum_{i=1}^{K} \underline{H}_{i} \hat{\theta}_{M L}^{-1} \underline{H}_{i}\right)^{-1} \sum_{i=1}^{K} \underline{H}_{i} \hat{\theta}_{M L}^{-1}\left(\underline{Z}_{i}-\underline{Z}_{O_{i}}\right) ; \tag{a}\\
& \hat{\underline{\theta}}_{M L}=\frac{1}{K} \sum_{i=1}^{K}\left(\underline{Z}_{i}-\underline{Z}_{O_{i}}-\underline{H}_{i} \hat{\underline{X}}_{M L}\right)\left(\underline{Z}_{i}-\underline{Z}_{o_{i}}-\underline{H}_{i} \hat{\underline{x}}_{M L}\right)^{\prime},
\end{align*}
$$

(I.31)
which is a system of coupled nonlinear equations in the coefficients of $\hat{\theta}_{\mathrm{ML}}$ and of $\hat{\mathrm{X}}_{\mathrm{ML}}$. The special case $\mathrm{K}=1$ is degenerate since under the condition $\operatorname{det}\left(\underline{H}_{1} \underline{H}_{1}{ }^{\prime}\right) \neq 0$ equation (I.3lb) yields: $\hat{\theta}_{-\mathrm{ML}}=\underline{0}$.

Nevertheless (and quite importantly) if one assumes that $\underline{\theta}$ has the diagonal form

$$
\begin{equation*}
\underline{\theta}=\sigma^{2} I_{m}, \quad\left(\sigma^{2} \text { unknown }\right) \tag{I.32}
\end{equation*}
$$

$\hat{\underline{X}}_{\mathrm{ML}}$ does not depend on $\hat{\theta}_{\mathrm{ML}}$. This special case is studied next in greater detail within the context of Bayesian estimation.

Consider first a noninformative prior density $f\left(\underline{x}, \sigma^{2}\right)$ of the type:

$$
\begin{equation*}
f\left(\underline{X}, \quad \sigma^{2}\right) \propto I / \sigma^{2} . \tag{I.33}
\end{equation*}
$$

From equation (I.l) the joint posterior density is:

$$
\begin{equation*}
f\left(\underline{X}, \sigma^{2} \mid \underline{Z}\right) \propto f\left(\underline{Z} \mid \underline{X}, \sigma^{2}\right) \cdot f\left(\underline{X}, \sigma^{2}\right) \tag{I.34}
\end{equation*}
$$

where

$$
\begin{align*}
\underline{f}\left(\underline{Z} \mid \underline{X}, \sigma^{2}\right) & \propto \frac{1}{\sigma^{m}} \exp \left\{-\frac{1}{2 \sigma^{2}}(\underline{Z}-\underline{Z}-\underline{H} \underline{X})^{\prime}(\underline{Z}-\underline{Z}-\underline{H} \underline{X})\right\} \\
& =\frac{1}{\sigma^{m}} \exp \left\{-\frac{1}{2 \sigma^{2}} \cdot\left(\nu S^{2}+(\underline{X}-\underline{\hat{X}})^{\prime} \underline{H}^{\prime} \underline{H}(\underline{x}-\underline{\hat{X}})\right)\right. \tag{I.35}
\end{align*}
$$

with the notations:

$$
\begin{aligned}
\underline{\hat{x}} & =\left(\underline{H}^{\prime} \underline{H}\right)^{-1} \underline{H}^{\prime}\left(\underline{Z}-Z_{0}\right) \quad\left(\text { if } \operatorname{det}\left(\underline{H}^{\prime} \underline{H}\right) \neq 0\right) ; \\
\underline{\hat{z}} & =\underline{H} \underline{\hat{X}}+\underline{Z} 0 ; \\
\nu & =m-\mathrm{n} ; \\
S^{2} & =\left((\underline{Z}-\underline{Z})^{\prime}(\underline{Z}-\underline{\underline{Z}})\right) / \nu .
\end{aligned}
$$

Substituting (I.33) and (I.35) into (I.34) yields (Box and Tiao (1973) Par. 2.7.2):

$$
\begin{equation*}
f\left(\underline{X}, \sigma^{2} \mid \underline{Z}\right) \propto \frac{1}{\sigma^{m}+2} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\nu S^{2}+(\underline{X}-\underline{\hat{X}})^{\prime} \underline{H}^{\prime} \underline{H}(\underline{X}-\underline{\hat{X}})\right)\right\} \tag{I.36}
\end{equation*}
$$

This joint density can be factored into a marginal posterior density for σ^{2} and a conditional posterior density for \underline{X}, the latter being in multivariate normal form with mean \hat{X} and covariance matrix σ^{2} (H'H $^{\prime} \underline{H}^{-1}$. Integrating out σ^{2} yields the marginal posterior distribution of $(\underline{x}-\underline{X})$ as an n-variate
t-distribution with $v=m-n$ degrees of freedom and covariance matrix $\frac{\nu}{\nu-2} S^{2}\left(\underline{H}^{\prime} \underline{H}\right)^{-1}$.

It is immediate to generalize this result for a conjugate prior distribution of \underline{X} and σ^{2}. In fact, let

$$
f\left(\underline{X}, \sigma^{2}\right) \propto \frac{1}{\sigma^{m_{1}+2}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\nu_{1} S_{1}^{2}+\left(\underline{x}-\hat{X}_{1}\right)^{\prime} \underline{H}_{1}^{\prime} \underline{H}_{1}\left(\underline{x}^{-} \underline{\hat{x}}_{1}\right)\right)\right\}
$$

where:

$$
\begin{aligned}
v_{1} & =m_{1}-n \\
\hat{\mathrm{X}}_{1} & =\left(\underline{H}_{1}^{\prime} \underline{H}_{1}\right)^{-1} \underline{H}_{1}^{\prime}\left(\underline{Z}_{1}-\underline{Z}_{O_{1}}\right) \quad\left(\operatorname{det}\left(\underline{H}_{1}^{\prime} \underline{H}_{1}\right) \neq 0\right) ; \\
v_{1} S_{1}^{2} & =\left(\underline{Z}_{1}-\underline{Z}_{O_{1}}-\underline{H}_{1} \underline{\hat{X}}_{1}\right)^{\prime}\left(\underline{Z}_{1}-\underline{Z}_{O_{1}}-\underline{H}_{1} \underline{\hat{X}}_{1}\right) .
\end{aligned}
$$

Then the posterior density is of the same type, namely:

$$
\begin{equation*}
f\left(\underline{X}, \sigma^{2} \mid \underline{Z}\right) \propto \frac{1}{\sigma^{m_{1}+m^{-2}}} \cdot \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\nu S^{2}+(\underline{x}-\underline{\hat{X}})^{\prime} \underline{M}(\underline{x}-\underline{\hat{X}})\right)\right\} \tag{I.37}
\end{equation*}
$$

where:

$$
\begin{aligned}
\underline{M}= & \underline{H}_{1}^{\prime} \underline{H}_{1}+\underline{H}^{\prime} \underline{H} ; \\
\underline{\hat{X}}= & \underline{M}^{-1}\left(\underline{H}_{1}^{\prime} \underline{Z}_{1}+\underline{H}^{\prime} \underline{Z}\right) ; \\
\nu S^{2}= & \left(\underline{Z}_{1}-\underline{Z}_{O_{1}}-\underline{H}_{1} \underline{\hat{X}}\right)^{\prime}\left(\underline{Z}_{1}-\underline{Z}_{O_{1}}-\underline{H}_{1} \underline{\hat{X}}\right) \\
& +\left(\underline{Z}-\underline{Z}_{0}-\underline{H} \underline{X}\right)^{\prime}\left(\underline{Z}-\underline{Z}_{0}-\underline{H} \hat{X}\right) ; \\
v= & m_{1}+m-n \quad .
\end{aligned}
$$

For a detailed derivation see Zellner (1971) Par. 3.2.3. The result can be extended by induction to any number of measurements $\underline{Z}_{j}, j=1,2, \ldots$. Since the posterior density (I.37) has the same form as the posterior density (I.36)
the considerations in the marginal state probability density for diffuse prior carry over to the present case; in particular $(\underline{X}-\underline{\hat{X}}) \sim t_{n}\left[S^{2} \underline{M}^{-1} ; m_{1}+m-n\right]$.

I.1.4 Some additional considerations and extensions

(i) Error analysis

Equations (I.7) and (I.8) were derived under the hypothesis that the parameters \underline{x}_{b} and $\underline{\Sigma}_{b}$ of the prior normal distribution and the measurement error covariance $\underline{\theta}$ are the "correct" ones. For instance, \underline{X} might be a realization from a normal process with parameters X_{b} and $\underline{\Sigma}_{b}$; in this context one may say that the values assumed a priori for the parameters are the "correct" ones or not. The sensitivity to this type of errors is studied by Sage and Melsa (1971) Par. 6.5, with reference to the maximum-likelihood and to the Bayes maximum-posterior-density estimators. Their main result for the Bayes estimator, equations (I.7), is as follows.

Let $\underline{\bar{x}}_{b}, \bar{\Sigma}_{b}, \underline{\bar{\theta}}$ be the assumed parameter values, and $\underline{X}_{\mathrm{b}}, \underline{\Sigma}_{\mathrm{b}}, \underline{\theta}$ the true values. If one uses equations (I.7) with the assumed parameters the estimator is biased. In fact, denoting $\underline{x}_{\mathrm{a}}$ the resulting estimate it is:
$E\left[\underline{\bar{X}}_{a}\right]=\left(\underline{H}^{\prime} \underline{\bar{\theta}}^{-1} \underline{H}^{-1}{\underline{\tilde{\Sigma}_{b}}}^{-1}\right)^{-1}\left(\underline{H}^{\prime} \underline{\bar{\theta}} \underline{H} \underline{X}_{b}+\bar{\Sigma}_{b}^{-1} \underline{\underline{X}}_{b}\right)$

$$
\begin{equation*}
=\underline{x}_{b}+\left(\underline{H}^{\prime} \underline{\underline{\theta}}^{-1} \underline{H}^{+} \underline{\underline{E}}_{b}^{-1}\right)^{-1} \underline{\overline{\underline{E}}}_{\mathrm{b}}^{-1}\left(\underline{\bar{x}}_{\mathrm{b}}-\underline{\underline{x}}_{\mathrm{b}}\right), \tag{I.38}
\end{equation*}
$$

which equals \underline{x}_{b} only if $\underline{\underline{x}}_{b}=\underline{x}_{b}$ or if $\bar{\Sigma}_{b}^{-1}=\underline{0}$. The mean square error of the computed estimate $\overline{\mathrm{X}}_{\mathrm{a}}$ is:

$$
\begin{align*}
E\left(\left(\underline{x}-\overline{\bar{x}}_{a}\right)\left(\underline{x}-\underline{\bar{x}}_{a}\right)^{\prime}\right)= & \left(\underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}+\overline{\bar{\Sigma}}_{b}^{-1}\right)^{-1} \\
& \left\{\underline{\underline{\Sigma}}_{b}^{-1}\left(\underline{\Sigma}_{b}+\left(\underline{\bar{x}}_{b}-\underline{X}_{b}\right)\left(\underline{\bar{X}}_{b}-\underline{X}_{b}\right)^{\prime}\right) \bar{\Sigma}_{b}^{-1}+\underline{H}^{\prime} \underline{\underline{\theta}}^{-1} \underline{\theta}^{-1} \underline{\theta}^{-1} \underline{H}\right\} \\
& \left(\underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}+\underline{\Sigma}_{b}^{-1}\right)^{-1} \tag{I.39}
\end{align*}
$$

which is not smaller than the error variance (I.8). Equations (I.38) and (I39) reduce to equations (I.7) and (I.8) if $\underline{\underline{x}}_{\mathrm{b}}=\underline{x}_{\mathrm{b}} ; \overline{\underline{\Sigma}}_{\mathrm{b}}=\underline{\Sigma}_{\mathrm{b}}$ and $\underline{\bar{\theta}}=\underline{\theta}$.

These results are useful to judge the relevance of errors if the prior parameters are estimated from previous statistical data, without going through a full Bayesian analysis. Indeed, this is a recurrent situation in problems of engineering reliability; for instance, in estimating the quality of serially produced structural elements when limited data are available a priori from the statistical population (e.g., data are the resistances of previously tested elements). A similar problem arises in two-stage sampling (say of soil properties), in which one needs to estimate the posterior probabilities after a preliminary
sampling, in order to plan the second exploration in some optimal way.

Sage and Melsa also give an approximate expression for the increase in the estimate error covariance due to imperfect knowledge of $\underline{\Sigma}_{b}$ and of $\underline{\theta}$, valid for small errors.
(ii) H unknown

The estimation of the state of a physical system from noisy observations is mathematically analogous to finding the "best" parameters of a regression relation. Within the latter framework Fedorov (1972) Par. l.6, studies the problem of (nonlinear) parameters estimation when the control matrix \underline{H} (our measurement matrix) has random entries. In estimation, \underline{H} being random means that the observed quantities and the state of the system are not related deterministically, even after removing the additive measurement noise term (see equation (I.6)). Working with the first few moments of \underline{H} Fedorov finds the first two moments of the regression parameters by using a finite series expansion of \underline{H} around its expected value.

(iii) Robustness

In estimation, Bayesian robustness is concerned with the sensitivity of the posterior distribution to variations in the prior distribution $f(\underline{X})$ and to variations in the
distribution of the measurement errors. Note the difference with error analysis, in which one studies the effect of deviations from fixed, "correct", parameter values. Much of the literature on estimation robustness in Classical and Bayesian inference refers to population parameters, but the same results can be applied to the estimation of a state of nature.

Since Bayesian estimation requires information in which the analyst has rarely complete confidence, the estimators robustness is a question of great practical interest. A detailed account of the available results is beyond the scope of this study; as guides to the literature in this area the reader is referred to the review chapter on robustness in Lindley (1971), to Chapter 3 in Box and Tiao (1973), and to the references therein. We mention briefly some relevant studies.

Box and Tiao (1973) varied the type of distribution of the measurement error, and studied the effects of that on the posterior density of the (simple) regression coefficients (the analogous of a two-dimensional state vector). $f(\varepsilon)$ was assumed within a family of symmetrical distributions, indexed by a continuous parameter $\beta \varepsilon[-1,1] . \quad \beta$ controls the Kurthosis coefficient, and is respectively $-1,0$, and 1 for the uniform, the normal and the double exponential distribution. Processing a set of real data they found that
with respect to the normal case $(\beta=0)$ values of β smaller than -0.3 affected considerably the shape of the parameters posterior density as well as its location, while positive values up to $\beta=0.9$ did not. However, the relaxation of the normality assumption on ε is not of critical importance when estimating a non-random state of nature from noisy measurements, since the actual distribution of ($\underline{Z} \mid \underline{X}$) is generally close to the normal. The assumption of normality may instead be unjustified when ε has not the meaning of a measurement error, as in the case of regression analysis.

With reference to the estimation of a state of nature robustness with respect to the prior density $f(\underline{X})$ is perhaps more important. On the effects of departures from a normal density, see Edwards, et al. (1963).

Finally, we mention another area of robustness analysis, namely the sensitivity of the estimator to a small presence of outliers in the data. In the framework of Bayesian analysis this problem was studied by Box and Tiao (1968).
(iv) Nonlinear observation model

Nonlinear estimation has been the object of much research during the last decade, particularly in the area of nonlinear optimal control, resulting in a variety of nonlinear filtering algorithms. The "static" problem consists
in estimating a vector \underline{X} from noisy nonlinear observations $\underline{Z}=g(\underline{X}, \underline{\varepsilon})$. The practical need for nonlinear models is apparent; however, for our present goals it is considered sufficient to address the reader to existing literature. Also, since statistical estimation theory is relatively new to the reliability engineer, it seems appropriate to start from the relatively simple linear results. Their use in solving practical problems will suggest the appropriate extension into the nonlinear theory.

A general discussion of nonlinear estimation is in Balakrishnam (1964). Sage and Melsa (1971) devote a whole chapter to nonlinear Bayesian estimation. Although they refer to discrete and continuous dynamical systems, steps of the dynamic algorithms can be used for "static" estimation. Deutsch (1965) deals with "static" nonlinear estimation problems in a Bayesian framework, and indicates several approximate procedures. Other useful readings are Aoki (1971), and the pertinent references in Sage and Melsa (1971).

EXAMPLE 1. EFFECT OF NOISY MEASUREMENTS ON THE RELIABILITY OF SERIES, PARALLEL AND SERIES-PARALLEL SYSTEMS

Consider a construction plant which serially produces pre-cast reinforced concrete members. The resistance of the
i-th member is denoted R_{i}; the sequence R_{i} is assumed to be Gaussian and white. (The assumption of independence is in no sense essential, but it simplifies the computations without weakening the results.) Before combining the elements into a more complex structural configuration or system, we decide to measure nondestructively a secondary characteristic of each of the elements, such as their hardnesses or stiffnesses which are known to be correlated with their resistances. Then only those elements which have been tested are used in the system.

Denote R_{b} and σ_{b}^{2} the mean and the variance of the production sequence $\left\{R_{i}\right\}$, which are assumed to be known. For the ith element in the system the measurement z_{i} of the secondary characteristic and the resistance R_{i} are related through the linear stochastic equation

$$
z_{i}=z_{o}+h R_{i}+\varepsilon_{i}, \quad(i=1, \ldots, n)
$$

where Z_{o} and h are known constants and n is the number of elements in the system. The zero-mean error vector $\varepsilon^{\prime}=$ [$\varepsilon_{1}, \ldots, \varepsilon_{n}$] has multinormal distribution with covariance matrix:

$$
\underline{\theta}=c^{2} \sigma_{b}^{2}\left[\begin{array}{lll}
1 & \rho \\
\hline & & 1
\end{array}\right]
$$

where C is a known constant. The equicorrelated structure of $\underline{\theta}$ results from modeling the measurement error ε_{i} as the sum of an uncertain bias term ε_{o} common to all the observations, and an independent error component ε_{i}^{*}. In fact the covariance matrix $\underline{\theta}$ corresponds to:

$$
\varepsilon_{i}=\varepsilon_{o}+\varepsilon_{i}^{*}
$$

with $\mathrm{E}\left[\varepsilon_{\mathrm{O}}\right]=\mathrm{E}\left[\varepsilon_{i}^{*}\right]=0 ; \sigma_{\varepsilon_{O}}^{2}=\mathrm{E}\left[\varepsilon_{\mathrm{O}}^{2}\right]=\rho C^{2} \sigma_{\mathrm{b}}^{2} ; \sigma_{\varepsilon_{i}^{*}}^{2}=\mathrm{E}\left[\varepsilon_{i}^{*}{ }^{2}\right]=$ $(I-\rho) C^{2} \sigma_{b}^{2} ; E\left[\varepsilon_{0} \varepsilon_{i}^{*}\right]=0$.

If $\sigma_{\varepsilon_{O}}^{2}$ and $\sigma_{\varepsilon_{i}^{*}}^{2}$ are given as part of the modeling, the necessary parameters $C^{2} \sigma_{b}^{2}$ and ρ can be determined. Because of the whiteness assumption on $\left\{R_{i}\right\}$ the prior covariance matrix of the resistances is: $\quad \Sigma_{b}=\sigma_{b}^{2} I_{n}$ and the posterior covariance matrix is, from equations (I.8):

$$
\begin{equation*}
\underline{\underline{I}}_{a}=\sigma_{b}^{2} \underline{I}_{n}-h^{2} \sigma_{b}^{4}\left(\underline{\theta}+h^{2} \sigma_{b}^{2} \underline{I}_{n}\right)^{-1} \tag{I.40a}
\end{equation*}
$$

Due to the correlation in the measurements, $\underline{\Sigma}_{\mathrm{a}}$ is not diagonal. Its entries are:

$$
\left(\underline{\underline{\Sigma}}_{a}\right)_{i j}=\left\{\begin{array}{ll}
\sigma_{a}^{2}=\sigma_{b}^{2}\left\{1-\frac{h^{2}}{\left(h^{2}+C^{2}\right)} \frac{1+(n-2) \rho *}{\left(1-\rho^{*}\right)\left[1+(n-1) \rho^{*}\right]}\right.
\end{array}\right\} \text { for } i=j ; ~ \begin{array}{ll}
\\
& (I .40 b) \\
\rho_{a} \sigma_{a}^{2}=\sigma_{b}^{2}\left\{\frac{h^{2}}{\left(h^{2}+C^{2}\right)} \frac{\rho^{*}}{\left(1-\rho^{*}\right)\left[1+(n-1) \rho^{*}\right]}\right\} & \text { for } i \neq j
\end{array}
$$

where

$$
\rho^{*}=\rho \frac{C^{2}}{C^{2}+h^{2}}
$$

For making possible a comparison between the prior and the posterior reliability of systems which use these elements, one has to know the actual experimental outcomes, i.e., the numerical values of the measurements. In what follows we assume for simplicity and clarity that each outcome turns out to be simply its expected value:

$$
z_{i}=E\left[Z_{i}\right]=Z_{o}+h \cdot R_{b} \quad(i=1, \ldots, n)
$$

(in the next section we shall comment further on this assumption) ; for this assumption the posterior mean resistances are the same as the prior mean resistances: i.e., $R_{a_{i}}=$ R_{b} from equations (I.7), simplifying the reliability comparisons to follow.

Series system. When the elements are connected in series as in fig. lA and the system is acted on by a deterministic load S, failure may occur in any of the n modes corresponding to the conditions: $R_{i}<S(i=1,2, \ldots, n)$. Due to the fact that the posterior means are $R_{a_{i}}=R_{b}$ and to the equicorrelated structure of the posterior covariance matrix (I.40), the posterior reliability of the system depends only on the number of elements, n, on the normalized modal safety margin $\beta_{a}=\left(S-R_{b}\right) / \sigma_{a}$, and on the modal correlation coefficient ρ_{a}, which is the same for all pairs of modal resistances. From the assumption that $\left\{R_{i}\right\}$ is a priori an independent sequence, the prior modal correlation ρ_{b} is zero. The prior normalized modal safety margin is $\beta_{b}=$ $\left(S-R_{b}\right) / \sigma_{b}$.

For a given number of bars, n, a normalized safety margin β, and a modal correlation coefficient ρ_{M} the probability of failure of the system is the probability that at least one bar's resistance is less than the applied load, or:

$$
P_{f}=1-\Phi_{\mathrm{n}}\left(\rho_{\mathrm{M}}, \beta\right)
$$

where $\Phi_{n}\left(\rho_{M}, \beta\right)$ is the probability that n standard normal variates with common correlation coefficient ρ_{M} are simultaneously less than or equal to β. It can be shown (see

Gupta (1963)) that

$$
\begin{equation*}
\Phi_{n}\left(\rho_{M}, \beta\right)=\int_{-\infty}^{\infty} \Phi^{n}\left(\left(\beta+\rho_{M}^{1} /^{2} u\right)\left(1-\rho_{M}\right)^{-1} /^{2}\right) \phi(u) d u \tag{I.41}
\end{equation*}
$$

(with the obvious particular case: $\left.\Phi_{n}(0, \beta)=\Phi^{n}(\beta)\right)$, where $\Phi[\cdot]$ and $\phi(\cdot)$ denote the standard normal $C D F$ and $P D F$, respectively. Gupta tabulated $\Phi_{\mathrm{n}}\left(\rho_{\mathrm{M}}, \beta\right)$ for $\mathrm{n}=1(1) 12$, for β (his h) $=-3.5(0.1) 3.5$, and for discrete values of ρ_{M} in the range [0.l, 0.9]. Plots of the reliability for selected values of β, ρ_{M} and for 1 to 12 elements, are shown in fig. 1. In accordance with a theorem by Slepian (1962) P_{f} is a non-increasing function of ρ_{M}. Noticeable features of these plots are (see fig. l):
(i) Small modal correlation coefficients (say $\rho_{M}<0.5$) are negligible in safely designed systems (fig. l D), while the opposite is true for unreliable systems (fig. 1A);
(ii) The sensitivity of P_{f} to the number of elements increases with the system reliability and decreases with the modal correlation. In particular, fig. 1D suggests that for reliable systems with slightly correlated modes the probability of failure decays with the number of elements in an approximately geometrical fashion: $P_{f} \approx 1-\Phi^{n}(\beta)$.

Returning to the reliability effects of noisy

measurements, for S deterministic the prior reliability corresponds to the straight lines in fig. 1 ($\rho_{M}=0$). Given n, β_{b} and the measurement constants h, C and ρ, the posterior parameters are:

$$
\begin{aligned}
& \beta_{a}=\beta_{b} \frac{\sigma_{b}}{\sigma_{a}}=\beta_{b}\left\{1-\frac{h^{2}}{\left(h^{2}+C^{2}\right)} \frac{1+(n-2) \rho^{*}}{\left(1-\rho^{*}\right)\left[1+(n-1) \rho^{*}\right]}\right\}^{-1 / 2} ; \\
& \rho_{a}=\frac{h^{2}}{h^{2}+C^{2}} \frac{\rho^{*}}{\left(1-\rho^{*}\right)\left[1+(n-1) \rho^{*}\right]}\left\{1-\frac{h^{2}}{\left(h^{2}+C^{2}\right)} \frac{1+(n-2) \rho^{*}}{\left(1-\rho^{*}\right)\left[1+(n-1) \rho^{*}\right]}\right\}^{-1} \\
& =\frac{h^{2} \rho^{*}}{C^{2}\left[1+(n-2) \rho^{*}\right]-\left(C^{2}+h^{2}\right)(n-1) \rho^{* 2}}
\end{aligned}
$$

From these one can calculate the posterior reliability. For example, if $\mathrm{n}=2, \mathrm{~h}=\mathrm{C}=1$ and $\rho=0.5$ one finds

$$
\beta_{a}=1.46 \beta_{b}, \text { and } \rho_{a}=0.286
$$

For the same parameter values the prior and the posterior failure probabilities for selected values of β_{b} are given in the following table.

β_{b}	$P_{f_{b}}$	$P_{f_{a}}$
0	0.75	0.705
1.0	0.29	0.13
1.5	0.13	0.027
2.0	0.046	0.004

Table 1. Prior normalized safety margin β_{b} and prior and posterior (after the estimation experiment)
failure probabilities $P_{f_{b}}$ and $P_{f_{a}}$ for the series system in fig. 1 under deterministic loading. Refer to the text for parameters values and for the definition of the estimation experiment.

Ductile parallel system (fig. 2A). System failure occurs if the applied load S excedes the sum of the individual element resistances, $R=\sum_{i=1}^{n} R_{i}$. A priori the distribution of R is $N\left(n R_{b} ; \sigma_{R_{b}}^{2}\right)$; a posteriori: $R \sim N\left(n R_{b} ; \sigma_{R_{a}}^{2}\right)$, where

$$
\begin{gathered}
\sigma_{R_{b}}^{2}=n \sigma_{b}^{2} ; \\
\sigma_{R_{a}}^{2}=\sum_{i} \sum_{j}\left(\underline{\Sigma}_{a}\right)_{i j}=n \sigma_{b}^{2}\left\{1-\frac{h^{2}}{\left(h^{2}+C^{2}\right)[1+(n-1) \rho *]}\right\} .
\end{gathered}
$$

For a given load S, let β_{b}^{\prime} be the normalized prior safety margin; then the normalized posterior safety margin is:

$$
\beta_{a}^{\prime}=\beta_{b}^{\prime} \sigma_{R_{b}} / \sigma_{R_{a}}=\beta_{b}^{\prime}\left\{1-\frac{h^{2}}{\left(h^{2}+C^{2}\right)\left[1+(n-1) \rho^{*}\right]}\right\}-1 / 2
$$

If S is random, say $S \sim N\left(\bar{S}, \sigma_{S}^{2}\right)$, and independent of R, the prior and the posterior normalized safety margins become:

$$
\beta_{b}=\beta_{b}^{\prime} \frac{\sigma_{R_{b}}^{2}}{\sigma_{R_{b}}^{2}+\sigma_{S}^{2}} \quad ; \quad \beta_{a}=\beta_{b} \frac{\sigma_{R_{b}}^{2}+\sigma_{S}^{2}}{\sigma_{R_{a}}^{2}+\sigma_{S}^{2}}
$$

where β_{b}^{\prime} has the meaning of narmalized prior safety margin for $S=E[S]=\bar{S}$.

The prior and the posterior failure probabilities are the values of the standard normal CDF at β_{b}^{\prime} and at β_{a}^{\prime} for given S, at β_{b} and at β_{a} for random S.

Series-parallel system. Consider the system in fig. 2 and let R_{j}^{G} denote the resistance of the j th parallel group of n / N elements. The $(N \times N)$ prior covariance matrix of the group resistances, $\underline{\underline{b}}_{\mathrm{b}}^{\mathrm{G}}$, is diagonal with non-zero elements $\frac{n}{N} \sigma_{b}^{2}$. The posterior covariance matrix is not diagonal; in fact straightforward algebra yields
$\left(\underline{\Sigma}_{a}^{G}\right)_{i j}= \begin{cases}\frac{n}{N} \sigma_{b}^{2}\left\{1-\frac{h^{2}}{\left(h^{2}+c^{2}\right)} \frac{1+(n-1-n / N) \rho^{*}}{\left(1-\rho^{*}\right)\left[1+(n-1) \rho^{*}\right]}\right. & \text { for } i=j, \\ \\ \left(\frac{n}{N}\right)^{2} \sigma_{b}^{2}\left\{\frac{h^{2}}{\left(h^{2}+C^{2}\right)} \frac{\rho^{*}}{\left(1-\rho^{*}\right)\left[1+(n-1) \rho^{*}\right]}\right. & \text { for } i \neq j .\end{cases}$

If S is deterministic and β_{b} is the prior safety margin for a single group (normalized with respect to $\left.\left(\frac{n}{\mathrm{~N}}\right)^{1 / 2} \cdot \sigma_{b}\right)$, then the situation is analogous to that for series systems, except that now:

$$
\beta_{a}=\beta_{b}(1-q)^{-1 / 2}, \text { and } \rho_{a}=\frac{n}{N} \frac{q}{1-q} \frac{\rho^{*}}{1+(n-1-n / N) \rho^{*}},
$$

where

$$
q=\frac{h^{2}}{\left(h^{2}+C^{2}\right)} \frac{1+(n-1-n / N) \rho^{*}}{\left(1-\rho^{*}\right)\left[1+(n-1) \rho^{*}\right]}
$$

The prior and the posterior failure probabilities can be obtained easily from these expressions and from the aforementioned tables in Gupta (1963).

Additional examples of applications of estimation theory to reliability problems are presented in the following two sections.

I. 2 EXPERIMENT EVALUATION

The effectiveness of an experiment depends on the measurement model, on the quality of prior information and on the goals of experimentation. Two situations should be distinguished:
(a) The effectiveness of the experiment is evaluated a posteriori, in which case no decision problem arises;
(b) The effectiveness is evaluated a priori, in order to compare different alternatives and finally to choose the best course of action. The latter is a typical problem of decision making under uncertainty and will be considered in more depth in Section I.3.

Situation (a) is illustrated by the example in the last section: in that case, given the prior distribution, the difference between the prior and the posterior reliabilities
was taken as a measure of effectiveness. A preposterior application of the same criterion for decision purposes, i.e., for choosing a priori the best experiment, based on considerations about the posterior state of knowledge, is senseless because $E\left[P_{f_{a}}\right]=P_{f_{b}}$ (the expectation being over all possible experiment outcomes). For the purpose of a qualitative comparison, a simple-minded way of avoiding the difficulty was used in the last section: namely it was assumed that the measurements would correspond to their prior expected values. Under this condition the posterior mean is the same as the prior mean and in a Gaussian model the difference $\underline{\Sigma}_{\mathrm{a}}-\underline{\Sigma}_{\mathrm{b}}$ gives a complete description of the gain from experimentation.

In decision problems a quite general preposterior criterion is based on the notion of expected utility. For instance, the expected utility of an experiment ε might be (for simplicity assume additivity):

where U_{ε} is the expected utility of making the experiment with no account for its outcome (this term includes the actual cost of the experiment, the legal consequences of non-experimenting, etc.), $\mathrm{U}_{\underline{x}}$ is the utility of the state of nature being $\underline{x}, f(\underline{X} \mid \underline{Z})$ is the $P D F$ of the state of nature
having observed \underline{Z}, and $f(\underline{Z})$ is the PDF of the observation. A widely accepted optimality criterion for ε is that it maximizes $E[U(\varepsilon)]$.

A decision analysis based on the maximum expected utility criterion is practically feasible only in very special cases. Often one cannot express utilities in an analytical form, if one can quantify them at all. In addition, there are cases in which an "optimal" sampling policy must be decided for a whole class of different future situations (for example in structural codes writing), making the expected utility criterion even less practical. These difficulties motivate the search for simpler evaluation criteria.

In second-moment probability theory the dispersion of a random vector is measured by its covariance matrix Σ : the "larger" $\underline{\Sigma}$, the "larger" the dispersion. If the utility of an experiment increases with "decreasing" posterior estimate error covariance, a class of second-moment criteria can be constructed by defining a preference order in $\underline{\Sigma}$ space. In this sense some commom definitions are given below, together with their geometrical interpretation.

Let E_{1} and E_{2} be two alternative experiments. We write $E_{1}>E_{2}$ if E_{1} is preferred to E_{2} according to a given criterion. Also, let $\underline{\Sigma}_{\mathrm{a}}$ denote the posterior covariance or
the estimation error mean square, whichever applies. Some criteria for comparing E_{1} and E_{2} on a second-moment basis are (see also Fedorov (1972) Par. 1.8):

$$
\begin{equation*}
\text { (i) } E_{1}>E_{2} \text { if } \underline{\Sigma}_{a}\left(E_{1}\right)<\underline{\Sigma}_{a}\left(E_{2}\right) \tag{I.43}
\end{equation*}
$$

The associated geometric condition is that the (origin centered) dispersion ellipsoid of $E_{1}: \underline{X}^{\prime} \underline{\Sigma}_{a}^{-1}\left(E_{1}\right) \underline{X} \leq C^{2}$ is inscribed within the ellipsoid of $\left.\left.E_{2}: \underline{x}^{\prime} \underline{\Sigma}_{\mathrm{a}}^{-3}\right\} \mathrm{E}_{2}\right) \underline{x} \leq \mathrm{C}^{2}$ for all C. This is a very strict requirement, and the criterion is applicable only when the dispersion of any linear combination of the state under one experiment is less than the corresponding dispersion under the other experiment.

$$
\begin{equation*}
E_{1}>E_{2} \text { if }\left|\underline{\Sigma}_{a}\left(E_{1}\right)\right|<\left|\underline{\Sigma}_{\mathrm{a}}\left(\mathrm{E}_{2}\right)\right| \tag{ii}
\end{equation*}
$$

Since the eigenvalues of $\sum_{-a}(E)$ are the squares of the principal semiaxes of the ellipsiod $\underline{X}^{\prime} \underline{\Sigma}_{a}^{-1}(E) \underline{x} \leq 1$, $\left|\underline{\Sigma}_{a}(E)\right|$ increases with the volume of the dispersion ellipsoid. An experiment which is optimal in the sense of (I.44) is called a D-optimal experiment.
(iii) $E_{1}>E_{2}$ if $\operatorname{Tr} \sum_{a}\left(E_{1}\right)<\operatorname{Tr} \sum_{a}\left(E_{2}\right)$

In this case one penalizes an invariant sum of directional dispersions. In some instances the trace operator is analytically less tractable than the determinant operator, but it has the conceptual advantage of associating non-zero penalty to singular matrices. An experiment which minimizes the mean dispersion $\frac{1}{n} \operatorname{Tr}{\underset{\sim}{a}}^{a}(E)$ is called an $\underline{A-}$ optimal experiment.
(iv) $E_{1}>E_{2}$ if $\max _{i}\left[\sum_{a}\left(E_{1}\right)\right] i i<\max _{i}\left[\sum_{a}\left(E_{2}\right)\right]_{i i}$

Here only the maximum posterior variance is penalized.

$$
\begin{aligned}
& \text { (v) } E_{1}>E_{2} \text { if one of the conditions (i) to (iv) } \\
& \text { applies to } \\
& \underline{\Sigma}_{a}(\cdot)=\underline{L} \underline{\Sigma}_{a}(\cdot) \underline{L}^{\prime} \text {; i.e., to } \underline{X}^{*}=\underline{L} \underline{X} \text {. }
\end{aligned}
$$

The last criterion is quite flexible; in particular it may be used to judge the effectiveness of experiments along specific directions in state space.

The foregoing criteria are appropriate for ranking experiments in preferential order. Sometimes the question arises whether or not to make an experiment when prior information is available. At the level of second moments the informativeness of prior knowledge can be quantified by
a scalar dispersion measure $L\left(\underline{\underline{b}}_{\mathrm{b}}\right)$ (such as $\left|\underline{\underline{b}}_{\mathrm{b}}\right|, \operatorname{Tr} \underline{\Sigma}_{\mathrm{b}}$, $\max _{i}\left[\sum_{b}\right]_{i i}$, or other). If an experiment E is informative the posterior dispersion is smaller than the prior under any criterion L(•).

In the examples which follow the effectiveness of an experiment is measured by the ratio:

$$
\begin{equation*}
r(E)=\left\{\frac{\left|\underline{\Sigma}_{b}\right|}{\left|\underline{\Sigma}_{a}(E)\right|}\right\}^{1 / 2 n} \tag{I.47}
\end{equation*}
$$

The geometrical meaning of (I.47) is best illustrated by the case in which $f(\underline{X})$ and $f(\underline{X} \mid \underline{Z})$ are spherical normal densities; then r is the ratio between the radii of any two n-dimensional mean-centered spheres with the same probability content. The more an experiment is informative, the larger the effectiveness ratio r. Also, if $r\left(E_{1}\right)>r\left(E_{2}\right)$, it is $E_{1}>E_{2}$ according to the criterion (I.43). Occasionally different effectiveness measures will be introduced.

An explicit expression for $r(E)$ can be obtained in terms of the prior state covariance and of the measurement parameters, if $\sum_{\mathrm{a}}(E)$ is computed through equations (I.8). For a scalar state:
$r(E)=\sigma_{b} / \sigma_{a}(E)=\frac{\sigma_{b}}{\sigma_{b}\left(1+\sigma_{b}^{2} \underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}\right)^{-1 / 2}}=\left(1+\sigma_{b}^{2} m\right)^{1 / 2}$,
where $m=\underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}$ is the Fisher information matrix, here simply a scalar. When $\sigma_{b} \rightarrow \infty$ and $\underline{H}^{\prime} \underline{\theta}^{-1} \underline{H} \neq 0$ (diffuse prior and informative experiment) equation (I.48) gives $r \rightarrow \infty$. At the other extremum, when $\sigma_{b}=0$ or when the experiment is noninformative $\left(\underline{\theta}^{-1}=\underline{0}\right.$, or $\left.\underline{H}=\underline{0}\right)$, one finds $r=1$, which indicates that the experiment is useless. The quantity $\sigma_{b}^{2} m$ is the fraction by which $1 / \sigma_{b}^{2}$ is increased by making the experiment.

If K measurements are made, possibly with different linear models, equation (I.48) generalizes to:

$$
\begin{equation*}
r_{K}(E)=\left(I+\sigma_{b}^{2} m_{K}\right)^{1 / 2} \text {, where } m_{K}=\sum_{i=1}^{K} \underline{H}_{i} \underline{\theta}_{i}^{-1} \underline{H}_{i} \tag{I.49}
\end{equation*}
$$

When the unknown state of nature is an n-vector and equations (I.8) hold, the effectiveness ratio (I.47) is:

$$
\begin{aligned}
r(E)=\left(\left|\underline{\Sigma}_{b}\right| \cdot\left|\underline{\Sigma}_{a}^{-1}\right|\right)^{1 / 2 n} & =\left|\underline{\Sigma}_{b}\left(\underline{\Sigma}_{b}^{-1}+\underline{H}^{\prime} \underline{\theta} \underline{H}\right)\right|^{1 / 2 n} \\
& =\left|\underline{I}_{n}+\underline{\Sigma}_{b} \underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}\right|^{1 / 2 n}
\end{aligned}
$$

which can be written, in analogy with equation (I.48):

$$
\begin{equation*}
r(E)=\left|\underline{I}+\underline{E}_{b} \underline{M}\right|^{1 / 2 n} \text {, where } \underline{M}=\underline{H}^{\prime} \underline{\theta}^{-1} \underline{H} \text {. } \tag{I.50}
\end{equation*}
$$

Finally, for a set of K linear measurements the same ratio is:

$$
\begin{equation*}
r_{K}(E)=\left|\underline{I}+\underline{\sum}_{b} \underline{M}_{K}\right|^{1 / 2 n} \text {, where } \underline{M}_{K}=\sum_{i=1}^{K} \underline{H}_{i} \underline{\theta}_{i}^{-1} \underline{H}_{i} . \tag{I.51}
\end{equation*}
$$

One can also find the effectiveness ratio with respect to a set of transformed variables $\underline{X}^{*}=\underline{L} \underline{X}$ (\underline{X}^{*} has dimension n* $\leq \mathrm{n})$. For the most general case considered here equation (I.51) becomes:

$$
r_{K}^{*}=\left|\underline{I}+\sum_{-b}^{*} \underline{M}_{K}^{*}\right|^{1 / 2 n^{*}}
$$

where $\sum_{b}^{*}=\underline{L} \sum_{b} \underline{L}^{\prime}$ and $\underline{M}_{K}{ }^{*}=\underline{L_{K}} \underline{L}^{\prime}$.

Two examples follow. The first one refers to a scalar state for which equations (I.48) and (I.49) are used; the second one to a three-dimensional vector \underline{x}. In particular, the first example shows the relative importance of "systematic" versus "random" measurement errors as a function of the number of repeated observations.

EXAMPLE 2. SYSTEMATIC AND RANDOM MEASUREMENT ERRORS IN

Let X denote an unknown scalar state of nature, whose physical meaning can be decided at will. For reducing
the uncertainty on X one can make one or more measurements of X with a given facility (machinery and personnel) in which case the measurement errors are correlated by the presence of uncertain but systematic bias. Alternatively one may use more than one facility (possibly also changing the type of experiment), in which case the errors when using different facilities are uncorrelated. In general the experiment program may involve K different facilities (or K different types of experiment) with n_{i} measurements from the ith facility. This corresponds to a measurement vector \underline{Z} of the form:

$$
\underline{z}=\left(\begin{array}{c}
\underline{z}_{1} \\
\underline{z}_{2} \\
\cdot \\
\cdot \\
\cdot \\
\underline{z}_{k}
\end{array}\right) \text {, where } \quad \underline{z}_{i}=\left(\begin{array}{l}
\underline{z}_{i_{1}} \\
\underline{z}_{i_{2}} \\
\cdot \\
\cdot \\
\cdot \\
\frac{\cdot}{Z_{i}} \\
\underline{n}_{i}
\end{array}\right]
$$

The following model is considered to be appropriate:

- Prior information (at a second-moment level):

$$
\begin{equation*}
x \sim\left(x_{b} ; \sigma_{b}^{2}\right) \tag{I.52a}
\end{equation*}
$$

- Experiment model:

$$
\underline{Z}_{i}=\underline{H}_{i} x+\underline{\varepsilon}_{i}=\left(\begin{array}{c}
1 \tag{I.52b}\\
1 \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\dot{1}
\end{array}\right) x+\left(\begin{array}{c}
\varepsilon_{i_{1}} \\
\varepsilon_{i_{2}} \\
\cdot \\
\cdot \\
\cdot \\
\varepsilon_{i_{n}} \\
\\
n_{i}
\end{array}\right)(i=1, \ldots, K)
$$

- The measurement error vector $\underline{\varepsilon}^{\prime}=\left[\underline{\varepsilon}_{1}^{\prime}, \underline{\varepsilon}_{2}^{\prime}, \ldots . ., \underline{\varepsilon}_{K}^{\prime}\right]$ has zero mean and block-diagonal covariance matrix $\underline{\theta}=\operatorname{diag}\left(\underline{\theta}_{i}\right)$, where:

Note that since the n_{i} measurements with the ith facility have the same distribution, no generality was lost by choosing $H_{i}=[1, \ldots, I]^{\prime}$ in equation (I.52b).

Let $\underline{\theta}^{(n)}$ denote the matrix (I.52c) with $n_{i}=n$,

$$
\sigma_{i}^{2}=\sigma^{2} \text { and } \rho_{i}=\rho . \quad \text { Then: }
$$

$$
\left[\underline{\theta}^{(n)}\right)^{-1}=\frac{1}{\sigma^{2}(1-\rho)[1+(n-1) \rho]}
$$

Since \underline{H} is the unit column vector, when using the pseudoBayes estimator (I.7) the Fisher information matrix of the experiment (here a scalar) equals the sum of the entries of $\left\{\underline{\Theta}^{(n)}\right)^{-1}$:

$$
\begin{equation*}
m=\underline{H}^{\prime}\left[\underline{\theta}^{(n)}\right)^{-1} \underline{H}=\frac{1}{\sigma^{2}} \frac{n}{1+(n-1) \rho} \tag{*}
\end{equation*}
$$

The informativeness ratio of the experiment, r, increases with m, according to equation (I.48). The quantity $\sigma^{2} m$ is plotted in fig. 3 for varying n and ρ. With the exception of ρ being 0 or $1, \sigma^{2} \mathrm{~m}$ is a nonlinear function of n and the

[^0]that there is little convenience in making many correlated observations with the same facility, the advantage of making one additional observation being a decreasing function of the number of past observations. If $\rho>0, m$ approaches a finite asymptote as $n \rightarrow \infty$:
\[

$$
\begin{equation*}
m_{\infty}=\lim _{n \rightarrow \infty} m=\frac{1}{\rho \sigma^{2}} \tag{I.55}
\end{equation*}
$$

\]

This fact is easily explained. The equicorrelated error covariance matrix $\underline{\theta}^{(n)}$ can be generated by the combination of $n+1$ independent error terms $e_{0}, e_{1}, \ldots, e_{n}$, as follows:

$$
\varepsilon_{j}=e_{0}+e_{j} \quad(j=1, \ldots, n)
$$

where $e_{0} \sim\left(0, \rho \sigma^{2}\right) ; e_{j} \sim\left(0,(1-\rho) \sigma^{2}\right) ; E\left[e_{i} \cdot e_{j}\right]=0(i \neq j ;$ i,j $=0,1, \ldots, n$).

The error component e_{0} is common to all the measurements and is responsible for the asymptotic ($n \rightarrow \infty$) bias in the estimate of X. For this reason e_{0} is called systematic error. The terms $e_{j}, j>0$, represent the random error and are uncorrelated in different measurements. Infinitely many measurements reduce to zero the effect of the random component of the error in the posterior state covariance. In other words, an infinite sequence of equicorrelated measurements is equivalent to a single measurement with
error $\varepsilon_{0}=e_{0}$. In fact in this case $\underline{H}=1, \underline{\theta}^{-1}=1 / \rho \sigma^{2}$, and $m=1 / \rho \sigma^{2}$, which corresponds to the asymptotic result (I.55).

Fig. 3 can be used to compare the informativeness of n correlated observations with small variance σ_{1}^{2} with that of n uncorrelated (or less correlated) observations with a larger variance σ_{2}^{2}. Similarly one can decide which of the following alternatives is more rewarding: to make n_{1} measurements with an accurate technique, or to make $\mathrm{n}_{2}>\mathrm{n}_{1}$ measurements with a less accurate procedure.

Consider the first problem with the following data: $\sigma_{2}^{2}=2 \sigma_{1}^{2}, \rho_{1}=0.2, \rho_{2}=0$. For each experiment the quantity $\sigma^{2} \cdot m$ is a measure of informativeness (see equation (I.48)), and is plotted versus n in fig. 4A. It is found that n measurements of type 1 are more informative than n measurements of type 2 if $n<6$. The reverse is true if n > 6, while the two experiments are equally informative if $\mathrm{n}=6$.

For the second problem suppose that $\sigma_{2}^{2}=2 \sigma_{1}^{2}$ as before, and that $\rho_{1}=\rho_{2}=0.2$. The quantity $\sigma^{2} \cdot m$ is plotted versus n in fig. 4B, allowing to compare the effectiveness of the two experiments for given n_{1} and n_{2}. Alternatively, an analytical solution can be found: in order that $r_{2} \geq r_{1}$ it must be (from equations (I.48) and (I.53):

$$
\begin{equation*}
\frac{1}{\sigma_{2}^{2}} \frac{n_{2}}{1+\left(n_{2}-1\right) \rho_{2}} \geq \frac{1}{\sigma_{1}^{2}} \frac{n_{1}}{1+\left(n_{1}-1\right) \rho_{1}}, \tag{I.56a}
\end{equation*}
$$

or:

$$
\begin{equation*}
\mathrm{n}_{2} \geq \frac{\sigma_{2}^{2}\left(1-\rho_{2}\right) \mathrm{m}_{1}}{1-\sigma_{2}^{2} \rho_{2} \mathrm{~m}_{1}} \tag{I.56b}
\end{equation*}
$$

where m_{1} equals the right side of equation (I.56a). Equation (I.56B) holds under the condition: $\sigma_{2}^{2} \rho_{2} m_{1}<1$. If this inequality is not satisfied experiment 1 must be prefered. This follows from $m_{2_{\infty}}=1 / \sigma_{2}^{2} \rho_{2}$ being the maximum value of m which is attainable from experiment 2 ; see equation (I.55). When $\rho_{2}=1$ one should drop the equal sign from (I.56b).

For the most general experiment considered here the effectiveness ratio r_{K} is, from equation (I.49):

$$
\begin{equation*}
r_{K}=\left(1+\sigma_{b}^{2} m\right)^{1 / 2} \tag{I.57}
\end{equation*}
$$

where $m=\sum_{i=1}^{k} m_{i}=\sum_{i=1}^{k} \frac{1}{\sigma_{i}^{2}} \frac{n_{i}}{1+\left(n_{i}+1\right) \rho_{i}}$

By using equation (I.57) one can study more complex problems than the ones considered so far, like finding the experiment with the optimal tradeoff between cost and effectiveness. The problem of optimal experiment design is addressed in
more general terms in Section I.3; Example 4 in the same section is a continuation of the present particular case.

EXAMPLE 3. STIFFNESS ESTIMATION OF A THREE BARS TRUSS

A three bars truss is shown in fig. 5. The problem is to reduce the prior uncertainty in the actual stiffness of the bars, denoted X_{1}, X_{2}, X_{3}. Let $\underline{x}=\left[X_{1}, X_{2}, x_{3}\right]^{\prime}$ be the unknown state with prior distribution $\underline{X} \sim N\left(\underline{X}_{b}, \underline{\Sigma}_{b}\right)$.

The uncertainty on \underline{X} has two sources: the variability of the material quality, which affects the stiffness of all the bars, and the manufacturing uncertainty, which is independent for different bars. Along each bar the material properties are constant. Under these assumptions the stiffness of the ith bar can be expressed as:

$$
\begin{equation*}
x_{i}=x_{b_{i}}+\left(\varepsilon_{o}+\varepsilon_{i}\right) / 1_{i}, \quad(i=1,2,3) \tag{I.58}
\end{equation*}
$$

where 1_{i} is the length of the i th bar, $X_{b_{i}}$ is the best prior estimate of X_{i}, ε_{o} is the error associated with the material uncertainty, and ε_{i} is a manufacturing error. ε_{o} and ε_{i} have units of force. According to equation (I.58) the effect of the errors on the stiffness is proportional to the inverse bar length. All errors are assumed to be
independent and normally distributed:

$$
\begin{align*}
& \varepsilon_{0} \sim N\left(0 ; \sigma_{o}^{2}\right), \\
& \varepsilon_{i} \sim N\left(0 ; \alpha^{2} \sigma_{o}^{2}\right), E\left[\varepsilon_{0} \varepsilon_{i}\right]=0 \quad(i=1,2,3) . \tag{I.59}
\end{align*}
$$

Since $l_{3}=1$ and $l_{1}=l_{2}=\mu l(\mu>0.5)$, the a prior state covariance matrix is:

$$
\Sigma_{\mathrm{b}}=\frac{\sigma_{0}^{2}}{\mu^{2} I^{2}}\left[\begin{array}{ccc}
\left(1+\alpha^{2}\right) & 1 & \mu \tag{I.60}\\
1 & \left(I+\alpha^{2}\right) & \mu \\
\mu & \mu & \mu^{2}\left(1+\alpha^{2}\right)
\end{array}\right]
$$

The experiment may include one or more measurements of the following two types.
(i) Hardness measurements. If \underline{Z} is the vector of hardness measurements, the following observation model is hypothesized:

$$
\begin{equation*}
\underline{Z}=\underline{Z} \underline{Z}_{0}+\underline{H} \underline{X}+\underline{\varepsilon}, \tag{I.61}
\end{equation*}
$$

where Z_{0} is a known vector and the matrix H has coefficients: $\underline{(H)}_{i j}=\left\{\begin{array}{cc}h I_{j} & \text { if } z_{i} \text { is a hardness measure of bar } j, \\ 0 & \text { otherwise. }\end{array}\right.$

For instance the matrix

$$
\underline{H}=h\left(\begin{array}{lll}
I_{1} & 0 & 0 \\
0 & 0 & I_{3} \\
I_{1} & 0 & 0
\end{array}\right)
$$

results when Z_{1} and Z_{3} measure the hardness of bar 1 and Z_{2} measures the hardness of bar 3. The measurement errors have normal distribution:

The correlation coefficients ρ_{H} account for the uncertainty in the relationship between hardness and stiffness (a random bias term common to all the scalar observations in \underline{Z} would introduce correlation), and for the correlation due to systematic measurement errors.
(ii) Stiffness measurements. Stiffness experiment may consist of imposing compatible nodal displacements δ_{1}, δ_{2}, δ_{3} (see fig. 5) and of measuring the forces F_{1}, F_{2}, F_{3} required for equilibrium. Then each measurement is of the type ($\underline{F}_{i}, \underline{\delta}_{i}$), where

$$
\begin{equation*}
\underline{E}_{i}=\underline{K} \underline{\delta}_{i}+\underline{\varepsilon}_{i} \tag{I.63}
\end{equation*}
$$

is the load vector corresponding to the displacement vector ${\underset{-}{i}}_{i}$. The coefficients of the elastic stiffness matrix \underline{K} are linear functions of \underline{X}; with reference to fig. 5:

$$
\underline{K}=\left(\begin{array}{lll}
\left(x_{1}+x_{2}\right) \cos ^{2} \beta & \left(x_{1}-x_{2}\right) \sin \beta \cos \beta & -x_{2} \cos ^{2} \beta \tag{I.64}\\
\left(x_{1}-x_{2}\right) \sin \beta \cos \beta & \left(x_{1}+x_{2}\right) \sin ^{2} \beta & x_{2} \sin \beta \cos \beta \\
-x_{2} \cos ^{2} \beta & x_{2} \sin \beta \cos \beta & x_{3}+x_{2} \cos ^{2} \beta
\end{array}\right)
$$

where $\cos \beta=1 / 2 \mu$. Equation (I.63) can be rewritten with \underline{F}_{i} as a function of \underline{X} :

$$
\begin{equation*}
\underline{F}_{i}=\underline{H}_{i} \underline{X}+\underline{\varepsilon}_{i} \tag{I.65}
\end{equation*}
$$

where

$$
\underline{H}_{i}=\left\{\begin{array}{ccc}
\left(\delta_{1} \cos ^{2} \beta+\delta_{2_{i}} \sin \beta \cos \beta\right) & {\left[\left(\delta_{1_{i}}-\delta_{3_{i}}\right) \cos ^{2} \beta-\delta_{2}{ }_{i} \sin \beta \cos \beta\right]} & 0 \tag{I.66}\\
\left(\delta_{1_{i}} \sin \beta \cos \beta+\delta_{2_{i}} \sin ^{2} \beta\right) & {\left[-\left(\delta_{1_{i}}-\delta_{3_{i}}\right) \sin \beta \cos \beta+\delta_{2_{i}} \sin { }^{2} \beta\right]} & 0 \\
0 & {\left[-\left(\delta_{1_{i}}-\delta_{3_{i}}\right) \cos ^{2} \beta+\delta_{2_{i}} \sin \beta \cos \beta\right]} & \left(\delta_{3_{i}}\right)
\end{array}\right\}
$$

As to the experiment errors we assume:

$$
\underline{\varepsilon}_{i} \sim N\left(\underline{0} ; \underline{\theta}=\sigma_{\varepsilon}^{2}\left(\begin{array}{ccc}
1 & \rho & \rho \tag{I.67}\\
\rho & 1 & \rho \\
\rho & \rho & 1
\end{array}\right)\right]
$$

Passing to a numerical application let $1=1$, $\mu=\sqrt{2} / 2$, so that from (I.60):
$\Sigma_{b}=2 \sigma_{0}^{2}\left(\begin{array}{ccc}\left(1+\alpha^{2}\right) & 1 & \sqrt{2} / 2 \\ 1 & \left(1+\alpha^{2}\right) & \sqrt{2} / 2 \\ \sqrt{2} / 2 & \sqrt{2} / 2 & \left(1+\alpha^{2}\right) / 2\end{array}\right)$,
and from (I.66):
$\underline{H}_{i}=\left(\begin{array}{ccc}h_{1} & \therefore h_{2_{i}} & 0 \\ h_{1_{i}} & -h_{2_{i}} & 0 \\ 0 & -h_{2_{i}} & h_{3_{i}}\end{array}\right)$, where $\left\{\begin{array}{l}h_{1_{i}}=\left(\delta_{1_{i}}+\delta_{2_{i}}\right) / 2, \\ h_{2_{i}}=\left(\delta_{1_{i}}-\delta_{2_{i}}-\delta_{3_{i}}\right) / 2, \\ h_{3_{i}}=\delta 3_{i} .\end{array}\right.$

The three distinct non-zero entries of \underline{H}_{i} are controllable experiment parameters.

We compare now the effectiveness of different experiments, as measured by the ratio r in equation (I.47). (i) Hardness measurements. If one makes a single measurement from bar 1 the measurement matrix is:

$$
\underline{\mathrm{H}}=\mathrm{h}[\sqrt{2} / 2,0,0]
$$

with information matrix and effectiveness ratio:

$$
\begin{align*}
& \underline{M}=\underline{H}^{\prime} \underline{\theta}^{-1} \underline{H}=\frac{h^{2}}{2 \sigma_{H}^{2}}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) ; \\
& r=\left|\underline{I}_{3}+\underline{\Sigma}_{b} M\right|^{1 / 6}=\left[1+\left(1+\alpha^{2}\right) \frac{\sigma_{O}^{2}}{\sigma_{H}^{2}} h^{2}\right]^{1 / 6} \tag{I.70}
\end{align*}
$$

As one would expect, r increases with the prior state variance and with the signal-to-noise strength h, and decreases with the variance of the measurement error. The effectiveness ratio is the same for a single measurement from bars 2 or 3 (i.e., for $H=h[0, \sqrt{2} / 2,0]$ or for $\underline{H}=h[0,0,1]$, respectively).

When n hardness measurements are made from the same bar equation (I.70) generalizes to:

$$
\begin{equation*}
r_{n}=\left(1+\left(1+\alpha^{2}\right) \frac{\sigma^{2}}{\sigma_{H}^{2}} h^{2} \frac{n}{1+(n-1) \rho_{H}}\right) 1 / 6 \tag{I.71}
\end{equation*}
$$

with $\rho_{H} \geq-1 /(n-1)$. When $n \rightarrow \infty$ equation (I.71) yields:

$$
\begin{equation*}
r_{\infty}=\left(1+\frac{1+\alpha^{2}}{\rho_{H}} \frac{\sigma_{O}^{2}}{\sigma_{H}^{2}} h^{2}\right)^{1 / 6} \tag{I.72}
\end{equation*}
$$

which is finite for $\rho_{H}>0$. Because of the similarity with the case studied in EXAMPLE 2 (compare equation (I.71) with equations (I.48) and (I.54)), the plots in fig. 3 can be used also here to compare the effectiveness of experiments obtained by varying ρ_{H} and n (replace ρ by ρ_{H} in fig. 3). Equations (I.71) and (I.72) are valid also when making n measurements from bar 2 or from bar 3.

A different situation is faced when making measurements from different bars. Suppose we measure once the hardness of bar 1 , and once the hardness of bar 2. Then

$$
\underline{H}=\frac{\sqrt{2}}{2} h\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

and $r=\left(1+2 a\left(1+\alpha^{2}-\rho_{H}\right)+a^{2} \alpha^{2}\left(2+\alpha^{2}\right)\left(1-\rho_{H}^{2}\right)\right)^{1 / 6}$
where

$$
a=\frac{h^{2} \sigma_{O}^{2}}{\sigma_{H}^{2}\left(1-\rho_{H}^{2}\right)}
$$

It is interesting to compare the effectiveness of this experiment with the effectiveness of making two measurements from the same bar. Specializing equation (I.7l) for $n=2$ gives:

$$
\begin{equation*}
r_{2}=\left(1+2 a\left(1+\alpha^{2}-\rho_{H}-\rho_{H} \alpha^{2}\right)\right)^{1 / 6} \tag{I.74}
\end{equation*}
$$

For easy reference denote "experiment l" measuring twice from the same bar and "experiment 2 " measuring once from bar 1 and once from bar 2. Experiment 1 is more effective when $r_{2} / r>1$, i.e., when

$$
\begin{equation*}
-1 \leq \rho_{H} \leq \frac{a\left(2+\alpha^{2}\right)}{a\left(2+\alpha^{2}\right)-2} \quad \text { and } \quad 0 \leq a\left(2+\alpha^{2}\right) \leq 1 \text {; } \tag{I.75}
\end{equation*}
$$

otherwise experiment 2 should be preferred. In the plane $X Y$ where $X=a\left(2+\alpha^{2}\right)$ and $Y=\rho_{H}$ in $[-1,1]$, fig. 6 shows the regions where each experiment is more informative than the other, assuming $\alpha>0$. When $\alpha=0$ the stiffnesses are perfectly correlated and there is no difference between experimenting on different bars or on the same bar $\left(r=r_{2}\right)$. As α increases, so does a(2+ α^{2}); the correlation between
the bar stiffnesses decreases (see equation (I.60)) and the second experiment becomes more advantageous.

From this example one can intuitively extrapolate that when the measurement errors are positively correlated and the quantities to be measured are identically distributed the best policy is to allocate the measurements as evenly as possibly.

In EXAMPLE 2 the state of nature was a scalar. In that case any effectiveness measure based on the ratio $L\left(\sigma_{b}^{2}\right) / L\left(\sigma_{a}^{2}\right)$, where $L(\cdot)$ conforms one of the criteria (I.43) (I.46), does not differ qualitatively from the ratio (I.47). (The determinant, the trace and the maximum diagonal entry of a scalar are all the same). This is no longer true when the state of nature is an unknown vector. For instance, the truss in fig. 5 might be designed to carry only vertical loads, so that its performance is best described by the stiffness coefficient $X_{4}=F_{2} / \delta_{2}$ (while $F_{1}=F_{3}=0$). The effectiveness of an experiment should then be judged from the reduction of uncertainty in X_{4}, as it is shown next in some detail. From linear elasticity and for $\mu=\sqrt{2} / 2$ (see fig. 5) it is:

$$
X_{4}=4 \frac{X_{1} X_{2} X_{3}}{X_{1} X_{2}+2 X_{2} X_{3}+2 X_{3} X_{1}}
$$

In order to use the results of linear estimation theory, one can truncate the series expression of X_{4} aroung the prior mean state X_{b} :
$\left.X_{4} \approx X_{4}\right|_{\underline{X}=\underline{x}_{b}}+\left.\sum_{i=1}^{3} \frac{\partial x_{4}}{\partial x_{i}}\right|_{\underline{x}=\underline{x}_{b}}\left(X_{i}-x_{i_{b}}\right)=\left.x_{4}\right|_{\underline{x}=\underline{X}_{b}}+\underline{a}^{\prime}\left(\underline{x}-\underline{X}_{b}\right) \quad$ (I.76)
where $\quad \underline{d}^{\prime}=\left[d_{1}, d_{2}, d_{3}\right]$
and $\quad d_{1}=\frac{\left(x_{4} \mid \underline{x}=x_{b}\right)^{2}}{2 x_{1 b}^{2}} ; d_{2}=\frac{\left(x_{4} \mid \underline{x}=\underline{x}_{b}\right)^{2}}{2 x_{2 b}^{2}} ; d_{3}=\frac{\left(x_{4} \mid \underline{x}=\underline{x}_{b}\right)^{2}}{4 x_{3}^{2} b}$.

If the bars have the same prior mean stiffness per unit length, then
$\underline{x}_{b}=X_{1}\left(\begin{array}{c}1 \\ 1 \\ \sqrt{2} / 2\end{array}\right) ;\left.\quad X_{4}\right|_{\underline{X}=\underline{x}_{b}}=\frac{2 \sqrt{2} \mathrm{X}_{1} \mathrm{~b}}{1+2 \sqrt{2}} ; \quad d_{1}=d_{2}=d_{3}=\frac{4}{9+4 \sqrt{2}}$.

Denote M the Fisher information matrix relative to \underline{X}; then the effectiveness ratio (I.48) for the linearized stiffness X_{4} is (in this case we use a ranking criterion of the type (I. 46)):

$$
\begin{equation*}
r=\sigma_{4} b / \sigma_{4} a=\sigma_{4} b\left(\underline{d}^{\prime}\left(\underline{\Sigma}_{b}^{-1}+\underline{M}\right)^{-1} \underline{d}\right)^{-1 / 2} \tag{I.77}
\end{equation*}
$$

where $\underline{\Sigma}_{\mathrm{b}}$ is the matrix defined in (I.68). Equation (I.77) has the inconvenience of requiring two matrix inversions. For a small number of measurements the posterior variance σ_{4}^{2} a can be found more easily through direct application of the Gauss-Markov theorem; namely of equation (I.3).

If n hardness measurements are made from bar 1 in the form $z_{i}=z_{o}+h l_{1} X_{1}+\varepsilon_{i}(i=1, \ldots, n)$ with $\operatorname{Cov}\left[X_{1}, \varepsilon_{i}\right]=0$, then one can follow the same procedure as for the general linear measurement model (see the steps which led to equation (I.24)), except that now
$\underline{S}_{\underline{X}}{ }^{*}=\sigma_{4 b}^{2}$;
$\underline{S}_{\underline{Z}}{ }^{*}=\underline{H} \underline{\Sigma}_{b} \underline{H}^{\prime}+\underline{\theta} ;$
$\underline{S}_{\underline{X}} \underline{Z}_{\underline{Z}}=\operatorname{Cov}\left[X_{4}, \underline{Z}\right]=d_{1}\left[\left(\underline{\Sigma}_{b}\right)_{11}+\left(\underline{\Sigma}_{\mathrm{b}}\right)_{12}+\left(\underline{\Sigma}_{\mathrm{b}}\right)_{13}\right][1,1, \ldots, 1]$,
where, for $1=\sqrt{2} / 2$, it is

$$
\underline{H}=\frac{\sqrt{2}}{2} \mathrm{~h}\left(\begin{array}{c}
1 \\
\mathrm{n}
\end{array}\left(\begin{array}{c}
1 \\
1 \\
\cdot \\
\cdot \\
\cdot \\
\mathbf{1} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot
\end{array}\right)\right.
$$

and $\underline{\Sigma}_{\mathrm{b}}$ and $\underline{\theta}$ are the same as in equations (I.68) and (I.62). We study first the case $\mathrm{n}=1$ for which

$$
\underline{S}_{\underline{Z}}{ }^{*}=\sigma_{Z}^{2}=\sigma_{\mathrm{H}}^{2}+h^{2} \sigma_{\mathrm{O}}^{2}\left(1+\alpha^{2}\right)
$$

$$
\underline{S}_{\underline{X}} \underline{ }^{*}, \underline{Z} *=\operatorname{Cov}\left[X_{4}, Z\right]=2 d_{1} \sigma_{O}^{2}\left[\left(1+\alpha^{2}\right)+1+\sqrt{2} / 2\right]
$$

and from equation (I.3):

$$
\begin{equation*}
\sigma_{4 a}^{2}=\sigma_{4 b}^{2}-\frac{d_{1}^{2} \sigma_{0}^{4}}{\sigma_{H}^{2}+h^{2} \sigma_{0}^{2}\left(1+\alpha^{2}\right)}\left(4+\sqrt{2}+2 \alpha^{2}\right)^{2} \tag{I.78}
\end{equation*}
$$

Going through the same procedure, the posterior variance of X_{4} after making one observation of the hardness of bar 3 is:

$$
\begin{equation*}
\sigma_{4 a}^{2}=\sigma_{4 b}^{2}-\frac{d_{1}^{2} \sigma_{O}^{4}}{\sigma_{H}^{2}+h^{2} \sigma_{0}^{2}\left(1+\alpha^{2}\right)}\left(1+2 \sqrt{2}+\alpha^{2}\right)^{2} \tag{I.79}
\end{equation*}
$$

By comparison of equations (I.78) and (I.79) it is seen that for any given α the maximum variance reduction occurs when measuring the hardness of bar 1. The reason for that is the higher prior variance of X_{1} as compared with the prior variance of X_{3}. Since $d_{1}=d_{3}$, it is obvious that one should measure from the bar with maximum prior stiffness variance. This result contrasts with the previous finding
that measurements from any bar are equally effective when compared through the ratio (I.47).

If two measurements are made from bar 3, then

$$
\underline{\underline{s}}_{\underline{Z}} \underline{Z}^{*}=\left\{\begin{array}{ll}
\sigma_{\mathrm{H}}^{2}+\mathrm{h}^{2} \sigma_{\mathrm{O}}^{2}\left(1+\alpha^{2}\right) & \sigma_{\mathrm{H}}^{2} \rho_{\mathrm{H}}+h^{2} \sigma_{\mathrm{O}}^{2}\left(1+\alpha^{2}\right) \\
\sigma_{\mathrm{H}}^{2} \rho_{\mathrm{H}}+\mathrm{h}^{2} \sigma_{\mathrm{O}}^{2}\left(1+\alpha^{2}\right) & \sigma_{\mathrm{H}}^{2}+h^{2} \sigma_{\mathrm{O}}^{2}\left(1+\alpha^{2}\right)
\end{array}\right),
$$

$$
S_{\underline{X}^{*}, \underline{Z}}{ }^{*}=d_{1} \sigma_{0}^{2}\left(2 \sqrt{2}+1+\alpha^{2}\right)[1,1]
$$

$$
\begin{equation*}
\text { and } \quad \sigma_{4}^{2} a=\sigma_{4}^{2} b-\frac{2 \alpha_{1}^{2} \sigma_{O}^{4}}{\sigma_{H}^{2}\left(1+\rho_{H}\right)+2 h^{2} \sigma_{O}^{2}\left(1+\alpha^{2}\right)}\left(2 \sqrt{2}+1+\alpha^{2}\right)^{2} \text {. } \tag{I.80}
\end{equation*}
$$

If $\rho_{H}=l$ there is no advantage in making the second measurement, and equation (I.80) coincides with equation (I.79); if $\rho_{H}=-1$, the two measurements remove completely the statistical uncertainty on the hardness of bar 3. This last case gives the minimum value of σ_{4}^{2} a when using hardness measurements from bar 3 only.
(ii) Stiffness measurements. We compare the effectiveness of six different experiments, in which the displacements are the control variables (see fig. 5):
(1) $\left\{\begin{array}{l}\delta_{1}=1 \\ \delta_{2}=0 \\ \delta_{3}=0\end{array}\right.$
(2) $\left\{\begin{array}{l}\delta_{1}=0 \\ \delta_{2}=1 \\ \delta_{3}=0\end{array}\right.$
(3) $\left\{\begin{array}{l}\delta_{1}=0 \\ \delta_{2}=0 \\ \delta_{3}=1\end{array}\right.$
(4) $\left\{\begin{array}{l}\delta_{1}=1 \\ \delta_{2}=1 \\ \delta_{3}=0\end{array}\right.$
(5) $\left\{\begin{array}{l}\delta_{1}=1 \\ \delta_{2}=0 \\ \delta_{3}=1\end{array}\right.$
(6) $\left\{\begin{array}{l}\delta_{1}=0 \\ \delta_{2}=1 \\ \delta_{3}=1\end{array}\right.$

The deformed configurations corresponding to these displacements are shown in fig. 7. The associated measurement matrices $\underline{H}(1) \cdots \underline{H}_{(6)}$ are, from equation (I.69):
$\underline{H}(1)=\frac{1}{2}\left(\begin{array}{ccc}1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & -1 & 0\end{array}\right) ; \quad \underline{H}(2)=\left(\begin{array}{ccc}1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0\end{array}\right) ; \quad \underline{H}(3)=\frac{1}{2}\left(\begin{array}{ccc}0 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2\end{array}\right)$
$\underline{H}(4)=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \quad ; \quad \underline{H}(5)=\frac{1}{2}\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2\end{array}\right) ; \quad \underline{H}(6)=\frac{1}{2}\left(\begin{array}{ccc}1 & -2 & 0 \\ 1 & 2 & 0 \\ 0 & 2 & 2\end{array}\right)$

For simplicity we assume that the measurement error covariance matrix (I.67) is diagonal. With $\underline{E}_{\mathrm{b}}$ given by equation (I.68) the effectiveness ratios

$$
\begin{aligned}
r_{(i)}= & \left|\underline{I}_{3}+\underline{E}_{b} \underline{H}_{i} \underline{\theta}^{-1} \underline{H}_{i}\right|^{1 / 6} \text { are: } \\
r_{(1)}= & r_{(2)}=\left\{1+5 C\left(1+\alpha^{2}\right)+6 C^{2}\left[-1+\left(1+\alpha^{2}\right)^{2}\right]\right\}^{1 / 6} ; \\
r_{(3)}= & \left\{1+C\left[2 \sqrt{2}+5\left(1+\alpha^{2}\right)\right]+4 C^{2}\left[-1+\left(1+\alpha^{2}\right)^{2}\right]\right\}^{1 / 6} ; \\
r_{(4)}= & \left\{1+8 C\left(1+\alpha^{2}\right)\right\}^{1 / 6 ;} ; \\
r_{(5)}= & \left\{1+4 C\left(1+\alpha^{2}\right)+4 C^{2}\left[-1+\left(1+\alpha^{2}\right)^{2}\right]\right\} 1 / 6 ; \\
r_{(6)}= & \left\{1+C\left[3 \sqrt{2}+16\left(1+\alpha^{2}\right)\right]+6 C^{2}\left[-8-\sqrt{2}+\sqrt{2}\left(1+\alpha^{2}\right)+8\left(1+\alpha^{2}\right)^{2}\right]\right. \\
& \left.+40 C^{3}\left[2-3\left(1+\alpha^{2}\right)+\left(1+\alpha^{2}\right)^{3}\right]\right\}^{1 / 6 ;} ;
\end{aligned}
$$

where $\quad C=\frac{1}{2} \sigma_{o}^{2} / \sigma_{\varepsilon}^{2}$.

As α^{2} varies from 0 to ∞ the prior variances of the bar stiffnesses increase and their correlations decrease. Plots of $r_{(i)}^{6}(i=1, \ldots, 6)$ as functions of C for $\alpha=0$ (perfect stiffnesses correlation) are shown in fig. 8. The same functions are plotted on semilogarithmic paper in fig. 9 for $\alpha^{2}=0.25$ and in fig. 10 for $\alpha^{2}=1$.

The effectiveness of the experiments increases with C (i.e., with the variance ratio $\sigma_{0}^{2} / \sigma_{\varepsilon}^{2}$) and with ($1+\alpha^{2}$), which for fixed C is proportional to the prior stiffness
variances. When $\alpha^{2} \neq 0$ the stiffnesses are not perfectly correlated (the correlation coefficient being $1 /\left(1+\alpha^{2}\right)$), and this favors the experiments which induce deformations in more than one bar; so the experiment (4), which is the only one which deforms one bar gets the least reward from increasing α^{2}. At the other extreme (6) is by far the best experiment, since it deforms considerably and simultaneously all the bars; each of the experiments (1), (2), (3), (5) stresses only two bars (see fig. 7). If $\alpha=0$ the preference order of the experiments remains the same for all C; instead the convenience of performing one experiment versus another may change with C when $\alpha^{2}>0$. This is due to the higher powers of C in the expressions for $r_{\text {(i) }}$ having non-zero coefficients if $\alpha \neq 0$; nevertheless for all values of α^{2} there is an initial range for C in which the high power terms are negligible and the preferential order is the same as for $\alpha=0$. The physical explanation of this behavior is that as C increases the measurements become more accurate (smaller measurement error variance as compared to the prior variance) and more is gained in terms of the effectiveness ratio (I.50) from deforming more bars; at the same time it makes little difference which bars are deformed and to what extent. On the contrary, for small values of C the measurements are quite noisy and the effectiveness of the experiment is
controlled by the signal-to-noise strength, which increases with the deformation. From fig. 7, experiment (4) imposes a large deformation to bar 1 , which fact makes (4) quite competitive in the low range of C. (Also note that experiment (4) can be performed on bar 1 before it is assembled into the system.)

In closing this paragraph on the evaluation of experiments we recall the major qualitative conclusions. Experiments can be judged according to different criteria; when using the ratio (I.47) as a measure of effectiveness it was found that:
(i) The presence of systematic errors prevents one from obtaining asymptotically deterministic estimates as the number of observations increases, see fig. 3.
(ii) For scalar states of nature the relative effectiveness of two experiments depends on their signal-to-noise ratios, on the number of measurements in each experiment, and on the percentages of systematic error in the total measurement error (fig. 4).
(iii) For vector-valued states the same considerations hold when measuring only one component of the state vector x. When the measurements are functions of more than one state component general conclusions are difficult to derive. Nevertheless, if measurements are accurate it is convenient to have an observation vector which is
informative on the largest possible number of components of X. Instead, if the measurements are unreliable one should try to increase the signal strength, while the measurements being noninformative on some state component becomes relatively unimportant (figs. 7-10).
(iv) For vector valued states the relative effectiveness of two experiments depends also on the ranking criterion; however, the qualitative considerations at point (iii) are believed to be valid under all sensible choices.

We considered here mainly experiment evaluation criteria which measure the reduction of uncertainty. Other criteria may be more appropriate, particularly for preposterior analyses in a decision process; see the comments which precede and follow equation (I.42).

I. 3 OPTIMAL EXPERIMENT DESIGN

The first section of this chapter dealt with the analysis of estimation experiments. In Section I. 2 some evaluation criteria were introduced and a few principles for improving the effectiveness of experiments were found by working out specific examples. The design of optimal experiments is considered briefly in the present section.

First, we give a more precise definition of "experiment", and we clarify in which sense the word "optimal" is used.

Given an n-dimensional state vector \underline{X} as the object of estimation, and within the class of linear measurements we call "design of an experiment" (or simply an "experiment", denoted E) the collection of scalars

$$
\begin{equation*}
N, H_{i j} \quad, \quad i=1, \ldots, N ; j=1, \ldots, n \tag{I.81}
\end{equation*}
$$

This set of variables defines the linear observation equation:

$$
\underline{Z}=\underline{Z}_{0}+\underline{H} \underline{X}+\underline{\varepsilon}
$$

where $\underline{Z}=\left[Z, \ldots . Z_{N}\right]^{\prime}$ is the observation vector, $\underline{H}=\left[H_{i j}\right]$ is the observation matrix, $\underset{O}{Z}$ is a known vector (possibly a function of E), and ε is a random vector of non-controllable errors. Two experiments E_{1} and E_{2} are said to be different, $E_{1} \neq E_{2}$, if they differ by at least one variable in the set (I.81). This definition of experiment implicitly assumes
 of $\underline{\varepsilon}$ are defined uniquely. The design of an optimal experiment consists in finding the parameter values N^{*} and \underline{H}^{*} which extremize a function of E. There are several levels
at which this problem can be formulated, depending on the choice of the objective function. Two possible formulations are given below.
(i) Restricted formulation. Given a set S of feasible designs, an experiment E^{*} is optimal if no experiment $E \in S$ exists such that E > E* according to a criterion of the type $L\left[\underline{\Sigma}_{a}(E)\right]=\min$, where $\underline{\Sigma}_{a}$ is the posterior state covariance. (See equations (I.43) - (I.46) for some examples). The criterion establishes a preference order for
 well posed in a mathematical sense.

This formulation has the drawback of accounting in a simplistic way for the cost of experimentation, which defines the feasible set S. Optimization problems of this type are discussed at length by Fedorov (1972).

A dual (although not completely equivalent) restricted formulation exists, in which a maximum is imposed to the loss function $L\left[\underline{\Sigma}_{a}(E)\right]$, resulting in a constraint on E. The optimum experiment is the one which satisfies the constraint at minimum cost. While the former is a cost-constrained formulation, the latter might be called an informativenessconstrained formulation.
(ii) Maximum expected utility formulation. The maximization of the expected utility has become a classical objective in Bayesian statistical decision theory (see for
instance Raiffa and Schlaifer (1961); Raiffa (1968);
DeGroot (1970) chapter 8). In this formulation the optimal experiment maximizes a function of the Bayes risk (see Paragraph I.l.l), of the experiment cost, as well as of more subjective attributes, called the expected utility. The loss function $L\left[\underline{\Sigma}_{a}(E)\right]$ in the restricted formulation becomes one of the arguments of the utility function.

The critical point of this formulation is the construction of the utility function. Much work has been done recently in this area (see, among others: Raiffa (1968); Fishburn (1968); Hampton, et al. (1973), but the problem has not only a technical aspect: it requires answering difficult questions such as what should be optimized and for whom the experiment should be optimal (Churchman (1961); Rosenblueth (1973).

Without going into the general theory of optimal estimation experiments (the interested reader will find a comprehensive review of methods and results in the aforementioned book by Fedorov) two examples are presented here. The first one completes Example 2 in Section I. 2 by finding the optimal combination of three types of measurements which reaches a target level of informativeness at minimum cost (restricted approach). The second example concerns a problem of optimal estimation which is of interest in various fields of engineering; in this case the objective is to
maximize the expected utility.

EXAMPLE 4. A PROBLEM OF OPTIMAL EXPERIMENT DESIGN IN

 SCALAR ESTIMATIONFor preliminaries and notations refer back to Example 2 in Section I.2. The problem of optimal experiment design, aimed at "best" estimating the scalar state X , is given the following restricted formulation. Each scalar measurement has a known cost associated with it, and an experiment is optimal if its effectiveness ratio (I.57) exceeds a prefixed target value at minimum cost. Let C_{i} (i $=1, \ldots, K$) denote the cost of the first measurement with facility i^{\prime} and $C_{i_{2}}$ denote the cost of any additional measurement with the same facility. The cost of the entire experiment, C, is a function of the number of measurements with each facility: $n_{i}(i=1, \ldots, K)$ Explicitly:

$$
\begin{equation*}
c=\sum_{i=1}^{K}\left[c_{i_{1}}+\left(n_{i}-1\right) c_{i_{2}}+\left(c_{i_{2}}-c_{i_{1}}\right) \delta\left(n_{i}\right)\right] \tag{I.82}
\end{equation*}
$$

where

$$
\delta(n)=\left\{\begin{array}{l}
0 \text { if } n>0 \\
1 \text { if } n=0
\end{array}\right.
$$

For the purpose of exemplification consider three facilities being available ($K=3$), the target: $r_{3} \geq 5$ (or $\sigma_{a}^{2} \leq \sigma_{b}^{2} / 25$), and the following measurement data:

Facility, i	$\sigma_{i}^{2} / \sigma_{b}^{2}$	ρ_{i}	$C_{i_{1}}$	$C_{i_{2}}$
1	0.5	0	5	2
2	0.1	0.2	15	2
3	0.1	0.4	10	1

Table 2. Data for Example 4.

From equation (I.57) the condition $r_{3} \geq 5$ is equivalent to

$$
\begin{equation*}
\mathrm{n}_{1}+\frac{25 \mathrm{n}_{2}}{4+\mathrm{n}_{2}}+\frac{25 \mathrm{n}_{3}}{3+2 \mathrm{n}_{3}} \geq 12 \tag{I.83}
\end{equation*}
$$

with n_{1}, n_{2}, n_{3} non-negative integers. The objective function is:
$25+2 n_{1}+2 n_{2}+n_{3}-3 \delta\left(n_{1}\right)-13 \delta\left(n_{2}\right)-9 \delta\left(n_{3}\right)=\min$.

The problem (I.83, I.84) has a single optimum at $\mathrm{n}_{1}=0$, $n_{2}=4, n_{3}=0$, where $C=21$ and $r_{3}=\sqrt{26}$.

For each type of experiment Figure 11 displays the informativeness measure $\sigma_{b}^{2} m_{i}$ (see equation (I.57)) versus the associated experiment cost C_{i}. Although these curves do not provide a direct way of finding the optimum strategy for a fixed minimum value of $\sigma_{b}^{2} m=\sigma_{b}^{2}\left(m_{1}+m_{2}+m_{3}\right)$, it is easy to see that experiments of type 1 predominate for small (less than 6) and for very large $\sigma_{b}^{2} m$ values. Experiments of type 3 have best information-to-cost ratio for intermediate values, say for $6<\sigma_{b}^{2} m<20$. Finally, when $\sigma_{b}^{2} m$ exceeds 20 but is not very large, experiments of type 2 give the highest reward for fixed cost. The combined use of different types of experiments is optimal near the transition values, and certainly when $\sigma_{b}^{2} m$ is very large.

EXAMPLE 5. OPTIMAL SAMPLING OF CONTINUOUS FUNCTIONS

Let \underline{y} be the generic point of an n-dimensional region $D \subset R^{n}$, and let $S(\underline{Y})$ be an unknown scalar function of \underline{Y}, defined in D. ${ }^{(*)}$ From a Bayesian viewpoint $S(\underline{Y})$ is a random field with n-dimensional parameter. In second-moment theory the prior information on $S(\underline{Y})$ consists in the prior
(*) The case when $S(\cdot)$ is an unknown vector function can be treated similarly.
mean value function $E[S(\underline{Y})]=S_{b}(\underline{Y}) ; \underline{Y} \quad D$, and in the prior covariance function

$$
\operatorname{Cov}_{b}\left(\underline{Y}_{1}, \underline{Y}_{2}\right)=\operatorname{Cov}\left[S\left(\underline{Y}_{1}\right), S\left(\underline{Y}_{2}\right)\right] ; \quad \underline{Y}_{1}, \underline{Y}_{2} \in D .
$$

(If $S(\cdot)$ is a vector function, $\operatorname{Cov}(\cdot, \cdot)$ is a matrix function.) Let N be the number of points at which $S(\underline{Y})$ is measured in the experiment. These points are denoted $\underline{Y}_{1}{ }^{*}, \underline{Y}_{2}{ }^{*}, \ldots, Y_{N} *$ and are constrained to belong to a region $D^{E} \subset D$. For fixed N the set $\left\{\underline{Y}_{i} *\right\}$ is called the "experiment trace". Assume that the purpose of sampling is to reduce the variance of the weighted spatial mean of S over a region $D^{S} C D$:

$$
\begin{equation*}
q=\int_{D} w(\underline{Y}) S(\underline{Y}) d \underline{Y} \tag{I.85}
\end{equation*}
$$

where $\mathrm{w}(\cdot)$ is a deterministic weight function. The prior mean and variance of q are:

$$
\begin{gather*}
q_{b}=\int_{D} w(\underline{Y}) S_{b}(\underline{Y}) d \underline{Y} ; \tag{I.86a}\\
\sigma_{b}^{2}=\int_{D} \int_{D^{S}} w\left(\underline{Y}_{1}\right) w\left(\underline{Y}_{2}\right) \operatorname{Cov}_{b}\left(\underline{Y}_{1}, \underline{Y}_{2}\right) d \underline{Y}_{1} d \underline{Y}_{2} . \tag{I.86b}
\end{gather*}
$$

Similarly, the posterior mean and variance are:

$$
\begin{gather*}
q_{a}=\int_{D_{S}} w(\underline{Y}) S_{a}(\underline{Y}) d \underline{Y} ; \tag{I.87a}\\
\sigma_{a}^{2}=\int_{D} \int_{D} S{ }_{S} w\left(\underline{Y}_{1}\right) w\left(Y_{2}\right) \operatorname{Cov}_{a}\left(\underline{Y}_{1}, \underline{Y}_{2}\right) d \underline{Y}_{1} d \underline{Y}_{2}, \tag{I.87b}
\end{gather*}
$$

where $S_{a}(\cdot)$ and $\operatorname{Cov}_{a}(\cdot, \cdot)$ are the posterior Bayesian mean and the posterior error covariance functions of $S(\underline{Y})$. In accordance with equation (I.47) the effectiveness of the experiment is measured by the ratio

$$
\begin{equation*}
r=\sigma_{b} / \sigma_{a} \tag{I.88}
\end{equation*}
$$

Under a cost-constraint (here associated with a constraint on N) the optimal experiment is defined by the trace $\left\{\underline{Y}_{i}^{*}\right\}$ (i=l,...,N) which maximizes r. Alternatively and more generally, N is let free and optimized with \{ $\left.\underline{Y}_{i}^{*}\right\}$.

Problems of this type arise when sampling material properties of spatially distributed structural systems (beams, plates, etc.), in soil sampling for settlement estimation (Diaz Padilla and Vanmarcke, 1973), in the design of raingage networks for best monitoring mean areal rainfalls
(Bras, et al., 1974), in forestry surveying (Matern, 1960), to name but a few fields of application.

For mathematical convenience, the problem is discretized by choosing a set of m representative points in D, which we denote $\tilde{\underline{Y}}_{1}, \ldots, \tilde{\tilde{Y}}_{m}$. Also, for sake of notational simplicity, let $D^{S}=D^{E}=D$. To each point $\underline{\underline{Y}}_{i}$ we associate an influence coefficient $a_{i}(i=1, \ldots, m)$ such that:

$$
\sum_{i} a_{i}=\int_{D} d \underline{Y} .
$$

Then the prior and the posterior mean value and variance of q become, in approximation:

$$
\begin{align*}
& \mathrm{q}_{\mathrm{b}} \approx \underline{v}^{\prime} \underline{S}_{\mathrm{b}} ; \quad \sigma_{\mathrm{b}}^{2} \approx \underline{v}^{\prime} \underline{\Sigma}_{\mathrm{b}} \underline{\mathrm{v}} ; \tag{I.89a}\\
& \mathrm{q}_{\mathrm{a}} \approx \underline{v}^{\prime} \underline{S}_{\mathrm{a}} ; \quad \sigma_{\mathrm{a}}^{2} \approx \underline{\mathrm{v}}^{\prime} \underline{\Sigma}_{\mathrm{a}} \underline{v} ; \tag{I.89b}
\end{align*}
$$

where
$\underline{v}=\left(\begin{array}{c}(i=1) \\ \vdots \\ w\left(\tilde{Y}_{i}\right) a_{i} \\ \vdots \\ (i=m)\end{array}\right) ; \quad \underline{S}_{b}=\left(\begin{array}{c}(i=1) \\ \vdots \\ S_{b}\left(\underline{Y}_{i}\right) \\ \vdots \\ (i=m)\end{array}\right) ; \quad \underline{\underline{E}}_{b}=\left(\begin{array}{c} \\ \operatorname{cov}_{b}\left(\underline{\underline{Y}}_{i}, \tilde{\underline{Y}}_{j}\right) \\ \\ i, j=1, \ldots, m\end{array}\right) \cdot$

Similarly for \underline{S}_{a} and ${\underset{\sim}{a}}^{a}$. The sample points ${\underset{1}{1}}_{*}^{*}, \ldots, Y_{N}^{*}$ must coincide with points in the set $\left\{\tilde{\underline{Y}}_{\mathbf{i}}\right\}$; but they need not be distinct (i.e., one can sample more than once at the same point). An example of discretization and of experiment spectrum on the plane is shown in Figure 12.

A linear measurement model is assumed in the form:

$$
\begin{equation*}
z_{j}=z_{o_{j}}+h \cdot S\left(\underline{Y}_{j}\right)+\varepsilon_{j} ; \quad \underline{Y}_{j} \in\left\{\underline{\tilde{Y}}_{i}\right\} \quad(j=1, \ldots, N), \tag{I.90a}
\end{equation*}
$$

or, in vector notation,

$$
\begin{equation*}
\underline{Z}=\underline{Z}_{0}+\underline{H} \underline{S}+\underline{\varepsilon}, \tag{I.90b}
\end{equation*}
$$

where $\underline{Z}_{\mathrm{O}}$ is a given N-vector, \underline{H} is a given ($N \mathrm{x} m$) matrix, and $\underline{\varepsilon}$ is a zero-mean error vector with diagonal covariance matrix $\underline{\theta}=\operatorname{diag}\left[\sigma_{\varepsilon_{i}}^{2}\right] ; \underline{\varepsilon}$ is assumed uncorrelated with \underline{S}. Within the class of linear estimators the error mean square is minimized by the estimator (I.23). Straightforward application of equations (I.23) and (I.26) with $\underline{\Gamma}=\underline{0}$ yields:

$$
\begin{equation*}
\underline{S}_{a}=\underline{S}_{b}+\underline{\Sigma}_{b} \underline{H}^{\prime}\left(\underline{H} \underline{\Sigma}_{b} \underline{H}^{\prime}+\underline{\theta}\right)^{-1}\left(\underline{Z}-\underline{Z}_{0}-\underline{H} \underline{S}_{b}\right) \tag{I.91a}
\end{equation*}
$$

$$
\begin{equation*}
\underline{\Sigma}_{\mathrm{a}}=\underline{\Sigma}_{\mathrm{b}}-\underline{\Sigma}_{\mathrm{b}} \underline{H}^{\prime}\left(\underline{\mathrm{H}} \underline{\Sigma}_{\mathrm{b}} \underline{H}^{\prime}+\underline{\theta}^{-1} \underline{\mathrm{H}} \underline{\Sigma}_{\mathrm{b}}\right. \tag{I.91b}
\end{equation*}
$$

This completes the second-moment analysis of a given experiment. The optimal design problem requires finding the sample size N and the ($N \times m$) matrix \underline{H} which maximize a given utility function. The structure of \underline{H} is constrained by the condition:
$\left(\underline{H}_{i j}=h \delta\left(\underline{\tilde{Y}}_{i}-\underline{\tilde{Y}}_{j}\right)= \begin{cases}h & \text { if } Z_{j} \text { measures } S\left(\tilde{Y}_{j}\right), \\ 0 & \text { otherwise },\end{cases}\right.$
where h is a given constant. Under these constraints the measurement matrices \underline{H} and the experiment traces $\left\{\underline{Y}^{*}{ }_{i}\right\}$ are in one-to-one relationship, so that optimizing with respect to \underline{H} is equivalent to optimizing with respect to $\left\{\underline{Y}_{i}^{*}\right\}$.

The utility function to be maximized over all the possible choices of ($\mathrm{N}, \underline{\mathrm{H} \text {) }}$ is written parametrically in the form:

$$
\begin{equation*}
\mathrm{U}[\mathrm{E}]=\mathrm{C}(\mathrm{~N}, \underline{\mathrm{H}})-\mathrm{C}_{\sigma} \underline{\mathrm{V}}^{\prime} \underline{\Sigma}_{\mathrm{a}} \underline{\mathrm{~V}}, \tag{I.92}
\end{equation*}
$$

where $C(\cdot)$ is the experiment cost and C_{σ} is a constant (but as yet undefined) parameter giving the monetary equivalent of a unitary change in the posterior variance of q. Although (I.92) is not by itself a very general expression for the utility function, solving the optimization problem parametrically with respect to C_{σ} gives a set of optimal solutions in the form of the minimum posterior variance per given experiment cost (the so-called transformation curve). This allows one to make easy sensitivity analyses of experiment cost versus variance reduction. Finally, depending on the value of the tradeoff coefficient C_{σ} the decision maker considers appropriate, the best course of action is chosen out of the set of potentially optimal solutions.

With this formulation, Bras, et al. (1974) have studied the optimal location of raingage stations over a given geographical region. The effectiveness of the design was measured by the posterior variance of the mean areal precipitation during a storm with specified general characteristics. The precipitation intensity was modeled as a two-dimensional random field with known mean and covariance function.

Some numerical results are presented in the aforementioned report, to which the reader is referred also for a detailed account of the optimization procedure. The maximization of (I.92) is carried out in two alternating
stages: first N is fixed and \underline{H} is optimized under this constraint; then N is changed and H is optimized again, until the best combination ($\mathrm{N}, \underline{\mathrm{H}}$) is found. The most difficult and time consuming step is the optimization of H for given N. This is essentially a problem of integer programming. A theorem in Fedorov (1972) proves useful for defining a search strategy among all the possible choices of \underline{H}, which requires a relatively modest computation effort. The essential feature which makes the whole optimization algorithm operational is that it avoids using equation (I.91b) for updating the posterior error covariance matrix whenever H is modified to improve the design.
I.4. PROOF LOADING AND THE ANALYSIS OF CENSORED DATA

From the viewpoint of statistics, proof loading is a way of collecting censored data on an unknown state of nature. In the simplest situation a system with unknown "resistance" R is observed while responding to a control input. If the behavior is satisfactory it is $R \geq R_{P L}$ ' where $R_{P L}$ is the minimum resistance for survival.

In the context of structural safety, censored data of this type are not collected to reduce the dispersion of the state estimate error (as was the case for uncensored data), but to assure a minimum range of safe performance
and to detect the possible presence of major construction defects.

The theory of proof loading for structural reliability has not gone further than the so-called fundamental case, which concerns single-mode-of-failure systems with failure condition $R-S<0$ ($R=$ modal resistance, $S=$ modal load). In paragraph I.4.1 this case is given a more general formulation than it is commonly found in the literature. Some guidelines for the analysis of more complex proof loading problems are given in paragraph I.4.3. Paragraph I.4.2 introduces a general probabilistic model for construction defects in structural systems. This model is used in Example 6, which shows how the probability of different defects combinations and the reliability of a series system are modified by processing proof load data through Bayes' theorem.

I.4.1 The Fundamental Case

Classical formulation. The fundamental problem of reliability theory concerns a one-failure-mode system reaching its limit state when the random load S equals the random resistance R. As well known, the failure probability of such a system is, in a time-invariant situation and with obvious notations:

$$
\begin{equation*}
P_{f}=\int_{0}^{\infty} f_{S}(s) F_{R}(s) d s \tag{I.93a}
\end{equation*}
$$

P_{f} is also the failure probability without proof loading, denoted $P_{f_{b}}$. Consider now the same problem with proof loading, and denote $R_{P L}$ the minimum resistance required to survive the experiment. Survival induces a truncation in the probability density $f_{R}(\cdot)$ at $R=R_{P L}$. The reliability consequences of survival are well known for this simple case (Shinozuka, 1969; Shinozuka, Yang and Heer, 1969; Sexsmith, 1969), the posterior failure probability being (see Figure 13):

$$
P_{f_{a}}=\left[1-F_{R}\left(R_{P L}\right)\right]^{-1} \int_{R_{P L}}^{\infty} f_{S}(s)\left[F_{R}(s)-F_{R}\left(R_{P L}\right)\right] d s .(I .93 b)
$$

The probability of failure during proof loading is:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{f}_{\mathrm{PL}}}=\mathrm{F}_{\mathrm{R}}\left(\mathrm{R}_{\mathrm{PL}}\right) \tag{I.93c}
\end{equation*}
$$

It is also easy to prove the following inequalities:

$$
\begin{array}{r}
P_{f_{P L}}+P_{f_{a}} \geq P_{f_{b}} \\
P_{f_{a}} \geq P_{f_{b}} \tag{I.94b}
\end{array}
$$

which become equalities if $\mathrm{P}_{\mathrm{f}_{\mathrm{PL}}}=0$. The larger R_{PL}, the larger $P_{f_{P L}}$. Therefore, high proof loads may be uneconomical due to the expected loss from proof loading failure; on the other hand, the larger $R_{P L}$ the smaller $P_{f_{a}}$, which is desirable if failure under service conditions involves a major expected cost. The tradeoff between proof loading cost and increased posterior reliability, and the associated optimal choice of $R_{P L}$ are studied in the aforementioned papers by Shinozuka and Sexsmith.

The fundamental problem in its classical formulation is not easily extended to proof loading in a multidimensional random space (several random load and/or resistance parameters). For this purpose the following generalization is useful.

A generalized formulation. Let $G_{b}(S)$ denote the probability of failure under a modal load S, before proof loading. Since failure may occur either for a too large positive load, or for a too small negative load (for instance a bar may fail in tension or compression, a beam may fail for excessive positive or negative moment, and so on), S is
not restricted in sign and $G_{b}(S)$ may look like the solid line in Figure 14. (Note that in general $G_{b}(S)$ is not a probability distribution.)

When negative values of S are neglected $G_{b}(\cdot)$ may coincide with the prior $\operatorname{CDF} \mathrm{F}_{\mathrm{R}}(\cdot)$ of the classical formulation. This is true only if failure of a system with resistance $R=r$ implies failure of all (otherwise identical) systems with resistance $0<R<r$, for any $r>0$. As a consequence $G_{b}(\cdot)$ is a nondecreasing function of S in the positive semiaxis.

In the general case, the proof loading experiment consists in applying a modal load S which attains all the values in the interval $\left[S_{P L}^{m}, S_{P L}^{M}\right]$, with no sign restriction on $S_{P L}^{m}$ and $S_{P L}^{M}$. The analysis of this problem requires calculating the posterior probability of failure function $G_{a}(\cdot)$, and is considerably more complicated than the analysis of the classical proof loading model. Formally one can use Bayes' theorem:

$$
\begin{equation*}
G_{a}(s)=G_{b}(s) \frac{\operatorname{Pr}\left\{L\left(\left[S_{P L}^{m}, S_{P L}^{M}\right]\right) \mid C(s)\right\}}{\operatorname{Pr}\left\{L\left(\left[S_{P L}^{m}, S_{P L}^{M}\right]\right)\right\}} \tag{I.95}
\end{equation*}
$$

where $L([a, b])$ denotes survival when the proof load ranges between a and b , and $\mathrm{C}(\mathrm{s})$ denotes failure under the load
$S=s . \quad$ The difficulty of updating the failure function G consists in finding explicit expressions for the fractional term in (I.95). A general treatment is quite complicated and perhaps unjustified for our purposes. The following developments rest on two assumptions which are met in most practical situations:
(i) (The safe interval is connected). If the system survives for $S=s_{1}$ and for $S=s_{2}>s_{1}$, it also survives for all S in $\left[s_{1}, s_{2}\right.$]; in particular:
$L\left(S_{P L}^{m}\right) \cap L\left(S_{P L}^{M}\right)$ implies $L\left(\left[S_{P L}^{m}, S_{P L}^{M}\right]\right)$.

Stated differently, this condition says that the (unknown) set of safe realizations of S is an interval on the S line.
(ii) (Scalar basic resistance parameter). There
exists an (unknown) scalar resistance parameter $R^{*} \geq 0$ (for instance the resistance of the basic material) such that
(a) to each value of R^{*} corresponds a deterministic (possibly empty or infinite) safe interval $\left[S^{m}\left(R^{*}\right), S^{M}\left(R^{*}\right)\right]$ on the S line;
(b) $r_{1}^{*}<r_{2}^{*}$ implies:

$$
\begin{equation*}
\left[s^{m}\left(r_{1}^{*}\right), s^{M}\left(r_{1}^{*}\right)\right] \subset\left[s^{m}\left(r_{2}^{*}\right), s^{M}\left(r_{2}^{*}\right)\right. \tag{I.96b}
\end{equation*}
$$

From conditions (a) and (b) (which correspond to the common notion that safety increases with the resistance parameters) one finds:

$$
\begin{equation*}
G_{b}\left[S^{m}\left(r^{*}\right)\right]=G_{b}\left[S^{M}\left(r^{*}\right)\right]=F_{R_{b}^{*}}\left(r^{*}\right), \tag{I.96c}
\end{equation*}
$$

where $\mathrm{F}_{\mathrm{R}_{\mathrm{b}}^{*}}(\cdot)$ denotes the prior CDF of R^{*}.
Under these assumptions the event $L\left(\left[S_{\mathrm{PL}^{m}}^{m}, S_{P L}^{M}\right]\right)$ is equivalent to the event $L\left(S_{\mathrm{PL}}\right)$, where

$$
S_{P L}=\left\{\begin{array}{l}
S_{P L}^{m} \text { if } G_{b}\left(S_{P L}^{m}\right) \geq G_{b}\left(S_{P L}^{M}\right) \tag{I.97}\\
S_{P L}^{M} \text { otherwise }
\end{array}\right.
$$

and Bayes' equation (I.95) can be restated in the simpler form

$$
\begin{equation*}
G_{a}(s)=G_{b}(s) \frac{\operatorname{Pr}\left\{L\left(S_{P L}\right) \mid C(s)\right\}}{\operatorname{Pr}\left\{L\left(S_{P L}\right)\right\}} \tag{I.98a}
\end{equation*}
$$

Since

$$
\operatorname{Pr}\left\{L\left(S_{P L}\right) \mid C(s)\right\}=\max \left\{0, \frac{G_{b}(s)-G_{b}\left(S_{P L}\right)}{G_{b}(s)}\right\} \quad \text { (I.98b) }
$$

and

$$
\begin{equation*}
\operatorname{Pr}\left\{\mathrm{L}\left(\mathrm{~S}_{\mathrm{PL}}\right)\right\}=1-\mathrm{G}_{\mathrm{b}}\left(\mathrm{~S}_{\mathrm{PL}}\right) \tag{I.98c}
\end{equation*}
$$

one can rewrite equation (I.98a) in the form:

$$
\begin{equation*}
G_{a}(s)=\max \left\{0, \frac{G_{b}(s)-G_{b}\left(S_{P L}\right)}{1-G_{b}\left(S_{P L}\right)}\right\} \tag{I.99}
\end{equation*}
$$

The posterior probability of failure function $G_{a}(\cdot)$ is shown as a dashed line in the example of Figure 14. The prior, the posterior and the proof loading failure probabilities are given by the following expressions:

$$
\begin{equation*}
P_{f_{b}}=\int_{-\infty}^{\infty} f_{s}(s) \cdot G_{b}(s) d s ; \tag{I.100a}
\end{equation*}
$$

$$
\begin{align*}
& P_{f_{a}}=\int_{-\infty}^{\infty} f_{s}(s) \cdot G_{a}(s) d s ; \tag{I.100b}\\
& P_{f_{P L}}=G_{b}\left(S_{P L}\right), \tag{I.100c}
\end{align*}
$$

$S_{\text {PL }}$ being defined by equation (I.97).
The inequalities (I.94) and the remarks thereafter on the optimal choice of $S_{P L}$ (or of $\left[S_{P L}^{m}, S_{P L}^{M}\right]$) still hold. When the function $G(\cdot)$ can be identified with the CDF of the system resistance equations (I.100) reproduce equations (I.93), while equation (I.99) becomes:

$$
F_{R_{a}}(s)=\max \left\{0, \frac{\mathrm{~F}_{\mathrm{R}_{\mathrm{b}}}(\mathrm{~s})-\mathrm{F}_{\mathrm{R}_{\mathrm{b}}}\left(\mathrm{~S}_{\mathrm{PL}}\right)}{1-\mathrm{F}_{\mathrm{R}_{\mathrm{b}}}\left(\mathrm{~S}_{\mathrm{PL}}\right)}\right\}
$$

a well known result in the classical approach.
One may also allow for errors in the estimate of the proof load intensity $\hat{S}_{P L}$ by writing $S_{P L}=\hat{S}_{P L}+\varepsilon$, where ε is a random estimation error term. Assuming that the $\operatorname{PDF} \mathrm{f}_{\varepsilon}(\cdot)$ is known and that it vanishes outside the interval [a,b], equations (I.98) become:

$$
\begin{equation*}
G_{a}(s)=G_{b}(s) \frac{\operatorname{Pr}\left\{L\left(\widehat{S}_{P L}+\varepsilon\right) \mid C(s)\right\}}{\operatorname{Pr}\left\{L\left(\widehat{S}_{P L}+\varepsilon\right)\right\}} \tag{I.101}
\end{equation*}
$$

where

$$
\begin{gathered}
\operatorname{Pr}\left\{L\left(\hat{S}_{P L}+\varepsilon\right) \mid C(s)\right\}=\frac{1}{G_{b}(s)} \int_{a}^{b} \max \left\{0,\left[G_{b}(s)-G_{b}\left(\hat{S}_{P L}+e\right)\right]\right\} f_{\varepsilon}(e) d e ; \\
\operatorname{Pr}\left\{L\left(\hat{S}_{P L}+\varepsilon\right)\right\}=\int_{a}^{b}\left[1-G_{b}\left(\hat{S}_{P L}+e\right)\right] f_{\varepsilon}(e) d e .
\end{gathered}
$$

Equations (I.l00a,b) still hold, while equation (I.l00c) is replaced by:

$$
P_{f_{P L}}=\int_{a}^{b} G_{b}\left(\hat{S}_{P L}+e\right) f_{\varepsilon}(e) d e
$$

The validity of inequalities (I.94) is retained.

Representation of the fundamental case in the space of the basic random variables

When the fundamental problem (l random load, 1 unknown resistance) is considered in the generalized formulation, the results are more easily interpreted in the plane of the basic random variables $R *$ and S; see Figure l5a.

In this plane the safe region D is defined:

$$
\begin{equation*}
D=\left\{\left(r^{*}, s\right) \mid s \in\left[S^{m}\left(r^{*}\right), S^{M}\left(r^{*}\right)\right]\right\} \tag{I.102}
\end{equation*}
$$

with no bound in the direction of increasing resistance. The functions $S=S^{m}\left(R^{*}\right)$ and $S=S^{M}\left(R^{*}\right)$ correspond to limit state conditions; they depend on the particular system under consideration and on the definition of failure. Given the prior $C D F, F_{R_{b}^{*}}(\cdot)$, the function G_{b} defined by (I.96C) is the transform of $F_{R_{b}^{*}}$ under the laws $S=S^{m}\left(R^{*}\right)$ and $S=S^{M}\left(R^{*}\right)$; see Figure l5b. While this gives a geometrical interpretation to the previous analysis, when working in the SR* plane one can replace equation (I.100a) by

$$
\begin{equation*}
P_{f_{b}}=1-\int_{D} d F_{R_{b}^{*}}\left(r^{*}\right) d F_{S}(s) \tag{I.103}
\end{equation*}
$$

In the two-dimensional formulation there is no need for introducing the function G, unless one wants to compute ${ }^{P_{f}}{ }_{f}$ in two stages:
(i) $\mathrm{G}_{\mathrm{b}}(\mathrm{s})=$ (failure probability given $\mathrm{S}=\mathrm{s}$) $=$
$F_{R_{b}^{*}}\left[R^{*}(s)\right]$
(ii) equation (I.100a).

The effect of proof loading becomes clearer in the twodimensional representation: if the system survives a proof loading range $\left[S_{P L}^{m}, S_{P L}^{M}\right]$, the minimum value that $R *$ can have is:

$$
\mathrm{R}_{\mathrm{PL}}^{*}=\max \left\{\mathrm{R}^{*}\left(\mathrm{~S}_{\mathrm{PL}}^{\mathrm{m}}\right), R^{*}\left(\mathrm{~S}_{\mathrm{PL}}^{\mathrm{M}}\right)\right\}
$$

so that the shaded area in Figure 15 a does not contribute to the posterior failure probability. The posterior CDF of R^{*} is:

$$
F_{R_{a}^{*}}\left(r^{*}\right)= \begin{cases}0 & \text { for } r^{*}<R_{P L}^{*} \\ \frac{F_{R_{b}^{*}}\left(r^{*}\right)-F_{R_{b}^{*}}\left(R_{P L}^{*}\right)}{1-F_{R_{b}^{*}}\left(R_{P L}^{*}\right)} & \text { otherwise }\end{cases}
$$

from which the posterior failure probability can be computed:

$$
\begin{equation*}
P_{f_{a}}=1-\int_{D \cap\left(r^{*} \geq R_{P L}^{*}\right)} d F_{R_{a}^{*}}\left(r^{*}\right) d F_{S}(s) \tag{I.104}
\end{equation*}
$$

I.4.2 A Stochastic Model for Construction Defects

The reliability of a structural system is the result
of resistance and load uncertainties; "failure" results from unusual overloads, or from unusual construction defects, or from a combination of the two. The fact that failure is a rare event makes its probabilistic analysis difficult, and often questionable if the major causes of possible future misfunctionings are not enumerated and modeled properly. In particular it is important to realize that many types of construction defects may exist, ranging from a poor choice of the basic materials to gross manufacturing mistakes such as the use of an incorrect amount of reinforcement or the incorrect execution of a welded joint, and that these relatively rare, gross errors may be major causes of catastrophic failures.

So far little has been done to model resistance uncertainties other than those which arise from the usual variability of the basic materials. A more general stochastic model for construction errors is presented here. Defects are classified into two basic categories: the "standard" defects, which can be reproduced and studied in the laboratory under controlled conditions, and the "gross" defects which generate one or more subpopulations of "outliers" within the overall resistance population, and are caused primarily by human errors. Standard and gross defects do not necessarily differ in magnitude, but they originate from distinct mechanisms and belong to different
statistical populations.
As an example consider the process of concrete production. The basic materials shipped to the factory are controlled in such a way that the relevant properties, collected in the vector $\underline{X}^{(M)}=\left[X_{1}^{(M)}, \ldots, X_{n_{M}}^{(M)}\right]^{\prime}$, have the statistical distribution shown in Figure l6a for the case $n_{M}=1$. The properties of the concrete produced by the factory, vector $\underline{x}^{(C)}=\left[X_{1}{ }^{(C)}, \ldots, x_{n_{C}}^{(C)}\right]$ ', depend in part on $\underline{X}^{(M)}$, in part on the manufacturing procedure. If the manufacturing operations are executed correctly, the density of $\left(\underline{x}^{(C)} \mid \underline{x}^{(M)}=\underline{x}^{(M)}\right.$) is shown hypothetically in Figure 16b, curve (a) (for $n_{C}=1$); the dispersion is due exclusively to "standard" variations. If "gross" errors are made, the same conditional density is exemplified by curve (b) .

Many random variables of interest to the safety of engineering systems (and not necessarily related to resistances) conform to composite models of this kind: for example, wind velocities in tornadoes do not follow the same probability law as wind velocities in convective storms; tsunami sea waves are not statistically identical with windinduced waves. Similarly, the absence of reinforcing bars in a concrete beam is a quite distinct event from their misplacement; also, over- or under-production of a factory, the change of machinery or personnel, the shortage of raw
materials, may cause quality variations in the product, which are statistically different from those of normal production.

Returning to the concrete production problem, the unconditional (on the type of production errors) probability distribution of the generic concrete property $X_{i}^{(C)}$ is:
$f\left(X_{i}^{(C)} \mid \underline{X}^{(M)}\right)=\left(I-P_{G}\right) \cdot f\left(X_{i}^{(C)} \mid \underline{X}^{(M)}\right.$; only "minor" errors)

$$
+P_{G} \cdot f\left(X_{i}^{(C)} \underline{X}^{(M)} ; \text { minor" }+\right. \text { "gross" errors) }
$$

where P_{G} is the probability that gross errors were made in the manufacturing process. This unconditional density is shown in Figure l6c. If two or more types of gross errors need to be discriminated, a distinct conditional distribution like (b) in Figure l6b should be introduced for each type of error, and weighted by the associated error probability in the expression for the unconditional density.

The same model can be applied to the statistical variations of the properties of structural concrete elements, as well as to the resistance parameters of the entire system. For the generic element let $\underline{x}^{(E)}=\left[X_{l}^{(E)}, \ldots, x_{n_{E}^{(E)}}^{(E)}\right]^{\prime}$ summarize the relevant properties. Due to the possibility of gross manufacturing errors (poor concrete vibration, partial
absence of reinforcement, etc.) the density function of $\underline{X}^{(E)}$ for given concrete properties may look like the curve in Figure l6d. (Again, the shape may be modified to account for several different types of gross errors.) Finally, the system properties $\underline{X}^{(S)}=\left[X_{1}^{(S)}, \ldots X_{n_{S}}^{(S)}\right]^{\prime}$ may be related to the elements properties as shown in Figure l6e.

The unconditional densities of the properties of concrete, of the structural elements, and of the system can be found through successive integration:

$$
\begin{aligned}
& \left.\left.f\left(\underline{x}^{(C)}\right)=\int_{\operatorname{all} \underline{x}^{(M)}} f \underline{x}^{(C)} \mid \underline{x}^{(M)}=\underline{x}^{(M)}\right) \cdot f \underline{x}^{(M)}\right) \cdot d \underline{x}^{(M)} \text {; } \\
& \left.\left.f\left(\underline{x}^{(E)}\right)=\int_{\operatorname{all} \underline{x}^{(C)}} f \underline{x}^{(E)} \mid \underline{x}^{(C)}=\underline{x}^{(C)}\right) \cdot f \underline{x}^{(C)}\right) \cdot d \underline{x}^{(C)} \text {; } \\
& \left.\left.f\left(\underline{x}^{(S)}\right)=\int_{\operatorname{all} \underline{x}^{(E)}} f{\underline{\left(x^{x}\right.}}^{(S)} \underline{x}^{(E)}=\underline{x}^{(E)}\right) \cdot f \underline{x}^{(E)}\right) \cdot d \underline{x}^{(E)} \cdot
\end{aligned}
$$

Hypothetical configurations of these densities (assumed univariate) are sketched in Figure 17.

The failure probability may be contributed to substantially by gross errors; if this is the case, one purpose of experimenting is to detect the presence of gross errors
and possibly also to discriminate among different types of gross errors, if they exist. For instance, if the laboratory test of a concrete cylinder yields the axial resistance $\mathrm{X}^{(\mathrm{C})}=\overline{\mathrm{x}}^{(\mathrm{C})}$ shown in Figure 17 b , the probability that the batch of concrete is grossly defective is quite small. Via Bayes' equation the posterior density of the concrete resistance might look like the curve in Figure 17b'. This would also have the effect of reshaping the densities of $\underline{x}^{(E)}$ and $\underline{x}^{(S)}$ in those parts which are contributed to most by gross errors in concrete manufacturing. However, for the purpose of discriminating gross errors at the structural level, material tests do not help much unless gross errors at early production stages occur at a much higher rate than gross errors during elements manufacturing and system assemblage. On the other hand, there are economical penalties for proof loading the structural elements or the entire system, so that the best data collection policy poses a problem of discrete optimal allocation of limited resources.

Processing of Experimental Data

In what follows we consider the classical one-sided formulation of the fundamental reliability problem (see Paragraph I.4.1), and we show how prior resistance distributions of the composite type suggested above are modified
through Bayesian processing of experimental data. (The parallel development for the generalized formulation only requires a more elaborate formalism.)
(a) Generalities

Let R denote any structural property of interest, and assume that the prior CDF of R can be written in the form:

$$
\begin{equation*}
F_{b}(R)=\sum_{i=1}^{n_{e}} P_{b_{i}} \int_{\underline{\theta} \text { space }} F_{b}(R \mid \underline{\theta}) d F_{b}\left(\underline{\theta} \mid e_{i}\right) \tag{I.105}
\end{equation*}
$$

where $\underline{\theta}$ is a vector of distribution parameters and $\left\{e_{i}\right\}$ is the set of possible construction errors affecting R. e_{1}, \ldots, e_{n} are exhaustive and mutually exclusive events. According to equation (I.l05) the distribution type of R is assumed known, while the parameters are random functions of the errors. The posterior CDF of R, given the information Z, is:

$$
\begin{equation*}
F_{a}(R)=\sum_{i=1}^{n} P_{a_{i}} \int_{\underline{\theta}} F_{a}(R \mid \underline{\theta}) d F_{a}\left(\underline{\theta} \mid e_{i}\right) \tag{I.106}
\end{equation*}
$$

where
$d F_{a}\left(\underline{\theta} \mid e_{i}\right) \propto d F_{b}\left(\underline{\theta} \mid e_{i}\right) \cdot l(Z \mid \underline{\theta})$, for fixed e_{i}; (I.107a)

$$
\begin{align*}
& P_{a_{i}} \propto P_{b_{i}} \int_{\underline{\theta}} 1(Z \mid \underline{\theta}) d F_{a}\left(\underline{\theta} \mid e_{i}\right) ; \tag{I.107b}\\
& F_{a}(R \mid \underline{\theta}) \propto F_{b}(R \mid \underline{\theta}) 1(Z \mid R), \text { for fixed } \underline{\theta} ; \tag{I.107c}\\
& I(Z \mid \underline{\theta}) \propto \int_{a l l} 1(Z \mid R) \cdot d F_{a}(R \mid \underline{\theta}) .
\end{align*}
$$

and $1(\cdot)$ denotes likelihood function.
The integrals in equations (I.105) and (I.106) are the conditional prior and posterior distributions of R, $F_{b}\left(R \mid e_{i}\right)$ and $F_{a}\left(R \mid e_{i}\right)$. All the three posterior distributions:

$$
\begin{aligned}
& P_{a_{i}} \quad\left(i=1, \ldots, n_{e}\right), \text { equation (I.107b); } \\
& F_{a}\left(\underline{\theta} \mid e_{i}\right) \quad\left(i=1, \ldots, n_{e}\right), \text { equation (I.107a); } \\
& F_{a}(R), \text { equation }(I .106)
\end{aligned}
$$

are of interest: the first one for discriminating among error types, the second one for making inferences about the distribution of the resistance population (resistance of
nontested structures under the present assumption that the same unknown types of errors have been made in manufacturing all the structures), the third one for making inferences on the resistance of the structure being tested directly. In fact, the posterior distribution of R for a system belonging to the same statistical population, but not being subjected to direct experimentation is:

$$
\begin{equation*}
F_{a}(R)=\sum_{i=1}^{n_{e}} P_{a_{i}} \int_{\underline{\text { space }}} F_{b}(R \mid \underline{\theta}) d F_{a}\left(\underline{\theta} \mid e_{i}\right) . \tag{I.108}
\end{equation*}
$$

The non-identity between the CDF (I.108) and the CDF (I.106) agrees with the intuitive notion that the experiment is more informative on the resistance of the system being tested directly, than it is on any other system from the same population.

The foregoing analysis simplifies if $F_{b}\left(\underline{\theta} \mid e_{i}\right)$ is conjugate with respect to the likelihood function $1(Z \mid \underline{\theta})$, and $F_{b}(R \mid \underline{\theta})$ is conjugate with respect to $l(Z \mid R)$.

Another case which leads to considerable simplifications is when $F_{b}\left(\underline{\Theta} \mid e_{i}\right)$ is a step function defining the deterministic relationship: $\underline{\theta}_{i}=\underline{\theta}\left(e_{i}\right)$; then the integrals over $\underline{\theta}$ are replaced by discrete summations and equations (I.105) and (I.106) become:

$$
\begin{align*}
& F_{b}(R)=\sum_{i=1}^{n} \sum_{b_{i}} \cdot F_{b}\left(R \mid \underline{\theta}_{i}\right) ; \tag{I.109}\\
& F_{a}(R)=\sum_{i=1}^{n} e P_{a_{i}} \cdot F_{a}\left(R \mid \underline{\theta}_{i}\right), \tag{I.110}
\end{align*}
$$

where

$$
\begin{align*}
& P_{a_{i}} \propto P_{b_{i}} \cdot 1\left(Z \mid \underline{\theta}_{i}\right) ; \tag{I.llla}\\
& F_{a}\left(R \mid \underline{\Theta}_{i}\right) \propto F_{b}\left(R \mid \underline{\Theta}_{i}\right) \cdot I(Z \mid R) ; \tag{I.111b}\\
& l\left(Z \mid \underline{\theta}_{i}\right) \propto \int_{\text {all } R} 1(Z \mid R) \cdot d F_{a}\left(R \mid \underline{\theta}_{i}\right) . \tag{I.111c}
\end{align*}
$$

(b) Data from proof loading experiments

The outcome z of a (non-noisy) proof loading experiment which measures R directly may have either of two forms:
$Z:\left\{\begin{array}{l}R=\bar{R}, \text { with } \bar{R}<R_{P L}, \text { in case of failure at load } \bar{R}, \text { or (I.112a) } \\ R \geq R_{P L}, \text { in case of survival, } \\ \text { (I.ll2b) }\end{array}\right.$
where $R_{P L}$ is the minimum resistance for survival of the test.

In the first case the likelihood functions of R and
$\underline{\theta}$ are:

$$
\begin{equation*}
1(Z \mid R) \propto \delta(R-\bar{R}) \tag{I.113a}
\end{equation*}
$$

where $\delta(\cdot)$ is the Dirac delta function, and, if $F_{a}(R \mid \underline{\theta})$ is differentiable at $\overline{\mathrm{R}}$:

$$
\begin{equation*}
\left.I(Z \mid \underline{\theta}) \propto \frac{d F_{a}(R \mid \underline{\theta})}{d R}\right|_{R=\bar{R}} \tag{I.ll3b}
\end{equation*}
$$

In the second case:

$$
I(Z \mid R) \propto \begin{cases}0 & \text { if } R<R_{P L} \tag{I.114a}\\ 1 & \text { if } R \geq R_{\mathrm{PL}^{\prime}}\end{cases}
$$

and

$$
\begin{equation*}
l(\mathrm{Z} \mid \underline{\theta}) \propto 1-\mathrm{F}_{\mathrm{a}}\left(\mathrm{R}_{\mathrm{PL}} \mid \underline{\theta}\right) \tag{I.114b}
\end{equation*}
$$

if $F_{a}(\underline{R} \mid \underline{\theta})$ is continuous at $R_{P L}$.
These equations are used next in connection with the composite resistance model developed earlier for reinforced concrete structures. The proof loading of a bridge deck serves as a numerical example (Example 6).
(c) Application to proof loading of reinforced concrete elements connected in parallel or in series

Proof loading experiments can be made at different stages of construction in order to detect different types of gross errors and to improve the reliability of the survived items. So far we have considered one-mode-of-failure systems, proof loaded after completion of construction. However, the same analysis applies to experimental data from earlier construction stages, or from structural subsystems.

We examine now the reliability consequences of proof loading the elements of a series or of a parallel system. As before, four construction phases are distinguished: basic materials selection, concrete manufacturing, elements manufacturing, structure assemblage. When reference to a particular phase is needed, the following upperscripts are used: (M) for materials, (C) for concrete, (E) for elements, (S) for system. $R^{(S)}$ and $R_{i}^{(E)}$ denote the
resistance of the system and of the $i^{\text {th }}$ element, respectively. At each stage of construction "minor" errors are introduced, while "gross" errors may or may not be introduced. The following notation is used: $G=$ presence of gross (and minor) errors; $M=$ presence of minor errors only. When several such symbols appear in a sequence, they refer to sequential construction phases, starting from the selection of the basic materials; so $f\left(R_{i}^{(E)} \mid M, G, M\right)$ denotes the probability density function of the resistance of element i, given that minor variations are present in the material properties and in the construction of the elements while gross errors were introduced during the concrete production. When necessary, an upperscript letter will be used to identify the stage.

Prior distribution of the systems resistance. Prior probabilities are assigned to each possible combination of error types: (M), (G), (M,M), (G,M), (M,G), (G,G),...., (G, G, G, G). Conditional on the $i^{\text {th }}$ error combination, e_{i}, the elements resistances are independent, with common prior probability distribution $\mathrm{F}_{\mathrm{b}}\left(\mathrm{R}(\mathrm{E}) \mid \mathrm{e}_{\mathrm{i}}\right)$. The unconditional prior distribution of the resistance $R_{j}^{(E)}$ is therefore (assuming, as before, that the same but unknown error combination affects all the resistances):

$$
\begin{aligned}
F_{b}\left(R_{j}^{(E)}\right)= & P_{b}(M, M, M) \cdot F_{b}\left(R^{(E)} \mid M, M, M\right) \\
& +P_{b}(M, M, G) \cdot F_{b}\left(R^{(E)} \mid M, M, G\right) \\
& +\cdots+P_{b}(G, G, G) \cdot F_{b}\left(R^{(E)} \mid G, G, G\right)
\end{aligned}
$$

Assume for simplicity that $F_{b}\left({ }^{(E)} \mid e_{i}\right)=F\left(R^{(E)} \mid e_{i}\right)=$ $N\left(\mu_{i}, \sigma_{i}^{2}\right)$ and that the errors in assembling the system are independent of previous errors. For a parallel system the following model is used. If only minor assembling errors are made:

$$
\begin{equation*}
\left(R_{p}^{(S)} \mid M(S)\right)=C_{p_{M}} \cdot \sum_{i=1}^{n} R_{i}^{(E)}+\varepsilon_{p_{M}} \tag{I.1l5a}
\end{equation*}
$$

where $\varepsilon_{p_{M}} \sim N\left(\mu_{p_{M}}, \sigma_{p_{M}}^{2}\right)$,
and the subscript p denotes "parallel"; if instead also gross errors are introduced in the final construction stage:

$$
\begin{equation*}
\left(R_{p}^{(S)} \mid G^{(S)}\right)=C_{p_{G}} \cdot \sum_{i=1}^{n} R_{i}^{(E)}+\varepsilon_{p_{G}} \tag{I.115b}
\end{equation*}
$$

where $\varepsilon_{\mathrm{p}_{\mathrm{G}}} \sim \mathrm{N}\left(\mu_{\mathrm{p}_{\mathrm{G}}}, \sigma_{\mathrm{p}_{\mathrm{G}}}^{2}\right)$.

Similarly, for a series system:

$$
\begin{align*}
& \left(R_{S}^{(S)} \mid M_{M}^{(S)}\right)=C_{S_{M}} \cdot \min _{i}\left\{R_{i}^{(E)}\right\}+\varepsilon_{S_{M}}, \tag{I.116a}\\
& \left(R_{S}^{(S)} \mid G^{(S)}\right)=C_{S_{G}} \cdot \min _{i}\left\{R_{i}^{(E)}\right\}+\varepsilon_{S_{G}}, \tag{I.116b}
\end{align*}
$$

where

$$
\varepsilon_{S_{M}} \sim N\left(\mu_{S_{M}}, \sigma_{S_{M}}^{2}\right) ; \varepsilon_{S_{G}} \sim N\left(\mu_{S_{G}}, \sigma_{S_{G}}^{2}\right)
$$

For a parallel system the unconditional prior distribution of $R_{p}^{(S)}$ is:
$F_{b}\left(R_{p}^{(S)}\right)=P_{b}\left(M(S), \sum_{i=1}^{8} P_{b_{i}} \Phi\left(X_{i_{M}}\right)+P_{b}(G(S)) \sum_{i=1}^{8} P_{b_{i}} \Phi\left(X_{i_{G}}\right)\right.$,
where $e_{1}=(M, M, M), e_{2}=(M, M, G), \ldots, e_{8}=(G, G, G) ; P_{b_{i}}$ is the prior probability of the error combination e_{i}; $P_{b}(A)$ is the prior probability of the event A;

$$
x_{i_{M}}=\frac{R_{p}^{(S)}-n \mu_{i}-\mu_{P_{M}}}{\left(n \cdot C_{p_{M}}^{2} \cdot \sigma_{i}^{2}+\sigma_{P_{M}}^{2}\right)^{l / 2}} ;
$$

$$
x_{i_{G}}=\frac{R_{p}^{(S)}-n \mu_{i}-\mu_{p_{G}}}{\left(n \cdot c_{p_{G}}^{2} \cdot \sigma_{i}^{2}+\sigma_{p_{G}}^{2}\right)^{1 / 2}}
$$

n is the number of elements connected in parallel, and $\Phi(\cdot)$ is the standard normal CDF.

For a series system the same probability distribution is:

$$
F_{b}\left(R_{S}^{(S)}\right)=P_{b}\left(M^{(S)}\right) \int_{0}^{\infty}\left\{\sum_{i=1}^{8} P_{b_{i}}\left[1-\left(1-\Phi\left(\frac{r-\mu_{i}}{\sigma_{i}}\right)\right)^{n}\right]\right\}
$$

$$
\cdot \phi\left(\frac{\mathrm{R}_{\mathrm{S}}^{(\mathrm{S})}-\mathrm{C}_{\mathrm{S}_{M}} \cdot r-\mu_{S_{M}}}{\sigma_{S_{M}}}\right) d r
$$

$$
+P_{b}(G(S)) \int_{0}^{\infty}\left\{\sum_{i=1}^{8} P_{b_{i}}\left[1-\left(1-\Phi\left(\frac{r-\mu_{i}}{\sigma_{i}}\right)\right)^{n}\right]\right\}
$$

$$
\begin{equation*}
\cdot \phi\left(\frac{R_{S}^{(S)}-c_{S_{G}} \cdot r-\mu_{S_{G}}}{{ }^{(S} S_{G}}\right) d r \tag{I.117b}
\end{equation*}
$$

where $\phi(\cdot)$ is the standard normal PDF. Equations (I_{2}, 117) greatly simplify if no errors are introduced in the assemblage phase and $C_{p}=C_{S}=1$, in which case:

$$
\begin{gather*}
F_{b}\left(R_{p}^{(S)}\right)=\sum_{i=1}^{8} P_{b_{i}} \Phi\left(\frac{R_{p}^{(S)}-n \mu_{i}}{n^{1 / 2} \cdot \sigma_{i}}\right) ; \tag{I.118a}\\
F_{b}\left(R_{S}^{(S)}\right)=\sum_{i=1}^{8} P_{b_{i}}\left\{1-\left[1-\Phi\left(\frac{R_{S}^{(S)}-\mu_{i}}{\sigma_{i}}\right)\right]^{n}\right\} \tag{I.118b}
\end{gather*}
$$

Posterior distribution of the systems resistance.

We examine now how the last two equations are modified by proof loading one structural element. If failure occurs at a load intensity $\bar{R}<R_{P L}$, the element is replaced by a new one, and the experiment is not repeated; if the element survives, two strategies are considered: either the element is used, or it is replaced.
(a) The element fails at a load $\bar{R}<R_{P L}$

The probabilities $\mathrm{P}_{\mathrm{b}_{\mathrm{i}}}$ are updated as indicated by equation (I.l07b):

$$
\begin{equation*}
P_{a_{i}}=\frac{P_{b_{i}} \cdot \phi\left[\left(\bar{R}-\mu_{i}\right) / \sigma_{i}\right] / \sigma_{i}}{\sum_{j=1}^{8} P_{b_{j}} \cdot \phi\left[\left(\bar{R}-\mu_{j}\right) / \sigma_{j}\right] / \sigma_{j}} \tag{I.119}
\end{equation*}
$$

$$
157
$$

The posterior CDF of the system resistance is:

$$
\begin{equation*}
F_{a}\left(R_{p}^{(S)}\right)=\sum_{i=1}^{8} P_{a_{i}} \Phi\left(\frac{R_{p}^{(S)}-n \mu_{i}}{n^{1 / 2} \cdot \sigma_{i}}\right) \tag{I.120a}
\end{equation*}
$$

for a parallel configuration, and

$$
\begin{equation*}
F_{a}\left(R_{S}^{(S)}\right)=\sum_{i=1}^{8} P_{a_{i}}\left\{1-\left[1-\Phi\left(\frac{R_{S}^{(S)}-\mu_{i}}{n^{I / 2} \cdot \sigma_{i}}\right)\right]^{n}\right\} \tag{I.120b}
\end{equation*}
$$

for a series configuration. (These posterior distributions are generalized in the obvious way for the prior CDF's (I.ll7).) Equations (I.120) differ from the prior expressions (I.ll8) only because of the revised error probabilities.

Recall that all elements are assumed to suffer from the same (but unknown) set of error types. Therefore failure of one element carries information about the resistance of all the others.
(b) The element survives

The posterior error combination probabilities are:

$$
\begin{equation*}
p_{a_{i}}=\frac{p_{b_{i}}\left\{1-\Phi\left[\left(R_{P L}-\mu_{i}\right) / \sigma_{i}\right]\right\}}{\sum_{i=1}^{8} p_{b_{j}}\left\{1-\Phi\left[\left(R_{P L}-\mu_{j}\right) / \sigma_{j}\right]\right\}} \tag{I.121}
\end{equation*}
$$

(bl) The element is replaced. Then the posterior CDF of the system resistance is formally identical with (I.120a) or (I.l20b), with $p_{a_{i}}$ given by equation (I.121). (b2) The element is not replaced. The CDF of the resistance of the element being proof loaded, denoted $\mathrm{F}_{\mathrm{a}_{\mathrm{PL}}}(\cdot)$, is:

$$
\text { (} 0 \quad \text { if } R^{(E)}<R_{P L^{\prime}}
$$

where $\mathrm{F}_{\mathrm{a}}(\cdot)$ is the posterior $C D F$ for the elements not being loaded:

$$
F_{a}(r)=\sum_{i=1}^{8} p_{a_{i}} \cdot \Phi\left[\left(r-\mu_{i}\right) / \sigma_{i}\right]
$$

and $\mathrm{p}_{\mathrm{a}_{\mathrm{i}}}$ is given by equation (I.12l). Therefore the CDF of the system resistance results: for elements connected in parallel:

and for a series configuration:
$F_{a}\left(R_{S}^{(S)}\right)=\sum_{i=1}^{8} p_{a_{i}}\left\{1-\left(\left(1-\Phi\left[\frac{R_{S}^{(S)}-\mu_{i}}{\sigma_{i}}\right]\right)^{n-1} \cdot\left(1-F_{a_{P L}}\left(R_{S}^{(S)}\right)\right)\right)\right\}$.
(I.122b)

Equations (I.ll9) through (I.l22) can be easily generalized to the case when more than one element is proof loaded. The example which follows is an application of the foregoing results.

EXAMPLE 6. PROOF LOADING OF A MULTI-SPAN BRIDGE DECK

Consider a simply-supported n-span bridge structure (series system with n elements). Before proof loading, the possible error combinations and the parameters of the conditional distribution of the "element" resistances (in terms
of maximum load carrying capacity) are shown in Table 3. The probability distribution of the generic element resistance $R^{(E)}$ conditional on a given error combination is normal; the resistances of different spans are independent. The design load, S_{D}, is fixed to be either 230 or 200 kips (second-moment reliability index $\left(\mu_{1}-S_{D}\right) / \sigma_{2}=3.5$ and, respectively, 5.0 for the error combination M, M, M). Any number $m \leq n$ of spans can be proof loaded; the proof load intensity is denoted $S_{P L}$. Given the distribution of the load, the posterior failure probability can be computed through straightforward generalization of equations (I.119) through (I.122). For $n=1,2,5,10,20 ; S_{D}=230,200 \mathrm{kips} ;$ $m=O(1) n$, and for several proof load values, the posterior failure probability corresponding to the design load S_{D} :

$$
P_{f_{a}}=\operatorname{Pr}\left[\bigcup_{i=1}^{n}\left(R_{i}^{(E)}<S_{D}\right)\right]
$$

is plotted in Figures 18 - 21. The values indicated in these figures are conditional on proof load survival and on a non-replacement policy. They were computed through equation (I.121) and a generalization of equation (I.122b) which allows for $\mathrm{m} \neq 1$.

The failure probability after proof loading the whole bridge with $S_{P L}=S_{D}$ is zero, and the probability that

i	e_{i}	$p_{b_{i}}$	$\mu_{i}(k i p s)$	$\sigma_{i}(k i p s)$
1	M,M,M	0.950800	300	20
2	M,M,G	0.019404	260	20
3	M,G,M	0.019404	250	30
4	G.M.M	0.009600	250	20
5	M,G,G	0.000396	230	30
6	G,M,G	0.000196	230	30
7	G,G,M	0.000196	220	30
8	G,G,G	0.000004	170	40

Table 3. Possible error combinations, $\left\{e_{i}\right\} ;$ prior errors probabilities $\left\{p_{b_{i}}\right\} ;$ and resistance parameters $\left\{\mu_{i} ; \sigma_{i}\right\}$ for each set of error types.
at least one span fails during proof loading is $\mathrm{P}_{\mathrm{f}_{\mathrm{PL}}}=$ $P_{f_{a}}-P_{f_{b}}$, where $P_{f_{b}}$ coincides with $P_{f_{a}}$ for $m=0$. The results show that for reliable systems (second-moment reliability index $=5.0$) proof loading is not effective unless $S_{P L}$ is close to S_{D}. It is also noted that for long bridges (Figure 21) survival of the first few spans reduces the posterior failure probability by decreasing the probability of gross errors, while survival of the last few spans reduces $P_{f_{a}}$ by truncation of $f_{a}\left(R_{S}^{(S)}\right.$) at $S_{P L}$. For $\mathrm{n}=10, \mathrm{~S}_{\mathrm{D}}=230 \mathrm{kips}$ and $\mathrm{S}_{\mathrm{PL}}=180$ or 220 kips the evolution of $\mathrm{P}_{\mathrm{f}_{\mathrm{a}}}$ as the number of proof loaded spans in ranges from 0 to 10 is shown in Tables 4 and 5. Also given are the posterior error probabilities $P_{a}(M, M, M) ; P_{a}(M, M, G)$; $P_{a}(M, G, G)$ and $P_{a}(G, G, G)$, chosen as a representative subset of the eight possible error combinations. The evolution of $P_{a}(M, G, M)$ and of $P_{a}(G, M, M)$ was found to be similar to that of $P_{a}(M, M, G)$; so too was the evolution of $P_{a}(G, M, G)$ and of $P_{a}(G, G, M)$ similar to that of $P_{a}(M, G, G)$.

Although the posterior failure probability does not vary considerably with m when $S_{P L}=180 \mathrm{kips}$, the probability that gross errors are simultaneously present, $P_{a}(G, G, G)$, decreases significantly with m, meaning that the proof loading experiment was effective in discriminating between presence and absence of such errors. When $\mathrm{S}_{\mathrm{PL}}=220 \mathrm{kips}$ this fact is even more accentuated.

$$
S_{P L}=180 \text { kips; } S_{D}=230 \text { kips; } n=10
$$

m	p_{f}		$\mathrm{p}_{\mathrm{a}}(\mathrm{M}, \mathrm{M}, \mathrm{M})$	$\mathrm{p}_{\mathrm{a}}(\mathrm{M}, \mathrm{M}, \mathrm{G})$		$\mathrm{p}_{\mathrm{a}}(\mathrm{M}, \mathrm{G}, \mathrm{G})$		$p_{a}(G, G, G)$	
0	0.3892	-01	0.9508	0.1940	-01	0.3960	-03	0.4000	-05
1	0.3869	-01	0.9510	0.1941	-01	0.3772	-03	0.1606	-05
2	0.3846	-01	0.9513	0.1941	-01	0.3593	-03	0.6445	-06
3	0.3824	-01	0.9515	0.1942	-01	0.3422	-03	0.2587	-06
4	0.3802	-01	0.9517	0.1942	-01	0.3259	-03	0.1038	-06
5	0.3781	-01	0.9519	0.1942	-01	0.3104	-03	0.4168	-07
6	0.3760	-01	0.9521	0.1943	-01	0.2957	-03	0.1673	-07
7	0.3739	-01	0.9523	0.1943	-01	0.2816	-03	0.6715	-08
8	0.3719	-01	0.9525	0.1943	-01	0.2682	-03	0.2695	-08
9	0.3699	-01	0.9527	0.1944	-01	0.2554	-03	0.1082	-08
10	0.3679	-01	0.9529	0.1944	-01	0.2433	-03	0.4342	-09

Table 4. Example 6: $m=$ number of proof-loaded spans; $p_{f}=$ posterior failure probability; $\mathrm{p}_{\mathrm{a}}(\mathrm{e})$ = posterior probability of the errors combination e . $S_{P L}=$ proof load intensity; $S_{D}=$ design load; $n=$ number of spans.

$$
S_{P L}=220 \text { kips; } S_{D}=230 \text { kips; } n=10
$$

m	$\mathrm{p}_{\mathrm{f}_{\mathrm{a}}}$		$\frac{p_{a}(M, M, M)}{0.9508}$	$\mathrm{p}_{\mathrm{a}}(\mathrm{M}, \mathrm{M}, \mathrm{G})$		$p_{a}(M, G, G)$		$\mathrm{p}_{\mathrm{a}}(\mathrm{G}, \mathrm{G}, \mathrm{G})$	
0	0.3892	-01		0.1940	-01	0.3960	-03	0.4000	-05
1	0.3456	-01	0.9551	0.1905	-01	0.2508	-03	0.4243	-06
2	0.3083	-01	0.9587	0.1869	-01	0.1588	-03	0.4498	-07
3	0.2759	-01	0.9619	0.1832	-01	0.1004	-03	0.4766	-08
4	0.2476	-01	0.9647	0.1796	-01	0.6352	-04	0.5047	-09
5	0.2228	-01	0.9671	0.1759	-01	0.4016	-04	0.5344	-10
6	0.2009	-01	0.9692	0.1723	-01	0.2538	-04	0.5656	-11
7	0.1814	-01	0.9711	0.1687	-01	0.1603	-04	0.5984	-12
8	0.1640	-01	0.9728	0.1652	-01	0.1013	-04	0.6331	-13
9	0.1485	-01	0.9743	0.1617	-01	0.6396	-05	0.6696	-14
10	0.1344	-01	0.9757	0.1582	-01	0.4039	-05	0.7081	-15

Table 5. Example 6: $m=$ number of proof-loaded spans; $p_{f}=$ posterior failure probability; $\mathrm{p}_{\mathrm{a}}(\mathrm{e})$ posterior probability of the errors combination e. $S_{P L}=$ proof load intensity; $S_{D}=$ design load; $n=$ number of spans.

Minor modifications would allow to replace the deterministic design load with a random service load.

I.4.3 Proof Loading in Multidimensional Random
 Spaces

The logical steps in the analysis of proof loading data are not affected by more than one load or resistance parameter being random or unknown. However, operational complications may become prohibitive.

Let $\underline{s}=\left[S_{1}, \ldots, S_{n_{S}}\right]^{\prime}$ be the vector of basic
random load parameters and $\underline{R}=\left[R_{1}, \ldots, R_{n_{R}}\right]^{\prime}$ the vector of basic unknown resistances. By generalization of the function G(S) in Paragraph I.4.1, G(S) denotes the probability of failure conditional on a given load vector; then the prior probability of failure is:

$$
\begin{equation*}
P_{f_{b}}=\int_{\underline{s} \text { space }} G_{b}(\underline{s}) d \underline{F}_{\underline{S}}(\underline{s}) \tag{I.123}
\end{equation*}
$$

where $\mathrm{F}_{\underline{S}}(\cdot)$ is the CDF of the service load vector. If the proof loading experiment consists in having S attaining all the values inside the region $D_{S} \subset R^{n}$, the posterior probability of failure conditional on proof loading survival is:

$$
\begin{equation*}
P_{f_{a}}=\int_{\underline{s} \notin D_{S}} G_{a}(\underline{s}) d \underline{F}_{\underline{S}}(\underline{s}) \tag{I.124}
\end{equation*}
$$

where, from Bayes' theorem:

$$
\begin{equation*}
G_{a}(\underline{s})=G_{b}(\underline{s}) \frac{\operatorname{Pr}\left[L\left(D_{S}\right) \mid C(\underline{s})\right]}{\operatorname{Pr}\left[L\left(D_{S}\right)\right]} \tag{I.125}
\end{equation*}
$$

In equation $(I .125), L\left(D_{S}\right)$ denotes survival when \underline{S} attains all possible values in D_{S}, and $C(\underline{s})$ denotes collapse under the load s.

The probability ratio in equation (I.125) can be computed conveniently after formulating the proof-loading problem in the space of the basic variables which, for simplicity of notations, we assume to coincide with \underline{R} and S. The following parallels the generalized analysis and the two-dimensional representation of the fundamental problem in Paragraph I.4.1.

Let $D_{R}(\underline{s})$ be the set of safe realizations of \underline{R} if $\underline{S}=\underline{s}$. Then, conditional on survival under proof loading, \underline{R} belongs with probability 1 to the region

$$
D_{R}\left(D_{S}\right)=\left\{\underline{r} \mid \underline{r} \in D_{R}(\underline{s}) \text { for all } \underline{s} \in D_{S}\right\}
$$

and the last two probabilities in equation (I.125) can be written as:

$$
\begin{aligned}
& \operatorname{Pr}\left[L\left(D_{S}\right)\right]=1-P_{f_{P L}}=\int_{D_{R}\left(D_{S}\right)} d F_{b}(\underline{r}) ; \\
& \operatorname{Pr}\left[L\left(D_{S}\right) \mid C(\underline{s})\right]=\int_{D_{R}\left(D_{S}\right) \cap D_{R}^{C}(\underline{s})} d F_{b}(\underline{r}) ;
\end{aligned}
$$

where the upperscript C denotes complementation. One can also compute the posterior PDF of \underline{R}, being:

$$
f_{a}(\underline{r})= \begin{cases}0 & , \text { if } \underline{r} \notin D_{R}\left(D_{S}\right) \tag{I.126}\\ \\ f_{b}(\underline{r}) \cdot\left\{\operatorname{Pr}\left[L\left(D_{S}\right)\right]\right\}^{-1}, & \text { otherwise . }\end{cases}
$$

It is interesting to note that in general the posterior density function (I.126) cannot be written as the product of n_{R} marginal densities, even if a priori the components of \underline{R} were independent. Stated differently, an informative experiment $\left(\mathrm{P}_{\mathrm{f}_{\mathrm{PL}}} \neq 0\right)$ introduces dependence between the resistance parameters. For example, consider
the case of two unknown resistance parameters R_{1} and R_{2}, and of two random load parameters S_{1} and S_{2}. During proof loading the loads are varied along the perimeter of (and possibly inside) the quadrilateral $A B C D$ in Figure 22. The boundaries of the safe regions $D_{R}(A), D_{R}(B), D_{R}(C), D_{R}(D)$ corresponding to the corner load points are shown in Figure 23. The intersection of these regions defines $D_{R}\left(D_{S}\right)$ if survival under $\underline{S}=\underline{S}_{1}$ and under $\underline{S}=\underline{s}_{2}$ implies survival under all convex combinations $\underline{s}=a \underline{s}_{1}+(1-a) \underline{s}_{2} ; 0 \leq a \leq 1$. In the same figure the solid lines indicate the prior marginal densities of R_{1} and R_{2}, and the dashed lines indicate qualitatively the corresponding posterior densities, conditional on survival. The posterior densities of $R_{1} \mid R_{2}$ and $R_{2} \mid R_{1}$ for a given prior joint density can also be found easily (Veneziano, 1972).

I.5. DESIGN OF PROOF LOADING EXPERIMENTS

Using the Bayesian analysis developed in Section I. 4 it is straightforward to give a formal definition of the optimal proof loading experiment. As in any problem of decision making under risk two basic elements define the optimal experiment:
(i) The set of the feasible actions (here the set of feasible proof load experiments), A, with
generic action a_{PL}.
(ii)

An expected utility function $U\left(a_{P L}\right)$, which defines a preference order among the feasible actions. Typical arguments of $U(\cdot)$ are the prior, the posterior and the proof loading failure probabilities $\mathrm{P}_{\mathrm{f}_{\mathrm{b}}}, \mathrm{P}_{\mathrm{f}_{\mathrm{a}}}, \mathrm{P}_{\mathrm{f}_{\mathrm{PL}}}$; the cost of the experiment $C\left(a_{\mathrm{PL}}\right)$; and the cost C_{0} of making no experiment. The expected utility function depends also on the level (e.g., materials, elements, subsystem, system) at which the experiment is made, and on the policy of replacing or not the parts of the system which survived the experiment.

Then the optimal experiment $a_{P L}^{*}$ is defined to be the action in A which maximizes the expected utility.

If several experiments are made sequentially (for instance one on each element of a system) the proof load may vary from experiment to experiment, possibly accounting for previous results. In this case one has to optimize a proof loading strategy, say by defining the best rule of the type:

$$
a_{P L_{n}}^{*}=\hat{a}_{n}\left(a_{P L_{1}}^{*}, a_{P L_{2}}^{*}, \ldots, a_{P L_{n-1}}^{*}, I_{1}, I_{2}, \ldots, I_{n-1}\right)
$$

where I_{j} is an indicator of survival $\left(I_{j}=0\right)$ and failure $\left(I_{j}=1\right)$ for the $j^{\text {th }}$ experiment. In this enlarged framework one might include the number of experiments in the set of design variables.

The problem of optimizing a single proof load experiment was discussed by Sexsmith (1969) and by Shinozuka (1969) with respect to the fundamental case in its classical formulation (see Paragraph I.4.1). The writer is not aware of studies of optimal proof loading experiments in a more general context, with the exception of Bouton, et al. (1967) and Campion, et al. (1972) who examine the problem at a rather qualitative level.

Conceptually, the optimization of a single proof loading experiment has the same degree of difficulty as finding the optimal design of a structural system for maximum expected utility. In the proof loading problem the definition of the optimal experiment $a_{P L}^{*}$ requires identifying the optimal set $D_{R}\left(D_{S}\right)$ in which the posterior resistance density is non-zero (see Paragraph I.4.3); in the second problem the optimal design of a structural system consists in finding the optimal safe region D in $\underline{R} \underline{S}$ space (Gavarini and Veneziano, 1972). In both cases the objective is an implicit function of the design variables. Unfortunately these features make the problem practically unsolvable in its generality. Manageable formulations can be arrived at in
particular situations; a simple, yet nontrivial case is studied in Example 7.

EXAMPLE 7. OPTIMALI PROOF LOADING OF A SIMPLY-SUPPORTED, ONE-SPAN BRIDGE DECK

In some countries (e.g., in Italy), before opening a bridge to the traffic, the structure has to be inspected and proof loaded under load intensities which are close to the design values. In order to achieve high stresses in some parts of the deck, it is common practice to load the bridge with the maximum possible eccentricity. The "best" combination of proof load intensity and eccentricity is studied here with reference to a simply-supported, singlespan bridge.
(a) Mechanics

The relevant structural elements of the deck are shown in Figure 24: the reinforced concrete slab is supported by four (statistically) identical beams, which in turn are connected by transverse beams to ensure a proper distribution of the loads. The response of the bridge to concentrated loads depends on the torsional rigidity of the deck, on the flexural rigidity of the beams and on the stiffness of the transversal connectors.

Simplified linear elastic models are often used in practice: at one extreme, the infinite-torsional-stiffness model (equiripartition of the load among the longitudinal beams); at the other extreme the independent-beams model in which each longitudinal beam carries completely and exclusively the loads applied in its "influence region". The influence regions cover the total surface of the deck without overlapping. Other more realistic models assume uneven load distributions among the beams. A simple and useful idealization views the transverse beams as infinitely rigid connections. Instead, the deck has finite torsional stiffness due to the finite bending stiffness of the longitudinal beams (the torsional stiffnesses of the beams and of the slab are neglected).
(b) Safe regions

Consider a concentrated load P applied at midspan, with eccentricity X from the deck centerline. If the load carrying capacities of the individual beams are the same, say $P_{M_{1}}=P_{M_{2}}=P_{M_{3}}=P_{M_{4}}=P_{M^{\prime}}$, the safe regions in the plane $|X| P$ corresponding to the three models introduced above are shown in Figure 25. For each model, survival and failure correspond respectively to points inside and outside its safe region.

For P being the resultant of a load at midspan which is uniformly distributed in the transversal interval
$[(2 x-e / 2), e / 2]$ if $x \geq 0$, and in the transversal interval $[-\ell / 2,(2 x+\ell / 2)]$ if $x<0$, the safe regions are shown in Figure 26. (Only the safe region corresponding to the in-dependent-beams model is modified with respect to Figure 25.)

Focusing now on the infinitely-rigid-transversalbeams model, the load carried by the most stressed beam is, for both concentrated and distributed loads:

$$
S=P / 4+0.3 P \frac{|x|}{d}
$$

where d is the distance between adjacent beams. Neglecting failure for negative moments the safe region is defined by the inequality:

$$
P-\frac{P_{M}}{0.25+0.3 \frac{X X}{d}} \leq 0,(P \geq 0)
$$

A sketch of the safe region in $P, P_{M},|x|$ space is shown in Figure 27. (The region is truncated in the positive direction of the P_{M} axis for representation convenience.)

If the beam resistances are allowed to be different, the safe region D is properly defined in a space of higher dimension. An idea of the geometry of these regions can be given by drawing conditional safe regions (sections of D).

For instance, suppose that failure may be caused by excessive loading of the edge beams, but not of the interior beams. The maximum load carrying capacities of the edge beams are $\mathrm{P}_{\mathrm{M}_{1}}$ and $\mathrm{P}_{\mathrm{M}_{4}}$. For any given value of $\mathrm{P}_{\mathrm{M}_{1}}$ the safe region in $\mathrm{P}, \mathrm{P}_{\mathrm{M}_{4}}$, X space is sketched in Figure 28. (Again, the safe region is unlimited in the positive $\mathrm{P}_{\mathrm{M}_{4}}$ direction.)

Both regions in Figures 27 and 28 are concave.
(c) Probabilistic model for resistances and the effect of surviving a proof load experiment

The following analysis applies to failure being caused by overloading either one of the edge beams. A priori the maximum load carrying capacities $P_{M_{1}}$ and $P_{M_{4}}$ are assumed to follow a bivariate Extreme type III distribution (Gumbel, 1958, 1965), with CDF:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b}_{14}}\left(\mathrm{P}_{\mathrm{M}_{1}}, \mathrm{P}_{\mathrm{M}_{4}}\right)=\exp \left\{-\left[\left(-\log \mathrm{F}_{\mathrm{b}_{1}}\left(\mathrm{P}_{\mathrm{M}_{1}}\right)\right)^{\left.\left.\mathrm{m}_{+}\left(-\log \mathrm{F}_{\mathrm{b}_{4}}\left(\mathrm{P}_{\mathrm{M}_{4}}\right)\right)^{\mathrm{m}_{1}}\right]^{1 / \mathrm{m}}\right\} ; \mathrm{m}>1,1, ~}\right.\right. \tag{I.127}
\end{equation*}
$$

where the prior marginal CDF's $\mathrm{F}_{\mathrm{b}_{1}}(\cdot)$ and $\mathrm{F}_{\mathrm{b}_{4}}(\cdot)$ have the same Extreme type III form:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b}_{1}}(\mathrm{p})=\mathrm{F}_{\mathrm{b}_{4}}(\mathrm{p})=\mathrm{F}_{\mathrm{b}}(\mathrm{p})=1-\mathrm{e}^{-(\mathrm{p} / \mathrm{u})^{K}} ; \mathrm{P} \geq 0, K>0 \tag{I.128}
\end{equation*}
$$

The expected values and the variances of the marginal distributions are:

$$
\begin{gathered}
E\left[P_{M_{1}}\right]=E\left[P_{M_{4}}\right]=u \Gamma(1+1 / K), \\
\sigma_{b_{1}}^{2}=\sigma_{b_{4}}^{2}=u^{2}\left[\Gamma(1+2 / K)-\Gamma^{2}(1+1 / K)\right] .
\end{gathered}
$$

m, u and K are parameters of the joint distribution; m controls the correlation coefficient, which is zero for $m=1$ (see equation I.127).

Survival to a proof load experiment with parameters $P=P_{P L}$ and $X=X_{P L}$ assures that the resistance point ($\mathrm{P}_{\mathrm{M}_{1}}, \mathrm{P}_{\mathrm{M}_{4}}$) belongs to the intersection of the safe region D in $P, X, P_{M_{1}}, P_{M_{4}}$ space with the linear variety $\left(P=P_{P L}\right.$; $\left.X=X_{P L}\right)$. Such intersection, denoted $D\left(P_{P L}, X_{P L}\right)$, is an open rectangle in the plane $\mathrm{P}_{\mathrm{M}_{1}}, \mathrm{P}_{\mathrm{M}_{4}}$ (Figure 29). The resistances P_{1}^{*} and P_{4}^{*} in Figure 29 are defined:

$$
\begin{align*}
& P_{1}^{*}=\max \left\{0, P_{P L} \cdot\left(0.25-0.3 \frac{x_{P L}}{d}\right)\right\} ; \\
& P_{4}^{*}=\max \left\{0, P_{P L} \cdot\left(0.25+0.3 \frac{x_{P L}}{d}\right)\right\} \cdot \tag{I.129}
\end{align*}
$$

Conditional on proof load survival the joint PDF of the resistances is

$$
f_{a}\left(P_{M_{1}}, P_{M_{4}}\right)= \begin{cases}0 \quad, \text { if }\left(P_{M_{1}}, P_{M_{4}}\right) \notin D\left(P_{P_{L}}, X_{P L}\right) ; ~ \\ \frac{f_{b}\left(P_{M_{1}}, P_{M_{4}}\right)}{1-F_{b}\left(P_{1}^{*}\right)-F_{b}\left(P_{4}^{*}\right)+F_{b_{14}}\left(P_{1}^{*}, P_{4}^{*}\right)} & \text {, otherwise. }\end{cases}
$$

For later use we give also the prior and the posterior probabilities that the resistance of beam 1 exceeds P_{1} and that simultaneously the resistance of beam 4 exceeds P_{4} :

$$
\begin{gathered}
\operatorname{Pr}\left\{\left(\mathrm{P}_{\mathrm{M}_{1}}>\mathrm{P}_{1}\right) \cap\left(\mathrm{P}_{\mathrm{M}_{4}}>\mathrm{P}_{4}\right)\right\}=1-\mathrm{F}_{\mathrm{b}}\left(\mathrm{P}_{1}\right)-\mathrm{F}_{\mathrm{b}}\left(\mathrm{P}_{4}\right)+\mathrm{F}_{\mathrm{b}_{14}}\left(\mathrm{P}_{1}, \mathrm{P}_{4}\right) \\
=e^{-\left(\mathrm{P}_{1} / \mathrm{u}\right)^{K}+e^{-\left(\mathrm{P}_{4} / \mathrm{u}\right)^{K}}-1}
\end{gathered}
$$

$$
+\exp \left(-\left\{\left[-\log \left(1-e^{-\left(P_{1} / u\right)^{K}}\right)\right]^{m}+\left[-\log \left(1-e^{-\left(P_{4} / u\right)^{K}}\right)\right]^{m}\right\}^{1 / m}\right) ;
$$

(I.130a)

$$
\begin{aligned}
& \operatorname{Pr}_{a}\left\{\left(P_{M_{1}}>P_{1}\right) \cap\left(P_{M_{4}}>P_{4}\right)\right\}=1-F_{a_{1}}\left(P_{1}\right)-F_{a_{2}}\left(P_{4}\right)+F_{a_{14}}\left(P_{1}, P_{4}\right) \\
& =P_{f_{b}}\left\{\left(P_{M_{1}}>\bar{P}_{1}\right) \cap\left(P_{M_{4}}>\bar{P}_{4}\right)\right\} /\left(e^{-\left(P_{1}^{*} / u\right)^{K}}+e^{-\left(P_{4}^{*} / u\right)^{K}-1}\right. \\
& +\exp \left(-\left\{\left[-\log \left(1-e^{-\left(P_{1}^{*} / u\right)^{K}}\right)\right]^{m}+\left[-\log \left(1-e^{\left.\left.\left.-\left(P_{4}^{*} / u\right)^{K}\right)\right]^{m}\right\}}\right\}\right)\right.\right.
\end{aligned}
$$

(I.130b)
where $\bar{P}_{i}=\max \left\{\mathrm{P}_{\mathrm{i}}, \mathrm{P}_{i}^{*}\right\}$, $i=1,4 ; \mathrm{P}_{1}^{*}, \mathrm{P}_{4}^{*}$ are defined by equation (I.129).
(d) Probabilistic model for the maximum service loads

We assume that the maximum loads sustained by the edge beams during the design lifetime, P_{1}^{M} and P_{4}^{M}, have a joint Extreme type I distribution (of the maximum type). Following Gumbel (1965):

$$
\begin{gather*}
F\left(P_{1}^{M}, P_{2}^{M}\right)=\exp \left\{-\left[e^{-n \alpha_{1}}\left(P_{1}^{M}-u_{1}\right)+e^{-n \alpha_{4}\left(P_{4}^{M}-u_{4}\right)}\right]^{1 / n}\right\} \\
n \geq 1 ; \quad \alpha_{1}, \alpha_{4}>0 \tag{I.131}
\end{gather*}
$$

In terms of the reduced variables:

$$
r_{1}=\alpha_{1}\left(P_{1}^{M}-u_{1}\right) ; \quad r_{4}=\alpha_{4}\left(P_{4}^{M}-u_{4}\right)
$$

the density function is:

$$
\begin{align*}
f\left(r_{1}, r_{4}\right)= & e^{-n\left(r_{1}^{+} r_{4}\right)}\left(e^{-n r_{1}}+e^{-n r_{4}}\right)^{-2+1 / n} \\
& \cdot\left\{n-1+\left(e^{\left.\left.-n r_{1}+e^{-n} r_{4}\right)^{1 / n}\right\}}\right.\right. \\
& \cdot \exp \left\{-\left(e^{\left.\left.-n r_{1}+e^{-n} r_{4}\right)^{1 / n}\right\}}\right.\right. \tag{I.132}
\end{align*}
$$

$n, \alpha_{1}, \alpha_{4}, u_{1}, u_{4}$ are parameters of the distribution. The marginal mean values and standard deviations are (Gumbel, 1965) :

$$
\begin{aligned}
& E\left[P_{i}^{M}\right] \approx u_{i}+0.577 / \alpha_{i}, i=1,4 ; \\
& \sigma P_{i}^{M}=\frac{\pi}{\sqrt{6} \alpha_{i}} \quad, i=1,4 .
\end{aligned}
$$

n controls the correlation coefficient, whose value is (Oliveira, 1961):

$$
\rho=1-n^{-2} .
$$

(e) Failure probabilities

The following equations are self-explanatory. Prior probability of failure:

$$
\begin{align*}
P_{f_{b}}= & \int_{-u_{1} \alpha_{1}}^{\infty} \int_{-u_{4} \alpha_{4}}^{\infty} f\left(r_{1}, r_{4}\right)\left\{1-P_{r_{b}}\left[\left(P_{M_{1}}>\frac{r_{1}}{\alpha_{1}}+u_{1}\right) \cap\right.\right. \\
& \left.\left.\left(P_{M_{4}}>\frac{r_{4}}{\alpha_{4}}+u_{4}\right)\right]\right\} d r_{1} \text { d } r_{4} . \tag{I.133}
\end{align*}
$$

Posterior probability of failure:

$$
\begin{align*}
P_{f_{a}}= & \int_{-u_{1} \alpha_{1}}^{\infty} \int_{-u_{4} \alpha_{4}}^{\infty} f\left(r_{1}, r_{4}\right)\left\{1-P_{r_{a}}\left[\left(P_{M_{1}}>\frac{r_{1}}{\alpha_{1}}+u_{1}\right) \cap\right.\right. \\
& \left.\left.\left(P_{M_{4}}>\frac{r_{4}}{\alpha_{4}}+u_{4}\right)\right]\right\} d r_{1} d r_{4} . \tag{I.134}
\end{align*}
$$

Proof loading probability of failure:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{f}_{\mathrm{PL}}}=1-\mathrm{Pr}_{\mathrm{b}}\left[\left(\mathrm{P}_{\mathrm{M}_{1}}>\mathrm{P}_{1}^{*}\right) \cap\left(\mathrm{P}_{\mathrm{M}_{4}}>\mathrm{P}_{4}^{*}\right)\right] \tag{I.135}
\end{equation*}
$$

For the probabilities $\operatorname{Pr}_{b}[\cdot]$ and $\operatorname{Pr}_{\mathrm{a}}[\cdot]$, see equations (I.130).
(e) Numerical computations

For the problem under study the proof loading set D_{S} (see Paragraph I.4.3) coincides with the interval $\left[\left(X_{P L}, 0\right),\left(X_{P L}, P_{P L}\right)\right]$ in $X P$ space, so that $X_{P L}$ and $P_{P L}$ define completely the experiment. Instead of specifying a utility function and carrying out the optimization directly, one can solve the problem parametrically by calculating $P_{f_{b}}$, and finding $P_{f_{a}}$ and $P_{f_{P L}}$ as functions of $X_{P L}$ and $P_{P L}$. Since $P_{f_{a}}$ depends implicitly on the design variables (equation I. 134), a discrete parametrization was made with respect to $X_{P L}$ and $P_{P L}$, using the following distribution parameters for the resistances and the loads:

In the joint CDF of the resistances, equation (I.127):

$$
\begin{aligned}
& \mathrm{K}=10 \Rightarrow \mathrm{~V}_{1}=\mathrm{V}_{4} \approx 0.12, \\
& \mathrm{u}=95 \Rightarrow \mathrm{E}_{\mathrm{b}}\left[\mathrm{P}_{\mathrm{M}_{1}}\right]=\mathrm{E}_{\mathrm{b}}\left[\mathrm{P}_{\mathrm{M}_{4}}\right] \approx 90.3 \mathrm{kips} \\
& \mathrm{~m}=2
\end{aligned}
$$

where V_{j} denotes the coefficient of variation of $P_{M_{j}}$. In the joint CDF of the loads, equation (I.131):

$$
\begin{aligned}
& \alpha_{1}=\alpha_{4}=0.2419 \Rightarrow \sigma_{P_{j}^{M}}^{M}=5.3 \mathrm{kips} \\
& u_{1}=u_{4}=50.61 \Rightarrow E\left[P_{j}^{M}\right]=53 \mathrm{kips} \\
& u=\sqrt{2} \Rightarrow \rho=0.50
\end{aligned}
$$

Corresponding to these parameter values, the prior failure probability is, from equation (I.133), $\mathrm{P}_{\mathrm{f}_{\mathrm{b}}}=0.0095$. Since it is practically impossible to apply heavy concentrated loads, the intensity of the proof load resultant, $P_{P L}$, was constrained more severely for larger eccentricities (Figure 30a). Within the set of allowable experiments shown in this figure, six alternative proof tests with different eccentricities and load intensities were analyzed. The intensity and the position of the resultant are shown in Figure $30, \mathrm{~b}$ through g , for the six cases. The cost of making the experiment increases with P_{PL}, but is rather insensitive to $X_{p L}$ within the region of admissible designs. Also, the cost does not increase significantly with the number of proof loading experiments which make use of the same load $P_{\text {PL }}$ with different eccentricities;
for this reason, two additional experiments were considered, in which the bridge was loaded twice with the maximum allowed eccentricities (Figure 30, h and i). The proof loading failure probabilities corresponding to the eight cases are collected in Table 6. From these results, one can deduce that:
(i) Small proof load intensities (say $P_{P L}<100$ kips) have little effect on the posterior probability of failure (cases l, $2,3)$.
(ii) For larger proof load intensities (say $P_{P L} \approx 200$ kips) the posterior probability of failure is highly sensitive to the eccentricity (compare 4 with 5), decreasing with $\left|x_{\text {PL }}\right|$. Although not shown directly by the table, for large P_{PL} (say $\mathrm{P}_{\mathrm{PL}}>300 \mathrm{kips}$) the opposite dependence of $\mathrm{P}_{\mathrm{f}_{\mathrm{a}}}$ on $\left|\mathrm{X}_{\mathrm{PL}}\right|$ is expected.
(iii) Experiments with heavier loads (within the range considered here) and smaller eccentricities are more effective (compare 5 with 6).
(iv) Performing double tests with maximum eccentricities is highly rewarded (compare 3 with 7, and 5 with 8).

Experiment	Fig. 30	$X_{P L}(f t)$	P_{PL} (kips)	$p_{f_{\text {PL }}}$	p_{f}
1	b	0	100	0.0000019	0.0095
2	c	5	100	0.00057	0.0089
3	d	10	100	0.0220	0.0045
4	e	0	200	0.0031	0.0066
5	f	5	200	0.441	0.00074
6	g	0	300	0.146	0.00033
7	h	± 10	100	0.040	0.0014
8	i	± 5	200	0.568	0.000016

Table 6. Example 7: Proof loading failure probability $p_{f_{P L}}$ and posterior failure probability $\mathrm{p}_{\mathrm{f}_{\mathrm{a}}}$. (Prior failure probability: $\mathrm{p}_{\mathrm{f}_{\mathrm{b}}}=0.0095$.) Refer to Figure 30 for the definition of the experiments.
$X_{P L}=$ proof load eccentricity.

Possibly using a larger set of experiments, and with a given optimality criterion, the decision maker can close the (nearly) optimal proof test parameters.

REFERENCES

1. Anderson, R.G. (1972): "Reduction of Uncertainty in Structural Design and Decision Making by First-Order Bayesian Information Analysis". M.S. Thesis, Dept. of Civil Engineering, M.I.T.
2. Aoki, M. (1967): Optimization of Stochastic Systems; Topics in Discrete-Time Systems. Academic Press.
3. Balakrishnam, A.V. (1964): "A General Theory of Nonlinear Estimation Problems in Control Ssytems". J. Math. Anal. Appl., 8, No. 1, pp 4-30.
4. Bouton, I.; Fisk, M.;Trent, D.J.; Oder, H.S.; Hung, F.C. and Harris, L.A. (1967): "Quantitative Structural Design Criteria by Statistical Methods", Vol. II, Space Division, North American Rockwell Corporation.
5. Box, G.E.P. and Tiao, G.C. (1968): "A Bayesian Approach to Some Outlier Problems". Biometrika, 55, pp 119-129.
6. Box, G.E.P. and Tiao, G.C. (1973): Bayesian Inference in Statistical Analysis. Addison-Wesley.
7. Bras, R.L.; Veneziano, D.; Lenton, R.L.; RodriguezIturbe, I., and Moore, S. (1974): "Notes on the Optimal Design of Sampling Networks, with an Application to Regional Rainfall Estimation". Res. Report, R.M. Parson Lab., M.I.T., September, 1974.
8. Bryson, A.E. and Ho, Y.C. (1969): Applied Optimal Control. Ginn and Company.
9. Campion, M.C.; Hanson, L.C.; Morcock, D.S., et al. (1972): "Implementation Studies for a ReliabilityBased Static Strength Criteria System". Technical Report AFFDL-TR-71-178, Vol. I.
10. Churchman, C.W. (1961): Prediction and Optimal Decision - Philosophical Issues of a Science of Values. Prentice-Hall, Englewood Cliffs, N.J.
11. DeGroot, M.H. (1970): Optimal Statistical Decisions. McGraw-Hill, New York.
12. Deutsch, R. (1965): Estimation Theory. Prentice-Hall, New York.
13. Diaz Padilla, J. and Vanmarcke, E.H. (1973): "Settlement Prediction: a Probabilistic Approach". Res. Report R73-40, Dept. of Civil Engineering, M.I.T., August, 1973.
14. Edwards, W.; Lindman, H. and Savage, L.J. (1963): "Bayesian Statistical Inference for Psychological Research". Psychological Rev., 70, pp 193-242.
15. Fedorov, V.V. (1972): Theory of Optimal Experiments. Academic Press, New York.
16. Fishburn, P.C. (1968): "Utility Theory". Management Sci., 14, pp 335-378.
17. Gavarini, C. and Veneziano, D. (1972): "Minimum Weight Limit Design under Uncertainty". Meccanica, 7, No. 2 pp 98-104.
18. Gumbel, E.J. (1958): Statistics of Extremes. 2nd ed. New York: Columbia University Press.
19. Gumbel, E.J. (1965): "Two Systems of Bivariate Extremal Distributions". 35th Session of the International Statistical Institute, Beograd, No. 69.
20. Gupta, S.S. (1963): "Probability Integrals of Multivariate Normal and Multivariate t". Ann. Math. Stat., 34, pp 792-828.
21. Hampton, J.M.; Moore, P.G. and Thomas, H. (1973): "Subjective Probability and its Measurement". Journal Royal Statist. Soc. A, 136, Part 1.
22. Householder, A.S. (1953): Principles of Numerical Analysis. McGraw-Hill.
23. Liebelt, P.B. (1967): An Introduction to Optimal Estimation. Addison-Wesley.
24. Lindley, D.V. (1971): Bayesian Statistics, a Review. Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, Pa.
25. Matern, B. (1960): Spatial Variation. Comm. Swed. Forestry Res. Inst. 49.
26. Raiffa, H. (1968): Decision Analysis - Introductory Lectures on Choices under Uncertainty. Addison-Wesley.
27. Raiffa, H. and Schlaifer, R. (1961): Applied Statistical Decision Theory, Division of Research, Graduate School of Business Administration, Harvard University, Cambridge, Mass.
28. Rosenblueth, E. (1973): "Ethical Optimization in Engineering", Proc. Am. Soc. of Civil Engineers, Vol. 99, No. Pरि2, pp 223-243.
29. Sage, A.P. and Melsa, J.L. (1971): Estimation Theory with Applications to Communication and Control. McGrawHill.
30. Sexsmith, R.G. (1969): "Structural Reliability Decisions Using Bayesian Techniques". Proceedings ASCE-EMD Specialty Conference at Purdue University on Probabilistic Concepts and Methods in Engineering.
31. Shinozuka, M. (1969): "Structural Safety and Optimum Proof Load". Technical Report No. 2, Dept. of Civil Engineering and Engineering Mechanics, Columbia University.
32. Shinozuka, M, Yang, J.N. and Heer, E. (1969): "Optimum Structural Design Based on Reliability Analysis". Proceedings of the Eighth International Symposium on Space Science and Technology, August 25-30, Tokyo, Japan.
33. Slepian, D. (1962): "The One-Sided Barrier Problem for Gaussian Noise". Bell System Tech. J., 41, pp 463-501.
34. Veneziano, D. (1972): "Calcolo a rottura probabilistico con più parametri casuali". Giornale del Genio Civile, No. 2, pp 129-149.
35. Zellner, A. (1971): An Introduction to Bayesian Inference in Econometrics. Wiley \& Sons.

Figure 1. Reliability of an N-series system with equicorrelated normal element resistances under a deterministic load $\mathrm{S} . \rho_{\mathrm{M}}=$ common modal (elements resistances) correlation coefficient; $\beta=$ normalized modal safety margin $=\left(S-R_{i}\right) / \sigma_{i}$. Refer to Example 1 in the text.

(a)

GROUP \rightarrow
(b)

Figure 2. (a) n-parallel system
(b) n-series-parallel system with N parallel groupings of n / N bars

Figure 3. Informativeness of equicorrelated noisy measurements in scalar estimation.
$\rho=$ common correlation coefficient; $\sigma^{2}=$ prior estimation error variance; $m=$ Fisher information "matrix", equation (I.54); $m_{\infty}=$ lim m. Refer to Example 2 in the text.

Figure 4. Comparison of the informativeness measure σ^{2} m of alternative experiments; for a description of the experiments see Example 2 in the text.

Figure 5. Simply supported 3-bars truss.
$\left\{\delta_{1}\right\}=$ set of compatible modal displacements;
$\left\{\mathrm{F}_{\mathrm{i}}\right\}=$ set of active external loads.
Example 3 in the text.

Figure 6. Example 3 (see also Figure 5). Relative effectiveness of measuring twice the hardness of the same bar versus measuring once the hardness of bar 1 , and once the hardness of bar 2. $\rho_{H}=$ correlation coefficient of measurement errors. For the definitions of α^{2} and of a, see equations (I.59) and (I.73). The first experiment is more informative in the shaded region; the second experiment is more informative elsewhere.

Figure 7. Six alternative load-deflection (stiffness) experiments considered in Example 3.

Figure 8. Informativeness of the experiments in Figure 7 as a function of the variance ratio $c ; ~ n o ~ m a n u-~$ facturing error (perfect stiffness correlation).

Figure 9. Informativeness of the experiments in Figure 7 as a function of the variance ratio c; manufacturing error variance $=0.25 \mathrm{X}$ material stiffness variance (stiffness correlation coefficient $=0.8$).

Figure 10. Informativeness of the experiments in Figure 7 as a function of the variance ratio c; manufacturing error variance $=$ material stiffness variance (stiffness correlation coefficient = 0.5).

Figure 11. Informativeness versus cost of three alternative ezperiments. Each point refers to a specific facility and to a fixed number of measurements with that facility. Example 4 in the text.

Figure 12. Discrete sampling of a two-dimensional continuous function; Example 5 in the text.

- - discretization points,
() - measurement points.

Figure 13. The fundamental case of proof loading in the classical formulation.

Figure 14. Generalized formulation of the fundamental problem. $G_{b}(S), G_{a}(S)=$ prior and posterior probability $o f$ failure, given S.

Figure 15a. Two-dimensional representation of the fundamental problem.

Figure 15b. Prior and posterior resistance CDF and prior and posterior failure functions.

Figure 16. Conditional densities for the model in Paragraph I.4.2.

Figure 17. Unconditional densities for the model in Paragraph I.4. ${ }^{2}$. Notation: (.) $\mathrm{G}_{+}(\cdot .)^{\mathrm{M}}=$ the density is mostly contributed by "gross" + "minor" errors in (•) and by only "minor" errors in (..).
(For simplicity onlyafew error combinations are indicated explicitly.)

Figure 18. Posterior failure probability of an n-span bridge after survival of m spans under proof loading. $S_{D}=$ design load; $S_{P L}=$ proof load intensity.

Figure 19. Posterior failure probability of a 5-span bridge after survival of m spans under proof loading.

Figure 20. Posterior failure probability of a lo-span bridge after survival of m spans under proof loading.

Figure 2l. Posterior failure probability of a 20-span bridge after survival of m spans under proof loading.

Figure 22. During proof loading $S=\left[S_{1}, S_{2}\right]$ is given values inside the quadrilaterai $A B C D$, including the corner load points.

Figure 23. A posteriori and conditional on survival, R belongs to $D_{R}\left(D_{S}\right)$, intersection of the regions $D_{R}(A), D_{R}(B), D_{D}^{S}(C), D_{R}(D)$. Also indicated are the prior and the posterior marginal distributions of the resistances R_{1} and R_{2}.

Figure 24. Structural members of the l-span bridge deck in Example 7.

Figure 25. Example 7. Safe regions for concentrated loads;
1 - infinite-torsional stiffness-model;
2 - independent-beams-model;
3 - infinitely-rigid-transversal beamsmodel.

211

Figure 26. Example 7. Safe regions for distributed loads. 1 - infinite-torsional stiffness-model;
2 - independent-beams-model;
3 - infinitely-rigid-transversal beams-model.

Figure 27. Safe region in $|X| P P_{M}$ space; $P_{M}=$ common beams resistance; infinitely-rigld-transversal beams-model.

Figure 28. Unequal beams resistances. Intersection of the safe region at a fixed $\mathrm{P}_{\mathrm{M}_{1}}$ value.

Figure 29. Intersection of D with the linear variety: $\left\{\begin{array}{l}P=P_{P L}, \\ X=X_{P L} .\end{array}\right.$

$X_{P L}=0$

$$
\mathrm{X}_{\mathrm{PL}}=10^{\prime}
$$

$X_{P L}=5^{\prime}$
(f)

(h)

(i)

Figure 30. Feasible proof load design region, (a); and eight possible experiments, (b) through (i).

CHAPTER II

INDEPENDENT MODELS

The estimation problems studied in Chapter I are characterized by a wait-and-see attitude: first the state of nature specifies itself, then it is measured experimentally. The present chapter focuses on a different class of problems in which statistical evidence is used. Common to these problems is that the experiment does not measure directly the state of nature, either because reference is to the state of nature at a future time, or because direct measurements of it would have undesired consequences. Examples of the former case are the various meteorological loadings on a structure. As an example of the latter situation, one would not make destructive tests on structural elements which are to be used later for construction; however, one can collect useful information by testing destructively other elements from the same population.

The availability of indirect experimental information of this type is characteristic of decision problems in which the "future" has to be predicted from the "past". In mathematical terms the "past" is contained in the outcome of an experiment E, and the "future" is the outcome of an hypothetical future experiment F. Any structural design requires
prediction both of the properties of the system not yet in existence, and of the environment in which it will be operating.

Probabilistic models. Consider first the case in which E and F consist of, respectively, past and future realizations of the same stationary, independent (white) sequence $\left\{Y_{i}\right\}$. Indeed, because of the whiteness assumption, there is no need for keeping the notion of time: the "past" is simply a set of independent random variables with the same probability distribution as any "future" realization (consider the foregoing example of making destructive tests on structural members). Conditional on the population distribution $F(Y)$ the "past" and the "future" are independent, and in fact if $F(\cdot)$ is known there is no reason for collecting statistical data. On the contrary, if $F(\cdot)$ is unknown, observing the past is informative on the distribution of the sequence, and so also on its future realizations. The case of E and F being regression experiments with independent residuals fits the same scheme since the notion of time is again irrelevant. This type of prediction problem is studied in this chapter.

A different situation is faced when the observed past and the predicted future belong to the same realization of a process with memory. In this case observation of the
past is informative on the future in two ways:
(i) If the process is ergodic or if data are available from different realizations, one can estimate the probabilistic structure of the process (mean value, autocovariance function, and so on), just as discussed above for white sequences.
(ii) The available data are used to estimate the past and the present and, through the memory properties of the process, also to reduce the prediction error. If the probabilistic structure of the process is given a priori, past measurements are used for prediction only in the second modality; this brings one back to an estimation problem of the type discussed in Chapter I.

Problems of prediction from first-order autoregressive processes are studied in Chapter III.

It is perhaps worth saying that estimation and prediction are not mutually exclusive notions. In the example of testing structural members, destructive tests on members from the same population and nondestructive tests on the members used for construction can be combined to reduce most effectively the uncertainty of the resistance of the latter group. A numerical example will be made in Paragraph II.2.2.

Example 6 in Chapter I dealt with a similar situation.

Prediction in restricted and extended forms. The word "prediction" is used in the statistical literature with different meanings. As remarked by Aitchison and Sculthorpe (1965), most of the time "prediction" is given the meaning of "prediction inference", the purpose being to make statements about the outcome of F . Denote this outcome \underline{Y}. Based on a past experiment E, prediction in this sense may consist in finding either the best point predictor $\hat{\underline{Y}}(E)$, or a prediction region $D_{P}(E)$ in Y-space containing the outcome of F with given probability P, or the full distribution of \underline{Y} conditional on the outcome of E (Bayesian approach). We call this the restricted form of prediction. The restricted form is appropriate for structural reliability prediction.

The second way in which one can make statistical predictions is to associate a utility measure $U(D, \underline{Y})$ with each future outcome \underline{Y} and with each prediction region D in Y-space. Then the problem is to define D as a function of the outcome of E such that the expected utility is maximized. Clearly the optimal decision $D(E)$ depends on the utility function. For instance, in a structural design problem $\mathrm{U}(\mathrm{D}, \mathrm{Y})$ might be defined as follows:

$$
U(D, Y)= \begin{cases}\bar{U}(D)+U_{S}(D) & \text { if } \underline{Y} \in D ; \\ \bar{U}(D)+U_{F}(D) & \text { if } \underline{Y} \notin D\end{cases}
$$

where D is the safe domain of the system in the space of the basic random vector \underline{Y} (note: D is a design "variable"); $-\bar{U}(D)$ is the cost of a system with safe region $D ; U_{S}(D)$ is the utility of such a system not experiencing failure, and $U_{F}(D)$ is the (negative) penalty for failure. We call this the extended form of prediction (Aitchison and Sculthorpe use the terminology: prediction problems of decision type). The extended form is appropriate for structural design and code-writing purposes. The available results are few (see Aitchison and Sculthorpe, 1965; Aitchison, 1966; Guenther and Terragno, 1964; Dunsmore, 1966, 1968, 1969). Our main concern will be with the restricted formulation.

"Prior" knowledge. One additional preliminary

remark will be useful. Prediction problems with independent sequences differ according to the degree of knowledge of F(Y) before data are collected. A common assumption in classical prediction theory is that the distribution type is known, but not the parameters (parametric, or parameterfree prediction). Results in the form of prediction regions
are available for particular types of population distributions (Proshan, 1953; Fraser and Guttman, 1956; Guttman, 1959; Goodman and Madansky, 1962; Thatcher, 1964; Chew, 1966; Aitchison and Sculthorpe, 1965; among others). Another case which is considered by classical statistics is that of complete ignorance of the distribution $F(\underline{Y})$ (i.e., not even the shape of the distribution is known). This assumption leads to the theory of nonparametric (or distribution-free) statistical prediction. Important contributions to it were made by Wilks (1941), Wald (1943), Tukey (1967), Fraser (1951,1953), Danziger and Davis (1964), Kemperman (1956); see also the review in Guttman (1970), Chapter I. 2

From a Bayesian viewpoint the aforementioned states of knowledge are only extreme cases out of a continuous spectrum which ranges from complete ignorance to perfect knowledge of $\mathrm{F}(\cdot)$. Intermediate states of knowledge are described through a "prior" probability distribution of the parameters (which case parallels classical parametric inference; see Aitchison (1964,1966); Aitchison and Sculthorpe (1965); Guttman (1970)), or through a prior distribution over all possible $F(\cdot)$ functions (which case parallels classical nonparametric inference; see Ferguson (1973)).

In this chapter an impartial viewpoint is taken, and results from both Classical and Bayesian inference are
given. However, for conceptual as well as for practical reasons the author's preference stays with the Bayesian approach; some motivations for this preference are given in Section II. 2.

Simple and simultaneous prediction. When F consists of a single realization of the process at a specified "future time", we say that prediction is "simple". Statistical prediction for structural reliability when the random quantities (say of the load-type) change with time requires a more elaborate analysis. For a discretetime stochastic model the problem consists of predicting the maximum of m future realizations from an available sample. m may be fixed, or may be a random function of the "life time" of the system. For a given m the problem is usually called one of "simultaneous prediction". We shall deal with simple prediction in the first part of the chapter (Sections II. 1 and II.2), and with simultaneous prediction in the second part (Section II.3).

As already mentioned, the sample may consist of censored observations; a simple problem of this type was studied in Chapter I, Example 6. More will be said in this chapter on a general Bayesian approach to prediction from censored data (Paragraph II.2.5).

The organization of the chapter is as follows.
After an exposition of the basic elements of frequentist and Bayesian prediction (Section II.l), Section II. 2 deals with simple-prediction problems (one future realization) for univariate (Paragraphs II.2.1 and II.2.2) and for multivariate random sequences (Paragraphs II.2.3 and II.2.4). In both cases the parametric and nonparametric frequentist approaches are reviewed first and parallel Bayesian results follow. Paragraph II. 2.5 deals briefly with prediction from censored data. The last section (Section II.3) treats problems of simultaneous prediction for univariate sequences.

The chapter has the format of a review of distribution theory; as a result, the reader who is interested in the application-side of statistical prediction will find this chapter less well "motivated" than Chapter I. On the other hand such a reader will perhaps find it easier to apply the results in this chapter, as opposed to the results in the last chapter. The extensive tables in Appendices A, B and C are intended to ease such applications. Examples are used to clarify results more than to further develop the theory; an exception in this sense is the application of simultaneous prediction to damage accumulation and to fatigue failure, a problem which is studied in Paragraph II. 3.4 .

II. 1 PRINCIPLES OF FREQUENTIST AND BAYESIAN PREDICTION

Consider the following problem of decision under risk. A structural system must be designed to survive a future vector-valued load \underline{Y} with given probability P. The properties of the system can be controlled deterministically by the designer; instead, \underline{Y} is modeled as a random realization point of a stationary independent sequence $\left\{\underline{Y}_{i}\right\}$, at a given future time. The marginal distribution of the sequence is not known exactly. As an additional piece of information, a sample of size n is available from the same sequence. For instance one might have observed $\underline{Y}_{1}, \underline{Y}_{2}$, ..., \underline{Y}_{n}, and the problem might be to design a system which will survive the next load event $\underline{Y}=\underline{Y}_{n+1}$ with probability P.

For any given system the set of points in Y-space corresponding to survival is called the "safe region" (with respect to \underline{Y}). Let D denote this region. The problem of design under reliability constraint consists in finding a system whose safe region D contains \underline{Y} with probability P. A region with this property is said to have "P-content", or "P-coverage"; in turn P is called the (probability) content or coverage of D. Because \underline{Y} is a "prediction variable" whose value gets specified at a later time, D is often referred to as a "prediction region".

In problems of reliability analysis D is given and the objective is to find the probability content of D.

A similar formulation for structural reliability analysis and design holds when survival depends on a set of future load realizations, say $\underline{Y}_{n+1}, \underline{Y}_{n+2}, \ldots, \underline{Y}_{n+m}$, If survival requires that all these load vectors belong to a region D in Y-space, then D is called a simultaneous prediction region (of P-content, if survival occurs with probability P).

The usefulness of prediction regions for probabilistic structural analysis and design is therefore apparent. Their construction follows different lines, depending on whether one moves within the frequentist or the Bayesian framework. Both these approaches to prediction are elegantly reviewed by Aitchison and Sculthorpe (1965) under the assumption that the generating sequence is white with known distribution type but unknown parameters (parametric prediction), or that both the distribution type and the parameters are unknown (nonparametric prediction). A concise exposition of the frequentist and Bayesian approaches follows.

Frequentist approach

Under this approach, for each distribution parameter there are only two possible states of knowledge before
sampling: either the parameter's value is known, or we are totally ignorant of it. Let $\underline{\theta}$ denote the vector of unknown parameters. The experiment E consists of observing $\underline{Y}_{1}, \underline{Y}_{2}, \ldots, \underline{Y}_{n}$, while the next realization $\underline{Y}=\underline{Y}_{n+1}$ is the object of prediction.

Collect \underline{Y}_{1} through \underline{Y}_{n} into the observation vector Z. With respect to the next observation the probability content of a region D in \underline{Y}-space is, for any given $\underline{\theta}$:

$$
\begin{equation*}
P(D \mid \underline{\theta})=\int_{D} d F(\underline{Y} \mid \underline{\theta}) \tag{II.1}
\end{equation*}
$$

where $F(\cdot \mid \underline{\theta})$ is the conditional $C D F$ of the sequence $\left\{\underline{Y}_{i}\right\}$. Since here $\underline{\theta}$ is not known, equation (II.l) cannot be used. At most $\underline{\theta}$ can be estimated from \underline{Z}. With this type of statistical uncertainty the problem of constructing a prediction region is that of finding a rule $D=D(\underline{Z})$ such that for any given $\stackrel{\theta}{=} \mathrm{D}$ has probability content P :

$$
E_{\underline{Z}}[P(D(\underline{Z}) \mid \underline{\theta})]=\int_{\text {all } \underline{Z}} f(\underline{Z} \mid \underline{\theta}) \int_{D(\underline{Z})} d F(\underline{Y} \mid \underline{\theta}) d \underline{Z}=P . \text { (II.2) }
$$

$D(\underline{Z})$ is called a parameter-free (or parametric) prediction region of P-content. For the parallel formulation when
prediction problems are in extended form see Aitchison and Sculthorpe (1965).

From equation (II.2) it is apparent that $D=D(\underline{Z})$ is a decision rule which produces prediction regions having expected content P, the expectation being taken over all the possible observations Z. Logically this is not the proper attitude if decisions are made after observing \underline{Z}. On the other hand classical statistics is incapable of accounting for parameters uncertainty in a different form. The impass can be avoided by revising the frequentist interpretation of probability and by using the so-called "fiducial argument". By this argument, if before making any observation the quantity $(\underline{Z} \mid \underline{\theta})$ is uncertain with distribution $F(\underline{Z} \mid \underline{\theta})$, after observing \underline{Z}, say $\underline{Z}=\underline{Z} *$, the parameter vector $\underline{\theta}$ is random with distribution
$d F(\underline{\theta} \mid \underline{Z} *) \propto d F(\underline{Z} * \mid \underline{\theta}) \quad$ (now a function of $\underline{\theta}$).

Then a prediction region $D\left(\underline{Z}^{*}\right)$ is of P-content if

$$
P[D(\underline{Z} *)]=\int_{\text {all } \underline{\theta}} \int_{D\left(\underline{Z}^{*}\right)} d F(\underline{\underline{Y}} \mid \underline{\theta}) d F\left(\underline{\theta} \mid \underline{Z}^{*}\right)=P .
$$

(The fiducial approach will be given no further consideration.)

We turn now to the case when nothing is known about the marginal distribution of the sequence, $F(\underline{Y})$. Following the same reasoning as in the case of parametric prediction, the probability content of a prediction region D for given F(•) is:

$$
\begin{equation*}
P[D \mid F(\cdot)]=\int_{D} d F(\underline{Y}) \tag{II.3}
\end{equation*}
$$

In the frequentist approach the problem is to define a decision rule $D=D(\underline{Z})$ such that the probability content (expected value with respect to \underline{Z}) is P for any given CDF $\mathrm{F}(\mathrm{Y}):$

$$
\begin{equation*}
E_{\underline{Z}}(P[D(\underline{Z}) \mid F(\cdot)])=\int_{\operatorname{all} \underline{Z}} f[\underline{Z} \mid F(\cdot)] \int_{D(\underline{Z})} d F(\underline{Y}) d \underline{Z}=P \tag{II.4}
\end{equation*}
$$

When defined through equation (II.4), D(Z) will be called a distribution-free (or nonparametric) prediction region of P content.

The same difficulties of parametric frequentist prediction are present also in nonparametric frequentist
prediction. Conceptually, the fiducial argument might be used also when $F(\underline{Y})$ is unknown, although additional complications are created by working in function space.

Bayesian approach

We consider only the case with known distribution type and unknown parameters. Indeed, little work has been done for the situation in which also the distribution type is unknown, even within a given distribution family. For methodological suggestions and some results see Smallwood (1968), Wood, et al. (1974.) and Box and Tiao (1973), Chapter 3. The very similar problem of model selection is considered by Fedorov (1972) in the context of experiment design.

For a known distribution type, say $\mathrm{F}_{1}(\underline{Y} \mid \underline{\theta})$, let $f(\underline{\theta})$ be the prior density function of the unknown parameters. Then the prediction distribution of \underline{Y} is:

$$
\begin{equation*}
F(\underline{Y} \mid \underline{Z})=\int_{\text {all } \underline{\theta}} F_{1}(\underline{Y} \mid \underline{\theta}) f(\underline{\theta} \mid \underline{Z}) d \underline{\theta}, \tag{II.5}
\end{equation*}
$$

where the conditional density $f(\underline{\theta} \mid \underline{Z})$ is given by Bayes' theorem:

$$
\begin{equation*}
f(\underline{\theta} \mid \underline{z})=f(\underline{\theta}) \frac{f(\underline{z} \mid \underline{\theta})}{f(\underline{z})} . \tag{II.6}
\end{equation*}
$$

The posterior predictive distribution of \underline{Y}, equation (II.5), Contains all the necessary information for reliability analysis and design. In particular, prediction regions of given content are easily found.

For problems of Bayesian prediction in extended form, see Aitchison and Sculthorpe (1965) and Dunsmore (1966, 1968, 1969).

The general considerations above hold also for problems of simultaneous prediction. Two formulations can be given:
(a) Define \underline{Y} to be the collection of the next m > 1 realizations, say:

$$
\underline{Y}=\left[\begin{array}{llll}
Y_{n+1}^{\prime}, & \ldots, & Y_{n+m}^{\prime}
\end{array}\right]^{\prime} .
$$

The associated prediction regions of P-content, $D(\underline{Z})$, are defined in \underline{Y}-space.
(b) For application to reliability problems it is more convenient to have $D(\underline{Z})$ defined in \underline{Y}_{i}-space; then P is the probability that m future realization points in \underline{Y}_{i}-space will all
fall inside $D(\underline{Z})$. Equations (II.l) to (II.4) are easily generalized to cover this definition of prediction region.

In Section II. 3 consideration will be given to both definitions of $D(\underline{Z})$.

In this section the "future" experiment consists of a single observation from a univariate or multivariate population. Prediction is made in terms of regions which contain the outcome of the experiment with a given probability. For the Bayesian approach, the predictive probability distribution is also derived.
II.2.1. Frequentist Prediction Intervals for

Univariate Sequences

Consider a univariate white sequence $\left\{Y_{i}\right\}$ for which a sample of size n is available. The observation vector \underline{Z} is defined:

$$
\underline{z}=\left(\begin{array}{l}
z_{1} \\
z_{2} \\
\vdots \\
z_{n}
\end{array}\right)=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)
$$

and the prediction variable is $Y=Y_{n+1}$.
Since at least one distribution parameter is unknown, no prediction interval can be constructed before sampling. Parametric prediction intervals of P-expectation, see equation (II.2), are explicitly given below for several
independent probabilistic models: Normal, Exponential, Extreme type I, Poisson, Gamma, Lognormal. For the binomial case see Thatcher (1964). At the end of the paragraph the construction of nonparametric prediction intervals is also reviewed. In each case a measure of penalty for statistical uncertainty, r, is calculated. r is defined as the ratio between the length of the prediction interval under limited information and the length of the same interval when the distribution parameters are known (or the sample size becomes infinite).
(a) NORMAL SEQUENCES - N(μ; $\left.\sigma^{2}\right)$
μ and σ unknown. The problem of constructing a prediction interval of expected P content in the sense of equation (II.2) was solved by Wilks (1941). Let

$$
\left(\hat{z}, s^{2}\right)=\left(\frac{1}{n} \sum_{i=1}^{n} z_{i} ; \frac{1}{n-1} \sum_{i=1}^{n}\left(z_{i}-\hat{z}\right)^{2}\right)
$$

be a set of sufficient statistics for μ and σ^{2}. Wilks proved that the interval:

$$
\begin{equation*}
\left(\hat{Z}-\beta_{\mu, \sigma}^{N} \cdot S, \hat{Z}+\beta_{\mu, \sigma}^{N} \cdot S\right] \tag{II.7}
\end{equation*}
$$

is of P expectation in the sense of equation (II.2) if and only if

$$
\begin{equation*}
\beta_{\mu, \sigma}^{N}=(1+1 / n)^{1 / 2} t_{n-1}[(1+P) / 2] \tag{II.8}
\end{equation*}
$$

where $t_{\nu}(\gamma)$ is the γ-fractile of the "Student's" t distribution with v degrees of freedom. In other words, the variable $R=(Y-\hat{Z}) / S(1+1 / n)^{1 / 2}$ has t-distribution with ($n-1$) degrees of freedom. A number of similar results are derived in this chapter for normal populations with only μ or only σ unknown, as well as for different distribution types. In each case the upperscript on β refers to the population type (here, for instance, N stands for "normal") and the subscripts indicate the parameters assumed unknown (here both the location and the scale parameters).

Under perfect information (PI) on the population parameters μ and σ, the central prediction interval of P-content is:

$$
\begin{equation*}
(\mu-\Phi[(1+P) / 2] \sigma, \mu+\Phi[(1+P) / 2] \sigma] \tag{II.9}
\end{equation*}
$$

where $\Phi(\cdot)$ is the cumulative standard normal distribution. A measure of penalty for imperfect information is therefore
given by the ratio between $\beta_{\mu, \sigma}^{N}$ and $\beta_{P I}^{N}=[(1+P) / 2]$, or:
$r_{\mu, \sigma}^{N}(P, n)=\frac{\beta_{\mu, \sigma}^{N}(P, n)}{\beta_{P I}^{N}(P)}=(1+I / n)^{1 / 2} \frac{t_{n-1}^{[(1+P) / 2]}}{\Phi[(1+P) / 2]} \quad$ (II.10)

If $\hat{Z}=\mathrm{E}[\hat{Z}]=\mu$, and $\mathrm{S}^{2}=\mathrm{E}\left[\mathrm{S}^{2}\right]=\sigma^{2}$, the quantity (II.10) has also the geometric meaning of length ratio between the central prediction intervals for limited and for perfect statistical information. For any fixed value of $P, r_{\mu, \sigma}^{N}(P, n)$ is a decreasing function of n, approaching 1 as $n \rightarrow \infty$.

For one-sided prediction intervals equations (II.7)
are replaced by:

$$
\begin{equation*}
\left(\hat{z}-\bar{\beta}_{\mu, \sigma}^{N} \cdot s, \infty\right) \text {, or by }\left(-\infty, \hat{z}+\bar{\beta}_{\mu, \sigma}^{N} \cdot S\right] \tag{II.Ila}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\beta}_{\mu, \sigma}^{\mathrm{N}}=(1+1 / n)^{1 / 2} \cdot t_{n-1}(p) \tag{II.1lb}
\end{equation*}
$$

Since for perfect information one-sided prediction intervals
have the form:

$$
(\mu-\Phi(P) \quad \sigma, \infty), \text { and }(-\infty, \mu+\Phi(P) \sigma],
$$

the penalty ratio for finite sample sizes is, in accordance with equation (II.10):

$$
\begin{equation*}
\bar{r}_{\mu, \sigma}^{N}(P, n)=\frac{\bar{\beta}_{\mu, \sigma}^{N}(P, n)}{\Phi(P)}=(1+1 / n) 1 / 2 \frac{t_{n-1}(P)}{\Phi(P)} . \tag{II.l2}
\end{equation*}
$$

μ unknown, σ known. This case (as well as the following one) was studied by Proshan (1953) and by Guttman (1955). When σ is known, sufficient statistics are n and the sample mean $\widehat{Z}=\sum_{i=1}^{n} Z_{i} / n$, which define the central prediction interval of P -expectation:

$$
\begin{equation*}
\left[\hat{z}-\beta_{\mu}^{N} \cdot \sigma, \hat{z}+\beta_{\mu}^{N} \cdot \sigma\right] \tag{II.13a}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{\mu}^{N}=(1+1 / n)^{1 / 2} \cdot \Phi[(I+P) / 2] \tag{II.13b}
\end{equation*}
$$

The associated penalty for lack of information depends only on the sample size n, being

$$
\begin{equation*}
r_{\mu}^{N}=\frac{\beta_{\mu}^{N}(P, n)}{\Phi[(1+P) / 2]}=(1+1 / n)^{1 / 2} \tag{II.14}
\end{equation*}
$$

By comparison with the ratio $r_{\mu, \sigma}^{N}$ in equation (II.10) one can judge the importance of the population variance being also unknown when μ is unknown. As expected, for all $\mathrm{P}>0$ and for all finite n it is:

$$
r_{\mu, \sigma}^{N}(P, n)>r_{\mu}^{N}(n) .
$$

If one-sided prediction intervals are desired, equations (II.13) are replaced by

$$
\begin{gather*}
{\left[\hat{Z}-\bar{\beta}_{\mu}^{N} \cdot \sigma, \infty\right), \text { or by }\left(-\infty, \hat{Z}+\bar{\beta}_{\mu}^{\mathrm{N}} \cdot \sigma\right] ;} \tag{II.15a}\\
\bar{\beta}_{\mu}^{\mathrm{N}}=(1+1 / n)^{1 / 2} \Phi(\mathrm{P}) . \tag{II.15b}
\end{gather*}
$$

The penalty ratio is still given by equation (II.l4).
μ known, σ unknown. In terms of the sufficient statistics n and $s^{2}=\frac{1}{n} \sum_{1=1}^{n}\left(Z_{i}-\mu\right)^{2}$,

$$
\begin{equation*}
\left(\mu-\beta_{\sigma}^{N} \cdot \mathbf{S}, \mu+\beta_{\sigma}^{N} \cdot \mathbf{S}\right] \tag{II.16a}
\end{equation*}
$$

is a central prediction interval of P-expectation if

$$
\begin{equation*}
\beta_{\sigma}^{N}=t_{n}[(1+P) / 2] \tag{II.16b}
\end{equation*}
$$

This corresponds to the penalty ratio

$$
\begin{equation*}
r_{\sigma}^{N}(P, n)=\frac{\beta_{\sigma}^{N}(P, n)}{\Phi[(1+P) / 2]}=\frac{t_{n}[(1+P) / 2]}{\Phi[(1+P) / 2]} . \tag{II.17}
\end{equation*}
$$

The one-sided prediction intervals of P-expectation are:

$$
\begin{gather*}
{\left[\mu-\bar{\beta}_{\sigma}^{N} \cdot s, \infty\right) \text { and }\left(-\infty, \mu+\bar{\beta}_{\sigma}^{N} \cdot \mathrm{~S}\right] ;} \tag{II.18a}\\
\bar{\beta}_{\sigma}^{N}=t_{n}(P), \tag{II.18b}
\end{gather*}
$$

with associated penalty ratio:

$$
\begin{equation*}
\bar{r}_{\sigma}^{N}(P, n)=t_{n}(P) / \Phi(P) \tag{II.19}
\end{equation*}
$$

The ratios $r_{\mu, \sigma}^{N}(P, n), r_{\mu}^{N}(n)$ and $r_{\sigma}^{N}(P, n)$ in equations (II.10), (II.14) and (II.l6) are related as:

$$
\begin{equation*}
r_{\mu, \sigma}^{N}(P, n)=r_{\mu}^{N}(n) \cdot r_{\sigma}^{N}(P, n-1) \tag{II.20}
\end{equation*}
$$

(the same relationship holds for one-sided predictions).
Tabulated values of the penalty ratios and of the coefficients $\beta_{(\cdot)}^{N}$ are collected in Appendix A (Tables Al through All). For selected values of P and for n ranging from 1 to 18 the penalty ratios are displayed in Figures 1, 2 and 3 (solid lines). The plots refer to central predictions. From the figures and from the more extensive tables in Appendix A it is seen that when σ is unknown and n is fixed the penalty increases with P. This would not be so if the β values of the prediction intervals were always related to normal CDF's (as opposed to cumulative tdistributions). The importance of the distribution type can
be measured by comparing the exact penalty ratios with the corresponding "first-order" ${ }^{(*)}$ penalty ratios, which are defined here as those resulting from replacing the t distribution by the normal distribution with the same first two moments, $N(0, \nu /(\nu-2))$, in equations (II.l0), (II.l2), (II.17, (II.I9). Using the prime sign to denote "first order":
$r_{(\cdot)}^{N^{\prime}}(n)= \begin{cases}1 & \text { for } \mu \text { and } \sigma \text { known, (a) } \\ (1+1 / n)^{1 / 2} & \text { for } \mu \text { unknown, } \\ \left(1+\frac{2}{n-2}\right)^{1 / 2,}(n>2), & \text { for } \sigma \text { unknown, } \\ {\left[1+\frac{3 n-1}{n(n-3)}\right]^{1 / 2},} & (n>3), \\ \text { (for } \mu \text { and } \sigma \text { unknown. (d) }\end{cases}$

For the case of only μ unknown, it is: $r_{\mu}^{N}(n)=r_{\mu}^{N^{\prime}}(n)$. The expressions (II.2lc) and (II.2ld) are tabulated in Appendix A (Table Al2) and plotted in Figures 1, 2, 3 (dashed lines). The "first-order" penalty ratios are sometimes larger, sometimes smaller than the exact ratios, but they are increasingly in the statistical literature.
unconservative as P gets larger (i.e., in the range of interest to safety and reliability theory).

This discloses a problem of "statistical invariance" in the sense of Ditlevsen (1973) and Veneziano (1974a), since in the presence of statistical uncertainty it is important whether one makes the assumption of the distribution type before or after sampling.

Other "first-order" solutions to this prediction problem are found in the literature. Recently Anderson (1972), working with a Bayesian formulation, concluded that the uncertainty in the variance has prediction effects which are negligible when compared to those from an uncertain mean. His results for the two extreme cases (l) of μ being known, and (2) of "diffuse" prior information on the mean yield the following penalty factors:

$$
r(n)= \begin{cases}1 & \text { for } \mu \text { known } \tag{II.22}\\ (1+1 / n)^{1 / 2} & \text { for } \mu \text { unknown }\end{cases}
$$

irrespective of the state of knowledge about σ. In the frequentist approach the same approximation would lead to identical r values. The plots in Figures 1,2 and 3 show that this approximation is quite unsatisfactory; in fact,
as we already pointed out, the variance being unknown is generally a much more critical condition for prediction than the mean value being unknown. Anderson's assumption has been used by Ang (1973) to derive probabilistic design formulas for simple systems in presence of statistical uncertainty (for additional considerations, see Veneziano (1974b)).

The effect of σ being unknown may also be considered from a different viewpoint. Suppose that the target of sampling is to reach a penalty ratio $r \leq 1.2$. For central prediction intervals the required minimum sample sizes are:

UNKNOWN PARAMETER (S)	Expected Content, P			
	0.75	0.90	0.99	0.999
μ and σ	7	9	15	21
σ	4	6	12	18
μ	3	3	3	3

TABLE 1. Minimum sample size for a penalty ratio $r \leq 1.2$ (equations (II.l0), (II.l4), (II.17)).
which values show again the importance of accounting correctly for the state of knowledge about σ.

(b) EXPONENTIAL SEQUENCE

Fraser and Guttman (1956) related the problem of constructing parametric prediction regions to a problem of hypothesis testing. The idea was applied later by Guttman (1959) to sampling from the exponential population with density function

$$
\begin{equation*}
f(Y)=\frac{1}{\sigma} e^{-Y / \sigma} \tag{II.23}
\end{equation*}
$$

and σ unknown. In terms of the statistic $\widehat{Z}=\frac{1}{n} \sum_{i=1}^{n} Z_{i}$, Guttman found that the right-hand prediction interval of P-expectation for the next observation is:

$$
\begin{equation*}
\left[\hat{z} \cdot\left[1-\beta_{\sigma}^{E X}(P, n)\right], \infty\right) \tag{II.24a}
\end{equation*}
$$

where $\beta_{\sigma}^{E X}(P, n)$ satisfies the equation

$$
\int_{1-\beta_{\sigma}^{E X}(P, n)}^{\infty}[n /(n+w)]^{n+1} d w=P
$$

After integrating and solving explicitly for $\beta_{\sigma}^{\mathrm{EX}}$:

$$
\begin{equation*}
\beta_{\sigma}^{E X}(P, n)=(n+1)-n P^{-1 / n} \tag{II.24b}
\end{equation*}
$$

(see Table Al3, part 1, in Appendix A).
In accordance with previous definitions for normal sequences, the penalty for imperfect information can be measured by the ratio

$$
\begin{equation*}
r_{\sigma}^{E X}(P, n)=\frac{\beta_{\sigma}^{E X}(P, n)}{1+\log (P)}=\frac{(n+1)-n P^{-1 / n}}{1+\log (P)} \tag{II.25a}
\end{equation*}
$$

However, since $\beta_{\sigma}^{E X}(P, n)$ is very close to 1 for the (large) values of P of interest to us, the inverse ratio of the complements to l is a more indicative measure of penalty; in this case:

$$
\begin{equation*}
r_{\sigma}^{E X}(P, n)=\frac{-\log P}{1-\beta_{\sigma}^{E X}(P, n)}=\frac{\log (P)}{n\left(1-P^{-1 / n}\right)} \tag{II.25b}
\end{equation*}
$$

The ratio (II.25b) is tabulated in Appendix A for righthand prediction intervals (Table Al4, part l). Interestingly, for fixed $P, r_{\sigma}^{E X}(P, n)$ in equation (II. 25b) is an increasing function of n, approaching 1 as $n \rightarrow \infty$. (The opposite trend was found for Normal sequences.) The minimum values for $P=0.90$ and for $P=0.99$ are $r_{\sigma}^{E X}(0.90,1)=0.949$ and $r_{\sigma}^{E X}(0.99,1)=1.000$, showing that little would be gained by collecting further information (according to the present definition of penalty).

Quite different is the case of left-hand prediction intervals of P -expectation:

$$
\begin{equation*}
\left[0, \hat{Z}\left[1+\beta_{\sigma}^{E X}(P, n)\right]\right], \tag{II.26a}
\end{equation*}
$$

for which one finds:

$$
\begin{equation*}
\beta_{\sigma}^{E X}(P, n)=n(1-P)^{-1 / n}-(n+1) \tag{II.26b}
\end{equation*}
$$

The penalty ratio (II.25a) becomes:

$$
\begin{equation*}
r_{\sigma}^{E X}(P, n)=\frac{(n+1)-n(1-P)^{-1 / n}}{1+\log (1-P)} \tag{II.27}
\end{equation*}
$$

Values of $\beta_{\sigma}^{E X}$ and of $r_{\sigma}^{E X}$ for left-hand predictions are given in Tables Al3 and Al4 (parts 2). In contrast with right-hand predictions the penalties are now quite large, often exceeding those for normal populations.

Guttman (1959, 1970) considered the analogous problem when sampling from the shifted exponential population

$$
f(Y)=\frac{1}{\sigma} \exp \{-(Y-\mu) / \sigma\}
$$

when μ or μ and σ are unknown.

The exponential distribution is widely used for modeling the time-to-failure of systems and subsystems (and more generally the interarrival time of "rare" events). Practical reasons impose limitations on the duration of a laboratory life-test, so that it is typical that one observes only the lower $r(r \leq n)$ times to failure (the lower r order statistics) from a sample of size n. Goodman and Madansky (1962) proved that for this situation the interval

$$
\left[C(p, r) \cdot \hat{\lambda}^{-1}(n, r), \infty\right)
$$

is of P-expectation if the statistic $\hat{\lambda}^{-1}(n, r)$ is defined as follows in terms of the order statistics $Z_{(1)^{<}}^{<Z_{(2)}<\cdots<Z_{(r)} \text { : }}$

$$
\begin{gathered}
\lambda^{-1}(n, r)=r^{-1}\left(\sum_{i=1}^{r} Z(i)+(n-r) z(r)\right), \\
C(P, r)=r\left(P^{-1 / r}-1\right) .
\end{gathered}
$$

and

By setting $\beta_{\sigma}^{E X}(P, n, r)=1-C(P, r)$ one verifies that this is a generalization of equations (II.26), which are reproduced in the special case: $r=n$. More will be said on prediction from censored data in Paragraph II.2.5.
(c) EXTREME TYPE I SEQUENCE

The extreme type I distribution is of frequent use in structural reliability since many potentially critical events are extremes of random processes within its domain of attraction. (Benjamin and Cornell (1971) pp 271-279; Gumbel (1958) pp236-254). The form of the distribution is:

$$
F(Y)=\exp \{-\exp [-(Y-a) / b]\}, b>0 .
$$

The parameters a and b can be estimated graphically or analytically by the maximum likelihood criterion. The latter approach, yielding the estimates \hat{a} and \widehat{b}, was pursued by Harter and Moore (1967, 1968). Following Antle and Rademaker (1972), the statistic

$$
E=\left(Y_{n+1}-\hat{a}\right) / \hat{b}
$$

has a distribution which depends only on the number of past observations, n. Write the left-hand prediction interval of P-expectation in the form

$$
\begin{equation*}
\left(-\infty, \hat{a}+\beta_{a, b}^{E l}(P, n) \cdot \hat{b}\right] \tag{II.28}
\end{equation*}
$$

Representative values of $\beta_{a, b}^{E l}(P, n)$ were computed by Antle and Rademaker through simulation. They tabulated $\beta_{a, b}^{E l}$ for $\mathrm{P}=0.90,0.95,0.975,0.98,0.99 ; \mathrm{n}=10(10) 70,100, \infty$; and for $\mathrm{P}=0.995$ and $\mathrm{n}=20(10) 70,100, \infty$ (their Table l). Some of these values are reproduced in Appendix A (Table Al5). The maximum likelihood estimates of a and b are biased.

After defining

$$
\begin{aligned}
E[(\hat{a}-a) / b] & =g(n), \\
E[\hat{b} / b] & =1 / h(n),
\end{aligned}
$$

Antle and Rademaker found the values of $h(n)$ and $g(n) h(n)$ for $\mathrm{n}=10(10) 100$ (their Table 2) via simulation. From these data one can calculate the penalty ratio:

$$
r_{a, b}^{E l}(P, n)=\frac{E[\hat{a}]+\beta_{a, b}^{E 1}(P, n) \cdot E[\hat{b}]}{a+\beta_{a, b}^{E l}(P, \infty) \cdot b}=\frac{g(n)+\frac{\beta_{a, b}^{E l}(P, n)}{h(n)}+\frac{a}{b}}{\frac{a}{b}+\beta_{a, b}^{E l}(P, \infty)} .
$$

(II.30)

The ratio a / b depends only on the coefficient of variation V_{Y}, being (see for example Benjamin and Cornell (1971), p 274):

$$
\frac{\mathrm{a}}{\mathrm{~b}} \approx \frac{1.282}{\mathrm{~V}_{\mathrm{Y}}}-0.577
$$

Table Al6 gives the values of $r_{a, b}^{E l}(P, n)$ for $a / b=1(1) 10$, $\mathrm{n}=10,20,30$ and for selected probability contents, P . For each value of P and n the penalty ratio increases with the dispersion of the population distribution.

Unfortunately, Antle and Rademaker did not tabulate $\beta_{a, b}^{E l}$ for sample sizes smaller than 10 , which are frequent if the extreme sequence collects rare events.
(d) POISSON SEQUENCE

Let λ be the parameter of the Poisson process. The observation consists of a single Poisson variable Z with mean value $n \lambda$; the variable to be predicted, Y, has Poisson distribution with mean $m \lambda$. If Z and Y count the number of arrivals in a Poisson process, n and m are proportional to the duration of the past and of the future observation periods, t_{p} and t_{f}. The left-hand prediction interval of P-expectation is (see Aitchison and Sculthorpe (1965)):

$$
\begin{equation*}
\left[0, \beta_{\lambda}^{P}(P, n, m) \cdot s\right], \tag{II.31}
\end{equation*}
$$

where $S^{2}=\mathrm{zm} / \mathrm{n}$,

$$
\beta_{\lambda}^{P}(P, n, m)=\left[\min \left\{\beta: I_{n /(n+m)}(Z+1, \beta) \geq P\right\}-1\right] / S,(I I \cdot 32 b)
$$

and I is the incomplete beta function tabulated by Pearson (1934). Since $\beta_{\lambda}^{P}(\cdot) S$ is an integer, it was found more
convenient to tabulate the upper limit of the prediction interval, instead of $\beta_{\lambda}^{P}(\cdot)$. The parameters $Z, m / n=t_{f} / t_{p}$, and P in equations (II.31) and (II.32) were assumed as the independent variables and were given a set of representative values. The corresponding values of $\beta_{\lambda}^{P} \cdot S$ are collected in Table Al7. For instance, if the ratio t_{f} / t_{p} is 0.5 and the prediction interval must have 0.99 probability content, it is $\beta_{\lambda}^{P} \cdot S=4$ if $Z=0 ; \beta_{\lambda}^{P} \cdot S=5$ if $Z=1 ; ~ \beta_{\lambda}^{P} \cdot S=6$ if $Z=2$; $\beta_{\lambda}^{P} \cdot S=9$ if $Z=5$, and so on. It is interesting to note that even when $Z=0$ the prediction interval may contain nonzero integers.

The penalty ratio is also best referred to the upper limit of the prediction interval; for $Z=E[z]=n \quad \lambda$:

$$
\begin{equation*}
r_{\lambda}^{P}(P, n \lambda, m \lambda)=\frac{\beta_{\lambda}^{P}(P, n, m) \cdot S}{\min \left\{Y: \sum_{i=0}^{Y} \frac{(m \lambda)^{i} e^{-m} \lambda}{i!} \geq P\right\}} ; n \lambda>0 \tag{II.33}
\end{equation*}
$$

The denominator in equation (II.33) can be calculated from tables of the cumulative Poisson distribution or, indirectly, from inverse tables of the χ^{2} distribution (Harter (1919)). It gives the upper limit of the prediction interval for perfect knowledge of λ. Table Al8 collects the values of
the denominator in equation (II.33) for the same values of $\mathrm{m} \lambda$ and P considered in Table Al7. The associated penalty ratios are given in Table Al9. Since $r_{\lambda}^{P}(\cdot)$ is the ratio of two integers, only qualitative conclusions can be drawn from this table: for instance, the penalty tends to increase with the ratio t_{f} / t_{p} (which, in a sense, weights the uncertain future, t_{f}, versus the known past, t_{p}) and with P, although a number of "local" exceptions can be found in the table.

The right-hand interval of P-expectation was also found by Aitchison and Sculthorpe. Their result is:

$$
[K, \infty), \text { where } K=\max \left\{\gamma: I_{n /(n+m)}(Z, \gamma) \leq 1-P\right\}
$$

(e) GAMMA SEQUENCE

The main reference is again the fundamental paper by Aitchison and Sculthorpe (1965). Let λ be the unknown parameter of the underlying exponential process (which process needs not have any physical meaning). The experiment consists of observing a variable Z with Gamma distribution $G(m, \lambda)$, where m is known. The problem is to find a prediction interval of P-expectation for a future observation

Y distributed like $G(K, \lambda)$, with K known. When the "past" experiment consists of observing n independent variables from the statistical population of Y, it is $m=n K$. In the sequel we assume that this is the case, so that m is a multiple of K (this implies no loss of generality for the results).

The mean and the standard deviation of Y are K / λ and $K^{1 / 2} / \lambda$. They are estimated by Z / n and by $Z /\left(n K^{1 / 2}\right)$ respectively. Given Z, the left-hand prediction interval of P -expectation can be written:

$$
\begin{equation*}
\left[0, \frac{Z}{n}+\beta_{\lambda}^{G}(n, K, P) \frac{Z}{n K^{l / 2}}\right] \tag{II.35a}
\end{equation*}
$$

Using Aitchison and Sculthorpe's results, one finds the following expression for β_{λ}^{G} :

$$
\begin{equation*}
\beta_{\lambda}^{G}(n, K, P)=\left(\frac{n}{B(m, K ; P)}-(n+1)\right) \cdot K^{1 / 2} \tag{II.35b}
\end{equation*}
$$

where $B(m, K ; P)$ is the P-fractile of the incomplete beta distribution. It satisfies $I_{B(m, K ; P)}(m, K)=P$, and this last function is tabulated by Pearson (1934). Under perfect information the same interval would be:

$$
\begin{equation*}
\left[0, \frac{K}{\lambda}+\beta_{\mathrm{PI}}^{\mathrm{G}} \cdot \frac{\mathrm{~K}^{1 / 2}}{\lambda}\right] \tag{II.36}
\end{equation*}
$$

where $\beta_{\mathrm{PI}}^{\mathrm{G}}$ is given by:

$$
\begin{equation*}
\beta_{P I}^{G}=K^{-1 / 2}\left[\frac{1}{2} \beta_{\chi^{2}}(K, P)-K\right] \tag{II.37}
\end{equation*}
$$

and $\beta_{\chi^{2}}(\cdot)$ satisfies:

$$
\begin{equation*}
F_{\chi^{2}(2 K)}\left[\beta_{\chi^{2}}(K, P)\right]=P \tag{II.38}
\end{equation*}
$$

Therefore $\beta_{\chi^{2}}(K, P)$ is obtained from the inverse cumulative χ^{2} tables in Harter (1919).

The penalty ratio for imperfect information is

$$
\begin{equation*}
r_{\lambda}^{G}(n, K, P)=\frac{\beta_{\lambda}^{G}(n, K, P)}{\beta_{P I}^{G}(K, P)}=\frac{\frac{n}{B(m, K ; P)}-(n+1)}{\frac{\beta_{X^{2}(K, P)}^{2 K}}{2 K}-1} . \tag{II.39}
\end{equation*}
$$

All the foregoing results hold also for the right-hand prediction interval of P -expectation:

$$
\begin{equation*}
\left[\frac{\mathrm{Z}}{\mathrm{n}}-\beta_{\lambda}^{G}(\mathrm{n}, \mathrm{~K}, \mathrm{P}) \frac{\mathrm{Z}}{\mathrm{n} K^{1 / 2}}, \infty\right) \tag{II.40}
\end{equation*}
$$

after replacing P by (1-P).
For several values of K, n and P equations (II.35b), (II.37) and (II.39) are tabulated in Appendix A (Tables A20, A21, A22 for left-hand predition intervals; Tables A23, A24, A25 for right-hand intervals). As K increases, the shape of the distribution passes gradually from an exponential ($\mathrm{K}=1$) to a normal $(\mathrm{K} \rightarrow \infty)$; at the same time the penalty ratios decrease for left-hand predictions and increase for right-hand predictions.

(f) LOGNORMAL SEQUENCE

Let Y belong to a lognormal population with mean μ and variance σ^{2}. By definition $Z=\ln Y$ has normal distribution with mean μ_{Z} and variance $\sigma_{\mathrm{Z}}{ }_{\mathrm{Z}}$. The relationships between the parameters of the two distributions are as follows:

$$
\begin{align*}
\mu & =\exp \left(\frac{1}{2} \sigma_{Z}^{2}+\mu_{Z}\right), \tag{II.4la}\\
\sigma^{2} & =\exp \left(\sigma_{Z}^{2}+2 \mu_{Z}\right)\left[\exp \left(\sigma_{Z}^{2}\right)-1\right], \tag{II.4lb}
\end{align*}
$$

and inversely:

$$
\begin{align*}
& \mu_{Z}=\ln \left(\mu^{2}\right)-\frac{1}{2} \ln \left(\sigma^{2}+\mu^{2}\right), \tag{II.42a}\\
& \sigma_{Z}^{2}=-\ln \left(\mu^{2}\right)+\ln \left(\sigma^{2}+\mu^{2}\right), \tag{II.42b}
\end{align*}
$$

Let $Z_{1}=\ln Y_{1}, Z_{2}=\ln Y_{2}, \ldots, Z_{n}=\ln Y_{n}$ be the logarithms of n independent observations from the lognormal sequence. When both μ and σ^{2} are unknown μ_{Z} and σ_{Z}^{2} are also unknown (see equations (II:42)). The latter quantities are estimated by $\hat{z}=\frac{1}{n} \sum_{i=1}^{n} z_{i}$ and by $s_{z}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Z_{i}-\hat{Z}\right)^{2}$. Onesided prediction intervals for $Z=\ln Y$ are then (see results for the normal process):

$$
\left(-\infty, \hat{Z}+\bar{\beta}_{\mu, \sigma}^{N}(P, n) \cdot S_{z}\right]
$$

and

$$
\left[\hat{Z}-\bar{\beta}_{\mu, \sigma}^{N}(P, n) \cdot S_{Z}, \infty\right)
$$

Since the logarithmic transformation is continuous and one-to-one, one-sided prediction intervals of P-expectation for Y are found by transforming exponentially the limits of the corresponding intervals for Z. This yields:

$$
\left[0, \exp \left\{\hat{Z}+\bar{\beta}_{\mu, \sigma}^{N}(P, n) \cdot S_{z}\right\}\right],
$$

and

$$
\begin{equation*}
\left[\exp \left\{\hat{Z}-\bar{\beta}_{\mu, \sigma}^{N}(P, n) \cdot S_{Z}, \infty\right)\right. \tag{II.43}
\end{equation*}
$$

These prediction intervals can be written in a more convenient form in terms of the following estimates of the mean and of the variance of Y :

$$
\begin{aligned}
\hat{\mathrm{Y}} & =\exp \left(\frac{1}{2} \mathrm{~S}_{\mathrm{Z}}^{2}+\hat{\mathrm{Z}}\right) \\
\mathrm{S}_{\mathrm{Y}}^{2} & =\exp \left(\mathrm{S}_{\mathrm{Z}}^{2}+2 \hat{Z}\right)\left[\exp \left(\mathrm{S}_{\mathrm{Z}}^{2}\right)-1\right]
\end{aligned}
$$

Then the intervals (II.43) are the same as
$\left[0, \hat{\mathrm{Y}}+\beta_{\mu, \sigma}^{\mathrm{LN}}(\mathrm{P}, \mathrm{n}) \cdot \mathrm{S}_{\mathrm{Y}}\right] \quad$ and $\left[\hat{\mathrm{Y}}-\beta_{\mu, \sigma}^{\mathrm{LN}}(\mathrm{P}, \mathrm{n}) \cdot \mathrm{S}_{\mathrm{Y}}, \infty\right)$
(II.44)
if $\beta_{\mu, \sigma}^{\mathrm{LN}}$ is chosen as indicated below. For left-hand predictions:

$$
\begin{align*}
\beta_{\mu, \sigma}^{L N}(P, n) & =\frac{\exp \left\{\hat{Z}+\bar{\beta}_{\mu, \sigma}^{N}(P, n) \cdot S_{Z}\right\}-\exp \left\{\frac{1}{2} S_{Z}^{2}+\hat{Z}\right\}}{\exp \{\hat{Z}\}\left[\exp \left\{S_{Z}^{2}\right\}\left(\exp \left\{S_{Z}^{2}\right\}-1\right)\right]^{1 / 2}} \\
& =\frac{\exp \left\{\bar{\beta}_{\mu, \sigma}^{N}(P, n) \cdot S_{Z}\right\}-\exp \left\{S_{Z}^{2} / 2\right\}}{\exp \left\{S_{Z}\right\}\left(\exp \left\{S_{Z}^{2}\right\}-1\right)^{1 / 2}} \tag{II.45}
\end{align*}
$$

where $\bar{\beta}_{\mu, \sigma}^{N}(P, n)=(1+1 / n)^{1 / 2} t_{n-1}(P)$ is tabulated in Appendix A (Table All).

For right-hand predictions:

$$
\beta_{\mu, \sigma}^{\mathrm{LN}}(\mathrm{P}, \mathrm{n})=\frac{\exp \left\{\mathrm{S}_{\mathrm{Z}}^{2} / 2\right\}-\exp \left\{-\bar{\beta}_{\mu, \sigma}^{N}(\mathrm{P}, \mathrm{n}) \cdot \mathrm{S}_{\mathrm{Z}}\right\}}{\exp \left\{\mathrm{S}_{\mathrm{Z}}\right\}\left(\exp \left\{\mathrm{S}_{\mathrm{Z}}^{2}\right\}-1\right)^{1 / 2}} \cdot(\operatorname{II} .46)
$$

In both cases the penalty ratio $r_{\mu, \sigma}^{L N}(P, n)$ is computed from the following expression:

$$
\begin{equation*}
\mathrm{r}_{\mu, \sigma}^{\mathrm{LN}}(\mathrm{P}, \mathrm{n})=\beta_{\mu, \sigma}^{\mathrm{LN}}(\mathrm{P}, \mathrm{n}) / \beta_{\mathrm{PI}}^{\mathrm{LN}}(\mathrm{P}) \tag{II.47}
\end{equation*}
$$

where

$$
\beta_{P I}^{\operatorname{LN}}(P)=\lim _{n \rightarrow \infty} \beta_{\mu, \sigma}^{L N}(P, n)
$$

Both $\beta_{\mu, \sigma}^{\mathrm{LN}}$ and $r_{\mu, \sigma}^{\mathrm{LN}}$ depend on S_{Z} (besides varying with n and with P). The variance of the normal sequence $\left\{\ln Y_{i}\right\}$ is related directly to the coefficient of variation of the lognormal population V_{Y} being, as well known:

$$
\sigma_{\ln Y}=\left[\ln \left(V_{Y}^{2}+1\right)\right]^{1 / 2}
$$

After relating in a similar way the estimate \hat{V}_{Y} of V_{Y} to the estimate S_{Z} of $\sigma_{\ln _{\mathrm{Y}}}$:

$$
S_{\mathrm{Z}}=\left[\ln \left(\hat{\mathrm{V}}_{\mathrm{Y}}^{2}+1\right)\right]^{1 / 2}
$$

$\beta_{\mu, \sigma}^{\mathrm{LN}}(\cdot)$ and $r_{\mu, \sigma}^{\mathrm{LN}}(\cdot)$ depend on $\hat{\mathrm{V}}_{\mathrm{Y}}, \mathrm{n}$ and P . Tables A26 and A27 give values of $\beta_{\mu, \sigma}^{L N}\left(\hat{V}_{Y}, n, P\right)$ and of $r_{\mu, \sigma}^{L N}\left(\hat{V}_{Y}, n, P\right)$ for left-hand prediction intervals; Tables A28 and A29 collect the same quantities for right-hand prediction intervals. It is interesting to note that for large coefficients of variation (say $\hat{\mathrm{V}}_{\mathrm{Y}}>0.3$) and for left-hand predictions the penalty ratios are substantially higher than those for normal populations with μ and σ unknown, due to the
logarithmic transformation.
If $\mu_{Z}=\mu_{1 n} Y$ or $\sigma_{Z}=\sigma_{1 n} Y$ are known, equations (II.45), (II.46) and (II.47) still hold for $\beta_{\sigma_{Z}}^{L N}(P, n)$ or for $\beta_{\mu_{Z}}^{\mathrm{LN}}(\mathrm{P}, \mathrm{n})$, and for the associated penalty ratios after replacing $\bar{\beta}_{\mu, \sigma}^{\mathrm{N}}(\mathrm{P}, \mathrm{n})$ by $\bar{\beta}_{\sigma}^{\mathrm{N}}(\mathrm{P}, \mathrm{n})$ or by $\bar{\beta}_{\mu}^{\mathrm{N}}(\mathrm{P}, \mathrm{n})$. Tabulated values for these cases are also given in Appendix A (Tables A30 through A37).

SOME APPLICATIONS TO RELIABILITY ANALYSIS AND DECISION

Some applications of the preceeding results (including Tables Al - A37 in Appendix A) are suggested. For convenience of exposition and for comparing the present results with the "first-order" approximations (II.21) and with Anderson's approximation, we shall refer to normal populations (Tables Al - Al3). However, the same use can be made of the results for different populations.

The ratios in Tables Cl - C5 are penalty measures with respect to perfect information, decreasing with the sample size for fixed probability content P (for the values of P considered there). Let U_{n} be the expected utility of making n observations. U_{n} may be considered to be a function of n through the penalty ratio $r_{(\cdot)}^{N}(P, n)$, with a typical trend as shown in Figure 4 . On the other
hand the cost of sampling, C_{n}, may evolve according to the straight solid line in the same figure. The optimal sample size is the (integer) value n * of n for which ($U_{n}-C_{n}$) is maximum. If sample values are historical data the function C_{n} may look quite different, associating small costs with values of n less or equal to the present availability of data (n_{p} in Figure 4), and substantially higher costs with sample sizes larger than n_{P} (collection of additional data). Another use of the penalty ratios is as multiplicative factors for design values which are valid under perfect parameters knowledge. For instance, if a design value for given distribution parameters is the upper 99\% fractile of the normal distribution (i.e., $\mu+2.326 \sigma$), the penalty factors and the design values when one or both the location and the scale parameters are estimated from a sample of finite size n are shown in Table 2 for selected values of n.

The "first-order" solution does not provide finite design values when σ is unknown and $n=2$, but for larger sample sizes is preferable to Anderson's approximation. When only μ is unknown the exact and the approximate design values coincide.

One can also use the tables of $r^{N}(\cdot)(P, n)$ and $\beta_{(\cdot)}^{N}(P, n)$ for reliability analysis. Consider a structure whose state of survival depends only on the normal variable

UNKNOWN PARAMETER (S)	$\begin{aligned} & \text { SAMPLE } \\ & \text { SIZE } \\ & \mathrm{n} \end{aligned}$	PENALTY RATIO	NEW DESIGN VALUE	"FIRST-ORDER" APPROXIMATION EQ(II.21)	"FIRST-ORDER"; VARIABILITY OF S NEGLECTED (Anderson(1972))
μ and σ	$\begin{array}{r} 2 \\ 5 \\ 10 \\ 20 \end{array}$	$\begin{array}{r} 16.759 \\ 1.766 \\ 1.272 \\ 1.119 \end{array}$	$\begin{aligned} & \hat{z}+38.98 \mathrm{~S} \\ & \hat{z}+4.107 \mathrm{~S} \\ & \hat{z}+2.959 \mathrm{~S} \\ & \hat{z}+2.602 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \hat{z}+3.600 \mathrm{~s} \\ & \hat{z}+2.762 \mathrm{~s} \\ & \hat{z}+2.515 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \hat{z}+2.849 \mathrm{~S} \\ & \hat{z}+2.549 \mathrm{~S} \\ & \hat{z}+2.440 \mathrm{~s} \\ & \hat{z}+2.384 \mathrm{~s} \end{aligned}$
σ	$\begin{array}{r} 2 \\ 5 \\ 10 \\ 20 \end{array}$	$\begin{aligned} & 2.994 \\ & 1.447 \\ & 1.188 \\ & 1.087 \end{aligned}$	$\begin{aligned} & \mu+6.965 \mathrm{~S} \\ & \mu+3.365 \mathrm{~S} \\ & \mu+2.764 \mathrm{~s} \\ & \mu+2.528 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mu+3.000 \mathrm{~S} \\ & \mu+2.640 \mathrm{~S} \\ & \mu+2.451 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \mu+2.326 \mathrm{~S} \\ & \mu+2.326 \mathrm{~S} \\ & \mu+2.326 \mathrm{~S} \\ & \mu+2.326 \mathrm{~S} \end{aligned}$
μ	2 5 10 20	$\begin{aligned} & 1.225 \\ & 1.096 \\ & 1.049 \\ & 1.025 \end{aligned}$	$\begin{aligned} & \hat{z}+2.849 \sigma \\ & \hat{z}+2.549 \sigma \\ & \hat{z}+2.440 \sigma \\ & \hat{z}+2.384 \sigma \end{aligned}$	$\begin{aligned} & \hat{z}+2.849 \sigma \\ & \hat{z}+2.549 \sigma \\ & \hat{z}+2.440 \sigma \\ & \hat{z}+2.384 \sigma \end{aligned}$	$\begin{aligned} & \hat{z}+2.849 \sigma \\ & \hat{z}+2.549 \sigma \\ & \hat{z}+2.440 \sigma \\ & \hat{z}+2.384 \sigma \end{aligned}$

TABLE 2. Design values which include statistical uncertainty (see text).
Y. Let β_{1} and β_{2} denote the distances of the extremes of the system safe interval on the Y axis from the estimated or known mean of Y, in units of estimated or known standard deviations of Y. The probability of failure is:

$$
P_{f}=2-\operatorname{Pr}\left(\beta_{1}, n\right)-\operatorname{Pr}\left(\beta_{2}, n\right),
$$

where $\operatorname{Pr}(\beta, n)$ is the probability content of the l-tailed region corresponding to $\beta_{(\cdot)}^{N}=\beta$ for a sample of size n and for the appropriate combination of known - unknown parameters. Alternatively P_{f} can be calculated from tables of the standard normal CDF, being:

$$
P_{f}=\Phi\left[-\beta_{1} / r_{(\cdot)}^{N}\left(P_{1}, n\right)\right]+\Phi\left[-\beta_{2} / r_{(\cdot)}^{N}\left(P_{2}, n\right)\right],
$$

where P_{1} and P_{2} are defined implicitly:

$$
P_{i}=\Phi\left[\beta_{i} / r_{(\cdot)}^{N}\left(P_{i}, n\right)\right] ; i=1,2 .
$$

Suppose for example that the bending resistance of a beam population has normal distribution. The applied moment M is known, so that the safe interval on the resistance
axis is $[M, \infty)$. From the population, five beams are chosen at random and their resistances are measured. With the notations introduced earlier β_{1} is the estimated value of $(\mu-M) / \sigma$ (μ and σ^{2} are the mean and the variance of the resistance), and $\beta_{2}=\infty$. The failure probability of a beam from the same population depends on β_{1} and on the state of knowledge about the distribution parameters. A few values of P_{f} are collected in Table 3 .

KNOWLEDGE OF PARAMETERS	β_{1}			
	1.00	2.00	3.00	4.00
μ, σ known:	0.159	0.023	0.00135	0.000032
μ unknown	0.181	0.034	0.0031	0.00013
σ unknown	0.182	0.051	0.015	0.0052
μ, σ unknown	0.207	0.063	0.026	0.011

TABLE 3. Probability of failure for selected values of $\beta_{1}, \beta_{2}=\infty$ and a sample of size $n=5$ (see also text).

The values of P_{f} in Tables 4 and 5 correspond to the same values of β_{1} and to the same combinations of known unknown parameters. They result respectively from using the "first-order" approximation (II.21) and from neglecting
the uncertainty of S in the same approximation (i.e., when using the approximation proposed by Anderson (1972)). The "first-order" approximations (II.21) (Table 4) are conservative for small β_{1} values and become unconservative as β_{1} increases. If, in addition, one neglects the statistical variability of S, the estimated reliability increases, this making the approximations in Table 5 always unconservative if σ is unknown.

KNOWLEDGE OF PARAMETERS	β_{1}			
	1.00	2.00	3.00	4.00
μ unknown	0.181	0.034	0.0031	0.00013
σ unknown	0.219	0.061	0.0101	0.0010
μ, σ unknown	0.260	0.099	0.026	0.0051

TABLE 4. Probabilities of failure from the "first-order" approximation (II.21).

KNOWLEDGE OF PARAMETERS	β_{1}			
	1.00	2.00	3.00	4.00
μ unknown	0.181	0.034	0.0031	0.00013
σ unknown	0.159	0.023	0.00135	0.000032
μ, σ unknown	0.181	0.034	0.0031	0.00013

TABLE 5. Probabilities of failure; "first-order" approximation and variability of S neglected (Anderson (1972)).

As anticipated before, the coefficients β and the penalty ratios for non-normal populations can be used in the same way.

It is interesting to compare the penalty ratios $r=\beta / \beta_{P I}$ when a sample of the same size n is available from different populations. In Figure 5 the penalty ratios for several distribution types and for various combinations of known - unknown parameters are plotted as functions of n. The curves refer to a left-hand prediction interval of 0.999-expectation and indicate clearly that the penalty ratio is highly sensitive to the population type and to the state of knowledge about the parameters. Curves (3), (6), (7) and (8) refer to cases with both location and scale
parameters unknown; only the location parameter is unknown for curves (1), (4) and (5); curve (3) is for a case with unknown variance. For all the remaining curves the location and the scale parameters are both unknown, but they are related deterministically (for instance through a known coefficient of variation).

Although some overlapping exists and the results are rather dispersed, the general tendency is that the penalty increases from the location parameter being unknown to the scale parameter being also unknown but with a deterministic functional relationship between the two, to the case with only the scale parameter unknown, and finally to both parameters being unknown and independent.

Unfortunately, it does not seem that a distributionfree approximation for r as a function of n can be found easily without restricting substantially the distribution type. For left prediction intervals and for exponentially decaying densities like, say, $\exp \left\{Y^{\alpha}\right\}$ with α given, the penalty ratio increases with decreasing α (for example it is larger for the exponential distribution than it is for the normal). Of course, comparisons are meaningful only if the state of knowledge about the parameters is similar.

(g) DISTRIBUTION-FREE PREDICTION INTERVALS

So far the distribution type and possibly some distribution parameters were assumed known (\Rightarrow parametric prediction). Under some conditions on the sample size, a prediction interval for the next observation can be constructed also if no information is available on the population distribution; i.e., neither on the parameters, nor on the shape. In this type of statistical (nonparametric) prediction, inferences rely exclusively on the information from the sample. The only distributional property which is usually required (and to which the following results are conditional) is the continuity of the population CDF.

Given an ordered set of n independent observations from the same unknown population: $Z_{(1)}<Z_{(2)}<\ldots<Z_{(n)}$, consider the ($n+1$) intervals: ($\left.\left.-\infty, Z_{(1)}\right], Z_{(1),} Z_{(2)}\right], \ldots$, $\left(Z_{(n)}, \infty\right)$. After setting $Z_{(0)}=-\infty$ and $Z_{(n+1)}=\infty$, the difference $\left[F\left(Z_{(j)}\right)-F\left(Z_{(j-1)}\right)\right]$, with $F(\cdot)$ being the unknown population CDF, is called the coverage of the $j^{\text {th }}$ interval. Tukey (1947) proved that the sum of any $r<n+1$ coverages has Beta distribution $I(r, n-r+1)$, where

$$
\begin{equation*}
I_{t}(r, n-r+1)=\int_{0}^{t} \frac{n!}{(r-1)!(n-r)!} \alpha^{r-1}(1-\alpha)^{n-r} d \alpha, 0 \leq t \leq 1 \tag{II.48}
\end{equation*}
$$

is tabulated by Pearson (1934). In particular the expected sum of any r coverages is

$$
\begin{equation*}
P(r, n)=r /(n+1) \tag{II.49}
\end{equation*}
$$

(Less general statements were proved earlier by Wilks (1941) and by Wald (1943).) Equation (II.49) enables one to construct distribution-free prediction intervals of P-expectation if enough data are available. For instance, $\left(Z_{(1)}, Z_{(n)}\right]$ is a central nonparametric prediction interval of expectation $(n-1) /(n+1)=1-\frac{2}{n+1}$, and $(Z(1), \infty)$ is a right-hand prediction interval of expectation ($1-\frac{1}{n+1}$).

Suppose that sampling is from a Normal population, but that the experimenter has a poor knowledge of the distribution type; thus he decides to use a distribution-free predictor. Keeping n, the sample size, to a minimum, a few prediction intervals of P-expectation are considered in Table 6 for different values of P. The entries of the table are the values of n which make the nonparametric intervals in the left column of P -expectation.

PREDICTION INTERVAL	P					
	0.75	0.90	0.95	0.99	0.995	0.999
$\left.{ }^{\mathrm{Z}}(\mathrm{I})^{\prime 2}(\mathrm{n})\right]$	7	19	39	199	399	1999
$\begin{gathered} \text { or } \\ \left(Z_{(1)}, \infty\right) \end{gathered}$	3	9	19	99	199	999

TABLE 6. Minimum sample sizes for the construction of nonparametric prediction intervals.

The quantity $\left[Z_{(n)^{-Z}(1)}\right] / \sigma$, where σ^{2} is the population variance, is called the "normalized range" of the sample. For normal populations the expected normalized range (ENR) was computed and tabulated by Tippett (1925) for $n=2(1) 1000$. For instance it is: ENR(39) $=4.30117$ and $\operatorname{ENR}(199)=5.48876$. The ratio

$$
\begin{equation*}
r_{F}^{N}(P, n)=\frac{\operatorname{ENR}(n)}{2 \Phi[(1+P) / 2]} \tag{II.50a}
\end{equation*}
$$

for central predictions and the ratio

$$
\begin{equation*}
r_{F}^{N}(P, n)=\frac{\operatorname{ENR}(n)}{2 \Phi(P)} \tag{II.50b}
\end{equation*}
$$

for l-sided predictions are measures of the expected penalty for not knowing the distribution shape when in fact the distribution is normal. For the prediction intervals and for the sample sizes in Table $6, r_{F}^{N}$ has the following values.

PREDICTION INTERVAL	P					
	0.75	0.90	0.95	0.99	0.995	0.999
CENTRAL	1.176	1.121	1.097	1.065	1.057	-
1-SIDED	1.256	1.158	1.121	1.077	1.065	1.049

TABLE 7. Penalty factors for nonparametric prediction intervals when sampling is from normal populations.

One might plot the points $\left[n, r_{F}^{N}(P, n)\right]$ in Figures 1 , 2,3 to compare with the analogous penalties when the distribution type is known but some or all the parameters are not; however the major penalty in nonparametric prediction is the very large required sample size (for central prediction intervals: $\mathrm{n} \geq(1+\mathrm{P}) /(1-\mathrm{P})$; for 1 -sided predictions: $n \geq P /(1-P))$.

Suppose now that the population has exponential distribution and that the purpose of sampling is to construct
a l-sided nonparametric prediction interval of P-expectation. If the distribution type is unknown to the experimenter, the minimum required sample sizes are those given in Table 6 for 1-sided predictions.

The mean of the smallest value among n independent observations with exponential density: $f(Z)=\lambda \exp (-\lambda Z)$ is (see Gumbel (1958), p 117):

$$
\begin{equation*}
\overline{\mathrm{Z}}(1)=1 / \lambda \mathrm{n} \tag{II.5la}
\end{equation*}
$$

and the mean of the largest value is, again from Gumbel, p 116:

$$
\begin{align*}
\bar{Z}_{(n)} & =\sum_{i=1}^{n} 1 / \lambda \cdot i \tag{II.5lb}\\
& \approx \ln n+0.57722 \quad(\text { large } n)
\end{align*}
$$

Since the P-fractile of the exponential distribution is $-\lambda^{-1} \ln (l-P)$, the penalty for not knowing the distribution type can be defined:
$r_{F}^{E X}(P, n)=-n \ln (P)$
$r_{F}^{E X}(P, n)=\frac{1-\sum_{i=1}^{n} \frac{1}{i}}{1+\ln (1-P)}$
for prediction intervals of the type $(Z(1), \infty)$; and
for prediction intervals of the type $\left[0, Z_{(n)}\right]$

For n having the values in Table 6 for l-sided predictions, the penalty ratios are given in Table 8.

PREDICTION INTERVAL	P					
	0.75	0.90	0.95	0.99	0.995	0.999
$\left(\mathrm{Z}(1){ }^{\infty}\right)$	0.863	0.948	0.975	0.995	0.9975	0.9995
$\left[0, \mathrm{Z}_{(n)}\right]$	2.157	1.404	1.304	1.157	1.133	1.098
SAMPLE SIZE	3	9	19	99	199	999

TABLE 8. Penalty factors for distribution-free prediction intervals when sampling is from exponential distributions.

The penalty ratios for right-hand predictions are always smaller than the corresponding ratios when the distribution type is known, and for the same sample size. This is due to the particular shape of the left "tail" of the exponential density. Conversely, the penalty ratios for left-predictions always exceed the corresponding parametric values. For the latter case (as for normal populations) the lack of information on the distribution type is penalized mostly by the large minimum sample size which is required to construct prediction intervals of high expected content $(n \geq P /(1-P))$.

The "paradox" of having penalty ratios smaller than 1 and of them decreasing when assuming no knowledge of the distribution type motivates some skepticism on the validity of the ratio r as an index of penalty for the "pathological" case of the exponential distribution (see also comments on this point in Goodman and Madansky (1962)).

Along the same lines one can define penalty ratios for nonparametric prediction when the actual distribution is Gamma, Extreme type I, lognormal or other, if the expected range is known. Useful references are Gupta (1960), David (1954), Cox (1954), Singh (1967, 1972).

Not until recently has statistical prediction profited from Bayes' theorem. Important contributions are authored by Aitchison (1964), Thatcher (1964), Lindley (1965), Aitchison and Sculthorpe (1965), Guttman (1970).

The Bayesian approach to prediction was outlined briefly in Section II.l. The quantity to be predicted, y, is considered to be random, with uncertainty contributed both by the probabilistic model and by the lack of statistical information. If the population distribution type is known but not the vector of parameters $\underline{\theta}$, a prior distribution for $\underline{\theta}, f(\underline{\theta})$, is established which quantifies the status of knowledge before sampling. This prior knowledge is then combined with the information from the sample data, $\underline{Z}, ~ y i e l d i n g$ a posterior distribution for $\underline{\theta}, \underline{(\underline{\theta} \mid \underline{Z})}$. This is accomplished formally through equation (II.6), which is rewritten here in terms of the likelihood function $1(\underline{Z} \mid \underline{\theta})$ (for any given observation vector, $1(\underline{Z} \mid \underline{\theta})$ is proportional to $f(\underline{Z} \mid \underline{\theta}))$:

$$
\begin{equation*}
f(\underline{\theta} \mid \underline{Z}) \propto f(\underline{\theta}) \cdot I(\underline{Z} \mid \underline{\theta}) \tag{II.53}
\end{equation*}
$$

The posterior predictive density of Y is then calculated through equation (II.5). The same equation gives also the prior predictive density $f(Y)$ after replacing $f(\underline{\theta} \mid \underline{Z})$ by $f(\underline{\theta})$. If desired, point and interval predictions can be found a posteriori after specifying a prediction criterion or a utility function (see Chapter I, Section 2). The power of Bayesian analysis resides mainly in its capability to combine information of different types from different sources. However, closed-form results for the posterior predictive distribution are known only for particular likelihood functions (probabilistic models) and prior distributions. In this sense, the case of vague initial information ("diffuse" or "noninformative" prior) and the case when the posterior distribution is of the same type as the prior distribution (conjugate prior) are of special interest.

The problem of selecting "correctly" the prior distribution is not free of difficulties, and is still the object of active research and of much debate. Savage (1962), Jeffreys (1961) and Novick (1962) among others made early and fundamental contributions in this area; conjugate prior distributions were introduced by Raiffa and Schlaifer (1961) and discussed by Lindley (1965) and by Draper and Guttman (1968a,b). Recent reviews with vast bibliographies are in Lindley (1971) and in Hampton, et al. (1973). Also
informative is Chapter 6 in DeGroot (1970).
The results presented in this chapter are mostly for conjugate prior distributions. Particular relevance is given to the fact that the cases with conjugate priors can be reduced to problems with diffuse priors by artificially increasing the sample size and by modifying the sufficient sample statistics. The characterization of the prior information through an equivalent sample may have useful practical implications, as suggested by the experiments conducted by Winkler (1967) and others. A concise account of Bayesian prediction theory for Normal, Exponential, Poisson and Gamma populations follows.
(a) NORMAL SEQUENCES
μ unknown, σ known. From Raiffa and Schlaifer (1961), p 55, the likelihood function in terms of the sufficient statistics $\hat{Z}=\frac{1}{n} \sum_{i=1}^{n} Z_{i}$ and n is:

$$
\begin{equation*}
I(\mu \mid \hat{Z}, n) \propto \exp \left\{-\frac{\mathrm{n}}{2 \sigma^{2}}(\mu-\hat{Z})^{2}\right\} \tag{II.54}
\end{equation*}
$$

For a prior in the form of the normal density

$$
\begin{equation*}
f(\mu)=\frac{I}{\sqrt{2 \pi} \sigma_{0}} \exp \left\{-\frac{I}{2 \sigma_{0}^{2}}\left(\mu-\mu_{0}\right)^{2}\right\} \tag{II.55}
\end{equation*}
$$

the posterior density of μ is also normal. Let $\sigma_{0}^{2}=\sigma^{2} / n^{\prime}$; then

$$
f(\mu \mid \hat{Z}, n)=\frac{1}{\sqrt{2 \pi} \sigma /\left(n+n^{\prime}\right)^{1 / 2}} \exp \left\{-\frac{n+n^{\prime}}{2 \sigma^{2}}\left[\mu-\frac{n^{\prime} \mu_{0}+n \hat{z}}{n+n^{\prime}}\right]^{2}\right\} .
$$

From equation (II.5), after "integrating out" $\mu:$

$$
\mathrm{f}(\mathrm{Y} \mid \underline{Z})=\frac{1}{\sqrt{2 \pi} \sigma\left(\frac{n+n^{\prime}+1}{n+n^{\prime}}\right)^{1 / 2}} \cdot \exp \left\{-\frac{n+n^{\prime}}{2\left(n+n^{\prime}+1\right) \sigma^{2}}\left(Y-\frac{n^{\prime} \mu_{0}+n \hat{Z}}{n+n^{\prime}}\right)^{2}\right)
$$

This is again in the form of a normal density with parameters:

$$
\begin{equation*}
\mu_{Y}=\frac{n^{\prime} \mu_{0}+n \hat{Z}}{n+n^{\prime}} ; \sigma_{Y}^{2}=\sigma^{2} \frac{n+n^{\prime}+1}{n+n^{\prime}} . \tag{II.58}
\end{equation*}
$$

The prior density (II.55) becomes more and more "diffuse" as σ_{0} increases or, equivalently, as n' decreases. The noninformative situation is approached asymptotically as $n^{\prime} \rightarrow 0$. Although (II.55) degenerates into an improper density when $n^{\prime} \rightarrow 0$, the predictive density (II.57) does not, becoming simply: $N\left(\hat{Z} ; \sigma^{2}(n+1) / n\right)$.

It is interesting to observe that for integer n^{\prime}

$$
N\left(\frac{n^{\prime} \mu_{0}+n \hat{z}}{n+n^{\prime}} ; \quad \sigma^{2} \frac{n+n^{\prime}+1}{n+n^{\prime}}\right)
$$

would be the posterior predictive distribution if, starting with a diffuse prior, a sample of size ($n+n$ ') were available, with sample mean $\left(n^{\prime} \mu_{0}+n \hat{Z}\right) /\left(n+n^{\prime}\right)$. This shows, as anticipated earlier, that the effect of assuming an informative conjugate prior with integer n ' is to "increase the sample size" and to modify the sufficient statistics. When n ' is not an integer the prior information "is worth more" than [n'] observations and less than [n']+l observations with sample mean $\mu_{0} \cdot([\cdot]=\max$ integer function.)

If one is interested in prediction intervals of probability content P, the following applies.

Central prediction interval:

$$
\begin{aligned}
& \frac{n^{\prime} \mu_{0}+n \hat{z}}{n+n^{\prime}}-\Phi[(1+P) / 2] \cdot \sigma\left(\frac{n+n^{\prime}+1}{n+n^{\prime}}\right)^{1 / 2}, \\
& \left.\frac{n^{\prime} \mu_{0}+n \hat{z}}{n+n^{\prime}}+\Phi[(1+P) / 2] \cdot \sigma\left(\frac{n+n^{\prime}+1}{n+n^{\prime}}\right)^{1 / 2}\right]
\end{aligned}
$$

One-sided prediction intervals:

$$
\left[\begin{array}{l}
\left.-\infty, \frac{n^{\prime} \mu_{0}+n \hat{z}}{n+n^{\prime}}+\Phi(P) \sigma\left(\frac{n+n^{\prime}+1}{n+n^{\prime}}\right)^{1 / 2}\right] ; \text { or } \\
\left(\frac{n^{\prime} \mu_{0}+n \hat{z}}{n+n^{\prime}}-\Phi(P) \sigma\left(\frac{n+n^{\prime}+1}{n+n^{\prime}}\right)^{1 / 2}, \infty\right. \tag{II.60b}
\end{array}\right)
$$

These intervals coincide with the frequentist prediction intervals of P-expectation when the prior is diffuse 280
($n^{\prime}=0$), and coincide with the frequentist results for a sample size $\left(n+n^{\prime}\right)$ and a sample mean $\frac{n^{\prime} \mu_{0}+n \hat{Z}}{n+n^{\prime}}$ when the prior is informative of the conjugate type and n ' is integer.

This means that one can use the tables in Appendix A also for Bayesian prediction, by entering them with a sample size ($n+n^{\prime}$). Interpolation should be used for non-integer n'.
μ known, σ unknown. Again from Raiffa and Schlaifer (1961) p 54, the likelihood function of $h=1 / \sigma^{2}$ is:

$$
I(h \mid s, n) \propto h^{n / 2} \exp \left\{-\frac{1}{2} n h s^{2}\right\}
$$

where n is the sample size and $S^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(z_{i}-\mu\right)^{2}$ is the sample variance. The family of conjugate distributions is Gamma-2 :
$f(h) \propto h^{\left(\frac{1}{2} n^{\prime}-1\right)} \exp \left\{-\frac{1}{2} h n^{\prime} S^{\prime 2}\right\} ; h>0 ; n^{\prime}, S^{\prime 2}>0$,
for which the posterior density of h results:

$$
\begin{equation*}
f(h \mid S, n) \propto h^{\left(\frac{1}{2} n^{\prime \prime}-1\right)} \exp \left\{-\frac{1}{2} h n^{\prime \prime} S^{\prime \prime}\right\} \tag{II.61}
\end{equation*}
$$

where $n^{\prime \prime}=n+n^{\prime}$,

$$
s^{\prime \prime}=\left(n s^{2}+n^{\prime} s^{\prime 2}\right) /\left(n+n^{\prime}\right)
$$

Since $f(Y \mid h) \propto h^{1 / 2} \exp \left\{-\frac{1}{2} h(Y-\mu)^{2}\right\}$, the predictive posterior density is:
$f(Y \mid S, n)=\int_{0}^{\infty} f(Y \mid h) f(h \mid S, n) d h$

$$
\left.\propto \int_{0}^{\infty} h^{1 / 2} \exp \left\{-\frac{1}{2} h(Y-\mu)^{2}\right\} \cdot h^{\left(\frac{1}{2}\right.} \mathrm{n}^{\prime \prime}-1\right)
$$

- $\exp \left\{-\frac{1}{2} h n^{\prime \prime} s^{\prime 2}\right\} d h$.

The integrand is proportional to a joint Normal-Gamma density for Y and h. After integrating with respect to h one finds that ($\mathrm{Y}-\mu) / \mathrm{S}$ " has a "Student's" t-distribution with n" degrees of freedom; i.e.:

$$
\begin{equation*}
f(Y \mid S, n) \propto\left[n^{\prime \prime}+\left(\frac{Y-\mu}{S "}\right)^{2}\right]^{-(n "+1) / 2} \tag{II.62}
\end{equation*}
$$

The considerations following equation (II.58) hold also in the present case. In fact, as the prior density becomes less informative ($n^{\prime} \rightarrow 0, S^{\prime}$ finite), a posteriori ($Y-\mu$)/S becomes t-distributed with n degrees of freedom, and the Bayesian prediction intervals of P -content coincide with the frequentist prediction intervals of P-expectation. The frequentist results can be used also when the conjugate prior is informative, in which case one should consider an "equivalent" sample size $n "=n+n '$ and an "equivalent" sample variance $S^{\prime \prime}=\left(n S^{2}+n^{\prime} S^{\prime 2}\right) /\left(n+n^{\prime}\right)$. In other words, the prior information "is worth" n' additional sample data with sample variance S^{2}.

The notion of an informative conjugate prior being equivalent to a diffuse prior plus a set of sample statistics (here n^{\prime}, μ_{o}) when only μ is unknown, ($n^{\prime}, S^{\prime 2}$) when only σ is unknown) is recurrent in Bayesian prediction. It may also prove relevant to ease the application of Bayesian ideas to engineering decisions; after all, it is not unusual that prior knowledge derives from previous sampling. In a sense, μ_{0} and S^{2} represent what one believes prior to sampling, while $n '$ measures one's degree of belief in those values (how many data points one would be willing to exchange for his prior information). In addition, this interpretation of the prior knowledge (when applicable)
makes clear the consequences of misestimating the prior distribution within the conjugate family. This point is elaborated further in what follows.

Consider first the case when the population mean is known but the variance is not, and let n_{0}^{\prime} and S_{o}^{2} be the "correct" prior parameters. If one choses the correct value for n^{\prime}, but the incorrect value $S^{\prime 2}=S_{o}^{\prime}{ }^{2}+\left(\Delta S^{\prime}\right)^{2}$ for the equivalent prior sample variance, the posterior variance of Y is, from equation (II.62):

$$
\sigma_{Y}^{2}=S^{\prime 2} \frac{n+n_{0}^{\prime}}{n+n_{0}^{\prime}-2}=\sigma_{Y}^{2}+\frac{n_{0}^{\prime}}{n+n_{0}^{\prime}-2}\left(\Delta S^{\prime}\right)^{2}
$$

where $\sigma_{Y_{O}}^{2}$ is the value of σ_{Y}^{2} for $S^{\prime 2}=S_{O}^{\prime 2}$. Therefore an error in the equivalent prior sample variance is transferred into the posterior predictive variance with a weighting factor $n_{0}^{\prime} /\left(n+n_{0}^{\prime}-2\right)$. The quantity

$$
\begin{equation*}
r=\left(1+\frac{n_{0}^{\prime}}{n+n_{0}^{\prime}+2}\left(\frac{\Delta S^{\prime}}{\sigma_{Y_{0}}}\right)^{2}\right)^{1 / 2} \tag{II.64}
\end{equation*}
$$

is the factor by which the extremes of any prediction interval are multiplied because of an error $\left(\Delta S^{\prime}\right)^{2}$ in the estimation of $S^{\prime 2}$. For instance, for $\Delta S^{\prime} / \sigma_{Y_{0}}=0.8$ and $n=n_{o}^{\prime}=5$ (implying $S^{\prime}=1.8 S_{o}^{\prime 2}$ if $S_{o}^{\prime}=S$) one finds $\gamma=1.183$.

In the same way, when assuming the "correct" value for $S^{\prime 2}$, but a "wrong" value for n^{\prime}, say $n^{\prime}=n_{0}^{\prime}+\Delta_{n}$, one finds:

$$
\sigma_{Y}^{2}=\frac{n s^{2}+\left(n_{0}^{\prime}+\Delta n^{\prime}\right) S_{0}^{\prime 2}}{n+n_{0}^{\prime}+\Delta n^{\prime}-2}
$$

and

$$
\gamma=\left(\frac{n s^{2}+\left(n_{0}^{\prime}+\Delta n^{\prime}\right) s_{0}^{\prime 2}}{n s^{2}+n_{o}^{\prime} s_{o}^{\prime 2}} \frac{n+n_{o}^{\prime}-2}{n+n_{o}^{\prime}+\Delta n^{\prime}-2}\right)^{1 / 2}
$$

- (II.65)

Similar results are easily derived also for the case: μ unknown, σ known.
μ and σ unknown. This case was studied by Aitchison and Sculthorpe (1965) and is reported in Guttman (1970). With respect to the likelihood function:
$I\left(\mu, \sigma^{2} \mid \underline{Z}\right)=(2 \pi)^{-n / 2} \sigma^{-n} \exp \left\{-\left[(n-1) S^{2}+n(\hat{Z}-\mu)^{2}\right] / 2 \sigma^{2}\right\}$
where $\quad \hat{z}=n^{-1} \sum_{i=1}^{n} z_{i} ; s^{2}=(n-1)^{-1} \sum_{i=1}^{n}\left(z_{i}-\hat{Z}\right)^{2}$,
the conjugate family is of the Normal-Gamma type (see Raiffa and Schlaifer (1961) p 55). If the prior parameters are $\left[\mu^{\prime}, n^{\prime},\left(n^{\prime}-1\right) S^{2}\right.$], the joint prior density of μ and σ^{2} is:
$f\left(\mu, \sigma^{2}\right) \propto \sigma^{-\left(n^{\prime}+2\right)} \exp \left\{-\left[\left(n^{\prime}-1\right) S^{\prime}+n^{\prime}\left(\mu-\mu^{\prime}\right)^{2}\right] / 2 \sigma^{2}\right\}$. (II.66)

As n^{\prime} and $S^{\prime 2}$ tend to zero, this density becomes more and more "flat", approaching the noninformative form (in the sense of Jeffreys (1961)):

$$
\begin{equation*}
f\left(\mu, \sigma^{2}\right) \propto 1 / \sigma^{2} \tag{II.67}
\end{equation*}
$$

The posterior distribution of $\left(\mu, \sigma^{2}\right)$ is also of the NormalGamma type, with parameters:

$$
-\left(n+n^{\prime}\right) \mu^{2}
$$

From equation (II.5) the posterior density of the next observation from the same normal population is
$f(Y \mid \underline{Z})=\left(\frac{n^{\prime \prime}}{n^{\prime \prime}+1}\right)^{1 / 2} \frac{\Gamma \frac{n^{\prime \prime}}{2}}{\Gamma\left(\frac{n^{\prime \prime}-1}{2}\right)(\pi q)^{1 / 2}}\left(1+\frac{n^{\prime \prime}(Y-\mu ")^{2}}{\left(n^{\prime \prime}+1\right) q}\right)-n^{\prime \prime / 2}$

$$
\begin{aligned}
& n^{\prime \prime}=n+n^{\prime} ; \\
& \mu^{\prime \prime}=\mathrm{n}^{-1}\left(\mathrm{n}^{\prime} \mu^{\prime}+\mathrm{n} \hat{Z}\right) \text {; } \\
& q=S^{\prime 2}\left(n^{\prime \prime}-1\right)=\left(n^{\prime}-1\right) S^{\prime 2}+(n-1) S^{2}+n^{\prime} n\left(n^{\prime \prime}\right)^{-1}\left(\hat{Z}-\mu^{\prime}\right)^{2} \\
& =\left[\left(n^{\prime}-1\right) S^{\prime 2}+n^{\prime} \mu^{\prime}{ }^{2}\right]+\left[(n-1) S^{2}+n \hat{Z}^{2}\right]
\end{aligned}
$$

which implies that $\left(\frac{n^{\prime \prime}}{n^{\prime \prime}+1}\right)^{1 / 2} \frac{Y-\mu^{\prime \prime}}{\left[q /\left(n^{\prime \prime}-1\right)\right]} 1 / 2$ has $t-$ distribution with (n " -1) degrees of freedom. Prediction intervals are readily obtained:

Central prediction interval of P -content:

$$
\begin{equation*}
(\mu "-K, \mu "+K] \tag{II.70a}
\end{equation*}
$$

where $\quad K=\left(\frac{q\left(n^{\prime \prime}+1\right)}{n^{\prime \prime}\left(n^{\prime \prime}-1\right)}\right)^{1 / 2} \cdot t_{n "-1}[(1+P) / 2]$.

One-sided prediction intervals of P-content:

$$
\begin{equation*}
\left(-\infty, \mu^{\prime \prime}+K^{\prime}\right] ; \text { or }\left(\mu^{\prime \prime}-K^{\prime}, \infty\right) \tag{II.7la}
\end{equation*}
$$

where $K^{\prime}=\left(\frac{q\left(n^{\prime \prime}+1\right)}{n^{\prime \prime}\left(n^{\prime \prime}-1\right)}\right)^{1 / 2} \cdot t_{n^{\prime \prime}-1}(P)$,
and $t_{v}(P)$ denotes the P-fractile of the t-distribution with ν degrees of freedom.

In the case of noninformative prior, equation (II.67), these intervals reduce to the corresponding frequentist intervals, equations (II.7) and (II.ll). More generally the prediction intervals for informative conjugate priors correspond to the frequentist intervals when using an equivalent sample size $n^{\prime \prime}$, a sample mean $\mu^{\prime \prime}$ and a sample variance $S^{\prime \prime}=q /\left(n^{\prime \prime}-1\right)$. This parallels analogous findings for the cases when μ or σ are known. Again, one can use the tables in Appendix A.
(b) EXPONENTIAL SEQUENCE

When sampling is from the exponential distribution (II.23) the likelihood function is

$$
1(\sigma \mid \underline{z})=\sigma^{-n} \exp \{-n \hat{z} / \sigma\},
$$

where $\hat{Z}=n^{-1} \sum_{i=1}^{n} Z_{i}$. The associated conjugate prior family is (see Guttman (1970), p 130):

$$
f(\sigma) \propto \sigma^{-\left(n^{\prime}+1\right)} \exp \left\{-n^{\prime} \mu^{\prime} / \sigma\right\}
$$

which approaches the diffuse density $f(\sigma) \propto l / \sigma$ as n^{\prime} and
μ^{\prime} tend to zero. From equation (II.53) the posterior density has the form:
$f(\sigma \mid \underline{Z})=\frac{\left(n \hat{Z}+n^{\prime} \mu^{\prime}\right)^{n+n^{\prime}}}{\Gamma\left(n+n^{\prime}\right)} \sigma^{-\left(n+n^{\prime}+1\right)} \exp \left\{-\left(n \hat{Z}+n^{\prime} \mu^{\prime}\right) / \sigma\right\}$,
meaning that $2\left(n \hat{Z}+n^{\prime} \mu^{\prime}\right) / \sigma$ is distributed like Chi-square with $2\left(n+n^{\prime}\right)$ degrees of freedom. From equation (II.5) the predictive density is:
$f(Y \mid \underline{Z})=\left(n+n^{\prime}\right)\left[1+Y /\left(n \hat{Z}+n^{\prime} \mu^{\prime}\right)\right]^{-\left(n+n^{\prime}+1\right)}$

One-sided prediction intervals of P -content are:
for right predictions:
(K, ∞), where $K=\left(n \hat{Z}+n^{\prime} \mu^{\prime}\right)\left(\underline{P}^{-1 /\left(n+n^{\prime}\right)}-1\right)$;
for left predictions:
$[0, K]$, where $K=\left(n \hat{Z}+n^{\prime} \mu^{\prime}\right)\left[(1-P)^{-1 /\left(n+n^{\prime}\right)}-1\right]$.

Like in sampling from normal populations, Bayesian prediction intervals of given probability content for a diffuse prior coincide with the corresponding frequentist intervals, equations (II.24) and (II.26). For an informative conjugate prior the frequentist results (and the tables in Appendix A) hold after replacing n and \hat{z} by the "equivalent" sufficient statistics $\left(n+n^{\prime}\right)$ and $\left(n \hat{z}+n^{\prime} \mu^{\prime}\right) /\left(n+n^{\prime}\right)$. The following results for Poisson and for Gamma sequences are due to Aitchison and Sculthorpe (1965).
(c) POISSON SEQUENCE

A Poisson sequence generates independent, identically distributed exponential variates Z_{i} with density function $\lambda e^{-\lambda Z} ; Z \geq 0, \lambda>0$. The likelihood function for λ in terms of the statistics n and $\hat{Z}=\frac{1}{n} \sum_{i=1}^{n} Z_{i}$ is:

$$
\begin{equation*}
I(\lambda \mid \underline{z})=e^{-\lambda n \hat{z}} \cdot \lambda^{n} \tag{II.75a}
\end{equation*}
$$

with Gamma conjugate family (see Raiffa and Schlaifer (1961), p 53). For the prior density
$f(\lambda) \propto e^{-\lambda n^{\prime} \mu^{\prime}} \lambda^{n^{\prime}-1} ; \lambda \geq 0 ; \quad n^{\prime}, \mu^{\prime}>0$.
the associated posterior results in the form:
$f(\lambda \mid \underline{Z})=\frac{n^{\prime} \mu^{\prime}+n \hat{Z}}{\Gamma\left(n+n^{\prime}\right)} \exp \left\{-\lambda\left(n^{\prime} \mu^{\prime}+n \hat{Z}\right)\right\}\left[\left(n^{\prime} \mu^{\prime}+n \hat{Z}\right) \lambda\right]\left(n+n^{\prime}-1\right)$,

$$
\begin{equation*}
\lambda \geq 0 \tag{II.75c}
\end{equation*}
$$

From equation (II.5) the density of the prediction variable Y having Poisson distribution with mean $\mathrm{m} \lambda$ is:
$f(Y \mid \underline{Z})=\frac{\Gamma\left(n+n^{\prime}+Y\right)}{Y!\Gamma\left(n+n^{\prime}\right)}\left(\frac{m}{n^{\prime} \mu^{\prime}+n \hat{Z}+m}\right)^{Y}\left(\frac{n^{\prime} \mu^{\prime}+n \hat{Z}}{n^{\prime} \mu^{\prime}+n \hat{Z}+m}\right)^{n+n^{\prime}}$.

Therefore the left-hand prediction interval of P-probability content is
$[0, K]$, where $K=\min \left\{\gamma: I_{b /(b+m)}\left(n+n^{\prime}, \gamma\right) \geq P\right\}-1$. (II.77)

In equation (II.77), $b=n^{\prime} \mu^{\prime}+n \hat{Z}$, and I is the incomplete beta function (tables in Pearson (1934)).

The corresponding right-hand prediction interval is:
$[K, \infty)$, where $K=\max \left\{\gamma: I_{b /(b+m)}\left(n+n^{\prime}, \gamma\right) \leq 1-P\right\}$.

When the prior is diffuse ($n^{\prime} \rightarrow 0, \mu^{\prime}$ finite) the prediction interval (II.78) reproduces the frequentist result, equation (II.34). (Replace ($n^{\prime} \mu^{\prime}+n \hat{Z}$) by ($n^{\prime}+n$) for comparing the results.) On the contrary the interval (II.77) does not reproduce equations (II.31) and (II.32) unless for left-hand predictions one assumes $n^{\prime} \mu^{\prime}=1$ as a noninformative condition and $n^{\prime} \mu^{\prime}>1$ as an informative one. This makes good sense; in fact for $n \hat{Z}=0$ and for a diffuse prior the prediction interval $[0, \mathrm{~K}]$ in equation (II.77) should have a non-zero upper limit for high probability contents (see also earlier comments on the frequentist results).

Under this condition on left-hand predictions the tables in Appendix A can be used also for Bayesian predictions.
(d) GAMMA SEQUENCE

The results for Gamma sequences are closely related to those for the Poisson process. If λ is the parameter of the underlying exponential process, the "past" experiment E consists in observing a variable Z with distribution $G(m, \lambda)$ and m known. λ is a Bayesian random variable. The
"future" experiment F concerns the realization of a variable with distribution $G(K, \lambda)$ and known K. Viewing E as a set \underline{Z} of n replicates of F it is: $m=n K$. The likelihood function has the form of equation (II.75a) with $n K$ in place of n. Consequently the conjugate family is Gamma as in equation (II.75b) where, for consistency of notations, one must replace n^{\prime} by $n^{\prime} K^{\prime}$. With the same substitutions the posterior density of λ is given by equation (II.75c). Finally, the posterior predictive distribution has the form:

$$
\begin{equation*}
f(Y \mid \underline{Z})=\frac{b^{a}}{B(a, K)} \frac{Y^{K-1}}{(b+Y)^{a-I}} \tag{II.79}
\end{equation*}
$$

where $b=n K \hat{Z}+n^{\prime} K^{\prime} \mu^{\prime} ; \quad a=n K+n^{\prime} K^{\prime} ;$ and $B(p, q)$ is the complete beta function:

$$
B(p, q)=\Gamma(p) \Gamma(q) / \Gamma(p+q)
$$

From equation (II.79) the following one-sided prediction intervals of P -content result:
$[0, K]$, where $K=b \frac{1-B(a, K ; 1-P)}{B(a, K ; 1-P)}$
($B(a, K ; P)$ is the P-fractile of the incomplete beta distribution); and

$$
\begin{equation*}
[K, \infty), \text { where } K=b \frac{1-B(a, K ; P)}{B(a, K ; P)} \tag{II.81}
\end{equation*}
$$

When the prior distribution becomes diffuse (n ' $\rightarrow 0$; K^{\prime}, μ^{\prime} finite) b approaches $n K \hat{Z}$ and a approaches $n K$, which coincide with what was denoted Z and, respectively, K in the frequentist approach (equations (II.35a), (II.35b), (II.40)).

Also for Gamma sequences the Bayesian intervals coincide with the frequentist intervals after replacing the sample statistics, here ($\mathrm{nK}, \mathrm{nKZ}$), by "equivalent" sample statistics, here ($n K+n^{\prime} K^{\prime}, n K \hat{Z}+n^{\prime} K^{\prime} \mu^{\prime}$). As a consequence, with these substitutions one can use the tables for Gamma populations in Appendix A.

SOME REMARKS AND EXEMPLIFIED APPLICATIONS

As we saw for a few population distributions, when the conjugate prior degenerates to a noninformative density the Bayesian prediction intervals of P -content coincide with the corresponding frequentist intervals. We also noted
that in the (conjugate) informative case one can still use the frequentist results, referred to an "equivalent" set of sufficient statistics. More exactly we found that the information contained in the conjugate prior is the same as that contained in an "equivalent" prior sample, which Bayes' theorem "pools together" with the actual sample. From a practical viewpoint, since the pooled statistics are sufficient, tables for frequentist prediction and for frequentist penalty ratios can be used also for Bayesian analysis. Two examples follow.

EXAMPLE 1. FREQUENTIST VERSUS BAYESIAN PREDICTION

Consider sampling from the normal population $N\left(\mu, \sigma^{2}\right)$ with both parameters unknown. Five samples are chosen at random ($n=5$), with statistics $\hat{Z}=10$ and $s^{2}=9$. The prior information is judged to be worth four additional samples $\left(n^{\prime}=4\right)$, with statistics $\mu^{\prime}=14$ and $S^{\prime 2}=16$. The pooled statistics are, from equations (II.68):

$$
\begin{aligned}
\mathrm{n}^{\prime \prime} & =\mathrm{n}+\mathrm{n}^{\prime}=9 ; \\
\mu^{\prime \prime} & =\left(\mathrm{n} \hat{z}+\mathrm{n}^{\prime} \mu^{\prime}\right) /\left(\mathrm{n}+\mathrm{n}^{\prime}\right)=11.778 ; \\
\mathrm{S}^{\prime \prime} & =\mathrm{q} /\left(\mathrm{n}^{\prime \prime}-1\right)=14.9 .
\end{aligned}
$$

If a central prediction interval is desired, with content $P=0.99$, the frequentist answer is (use Table A8 for $\mathrm{P}=0.99$ and $\mathrm{n}=5$):
$(\hat{z}-5.044 \mathrm{~s}, \hat{\mathrm{z}}+5.044 \mathrm{Sl}$; or $(-5.13,25.13]$.

The Bayesian answer is (enter the same table with $n=9$):

$$
(\mu "-3.537 \mathrm{~s} ", \mu "+3.537 \mathrm{st}] ; \text { or }(-1.86,25.42] .
$$

From the Bayesian viewpoint one can also construct a prediction interval of 0.99-content based exclusively on prior knowledge. In this case, using Table A8 with $\mathrm{n}=4$ one finds:
($\left.\mu^{\prime}-6.53 . S^{\prime}, \mu^{\prime}+6.53 S^{\prime}\right]$; or (-11.12, 39.12].

Note that, although the frequentist prediction interval usually contains the Bayesian prediction interval when the same sample is used for both, this is not a general rule since Bayesian predictions depend also on the prior statistics. It should also be said that if the sample
statistics are "very different" from the equivalent prior statistics one might want to check the experimental data and/or to revise his prior beliefs. (This problem is discussed by Savage (1972); see also Veneziano (1974c).)

EXAMPLE 2. COMBINED USE OF BAYESIAN ESTIMATION AND
PREDICTION

Reinforced concrete structures (parallel examples can be made for timber and steel structures) often use precast beams. The properties of the basic materials, the geometry of the beams and the position of the reinforcement are controlled during production. Nevertheless, even an accurate control cannot remove all the statistical variability, so that the load-carrying capacity of each individual beam is a random variable.

In order to reduce the uncertainty of the product, a "here-and-now" predictive strategy is actuated at the plant level, where the scope of sampling and of making destructive tests is to evaluate the distribution parameters of the resistance population with "minimum" uncertainty. Later on, a "wait-and-see" (estimative) strategy is followed by the consumer who tests nondestructively the beams delivered to him (for instance by measuring the beams' stiffnesses and by relating them to their ultimate resistances.

The consumer's purpose is to reduce the uncertainty on the resistance of the beams he is going to use.

Therefore, the posterior predictive distribution of the producer becomes prior information for the consumer. At the final stage of construction all the tests (both those performed by the producer and those performed by the consumer) contribute to reduce the uncertainty on the resistance of the beams.

Two problems arise: (i) how to combine the information from different experiments; and (ii) what is the "best" overall testing policy. We restrict these questions to the case of the producer and the consumer controlling only the number of experiments, which are performed with fixed modalities.

Let us focus on a single beam with unknown resistance, R. The initial distribution of R (before any testing) is assumed to be $N\left(\mu ; \sigma^{2}\right)$ with σ^{2} given and μ unknown. After the producer has measured the resistances $R_{i}\left(i=1, \ldots, n_{1}\right)$ of n_{1} beams chosen at random from the statistical population, the (predictive) distribution of R is:

$$
\begin{equation*}
\left(\mathrm{R} \mid \mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}_{1}}\right) \sim \mathrm{N}\left(\hat{R_{;}}\left(1+1 / \mathrm{n}_{1}\right) \sigma^{2}\right) \tag{II.82}
\end{equation*}
$$

where $\hat{R}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} R_{i}$. Correspondingly the right-hand prediction interval of $\mathrm{p}-\mathrm{content}$ is:

$$
\left(\hat{R}-\beta_{\mu}^{N}\left(P, n_{1}\right) \cdot \sigma, \infty\right),
$$

(II.83a)
where

$$
\begin{equation*}
\beta_{\mu}^{N}\left(P, n_{1}\right)=\left(1+1 / n_{1}\right)^{1 / 2} \Phi(P) \tag{II.83b}
\end{equation*}
$$

Suppose now that the consumer's measurements have the form:

$$
\underline{Z}=\left(\begin{array}{c}
1 \tag{II.84}\\
1 \\
\vdots \\
1
\end{array}\right) R+\underline{\varepsilon}
$$

where \underline{Z} and $\underline{\varepsilon}$ are n_{2}-vectors, and
$\underline{\varepsilon} \sim \mathrm{N}_{\mathrm{n}_{2}}(\underline{0} ; \underline{\theta})$, where $\underline{\theta}=$

(II.85)

After testing, the right-hand interval of P-content becomes:

$$
\begin{equation*}
\left(\hat{R}^{*}-\beta_{\mu}^{N^{*}}\left(n_{1}, n_{2}, P\right) \cdot \sigma, \infty\right) \tag{II.86a}
\end{equation*}
$$

where, from Chapter I, equations (I.8a):

$$
\begin{aligned}
\beta_{\mu}^{N^{*}}\left(n_{1}, n_{2}, P\right) & =\beta_{\mu}^{N}\left(n_{1}, P\right)\left(1+\frac{\sigma^{2}\left(1+1 / n_{1}\right)}{\sigma_{\varepsilon}^{2}} \frac{n_{2}}{1+\left(n_{2}-1\right) \rho}\right)^{-1 / 2} \\
& =\Phi(P)\left(\frac{n_{1}}{n_{1}+1}+\frac{\sigma^{2}}{\sigma_{\varepsilon}^{2}} \frac{n_{2}}{1+\left(n_{2}-1\right) \rho}\right)^{-1 / 2} \cdot \quad \text { (II. 86b) }
\end{aligned}
$$

Since a priori it is $\mathrm{E}[\hat{\mathrm{R}}]=\mathrm{E}[\hat{\mathrm{R}}]=\mu=$ prior mean resistance, the key quantity for deciding upon n_{1} and n_{2} is:
$h=\frac{1}{\Phi(P)} \beta_{\mu}^{N^{*}}\left(n_{1}, n_{2}, P\right)=\left(\frac{n_{1}}{n_{1}+1}+\frac{\sigma^{2}}{\sigma_{\varepsilon}^{2}} \frac{n_{2}}{1+\left(n_{2}-1\right) p}\right)^{-1 / 2}$.
(II.87)

The smaller h, the smaller the posterior variance. h is a decreasing function of n_{1} and n_{2}, with limiting value

$$
\begin{equation*}
\mathrm{n}_{1}, \lim _{2 \rightarrow \infty} \mathrm{~h}=\mathrm{h}_{\infty}=\left(1+\frac{\sigma^{2}}{\sigma_{\varepsilon}^{2}} \frac{1}{\rho}\right)^{-1 / 2} \tag{II.88}
\end{equation*}
$$

Different testing strategies $\left(n_{1}, n_{2}\right)$ can be compared through the ratio

$$
\begin{equation*}
\frac{h}{h_{\infty}}=\left(\frac{1+\frac{1}{\rho} \frac{\sigma^{2}}{\sigma_{\varepsilon}^{2}}}{\frac{n_{1}}{n_{1}+1}+\frac{\sigma^{2}}{\sigma_{\varepsilon}^{2}} \frac{n_{2}}{1+\left(n_{2}-1\right) \rho}}\right)^{1 / 2} \tag{II.89}
\end{equation*}
$$

Assume for instance that $\sigma^{2} / \sigma_{\varepsilon}^{2}=4$ and $\rho=0.4$; also assume a target ratio $h / h_{\infty} \leq 1.1$. The solutions which are candidates for optimality are collected in the following table.

n_{1}	n_{2}
0	15
1	10
2	9
3	8
6	7

Any other combination is either unfeasible (for instance $\left(n_{1}, n_{2}\right)$ with $n_{2}<7$), or suboptimal (for instance $\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$ with $\left.\mathrm{n}_{2}>15\right)$. If testing costs are given together with the number of beams (the consumer's tests have to be repeated on each beam, while the producer's tests do not), one can chose the best strategy by direct comparison of the costs.

(e) DISTRIBUTION-FREE PREDICTION INTERVALS

The difficulty of applying Bayesian ideas to nonparametric prediction is to describe appropriately the prior knowledge over a family of distribution functions. The family may comprise all the possible distributions over a given sample space, y, or a subset of them (like the subset of the continuous distributions). In part the difficulty can be overcome by considering a partition $\left(B_{1}, \ldots, B_{K}\right)$ of y
such that $B_{i} \cap B_{j}=\phi$ for $i \neq j$ and ${ }_{i=1} B_{i}=y$. Then all the distributions over y can be generated by specifying the probability contents $P\left(B_{1}\right), \ldots, P\left(B_{K}\right)$ for all possible partitions, under the restriction $P\left(B_{i}\right) \geq 0 ; \sum_{i=1}^{K} P\left(B_{i}\right)=1$. If one fixes the number of subsets K and the partition $\left(B_{1}, \ldots, B_{K}\right)$ of y, the joint distribution of the $P\left(B_{j}\right)$'s is not sufficient information to characterize the probability distribution of $P(A)$, where A is any subset of Y.

Let us consider this restricted and simpler case first. In the univariate case y coincides with the real line, or with a subset of it. The conjugate prior for the discrete model in which only the K exhaustive and mutually exclusive events: $Y \in B_{1}, \ldots, Y \in B_{K}$, are considered, has Dirichlet form with parameters, say, $\alpha_{1}, \ldots, \alpha_{K}$. (This means that $P\left(B_{1}\right), \ldots P\left(B_{K}\right)$ have the joint Dirichlet distribution $D\left(\alpha_{1}, \ldots, \alpha_{K}\right)$, Let $\alpha_{i}(i=1, \ldots, K)$ be the prior parameters and consider an observation $Z \in Y$ which belongs to the $i^{\text {th }}$ set B_{i}. The posterior distribution of $P\left(B_{1}\right), \ldots, P\left(B_{K}\right)$ is again jointly Dirichlet (and marginally Beta) with parameters $\alpha_{l}^{(i)}, \ldots, \alpha_{K}^{(i)}$, where:

$$
\begin{aligned}
& \alpha_{j}^{(i)}=\alpha_{j} \quad \text { for } i \neq j, \\
& \alpha_{j}^{(i)}=\alpha_{j}+1 \text { for } i=j .
\end{aligned}
$$

This Bayesian property is easily generalized to n observations and holds for any finite dimension of y. The sum $\alpha=\sum_{i=1}^{K} \alpha_{i}$ is a measure of the confidence one has in the prior best guess of the distribution. In fact, when the parameters α_{i} are integer-valued, α lends itself to the interesting interpretation of an equivalent prior sample size, with α_{1} observations located (anywhere) in B_{1}, α_{2} observations anywhere in B_{2}, and so on. The first two moments of $P\left(B_{i}\right)$ are (see for instance Johnson and Kotz (1972), Chapter 40 for a review of the properties of the Dirichlet distribution) :

$$
\begin{aligned}
& E\left[P\left(B_{i}\right)\right]=\alpha_{i} / \alpha \\
& E\left[P\left(B_{i}^{2}\right]=\frac{\alpha_{i}\left(\alpha_{i}+1\right)}{\alpha(\alpha+1)} \quad(i=1, \ldots, K)\right.
\end{aligned}
$$

This discrete approach has been extended by
Ferguson (1973) to cover continuous distributions over y. Ferguson starts with the following definition of the Dirichlet process:
"Let α be a non-null finite measure (nonnegative and finitely additive) on ($y, \mathcal{L})^{(*)}$. We say P is a Dirichlet process on (y, dt) with parameter α if for every $K=1,2, \ldots$ and measurable partition (B_{1}, \ldots, B_{K}) of y the distribution of $\left(P\left(B_{1}\right), \ldots, P\left(B_{K}\right)\right)$ is Dirichlet, $D\left(\alpha\left(B_{1}\right), \ldots\right.$, $\alpha\left(B_{K}\right)$)."

Therefore, the prior information (which for the Dirichlet process turns out to be in conjugate form) may be defined through the joint distribution of $P\left(B_{1}\right), \ldots$, $P\left(B_{K}\right)$ for all K and for all measureable partitions ($\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{K}}$) of y . In the Dirichlet process this is done by defining the parameter α as a set-to-scalar function. The expected probability content of any set $B \subset y$ is

$$
E[P(B)]=\frac{\alpha(B)}{\alpha(Y)} \frac{\alpha(B)}{\sum_{i=1}^{K} \alpha\left(B_{i}\right)} .
$$

(*) \mathcal{A} is a σ-field of subsets of y.

As for the discrete Dirichlet distribution, $\alpha(y)$ measures the degree of confidence in the prior best estimate of the probability distribution (in units of number of observations), which is:

$$
F(Y) \propto \alpha((-\infty, Y]) .
$$

A number of properties of the Direchlet process are proved by Ferguson. In particular his Theorem 1 states that the Bayesian property of the Direchlet distribution carries over to the Dirichlet process as follows. Let $P(B)$ denote the probability content of the generic set $B \subset y$ for the true distribution. If the prior Dirichlet process on (y, \notin) has parameter α_{0}, and $z_{1}, z_{2}, \ldots, z_{n}$ is a population sample, then the posterior distribution of $P(\cdot)$ is a Dirichlet process with parameter $\alpha_{0}+\sum_{i=1}^{n} \delta_{Z_{i}}$, where δ_{Z} denotes a measure on (y, et) giving mass 1 to the point Z; i.e.:

$$
\begin{aligned}
\delta_{Z}(A) & =1 \quad \text { if } Z \in A, \\
& =0 \quad \text { if } Z \notin A .
\end{aligned}
$$

Given the posterior parameter $\alpha_{0}+\sum_{i=1}^{n} \delta_{z_{i}}$, the posterior best estimate of the distribution function can be obtained for any given optimality criterion. For instance, when the process is defined over the real axis R, Ferguson shows that the best estimate of the distribution function under a quadratic loss criterion is the expected distribution function:
$F(Y)=\frac{\alpha_{0}(R)}{\alpha_{0}(R)+n} F_{0}(Y)+\left[1-\frac{\alpha_{0}(R)}{\alpha_{0}(R)+n}\right] F_{n}\left(Y \mid Z_{1}, \ldots, Z_{n}\right)$,
(II.90)
where

$$
F_{0}(Y)=\frac{\alpha_{0}((-\infty, Y])}{\alpha_{0}(R)}
$$

is the best prior estimate, and

$$
F_{n}\left(Y \mid Z_{1}, \ldots, Z_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \delta_{Z_{i}}((-\infty, Y])
$$

is the "empirical CDF" of the sample. The posterior degree of belief in the best estimate is measured by $\alpha_{0}(R)+n$, showing again that $\alpha_{0}(R)$ can be interpreted as an equivalent
prior sample size.
Analogous results hold when y is a set in a higher dimensional space.

Intervals (or regions in the multivariate analog) of expected cover P are easily constructed if the parameter α of the Dirichlet process is known. In fact, for every interval $A \subset Y$ it is: $E[P(A)]=\alpha(A) / \alpha(y)$, where $\alpha(y)$ is a normalization constant. For $y=R$ prediction intervals of P -content are:

Central intervals:

$$
\left[d_{1}, d_{2}\right]
$$

where

$$
\begin{aligned}
& d_{1}=\min \{d: F(d) \geq(1-P) / 2\} \\
& d_{2}=\min \{d: F(d) \geq(1+P) / 2\}
\end{aligned}
$$

One-sided intervals:

$$
\left(-\infty, d_{2}\right]
$$

where

$$
d_{2}=\min \{d: F(d) \geq P\} ; \text { and }
$$

$$
\left[d_{1}, \infty\right),
$$

where

$$
\mathrm{d}_{1}=\min \{\mathrm{d}: \mathrm{F}(\mathrm{~d}) \geq 1-\mathrm{P}\}
$$

In all cases it is:
$F(d)=\frac{1}{\alpha_{0}(R)+n}\left(\alpha_{0}((-\infty, d])+\sum_{i=1}^{n} z_{i}((-\infty, d])\right)$.

As $\alpha_{0}(R) \rightarrow 0$ the prior information becomes more and more "diffuse", and the Bayesian prediction intervals approach the corresponding frequentist intervals (see Paragraph II.2.l(g)). When discussing nonparametric frequentist prediction intervals we observed that a large penalty had to be paid in terms of the mimimum required sample size. If the Bayesian prior distribution is discrete with a probability mass $1 / \alpha_{0}(R)$ concentrated at each of $\alpha_{0}(R)$ points $\left(\alpha_{0}(R)\right.$ integer), the required minimum sample size for the construction of prediction regions of P-expectation is reduced by $\alpha_{0}(R)$ with respect to the frequentist requirements (see

Table 6).

EXAMPLE: CONSTRUCTION OF A NONPARAMETRIC BAYESIAN CENTRAL
PREDICTION INTERVAL OF 0.90 - EXPECTATION

Two types of prior distributions are considered and specified through different prior parameters α_{o} of a Dirichlet process: a concentrated-probability-mass distribution as in Figure 6(a), and a distributed-probability distribution as in Figure 6(b). The prior (b) can be viewed as a smoothed version of the prior (a). In both cases we assume $\alpha_{0}(R)=14$.

In order to construct a central interval of exactly 0.90 - expectation it must be $\alpha_{0}(R)+n \geq 20$, so that the sample size n must be at least 6. An hypothetical measure $\alpha_{\text {SAMPLE }}$ from a sample of size 6 is shown in Figure 6 (c). The parameter $\alpha_{0}+\alpha_{\text {SAMPLE }}$ of the posterior Dirichlet process is sketched in Figure 6(d) for the prior (a) and in Figure 6(e) for the prior (b). In both cases the prior information is "weighted" in the posterior information by the factor $\alpha_{0}(R) /\left[\alpha_{0}(R)+n\right]=14 / 20=0.7$, and the empirical (sample) information by the factor $n /\left[\alpha_{0}(R)+n\right]=0.3$. The central prediction intervals of 0.90 - expectation are indicated on the same figures.

II.2.3. Frequentist Prediction Intervals for

Multivariate Sequences

Parametric results for multivariate prediction are generally restricted to multinormal populations. Nevertheless, under the condition of independence, rectangular prediction regions for non-normal vectors are easily obtained from the univariate results. For instance, suppose that the prediction vector \underline{Y} has two independent components Y_{1} and $Y_{2} . Y_{1}$ has exponential distribution $\operatorname{EX}(\lambda)$, with λ unknown, and Y_{2} has lognormal distribution $L N\left(\mu, \sigma^{2}\right)$ with both parameters unknown. Then the region

$$
D=\left\{\left(Y_{1}, Y_{2}\right) \mid Y_{1} \in I^{E X}\left(n, P_{1}\right) ; Y_{2} \in I^{L N}\left(n_{1} P_{2}\right)\right\}
$$

($I^{E X}\left(n, P_{1}\right)$ is a prediction interval of expectation P_{1} for Y_{1}, and $I^{L N}\left(n, P_{2}\right)$ is a prediction interval of expectation P_{2} for Y_{2}, given n independent observations from the two populations) is of P -expectation if and only if $\mathrm{P}_{1} \mathrm{P}_{2}=\mathrm{P}$. In fact the events $E_{1}: Y_{1} \in I^{E X}\left(n, P_{1}\right)$ and $E_{2}: Y_{2} \in I^{L N}\left(n, P_{2}\right)$ are independent and

$$
P=\operatorname{Pr}\left(E_{1} \cap E_{2}\right)=\operatorname{Pr}\left(E_{1}\right) \cdot \operatorname{Pr}\left(E_{2}\right)=P_{1} P_{2}
$$

The idea is generalized in the obvious way to \underline{Y} having any finite number of components.

For the bivariate case one can also construct rectangular probability charts. One such chart is shown in Figure 7 (lower half) for Y_{1} being $E X(\lambda)$ with λ unknown and Y_{2} being $N\left(\mu ; \sigma^{2}\right)$ with only μ unknown. The sample size is $\mathrm{n}=5$. Each non-dotted rectangle has expected probability content 0.001 and each dotted rectangle has expected content 0.003 , so that any selection of m undotted and \bar{m} dotted rectangles has the property of $0.001(m+3 \bar{m})$-expectation. Rectangular probability charts of this type depend on the sample size (which needs not be the same for Y_{1} and Y_{2}), on the distribution types, and on the parameters being known or unknown.

The chart in the upper half of Figure 7 corresponds to perfect knowledge of the distribution parameters ($n \rightarrow 0$). Since little penalty is associated with the normal population when only the location parameter is unknown, the rectangles of the lower part of Figure 7 are elongated mainly in the direction of the exponential variate, particularly for large values of Y_{1}.

In each quadrant the unbounded regions have an expected probability content 0.006 (the equivalent of six undotted rectangles). Considering also the specular images
of the external contours of the upper and lower charts, the ratio between the areas with expected content ($1-2 \times 0.006$) $=0.988$ for the cases $n=5$ and $n \rightarrow \infty$ is 1.93 , which is a two-dimensional penalty measure for limited statistical information at the probability level 0.988.

More complete results are given now for multinormal populations.
(a) MULTINORMAL SEQUENCES

Let $\underline{Y} \sim N_{K}(\underline{\mu} ; \underline{\Sigma})$ be a K-dimensional normal prediction vector with mean $\underline{\mu}$ and covariance matrix $\underline{\Sigma}$. If $\underline{\mu}$ and $\underline{\Sigma}$ are known, the maximum-probability-density (and therefore minimum-volume) central prediction region of P -content is

$$
\begin{equation*}
D^{N}(P)=\left\{\underline{Y} \mid(\underline{Y}-\underline{\mu})^{\prime} \underline{\Sigma}^{-1}(\underline{Y}-\underline{\mu}) \leq X_{K}^{2}(P)\right\} \tag{II.91}
\end{equation*}
$$

where $X_{K}^{2}(P)$ denotes the P-fractile of the Chi-square distribution with K degrees of freedom. $D^{N}(P)$ as defined by equation (II.91) is a K-dimensional ellipsoid, centered in $\underline{\mu}$. The points which satisfy the condition (II.91) as an equality belong to a contour surface of the normal density of \underline{Y}.

The construction of similar central prediction
regions of P-expectation when either $\underline{\mu}$, or $\underline{\Sigma}$, or both $\underline{\mu}$ and $\underset{I}{ }$ are unknown was first studied by Fraser and Guttman (1956) (see also the review paper by Chew (1966)). For the derivation of the results collected here the reader is referred to the original paper.
$\underline{\mu}$ and $\underline{\Sigma}$ unknown. Let $\underline{Z}_{1}=\underline{Y}_{1}, \ldots, \underline{Z}_{n}=\underline{Y}_{n}$ be a sample of size n from the population of \underline{Y}, with sufficient statistics:

$$
n ; \quad \underline{Z}=n^{-1} \sum_{i=1}^{n} \underline{Z}_{i} ; \quad \underline{s}=(n-1)^{-1} \sum_{i=1}^{n}\left(\underline{Z}_{i}-\underline{\hat{Z}}\right)\left(\underline{Z}_{i}-\underline{\hat{Z}}\right)^{\prime} .
$$

A prediction region of P -expectation is:
$D_{\underline{\mu}, \underline{\Sigma}}^{N}(P)=\left\{\underline{Y} \mid(\underline{Y}-\underline{\hat{Z}})^{\prime} \underline{S}^{-1}(\underline{Y}-\underline{\hat{Z}}) \leq\left(\beta_{\underline{\mu}, \underline{\Sigma}}^{N}\right)^{2}\right\}$,
where

$$
\begin{aligned}
& \left(\beta_{\underline{\mu}, \underline{\Sigma}}^{N}\right)^{2}=(n-1) \frac{K}{n-K}(1+1 / n) F_{K, n-K}(P), \\
& K \geq 1 \text { = dimension of } \underline{Y},
\end{aligned}
$$

$$
\begin{aligned}
n>K= & \text { sample size, and } \\
\mathrm{F}_{\mathrm{K}, \mathrm{n}-\mathrm{K}}(\mathrm{P}) \quad= & \text { P-fractile of the } \mathrm{F} \text {-distribution with } \mathrm{K} \\
& \text { and }(\mathrm{n}-\mathrm{K}) \text { degrees of freedom. }
\end{aligned}
$$

When $K=1$, equation (II.92) coincides with the prediction interval (II.7) since

$$
\left.\beta_{\mu, \sigma^{(1}}^{N}+1 / n\right)^{-1 / 2}=t_{n-1}[(1+P) / 2]=\left[F_{1, n-1}(P)\right]^{1 / 2} .
$$

The coefficient $\beta_{\underline{\mu}, \underline{\Sigma}}^{N}(n, K, P)$ controls the size of the predictive region (the volume of $\mathrm{D}_{\underline{\mu}, \Sigma}^{N}(\mathrm{P})$ is proportional to $\left.\left(\beta_{\underline{\mu}, \underline{\Sigma}}^{N}\right)^{K}\right)$. Under perfect information its value is, from equation (II.91):

$$
\beta_{P I}^{N}(K, P)=X_{K}(P)
$$

Paralleling the univariate case, a penalty ratio for imperfect information can be defined as follows:

$$
r_{\underline{\mu}, \underline{\Sigma}}^{N}(n, K, P)=\frac{\beta_{\underline{\mu}, \sum_{N}^{N}}^{N}(n, K, P)}{\beta_{P I}^{N}(K, P)}=\frac{\left(\frac{n^{2}-1}{n} \frac{K}{n-K} F_{K, n-K}(P)\right)^{1 / 2}}{X_{K}(P)} . \text { (II.93) }
$$

$\underline{\mu}$ known, \sum unknown. The central prediction ellip-
soid of P-expectation results:

$$
\begin{equation*}
D_{\underline{\Sigma}}^{N}(P)=\left\{\underline{Y} \mid(\underline{Y}-\underline{\mu})^{\prime} \underline{S}^{-1}(\underline{Y}-\underline{\mu}) \leq\left(\beta_{\underline{\Sigma}}^{N}\right)^{2}\right\} \tag{II.94}
\end{equation*}
$$

where $\quad\left(\beta_{\underline{\Sigma}}^{N}\right)^{2}=\frac{n K}{n-K+1} F_{K, n-K+1}(P) ;(n>K-1)$

$$
\underline{s}=n^{-1} \sum_{i=1}^{n}\left(\underline{Z}_{i}-\underline{\mu}\right)\left(\underline{z}_{i}-\underline{\mu}\right)^{\prime} .
$$

The associated penalty ratio is:
$r_{\sum}^{N}(n, K, P)=\frac{\beta_{\sum}^{N}(n, K, P)}{\beta_{P I}^{N}(K, P)}=\frac{\left(\frac{n K}{n-K+1} F_{K, n-K+1}(p)\right)^{1 / 2}}{X_{K}(P)}$
$\underline{\mu}$ unknown, \underline{E} known. The central prediction region of expected P -content is now:

$$
\begin{equation*}
D_{\underline{\mu}}^{N}(P)=\left\{\underline{Y} \mid(\underline{Y}-\underline{\hat{Z}})^{\prime} \underline{\Sigma}^{-1}(\underline{Y}-\underline{\hat{Z}}) \leq\left(\beta_{\underline{\mu}}^{N}\right)^{2}\right\} \tag{II.96}
\end{equation*}
$$

where

$$
\left(\beta_{\underline{\mu}}^{N}\right)^{2}=(1+1 / n) \chi_{K}^{2}(P)
$$

Interestingly enough, the penalty ratio when only $\underline{\mu}$ is unknown is independent of K and P, and therefore coincides with the univariate value:

$$
\begin{equation*}
r_{\underline{\mu}}^{N}(n)=(1+1 / n)^{1 / 2} \tag{II.97}
\end{equation*}
$$

The penalty ratios (II.93), (II.95), (II.97) are related as

$$
r_{\underline{\mu}, \underline{\Sigma}}^{N}(n, K, P)=r_{\underline{\mu}}^{N}(n) \cdot r_{\underline{\Sigma}}^{N}(n-1, K, P)
$$

which equation generalizes the univariate result, equation (II.20) .

Tables of $\beta^{N}(\cdot)$ and $r_{(\cdot)}^{N}$ for selected values of $\mathrm{n}, \mathrm{K}=2(1) 5,7,10,15,20,40$ and for $\mathrm{P}=0.99$, $0.995,0.999$ are collected in Appendix B. The use of the tables does not differ from the univariate case. It is interesting to observe how the penalty ratios depend on the dimension of \underline{Y}. Plots of $r_{\underline{\mu}, \underline{\Sigma}}^{N}$ and of $r_{\underline{\Sigma}}^{N}$ for $P=0.99$ and
and $n \leq 20$ are shown in Figures 8 and 9 (note difference in scales). Both penalties increase considerably with K for any fixed n; for instance, given a sample of size $n=10$, the first few penalty ratios for $\underline{\mu}$ and $\underline{\Sigma}$ unknown are:

K	$r_{\underline{\mu}, \Sigma}^{N}(10, K, 0.99)$
1	1.323
2	1.525
3	1.778
4	2.133
5	2.683

Rectangular prediction regions

When $K>1$ no obvious equivalents to one- or twosided prediction intervals exist. Definitions of one-sided rectangular regions can be given, such as

$$
D(P)=\left\{\underline{Y} \mid Y_{i} \leq \bar{Y}_{i}(n, K, P)_{i} i=1, \ldots, K\right\}
$$

(for each i the sign \leq may be replaced by \geq); also, twosided rectangular prediction regions can be defined as:
$D(P)=\left\{\underline{Y} \mid Y_{i}^{m}(n, K, P)<Y_{i} \leq Y_{i}^{M}(n, K, P) ; i=1, \ldots, K\right\}$.

However, in no case do results exist with the generality of those for ellipsoidal regions. The appeal of rectangular regions is that they uncouple the prediction intervals of the components of \underline{Y}.

When the covariance matrix $\underline{\Sigma}$ is diagonal, one can use the one-dimensional results, as described earlier. If $\underline{\Sigma}$ is given and has equicorrelated structure:

$$
\underline{(\Sigma)}_{i j}= \begin{cases}\sigma_{i}^{2}, & \text { for } i=j \tag{II.98}\\ \rho \sigma_{i}^{-\sigma_{j}}, & \text { for } i \neq j\end{cases}
$$

prediction regions of the type

$$
\begin{aligned}
& D(P)=\left\{\underline{Y} \mid Y_{i} \leq \hat{z}_{i}+\beta_{\underline{\mu}}^{N} \sigma_{i}\right\} \text {, or } \\
& D(P)=\left\{\underline{Y} \mid Y_{i} \geq \hat{z}_{i}-\beta_{\underline{\mu}}^{N} \sigma_{i}\right\}
\end{aligned}
$$

can be used, where:

$$
\hat{z}_{i}=n^{-1} \sum_{j=1}^{n} z_{i j}
$$

$\left(z_{i j}=i^{\text {th }}\right.$ component of the $j^{\text {th }}$ observation),

$$
\beta_{\underline{\mu}}^{N}(n, K, P)=(1+1 / n) \beta_{P I}^{N}(K, P)
$$

and $\beta_{P I}^{N}(K, P)$ satisfies:
$\int_{-\infty}^{\beta_{P I}^{N}(\cdot)} \cdots \int_{-\infty}^{\beta_{P I}^{N}(\cdot)} f\left(\underline{y}^{*}\right) d \underline{y}^{*}$
$=\int_{-\infty}^{\infty}{ }_{\Phi} \mathrm{K}\left[\left(\beta_{P I}^{N}(\cdot)+\rho^{1 / 2} \cdot u\right) /(1-\rho)^{1 / 2}\right] \phi(u) d u=P$
$(\Phi[\cdot]$ and $\phi(\cdot)$ are the standard normal CDF and PDF, and $\left.Y_{i}^{*}=\left(Y_{i}-\mu_{i}\right) / \sigma_{i}.\right)$

Gupta (1963) tabulated P as a function of K (his n), ρ, and $\beta_{P I}^{N}(\cdot)$ (his h) for $K=1(1) 12, \rho$ ranging discretely from 0.1 to 0.9, and for $\beta_{\mathrm{PI}}^{\mathrm{N}}(\cdot)=-3.5(0.1) 3.5$. The result
(II.99) is important in connection with some known inequalities of the normal integral over multidimensional rectangles (Slepian (1962); Sidak (1968); Tong (1970)) which allow one to obtain bounds on the probability content of rectangular regions in K-space for correlation structures other than (II.98).

For any correlation structure and for all combinations of $\underline{\mu}$ and $\underline{\Sigma}$ known or unknown, conservative two-sided rectangular regions can be constructed in several ways (see Chew (1968) for a different use of the same results).

1. Circumscribed rectangles. The (hyper)rectangle which circumscribes the ellipsoid $\left\{\underline{Y} \mid(\underline{Y}-\underline{\mu})^{\prime} \underline{\Sigma}^{-1}(\underline{Y}-\underline{\mu}) \leq q^{2}\right\}$ and has sides parallel to the coordinate axes is:

$$
D^{*}=\left\{\underline{Y} \mid\left(\mu_{i}-q \sigma_{i}\right) \leq Y_{i} \leq\left(\mu_{i}+q \sigma_{i}\right) ; i=1, \ldots, K\right\}
$$

If one replaces the regions (II.92), (II.94) and (II.96) by the two-sided rectangles:

$$
D_{\underline{\mu}, \underline{\Sigma}}^{N *}(P)=\left\{\underline{Y}\left|Y_{i}-\hat{Z}_{i}\right| \leq \beta_{\underline{\mu}, \Sigma}^{N}(n, K, P) \cdot S_{i} ; \quad(i=1, \ldots, K)\right\}
$$

(where \hat{z}_{i} is the $i^{\text {th }}$ component of $\hat{\underline{z}}$ and S_{i}^{2} is the $i^{\text {th }}$ diagonal element of \underline{s};

$$
D_{\underline{\Sigma}}^{N^{*}}(P)=\left\{\underline{Y}| | Y_{i}-\mu_{i} \mid \leq \beta_{\underline{\Sigma}}^{N}(n, K, P) \cdot S_{i} ; \quad(i=1, \ldots, K)\right\} ;
$$

and

$$
D_{\underline{\mu}}^{N^{*}}(P)=\left\{\underline{Y}| | Y_{i}-\hat{Z}_{i} \mid \leq \beta_{\underline{\mu}}^{N}(n, K, P) \cdot \sigma_{i} ; \quad(i=1, \ldots, K)\right\}
$$

the new regions have expected content greater than P (the values of $\beta_{(\cdot)}^{N}$ in the preceeding expressions are those tabulated in Appendix B). Nevertheless, for practical applications to problems of structural safety (for instance \underline{Y} might be a load vector) this underestimation of the expected content may not be a critical factor, particularly if the components of \underline{Y} are not highly correlated. When Y_{i} and Y_{j} are uncorrelated for $i \neq j$, the expected content of the circumscribed rectangle for a given expected content P of the inscribed ellipsoid is, for a few selected values of K and P, and for $n \rightarrow \infty$:

K	$P=0.75$	$P=0.90$	$P=0.99$	$r=0.999$
2	0.8174	0.9372	0.9952	0.999598
3	0.8773	0.9632	0.99773	0.999834
5	0.95075	0.9882	0.999485	0.9999703
10	0.99605	0.999364	0.9999855	$0.9^{6} 470$
20	0.9999788	$0.9^{5} 804$	$0.9^{7} 823$	$0.9^{9} 678$

TABLE 9. Expected content of circumscribed rectangles;
$\mathrm{P}=$ expected content of the inscribed K -dimensional
ellipsoid.

Sometimes the penalty associated with this conservatism is balanced by the simplicity of the rectangular geometry which, as observed earlier, uncouples the prediction intervals for each component of \underline{Y}. (Of course, one-sided rectangular regions which are tangent to the prediction ellipsoids are even more on the conservative side.)
2. Use of a Bonferroni's inequality. (see Lieberman (1961)). When $\underline{\mu}$ and $\underline{\Sigma}$ are both unknown, the event

$$
\begin{equation*}
E_{i}:\left|Y_{i}-\widehat{z}_{i}\right| \leq\left(\frac{n-1}{n}\right)^{1 / 2} S_{i} t_{n-K}\left(\frac{2 K-I+P}{2 K}\right) \tag{II.100}
\end{equation*}
$$

occurs with expected probability (K-1+P)/K. When using a Bo ferroni's inequality (see Feller (1967), p ll0) one can prove that

$$
P \leq \operatorname{Pr}\left\{\bigcap_{i=1}^{K} E_{i}\right\} \leq P+\Delta P
$$

where

$$
\Delta P=\sum_{i=1}^{K-I} \sum_{j=i+1}^{K} \operatorname{Pr}\left\{\bar{E}_{i} \cap \bar{E}_{j}\right\}
$$

(the bar denotes complementation) and $\operatorname{Pr}\left\{\overline{\mathrm{E}}_{\mathrm{i}} \cap \overline{\mathrm{E}}_{\mathrm{j}}\right\}$ can be found from tables of the bivariate t-integral (see references in Chew (1968) p 327; see also Hahn and Hendrickson (1971), and references therein).

In analogous way, prediction intervals for $\underline{\mu}$ known and $\underline{\Sigma}$ unknown are:

$$
\begin{equation*}
\left|Y_{i}-\mu_{i}\right| \leq t_{n-K+I}\left(\frac{2 K-1+P}{2 K}\right) s_{i} \tag{II.101}
\end{equation*}
$$

and for $\underline{\mu}$ unknown and $\underline{\sum}$ known:

$$
\begin{equation*}
\left|Y_{i}-\mu_{i}\right| \leq(1+I / n)^{1 / 2} \Phi\left(\frac{2 K-1+P}{2 K}\right) \sigma_{i} . \tag{II.102}
\end{equation*}
$$

3. Other results. When Σ is unknown and \underline{S} has equicorrelated structure with correlation coefficient ρ, one can use known percentage points of the largest absolute value of K equicorrelated "Student's" t-variates (Hahn and Hendrickson (1971)) to construct exact two-sided rectangular prediction regions. Similarly one can use tables of the largest signed value of K equicorrelated t-variates (Krishnaiah and Armitage (1966)) to construct one-sided rectangular prediction regions.
 distributions ($\nu=$ number of degrees of freedom of the $t-$ distribution). Two-sided prediction intervals for each component of \underline{Y} are:

$$
\left|Y_{i}-\hat{z}_{i}\right| \leq S_{i} \cdot u(K, n-K, \rho ; P) \cdot(1+1 / n)^{1 / 2}
$$

when μ is unknown, and

$$
\left|Y_{i}-\mu_{i}\right| \leq s_{i} \cdot u(K, n-K+1, \rho ; P)
$$

when $\underline{\mu}$ is known. Similar results hold for one-sided prediction intervals.

EXAMPLE

Eight independent samples are available from a bivariate normal population, with both $\underline{\mu}$ and $\underline{\Sigma}$ unknown. The sample statistics are:
$\mathrm{n}=8 ; \quad \underline{\hat{Z}}=\binom{5}{6} ; \quad \underline{S}=\left(\begin{array}{ll}4 & 2 \\ 2 & 4\end{array}\right)$.

From equation (II.92) and from Table Bl in Appendix B, the elliptical central prediction region of 0.99 expected content is:
$D_{\underline{\mu}, \underline{\Sigma}}^{N}(0.99)=\left\{\underline{Y} \left\lvert\,\left[\left(Y_{1}-5\right),\left(Y_{2}-6\right)\right]\left(\begin{array}{cc}1 / 3 & -1 / 6 \\ -1 / 6 & 1 / 3\end{array}\right]\left[\begin{array}{l}\left(Y_{1}-5\right) \\ \left(Y_{2}-6\right)\end{array}\right) \leq 28.68\right.\right\}$.

The squares of the principal semiaxes of the prediction ellipse are $\left\{S_{11}+S_{22} \pm\left[\left(S_{11}-S_{22}\right)^{2}+4 S_{12}\right]^{1 / 2}\right\} \times 28.68 / 2$, or $(12.461)^{2}$ and $(8.612)^{2}$. The area of the ellipse is 337.14. After assuming $\underline{\Sigma}=\underline{S}$, the penalty ratio (II.93) is, from Table B $1:{\underset{\underline{\mu}}{\underline{\Sigma}}, \underline{N}}_{N}^{(8,2,0.99)}=1.765$. This means that the area of the prediction ellipse under perfect information and with $\underline{\Sigma}=\underline{S}$ is $337.14 /\left(r_{\underline{\mu}}^{N}, \underline{\Sigma}\right)^{2}=108.22$. The circumscribed rectangle is defined by the inequalities:

$$
\begin{aligned}
& 5-2 \sqrt{28.68} \leq Y_{1} \leq 5+2 \sqrt{28.68} \\
& 6-2 \sqrt{28.68} \leq Y_{2} \leq 6+2 \sqrt{28.58}
\end{aligned}
$$

with an area of 458.88 ; i.e., 1.361 times the area of the prediction ellipse.

Using Bonferroni's inequality the prediction rectangle is defined by:

$$
\begin{aligned}
& 5-2 \sqrt{9 / 8} t_{6}\left(\frac{3.99}{4}\right) \leq Y_{1} \leq 5+2 \sqrt{9 / 8} t_{6}\left(\frac{3.99}{4}\right) ; \\
& 6-2 \sqrt{9 / 8} t_{6}\left(\frac{3.99}{4}\right) \leq Y_{2} \leq 6+2 \sqrt{9 / 8} t_{6}\left(\frac{3.99}{4}\right),
\end{aligned}
$$

or:

$$
\begin{aligned}
& -4.158 \leq \mathrm{Y}_{1} \leq 14.158 \\
& -3.158 \leq \mathrm{Y}_{2} \leq 15.158
\end{aligned}
$$

with area 335.46 , being 0.995 times the area of the ellipse (II.l03).

Finally, if one uses the tables in Hahn and Hendrickson for $\rho=0.5, K=2, \nu=6$ and $P=0.99$ one finds $u(2,6,0.5 ; 0.99)=4.21$, so that a prediction rectangle of 0.99 expectation is
$5-8.42 \sqrt{9 / 8} \leq Y_{1} \leq 5+8.42 \sqrt{9 / 8}$, or $-3.931 \leq Y_{1} \leq 13.931$
$6-8.42 \sqrt{9 / 8} \leq Y_{2} \leq 6+8.42 \sqrt{9 / 8}$, or $-2.931 \leq Y_{2} \leq 14.931$

The area of this rectangle is 319.03 , i.e., 0.946 times the area of the ellipse (II.103).

These four prediction regions are shown in Figure 10.

(b) DISTRIBUTION-FREE PREDICTION REGIONS

Multivariate nonparametric prediction generalizes logically the univariate theory. However, it presents additional difficulties, the most part of geometrical nature. Particularly worth of mention in this area are early studies by Wald (1943) and by Tukey (1947).

Wald proposed a method, later called that of "successive elimination", for the definition of prediction regions of given expectation, provided that enough data are available and that the population has continuous (but otherwise unknown) joint CDF.

Wald's method is introduced through a simple bidimensional application (see also Guttman (1970) p 8).

Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be a set of n observation pairs, with the order statistics $X_{(1)}<X_{(2)}<\ldots<X_{(n)}$ with respect to X. Choose two positive integers r_{1} and s_{1} such that

$$
r_{1} \geq 1, \quad s_{1} \leq n, \quad \text { and } r_{1} \leq s_{1}-3
$$

Eliminate the observations $\left(X_{i}, Y_{i}\right)$ with $X_{i} \leq X_{(} r_{1}$) or with $X_{i} \geq X_{\left(s_{1}\right)}$. Order the remaining observations with respect
to $\mathrm{Y}: \mathrm{Y}_{(1)}<\mathrm{Y}_{(2)}<\ldots<\mathrm{Y}_{\left(\mathrm{s}_{1}-\mathrm{r}_{1}-1\right) \text {. Choose two more }}$ positive integers r_{2} and s_{2} satisfying:

$$
r_{2} \geq 1, \quad s_{2} \leq s_{1}-r_{1}-1, \text { and } r_{2} \leq s_{2}-1
$$

Then Wald proves that the probability content of the region

$$
D=\left\{(X, Y) \mid X_{\left(r_{1}\right)}<X \leq X_{\left(s_{1}\right)} ; Y_{\left(r_{2}\right)}<Y \leq Y_{\left(s_{2}\right)}\right\}
$$

has Beta distribution with parameters $(p, q)=\left(s_{2}-r_{2}\right.$; $n-s_{2}+r_{2}+1$). In particular the expected probability content of D is

$$
E[P(D)]=\frac{s_{2}-r_{2}}{n+1}
$$

EXAMPLE:

Construct a two-dimensional region of expected content $E[P]=2 / 3$ using the 29 data points in Figure 11 .

Since we want that $s_{2}-r_{2}=20$ in order that $E[P(D)]=20 / 30=2 / 3$, a possible choice is:

$$
\begin{aligned}
& r_{1}=2, s_{1}=29 ; \\
& r_{2}=3, s_{2}=23 .
\end{aligned}
$$

These values satisfy the inequalities given earlier. The associated rectangular prediction region is shown in Figure 11. The construction is generalized easily to the case of regions with more than two dimensions.

Tukey (1947) extended Wald's method to the construction of regions of any prefixed shape, also including unbounded regions (such as one-sided rectangles). Tukey's starting point was the definition of ($n+1$) "statistically equivalent blocks" as sample statistics; then he proved that any collection of r such blocks has Beta-distributed probability content with parameters $(p, q)=(r, n+1)$ (and therefore the expected content is $r /(n+1))$. For the construction of the "blocks" refer to the original paper by Tukey and to the later developments in Fraser (1953) and in Kemperman (1956).

Sample size requirements and penalty factors. The minimum sample size for the construction of nonparametric prediction regions of given content P depends on the shape of the region. For instance, when using Wald's method as in the example above, it must be:

$$
\frac{n-3}{n+1} \geq P, \quad \text { or } n \geq \frac{P+3}{1-P} \quad(K=2)
$$

which for $P=0.90$ gives $n \geq 39$ and for $P=0.99$ gives $n \geq$ 399. The sample size requirements for the construction of similar regions in a K-dimensional space is: $\mathrm{n} \geq(\mathrm{P}+2 \mathrm{~K}-\mathrm{l}) /(\mathrm{l}-\mathrm{P})$, increasing linearly with K. Computing expected penalty ratios when sampling from a certain distribution but using a nonparametric prediction region is more complicated than for the univariate case. When the components of the K-dimensional prediction vector $\underline{Y}^{\prime}=\left[Y_{1}, \ldots, Y_{K}\right]$ are normal and independent, twosided prediction regions of the type discussed earlier, with $\mathrm{n}=(\mathrm{P}+2 \mathrm{~K}-1) /(1-\mathrm{P})$ have expected volume:

$$
\begin{aligned}
& =\prod_{j=1}^{K} E\left[\left(Y_{j}^{(n-2 j+2)}{ }^{-Y_{j}}{ }_{(1)}\right)\right]=\prod_{j=1}^{K} \sigma_{j} \cdot \operatorname{ENR}(n-2 j+2),
\end{aligned}
$$

where σ_{j} is the r.m.s. of Y_{j} and ENR(n) is the expected normalized range for a normal sample of size n, as tabulated by Tippett (1925).

For instance, for rectangular prediction regions of 0.90 expectation with $n=(P+2 K-1) /(1-P)$, one finds the following expected volume or length for $K=1$, or area for $K=2$) as K ranges from 1 to 4 (in units of $\left.\prod_{j=1}^{K} \sigma_{j}\right)$.

K	n	Expected normalized volume, E[Vol]	Volume of prediction ellipsoid-perfect information, $V_{P I}$	Penalty ratio r(K)
1	19	3.69		1.29
2	39	18.32	14.47	1.12
3	59	97.27	65.47	1.13
4	79	537.67	298.70	1.14

TABLE 10. K-variate nonparametric prediction when sampling from multinormal populations.

Table 10 gives also the normalized volumes of central ellipsoid regions of 0.99 -content under perfect information.

These volumes are:
$V_{P I}=2 \Phi(0.95)$, for $K=1 ; V_{P I}=\pi \chi_{2}^{2}(0.90)$, for $K=2 ;$
$V_{P I}=\frac{4}{3} \pi\left[\chi_{3}^{2}(0.90)\right]^{3 / 2}$, for $K=3 ; V_{P I}=\frac{\pi^{2}}{2}\left[\chi_{4}^{2}(0.90)\right]^{2}$, for $K=4$.

The penalty ratios in the last column are defined:

$$
r(K)=\left(E[\operatorname{Vol}] / V_{P I}\right)^{1 / K}
$$

In comparing the penalty ratios one should note that they refer to different sample sizes and that in fact the main penalty for not knowing the distribution type is the high minimum value of n.
II.2.4. Bayesian Prediction for Multivariate Sequences

The Bayesian literature on multivariate parametric prediction (like the frequentist literature on the same subject) is confined to multinormal populations (see Guttman (1970); Zellner (1971), p 72; see also Geisser (1965) for the Bayesian estimation of multinormal parameters).

On the other hand nonparametric Bayesian prediction regions can be constructed through a simple generalization of the univariate theory in Paragraph II.2.2(e).
(a) MULTINORMAL SEQUENCE

Prediction for the normal population $N_{K}(\underline{\mu}, \underline{\Sigma})$ when both $\underline{\mu}$ and $\underline{\Sigma}$ are unknown is studied by Guttman (1970), p 135. No reference was found for the somewhat simpler cases when only the location or the scale parameter is unknown; these cases are worked out below.
$\underline{\underline{\mu}}$ unknown, $\underline{\sum}$ known. This is the simplest case. The likelihood function in terms of the sufficient sample statistics:

$$
n ; \quad \hat{\underline{n}}=n^{-1} \sum_{i=1}^{n} \underline{Z}_{i}
$$

is:

$$
I(\underline{\mu} \mid n, \hat{\underline{Z}}) \propto \exp \left\{-\frac{n}{2}(\underline{\mu}-\underline{\hat{Z}})^{\prime} \underline{\Sigma}^{-1}(\underline{\mu}-\underline{\hat{Z}})\right\}
$$

For a prior in the form of a normal density:
$f\left(\underline{\mu} \mid n_{0}, \underline{\mu}_{0}\right)=n_{0}^{1 / 2}(2 \pi)^{-K / 2}\left|\underline{\Sigma}^{-1}\right|^{1 / 2} \exp \left\{-\frac{n_{0}}{2}\left(\underline{\mu}_{-\mu_{0}}\right)^{\prime} \underline{\Sigma}^{-1}\left(\underline{\mu}-\underline{\mu}_{0}\right)\right\}$,
the posterior density is also normal, of the type $f\left(\underline{\mu} \mid n_{1}, \underline{\mu}_{1}\right)$ with parameters:

$$
\begin{align*}
& \mathrm{n}_{1}=\mathrm{n}+\mathrm{n}_{0} ; \\
& \underline{\mu}_{1}=\left(\mathrm{n}+\mathrm{n}_{0}\right)^{-1}\left(\mathrm{n}_{0} \underline{\mu}_{0}+\mathrm{n}_{\underline{\underline{Z}}}\right) . \tag{II.105}
\end{align*}
$$

From equation (II.5), after integrating with respect to $\underline{\mu}$, one finds that \underline{Y} has multinormal distribution:

$$
\begin{aligned}
\underline{Y} & \sim N_{K}\left(\underline{\mu}_{1} ; \frac{n_{1}+1}{n_{1}} \underline{\Sigma}\right) \text {, or : } \\
& \sim N_{K}\left(\frac{n_{0} \underline{\mu}_{0}+n \underline{\underline{z}}}{n_{0}+n} ; \frac{n+n_{0}+1}{n+n_{0}} \underline{\Sigma}\right. \text {. (II.106) }
\end{aligned}
$$

$\stackrel{\mu}{\underline{\mu}}$ known, Σ unknown. The likelihood function of Σ^{-1}, given a sample $\underline{z}_{1}, \ldots, \underline{Z}_{n}$, is:

$$
1\left(\underline{\underline{\Sigma}}^{-1} \mid n, \underline{s}\right) \propto\left|\underline{\underline{\Sigma}}^{-1}\right|^{-n / 2} \exp \left\{-\frac{\mathrm{n}}{2} \operatorname{tr}\left[\underline{\Sigma}^{-1} \underline{s}\right]\right\},
$$

where

$$
\underline{s}=n^{-1} \sum_{i=1}^{n}\left(\underline{z}_{i}-\underline{\mu}\right)\left(\underline{z}_{i}-\underline{\mu}\right)^{\prime} .
$$

The conjugate prior family, indexed by n_{0} and \underline{S}_{0}, is:
$f\left(\underline{\Sigma}^{-1} \mid n_{0}, \underline{S}_{0}\right) \propto\left|\underline{\Sigma}^{-1}\right|^{-\frac{1}{2} n_{0}+1} \exp \left\{-\frac{n_{0}}{2} \operatorname{tr}\left[\underline{\Sigma}^{-1} \underline{S}_{0}\right]\right\}$
for which the posterior density results:
$f\left(\underline{\Sigma}^{-1} \mid n, \underline{S}, n_{0}, \underline{S}_{0}\right) \propto\left|\underline{\Sigma}^{-1}\right|^{-\frac{1}{2} n_{1}+1} \exp \left\{-\frac{n_{1}}{2} \operatorname{tr}\left[\underline{\Sigma}^{-1} \underline{S}_{1}\right]\right\} \quad$,
where

$$
\begin{align*}
& \mathrm{n}_{1}=\mathrm{n}_{0}+\mathrm{n}_{;} \\
& \underline{\mathrm{s}}_{1}=\left(\mathrm{n} \underline{s}+n_{0} \underline{s}_{0}\right) /\left(n+n_{0}\right) \tag{II.107}
\end{align*}
$$

After the necessary integration, the predictive posterior density is:
$f\left(\underline{Y} \mid n_{1}, \underline{S}_{1}\right) \propto\left|\underline{S}_{1}^{-1}\right|^{1 / 2}\left[1+\frac{1}{n_{1}}(\underline{Y}-\underline{\mu})^{\prime} \underline{S}_{1}^{-1}(\underline{Y}-\underline{\mu})\right] \quad-\frac{1}{2}\left(n_{1}-1\right)$,
(II.108)
which means that the quantity $\left[\left(n+n_{0}-K+1\right) /\left(n+n_{0}\right)\right]^{1 / 2}(\underline{Y}-\underline{\mu})$ has K-variate t-distribution with $v=\left(n+n_{0}-K+l\right)$ degrees of freedom amd covariance matrix $\frac{\nu}{v-2} \underline{S}_{1}$.
$\underline{\mu}$ and \sum unknown. (Guttman (1970).) Given a set of independent observations $\underline{z}_{1}, \ldots, \underline{Z}_{n}$ from the normal population $N_{K}(\underline{\mu}, \underline{\Sigma})$, the likelihood function of $\underline{\mu}$ and $\underline{\Sigma}^{-1}$ is:
$l\left(\underline{\mu}, \underline{\Sigma}^{-1} \mid n, \underline{\hat{Z}}, \underline{S}\right) \propto\left|\underline{\Sigma}^{-1}\right|^{n / 2} \exp \left\{-\frac{1}{2} \operatorname{tr} \underline{\Sigma}^{-1}\left[(n-1) \underline{S}+n(\underline{\hat{z}}-\underline{\mu})(\underline{\hat{z}}-\underline{\mu})^{1}\right]\right\}$,
where

$$
\begin{aligned}
& \underline{\hat{z}}=n^{-1} \sum_{i=1}^{n} \underline{z}_{i} ; \\
& \underline{s}=(n-1)^{-1} \sum_{i=1}^{n}\left(\underline{z}_{i}-\underline{\underline{z}}\right)\left(\underline{z}_{i}-\underline{\underline{z}}\right)^{\prime} .
\end{aligned}
$$

The conjugate prior, also in terms of $\underline{\mu}$ and $\underline{\Sigma}^{-1}$ is:

$$
f\left(\underline{\mu}, \underline{\Sigma}^{-1} \mid n_{0}, \underline{\mu}_{0}, \underline{S}_{0}\right) \propto\left|\underline{\Sigma}^{-1}\right|^{\left(n_{0}-K-1\right) / 2}
$$

$$
\cdot \exp \left\{-\frac{1}{2} \operatorname{tr}^{-1}\left[\left(n_{0}-1\right) \underline{S}_{0}+n_{0}\left(\underline{\mu}-\underline{\mu}_{0}\right)\left(\underline{\mu}-\underline{\mu}_{0}\right)^{\prime}\right]\right\}
$$

where

$$
\begin{aligned}
& n_{0}=\text { equivalent prior sample size; } \\
& \underline{\mu}_{0}=\text { prior estimate of } \underline{\mu} ; \\
& \underline{S}_{0}=\text { prior estimate of } \underline{\Sigma} .
\end{aligned}
$$

The posterior density has the same form: $f\left(\underline{\mu}, \underline{\Sigma}^{-1} \mid n_{1}, \underline{\mu}_{1}, \underline{S}_{1}\right)$, with parameters:

$$
\begin{align*}
& n_{1}=n_{0}+n ; \\
& \underline{\mu}_{1}=\frac{n_{0} \underline{\mu}_{0}+n \hat{\underline{z}}}{n_{0}+n} ; \tag{II.109}\\
& \underline{S}_{1}=\frac{1}{n_{0}+n-1}\left[\left(n_{0}-1\right) \underline{S}_{0}+(n-1) \underline{s}+\frac{n_{0} n}{n_{0}+n}\left(\underline{z}-\underline{\mu}_{0}\right)\left(\underline{z}-\underline{\mu}_{0}\right)^{\prime}\right] .
\end{align*}
$$

Guttman (1970) gives also the posterior predictive density for the next observation \underline{Y}. He finds that

$$
\left[\frac{n_{1}\left(n_{1}-K\right)}{n_{1}+1}\right]^{1 / 2}\left(\underline{Y}-\underline{\mu}_{1}\right)
$$

has multivariate t-distribution with ($n_{1}-K$) degrees of freedom and covariance matrix $\frac{n_{1}-K}{n_{1}-K-2} \underline{S}_{1}$.

In all the three cases analyzed before, an initial knowledge in the conjugate form is equivalent to a set of sufficient sample statistics:
$\left(\mathrm{n}_{\mathrm{o}}, \underline{\mu}_{\mathrm{O}}\right) \quad$ for $\underline{\mu}$ unknown and $\underline{\Sigma}$ known,
$\left(\mathrm{n}_{\mathrm{o}}, \underline{\mathrm{S}}_{\mathrm{O}}\right) \quad$ for $\underline{\mu}$ known and $\underline{\Sigma}$ unknown,
$\left(\mathrm{n}_{0}, \underline{\mu}_{o}, \underline{S}_{o}\right) \quad$ for $\underline{\mu}$ and $\underline{\Sigma}$ unknown.

This agrees with earlier findings in univariate Bayesian prediction, Paragraph II.2.2. When the prior becomes diffuse, i.e., when $n_{0} \rightarrow 0$ and $\underline{S}_{0} \rightarrow \underline{0}$, Bayesian and frequentist prediction regions coincide. In any case, if the prior knowledge is expressed in the form of an equivalent prior sample,
equations (II.ll0), the frequentist results and the tables in Appendix B can be used also for Bayesian prediction, by entering them with the following sets of equivalent posterior statistics:
$\left[n_{0}+n_{i}\left(n_{0} \underline{\mu}_{0}+n \underline{\hat{Z}}\right) /\left(n_{0}+n\right)\right]$, when $\underline{\mu}$ is unknown and $\underline{\Sigma}$ is known;
$\left[n_{0}+n ;\left(n_{0} \underline{S}_{0}+n \underline{S}\right) /\left(n_{0}+n\right)\right]$, when $\underline{\mu}$ is known and $\underline{\sum}$ is unknown;
$\left\{n_{0}+n ; \frac{n_{0} \underline{\mu}_{0}+n \underline{\hat{z}}}{n_{0}+n} ; \frac{1}{n_{0}+n-1}\left[\left(n_{0}-1\right) \underline{S}_{0}+(n-1) \underline{S}\right.\right.$

$$
\left.\left.+\frac{n n_{0}}{n_{0}+n}\left(\underline{z}-\underline{\mu}_{0}\right)\left(\underline{z}-\underline{\mu}_{0}\right)^{\prime}\right]\right\},
$$

when $\underline{\mu}$ and $\underline{\Sigma}$ are unknown. (II.1llc)
(If n_{o} is fractional, interpolate between the closest integral approximations.)

EXAMPLE

A central prediction region of 0.999-expectation is desired for a normal vector $\underline{Y}=\left[Y_{1}, Y_{2}\right]$ '. Both $\underline{\mu}$ and $\underline{\Sigma}$ are
unknown. The prior information is judged to be worth six sample points ($n_{0}=6$), with mean value:

$$
\underline{\mu}_{0}=\binom{10}{15}, \text { and covariance matrix: } \underline{S}_{0}=\left(\begin{array}{ll}
4 & 4 \\
4 & 9
\end{array}\right) \text {. }
$$

A sample of size $n=5$ is observed, with sufficient statistics:

$$
\underline{\hat{z}}=\binom{8}{14} \quad \text { and } \quad \underline{S}=\left(\begin{array}{cc}
4 & 3 \\
3 & 7
\end{array}\right)
$$

The posterior mean and the posterior covariance matrix are found from equations (II.109):

$$
\underline{\mu}_{1}=\binom{9.091}{14.545} \quad, \text { and } \quad \underline{S}_{1}=\left(\begin{array}{ll}
4.691 & 3.745 \\
3.745 & 7.573
\end{array}\right)
$$

From the tables in Appendix B one finds:

$$
\begin{aligned}
& \beta_{\underline{\mu}, \underline{\Sigma}}^{N}(5,2,0.999)=21.799 ; \\
& \beta_{\underline{\mu}, \underline{\Sigma}}^{N}(6,2,0.999)=13.366 ; \\
& { }_{\beta_{\underline{\mu}}^{N}, \underline{\Sigma}}^{N}(11,2,0.999)=6.303 .
\end{aligned}
$$

Therefore the frequentist, the prior Bayesian, and the posterior Bayesian prediction regions are:

Frequentist:

$$
\left\{\underline{Y} \mid(\underline{Y}-\underline{\hat{Z}})^{\prime} \underline{S}^{-1}(\underline{Y}-\underline{\hat{Z}}) \leq 21.799^{2}\right\}
$$

Prior Bayesian:

$$
\left\{\underline{Y} \mid\left(\underline{Y}-\underline{u}_{0}\right) S_{-}^{-1}\left(\underline{Y}-\underline{\mu}_{0}\right) \leq 13.366^{2}\right\} ;
$$

Posterior Bayesian: $\quad\left\{\underline{Y} \mid\left(\underline{Y}-\underline{\mu}_{1}\right)^{\prime} \underline{S}_{1}^{-1}\left(\underline{Y}_{\underline{\mu}}^{1} \underline{\underline{I}}_{1}\right) \leq 6.303^{2}\right\}$.

These three regions are shown in Figure 12. The penalty ratios associated with them are, from the tables in Appendix B:

Frequentist:

$$
r_{\underline{\mu}, \underline{\Sigma}}^{N}(5,2,0.999)=5.864 ;
$$

Prior Bayesian:

$$
r_{\underline{\mu}, \underline{\Sigma}}^{N}(6,2,0.999)=3.595 ;
$$

Posterior Bayesian: $\quad r_{\underline{\mu}, \underline{\Sigma}}^{N}(11,2,0.999)=1.696$.
(b) DISTRIBUTION-FREE PREDICTION REGIONS

Along the lines of Ferguson (1973) it is not difficult to generalize the theory of univariate nonparametric Bayesian prediction to the multivariate case. In fact the Dirichlet process defined by Ferguson applies equally well when sampling is from a K-variate population with continuous density function. Formally one needs to replace y in Paragraph II. 2.2 by R^{K}, the K -dimensional Euclidean space. Then, if α denotes the parameter of the Dirichlet process, and $\left(B_{1}, \ldots, B_{m}\right)$ is a measurable partition of R^{K}, the joint distribution of the probability coverages $\left(P\left(B_{1}\right), \ldots, P\left(B_{m}\right)\right)$ is Dirichlet, with parameters $\alpha\left(B_{1}\right), \ldots$, $\alpha\left(B_{m}\right)$.

Since the Dirichlet process indexed by α is the conjugate family for nonparametric Bayesian inference, the prior knowledge can be usefully assumed in the form of a Dirichlet process with parameter α_{0}. Then, given a set of n independent observations $\underline{z}_{1}, \ldots, \underline{Z}_{n}$, the posterior parameter is, from Ferguson's theorem 3:

$$
\alpha_{1}=\alpha_{0}+\sum_{i=1}^{n} \delta_{z_{i}},
$$

where $\delta_{\underline{Z}_{i}}$ is defined as in Paragraph II.2.2(e). The measures $\alpha_{0}\left(R^{K}\right)$ and $\alpha_{1}\left(R^{K}\right)=\alpha_{0}\left(R^{K}\right)+n$ quantify (in units of observations) the prior and the posterior degrees of belief in the best estimates of the probability distribution over R^{K} 。

A result similar to (II.90) holds for the best estimate of the posterior distribution under a quadratic loss criterion, giving this function as a weighted sum of the prior best estimate of the distribution and of the empirical distribution function of the sample.

Prediction regions of P-expectation can be constructed easily, since for any measurable set $A \subset R^{K}$ it is:

$$
E[P(A)]=\alpha(A) / \alpha\left(R^{K}\right)
$$

if α is the parameter of the Dirichlet process.
II.2.5. Prediction from Censored Data

In Chapter I, Section 4, we analyzed censored data in the context of estimation theory, with particular emphasis on the applications to proof loading of structural systems. Expressions were found for the prior, for the posterior and for the "proof loading" failure probabilities.

Here we present the general formulation and two examples of processing censored data for statistical (Bayesian) prediction. An additional case, concerning censored sampling from exponential populations, was covered in Paragraph II.2.1(b).

Consider having n censored observations from a univariate statistical population with $\operatorname{CDF} \mathrm{F}_{\mathrm{Y}}(\cdot)$. The censored information on the generic realization Y_{i} is:

$$
\begin{array}{ll}
Y_{i}=z_{i} \quad \text { if } Y_{i} \leq Z_{\max }, \\
Y_{i}>z_{\text {max }} \quad \text { otherwise } . \quad(i=1, \ldots, n) \tag{II.ll2b}
\end{array}
$$

In a parametric Bayesian approach ($\mathrm{F}_{\mathrm{Y}}(\cdot \mid \underline{\theta})$ known, but not the vector of parameters $\underline{\theta}^{\text {) }}$ all the observations of the
type (II.l12a) can be processed as indicated in Paragraph II.2.2. The resulting posterior distribution of the unknown parameters $\underline{\theta}$ is denoted $\mathrm{F}_{\mathrm{a}},(\underline{\theta})$. The posterior distribution of $\underline{\theta}$ which accounts also for one observation of the type (II.ll2b) is, from Bayes' theorem:

$$
\begin{align*}
d F_{a^{\prime \prime}}(\underline{\theta}) & =d F_{a^{\prime}}(\underline{\theta}) \frac{\operatorname{Pr}\left[Y>Z_{\max } \mid \underline{\theta}\right]}{\operatorname{Pr} a^{\prime}\left[Y>Z_{\max }\right]} \\
& =d F_{a^{\prime}}(\underline{\theta}) \frac{1-F_{Y}\left(Z_{\max } \mid \underline{\theta}\right)}{1-F_{Y_{a}}\left(Z_{\max }\right)} \tag{II.113}
\end{align*}
$$

where

$$
\mathrm{F}_{\mathrm{Y}_{\mathrm{a}}}(\cdot)=\int_{\text {all } \underline{\theta}} \mathrm{F}_{\mathrm{Y}}(\cdot \mid \underline{\theta}) \text { d } \mathrm{F}_{\mathrm{a}} \cdot(\underline{\theta})
$$

The posterior predictive $C D F, F_{Y_{a}}(\cdot)$, is therefore:

$$
\begin{align*}
& \mathrm{F}_{\mathrm{Y}_{\mathrm{a}}}(\cdot)=\int_{\mathrm{all} \underline{\theta}} \mathrm{~F}_{\mathrm{Y}}(\cdot \mid \underline{\theta}) \text { d } \mathrm{F}_{\mathrm{a}}(\underline{\theta}) \\
& =\frac{\int_{\mathrm{all}} \underline{\theta}_{\mathrm{Y}^{\prime}}(\cdot \mid \underline{\theta})\left[1-F_{Y}\left(Z_{\max } \mid \underline{\theta}\right)\right] d F_{a^{\prime}}(\underline{\theta})}{\operatorname{all} \underline{\theta}\left[1-F_{Y}\left(Z_{\max } \mid \underline{\theta}\right)\right] d F_{a}(\underline{\theta})} \tag{II.114}
\end{align*}
$$

If $\overline{\mathrm{n}} \leq \mathrm{n}$ is the number of observations of the type (II.112b), the posterior distribution of $\underline{\theta}$ is found by applying inductively equation (II.113):

$$
\begin{equation*}
d F_{a}(\underline{\theta})=d F_{a}(\underline{\theta})\left(\frac{1-F_{Y}\left(Z_{\max } \mid \underline{\theta}\right)}{1-F_{Y_{a}}\left(Z_{\max }\right)}\right)^{\bar{n}}, \tag{II.115}
\end{equation*}
$$

from which the posterior predictive $\operatorname{CDF}, \mathrm{F}_{\mathrm{Y}_{\mathrm{a}}}(\cdot)$, is:

$$
\begin{equation*}
F_{Y_{a}}(\cdot)=\int_{\text {all } \underline{\theta}} F_{Y}(\cdot \mid \underline{\theta}) d F_{a}(\underline{\theta}) \tag{II.116}
\end{equation*}
$$

If Y denotes a "resistance" variable, and the distribution of the associated "load" $S, F_{S}(\cdot)$, is known, the probability of failure in a time-invariant situation is:

$$
P_{f}=\int_{0}^{\infty} F_{Y_{a}}(Z) d F_{S}(Z)
$$

A completely analogous formalism applies to multivariate situations in which, however, one may have also partially censored sample data.

EXAMPLE 1. NORMAL SEQUENCE

Suppose sampling is from a normal white sequence with unknown mean and variance ($\underline{\theta}^{\prime}=\left[\mu, \sigma^{2}\right]$) and that the prior $\mathrm{F}(\underline{\theta})$ is in the form of a conjugate Normal-Gamma (NG) distribution with parameters [$\left.\mu^{\prime}, n^{\prime},(n-1) S^{\prime 2}\right]$; see equation (II.66). After processing the ($\mathrm{n}-\overline{\mathrm{n}}$) observations with values $Y_{i}=Z_{i} \leq Z_{\text {max }}(i=1, \ldots, n-\bar{n})$, the posterior distribution $\mathrm{F}_{\mathrm{a}},(\underline{\theta})$ is again NG with parameters $\left[\mu ", \mathrm{n} ",(\mathrm{n} "-1) \mathrm{S}^{2}{ }^{2}\right]$, where:

$$
\begin{aligned}
& \mathrm{n}^{\prime \prime}=\mathrm{n}^{\prime}+\mathrm{n}-\overline{\mathrm{n}} \text {; } \\
& \mu^{\prime \prime}=\left[n^{\prime} \mu^{\prime}+(n-\bar{n}) \widehat{Z}\right] / n^{\prime \prime} ; \\
& \left(n^{\prime \prime}-1\right) S^{\prime 2}=\left(n^{\prime}-1\right) S^{\prime 2}+(n-\bar{n}-1) s^{2}+\frac{n^{\prime}(n-\bar{n})}{n^{\prime}+n-\bar{n}}\left(\hat{z}-\mu^{\prime}\right)^{2}, \\
& \mathrm{n}-\overline{\mathrm{n}} \\
& \text { and } \quad \hat{z}=(n-\bar{n})^{-1} \sum_{i=1} z_{i} \text {; } \\
& S^{2}=(n-\bar{n}-1)^{-1} \sum_{i=1}^{n-\bar{n}}\left(z_{i}-\hat{z}\right)^{2} \quad .
\end{aligned}
$$

Denoting $\operatorname{NG}\left[\mu, \sigma^{2} \mid \mu_{1}, n_{1}, q\right]$ the Normal-Gamma density with parameters μ_{1}, n_{1}, q, evaluated at (μ, σ^{2}); and denoting $\Phi(\cdot)$ the standard normal CDF, the posterior density of $\underline{\theta}$ is, from equation (II.ll5):

$$
\begin{aligned}
f_{a}\left(\mu, \sigma^{2}\right) \propto & N G\left[\mu, \sigma^{2} \mid \mu ", n^{\prime \prime},\left(n^{\prime \prime}-1\right) S^{2}\right]\left\{1-\Phi\left[\left(Z_{\max }-\mu\right) / \sigma\right]\right\}^{\bar{n}} \\
& \propto \sigma^{-\left(n "+\frac{1}{2}\right)} \exp \left\{-\left[\left(n^{\prime \prime}-1\right) S^{2}+n^{\prime \prime}(\mu-\mu ")^{2}\right] / 2 \sigma^{2}\right\} \\
& \cdot \int^{\infty} \exp \left(-t^{2} / 2\right) d t \\
& \frac{\left(Z_{\max }-\mu\right)}{\sigma}
\end{aligned}
$$

and the predictive posterior CDF results, from equation (II.116):

$$
F_{Y_{a}}(y)=\int_{\underline{\theta} \text { space }} \Phi[(y-\mu) / \sigma] f_{a}\left(\mu, \sigma^{2}\right) d \mu d \sigma^{2}
$$

EXAMPLE 2. EXPONENTIAL SEQUENCE

In a recent paper Pierce (1973) computed the posterior density function of the predictive CDF, $\mathrm{F}_{\mathrm{a}}(\mathrm{Y})$, when a censored sample is known from the two-parameter negative exponential population:
$f(Y \mid \mu, \sigma)=\sigma^{-1} \exp [-(Y-\mu) / \sigma] ; \mu, \sigma \geq 0 ; Y \geq \mu$,
with both μ and σ unknown. For the case with $\mu=0$ and σ unknown, see Paragraph II.2.1(b).

Prediction for the exponential distribution is of special interest in reliability theory because the time-tofailure of stochastic systems is often associated with Poisson events. Also, since these events are rare, data are typically available in censored form (i.e., censored by the present time).

Pierce made a Bayesian analysis for the case when the prior is noninformative: $f(\mu, \sigma) \propto \sigma^{-1}$, and at least two "failures" (two uncensored data) are available. (If not, the posterior density is also improper.) Denote $Z_{(1)}<Z_{(2)}<\ldots<Z_{(n-\bar{n})}$ the first $(n-\bar{n}) \geq 2$ order statistics. In terms of the sufficient statistics:

$$
\begin{aligned}
& Z_{(1)}^{;} \\
& s=\sum_{i=1}^{n-\bar{n}}\left(Z_{(i)^{-}}^{\left.-Z_{(1)}\right)}\right)+\bar{n}\left(Z_{(n-\bar{n})}-Z_{(1)}\right)
\end{aligned}
$$

Pierce found:

$$
\begin{align*}
& f\left(P_{S} \mid n, \bar{n}, Z_{(1)}, S\right)=K(Z(1), S)(n-\bar{n}-2)!T^{-n+\bar{n}-1} P_{S}^{n-1} \\
& \quad .\left\{P_{S}^{T / Y} \sum_{i=0}^{n-\bar{n}-2} \frac{1}{i!}\left[-T \log P_{S} / Y\right]^{i}\right. \\
& \left.-P_{S}^{T /(Y-Z(1)}\right)^{n-\bar{n}-2} \sum_{i=0} \frac{1}{i!}\left[-T \log P_{S} /(Y-Z(1))^{i}\right\}, \tag{II.117}
\end{align*}
$$

where

$$
\begin{aligned}
P_{S} & =1-F_{a}(Y) ; \\
T & =S-n\left(Y-Z_{(1)}\right) ; \\
K\left(Z_{(1)}, S\right) & =\left\{(n-\bar{n}-2)!n^{-1}\left[S^{-n+\bar{n}+1}-\left(S+n Z_{(1)^{\prime}}\right)^{-n+\bar{n}+1}\right]\right\}^{-1} .
\end{aligned}
$$

This result can be generalized to those informative cases in which the prior knowledge can be expressed through a set of equivalent prior sample statistics (see Paragraph II.2.2(b)): $n^{0}, \bar{n}^{0}, Z_{(i)}^{o}\left(i=1, \ldots, n^{0}-\bar{n}^{\circ}\right), s^{0}$. Then equation (II. Il7) holds after the following substitutions:
$\mathrm{n} \rightarrow \mathrm{n}^{\prime}=\mathrm{n}+\mathrm{n}^{\mathrm{o}}$;
$\bar{n} \rightarrow \bar{n}^{\prime}=\bar{n}+\bar{n}^{0} ; \quad\left(n^{\prime}-\bar{n}^{\prime} \geq 2\right)$
$Z_{(1)} \rightarrow Z_{(1)}^{\prime}=\min \left\{Z_{(1)}, Z_{(1)}^{O}\right\}$;
$S \rightarrow S^{\prime}=\sum_{i=1}^{n-\bar{n}}\left(Z_{(i)^{-Z^{\prime}}(1)}\right)+\sum_{i=1}^{n^{0}-\bar{n}^{0}} \quad\left(Z_{(i)^{-}}^{-Z^{\prime}}(1)\right)$

$$
+\bar{n}\left(Z_{(n-\bar{n})^{-Z^{\prime}}(1)}^{\prime}\right)+\bar{n}^{0}\left(Z_{\left(n^{\circ}-\bar{n}^{0}\right)^{-Z}}^{\left.(1)^{\prime}\right) .}\right.
$$

II.3. SIMULTANEOUS PREDICTION

Calculating the reliability of a structural system with respect to future events is a problem of prediction.

Suppose that nature is modeled (for the aspect of interest) as a sequence of independent random events with known distribution. Then finding $\mathrm{P}_{\mathrm{f}}(\mathrm{T})=\operatorname{Pr}\{$ system failure in $[0, T]\}$ as a function of T might be called a problem of probabilistic prediction. If instead uncertainties of a statistical nature exist on the parameters of the distribution (and possibly also on the distribution type), the same problem becomes one of statistical prediction.

Conditional on a given probabilistic model being a correct representation of "nature" the reliability of a system depends on the statistical uncertainty of the model parameters. The purpose of the present section is to study the effect that statistical uncertainty has on (structural) reliability when failure occurs either as a no-memory firstcrossing event (e.g., when the load process overcomes first the system resistance), or as the conclusion of a damage accumulation process (fatigue). In both cases calculating the system reliability requires predicting several future observations from the same process; in the jargon of statistics theory this is a problem of "simultaneous prediction".

In the special case when the reliability function $R(T)=1-r_{f}(T)$ is constant with time, the problem becomes one of simple prediction (see Section II.2).

A general approach to time-dependent reliability analysis, including statistical uncertainty.

Depending on the structural system (e.g., brittle or ductile), on the failure criterion (e.g., first-crossing, fatigue, low-cycle damage accumulation, maximum economic loss), and on the disturbances (earthquakes, high wind pressures, foundations settlements, live loads, etc.) a variety of stochastic models can be formulated for reliability analysis, with different levels of sophistication and complexity.

Also when the model parameters, vector $\underline{\theta}$, are given, it is seldom possible to derive the probability of failure function $P_{f}(T \mid \underline{\theta})$ in closed form. When the statistical uncertainty on $\underline{\theta}$ is added, even fewer analytical solutions are known. However, the general methodology is straightforward, as is shown next by following the Bayesian approach.

Let A be the present state of knowledge, and denote $\mathrm{F}_{\underline{\theta}}(\underline{\theta} \mid A)$ the probability distribution of the model parameters conditional on it. $\mathrm{F}_{\underline{\Theta}}(\cdot \mid A)$ can be derived from Bayesian statistics methods, or else may be given directly. The (statistical) reliability function: $R(T \mid A)=\operatorname{Pr}$ \{survival in $[0, T]$, given $A\}$ is obtained through convolution:

$$
R(T \mid A)=1-P_{f}(T \mid A)=1-\int_{\underline{\theta}} \operatorname{space} P_{f}(T \mid \underline{\theta}) d F_{\underline{\theta}}(\underline{\Theta} \mid A) \cdot(I I \cdot 118)
$$

If $A=$ perfect information, supporting the value $\underline{\theta}=\underline{\theta} *$, then $\underline{f}_{\underline{\theta}}(\underline{\theta} \mid A)=\delta\left(\underline{\theta}-\underline{\theta}^{*}\right)$ (Dirac-delta function), and equation (II.ll8) yields the (probabilistic) reliability function:

$$
\begin{equation*}
R(T \mid A)=I-P_{f}(T \mid A)=I-P_{f}\left(T \mid \underline{\theta}^{*}\right) \tag{II.119}
\end{equation*}
$$

In the following paragraph independent reliability models are considered for the case of failure occurring as a first-crossing event with no damage accumulation, and an alternative procedure for statistical reliability analysis is presented. A more detailed (frequentist and Bayesian) analysis of the same models is the object of Paragraphs II.3.2 and II.3.3.

Correlated sequences are studied in Chapter III.

II.3.1. Independent Models for Time-Dependent Reliability

Consider a structural system with deterministic "resistance" R and 0-1 damage function (i.e., either the system performs satisfactorily, or else it fails, without passing through intermediate damage conditions). The environment is modeled as a stationary white sequence $\left\{Y_{i}\right\}$
of either sustained "loads" (model S in Figure 13), or of instantaneous "loads" (model P in the same figure). The exact times at which the load intensity changes in model S, or at which the point events occur in model P, may be deterministic or random. If $\left\{Y_{i}\right\}$ is independent of the interarrival times, one can replace $[0, T]$ in the definition of failure by the number N of events during the same time interval. Again, N may be deterministic or stochastic. In both cases the first problem which needs to be solved is to find the probability of failure $P_{f}(N)$ as a function of the number of events. In fact if the time t_{i} at which the $i^{\text {th }}$ event occurs is known it is:

$$
\begin{equation*}
P_{f_{S}}(T)=P_{f}\left(N_{T, S}\right) ; \text { and } P_{f_{P}}(T)=P_{f}\left(N_{T, P}\right) \tag{II.120}
\end{equation*}
$$

where the subscripts S and P refer to the model (see Figure 13), and $N_{T, S}$ and $N_{T, P}$ are the values of N such that:

$$
\begin{equation*}
t_{N} \leq T<t_{N+1} \tag{II.121}
\end{equation*}
$$

(in the models S and P, respectively).

If instead the arrival times are random, the relation (II.121) defines the probability distributions of $N_{T, S}$ and $N_{T, P}$ given T, say:
$P_{T, S}(N)=\operatorname{Pr}$ \{exactly N events occur in model S during [0,T]\} ;
$P_{T, P}(\mathbb{N})=\operatorname{Pr}$ \{exactly N events occur in model P during [0,T] \} .

In this case the probability of failure as a function of time is:

$$
\begin{align*}
& P_{f_{S}}(T)=\sum_{N=1}^{\infty} P_{f_{S}}(N) \cdot P_{T, S}(N) ; \tag{II.122a}\\
& P_{f_{P}}(T)=\sum_{N=1}^{\infty} P_{f_{P}}(N) \cdot P_{T, P}(N) \cdot \tag{II.122b}
\end{align*}
$$

Note that in model S at least one occurrence must be considered for any T since $t_{1}=0$, while this is not true for model P. As a consequence in model S there is a nonzero probability of failure at time $T=0$.

As shown above, the evolution in time of $\mathrm{P}_{\mathrm{f}_{\mathrm{S}}}$ and $P_{f_{P}}$ depends on the variability of the occurrence times. For
deterministic arrivals, for highly regular (but random) arrival times, for highly regular (but random) event clusters, and for Poisson-type occurrences the qualitative evolution of $\mathrm{P}_{\mathrm{f}_{\mathrm{S}}}$ is sketched in Figure l4, cases a,b,c,d respectively.

All these cases are generated through equations (II.122) by the same function $P_{f}(N)$ and by different discrete distributions $\mathrm{P}_{\mathrm{T}, \mathrm{S}}(\mathrm{N})$. From here arises the importance of studying the functions $P_{f_{S}}(N)$ and $P_{f_{P}}(N)$.

After replacing $[0, T]$ by the number of events N in [$0, T$], computing the structural reliability $R(N \mid A)$ as a function of N does not necessarily require using equation (II.118). In a Bayesian approach (a parallel analysis could be done for the frequentist viewpoint) an alternative and equally general procedure consists in finding the unconditional (with respect to $\underline{\theta}$) predictive distribution of the next N realizations $\left[Y_{1}, \ldots, Y_{n}\right]^{\prime}=\underline{Y}$ from the sequence $\left\{Y_{i}\right\}$:

$$
\begin{equation*}
F_{\underline{Y}}(\underline{y} \mid A)=\int_{a l 1 \underline{\theta}} F_{\underline{Y}}(\underline{y} \mid \underline{\theta}) d F_{\underline{\theta}}(\underline{\theta} \mid A) \tag{II.123}
\end{equation*}
$$

Then the reliability is computed as:

$$
\begin{equation*}
R(N \mid A)=\int_{\substack{\text { Safe } \\ \underline{Y} \\ 360}} \int_{\substack{\text { region in }}} d \underline{Y}(\underline{Y} \mid A) \tag{II.124}
\end{equation*}
$$

In both procedures (equation (II.ll8) with N in place of T, and equations (II.123) and (II.124)) one has to integrate over $\underline{\theta}_{i}$ however equations (II.l23) and (II.124) may have advantages over equation (II.118) if the integral (II.l23) has closed-form solution. This happens for particular states of knowledge A, and for particular probabilistic models; one such case is when A is the collection of n independent realizations from the same normal sequence which generates the future observations \underline{Y} (Paragraph II.3.2).

If $\left\{Y_{i}\right\}$ is, as assumed here, an independent stationary sequence, and the marginal distribution of Y_{i} is known, the probabilistic reliability $R(N)$ after N "Bernoulli trials" is:

$$
\begin{equation*}
R(N)=1-P_{f}(N)=\left[1-P_{f}(1)\right]^{N}, \tag{II.125}
\end{equation*}
$$

where $P_{f}(1)$ is the probability that $Y_{i}>R$ for any i. On semilog paper the reliability $R(N)$ plots linearly against N.

Paragraphs II.3.2 and II.3.3 deal (implicitly or explicitly) with the modifications that statistical uncertainty induces on equation (II.125). The concluding paragraph considers the effects of statistical uncertainty on reliability models with fatigue-type failure modes.
II.3.2. Simultaneous Frequentist Prediction for Univariate Sequences

The independent models in Paragraph II.3.1 are studied here under the assumption that the distribution parameters (possibly also the distribution shape) are estimated from limited data with the methods of classical statistics.

For univariate sequences the problem of simultaneous prediction consists in finding an open or closed interval on the real line (or more generally a region in R^{N}) in which all N future realizations (or the N -dimensional future realization) of the process will fall with given probability. This is in complete analogy with what was done in Section II. 2 for simple prediction. When the simultaneous prediction interval (region) coincides with the safe interval (region) of the system, the same probability may be interpreted as a reliability with respect to the next N random events.

We first discuss the construction of simultaneous prediction intervals and regions for normal sequences and then we present some results for nonnormal populations.
(a) NORMAL SEQUENCES (see Lieberman (1961); Chew (1968).)

Let a sample of size n be available from the independent normal sequence $\left\{Y_{i}\right\}, Y_{i} \sim N\left(\mu, \sigma^{2}\right)$, and denote
$\mathrm{Z}_{1}, \ldots, \mathrm{Z}_{\mathrm{N}}$ the observed values.
μ and σ unknown. When both the location and the scale parameters are unknown, the sufficient sample statistics are

$$
n ; \hat{z}=\frac{1}{n} \sum_{i=1}^{n} z_{i} \quad ; \quad s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(z_{i}-\hat{z}\right)^{2} .
$$

Denote $\underline{Y}^{\prime}=\left[Y_{1}, \ldots, Y_{N}\right]$ the vector of future observations and let $\underline{Z}^{\prime}=\hat{Z}[1, \ldots, 1]$, with N components. Lieberman (1961) found that the statistic $\underline{d}=\underline{Y}-\underline{\hat{Z}}$ has multivariate t-distribution with ($n-1$) degrees of freedom and covariance matrix $\frac{n^{2}-1}{n(n-3)} S^{2} \underline{R}(n>3), \underline{R}$ being the correlation matrix:

The structure of \underline{R} shows that in presence of statistical uncertainty on μ and σ the components of \underline{d} are not independent, as instead they would be if μ and σ were known (in fact $R \rightarrow$ I as $n \rightarrow \infty$).

A direct consequence of the result above is that the ellipsoid in Y-space:

$$
\begin{equation*}
(\underline{Y}-\hat{Z})^{\prime} \underline{R}^{-1}(\underline{Y}-\underline{\tilde{Z}}) \leq \frac{\mathrm{n}+1}{\mathrm{n}} \mathrm{~N}^{2} \mathrm{~F}_{\mathrm{N}, \mathrm{n}-1}(\mathrm{P}) \tag{II.126}
\end{equation*}
$$

has expected content P.
For the purpose of reliability analysis and design, having a prediction region in R^{N} like the ellipsoid (II.126) is not of much help. If failure occurs when the first event of the type $Y_{i}>R$ (or $\left|Y_{i}\right|>R$) occurs, it would be more useful to dispose of a one-sided (or of a two-sided) interval on the real line, containing all the next N realizations Y_{1}, \ldots, Y_{N} with a given probability P. This corresponds to constructing cuboidal prediction regions of P -expectation in R^{N}, and to this end the following results are useful.

Gupta and Sobel (1957) showed that the integral

$$
P(h)=\int_{-\infty}^{h} \cdots \int_{-\infty}^{h} f\left(t_{1}, \ldots, t_{N}\right) d t_{1} \cdots \cdot d t_{N}
$$

where t_{1}, \ldots, t_{N} have jointly N-variate t-distribution with ($n-1$) degrees of freedom and common correlation coefficient $\rho_{i j}=\rho, i \neq j$, can be written as
$P(h)=\int_{0}^{\infty}\left\{\int_{-\infty}^{\infty}\left(\Phi\left(\frac{h S+\rho^{1 / 2} y}{(1-\rho)^{1 / 2}}\right)\right\}^{N} \phi(y) d y\right\}_{n-1}$ (S)dS.(II.127)

In equation (II.127) $\phi(\cdot)$ and $\Phi(\cdot)$ are the PDF and the CDF of the standard normal variate. Also, $g_{m}(S)$ is the probability density function of S, where m^{2} is a Chi-square variate with m degrees of freedom:

$$
g_{m}(S)=\frac{m^{m / 2}}{\Gamma\left(\frac{m}{2}\right) 2^{(m / 2)-1}} S^{m-1} e^{-m S^{2} / 2}
$$

Extending previous tables and using equation (II.127), Hahn (1970) computed the one-sided 100 P percent prediction limit for $P=0.90,0.95$ and 0.99 ; for $n=4(1) 12,15(5) 30$, 40, 60, ∞ and for a future sample size $N=1(1) 6(2) 12,15,20$. Figure 15 shows the factors $\beta_{\mu, \sigma}^{N}(P, n, N)$ such that

$$
\operatorname{Pr}\left\{\bigcap_{i=1}^{N} Y_{i} \leq \hat{\mu}+\beta_{\mu, \sigma}^{N}(P, n, N) S\right\}=P
$$

for $P=0.99$ and for several values of n and N (solid lines). These factors are taken from the tables computed by Hahn. Under perfect information ($n \rightarrow \infty$) it would be

$$
\beta_{\mu, \sigma}^{N}(P, \infty, N)=\Phi\left(P^{1 / N}\right)
$$

where $\Phi(\gamma)$ is the γ-fractile of the standard normal distribution. Therefore the penalty ratio for statistical uncertainty, defined in accordance with Section II.2, is:

$$
\begin{equation*}
r_{\mu, \sigma}^{N}(P, n, N)=\frac{\beta_{\mu, \sigma}^{N}(P, n, N)}{\Phi\left(P^{1 / N}\right)} \tag{II.128}
\end{equation*}
$$

The computation of $\beta_{\mu, \sigma}^{N}(\cdot)$ is tedious, especially for large values of P. For practical applications it would be advisable to have some simple approximations. One way of obtaining approximate values for $\beta_{\mu_{r} \sigma}^{N}$ is suggested by the well-known fact (see, e.g., Tong (1970)) that the probability

$$
\begin{equation*}
\operatorname{Pr}\left\{\bigcap_{i=1}^{N}\left(Y_{i} \leq R\right)\right\} \tag{II.129}
\end{equation*}
$$

is a decreasing function of the correlation coefficients $\rho_{i j}$ between Y_{i} and Y_{j}. Since these coefficients are all equal and positive, replacement of the true correlation matrix \underline{R} by the identity matrix (uncorrelated variables) gives a conservative estimate of the reliability. The approximate value for $\beta_{\mu, \sigma}^{N}(\cdot)$ is:

$$
\begin{equation*}
\bar{\beta}_{\mu, \sigma}^{N}(P, n, N)=t_{n-1}\left(P^{1 / N}\right)(1+1 / n)^{1 / 2}, \tag{II.130}
\end{equation*}
$$

where $t_{\nu}(\gamma)$ is the γ-fractile of the "Student's" $t-$ distribution with v degrees of freedom.

For all values of P, n, and N it is $\bar{\beta}_{\mu, \sigma}^{N}(\cdot) \geq$ $\beta_{\mu, \sigma}^{N}(\cdot)$. The approximation (II.130) is believed to be quite good for large values of P (i.e., in the range of interest to structural reliability) and for moderate to large sample sizes, n. In fact the correlation coefficient is $(n+1)^{-1}$ (which is quite small for, say, n > 10), and it is known that the probability (II.129) when \underline{Y} has equicorrelated normal distribution is insensitive to the presence of small correlation coefficients when P is large (see Chapter I, Example l). The same is believed to be true when Y has N-variate t_{n-1}-distribution.

> In Tables C1 - C4 (Appendix C) the values of
$\bar{\beta}_{\mu, \sigma}^{N}(\mathrm{P}, \mathrm{n}, \mathrm{N})$ are computed for $\mathrm{P}=0.90,0.99,0.999,0.9999$;
$\mathrm{n}=2(1) 12,15(5) 30,40,60, \infty$ and for a "future" sample size $N=1(1) 5,10,20$. For $P=0.90$ and $P=0.99$ (Tables Cl and C2) the approximate values (in parenthesis) are compared with the exact values from Hahn. For $P=0.99$ some approximate values are also plotted in Figure 15 (dashed lines).

These comparisons show that replacing \underline{R} by \underline{I} yields quite good (and always conservative for reliability purposes) approximations to $\beta_{\mu, \sigma}^{N}(\cdot)$. The only cases in which the discrepancy between $\beta_{\mu, \sigma}^{N}(\cdot)$ and $\bar{\beta}_{\mu, \sigma}^{N}(\cdot)$ is considerable is when n and P are both "small", a joint condition which rarely occurs in structural reliability.

Tables C5 - C7 collect the values of the penalty ratio $r_{\mu, \sigma}^{N}$ for $P=0.99,0.999,0.9999$ and for the same combinations of n and N. For $P=0.99$ these ratios use the exact $\beta_{\mu, \sigma}^{N}$ values from Hahn's tables (with the exception of $\mathrm{n}=2,3)$, while for $\mathrm{P}=0.999$ and $\mathrm{P}=0.9999$ and for $\mathrm{n}=2,3$ the ratios are calculated from the approximation (II.130). The same ratios for $P=0.999,0.9999$ are plotted in Figures 16 and 17 against the available sample size n for a future number of observations $N=1,3,10,20$. The curves for $\mathrm{N}=1$ correspond to simple prediction intervals.

For the case of two-sided prediction intervals centered on the sample mean, Chew (1968) proposed two approximations to $\beta_{\mu, \sigma}^{N}(P, n, N)$. Both of them are conservative, suggesting to replace the exact value with an upperbound. The stricter of the two approximations is based on a Bonferroni's inequality (see Chapter II, Paragraph II.2.3(a)) which for one-sided prediction intervals yields:

$$
\beta_{\mu, \sigma}^{N}(P, n, N) \leq(1+1 / n)^{1 / 2} t_{n-1}\left(\frac{N-1+P}{N}\right)
$$

Hahn compared this approximation with the exact values for $P=0.90,0.95,0.99$ and for several choices of n and N. He found that the approximation is in general accurate, if one excludes the combination: N large - n small. He also found that the same approximation improves with increasing P, in analogy with the presently proposed upper bound, equation (II.130).
$\underline{\mu}$ known, σ unknown. Define $\underline{\alpha}=\underline{y}-\underline{\mu}$ with generic component $\mathrm{d}_{\mathrm{i}}=\mathrm{Y}_{\mathrm{i}}-\mu$. From Chew (1968), d has N -variate t-distribution with n degrees of freedom, mean zero, and covariance matrix $\frac{n}{n-2} S^{2} I_{N}$, where

$$
s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(z_{i}-\mu\right)^{2}
$$

is the sample variance. Therefore the prediction interval

$$
\begin{equation*}
\left(-\infty, \mu+\beta_{\sigma}^{N}(P, n, N) \cdot S\right] \tag{II.l3la}
\end{equation*}
$$

contains the future N realizations with probability P if $\beta_{\sigma}^{N}(\cdot)$ satisfies:
$\int_{-\infty}^{\beta_{\sigma}^{N}(\cdot)} \cdots \int_{-\infty}^{\beta_{\sigma}^{N}(\cdot)} \frac{\Gamma^{\left(\frac{N+n}{2}\right)}}{(n \pi)^{N / 2} \Gamma(n / 2)}\left(1+\frac{1}{n} \sum_{i=1}^{N} t_{i}^{2}\right)^{-(N+n) / 2}$

$$
\begin{equation*}
\cdot d t_{1} \ldots d t_{N}=P \tag{II.131b}
\end{equation*}
$$

Unfortunately the multivariate t-density in the integrand cannot be factored into N marginal densities, although t_{i} and t_{j} are uncorrelated for $i \neq j$.

For the uncorrelated case, inverse tables of
$\beta_{\sigma}^{N}(\mathrm{P}, \mathrm{n}, \mathrm{N})$ for $\mathrm{P}=0.95,0.99, \mathrm{n}=5(1) 35$, and $\mathrm{N}=1(1) 10$ have been published by Krishnaiah and Armitage (1966); the same tables include the values of $\beta_{\sigma}^{N}(\cdot)$ for equicorrelated
t-distribution with $\rho_{i j}=\rho=0.0(0.1) 0.9$ (if j). More extensive tables, including the values $P=0.90$ and $P=0.975$ have been collected by the same authors in an unpublished report.

As for the cases considered previously, simple approximations can be devised, which use more accessible and extensive tables. Three of them are given and compared below.
(i) Assume independence of the future observations; then:

$$
\begin{equation*}
\beta_{\sigma}^{N}(P, n, N) \approx \beta_{\sigma_{i}}^{N}(P, n, N)=t_{n}\left(P^{1 / N}\right) \tag{II.132a}
\end{equation*}
$$

The subscript i stands for "independence".
(ii) (Chew (1968)). From the cuboid which circumscribes the mean-centered ellipsoid with exact content P :

$$
\begin{equation*}
\beta_{\sigma}^{N}(P, n, N) \leq \beta_{\sigma_{1}}^{N}(P, n, N)=\left[N F_{N, n}(P)\right]^{l / 2} . \tag{II.132b}
\end{equation*}
$$

This value for $\beta_{\sigma}^{N}(\cdot)$ was proposed by Chew for twosided prediction intervals; more conservatism is therefore expected when using the same approximation
in one-sided prediction, as is done here.
(iii) (Chew (1968)). Using a Bonferroni's inequality yields, for one-sided prediction intervals:

$$
\begin{equation*}
\beta_{\sigma}^{N}(P, n, N) \leq \beta_{\sigma_{2}}^{N}(P, n, N)=t_{n}\left(\frac{N-1+P}{N}\right) . \tag{II.132c}
\end{equation*}
$$

The subscripts 1 and 2 in (II.l32b, c) identify the approximations.

In Table 11 these three approximations are compared with the exact values for $\mathrm{P}=0.99 ; \mathrm{n}=1,2,5,10$ and $\mathrm{N}=1,2,5,10,20$. Approximations (a) and (c) are quite accurate and practically identical. On the contrary approximation (b) is usually very conservative, particularly for large values of N and n.

Tables C8 - Clo in Appendix C collect the values of $\beta_{\sigma}^{N}(P, n, N)$ for $P=0.99,0.999,0.9999 ; n=1(1) 11,14(5) 29$, 39, 59, ∞ and for $\mathrm{N}=1(1) 5,10,20$. Tables C9 and Clo were obtained from equation (II.l32a), and therefore their values are approximate. Instead, Table C8 collects the exact values computed by Krishnaiah and Armitage (values in parenthesis) and compares them with the approximation (II.132a) • The

APPROXIMATION (see equations (II.132))										
\rightarrow	(a), (c)	(b)								
\sum_{n}^{N}	1		2		5		10		20	
1	31.821	63.655	63.657	100.000	-	169.765	318.309	246.09	636.6	352.39
2	6.965	9.925	9.925	14.071	-	22.282	22.327	31.528	31.60	44.587
5	3.365	4.037	4.032	5.158	5.030	7.416	5.893	10.050	6.869	13.820
10	2.764	3.162	3.169	3.888	3.720	5.310	4.144	6.964	4.587	9.391

$\underset{\omega}{\omega}$ (a)

n^{N}	1	2	5	10	20
1	-	-	-	-	-
2	-	-	-	-	-
5	3.36	4.00	4.90	5.61	-
10	2.76	3.16	3.69	4.09	-

(b)

TABLE 11. (a) Approximate values of $\beta_{\sigma}^{N}(0.99, N, n)$ from equations (II.132)
(b) Exact values from Krishnaiah and Armitage (1966).
agreement is quite satisfactory and supports the use of equation (II.l32a), particularly for large values of P (for high "reliabilities"). The associated (approximate) penalty factors for statistical uncertainty:

$$
r_{\sigma}^{N}(P, n, N)=t_{n}\left(P^{1 / N}\right) / \Phi\left(P^{1 / N}\right)
$$

are displayed in Tables Cll - Cl3 and plotted versus n in Figures l8, 19 and 20 for selected values of N. The penalty increases with N, although it "stabilizes" as the number of future events becomes large. Of course, for obtaining $\beta_{\sigma}^{N}(\cdot)$, the penalty factors must be multiplied by the value of $\beta_{\sigma}^{N}(\cdot)$ under perfect information: $\beta_{P I}^{N}(P, N)=\Phi\left(P^{1 / N}\right)$, which for given P is also an increasing function of N (see last row in Tables C8 - ClO).
μ unknown, σ known. Again from Chew (1968) the distribution of $\underline{\alpha}=\underline{Y}-\underline{\hat{Z}}\left(d_{i}=Y_{i}-\frac{1}{n} \sum_{i=1}^{n} Z_{i}\right)$ is multivariate normal with zero mean, variances $\sigma_{d_{i}}^{2}=(1+1 / n) \sigma^{2}$ and common correlation coefficient

$$
\frac{\operatorname{Cov}\left[d_{i}, d_{j}\right]}{\sigma_{d_{i}}}=\rho_{i j}=\frac{1}{n+1} \quad(i \neq j)
$$

The value of $\beta_{\mu}^{N}(\cdot)$ for which the content of the simultaneous prediction interval

$$
\begin{equation*}
\left(-\infty, \hat{z}+\beta_{\mu}^{N}(P, n, N) \cdot \sigma\right] \tag{II.133a}
\end{equation*}
$$

is P can be found as:

$$
\begin{equation*}
\beta_{\mu}^{N}(P, n, N)=(1+1 / n)^{1 / 2} \beta\left(P, N, \frac{1}{n+1}\right), \tag{II.133b}
\end{equation*}
$$

where $\beta(P, N, \rho)$ is the value of β in equation (I.4l) of Chapter I, such that $\Phi_{N}(\rho, \beta)=P$. Of course, equation (II.133b) can be used also to find P for given $\beta_{\mu}^{N}(\cdot)$, in which case the integral (I.41) in Chapter I should be evaluated for

$$
\beta=(1+1 / n)^{-1 / 2} \beta_{\mu}^{N}(\cdot)=(1+1 / n)^{-1 / 2} \frac{P-\widehat{Z}}{\sigma}
$$

and for $\rho=1 /(n+1)$.
P is given in Tables Cl4 and Cl5 for $\mathrm{n}=1(1) 4,7,9$; $\beta_{\mu}^{N}=2.50,3.50$, and for $N=I(I) 12$. The values under perfect information ($n \rightarrow \infty$) are:

$$
P_{P I}=\Phi^{N}\left(\beta_{\mu}^{N}\right)
$$

and are given in the last column of the same tables. For values of n larger than 3 or 4 (correlation coefficient between d_{i} and d_{j} less than 0.25), an accurate and conservative approximation to r_{μ}^{N} is obtained by assuming $\rho_{i j}=0$, in which case:

$$
r_{\mu}^{N}(P, n, N)=r_{\mu}^{N}(n)=(1+1 / n)^{1 / 2} .
$$

The values of P which correspond to the independence assumption,

$$
\begin{equation*}
P_{i}=\Phi^{N}\left[\beta_{\mu}^{N} \cdot(1+1 / n)^{-1 / 2}\right] \tag{II.134}
\end{equation*}
$$

are smaller than the exact values. P_{i} is given in parenthesis in Tables Cl4 and Cl5. The agreement of P_{i} with the correct values is in general good and increases with n (with decreasing correlation, as expected) and with β_{μ}^{N} (with increasing content P). For values of P very close to 1 , say for $P \geq 1-10^{-4}$, the independence approximation (II.134) is quite satisfactory for applications to structural reliability.

For given n, N and P, and for two-sided prediction intervals Chew (1968) proposed two approximations to β_{μ}^{N}. The first approximation, written here for one-sided pređictions, is:

$$
\beta_{\mu_{1}}^{N}(P, n, N)=\left[(1+1 / n) \chi_{N}^{2}(P)\right]^{1 / 2}
$$

where $X_{N}^{2}(P)$ is the P-fractile of the Chi-square distribution with N degrees of freedom. This expression for β_{μ}^{N} corresponds to a prediction cuboid in the outcome space R^{N} of \underline{Y}, circumscribing the mean-centered ellipsoid of P-content. $\beta_{\mu_{1}}^{N}$ is therefore a conservative approximation (i.e., larger than the exact value).

The second approximation uses a Bonferroni's inequality, yielding, for one-sided predictions:

$$
\beta_{\mu_{2}}^{N}(P, n, N)=(I+1 / n)^{1 / 2} \Phi\left(\frac{N-1+P}{N}\right)
$$

A third approximation can be generated by assuming independence between different components of d. In this case:

$$
\begin{equation*}
\beta_{\mu_{i}}^{N}(P, n, N)=(I+1 / n)^{I / 2} \Phi\left(P^{I / N}\right) \tag{II.135}
\end{equation*}
$$

For $\mathrm{P}=0.995, \mathrm{n}=4, \mathrm{~N}=1(1) 12$, Table 12 compares the exact value of β_{μ}^{N} (which can be obtained from the tables in Gupta, 1963) with the approximations $\beta_{\mu_{1}}^{N}, \beta_{\mu_{2}}^{N}$ and $\beta_{\mu_{i}}^{N}$, and with the value of β^{N} under perfect statistical information $(n \rightarrow \infty):$

$$
\beta_{\mathrm{PI}}^{N}=\Phi\left(\mathrm{P}^{1 / \mathrm{N}}\right)
$$

The approximations $\beta_{\mu_{2}}^{N}$ and $\beta_{\mu_{i}}^{N}$ are both very accurate (the accuracy increases with P). Instead, the approximation $\beta_{\mu_{1}}$ is much less satisfactory.

EXAMPLE

Consider a system with deterministic resistance R, which is designed to resist a sequence of ten normal independent load events with a β value of 4.265. In other words, the resistance is chosen so that $R=\mu+4.265 \sigma$, where μ and σ^{2} are the (estimated or known) mean and variance of the load sequence. Under perfect statistical information, μ and σ^{2} are known and the reliability of the system evolves with N as indicated by the curve " $\mathrm{n}=\infty$ " in Figure 21.
Col. \rightarrow

N	1	2	3	4	5
1	2.88	2.88	3.97	2.88	2.58
2	3.13	3.14	3.99	3.14	2.81
3	3.28	3.28	4.13	3.28	2.94
4	3.38	3.38	4.32	3.38	3.02
5	3.45	3.46	4.48	3.46	3.09
6	3.51	3.51	4.65	3.51	3.14
7	3.56	3.56	4.82	3.56	3.19
8	3.61	3.61	4.98	3.61	3.23
9	3.64	3.65	5.12	3.65	3.26
10	3.67	3.68	5.27	3.68	3.29
11	3.71	3.71	5.41	3.71	3.32
12	3.73	3.73	5.54	3.73	3.34

TABLE 12. Values of $\beta_{\mu}^{N}(0.995,4, N)$ is equation (II.133a). Exact value: col. l; approximations: cols. 2, 3, 4; perfect statistical information: col. 5.

Suppose now that μ and σ are unknown and that R is to be chosen as

$$
\mathrm{R}=\hat{\mathrm{z}}+4.265 \mathrm{~S},
$$

where \hat{Z} and S^{2} are the usual unbiased estimates from a given sample of size n. Using the approximation (II.130) the expected reliability of the system is:

$$
R(N)=\left\{t_{n-1}\left[4.265(1+1 / n)^{-1 / 2}\right]\right\}^{N}
$$

or: \quad for $\mathrm{n}=5: \quad \mathrm{R}(\mathrm{N})=0.991154^{\mathrm{N}}$,
for $n=10: \quad R(N)=0.998579^{N}$, for $n=20: \quad R(N)=0.999734^{N}$.

These three reliability functions are also plotted in Figure 2la. The high sensitivity of $R(N)$ to the available statistical information is apparent.

For the case with μ known and σ unknown the resistance is

$$
R=\mu+4.265 \mathrm{~S}
$$

where $s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(Z_{i}-\mu\right)^{2}$. The evolution of the reliability with N for the sample sizes $\mathrm{n}=5,10,20, \infty$ is shown in Figure 2lb. Again, the curve " $\mathrm{n}=\infty$ " corresponds to perfect knowledge of the load process parameters. $R(N)$ was calculated from the approximate expression (corresponding to the independence assumption leading to equation (II.132c)):

$$
R(N)=\left[t_{n}(4.265)\right]^{N} .
$$

Finally, if μ is unknown and σ is known it is: $R=\hat{Z}+4.265 \sigma$. The reliability evolves with N as shown in Figure 2lc for the available sample sizes: $n=1,2$, 4, 9, ∞.

Note that Figures 2la and 2lb are quite similar. The results in Figure 2lc, however, are much less dependent on n. This says again that it is the uncertainty in σ and not that in μ that really matters.
(b) EXTREME TYPE I SEQUENCE

The problem of finding the one-sided prediction interval of P-content for the maximum $Y_{(N)}$ of N future observations from a white extreme type I sequence with distribution

$$
\mathrm{F}_{\mathrm{Y}}(\mathrm{y})=\exp \{-\exp [-(\mathrm{y}-\mathrm{a}) / \mathrm{b}]\} ; \mathrm{b}>0,-\infty<\mathrm{a}<\infty \text {. (II.136) }
$$

was investigated by Antle and Rademaker (1972). In their study a and b were assumed unknown and had to be estimated from an available sample of size n.

The problem is of interest in reliability theory if the potentially critical events are generated by some limiting process within the domain of attraction of the distribution (II.136); for example by an exponential, normal or gamma process.

Using the maximum likelihood estimators \hat{a} and \hat{b} proposed by Harter and Moore (1967, 1968), the statistic $E=\left[\left(Y_{(N)}-\hat{a}\right) / \hat{b}-\log N\right]$ has a distribution which depends only on n. Antle and Rademaker calculated through simulation the P-fractile $e_{P, n}$ of E for $n=20(10) 70,100, \infty$; and for $P=0.90,0.95,0.975,0.98,0.99$; and also for $n=20(10) 70$, 100, ∞; and $P=0.995$. The upper P-confidence limit for
$Y_{(N)}$ was given by them in the form:

$$
Y_{(N)}(P)=\hat{a}+e_{P, n} \hat{b}+\hat{b} \log N
$$

For perfect information $(n \rightarrow \infty)$ it is: $\hat{a} \rightarrow a ; \hat{b} \rightarrow b$, and

$$
Y_{(N)}(P)=a+b[E 1(P)+\log N]
$$

where $E 1(P)$ is the $P-f r a c t i l e ~ o f ~ t h e ~ e x t r e m e ~ t y p e ~ l ~ d i s-~$ tribution.

The penalty for imperfect information (n finite) is defined, in accordance with equation (II.30) (but not in accordance with the definition for normal sequences):

$$
r_{a, b}^{E 1}(P, n, N)=\frac{E[\hat{a}]+E[\hat{b}]\left(e_{p, n}+\log N\right)}{a+b\left(e_{p, \infty}+\log N\right)}
$$

$$
=\frac{g(n)+\frac{l}{h(n)}\left(e_{P, n}+\log N\right)+\frac{a}{b}}{\frac{a}{b}+\left(e_{P, n}+\log N\right)}
$$

where the functions $g(n)$ and $h(n)$, defined by equation (II.29), are tabulated by Antle and Rademaker for $\mathrm{n}=10(10) 100$.

Table Cl6 in Appendix C gives the values of $r_{a, b}^{E l}(P, n, N)$ for $a / b=1(1) 10$; for $n=10(10) 40,60$; for $\mathrm{P}=0.99$, 0.995 ($\mathrm{n}=10$ is not considered for $\mathrm{P}=0.995$) and for $N=1(1) 10(5) 30,40,60$.

Prediction intervals for values of P greater than 0.995 are not calculated by Antle and Rademaker. For P > 0.995 one might, in approximation, replace the prediction interval of P -content for N future realizations with the prediction interval of $\mathrm{P}^{\prime} / \mathrm{N}_{\text {-content }}$ for $\mathrm{N}^{\prime}>\mathrm{N}$ realizations. N^{\prime} can be chosen so that $\mathrm{P}^{\mathrm{N}^{\prime} / \mathrm{N}}$ equals 0.99 or 0.995 . The approximation is believed to be on the unconservative side.

EXAMPLE

Find the 0.999 upper confidence limit for the next six realizations of an extreme type I sequence of which forty past sample values are available.

By choosing $N^{\prime}=10 N=60$, it is $\mathrm{P}^{\mathrm{N}^{\prime} / \mathrm{N}} \approx 0.99$ for which the upper confidence limit is:

$$
\hat{a}+\hat{b}\left(e_{0.99,40}+\log 60\right)=\hat{a}+\hat{b}(4.79+4.08)=\hat{a}+8.87 \hat{b}
$$

By choosing $\mathrm{N}^{\prime}=5 \mathrm{~N}=30$, it is $\mathrm{P}^{\mathrm{N}^{\prime} / \mathrm{N}} \approx 0.995$ and the upper prediction limit becomes:
$\hat{a}+\hat{b}\left(e_{0.995,40}+\log 30\right)=\hat{a}+\hat{b}(5.68+3.40)=\hat{a}+9.08 \hat{b}$.

The simulation approach used by Antle and Rademaker is quite appealing when exact analytical prediction methods are unfeasible. If independent sequences with given marginal distribution can be generated easily (see for instance Fishman (1973) Chapter 8) and parameter estimators are available, prediction confidence levels for the maximum of the next N realizations based on n past observations can be found by simulation. The simulation approach is even more attractive when the sequence of past and future realizations has a (possibly complex) probabilistic correlation structure, for which case an exact analytical solution is very rarely workable (see Chapter III).

In white normal sequences neglecting the correlation between distinct future events caused by limited statistical information leads to slightly conservative but otherwise accurate results. This fact has important implications. If the same is true also for nongaussian sequences, then approximate but accurate simultaneous prediction intervals for the next N realizations can be constructed using the simpleprediction results in Section II.2. With respect to perfect statistical information the penalty ratio for a prediction region with content P, a past sample size n, and a future sample size N would be simply:

$$
\begin{equation*}
r(P, n, N)=r\left(P^{1 / N}, n, 1\right) \tag{II.137}
\end{equation*}
$$

and the function $r(P, n, 1)$ is tabulated in Appendix A for a wide variety of distributions. In agreement with the normal case the approximation (II.137) should improve as P and/or n increase; in any case it should give slightly conservative penalties.

The use of the penalty factor $r\left(P^{1 / N}, n, 1\right)$ does not differ from that of $r(P, n, 1)$; see Section II.2.

Using the approximation (II.137) Table Cl7
compares the penalty factors for white sequences with different marginal distributions, for $P=0.99,0.999$; for $\mathrm{N}=2$, 10; and for an available sample size $\mathrm{n}=1(1) 10(5) 30(10) 60$.

For the lognormal sequence $\widehat{\mathrm{V}}_{\mathrm{Y}}$ is the sample coefficient of variation. The true value is related to the variance of the normal sequence $\left\{\ln Y_{i}\right\}$ as:

$$
\sigma_{\ln Y}=\left[\ln \left(V_{Y}^{2}+1\right)\right]^{1 / 2}
$$

For usual values of \widehat{v}_{Y} the penalty factor for lognormal sequences is considerably larger than the corresponding penalty for normal sequences. A comparison with the exponential and Gamma processes is not easy, due to the different parameters being assumed known or unknown.

(d) DISTRIBUTION-FREE PREDICTION INTERVALS

Nonparametric simultaneous prediction is considered only for completeness, in that the problem can be found treated in the literature by several authors; see for instance Danziger and Davis (1964). Their results are quoted by Chew (1968) and are reported here.

The only distributional assumption is that the population has continuous but otherwise unknown density function. With $Z_{(I)}<Z_{(2)}<\ldots<Z_{(n)}$ denoting the available order statistics from a sample of size n, Danziger and Davis show that the probability that at least K out of the next N observations will fall between $Z\left(r_{1}\right)$ and $Z\left(r_{2}\right)$ is:
$P\left(N, r_{1}, r_{2}, K, N\right)=\frac{\sum_{i=k}^{N}\binom{N-i+r_{1}+n-r_{2}}{N-i}\left(\begin{array}{c}i+r_{2}-r_{1}-1 \\ i\end{array}\right]}{\binom{n+N}{N}}$
if $1 \leq r_{1}<r_{2} \leq n$. This general result can be specialized to find the probability that all the next N events will fall between $\mathrm{Z}\left(\mathrm{r}_{1}\right)$ and $\mathrm{Z}\left(\mathrm{r}_{2}\right)$:

$$
\begin{equation*}
P\left(n, r_{1}, r_{2}, N, N\right)=\left(\frac{N+r_{2}-r_{1}-1}{N}\right) /\left(\frac{n+N}{N}\right) . \tag{II.139}
\end{equation*}
$$

Of course, for $N=1$ one finds that the probability that the next observation will fall between $Z_{\left(r_{1}\right)}$ and $Z_{\left(r_{2}\right)}$ is:

$$
P\left(n, r_{1}, r_{2}, 1,1\right)=\left(r_{2}-r_{1}\right) /(n+1),
$$

a familiar result from simple prediction (see Paragraph II. $2.1(\mathrm{~g})$).

For instance, let $n=100, r_{1}=5, r_{2}=95$. The probability that all N future observations will fall inside $\left.{ }^{(Z(5)}{ }^{\prime} Z_{(95)}\right]$ is given in the following table for $N=1(1) 10$.

N	$P(100,5,95, N, N)$	N	$P(100,5,95, N, N)$
1	0.891	6	0.509
2	0.795	7	0.457
3	0.710	8	0.411
4	0.635	9	0.369
5	0.568	10	0.332

TABLE 13. Simultaneous prediction probabilities for the nonparametric interval $\left(\mathrm{Z}_{(5)} \mathrm{I}_{(95)} \mathrm{Z}^{\mathrm{I}}\right.$ and $\mathrm{n}=100$.

II.3.3. Simultaneous Bayesian Prediction for Univariate Sequences

In simultaneous Bayesian prediction with a conjugate prior one can take full advantage of the initial information being equivalent to a prior sample. The size n ' of the sample equals the number of observations that one would exchange for his prior information; $n '$ ' together with the remaining sufficient sample statistics, characterizes fully the initial state of knowledge.

The immediate consequence of this observation is that when the prior is of the conjugate type the frequentist results apply after pooling together the actual sample statistics with the equivalent prior sample statistics. The combination rules for this "pooling operation" are given in Paragraph II.2.2 for various independent sequences. For instance equations (II.58), (II.61) and (II.68) for normal sequences, equations (II.73) and (II.74) for exponential sequences, and so on.

As for simple prediction, Bayesian simultaneous prediction intervals for noninformative priors of particular types given in Section II. 2 coincide with the corresponding frequentist intervals.

EXAMPLE

Consider sampling from the normal population $N\left(\mu, \sigma^{2}\right)$ with both μ and σ^{2} unknown. The prior density $\mathrm{f}\left(\mu, \sigma^{2}\right)$ is assumed in conjugate form (see equation (II.66)) with parameters:

$$
n^{\prime}=9 ; \quad \mu^{\prime}=80 ; \quad S^{\prime^{2}}=16
$$

A sample of size 6 is available, with sufficient statistics:

$$
n^{\prime}=6 ; \quad \hat{z}=75 ; \quad S^{2}=10
$$

Using equation (II.68) the prior parameters and the sufficient sample statistics are combined to give the following sufficient posterior statistics:

$$
\mathrm{n}^{\prime \prime}=15 ; \quad \mu^{\prime \prime}=78 ; \quad \mathrm{S}^{2}=4.375^{2}
$$

The left-sided prediction interval of 0.9999 content for the next ten observations is, using the approximation
(II.130) with $\mathrm{n}^{\prime \prime}=15$ in place of n (see also Table C4 in Appendix C):

$$
(-\infty, 78+6.507 \cdot 4.3751, \text { or }(-\infty, 106.468]
$$

II.3.4. Applications of Simultaneous Prediction to Probabilistic Fatigue Failure

Up to this point the critical event was considered to be of the first-crossing type: given N future realizations of an independent "load" process: $Y_{1}, Y_{2}, \ldots, Y_{N}$, failure occurs if $\max \left\{Y_{i}\right\}$ or $\max _{i}\left\{\left|Y_{i}\right|\right\}$ exceeds a given "resistance" threshold. For this type of failure events an important finding was that in most situations the assumption of independence of the future realizations (regarded here as Bayesian variables) was adequate and slightly conservative.

In general, both these properties are lost in fatigue-type failure modes, as indicated by the following example. This is explained by the fact that sums of random variables have distributions which are highly affected by correlation. Another result is that the uncertainty in the mean of the process, which was often negligible for first-
crossing failure, becomes a determinant factor against fatigue-failure events.

Consider a stationary white sequence $\left\{Y_{i}\right\}$ of "load" variables. The damage caused by each load accumulates in the system, until failure occurs when the total accumulated damage exceeds a fatigue-resistance limit.

In a linear, memoryless (in the sense specified next) model, the damage state variable d experiences jumps at the load events occurrence times, and each jump depends exclusively on the intensity of the load which is causing it. In more sophisticated and perhaps realistic models the system performance (constitutive laws, damage accumulation rate, threshold of failure, etc.) may depend in a more complex fashion on the past history and on the present level of accumulated damage.

Consider the very simple case of the damage state variable being a linear combination of the past load intensities:

$$
\begin{equation*}
d(t)=\sum_{i=1}^{N(t)} \alpha_{i} Y_{i} \tag{II.140}
\end{equation*}
$$

Here $N(t)$ is the number of load "cycles" to which the system has been exposed up to time t, and $\alpha_{1}, \ldots, \alpha_{N}(t)$ are given constants. For fixed $N(t), d(t)$ is a random variable which depends linearly on the intensity of the events in $[0, t]$. If $d_{\text {MAX }}$ denotes the level of damage at which failure occurs, the reliability at time t is

$$
R[N(t)]=\operatorname{Pr}\left\{d(t)<d_{M A X}\right\}=\operatorname{Pr}\left\{\sum_{i=1}^{N(t)} \alpha_{i} Y_{i}<d_{M A X}\right\}
$$

To illustrate the effect of parametric statistical uncertainty of the load sequence on $R(t)$, suppose that $\left\{Y_{i}\right\}$ is a white stationary normal process, with $Y_{i} \sim N\left(\mu, \sigma^{2}\right)$.

If μ and σ are known and $\alpha_{i}=\alpha$ for all i, it is:

$$
\begin{equation*}
\left.R_{P I}(N)=\Phi\left[\left(\frac{d_{M A X}}{\alpha}-N \cdot \mu\right) / \sigma \sqrt{N}\right)\right] \tag{II.14la}
\end{equation*}
$$

If μ is unknown, σ is known, and a sample of size n is available from the load population with sample mean \hat{Z} :

$$
\begin{equation*}
R_{\mu}(N)=\Phi\left[\left(\frac{d_{M A X}}{\alpha}-N \hat{Z}\right) / \sigma_{\sqrt{ }} \frac{\overline{N(N+n)}}{n}\right] \tag{II.141b}
\end{equation*}
$$

If μ is known and σ is unknown one finds (using wellknown properties of the multivariate t-distribution; see for instance Box and Tiao (1973), p 118):

$$
\begin{equation*}
R_{\sigma}(N)=t_{n}\left[\left(\frac{d_{M A X}}{\alpha}-N \mu\right) / S \sqrt{N}\right], \tag{II.141c}
\end{equation*}
$$

where S^{2} is the usual unbiased variance estimator.

Finally, if μ and σ are both unknown and \hat{Z} and S^{2} are unbiased estimates of μ and σ^{2} :

$$
\begin{equation*}
R_{\mu, \sigma}(N)=t_{n-1}\left[\left(\frac{d_{M A X}}{\alpha}-N \hat{Z}\right) / S_{\sqrt{ }} \frac{\overline{N(N+n)}}{n}\right] . \tag{II.14ld}
\end{equation*}
$$

In equations (II. I4lc, d) $t_{v}(\cdot)$ is the CDF of the t-distribution with v degrees of freedom.

All the expressions above are obtained readily from the simultaneous prediction results in Paragraph II.3.2. Using these expressions for design, one can choose the
resistance level $d_{\text {MAX }}$ which corresponds to a prefixed probability of failure P within N load events. For a design equation

$$
\begin{equation*}
\frac{d_{M A X}}{\alpha}=N \cdot \mu+\beta \sigma \sqrt{N} \tag{II.142}
\end{equation*}
$$

(or analogously, with μ replaced by \hat{Z} and for σ replaced by S if these parameters are unknown) the penalty factors on β with respect to its value $\beta_{P I}$ under perfect knowledge of μ and σ are:
for μ unknown and σ known:

$$
\begin{equation*}
r_{\mu}(N, n)=\sqrt{\frac{N+n}{n}} \quad \text { (independent of } P \text {); } \tag{II.143a}
\end{equation*}
$$

for μ known and σ unknown:

$$
\begin{equation*}
r_{\sigma}(P, n)=\frac{t_{n}(P)}{\Phi(P)} \quad \text { (independent of } N \text {); } \tag{II.143b}
\end{equation*}
$$

for μ and σ unknown:

$$
\begin{equation*}
r_{\mu, \sigma}(P, N, n)=\sqrt{\frac{N+n}{n}} \frac{t_{n-1}(P)}{\Phi(P)} . \tag{II.143c}
\end{equation*}
$$

When $N=1$ these penalty factors coincide with those found in Paragraph II.2.1 for simple prediction.

Typically, in "high cycle" fatigue problems both N and n are large. This means that $r_{\sigma}(P, n)$ is very close to 1 . On the contrary the penalty for unknown location parameter, $r_{\mu}(N, n)$, may be much larger than 1 , depending on the ratio N / n. This is, in a sense, a situation opposite to that of simple prediction ($\mathrm{N}=1$) and of simultaneous prediction with a first-crossing failure mode. In the last two cases σ being unknown generally has a much larger penalty than μ being unknown.

Numerical results. Consider the resistance design equation (the same as in equation (II.l42), with N_{d} in place of N):

$$
\begin{equation*}
\frac{d_{M A X}}{\alpha}=N_{d} \mu+\beta \sigma \sqrt{N_{d}} \tag{II.144}
\end{equation*}
$$

where N_{d} is a given design number of load repetitions and β is a safety coefficient for the case of perfect knowledge of the load process parameters. For selected values of N_{d}, μ (or \hat{Z}), σ (or S) and β, the arguments of the cumulative normal and t-distribution in equations (II.14l) are plotted
versus N in Figures 22a,b,c. $V=\sigma / \mu$ is the coefficient of variation of the loads. In each figure the steepest line is the argument of Φ and of t_{n} in equations (II.14la,c), while the remaining lines give the argument of Φ and of t_{n-1} in equations (II. 14lb, d), for different values of n. In each case the failure probability can be read on the appropriate lateral scale (for very large n, the scales of t_{n} and t_{n-1} almost coincide with the normal scale, and are omitted).

For instance one finds (see Figure 22a) that corresponding to a reliability $\mathrm{R}_{\mathrm{PI}}(100)=0.999$ for perfect knowledge it is:

n	$\mathrm{R}_{\mu}(100)$	$R_{\sigma}(100)$	$R_{\mu, \sigma}(100)$
10	0.817	0.9933	0.805
30	0.925	0.9973	0.920
70	0.973	0.9981	0.971

The (common) value of N for which all the arguments plotted in Figures 22 are 0 and the reliability is 0.5 is $N(0.5)=N_{d}+\beta \cdot V \cdot \sqrt{N_{d}}$, increasing linearly with β and, for
fixed β, with the coefficient of variation. The fact that for $N=N_{d}$ the argument values (β if μ is known, $\beta(1+N / n)^{-1 / 2}$ if μ is unknown) do not depend on V and are linear in β implies that in the vicinity of N_{d} the sensitivity of $R_{(\cdot)}(N)$ to N decreases with V. In turn this says that if N is random its uncertainty has more effect on the system reliability for smaller V.

A quadratic model of damage accumulation. The linearity of the damage increment in the load intensity postulated by the foregoing model may be rather unrealistic. Often the damage increment caused by one load cycle increases more than linearly with the intensity of the load.

Consider the quadratic damage accumulation law:

$$
d(N)=\sum_{i=1}^{N} Y_{i}^{2}
$$

As before, $\left\{Y_{i}\right\}$ is a sequence of normal variates from an independent process. The resistance $d_{\text {MAX }}$ is known.

In the case of perfect knowledge of the process parameters μ and σ^{2} the distribution of $d(N) / \sigma^{2}$ is noncentral Chi-square with N degrees of freedom and noncentrality parameter $\lambda=N \mu^{2} / \sigma^{2}=N / V^{2}$, denoted $X_{N}^{\prime 2}(\lambda)$. The properties of this distribution are reviewed in Johnson and Kotz (1970)

Chapter 28. Therefore, for perfect knowledge of the process parameters, the reliability is

$$
\begin{equation*}
R_{P I}(N)=\chi_{N}^{\prime}\left(N / V^{2}, d_{M A X} / \sigma^{2}\right), \tag{II.145}
\end{equation*}
$$

where $\left.x_{N}^{\mid}\right|^{2}(\lambda, \cdot)$ is the $C D F$ of the $\chi_{N}^{\prime}{ }^{2}(\lambda)$ distribution. For convenience of language, the cases with unknown parameters are treated using the Bayesian terminology. In all cases the prior distribution is assumed noninformative (see Paragraph II.2.2), so that the same conclusions would be reached by following the frequentist approach.
μ unknown, σ known. If a sample of size n is available, the next N realizations have multinormal predictive distribution with mean

$$
\underline{\mu}=\hat{z}\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right) \quad i \quad \hat{z}=\text { sample mean }
$$

and covariance matrix

Equivalently, the prediction vector $\underline{Y}=\left[Y_{1}, \ldots, Y_{N}\right]$ ' can be written:

$$
Y_{i}=Y_{i}^{*}+Y_{0} \quad i=1, \ldots, N
$$

where $Y_{i}^{*} \sim N\left(\hat{Z} ; \sigma^{2}\right) ; Y_{O}=(\mu-\hat{Z}) \sim N\left(0 ; \sigma^{2} / n\right)$.

$$
\operatorname{Cov}\left[Y_{i}^{*}, Y_{j}^{*}\right]=\operatorname{Cov}\left[Y_{i}^{*}, Y_{0}\right]=0 \quad \text { for } i, j=1, \ldots, N
$$

Then one can write:
$d(N)=\sum_{i=1}^{N}\left(Y_{i}^{*}+Y_{O}\right)^{2}=\sum_{i=1}^{N} Y_{i}^{*}{ }^{2}+N Y_{O}^{2}+2 Y_{O} \sum_{i=1}^{N} Y_{i}^{*}$.

The three terms in the right hand side are analyzed separately and their contributions to the uncertainty of $d(N)$ are compared.

When divided by σ^{2}, the first term in the right hand side of equation (II.146), $\sum_{i=1}^{N} Y_{i}^{*}{ }^{2}$, is distributed like $X_{N}^{\prime 2}\left(N \hat{Z}^{2} / \sigma^{2}\right)=X_{N}^{\prime}\left(N / \hat{V}^{2}\right) . \quad$ Since the mean and the variance of $X_{v}^{\prime 2}(\lambda)$ are:
$E\left[\chi_{v}^{\prime 2}(\lambda)\right]=\lambda+\nu ; \operatorname{Var}\left[\chi_{v}^{\prime 2}(\lambda)\right]=2(\nu+2 \lambda)$,
it is :

$$
E\left[\sum_{i=1}^{N} Y_{i}^{*}{ }^{2}\right]=\sigma^{2}\left(N+N / \hat{V}^{2}\right)=N\left(\sigma^{2}+\hat{Z}^{2}\right) ;
$$

$\operatorname{Var}\left[\sum_{i=1}^{N} Y_{i}^{*}\right]=2 \sigma^{4}\left(N+2 N / \hat{V}^{2}\right)=2 N \sigma^{2}\left(\sigma^{2}+2 \hat{Z}^{2}\right)$.

The distribution of $\frac{n}{\sigma^{2}} Y_{0}^{2}$ is X_{1}^{2}; therefore the second term in the right hand side of equation (II.146), $N Y_{O}{ }^{2}$, has mean and variance:
$E\left[N Y_{O}{ }^{2}\right]=\frac{N}{n} \sigma^{2} ; \quad \operatorname{Var}\left[N Y_{O}{ }^{2}\right]=2 \frac{N}{n} \sigma^{2}$.
(II.147b)

Consider now the third term, $2 Y_{o} \sum_{i=1}^{N} Y_{i}^{*}$. Since N is in general quite large (meaning a small coefficient of variation for $\sum_{i=1}^{N} Y{ }_{i}$) and Y_{O} is a zero-mean variable, the distribution of this term is dominated by the (normal) distribution of Y_{0}. This is even more so if Y_{i}^{*} has itself small sample coefficient of variation: $\hat{V}=\sigma / Z$.

The distribution of $\sum_{i=1}^{N} Y_{i}^{*}$ is $N\left(N \hat{Z} ; N \sigma^{2}\right)$; the distribution of $2 \mathrm{Y}_{\mathrm{O}}$ is $\mathrm{N}\left(0 ; 4 \sigma^{2} / \mathrm{n}\right)$. Since Y_{O} and $\mathrm{Y}_{\mathrm{j}}^{*}$ are independent for $j=1, \ldots, N$, it is:
$E\left[\begin{array}{lll}2 & Y_{O} & \sum_{i=1}^{N} Y_{i}^{*}\end{array}\right]=0$
N
$\operatorname{Var}\left[2 Y_{0} \sum_{i=1} Y_{i}^{*}\right]=N^{2} \hat{Z}^{2}\left(4 \sigma^{2} / n\right)+N \sigma^{2}\left(4 \sigma^{2} / n\right)$

$$
\begin{aligned}
& =\frac{4}{n} N \sigma^{2}\left(N \hat{z}^{2}+\sigma^{2}\right) \\
& \left.\approx \frac{4}{n} N^{2} \sigma^{2} \hat{z}^{2} \quad \text { (large } N\right) .
\end{aligned}
$$

(II.147C)

As observed earlier, the shape of the distribution is strongly affected by the shape of the distribution of Y_{o} (normal). Therefore, in approximation:

$$
2 Y_{O} \sum_{i=1}^{N} Y_{i}^{*} \sim N\left(0, \frac{4}{n} N^{2} \sigma^{2} \widehat{Z}^{2}\right)
$$

A comparison of the variances, equations (II.147a, $\mathrm{b}, \mathrm{c})$, shows that the variance of the third term dominates for moderate to large N values. Instead, the mean value of $d(N)$ in equation (II.146) is mostly contributed by the first term. Therefore for large N we find again, as in the linear damage accumulation model, that the mean of $d(N)$ is not significantly affected by the uncertainty of the parameters, while the variance of $d(N)$ depends strongly on the uncertainty of the mean (here on the posterior variance
$\left.\operatorname{Var}[\mu \mid \widehat{Z}]=\operatorname{Var}\left[Y_{0}\right]=\sigma^{2} / n\right)$. This corresponds to linearizing the quadratic model as follows:
$d(N)=E[d(N) \mid \mu=\hat{Z}]+E\left(\left.\frac{\partial\{d(N) \mid \mu\}}{\partial \mu}\right|_{\mu=\hat{Z}}\right) \cdot(\mu-\hat{Z})$.

According to equation (II.148) all the uncertainty of $d(N)$ comes from the term $Y_{O}=(\mu-\hat{Z}) \sim N\left(0, \sigma^{2} / n\right)$. The approximation (II.148) improves with N and is believed to be applicable also to damage accumulation laws other than the quadratic one (and perhaps also to nonnormal sequences). However, for damage laws like

$$
d(N)=\sum_{i=1}^{N} Y_{i}^{\ell}, \quad \ell \text { given },
$$

the accuracy of the linearized model (II.148) decreases with ℓ. In particular, for the combination: large- ℓ, moderate- N one should account also for the uncertainty in Y_{i}^{*} and for higher order terms in Y_{0}.
μ known, σ unknown. Given an independent sample of size n, the posterior distribution of \underline{Y} is multivariate-t with n degrees of freedom, mean

$$
\underline{\mu}=\mu\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
$$

and covariance matrix

$$
\underline{\Sigma}=\frac{n}{n-2} S^{2} I_{N} \quad ; \quad s^{2}=n^{-1} \sum_{i=1}^{n}\left(Z_{i}-\mu\right)^{2} .
$$

In analogy with equation (II.146) one can express the damage after N load cycles as:
$d(N)=\sum_{i=1}^{N} Y_{i}{ }^{2}=\sum_{i=1}^{N}\left(Y_{i}-\mu+\mu\right)^{2}$

$$
=\sum_{i=1}^{N}\left(Y_{i}-\mu\right)^{2}+N \mu^{2}+2 \mu \sum_{i=1}^{N}\left(Y_{i}-\mu\right)
$$

The first term in the right hand side of equation (II.149) is related to an F-variate; in fact

$$
\frac{\sum_{i=1}^{N}\left(Y_{i}-\mu\right)^{2}}{N s^{2}} \sim F_{N, n}
$$

Therefore:

$$
E\left[\sum_{i=1}^{N}\left(Y_{i}-\mu\right)^{2}\right]=N^{2} \frac{n}{n-2} ;
$$

$\operatorname{Var}\left[\sum_{i=1}^{N}\left(Y_{i}-\mu\right)^{2}\right]=N^{2} S^{4} \frac{2 n^{2}(N+n-2)}{N(n-2)^{2}(n-4)}$.

The second term in (II.149) is a known constant, and the third term is related to a t-variate, being:

Therefore:

$$
E\left[2 \mu \sum_{i=1}^{N}\left(Y_{i}-\mu\right)\right]=0
$$

N
$\operatorname{Var}\left[2 \mu \sum_{i=1}\left(Y_{i}-\mu\right)\right]=4 \mu^{2} N S^{2} \frac{n}{n-2}=4 N \frac{S^{4}}{\hat{V}^{2}} \frac{n}{n-2},(I I .150 b)$
where $\quad \hat{V}=S / \mu$.

From these results and from equation (II.149) the expected damage is

$$
E[d(N)]=N\left(\mu^{2}+S^{2} \frac{n}{n-2}\right)
$$

For large N (e.g., $N=10,000)$, relatively small n (say $\mathrm{n}<100$) and large $\widehat{\mathrm{V}}$ (say $\hat{\mathrm{V}}>0.5$), the variance of the first term in equation (II.149) dominates, increasing with the square of N. For small N (e.g., $N=100$), relatively large n (say $\mathrm{n}>50$) and small coefficients of variation (say $\widehat{\mathrm{V}}<0.2$), the variance of the third term dominates, with linear dependence on N.

For the first combination of parameters the variance of $d(N)$ becomes comparable (in order of magnitude, although remaining generally smaller) with the variance of the damage when μ is unknown and σ is known. For the second combination the variance of $d(N)$ when σ is unknown is substantially smaller than when μ is unknown. These results are in qualitative agreement with earlier conclusions for the linear damage accumulation model. The case with both location and scale parameters unknown is expected to behave roughly like the case with only μ unknown.

As a final consideration, one might choose other types of independently additive damage functions, such as

$$
\begin{equation*}
d(N)=\sum_{i=1}^{N} g\left(Y_{i}\right) \tag{II.151}
\end{equation*}
$$

where $g(\cdot)$ has, say, one of the forms sketched in Figure 23. With reference to Figure 23, whenever $Y_{i} \leq Y_{E}$ the damage level does not increase, generating an "endurance limit" at Y_{E}; instead, a discrete jump occurs if $Y_{i}>Y_{E}$. In Figure $23(\mathrm{a})$ the jump is linear in $\left(\mathrm{Y}_{\mathrm{i}}-\mathrm{Y}_{\mathrm{E}}\right)$, in $23(\mathrm{~b})$ it is constant ($\mathrm{d}(\mathrm{N})$ counts the number of exceedances of the threshold value Y_{E} in N trials), and in Figure 23 (c) the damage contributed by the $i^{\text {th }}$ cycle is constant beyond the
transition interval $\left[Y_{E}, Y_{M}\right.$]. In case (b), if the "crossing events": $Y_{i}>Y_{E}$ are rare one can use the approximation of independent trials which proved itself accurate for firstcrossing failure events (=>predictive Bernoulli process, see Paragraph II.3.2).

For the damage accumulation law (II.15l) and the functions $g(\cdot)$ in Figure 23 the importance of μ being unknown should be somewhere between the cases of fatiguefailure and of first-crossing failure, depending on the endurance limit Y_{E}.

1. Aitchison, J. (1964): "Bayesian Tolerance Regions". J. Royal Statist. Soc. Br 26, pp 161-210.
2. Aitchison, J. (1966): "Expected-Cover and LinearUtility Tolerance Intervals". J. Royal Statist. Soc. B, 28, pp 57-62.
3. Aitchison, J. and Sculthorpe, D. (1965): "Some Problems of Statistical Prediction". Biometrika, 52, 3 and 4, 469 .
4. Anderson, R.G. (1972): "Reduction of Uncertainty in Structural Design and Decision Making by First-Order Bayesian Information Analysis". M.S. Thesis, Dept. of Civil Engineering, M.I.T.
5. Ang, A.H.S. (1973): "Structural Risk Analysis and Reliability-based Design". Journal of the Structural Division, ASCE, Vol 99, No ST9, pp 1891-1909.
6. Antle, C.E. and Rademaker, F. (1972): "An Upper Confidence Limit on the Maximum of m Future Observations from a Type I Extreme Distribution". Biometrika, 59, pp 475-477.
7. Benjamin, J.A. and Cornell, C.A. (1971): Probability, Statistics and Decision Theory for Civil Engineers, McGraw-Hill, New York.
8. Box, G.E.P. and Tiao, G.C. (1973): Bayesian Inference in Statistical Analysis. Addison-Wesley.
9. Chew, V. (1966): "Confidence, Prediction and Tolerance Regions for the Multivariate Normal Distribution". Ann. Statist. Ass., 61, pp 605-617.
10. Chew, V. (1968): "Simultaneous Prediction Intervals". Technometrics, 10, pp 323-330.
11. Cox, D.R. (1954): "The Mean and Coefficient of Variation of Range in Small Samples from Nonnormal Populations". Biometrika, 4l, pp 469-481.
12. Danziger, L. and Davis, S.A. (1964): "Tables of Dis-tribution-Free Tolerance Limits". Ann. Math. Statist., 35, pp 1361-1365.
13. David, H.A. (1954): "The Distribution of Range in Certain Nonnormal Populations". Biometrika, 4l, pp 463-468.
14. DeGroot, M.H. (1970): Optimal Statistical Decisions. McGraw-Hill, New York.
15. Ditlevsen, O. (1973): "Structural Reliability and the Invariance Problem". Report NO 22, Solid Mechanics Division, University of Waterloo, Ontario, Canada.
16. Draper, N.R. and Guttman, I. (1968a): "Some Bayesian Stratified Two-phase Sampling Results". Biometrika, 55, pp 131-140.
17. Draper, N.R. and Guttman, I. (1968b): "Bayesian Stratified Two-phase Sampling Results: K Characteristics". Biometrika, 55, pp 587-588.
18. Dunsmore, I.R. (1966): "A Bayesian Approach to Classification". J. Royal Statist. Soc. B, 28, pp 568-577.
19. Dunsmore, I.R. (1968): "A Bayesian Approach to Calibration". J. Royal Statist. Soc. B, 30, pp 396-405.
20. Dunsmore, I.R. (1969): "Regulation and Optimization". J. Royal Statist. Soc. B, 31, pp 160-170.
21. Fedorov, V.V. (1972): Theory of Optimal Experiments. Academic Press, New York.
22. Feller, W. (1967): An Introduction to Probability Theory and its Applications: Vol I. (third edition), Wiley \& Sons, New York.
23. Ferguson, T.S. (1973): "A Bayesian Analysis of Some Nonparametric Problems". The Annals of Statistics, 1, No 2, pp 309-330.
24. Fraser, D.A.S. (1951): "Sequentially Determined Statistically Equivalent Blocks". Ann. Math. Statist., 22, pp 372-381.
25. Fraser, D.A.S. (1953): "Nonparametric Tolerance Regions". Ann. Math. Statist., 24, pp 44-55.
26. Fraser, D.A.S. and Guttman, I. (1956): "Tolerance Regions". Ann. Math. Statist., 27, pp 162-179.
27. Geisser, S. (1965): "Bayesian Estimation in Multivariate Analysis". Ann. Math. Statist., 36, pp 150-159.
28. Goodman, L.A. and Madansky, A. (1962): "Parameterfree and Nonparametric Tolerance Limits: the Exponential Case". Technometrics, 4, pp 75-96.
29. Guenther, W.C. and Terragno, P.J. (1964): "A Review of the Literature on a Class of Coverage Problems". Ann. Math. Statist., 35, pp 232-260.
30. Gumbel, E.J. (1958): Statistics of Extremes, Columbia University Press, New York.
31. Gupta, S.S. (1960): "Order Statistics from Gamma Distribution". Technometrics, 2, pp 243-262.
32. Gupta, S.S. (1963): "Probability Integrals of Multivariate Normal and Multivariate t". Ann. Math. Statist., 34, pp 792-828.
33. Gupta, S.S. and Sobel, M. (1957): "On a Statistic which Arises in Selection and Ranking Problems". Ann. Math. Statist., 28, pp 957-967.
34. Guttman, I. (1959): "Optimum Tolerance Regions and Power when Sampling from Some Non-normal Universes". Ann. Math. Statist., 30, pp 926-938.
35. Guttman, I. (1970): Statistical Tolerance Regions: Classical and Bayesian. Griffin's Statistical Monographs \& Courses, No 26, Stuart Ed., Hafner Publ. Co., London.
36. Hahn, G.J. (1970): "Additional Factors for Calculating Prediction Intervals for Samples from a Normal Distribution". J. Am. Statist. Ass., 65, pp 1668-1676.
37. Hahn, G.J. and Hendrickson, R.W. (1971): "A Table of Percentage Points of the Distribution of the Largest Absolute Value of K Student t Variates and its Applications". Biometrika, 58, pp 323-332.
38. Hampton, J.M., Moore, P.G. and Thomas, H. (1973): "Subjective Probability and its Measurement". J. Royal Statist. Soc. A, 136, Part l, pp 21-42.
39. Harter, H.L. (1919): New Tables of the Incomplete Gamma - Function Ratio and of Percentage Points of the Chi-square and Beta Distributions. U.S. Aerospace Research Labs, Wright-Patterson Air Force Base, Ohio.
40. Harter, H.L. and Moore, A.H. (1967): "A Note on Estimation from a Type 1 Extreme Value Distribution". Technometrics, 9, pp 325-331.
41. Harter, H.L. and Moore, A.H. (1968): "Maximum Likelihood Estimation from Doubly Censored Samples of the Parameters of the First Asymptotic Distribution of Extreme Values". J. Am. Statist. Ass., 63, pp 889-901.
42. Jeffreys, H. (1961): Theory of Probability. Oxford University Press, third edition.
43. Johnson, L.J. and Kotz, S. (1970): Distributions in Statistics: Continuous Univariate Distributions - 2 . Houghton Mifflin, New York.
44. Johnson, L.J. and Kotz, S. (1972): Distributions in Statistics: Continuous Multivariate Distributions. Wiley \& Sons, New York.
45. Kemperman, J.H.B. (1956): "Generalized Tolerance Limits". Ann. Math. Statist., 27, pp 180-186.
46. Krishnaiah, P.R. and Armitage, J.V. (1966): "Tables for Multivariate t-Distributions". Sankhȳ̄̄ B, 28, pp 3l-56.
47. Lieberman, G.J. (1961): "Prediction Regions for Several Predictions from a Single Regression Line". Technometrics, 3, pp 21-27.
48. Lindley, D.V. (1965): Introduction to Probability and Statistics. Part 2: Inference. Cambridge University Press.
49. Lindley, D.V. (1971): Bayesian Statistics, A Review. SIAM, Philadelphia, Pa.
50. Novick, M.R. (1962): "A Bayesian Indifference Postulate". Institute of Statistics Mimeographic Series, No 319, University of North Carolina.
51. Pearson, K. (1934): Tables of the Incomplete Beta Function. Cambridge University Press.
52. Pierce, D.A. (1973): "Fiducial, Frequency and Bayesian Inference on Reliability for the Two Parameter Negative Exponential Distribution". Technometrics, 15, pp 249-253.
53. Proshan, F. (1953): "Confidence and Tolerance Interval for the Normal Distribution". J. Am. Statist. Ass., 48, pp 550-564.
54. Raiffa, H. and Schlaifer, R. (1961): Applied Statistical Decision Theory. Harvard University Press.
55. Savage, L.J. (1962): The Foundations of Statistical Inference: a Discussion. Methuen, London.
56. Savage, L.J. (1972): English summary of: DeFinetti, B. and Savage, L.J., "Sul modo di scegliere le probabilità iniziali", Biblioteca del Metron, Series C, vol 1, 1962, pp 81-147, Rome. The summary is in DeFinetti, B.: Probability, Induction and Statistics, Chapter 8, Wiley, New York.
57. Sidak, Z. (1968): "On Multivariate Normal Probabilities of Rectangles: their Dependence on Correlation". Ann. Math. Statist., 39, pp 1425-1434.
58. Singh, C. (1967): "On the Extreme Value and Range of Samples from Nonnormal Populations". Biometrika, 54, pp 541-550.
59. Singh, C. (1972): "Order Statistics from Nonnormal Populations". Biometrika, 59, pp 229-233.
60. Slepian, D. (1962): "The One-sided Barrier Problem for Gaussian Noise". Bell System Tech. J., 4l, pp 463-501.
61. Smallwood, R.D. (1968): "A Decision Analysis of Model Selection". IEEE Trans. on Systems Science and Cybernetics, pp 333-342.
62. Thatcher, A.R. (1964): "Relationships between Bayesian and Confidence Limits for Prediction". J. Royal Statist. Soc. B, 26, pp 176-210.
63. Tippett, L.H.C. (1925): "On the Extreme Individuals and the Range of Samples taken from a Normal Population". Biometrika, 17, p 364.
64. Tong, Y.L. (1970): "Some Probability Inequalities of Multivariate Normal and Multivariate t". J. Am. Statist. Ass., 65, pp 1243-1247.
65. Tukey, J.W. (1947): "Nonparametric Estimation II: Statistically Equivalent Blocks and Tolerance Regions the Continuous Case". Ann. Math. Statist., 18, pp 529-539.
66. Veneziano, D. (1974a): "Invariance in Second Moment Reliability". In Res. Report R74-33. Dept. of Civil Engineering, Mass. Institute of Technology.
67. Veneziano, D. (1974b): "Statistical Inference in Second Moment Reliability". In Res. Report R74-33, Dept. of Civil Engineering, M.I.T.
68. Veneziano, D. (1974c): "Note on an Inductive Approach to Safety". Submitted to: Proceedings of the American Society of Civil Engineers, J. Structural Division.
69. Wald, A. (1943): "An Extension of Wilk's Method for Setting Tolerance Limits". Ann. Math. Statist., 14, pp 45-55.
70. Wilks, S.S. (1941): "Determination of Sample Sizes for Setting Tolerance Limits". Ann. Math. Statist., 12, pp 91-96.
71. Wood, E.F., Rodriguez-Iturbe, I., Schaake, J.C. (1974): "The Methodology of Bayesian Inference and Decision Making Applied to Extreme Hydrologic Events". Report No 178, Dept. of Civil Engineering, Mass. Institute of Technology, January 1974.
72. Zellner, A. (1971): An Introduction to Bayesian Inference in Econometrics. Wiley \& Sons, New York.

Figure 1. Penalty ratios for univariate normal sequences; central prediction intervals of 0.90 content.

Figure 2. Penalty ratios for univariate normal sequences; central prediction intervals of 0.99 content.

Figure 3. Penalty ratios for univariate normal sequences; central prediction intervals of 0.999 content.

Figure 4. Choice of the optimal sample size. $U_{n}=$ utility of a sample of size n; C cost of a^{n} sample of size $n ; n^{*}=$ optimal sample size.

Figure 5. Penalty ratios for prediction intervals of 0.999 content. Sampling is from independent Normal, Lognormal, Exponential, Gamma and Poisson sequences. The following table associates each curve with a population distribution and with a set of unknown parameters.

$\begin{aligned} & \text { CURVE } \\ & \text { (Fig. } 5 \text {) } \end{aligned}$	SAMPLING DISTRIBUTION AND UNKNOWN PARAMETERS (in parenthesis) (*)
1	$N(\mu)=\operatorname{LN}\left(\mu_{z}, \hat{V} \rightarrow 0\right)$
2	$N(\sigma)=L N\left(\sigma_{\mathrm{Z}}, \mathrm{V} \rightarrow 0\right)$
3	$N(\mu, \sigma)=\operatorname{LN}\left(\mu_{\mathrm{Z}}, \sigma_{\mathrm{Z}}, \hat{\mathrm{V}} \rightarrow 0\right)$
4	$\operatorname{LN}\left(\mu_{\mathrm{Z}}, \mathrm{V}=0.3\right)$
5	$\operatorname{LN}\left(\mu_{\mathrm{Z}}, \mathrm{V}=0.5\right)$
6	$\mathrm{LN}\left(\mu_{z}, \sigma_{Z}, \hat{\mathrm{~V}}=0.1\right)$
7	$\operatorname{LN}\left(\mu_{z}, \sigma_{Z}, \hat{V}=0.3\right)$
8	$\operatorname{LN}\left(\mu_{Z}, \sigma_{Z}, \hat{V}=0.5\right)$
9	$E X(\sigma)=G(\lambda, k=1)$
10	$\mathrm{G}(\lambda, \mathrm{k}=2)$
11	$\mathrm{G}(\lambda, \mathrm{k}=5)$
12	$\mathrm{G}(\lambda, \mathrm{k}=10)$
13	$P\left(\lambda, t_{f} / t_{p}=2\right)$
14	$P\left(\lambda, t_{f} / t_{p}=1\right)$
15	$P\left(\lambda, t_{f} / t_{p}=0.5\right)$

Association of the plots in Figure 5 with the population distribution. Unknown parameters and parameters with given values are indicated in parenthesis.
(*) $\quad \mathrm{N}=$ Normal, LN = Lognormal, EX = Exponential $\mathrm{G}=$ Gamma, $\mathrm{P}=$ Poisson.

Figure 6. Construction of nonparametric Bayesian prediction intervals of 0.90 content. (a)-Prior; (b)-Prior; (c)-Sample; (d)-Posterior (a+c); (e)-Posterior $(b+c)$.

Figure 7. Lower half: rectangular probability chart; $Y_{1} \sim E X(\lambda)$ with λ unknown; $Y_{2} \sim N\left(\mu, \sigma^{2}\right)$ with μ unknown. Sample ${ }^{1}$ size $=5$. Each non-dotted rectangle has probability content 0.001 ; each dotted rectangle has 0.003 content.
Upper half: the same chart for perfect knowledge of the distributions parameters.

Figure 8. Penalty ratios for central prediction regions of 0.99 content. Sampling is from an N-variate normal population with $\underline{\mu}$ and $\underline{\Sigma}$ unknown.

Figure 9. Penalty ratios for central prediction regions of 0.99 content. Sampling is from an N-variate normal population with $\underline{\mu}$ known and Σ unknown.

Figure 10. Two-dimensional prediction regions. The ellipse and the inner square are of 0.99 content; the other two squares are conservative approximations. Refer to Paragraph II.2.3 in the text. (1) from tables in Hahn and Hendrickson (1971); (2) from a Bonferroni's inequality.

Figure ll. Example of Wald's "Successive Elimination Method" for the construction of nonparametric prediction rectangles of given expected content.

Figure 12. Frequentist and Bayesian prediction ellipses of 0.99 expectation. Example in Paragraph II.2.4.

Figure 13. Realizations of simple independent "load" processes $\left\{Y_{i}\right\}$.

Figure 14. Qualitative evolution of the failure probability for different correlation structures of the interarrival times; model S in Figure 13.
(a) deterministic arrival times; (b) highly regular (but random) interarrival times;
(c) highly regular (but random) events clusters;
(d) Poisson arrivals.

Figure 15. Simultaneous prediction from independent normal sequences with μ i σ unknown. One sided prediction intervals of 0.99 content. Solid lines: exact results from Hahn (1970) Dashed lines: independence approximation, equation (II.130)

Figure l6. Approximate penalty ratios when constructing onesided simultaneous prediction intervals of 0.999 content ($\mathrm{N}=$ number of future observations). Sampling is from normal populations with unknown mean and variance. See comments following equation (II.130).

Figure 17. Approximate penalty ratios when constructing one-sided simultaneous prediction intervals of 0.9999 content ($N=$ number of future observations). Sampling is from normal populations with unknown mean and variance. See comments following equation (II.130).

Figure 18. Penalty ratios when constructing one-sided simultaneous prediction intervals of 0.99 content ($\mathrm{N}=$ number of future observations). Sampling is from normal populations with known mean and unknown variance. Solid curves: exact values from Krishnaiah and Armitage (1966); dashed curves: approximate values.

Figure 19. Approximate penalty ratios when constructing one-sided simultaneous prediction intervals of 0.999 content ($\mathrm{N}=$ number of future observations). Sampling is from normal populations with known mean and unknown variance.

Figure 20. Approximate penalty ratios when constructing one-sided simultaneous prediction intervals of 0.9999 content ($N=$ number of future observations). Sampling is from normal populations with known mean and unknown variance.

Figure $21(a)$. Probability of failure as a function of the number of future loading events, N. The load sequence is normal and independent, with unknown mean and variance. From the sequence, a sample of size n is available, yielding the unbiased parameters estimates Z and S^{2}. The resistance is $\mathrm{R}=\hat{\mathrm{Z}}+4.265 \mathrm{~S}$.

437

Figure $21(\mathrm{~b}) . \quad$ Probability of failure as a function of the number of future loading events, N. The load sequence is normal and independent, with known mean and unknown variance. From the sequence, a sample of size n is available, yielding the unbiased estimate \hat{z}. The resistance is $R=\hat{Z}+4.265 \sigma$.

Figure 21(c). Probability of failure as a function of the number of future loading events, N. The load sequence is normal and independent, with unknown mean and known variance. From the sequence, a sample of size n is available, yielding the unbiased estimate s^{2}. The resistance is $R=\mu+4.265$ S.

Figure $22(b)$. Fatigue failure. Arguments of Φ, t_{n} and t_{n-1} in equations (II.141) 。
$N_{d}=1000 ; \mu=10 ; V=0.4 ; \beta=3.00 \Rightarrow d_{M A X} / \alpha=10,379$.

Figure $22(c)$. Fatigue failure. Arguments of Φ, t_{n} and t_{n-1} in equations (II.l4l). $N_{d}=1000 ; \mu=10 ; \mathrm{V}=0.2 ; \beta=3.00 \Rightarrow \mathrm{~d}_{\mathrm{MAX}} / \alpha=10,190$.

Figure 23. Damage accumulation functions. Refer to equation (II.151) in the text.

CHAPTER III

FIRST-ORDER AUTOREGRESSIVE MODELS

Knowledge of natural phenomena is seldom so accurate to justify a deterministic model in which, given the present, the future is known with certainty. On the other hand, independent models of the type studied in Chapter II (independence of the future from the present and from the past) may not be supported by solid statistical evidence. For example, in the area of structural safety, processes like the interarrival times and the intensities of meteorological loads on buildings and the time-dependent resistance of mechanical systems generally exhibit serial correlation and are best described by probabilistic models with memory. The degree of serial correlation may be assumed known, or may be estimated from statistical data.

One of the simplest and most commonly used probabilistic models with memory hypothesizes a Markovian dependence between the states of the system at different times. This chapter studies the relevance of statistical uncertainty in first-order autoregressive processes (a simple subclass of Markov processes), when some of the parameters are unknown. The statistical information is contained in the (known) realization of the process from an initial time,
$t=0$, to the present. As for the case of independent sequences, simple and, to a lesser extent, simultaneous prediction are studied.

A distinctive characteristic of processes with memory is that the predictive distribution depends on the prediction lead. In fact, past information is used for prediction in two distinct ways. First, it allows one to estimate the unknown parameters of the process, and in this sense there is little difference with the case of independent sequences. Second, and peculiar to processes with memory, one can use knowledge of the present to estimate more accurately events in the near future, due to serial dependence. This fact motivates the distinction between prediction at lead l (Section III.l) and prediction at lead $e>1$. The latter problem is studied in Section III.2.

A Bayesian approach is followed, using both "diffuse" and conjugate prior distributions of the unknown parameters.

III. 1 SIMPLE PREDICTION OF THE NEXT OBSERVATION

Consider the Gauss Markov sequence $\left\{\mathrm{Y}_{\mathrm{i}}\right.$ \} generated by the first-order linear difference equation:

$$
Y_{i}=\beta_{0}+\beta_{1} Y_{i-1}+\varepsilon_{i} ; \quad i=1,2, \ldots ; Y_{o} \text { given, (III.1) }
$$

where β_{0} and β_{1} are constant parameters and $\left\{\varepsilon_{i}\right\}$ is an independent sequence of $N\left(0, \sigma^{2}\right)$ variates. Y_{0} and $\underline{Y}=\left[Y_{1}, \ldots, Y_{n}\right]^{\prime}$ are known. Y_{n} denotes the present state, and the problem consists of finding the posterior distribution of Y_{n+1}, given Y_{o}, \underline{Y} and the prior distribution of the unknown parameters. For both the cases of diffuse and conjugate prior the following conditions are studied:
(a) $\beta_{0}, \beta_{1}, \sigma$ unknown;
(b) β_{0}, β_{1} unknown, σ known.
III.l.1 "Diffuse" prior; β_{0}, β_{1} and σ unknown

The noninformative prior distribution of the unknown parameters is assumed (with Zellner (1971), p 186) in the "diffuse" form:

$$
\begin{equation*}
f\left(\beta_{0}, \beta_{1}, \sigma\right) \propto 1 / \sigma, \quad \sigma \geq 0 \tag{III.2}
\end{equation*}
$$

(Note that considering the density (III.2) "noninformative" is not standard in the statistical literature.) Given the initial state Y_{O} and the sample \underline{Y}, the likelihood function for β_{0}, β_{1} and σ is:

$$
\rho\left(\beta_{0}, \beta_{1}, \sigma \mid Y_{0}, \underline{Y}\right) \propto \frac{1}{\sigma^{n}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\beta_{0}-\beta_{1} Y_{i-1}\right)^{2}\right\}(\text { III.3) }
$$

which, when combined with the prior density (III.2), yields the posterior density:

$$
f\left(\beta_{O}, \beta_{1}, \sigma \mid Y_{o}, \underline{Y}\right) \propto \frac{1}{\sigma^{n+1}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\beta_{o}-\beta_{1} Y_{i-1}\right)^{2}\right\},(\text { III.4) }
$$

meaning that the posterior distribution of β_{o}, β_{1} and $h=\sigma^{-2}$ is of normal-gamma type (see Raiffa and Shlaifer (1961), p. 57).

$$
\begin{aligned}
& \text { Let } \\
& \underline{\beta}=\binom{\beta_{0}}{\beta_{1}} ; \underline{H}=\left(\begin{array}{cc}
1 & Y_{0} \\
1 & Y_{1} \\
\vdots & \vdots \\
1 & Y_{n-1}
\end{array}\right) ; \underline{\tilde{H}}=[1 \\
& l_{1} \\
& \underline{\varepsilon}=\left[\varepsilon_{1}, \ldots, \varepsilon_{n}\right]^{\prime} .
\end{aligned}
$$

Then:

$$
\begin{gathered}
\underline{Y}=\underline{H} \underline{\beta}+\underline{\varepsilon}, \\
Y_{n+1}=\underline{\tilde{H}} \underline{\beta}+\varepsilon_{n+1},
\end{gathered}
$$

and the posterior distribution of $\underline{\beta}$ (after integrating out σ from the joint density (III.4)) is bivariate-t with mean $\hat{\hat{\beta}}$ and covariance matrix $\frac{\nu}{\nu-2} S^{2}{\left(\underline{H}^{\prime} \underline{H}\right)}^{-1}$, where $\hat{\beta}, \nu$ and S^{2} are sample statistics, defined as follows:

$$
\begin{aligned}
\underline{\hat{\beta}} & \left.=\left(\underline{H}^{\prime} \underline{H}\right)^{-1} \underline{H}^{\prime} \underline{Y} \quad \text { (assume } \operatorname{det} \underline{H}^{\prime} \underline{H} \neq 0\right) \\
v & =n-2 \\
v s^{2} & =\underline{Y}^{\prime}\left[\underline{I}-\underline{H}\left(\underline{H}^{\prime} \underline{H}^{-\underline{1}}\right)^{-1} \underline{H}^{\prime}\right] \underline{Y}=(\underline{Y}-\underline{H} \underline{\hat{\beta}})^{\prime}(\underline{Y}-\underline{H} \hat{\hat{\beta}}) .
\end{aligned}
$$

With the posterior density function (III.4) for the unknown parameters, the posterior predictive distribution of Y_{n+1} (see Zellner (1971), p. 72) is t with $v=n-2$ degrees of freedom, mean value

$$
\begin{equation*}
Y_{n+1}=\tilde{H} \underline{\hat{B}} \tag{III.5}
\end{equation*}
$$

and variance (for $n>4$):
$\sigma_{n+1}^{2}=\frac{v}{v-2} s^{2}\left[1+\underline{\tilde{H}}_{\left(\underline{H}^{\prime} \underline{H}\right)}^{-1} \underline{\tilde{H}}^{\prime}\right]=\frac{n-2}{n-4} s^{2}\left(1+\frac{a-2 b Y_{n}+n Y_{n}^{2}}{n a-b^{2}}\right)($ III. 6)
where $\quad a=\sum_{i=0}^{n-1} Y_{i}{ }^{2} ; \quad b=\sum_{i=0}^{n-1} Y_{i}$.

From equation (III.6) it is seen that the prediction variance is the sum of two terms:
(1) $\frac{n-2}{n-4} s^{2}$, being the posterior predictive variance

$$
\text { of } \varepsilon_{n+1} \text {; }
$$

(2) $\left.\frac{n-2}{n-4} S^{2} \underline{\tilde{H}}^{\sim} \underline{H}^{\prime} \underline{H}\right)^{-1} \underline{\tilde{H}}^{\prime}$, being the posterior variance of $\hat{H} \underline{\beta}$.

From the posterior distribution of Y_{n+1} a lefthand prediction interval of P-content for Y_{n+1} is:

$$
\begin{equation*}
\left(-\infty,\left(\hat{\beta}_{o}+\hat{\beta}_{I} Y_{n}\right)+\beta_{\beta_{0}, \beta_{1}, \sigma}\left(P, n, a, b, Y_{n}\right) S\right], \tag{III.7}
\end{equation*}
$$

where
$\beta_{\beta_{o}, \beta_{1}, \sigma}\left(P, n, a, b, Y_{n}\right)=t_{n-2}(P)\left(1+\frac{a-2 Y_{n} b+n Y_{n}^{2}}{n a-b^{2}}\right)^{1 / 2}$

For β_{o}, β_{1} and σ known, the same interval would be:

$$
\left(-\infty,\left(\beta_{0}+\beta_{1} Y_{n}\right)+\beta_{P I}(P) \sigma\right] \text {, where } \beta_{P I}(P)=\Phi(P)
$$

Therefore one can define the penalty ratio for imperfect information as follows:
$r_{\beta_{0}, \beta_{1}, \sigma}\left(P, n, a, b, Y_{n}\right)=\frac{t_{n-2}(P)}{\Phi(P)}\left(1+\frac{a-2 Y_{n} b+n Y_{n}^{2}}{n a-b^{2}}\right)^{1 / 2}$

For example, if $\mathrm{a}=\mathrm{n}$ and $\mathrm{b}=0$, it is:
$r_{\beta_{0}, \beta_{1}, \sigma}\left(P, n, n, 0, Y_{n}\right)=\frac{t_{n-2}(P)}{\Phi(P)}\left(1+\frac{1+Y_{n}^{2}}{n}\right)^{1 / 2}$

The prediction penalty is minimum when $Y_{n}=0$. For the case when $Y_{n}=1, n=3(1) 12,16(5) 31,41,61$, and $P=0.99,0.999,0.9999$ the penalty factors (III.9) are collected in Table l. For any given value of Y_{n} the penalty (III.9) exceeds the corresponding penalty for a white normal sequence with μ and σ^{2} unknown (see Chapter II, Paragraph II.2.2(a) and Appendix A), due to the fact that β_{1} is assumed unknown. However, this does not imply that the variances of Y_{n+1} in the two models are similarly ordered.

Parallel expressions and similar conclusions can be deduced for central and right-hand prediction intervals.

$$
\text { III.I. } 2 \text { "Diffuse" prior; } \beta_{0}, \beta_{1} \text { unknown, } \sigma \text { known }
$$

The condition " σ known" makes the prediction problem considerably simpler. Consistently with equation (III.2) we assume, as noninformative prior, the improper distribution:
$d F\left(\beta_{0}, \beta_{1}\right) \propto d \beta_{0} d \beta_{1}$.

As in Paragraph III.l.1, define the statistic
$\hat{\beta}=\left(\underline{H}^{\prime} \underline{H}\right)^{-1} \underline{H}^{\prime} \underline{Y}$ (assume det $\left.\left(\underline{H}^{\prime} \underline{H}\right) \neq 0\right)$. Then the posterior distribution of $\underline{\beta}=\left[\beta_{0}, \beta_{1}\right]^{\prime}$ is bivariate normal with mean $\hat{\beta}$ and covariance matrix $\sigma^{2}\left(\underline{H}^{\prime} \underline{H}\right)^{-1}$, implying that the posterior predictive distribution of Y_{n+1} is also normal, with mean

$$
\hat{Y}_{n+1}=\hat{\underline{H}} \hat{\beta}=\hat{\beta}_{0}+\hat{\beta}_{1} Y_{n}
$$

and variance

$$
\sigma_{n+1}^{2}=\sigma^{2}\left[1+\tilde{H}_{\left(\underline{H}^{\prime} \underline{H}\right)}^{-1} \underline{\hat{H}}^{\prime}\right]=\sigma^{2}\left(1+\frac{a-2 b Y_{n}+n Y_{n}^{2}}{n a-b^{2}}\right)
$$

(for the definition of a and b, see equation (III.6)).
If large realizations of Y_{n+1} are of concern, the left-hand prediction interval of P-content is:

$$
\left(-\infty,\left(\hat{\beta}_{o}+\hat{\beta}_{1} Y_{n}\right)+\beta_{\beta_{0}, \beta_{1}}\left(P, n, a, b, Y_{n}\right) \cdot \sigma\right],
$$

where

$$
\beta_{\beta_{o}, \beta_{1}}\left(P, n, a, b, Y_{n}\right)=\Phi(P)\left(1+\frac{a-2 b Y_{n}+n Y_{n}^{2}}{n a-b^{2}}\right)^{1 / 2} .
$$

The penalty ratio for imperfect information does not depend on the content P, being:
$r_{\beta_{0}, \beta_{I}}\left(n, a, b, Y_{n}\right)=\left(1+\frac{a-2 b Y_{n}+n Y_{n}^{2}}{n a-b^{2}}\right)^{1 / 2}$.

For example, when $\mathrm{a}=\mathrm{n}$ and $\mathrm{b}=0$, this penalty becomes (compare with equation (III.9)):

$$
r_{\beta_{0}, \beta_{1}}\left(n, n, 0, Y_{n}\right)=\left(1+\frac{1+Y_{n}^{2}}{n}\right)^{1 / 2}
$$

and is minimum for $Y_{n}=0$.
III.1.3 Conjugate prior; β_{0}, β_{1} and σ unknown

We follow again zellner (1971), pages 70 and 186, and Raiffa and Shlaifer (1961), page 57.

For the likelihood function (III.3), the conjugate prior density is:

$$
\begin{aligned}
f\left(\beta_{o}, \beta_{1}, \sigma\right) & \propto \frac{1}{\sigma^{n_{1}+1}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n_{1}}\left(Y_{1}-\beta_{o}-\beta_{1} Y_{1_{i-1}}\right)^{2}\right\} \\
& \propto \frac{1}{\sigma^{n_{1}+1}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\nu_{1} S_{1}^{2}+\left(\underline{\beta}-\hat{\beta}_{1}\right)^{\prime} \underline{H}_{1} \underline{H}_{1}\left(\underline{\beta}-\underline{\beta}_{1}\right)\right]\right\}
\end{aligned}
$$

(III.10)
where

$$
\begin{gathered}
\nu_{1}=n_{1}-2, \hat{\beta}_{1}=\left(\underline{H}_{1}^{\prime} \underline{H}_{1}\right)^{-1} \underline{H}_{1} \underline{Y}_{1}, \\
\nu_{1} S_{1}^{2}=\left(\underline{Y}_{1}-\underline{H}_{1} \hat{\beta}_{1}\right)^{\prime}\left(\underline{Y}_{1}-\underline{H}_{1} \underline{\beta}_{1}\right), \text { with } \underline{H}_{1}=\left(\begin{array}{cc}
1 & \mathrm{Y}_{1} \\
1 & \mathrm{Y}_{1} \\
\vdots & \vdots \\
1 & \mathrm{Y}_{1} \\
\mathrm{n}_{1}-1
\end{array}\right.
\end{gathered}
$$

are "equivalent prior statistics".
The density (III.10) is formally similar to the posterior density (III.4) for diffuse prior.

The posterior density obtained by combining the prior (III.10) with the likelihood (III.3) is also of the same type. In fact, let $\underline{Y}_{2}=\left[Y_{1}, \ldots, Y_{n_{2}}\right]^{\prime}$ be the vector of observed sample values, and define

$$
\underline{H}_{2}=\left(\begin{array}{ll}
1 & \mathrm{y}_{\mathrm{n}_{1}} \\
1 & \mathrm{Y}_{1} \\
\vdots & \vdots \\
1 & \mathrm{Y}_{\mathrm{n}_{2}-1}
\end{array}\right)
$$

Then, in terms of

$$
\begin{aligned}
& \underline{M}=\underline{H}_{1}^{\prime} \underline{H}_{1}+\underline{H}_{2}^{\prime} \underline{H}_{2} ; \\
& \hat{\beta}=\underline{M}^{-1}\left(\underline{H}_{1} \underline{Y}_{1}+\underline{H}_{2} \underline{Y}_{2}\right)=\underline{M}^{-1}\left(\underline{H}_{1}^{\prime} \underline{H}_{1} \hat{\beta}_{1}+\underline{H}_{2}^{\prime} \underline{H}_{2} \hat{\beta}_{2}\right) ; \\
& \hat{\beta}_{2}=\left(\underline{H}_{2}^{\prime} \underline{H}_{2}\right)^{-1} \underline{H}_{2}^{\prime} \underline{Y}_{2} ; \\
& \nu s^{2}=\left(\underline{Y}_{1}-\underline{H}_{1} \underline{\hat{\beta}}\right)\left(\underline{Y}_{1}-\underline{H}_{1} \underline{\hat{\beta}}\right)+\left(\underline{Y}_{2}-\underline{H}_{2} \hat{\beta}^{\prime}\right)^{\prime}\left(\underline{Y}_{2}-\underline{H}_{2} \underline{\hat{\beta}}\right) ; \\
& \nu=n_{1}+n_{2}-2 ;
\end{aligned}
$$

The posterior density of $\left(\beta_{0}, \beta_{1}, \sigma\right)$ is:
$f\left(\beta_{0},{ }_{1}, \sigma \mid Y_{0}, \underline{Y}_{1}, \underline{Y}_{2}\right) \propto \frac{1}{{ }_{\sigma}{ }^{n}+n_{2}-1} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\nu S^{2}+(\underline{\beta}-\underline{\hat{\beta}}) \quad \underline{M}(\underline{\beta}-\underline{\hat{\beta}})\right]\right\}$.

As a consequence, $Y_{n_{2}+1}$ is distributed like t with $v=n_{1}+n_{2}-2$ degrees of freedom, mean value

$$
\hat{Y}_{n_{2}+1}=\tilde{H} \hat{\beta}=\hat{\beta}_{o}+\hat{\beta}_{1} Y_{n_{2}}
$$

and variance (for $v>2$):
$\sigma_{n_{2}+1}^{2}=\frac{v}{v-2} S^{2}\left(1+\tilde{H}_{\underline{M}}^{-1} \underline{\underline{H}}^{\prime}\right)=\frac{n_{1}+n_{2}-2}{n_{1}+n_{2}-4} s^{2}\left(1+\frac{a+2 b Y_{n_{2}}+\left(n_{1}+n_{2}\right) Y_{n}^{2}}{\left(n_{1}+n_{2}\right) a-b^{2}}\right)$
where

$$
a=\sum_{i=0}^{n_{1}} Y_{1_{i}}^{2}+\sum_{i=1}^{n_{2}^{-1}}, Y_{i}^{2}
$$

and

$$
b=\sum_{i=0}^{n_{1}} Y_{1_{i}}+\sum_{i=0}^{n_{2}-1} Y_{i}
$$

After making the appropriate substitutions, prediction intervals of given content and penalty ratios are found in the same way as for a diffuse prior distribution (see Paragraph III.l.1). The practical effect of the conjugate prior is to enlarge the data set, the effective number of observations passing from n_{2} to $n_{1}+n_{2}$.
III.1.4 Conjugate prior; β_{0} and β_{1} unknown, σ known

In this case the conjugate prior distribution is normal, with density:

$$
f(\underline{\beta}) \propto \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\underline{\beta}-\underline{\hat{\beta}}_{1}\right)^{\prime} \underline{H}_{1}^{\prime} \underline{H}_{1} \quad\left(\underline{\beta}^{-\hat{\beta}_{1}}\right)\right\}
$$

where

$$
\begin{aligned}
& \underline{\beta}=\left[\beta_{0}, \beta_{1}\right]^{\prime} \\
& \underline{H}_{1}=\left(\begin{array}{cc}
1 & \mathrm{Y}_{1} \\
\vdots & \vdots \\
1 & \mathrm{Y}_{1} \\
\mathrm{n}_{1}-1
\end{array}\right),
\end{aligned}
$$

$\left(\underline{H}_{1}^{\prime} \underline{H}_{1}\right)^{-1}$ is a positive-definite symmetric matrix, and $\hat{\beta}_{1}$ is the prior mean of $\underline{\beta}: \hat{\beta}_{1}=\left(\underline{H}_{1}^{\prime} \underline{H}_{1}\right)^{-1} \underline{H}_{1}^{\prime}\left[Y_{1}, \ldots, Y_{1}{ }_{n_{1}}\right]^{\prime}$.

Although one might give directly the prior mean vector $\underline{\hat{\beta}}_{1}$ and the prior covariance matrix $\underline{\Sigma}_{1}=\sigma^{2}\left(\underline{H}_{1}^{\prime} \underline{H}_{1}\right)^{-1}$, one would find some difficulties in interpreting the physical meaning of these prior parameters. Instead it seems more natural to specify the "best estimates" of the values $Y_{I_{o}}, Y_{I_{1}}, \ldots, Y_{I_{n_{1}}}$. (Besides, in any case one must give $\mathrm{Y}_{1_{n_{1}}}$, the last realization before additional observations are made.l

Denote $\underline{Y}=\left[Y_{1}, \ldots, Y_{n_{2}}\right]^{\prime}$ the actual sample and let:

$$
\underline{H}_{2}=\left(\begin{array}{ll}
1 & Y_{I_{n_{1}}} \\
1 & Y_{1} \\
\vdots & \vdots \\
I & Y_{n_{2}}
\end{array}\right)
$$

Given \underline{Y}, the posterior distribution of $\underline{\beta}$ is also normal, with density

$$
f(\underline{\beta} \mid \underline{Y}) \propto \exp \left\{-\frac{1}{2 \sigma^{2}}(\underline{\beta}-\underline{\hat{\beta}})^{\prime} \underline{M}(\underline{\beta}-\underline{\hat{\beta}})\right\}
$$

where

$$
\begin{aligned}
& \underline{M}=\underline{H}_{1}^{\prime} \underline{H}_{1}+\underline{H}_{2}^{\prime} \underline{H}_{2} \\
& \hat{\hat{B}}=\underline{M}^{-1}\left(\underline{H}_{1}^{\prime} \underline{H}_{1} \hat{\beta}_{1}+\underline{H}_{2}^{\prime} \underline{H}_{2} \hat{\beta}_{2}\right)
\end{aligned}
$$

As a consequence, the predictive distribution of $Y_{n_{2}+1}$ is normal, with mean value $\hat{\beta}_{0}+\hat{\beta}_{1} Y_{n_{2}}$ and variance

$$
\sigma^{2}\left(1+\tilde{H}_{\underline{M}} \underline{-}^{-1} \underline{H}^{\prime}\right)=a^{2}\left(1+\frac{a+2 b Y_{n}+\left(n_{1}+n_{2}\right) Y_{n}^{2}}{\left(n_{1}+n_{2}\right) a-b^{2}}\right)
$$

For the definition of a and b see the case with σ unknown in Paragraph III.l.3. Obvious replacements provide prediction intervals and penalty factors from the results for diffuse prior. Again, the prior being in conjugate form has the practical effect of increasing the number of observations, from n_{2} to $n_{1}+n_{2}$.

The foregoing results hold when the initial state Y_{o} and the following sequence of n realizations: Y_{1}, \ldots, Y_{n} are known. No restriction is imposed on β_{1} (as it is clear from the type of "diffuse" prior used); in particular $\left|\beta_{1}\right|$ could be larger than 1 , corresponding to an unstable process (see, e.g., Box and Jenkins (1970), p. 346).

Sometimes it is more appropriate for physical reasons to assume that sampling is from a stationary and stable process, in which case the initial conditions at time $t=0-$ so far given by Y_{0} and therefore deterministic - are expressed in probabilistic terms, through the (unknown) marginal normal distribution of the process (see Zellner
(1971), p. 188 and references therein). As might be expected, Zellner finds that in this case the prediction effects of modifying the initial conditions and of varying the prior distribution of the unknown parameters decrease as the sample size increases.

If the prior is assumed of the following truncated type, which is appropriate for a stable process:

$$
f\left(\beta_{0}, \beta_{1}, \sigma\right) \propto \begin{cases}1 / \sigma & \text { for }\left|\beta_{1}\right|<1, \\ 0 & \text { for }\left|\beta_{1}\right| \geq 1,\end{cases}
$$

the posterior density of $\left(\beta_{0}, \beta_{1}, \sigma\right)$ is of the same (but truncated) form as was found in Paragraph III.l.l (see equation (III.3), with non-zero values only in the interval $\left|\beta_{1}\right|<1$.
III. 2 SIMPLE PREDICTION AT LEAD ℓ

$$
\text { If distinct realizations of the sequence, say } Y_{i}
$$

and Y_{j} with $i \neq j$, were independent, the predictive distribution of Y_{n+e}, given $Y_{o}, Y_{1}, \ldots, Y_{n}$ would be the same for all $l \geq 1$. This is not the case with autoregressive sequences.

When fitting a first-order autoregressive model to statistical data the parameter of interest is generally β_{1} (see equation (III.1)).

For the purpose of exemplifying prediction at a time lag l from the last observation (prediction of $Y_{n+\ell}$), we consider the case when β_{o} is known (in particular assume $\beta_{0}=0$), while both σ and β_{1} are unknown. The following are unbiased estimators of β_{1} and σ^{2} :

$$
\hat{\beta}_{1}=\frac{\underline{H}^{\prime} \underline{Y}}{\underline{H}^{\prime} \underline{H}} \quad \text {, where } \quad \underline{H}=\left(\begin{array}{l}
Y_{0} \\
Y_{1} \\
\vdots \\
Y_{n-1}
\end{array}\right) ; \quad \underline{Y}=\left(\begin{array}{c}
Y_{1} \\
\vdots \\
\vdots \\
Y_{n}
\end{array}\right)
$$

and

$$
\begin{aligned}
& S^{2}=\frac{1}{v}\left(\underline{Y}-\underline{H} \hat{\beta}_{1}\right)^{\prime}\left(\underline{Y}-\underline{H} \hat{\beta}_{1}\right) \text {; where } v=n-1 . \\
& \text { Given } Y_{0}, \beta_{1} \text { and } \sigma \text {, the joint distribution of } \\
& Y_{1}, \ldots, Y_{n} \text { is: }
\end{aligned}
$$

$f\left(\underline{Y} \mid Y_{O}, \beta_{1}, \sigma\right) \propto \frac{1}{\sigma^{n}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\underline{Y}-\underline{H} \beta_{1}\right)^{\prime}\left(\underline{Y}-\underline{H} \beta_{1}\right)\right\}$

$$
\propto \frac{1}{\sigma^{n}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\nu s^{2}+\left(\beta_{1}-\hat{\beta}_{1}\right)^{2} \underline{H}^{\prime} \underline{H}\right]\right\} .
$$

When seen as a function of β_{1} and σ for given Y_{O} and \underline{Y}, this function is proportional to the parameters likelihood. For the "noninformative" prior density:

$$
f\left(\beta_{1}, \sigma\right) \propto I / \sigma
$$

the joint posterior density of β_{1} and σ is then:
$f\left(\beta_{1}, \sigma \mid Y_{O}, \underline{Y}\right) \propto \frac{1}{\sigma^{n+1}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\nu S^{2}+\left(\beta_{1}-\hat{\beta}_{1}\right)^{2} \underline{H} \underline{H}\right\} \quad\right.$ (III.II)

We introduce now the conditional independence approximation:

$$
f\left(\beta_{1}, \sigma \mid Y_{0}, \underline{Y}\right) \approx f\left(\beta_{1} \mid Y_{0}, \underline{Y}\right) \cdot f\left(\sigma \mid Y_{O}, \underline{Y}\right)
$$

Integrating the density (III.ll) with respect to σ one finds that ($\beta_{1} \mid Y_{0}, \underline{Y}$) has a marginal t-distribution with $v=n-1$ degrees of freedom, mean value $\hat{\beta}_{1}$ and variance (for $n>3$):

$$
\frac{v}{v-2} s^{2}\left(\underline{H}^{\prime} \underline{H}\right)^{-1} ;
$$

i.e., that

$$
f\left(\beta_{I} \mid Y_{O}, \underline{Y}\right) \propto\left[\nu S^{2}+\frac{\left(\beta_{I}-\hat{\beta}_{I}\right)^{2}}{\underline{H}^{\prime} \underline{H}}\right] \quad .
$$

Integrating the density (III.ll) with respect to $\beta_{1},\left(\sigma \mid Y_{0}, \underline{Y}\right)$ is found to have inverted-gamma density:

$$
f\left(\sigma \mid Y_{o}, \underline{Y}\right) \propto \frac{1}{\sigma^{n}} \exp \left(-\frac{(n-1) s^{2}}{2 \sigma^{2}}\right)
$$

For given $\hat{\beta}_{1}, Y_{n+e}$ can be estimated by

$$
\hat{Y}_{n+\ell \mid \hat{\beta}_{1}}=\hat{\beta}_{1}^{\ell} \cdot Y_{n}
$$

The mean value of $Y_{n+\ell}$, given the autoregressive parameter β_{1}, is

$$
\hat{Y}_{\mathrm{n}+\ell \mid \beta_{1}}=\beta_{1}^{\ell} \mathrm{Y}_{\mathrm{n}}
$$

and the prediction error when using the estimate $\hat{\mathrm{Y}}_{\mathrm{n}}+\ell \mid \hat{\beta}_{1}$ can be written

$$
e_{\ell \mid \hat{\beta}_{1}}=Y_{n+\ell}-\hat{Y}_{n+\ell \mid \hat{\beta}_{1}}=e_{\rho \mid \beta_{1}}+\left(\beta_{1}^{\ell}-\hat{\beta}_{1}^{\ell}\right) Y_{n}
$$

where

$$
e_{\ell \mid \beta_{1}}=Y_{n+\rho}-\beta_{1}^{\ell} y_{n}
$$

Since for given σ and β_{1} the second moment of the prediction error is

$$
E\left[e^{2}\left|\hat{\beta}_{1}\right| \sigma, \beta_{1}\right]=\sigma^{2} \frac{1-\beta_{1}^{2 l}}{1-\beta_{1}^{2}}+\left(\beta_{1}^{l}-\hat{\beta}_{1}^{\ell}\right)^{2} Y_{n}^{2}
$$

the unconditional second moment of the prediction error can be written (assuming approximate independence of σ and β_{1}):
$E\left[e_{l}^{2}\right]=\int_{0}^{\infty} \int_{-\infty}^{\infty}\left\{\sigma^{2} \frac{1-\beta_{1}^{2 l}}{1-\beta_{1}^{2}}+\left(\beta_{1}^{\ell}-\hat{\beta}_{1}^{\ell}\right)^{2} Y_{n}^{2}\right\}$

- $f\left(\beta_{1} \mid Y_{O}, \underline{Y}\right) f\left(\sigma \mid Y_{O}, \underline{Y}\right)$ d $\beta_{1} d \sigma$
$=\int_{-\infty}^{\infty}\left\{s^{2} \frac{n-1}{n-3} \frac{1-\beta_{1}^{2 l}}{1-\beta_{1}^{2}}+\left(\beta_{1}^{\ell}-\hat{\beta}_{1}^{e}\right)^{2} Y_{n}^{2}\right\}$
- $f\left(\beta_{1} \mid Y_{o}, \underline{Y}\right) d \beta_{1}$

The t-density of $\left(\beta_{1} \mid Y_{0}, \underline{Y}\right)$ is nonzero in the range $(-\infty, \infty)$; therefore as ℓ increases the integral diverges (the second term in the integrand approaches infinity for $\left.\left|\beta_{1}\right|>1\right\rangle$. However, in many cases it is known that the process is stable, i.e., that $\left|\beta_{1}\right|<1$. For a prior distribution of $\left(\beta_{1}, \sigma\right)$ with constant density $1 / \sigma$ over the interval $\beta_{1} \varepsilon(-1,1)$ and zero density elsewhere the posterior density of β_{1} is truncated t, being zero for $\left|\beta_{1}\right| \geq 1$. In this case the second moment of the prediction error is finite:

$$
\begin{equation*}
E\left[e_{l}^{2}\right]=s^{2} \cdot \gamma_{1}\left(\rho, \hat{\beta}_{1}, n\right)+Y_{n}^{2} \cdot \gamma_{2}\left(\rho, \hat{\beta}_{1}, n\right) \tag{III.12}
\end{equation*}
$$

where

$$
\begin{aligned}
\gamma_{1}(\cdot)= & \frac{n-1}{n-3} \frac{1}{c} \int_{-1}^{1} \frac{1-\beta_{1}^{2 e}}{1-\beta_{1}^{2}}\left(1+\frac{\left(\beta_{1}-\hat{\beta}_{1}\right)^{2}}{(n-1) s_{\beta_{1}}^{2}}\right)^{-n / 2} d \beta_{1}, \\
\gamma_{2}(\cdot) & =\frac{1}{c} \int_{-1}^{1}\left(\beta_{1}^{l}-\hat{\beta}_{1}^{l}\right)^{2}\left(1+\frac{\left(\beta_{1}-\hat{\beta}_{1}\right)^{2}}{(n-1) s_{\beta_{1}}^{2}}\right)^{-n / 2} d \beta_{1} \\
c & =\int_{-1}^{1}\left(1+\frac{\left(\beta_{1}-\hat{\beta}_{1}\right)^{2}}{(n-1) s_{\beta_{1}}^{2}}\right)^{-n / 2} d \beta_{1}
\end{aligned}
$$

$S_{\beta_{1}}$ in equation (III.12) is the scale parameter of the posterior density of β_{1}, which satisfies:

$$
(n-1) S_{\beta_{1}}^{2}=\frac{\left(\underline{Y}^{\prime} \underline{Y}\right)\left(\underline{H}^{\prime} \underline{H}\right)-\left(\underline{H}^{\prime} \underline{Y}\right)^{2}}{\left.\underline{(H}^{\prime} \underline{H}\right)^{2}}=\frac{\underline{Y}^{\prime} \underline{Y}}{\underline{H}^{\prime} \underline{H}}-\hat{\beta}_{1}^{2} \approx 1-\beta_{1}^{2} .
$$

This final approximation is accurate for moderate to large values of n. When $\ell=1$ one finds:

$$
\gamma_{1}(\cdot)=\frac{n-1}{n-3} ; \quad \gamma_{2}(\cdot) \approx \operatorname{Var}\left(\beta_{1} \mid \hat{\beta}_{1}\right) \approx \frac{1}{n-3}\left(1-\hat{\beta}_{1}^{2}\right)
$$

Table 2 collects values of $\gamma_{1}(\cdot)$ and $\gamma_{2}(\cdot)$ for $\ell=1(1) 10, \hat{\beta}_{1}=0(0.3) 0.9$, and for $n=4(1) 10,15,20,30,60$. The second term in equation (III.12) accounts explicitly for the "initial conditions", Y_{n}, and is zero for $Y_{n}=E\left[Y_{n}\right]=0$. In any case it is: $\gamma_{2} \rightarrow 0$ as $\ell \rightarrow \infty$, due to the condition $\left|\beta_{1}\right|<1$. On the contrary, when $\hat{\beta}_{1}$ and n are fixed, γ_{1} increases with l, approaching a finite asymptote when $\ell \rightarrow \infty$. One may therefore conclude that the main contribution to the prediction error variance comes from the first term in equation (III.l2), unless Y_{n} is significantly different from zero and at the same time ℓ and n are very small.

$$
\text { When } \mathrm{n} \rightarrow \infty \text { it is: } \hat{\beta}_{1} \rightarrow \beta_{1} \text { and } \mathrm{s}^{2} \rightarrow \sigma^{2} \text { with }
$$

probability 1 , and the second moment of the prediction error approaches the prediction variance under perfect information:

$$
\lim _{n \rightarrow \infty} E\left[e_{\ell}^{2}\right]=\sigma_{P I}^{2}(\ell)=\sigma^{2} \frac{1-\beta_{1}^{2 \ell}}{1-\beta_{1}^{2}}
$$

irrespective of the "initial conditions", Y_{n}.

For finite n, the penalty ratio (for imperfect statistical information) on the prediction error mean square is:

$$
r_{\beta_{1}, \sigma}^{2}\left(l, \hat{\beta}_{1}, n, S^{2}, Y_{n}\right)
$$

$$
=\frac{1-\hat{\beta}_{1}^{2}}{1-\hat{\beta}_{1}^{2 \ell}}\left(\gamma_{1}\left(l, \hat{\beta}_{1}, n\right)+\frac{Y_{n}^{2}}{s^{2}} \gamma_{2}\left(l, \hat{\beta}_{1}, n\right)\right) .
$$

Denoting $\bar{Y}_{n}=Y_{n}\left(1-\hat{\beta}_{1}^{2}\right)^{1 / 2} / S$ the deviation of Y_{n} from $E\left[Y_{n}\right]=0$ in units of standard deviations (and in terms of the statistics S^{2} and $\hat{\beta}_{1}$), the r.m.s. penalty ratio becomes:
$r_{\beta_{1}, \sigma}\left(\rho, \hat{\beta}_{1}, n, \bar{Y}_{n}\right)=\left[r_{1}^{2}\left(\rho, \hat{\beta}_{1}, n\right)+\bar{Y}_{n}^{2} r_{2}^{2}\left(\rho, \hat{\beta}_{1}, n\right)\right]^{1 / 2}$
where

$$
\begin{aligned}
& r_{1}^{2}\left(\ell, \hat{\beta}_{1}, n\right)=\frac{1-\hat{\beta}_{1}^{2}}{1-\hat{\beta}_{1}^{2 \ell}} \gamma_{1}\left(\ell, \hat{\beta}_{1}, n\right) \\
& r_{2}^{2}\left(\ell, \hat{\beta}_{1}, n\right)=\frac{1}{1-\hat{\beta}_{1}^{2 \ell}} \gamma_{2}\left(\ell, \hat{\beta}_{1}, n\right)
\end{aligned}
$$

Values of the function $r_{\beta_{1}}, \sigma\left(\ell, \hat{\beta}_{1}, n, \bar{Y}_{n}\right)$ for selected values of the arguments are collected in Table 3.

It should be emphasized that the penalty ratio (III.13) refers to the r.m.s. of the prediction error. The construction of prediction regions of given content requires knowledge of the full distribution of $\mathrm{Y}_{\mathrm{n}+\ell}$. In approximation one might assume that the prediction error $e_{\rho}=Y_{n}+e^{-\hat{\beta}_{l}^{\ell}} Y_{n}$ has t-distribution with $n-1$ degrees of freedom. This approximation is motivated by the fact that e_{ρ} has indeed $t-$ distribution for $\ell=1$, and for any ℓ when β_{1} is known to be zero (\Rightarrow independent normal sequence). The distribution of e_{ℓ} is no longer of t-type when $\ell \neq 1$ and β_{1} is unknown; however the approximation should be useful for practical purposes, at least when the sample size n is moderate to large, so that β_{1} has small posterior variance.

Under this distribution assumption the penalty ratio for one-sided prediction intervals of P -content at lead l is:
$r\left(P, \ell, \hat{\beta}_{1}, n, \bar{Y}_{n}\right)=\left(\frac{n-3}{n-1}\right)^{1 / 2} \frac{t_{n-1}(P)}{\Phi(P)} r_{\beta_{1}, \sigma}\left(\ell, \hat{\beta}_{1}, n, \bar{Y}_{n}\right)$
(for two-sided central predictions, replace P by $P / 2$).

Table 4 collects the factors $[(n-3) /(n-1)]^{1 / 2} t_{n-1}(P) / \Phi(P)$ for $n=4(1) 10,15,20,30,60$ and for $P=0.99,0.999,0.9999$. An application follows, including an approximate extension to simultaneous prediction.

EXAMPLE. AN APPLICATION TO TIME-DEPENDENT STRUCTURAL RELIABILITY ANALYSIS

Consider a structural loading process, modeled as a stable normal Markov chain with known initial state Y_{o}, $\beta_{0}=0$, unknown "noise" variance σ^{2} and unknown regression coefficient β_{1}. The realization of the process from Y_{1} to Y_{n} is available, yielding the unbiased parameters estimates s^{2} and $\hat{\beta}_{1}$. Given the ultimate resistance of the system, $Y_{\text {MAX }}$, we want the probability of failure before or at time $n+\ell$, where $\ell=1,2, \ldots$.

Before addressing this problem, let us first consider the prediction distribution at lead l and the resistance level which corresponds to a given reliability P at time $n+l$. This is the P-fractile of the prediction distribution at lead l; note that if $l>1$, no consideration is given yet to the behavior (i.e., failure or not) of the system in the interval $[n+1, n+\ell-1]$.

Under perfect knowledge of σ^{2} and β_{1} the mean forecast at lead ℓ is: $\widehat{Y}_{n+\ell}=\beta_{1}^{\ell} Y_{n}$, and the left-hand prediction interval of P -content is:

$$
\begin{equation*}
\left(-\infty, \beta_{1}^{\ell} Y_{n}+\sigma \Phi(P)\left\{\left(1-\beta_{1}^{2 l}\right) /\left(1-\beta_{1}^{2}\right)\right\}^{1 / 2}\right] \tag{III.15a}
\end{equation*}
$$

For the case of limited information with unknown σ^{2} and β_{1} the same interval is approximately:

$$
\begin{gather*}
\left(-\infty, \hat{\beta}_{1}^{\ell} Y_{n}+S\left(\frac{n-3}{n-1}\right)^{1 / 2} t_{n-1}(P) \cdot r_{\beta_{1}, \sigma}\left(l, \hat{\beta}_{1}, n, \bar{Y}_{n}\right)\right. \\
\cdot\left(1-\hat{\beta}_{1}^{2 l}\right) /\left(1-\hat{\beta}_{1}^{2}\right)^{1 / 2}{ }_{1} . \tag{III.15b}
\end{gather*}
$$

For instance, if $P=0.999, \mathrm{n}=10, \mathrm{~S}^{2}=1, \hat{\beta}_{1}=0.3$, $\mathrm{Y}_{\mathrm{n}}=1.048\left(\Leftrightarrow \overline{\mathrm{Y}}_{\mathrm{n}}=1\right)$, the interval (III.15b) becomes a function of l only:
$\left(-\infty, 1.048 \times 0.3^{\ell}+3.973 \cdot r_{\beta_{1}, \sigma}(\ell, 0.3,10,1)\left\{1-0.3^{2 \ell\}^{1 / 2}}\right]\right.$.

The upper limits of these prediction intervals and the corresponding penalty ratios, equation (III.14), are collected
in Table 5 for $l=1(1) 10$. The values for perfect information are obtained by replacing $n=10$ by $n=\infty$. As one might expect, the penalty increases with l, approaching an asymptotic value as $\ell \rightarrow \infty$.

We pass now to the problem of simultaneous prediction which arises in the reliability analysis of the system during the time interval ($\mathrm{n}, \mathrm{n}+\ell$]. In Chapter II, in which white sequences were considered, it was shown that for simultaneous prediction intervals with large probability content (= reliability) P and with small correlation of the prediction variables, the hypothesis of independent future realizations produced accurate approximations. In that case correlation was due exclusively to the parameter uncertainty. If we make the same assumption of independence in this chapter, the predictive joint distribution of Y_{n+1}, ..., $Y_{n+\ell}$ is simply the product of the marginal predictive distributions which, due to the nonstationarity of the Markov model, depend on l. For perfect knowledge of the parameters β_{1} and σ, such as would result from a sample of size $\mathrm{n} \rightarrow \infty$, and assuming approximate independence, the probability of failure before the $(n+\ell+1)^{\text {th }}$ loading event is:

$$
P_{f_{n=\infty}}(\ell)=1-\prod_{i=1}^{\ell} \Phi\left(d_{i}\right)
$$

where $d_{i}=\left(Y_{\text {max }}-\beta_{1}^{i} \cdot Y_{n}\right)\left[\left(1-\beta_{1}^{2}\right) /\left(1-\beta_{1}^{2 i}\right)\right]^{1 / 2} / \sigma$.

The same probability when σ and β_{1} are estimated from a sample of size n is, in approximation:

$$
P_{f_{n}}(\ell)=1-\prod_{i=1}^{\ell} t_{n-1}\left(d_{i}\right)
$$

where

$$
d_{i}=\left(Y_{\max }-\hat{\beta}_{1}^{i} Y_{n}\right) \frac{\left[\frac{n-1}{n-3}\left(1-\hat{\beta}_{1}^{2}\right) /\left(1-\hat{\beta}_{1}^{2 i}\right)\right]}{s \cdot r_{\beta_{1}, \sigma}\left(i, \hat{\beta}_{1}, n, \bar{Y}_{n}\right)}
$$

In the present case it is: $S=1, \hat{\beta}_{1}=0.3, Y_{n}=1.048$, $\bar{Y}_{\mathrm{n}}=1$. For a resistance $\mathrm{Y}_{\max }=3.50,4.50,5.50$ the evolution of the failure probability with l is shown in Table 6 for the cases $n=\infty$ (perfect information) and $n=10$. The ratio $P_{f_{n=10}}(l) / P_{f_{n=\infty}}(l)$ between the probabilities of failure in the two hypotheses of imperfect and perfect information is nonnegligible, and increases dramatically with $Y_{\max }$ (with the system reliability). The ratio is approximate1 y 13 for $Y_{\max }=3.50,150$ for $Y_{\max }=4.50$, and 5000 for $Y_{\text {max }}=5.50$. These results agree qualitatively with earlier
findings for independent sequences.
The last development of the present example shows an approximate extension of the results for simple prediction to solve simultaneous prediction problems. The extension rests on the assumption of independence between Y_{n+i} and Y_{n+j} when $i \neq j$. This assumption should not be critical when $\left|\beta_{1}\right| \ll 1$ as in the example above, and when constructing simultaneous prediction intervals of large content P, as it is often the case in structural reliability analysis and design. For example, in the case studied numerically, the assumption of independence should have little (and conservative) effects on the analysis of the system with resistance $Y_{\max }=5.50$.

An easy, although tedious way of checking the error introduced by the assumption of independence might be to simulate numerically sequences of future realizations: $Y_{n+1}, Y_{n+2}, \ldots, Y_{n+\ell}$ for given σ^{2}, β_{1} and Y_{n}, and to compare the resulting reliability for different system resistance levels with the approximate analytical results, as given by Table 6.
III. 3 NOISY UNCENSORED AND CENSORED OBSERVATIONS IN MARKOV

PROCESSES; AN APPLICATION TO DETERIORATING SYSTEMS

In this section we consider the estimation and prediction of the resistance $R(t)$ of a deteriorating structural system. $R(t)$ is a stochastic process, which is observed at discrete times through noisy sampling (generating uncensored noisy observations) or through proof loading tests (generating censored data). More precisely, proof loading experiments generate observations which are censored at an unknown level; in fact they are in the form

$$
\begin{aligned}
& R\left(t_{i}\right)>S_{i} \text { if the system survives the application } \\
& \\
& \quad \text { of a load } s_{i} \text { at time } t_{i} \text {; or } \\
& R\left(t_{i}\right)=S_{i} \quad \text { if the system fails at time } t_{i} \text { under } \\
& \\
&
\end{aligned}
$$

S_{i} may be deterministic or random, depending on the modalities of the experiment. The resistance $R(t)$ is modeled as a Markov process, which is described next in greater detail.

III.3.1 The resistance model

A stochastic function $X(t)$ which is uniquely defined by its random initial value $X_{0}=x\left(t_{0}\right)$ is called a "purely deterministic random process". The estimation (and prediction) of this degenerate class of random processes was treated in Chapter I. A purely deterministic random model for the resistance of deteriorating systems was proposed and studied by Turkstra (1970). However, in presence of damage accumulation and wear-out, and particularly for systems operating under random environmental conditions, knowledge of $R\left(t_{0}\right)$ is not sufficient to define deterministically the process $R(t)$ at any later time. This fact leads to modeling $R(t)$ as a (nondeterministic) random process.

Two phenomena are particularly important in the deteriorating process: (i) the weakening of the structure due to damage accumulation; this phenomenon is caused by the repeated action of external loads; (ii) the natural wear-out (or strengthening) of the materials in absence of damage from external loads; the latter phenomenon is due to aging, and is controlled by environmental conditions like temperature, humidity, concentration of corrosive chemicals, etc. (see Gertsbakh and Kordonskiy (1969)). Depending on the circumstances one of these two phenomena may prevail on the other. In combination, they typically generate resistance
curves of the type shown in Figure $1(a)$ and (b).
In case (a) the structure weakens considerably during the initial life period (0 - I), after which adaptation takes place (1 - 2). A third phase is characterized by rapid wear-out due to aging, and terminates with failure (point 3). In case (b) the same features are distinctive of the last two phases, but the system experiences an initial strengthening. These curves represent possible mean trends of the resistance process; uncertainty is present, however, particularly in the last phase of rapid wear-out.

A mathematical model for this behavior might be a nonstationary Markov process with an absorbing barrier at $R=R_{\text {failure }}$. If the process is observed only at discrete times, say at $t=0,1,2, \ldots$ (for instance: $0=$ after construction; $1=$ after 1 year from construction; 2 = after 2 years, etc.), one might use the following continuous state, discrete time nonstationary model:

$$
\begin{equation*}
R_{t}=\bar{R}_{t}+a_{t}\left(R_{t-1}-\bar{R}_{t-1}\right)+\varepsilon_{t}, \tag{III.16}
\end{equation*}
$$

where $\left\{\bar{R}_{t}\right\}$ is the sequence of a priori mean values at times $t=0,1,2, \ldots ;\left\{a_{t}\right\}$ is a sequence of known coefficients and $\left\{\varepsilon_{t}\right\} \sim\left\{\left(0, \sigma_{\varepsilon_{t}}^{2}\right)\right\}$ is a sequence of zero-mean second-moment variables, independent among themselves and independent of
the resistance process.
If $\sigma_{\varepsilon_{t}}^{2}=0$ for all t, the model degenerates into a purely deterministic random process, in that a specific and unique history $\left\{R_{t}\right\}$ corresponds to each given initial value R_{0}. Depending on the coefficients $\left\{a_{t}\right\}$ the random process may be of explosive type ($a_{t}>1$ for all t), may propagate the initial "error" $\mathrm{R}_{\mathrm{o}}-\overline{\mathrm{R}}_{\mathrm{o}}$ without modification ($\mathrm{a}_{\mathrm{t}}=1$), or may damp out the initial "error" in a geometric fashion $\left(0<a_{t}<1\right)$; see Figure 2. Cases with $a_{t}<0$ are also shown in Figure 2.

When instead $\left\{\sigma_{\varepsilon_{t}}^{2}\right\} \neq 0$, the sequence $\left\{\varepsilon_{t}\right\}$ produces random perturbations around the trends indicated in Figure 2.

Another particular case generated by equation (III.16) is when $\left\{a_{t}\right\}=\{0\}$. The model becomes: $R_{t}=\bar{R}_{t}+\varepsilon_{t}$, corresponding to independent random deviations from the mean trend.

The foregoing discussion shows the wide spectrum of models generated by equation (III.16). Appropriate choices of the coefficients $\left\{a_{t}\right\}$ and the introduction of nonstationarities in the disturbances may induce qualitatively and quantitatively different characteristics within separate time intervals, if so desired.

A similar model for the random resistance of deteriorating structures has been proposed recently by Kameda and Koike (1974).
III.3.2 Propagation of the mean and of the variance
(a) No observation

Let equation (III.16) define a second-moment Markov process, with initial mean \hat{R}_{0} and initial variance σ_{0}^{2}. If no observation is made in the interval $(0, t]$, the mean and the variance at lead t are found through the recursive (predictive) relations:

$$
\left\{\begin{array}{l}
\hat{R}_{j}=\bar{R}_{j}+a_{j}\left(\hat{R}_{j-1}-\bar{R}_{j-1}\right), \tag{III.17a}\\
\sigma_{j}^{2}=a_{j}^{2} \sigma_{j-1}^{2}+\sigma_{\varepsilon j}^{2} ; j=1,2, \ldots, t,
\end{array}\right.
$$

(III.17b)
which, as it is easy to verify, yield:

$$
\left\{\begin{array}{l}
\hat{R}_{t}=\bar{R}_{t}+\left(\hat{R}_{o}=\bar{R}_{o}\right) \prod_{i=1}^{\pi} a_{i}, \tag{III.18a}\\
\sigma_{t}^{2}=\sigma_{o}^{2}\left(\underset{i=1}{t} a_{i}^{2}\right)+\sum_{j=1}^{t-1} \sigma_{\varepsilon_{j}}^{2}\left(\underset{i=j+1}{\pi} a_{i}^{2}\right)+\sigma_{\varepsilon_{t}}^{2}
\end{array}\right.
$$

(III.18b)

The covariance between R_{i} and R_{j}, with $i<j$, is:

$$
\operatorname{Cov}\left[R_{i}, R_{j}\right]=\sigma_{i}^{2} \prod_{k=i+1}^{j} a_{k}
$$

Note that the sign of the correlation depends on the number of negative coefficients a_{k} (with k ranging from $i+1$ to j).

For reasons of safety it may be advisable to reduce the variance σ_{t}^{2} in equation (III.l8b). This can be done in various ways: the two procedures considered herein are:
(i) direct or indirect noisy measurements (the case of exact measurements being a trivial particular case); and (ii) proof loading experiments, yielding censored information. The processing of noisy measurements is studied hereafter, while the use of censored data is postponed until Paragraph III.3.3.
(b) Direct or indirect noisy measurements

The sampling procedure is assumed to be of the following type. At each discrete time $t=1,2, \ldots$ two courses of action are possible:
(i) To make one or more measurements of the resistance R_{t} and of related quantities, resulting in a measurement vector \underline{Z}_{t}. In this case it is assumed that \underline{Z}_{t} is related to R_{t} as:

$$
\begin{equation*}
\underline{z}_{t}=\underline{\underline{z}}_{t}+\underline{h}_{t} R_{t}+\underline{\theta}_{t} \tag{III.19}
\end{equation*}
$$

where $\underline{\underline{Z}}_{\mathrm{o}}$ and \underline{h}_{t} are given vectors, and $\underline{\theta}_{t} \sim\left(\underline{0}^{-} \underline{\theta}_{t}\right)$ is a second-moment vector of possibly correlated, zero-mean error terms, with covariance matrix $\underline{\theta}_{t} \cdot \underline{\theta}_{i}$ and $\underline{\theta}_{j}$ are assumed independent when $i \neq j$, and independent of the resistance R_{t}.
(ii) To make no measurement, which corresponds to assuming $\underline{h}_{t}=\underline{0}$ in equation (III.19).

The scheme above leads to the so-called Kalman filter and Kalman prediction algorithms (for the original derivation see Kalman (1960) and Kalman and Bucy (1961)). Before quoting the explicit expressions for the mean and the variance of the resistance at time t, given the observation vectors $\left\{\underline{z}_{i}, i=1, \ldots, t\right\}$, it is convenient to generalize equations (III.16), (III.17), (III.18) and (III.19) to the case of the system resistance being described by a vector sequence $\left\{\underline{R}_{t}\right\}$, instead of a scalar sequence as considered so far. Then the Kalman equations will be given for the vector case.

There are many instances in which the resistance is best described by a vector, the obvious one being when the
system is composed of n separate elements, the $i^{\text {th }}$ element having resistance $R_{i_{t}}$ at time t.

Another case in which the vector representation is useful is when at each time $t=0,1, \ldots$ failure may occur in any of several modes, each associated with a specific loading condition. In this case the sequence $\left\{R_{i_{t}}\right\}$ monitors (at discrete times) the resistance in the $i^{\text {th }}$ mode.

If equation (III.I6) is rewritten:

$$
\begin{equation*}
\underline{R}_{t}=\overline{\underline{R}}_{t}+\underline{A}_{t}\left(\underline{R}_{t-1}-\overline{\underline{R}}_{t-1}\right)+\underline{B}_{t} \underline{\varepsilon}_{t} \tag{III.20}
\end{equation*}
$$

where $\left\{\underline{\underline{R}}_{t}\right\}$ is a given n-dimensional sequence; $\left\{\underline{A}_{t}\right\}$ is a given ($n \mathrm{X} n$) matrix sequence, $\left\{\underline{B}_{t}\right\}$ is a known ($\mathrm{n} X \mathrm{~m}$) matrix sequence, and $\left\{\underline{\varepsilon}_{t}\right\}$ is an independent sequence of ($\underline{0}^{\prime} \underline{\theta}_{t}$) random m-vectors, equations (III.17) become:

$$
\left\{\begin{array}{l}
\hat{R}_{j}=\underline{\underline{R}}_{j}+\underline{A}_{j}\left(\underline{\hat{R}}_{j-1}-\underline{\underline{R}}_{j-1}\right) \tag{III.2la}\\
\underline{\Sigma}_{j}=\underline{A}_{j} \underline{\Sigma}_{j-1} \underline{A}_{j}^{\prime}+\underline{B}_{j} \underline{\theta}_{j} \underline{B}_{j}^{\prime}
\end{array}\right.
$$

(III.2lb)

The stable or unstable, exponential or oscillatory character of the process shown graphically in Figure 2 for
the scalar case depends now on the eigenvalues of the matrices \underline{A}_{t} (on the poles of the system) ; for instance, if $\underline{A}_{t}=\underline{A}$ for all t, the condition for asymptotic stability is that all the eigenvalues of \underline{A} Iie inside the unitary disk in the complex plane. A behavior of the type shown in Figure 2 could be associated separately with the component of \underline{R}_{t} along each eigendirection in n-space.

The stability of the process is linked to the physical significance of the noise terms $\underline{\varepsilon}_{t}$. If they refer to the uncertainty in the time evolution of the material properties the matrix \underline{A} might realistically produce an unstable process in which the perturbances increase with time. If instead the noise terms refer to the effects of "secondary loads", the matrix A might propagate the accumulated damage without magnification.

The generalization of equations (III.18) reads:

$$
\left.\operatorname{Cov}\left[\underline{R}_{i}, \underline{R}_{j}\right]=\prod_{k=i+1}^{j} \mathbb{A}_{k}\right) \underline{\Sigma}_{i}, \quad i<j
$$

Equations (III.22) hold for the case of no observations.
When observations are made, the measurement vector at time t is written, generalizing equation (III.19):

$$
\begin{equation*}
\underline{z}_{t}=\underline{Z}_{o}+\underline{H}_{t} \underline{R}_{t}+\underline{\theta}_{t} \tag{III.23}
\end{equation*}
$$

where ${\underset{O}{O}}_{t}$ and $\underline{\theta}_{t}$ are as before, and \underline{H}_{t} is a given (m X n) measurement matrix. If no measurement is made at time t, let $\underline{H}_{t}=\underline{0}$ in equation (III.23) (noninformative measurement).

Kalman filter for discrete-time processes

The Kalman filter for discrete-time processes is a recursive algorithm, each step of which consists of two phases: (i) a prediction phase through which, given the first two moments (or the distribution) of \underline{R}_{j-1} conditional on the observations up to time $j-1$, one finds the predictive moments (or the predictive distribution) of \underline{R}_{j}, conditional on the same observations; (ii) an estimation (or correction) phase in which one uses the observations (if any) at time j to revise the outcome of the prediction phase. Analytically, for the Markov process (III.20) observed through (III.23)
these two phases at the generic step j are:
(i) Prediction phase

$$
\left\{\begin{array}{l}
\hat{R}_{j \mid j-1}=\underline{\underline{R}}_{j}+\underline{A}_{j}\left(\underline{R}_{j-1 \mid j-1}-\underline{\underline{R}}_{j-1}\right) \tag{III.24a}\\
\frac{\Sigma_{j \mid j-1}=\underline{A}_{j} \underline{\Sigma}_{j-1 \mid j-1} \underline{A}_{j}^{\prime}+\underline{B}_{j} \underline{\theta}_{j} \underline{B}_{j}^{\prime}}{},
\end{array}\right.
$$

where the conditional sign $\cdot \mid \ell$ stands for:

$$
\cdot|\ell \equiv \cdot|\left\{\underline{z}_{1}, \underline{z}_{2}, \cdots, \underline{z}_{e}\right\} .
$$

(ii) Estimation (correction) phase:

$$
\left\{\begin{array}{l}
\hat{R}_{j \mid j}=\hat{R}_{j \mid j-1}+\underline{\Sigma}_{j} \mid j \underline{H}_{j}^{\prime} \underline{\theta}_{j}^{-1}\left(\underline{Z}_{j}-\underline{H}_{j} \underline{R}_{j \mid j-1}\right),(\text { III. 25a) } \\
\underline{\Sigma}_{j}\left|j=\underline{\Sigma}_{j}\right| j-1-\underline{\Sigma}_{j}\left|j-1 \underline{H}_{j}^{\prime}\left(\underline{H}_{j} \underline{\Sigma}_{j} \mid j-1 \underline{H}_{j}^{\prime}+\underline{\theta}_{j}\right)^{-1} \underline{H}_{j} \underline{\Sigma}_{j}\right| j-1
\end{array}\right.
$$

These last equations are structurally identical with those already encountered in estimation of time-independent models; see Chapter I, equations (I.7) and (I.8). Equations (III.25) above are written in a form which separates the correction (second term) from the forecast (first term). In the case of no measurement $\left(\underline{H}_{j}=\underline{0}\right)$ these equations reduce to: $\hat{R}_{j \mid j}=\hat{R}_{j \mid j-1}$, and $\underline{\Sigma}_{j \mid j}=\underline{\underline{\Sigma}}_{j} \mid j-1$. For comments on equations (III.25), see the remarks following equations (I.7) and (I.8) in Chapter I. We recall explicitly the important fact that equation (III.25b) does not contain the information set $\left\{\underline{Z}_{1}, \cdots, \underline{Z}_{j}\right\}$, so that $\underline{\Sigma}_{j} \mid j$ is computable before knowing the outcome of the experiment. This fact allows one to compare a priori different sampling strategies and to optimize the sampling experiment if the objective is to minimize, in some sense, the posterior variance.

If the initial moments are in the form $\hat{R}_{0} \mid 0$ and ${ }_{-}{ }_{0} \mid 0$ the algorithm starts with a prediction step; if instead possible measurements at time $t=0$ are not included in the initial moments, the algorithm starts with an estimation step at $t=0$. When the initial conditions are given in the form of a multinormal distribution, and $\left\{\underline{\varepsilon}_{t}\right\}$ and $\left\{\underline{\theta}_{t}\right\}$ are normal sequences, then $\left\{\underline{R}_{j \mid j-1}\right\}$ and $\left\{\underline{R}_{j \mid j}\right\}$ are also normal sequences, so that equations (III.24) and (III.25) characterize fully the resistance process at time $j=1,2, \ldots$.

It should also be said that the case of \underline{R} being a continuous Markov process in time can be analyzed in a similar way: if measurements are made continuously in time, the mean of $\underline{R}(t)$ evolves according to a linear vector differential equation of the first order, while the covariance matrix satisfies a forward quadratic differential equation of the Riccati type (see Kalman (1960) and Kalman and Bucy (1961)). Again, while $\underline{\Sigma}(t)$ is precomputable, $\underline{R}(t)$ is not. An extension of this classical formulation of the Kalman filter to process censored data is proposed in the next paragraph.
III.3.3 Propagation of the resistance distribution when observations are censored

Consider for simplicity the case with scalar resistance. The logic of the Kalman algorithm is retained when observations are censored; in fact also in this case two computational phases can be distinguished at each discrete observation time: a prediction phase, and an estimation or correction phase. Nevertheless, some basic differences have to be noted.

Since observations have truncating effects on the resistance distribution, the informativeness of an observation like $R_{t}>S_{t}$ (or: $R_{t}>S_{t}+\theta_{t}$, with θ_{t} a noise term) depends strongly on the shape of the distribution of R_{t}
conditional on the previous observations, and cannot be assessed from the first two moments only. Contrary to the case with uncensored data, also when measurement errors, initial conditions and propagation errors have normal distribution, $\left\{R_{t \mid t}\right\}$ is not, in general, a normal sequence. The conclusion is that when data are in censored form one must work with full probability distributions, which fact makes the estimation and prediction analyses mach more elaborate.

Physically one can view the sequence of proof loadings as the creation - at discrete times - of an artificial absorbing barrier for the failure - no failure process (see Figure 3).

The prediction phase is the same whether data are noisy or not. It consists of finding the distribution of $R_{j \mid j-1}, ~ g i v e n ~ t h e ~ d i s t r i b u t i o n ~ o f ~ R_{j-1 \mid j-1}$ and the process equation (III.15). In general this requires convolution:
$F_{R_{j \mid j-1}}(r)=\int_{-\infty}^{\infty} f_{\varepsilon_{j}}(\varepsilon) \cdot F_{R_{j-1 \mid j-1}}\left(\bar{R}_{j-1}+\frac{r-\bar{R}_{j}-\varepsilon}{a_{j}}\right) d \varepsilon$.

The estimation phase depends on the observation model. If the load intensity S_{j} is known, the $C D F$ of $R_{j \mid j}$ is simply:

$$
F_{R_{j \mid j}}(r)= \begin{cases}F_{R_{j \mid j-1}}(r)\left[1-F_{R_{j \mid j-1}}\left(S_{j}\right)\right]^{-1} \text { for } r>S \tag{III.27a}\\ 0 & \text { otherwise }\end{cases}
$$

If instead the proof load intensity is uncertain, say $S_{j}=\bar{S}_{j}+\theta_{j}$, where S_{j} and \bar{S}_{j} are the true and the observed intensity values, respectively, and θ_{j} denotes the estimation error, a convolution operation is again required:

$$
F_{R_{j \mid j}}(r)=F_{R_{j \mid j-1}}(r) \cdot \int_{-\infty}^{r}\left[1-F_{R_{j \mid j-1}}(s)\right]^{-1} f_{S_{j}}(s) d s
$$

(III.27b)

In this second case the "truncation effect" decreases with increasing dispersion of θ_{j}.

The resistance sequence satisfies equations (III.26) and (III.27) if the structure is subjected to no other loads than proof loads. If other environmental actions are present, this would correspond to neglecting them whenever the system survives, and to reconstructing the system if it happens to fail, with the same resistance distribution it had at the moment of collapse. This is, of course, a quite artificious
assumption. Moreover, one would like to profit from the information about the performance of the system during the periods between proof laading experiments. E.g., if the system is known to have survived a violent windstorm, one might want to use this piece of information in judging a posteriori the system resistance. (For an application of this concept to offshore platform structures, see Marshall and Bea (1974).) In general, events of this type produce censored information like $R(t)>S(t)$, and thus can be treated in the same way as was indicated earlier for proof loading. A quantitative difference between "natural" and "artificial" proof loading is that for the former events the uncertainty on the load intensity is larger (e.g., the maximum wind pressure during a windstorm, the peak ground acceleration during an earthquake, and so on), besides the fact that modeling natural events as single load applications may be an oversimplification.

If a natural event of large magnitude has occurred close to (but before) a planned proof loading experiment, one may decide to cancel the experiment or to modify it in order to make it more informative when combined with the data already available. If instead the natural event was of small magnitude, its effect on the subsequent reliability may be neglected, and the artificial proof loading may be performed as on schedule.

The study of first-order autoregressive models does not exhaust the problem of quantifying statistical uncertainty in random processes with memory. This class of Markov models was chosen because analytically tractable and because recurrent in stochastic modeling of engineering systems. The vast literature on Kalman filtering and Kalman prediction (see for example the Special Issue on Linear-Quadratic Gaussian Problem, IEEE Transactions on Automatic Control, Vol. AC-16, No. 6, Dec. 1971) addresses to the same type of models.

REFERENCES

1. Box, G.E.P. and Jenkins, G.M. (1970): Time Series Analysis, Forecasting and Control, Holden-Day, San Francisco.
2. Gertsbakh, I.B. and Kordonskiy, Kh.B. (1969): Models of Failure, Springer-Verlag, New York.
3. Kalman, R.E. (1960): "A New Approach to Linear Filtering and Prediction Problems", ASME J. Basic Eng., 82, 34-45.
4. Kalman, R.E. and Bucy, R.S. (1961): "New Results in Linear Filtering and Prediction Theory", ASME J. Basic Eng., 83, 95-107.
5. Kameda, H. and Koike, T. (1974): "Reliability Analysis of Deteriorating Structures". The Japan - U.S. Joint Seminar on Reliability Approach in Structural Engineering; 13-17 May, 1974, Tokyo.
6. Marshall, P.W. and Bea, R.G. (1974): "Failure Modes of Offshore Platforms". ASCE-EMD Specialty Conference, Probabilistic Methods in Engineering, Stanford Univ., June 24-26, 1974.
7. Raiffa, H. and Schlaifer, R. (1961): Applied Statistical Decision Theory. Harvard University Press.
8. Turkstra, C.J. (1970): Theory of Structural Design Decisions. Study No. 2, Solid Mechanics Division, Univ. of Waterloo, Waterloo, Ontario, Canada, page 87.
9. Zellner, A. (1971): An Introduction to Bayesian Inference in Econometrics. Wiley and Sons, New York.
10. Special Issue on Linear-Quadratic-Gaussian Problem, IEEE Trans. on Automatic Control, Vol. AC-16, No. 6, December, 1971.

n	$\mathrm{P}=0.99$	$\mathrm{P}=0.999$	$\mathrm{P}=0.9999$
3	17.662	132.99	1106.94
4	3.667	8.850	23.282
5	2.310	3.912	7.063
6	1.860	2.680	4.046
7	1.641	2.162	2.952
8	1.510	1.884	2.410
9	1.425	1.712	2.098
10	1.364	1.596	1.897
11	1.319	1.512	1.757
12	1.283	1.448	1.653
$16:$	1.196	1.300	1.426
21	1.143	1.212	1.295
26	1.111	1.164	1.228
31	1.092	1.134	1.179
41	1.068	1.098	1.132
61	1.045	1.063	1.084
∞	1	1	1

TABLE l. Penalty for one-sided prediction intervals of content P at lead l. First-order autoregressive process with β_{0}, β_{1} and σ unknown. $n=$ available sample size.
$B \widehat{\widehat{C T A}_{1}}=0.0$

e^{n}	4	5	6	7	8	9	10	15	20	30	60
1	3.00c	2.000	1.667	1.500	1.400	1.333	1.286	1.167	1.118	1.074	1.035
2	3.623	2. 377	1.952	1.733	1.598	1.506	1.438	1. 260	1.177	1.111	1.052
3	3.911	2.543	2.072	1.827	1.674	1.568	1.490	1.283	1.186	1.115	1.053
4	4.082	2.640	2.139	1.878	1.713	1.599	1. 515	1.293	1.188	1.115	1.053
5	4.157	2.703	2. 183	1.910	1.738	1.619	1.531	1.298	1.189	1.115	1.053
6	4.275	2.749	2. 214	1.933	1.756	1.632	1.541	1.301	1.189	1.115	1.053
7	4.341	2.782	2. 237	1. 949	1.768	1.642	1. 548	1. 303	1.189	1.115	1.053
8	4.385	2.808	2. 254	1.962	1.777	1.649	1.554	1.305	1.189	1.115	1.053
9	4.426	2.828	2. 268	1.972	1.785	1.654	1.558	1.306	1.189	1.115	1.053
10	4.456	2. 844	2. 279	1. 979	1.790	1.659	1.561	1.307	1.189	1.115	1.053

(a) $\gamma_{1}(\rho, 0, n)$
t

e^{n}	4	5	6	7	8	9	10	15	20	30	60
1	1.000	0.500	0.333	0.250	0.200	0.167	0.143	0.083	0.059	0.037	0.018
2	0.096	0.083	0.072	0.062	0.054	0.046	0.040	0.020	0.008	0.003	0.001
3	0.057	0.048	0.041	0.034	0.029	0.024	0.020	0.008	0.002	0.000	0.000
4	0.038	0.032	0.026	0.022	0.018	0.015	0.012	0.004	0.000	0.000	0.000
5	0.027	0.023	0.018	0.015	0.012	0.010	0.008	0.003	0.000	0.000	0.000
6	0.021	0.017	0.014	0.011	0.009	0.007	0.006	0.002	0.000	0.000	0.000
7	0.016	0.013	0.010	0.008	0.007	0.005	0.004	0.001	0.000	0.000	0.000
8	0.013	0.010	0.008	0.007	0.005	0.004	0.003	0.001	0.000	0.000	0.000
9	0.010	0.008	0.007	0.005	0.004	0.003	0.003	0.001	0.000	0.000	0.000
10	0.068	0.007	0.005	0.004	0.003	0.003	0.002	0.001	0.000	0.000	0.000

(b) $\gamma_{2}(l, 0, \mathrm{n})$

Table 2. First-order autoregressive sequence. Coefficients $\gamma_{1}\left(\ell, \hat{\beta}_{1}, n\right)$ and $\gamma_{2}\left(\rho, \hat{\beta}_{1}, n\right)$ in the expression for the second moment ${ }_{1}$ of the prediction error at lead ℓ, equation (III.l2).
$\mathrm{BETAL}=0.30$

p^{n}	4	5	6	7	8	9	10	15	20	30	60
1	3.000	2.000	1.667	1.500	1.400	1.333	1.286	1.167	1.118	1.074	1.035
2	3.684	2.432	2.009	1.795	1.664	1.576	1.512	1.346	1.273	1.207	1.145
3	4.010	2.631	2. 163	1.923	1.776	1.675	1.602	1.408	1.319	1.237	1.163
4	4.207	2.749	2. 252	1.996	1.838	1.730	1.650	1.438	1.338	1.247	1.166
5	4.339	2.828	2.310	2.043	1.878	1.764	1.680	1.456	1.347	1.251	1.167
6	4.434	2.884	2. 351	2.076	1.905	1.788	1.700	1.467	1.353	1.252	1.167
7	4.506	2.925	2.382	2.101	1.926	1.805	1.715	1.475	1.356	1.253	1.168
8	4.561	2.957	2.405	2.119	1.941	1.818	1.726	1.480	1.359	1.253	1.168
5	4.605	2.983	2.424	2.134	1.953	1.828	1.734	1.485	1.360	1.254	1.168
10	4.640	3.003	2.439	2.145	1.962	1.835	1.741	1.488	1.361	1.254	1.168

(a) $\gamma_{1}(\ell, 0.3, \mathrm{n})$
$\widehat{B E T A 1}=0.30$
$\stackrel{\leftrightarrow}{6}$

e^{n}	4	5	6	7	8	9	10	15	20	30	60
1	0.910	0.455	0.303	0.227	0.182	0.152	0.130	0.076	0.054	0.034	0.016
2	0.076	0.069	0.063	0.058	0.054	0.050	0.046	0.034	0.024	0.014	0.0 .06
3	0.062	0.055	0.049	0.044	0.040	0.036	0.033	0.022	0.014	0.007	0.002
4	0.042	0.038	0.034	0.030	0.027	0.025	0.022	0.014	0.008	0.003	0.001
5	0.032	0.028	0.025	0.022	0.019	0.017	0.016	0.009	0.005	0.001	0.000
6	0.024	0.021	0.018	0.016	0.014	0.013	0.011	0.007	0.003	0.001	0.000
7	0.018	0.016	0.014	0.012	0.011	0.010	0.009	0.005	0.002	0.000	0.000
8	0.015	0.013	0.011	0.010	0.009	0.007	0.007	0.004	0.001	0.000	0.000
9	0.012	0.010	0.009	0.008	0.007	0.006	0.005	0.003	0.001	0.000	0.000
10	0.010	0.008	0.007	0.006	0.005	0.005	0.004	0.002	0.001	0.000	0.000

(b) $\quad \gamma_{2}(\ell, 0.3, n)$

Table 2 (continued). First-order autoregressive sequence. Coefficients $\gamma_{1}\left(\rho, \hat{\beta}_{1}, n\right)$ and $\gamma_{2}\left(\ell, \hat{\beta}_{1}, n\right)$ in the expression for the second moment of ${ }^{1}$ the predicEion error at lead ℓ, equation (III.12).

(b) $\gamma_{2}(e, 0.6, \mathrm{n})$

Table 2 (continued). First-order autoregressive sequence. Coefficients $\gamma_{1}\left(\ell, \hat{\beta}_{1}, n\right)$ the prediction error at lead ℓ, equation (III.12).
$\widehat{B E T A 1}=0.90$

ℓ	4	5	6	7	8	9	10	15	20	30	60
1	3.000	2.000	1.667	1.500	1.400	1.333	1.286	1.167	1.118	1.074	1.035
2	4.576	3.166	2.706	2.470	2.332	2.240	2.176	2.020	1.964	1.911	1.865
3	5.555	3.957	3.432	3.161	3.003	2.902	2.832	2.671	2.624	2.577	2.539
4	6.311	4.535	3.974	3.680	3.513	3.408	3.337	3.184	3.153	3.117	3.092
5	6.841	4.976	4.395	4.087	3.916	3.810	3.739	3.597	3.585	3.563	3.552
6	7.248	5.324	4.733	4.416	4.242	4.136	4.067	3.939	3.945	3.937	3.938
7	7.568	5.606	5.011	4.687	4.512	4.407	4.341	4.225	4.249	4.254	4.266
8	7.824	5.839	5.244	4.915	4.739	4.636	4.572	4.469	4.510	4.526	4.546
9	8.033	6.033	5.441	5.109	4.933	4.832	4.770	4.680	4.737	4.762	4.788
10	8.205	6.198	5.611	5.276	5.101	5.001	4.942	4.863	4.935	4.969	4.998

$\stackrel{\leftrightarrow}{6}$
(a) $\gamma_{1}(\ell, 0.9, \mathrm{n})$

BETA1 $=0.90$

ℓ	4	5	6	7	8	9	10	15	20	30	60
1	0.190	0.095	0.063	0.048	0.038	0.032	0.027	0.016	0.011	0.007	0.003
2	0.144	0.107	0.082	0.068	0.058	0.050	0.045	0.028	0.020	0.014	0.008
3	0.165	0.128	0.104	0.089	0.079	0.070	0.063	0.043	0.032	0.024	0.015
4	0.162	0.132	0.111	0.098	0.088	0.080	0.073	0.053	0.042	0.032	0.021
5	0.151	0.127	0.110	0.099	0.090	0.083	0.077	0.059	0.048	0.038	0.026
6	0.135	0.117	0.104	0.095	0.088	0.082	0.077	0.061	0.052	0.043	0.030
7	0.119	0.105	0.095	0.088	0.083	0.078	0.074	0.061	0.054	0.046	0.034
8	0.103	0.093	0.086	0.081	0.077	0.073	0.070	0.060	0.055	0.048	0.036
5	0.088	0.081	0.077	0.073	0.070	0.068	0.066	0.058	0.055	0.049	0.038
10	0.075	0.071	0.068	0.066	0.064	0.062	0.061	0.056	0.054	0.049	0.039

(b) $\gamma_{2}(\ell, 0.9, n)$

Table 2 (continued). First-order autoregressive sequence. Coefficients $\gamma_{1}\left(\ell, \hat{\beta}_{1}, n\right)$ and $\gamma_{2}\left(\ell, \hat{\beta}_{1}, n\right)$ in the expression for the second moment of ${ }^{1}$ the prediction error at lead ℓ, equation (III.l2).

Table 3. First-order autoregressive sequence. Penalty ratios $r_{\beta_{1}, \sigma}\left(\mathcal{\ell}, \hat{\beta}_{1}, n, \bar{Y}_{n}\right)$ in equation (III.13).

$\hat{\mathrm{EETA}}=0.0 \quad \widehat{Y N}=2.00$											
e^{n}	4	5	6	7	8	9	10	15	20	30	60
1	2.646	2.000	1.732	1.581	1.483	1.414	1.363	1.225	1.163	1.106	1.051
2	2.002	1.646	1.497	1.408	1.346	1.300	1.264	1.158	1.100	1.060	1.027
3	2.035	1.654	1.495	1.401	1.337	1.290	1.253	1.147	1.093	1.057	1.026
4	2.058	1.663	1.458	1.402	1.336	1.288	1.250	1.145	1.091	1.056	1.026
5	2.075	1.671	1.502	1.404	1.337	1.288	1.250	1.144	1.091	1.056	1.026
6	2.088	1.678	1. 506	1.406	1.338	1.289	1.250	1.144	1.091	1.056	1.026
7	2.css	1.683	1.509	1.408	1.340	1.290	1.251	1.144	1.091	1.056	1.026
8	2.107	1.688	1.512	1.410	1.341	1.290	1.252	1.144	1.091	1.056	1.026
9	2.113	1.691	1.515	1.412	1.342	1.291	1.252	1.144	1.091	1.056	1.026
10	2.119	1.694	1.516	1.413	1.343	1.292	1.253	1.144	1.091	1.056	1.026
EETA1 $=0.0 \quad \widehat{Y N}=3.00$											
ρn	4	5	6	7	8	9	10	15	20	30	60
1	3.464	2.550	2.160	1.936	1.789	1.683	1.604	1.384	1.283	1.186	1.092
2	2.118	1.768	1.612	1.514	1.443	1.387	1.341	1.200	1.118	1.068	1.029
3	2.104	1.726	1.561	1.461	1.389	1.335	1.292	1.165	1.097	1.058	1.026
4	2.104	1.711	1.542	1.440	1.369	1.316	1.274	1.154	1.092	1.056	1.026
5	2.108	1.705	1.533	1.430	1.360	1.307	1.266	1.150	1.091	1.056	1.026
6	2.113	1.703	1.529	1.426	1.355	1.302	1.262	1.148	1.091	1.056	1.026
7	2.118	1.702	1.527	1.423	1.352	1.300	1.259	1.147	1.091	1.056	1.026
8	2.122	1.703	1.526	1.421	1.351	1.298	1.258	1.146	1.091	1.056	1.026
9	2.125	1.703	1.525	1.421	1.350	1.297	1.257	1.146	1.091	1.056	1.026
10	2.12 E	1.704	1.525	1.420	1.349	1.297	1.257	1.145	1.091	1.056	1.026

Table 3 (continued).

Table 3 (continued).

Table 3 (continued).
$\widehat{B E T A} 1=0.60 \quad \overline{Y N}=0.0$

ℓ	4	5	6	7	8	9	10	15	20	30	60
1	1.732	1.414	1.291	1.225	1.183	1.155	1.134	1.080	1.057	1.036	1.017
2	1.695	1.389	1.274	1.212	1.173	1.149	1.131	1.084	1.065	1.044	1.021
3	1.714	1.406	1.253	1.230	1.191	1.169	1.151	1.104	1.083	1.059	1.029
4	1.744	1.431	1.317	1.254	1.214	1.193	1.174	1.125	1.103	1.073	1.036
5	1.772	1.454	1.340	1.275	1.234	1.213	1.195	1.143	1.119	1.085	1.041
6	1.795	1.474	1.358	1.293	1.250	1.230	1.211	1.158	1.132	1.094	1.045
7	1.814	1.489	1.373	1.307	1.263	1.244	1.224	1.170	1.142	1.101	1.047
8	1.829	1.501	1.385	1.318	1.274	1.254	1.235	1.179	1.150	1.107	1.049
9	1.841	1.510	1.394	1.327	1.282	1.263	1.244	1.186	1.156	1.111	1.050
10	1.850	1.518	1.402	1.335	1.289	1.270	1.250	1.192	1.161	1.114	1.050

Table 3 (continued).

Table 3 (continued).

0	$\widehat{E T A 1}=0.90$											
	e^{n}	4	5	6	7	8	9	10	15	20	30	60
	1	2.000	1.581	1.414	1. 323	1. 265	1.225	1.195	1.118	1.085	1.054	1.026
	2	1.717	1.436	1. 316	1.250	1.207	1.177	1.154	1.095	1.069	1.047	1.027
	3	1.619	1.370	1.270	1.213	1.177	1.152	1.133	1.084	1.065	1.047	1.030
	4	1. 546	1.321	1. 233	1.183	1.152	1.130	1.115	1.075	1.061	1.047	1.033
	5	1.492	1.283	1.205	1.159	1.132	1.113	1.100	1.068	1.058	1.048	1.037
	6	1.452	1.254	1.182	1.141	1.116	1.100	1.088	1.062	1.057	1.050	1.042
	7	1.421	1.232	1.165	1.127	1.104	1.090	1.080	1.059	1.057	1.052	1.046
	8	1.397	1.215	1.153	1.116	1.095	1.082	1.073	1.057	1.058	1.056	1.051
	9	1.378	1. 202	1.143	1. 108	1.089	1.077	1.069	1.056	1.060	1.059	1.056
	10	1.364	1.192	1.136	1.103	1.084	1.074	1.067	1.056	1.063	1.064	1.061

Table 3 (continued).

E $\widehat{E T A 1}=0.90$											
e^{n}	4	5	6	7	8	9	10	15	20	30	60
1	2.646	2.000	1.732	1.581	1.483	1.414	1.363	1.225	1.163	1.106	1.051
2	2.051	1.731	1.564	1.468	1.401	1.351	1.312	1.203	1.149	1.104	1.061
3	1.917	1.642	1.510	1.430	1.374	1.332	1.299	1.205	1.158	1.117	1.074
4	1.801	1.562	1.452	1.385	1.338	1.304	1.275	1.198	1.160	1.124	1.085
5	1.710	1.493	1.399	1.342	1.303	1.274	1.251	1.188	1.159	1.125	1.093
6	1.635	1.435	1.354	1.303	1.270	1.246	1.228	1.177	1.156	1.132	1.101
7	1.575	1.387	1.315	1.270	1.241	1.221	1.206	1.166	1.153	1.134	1.107
8	1.526	1.348	1.283	1. 242	1.217	1.200	1.188	1.157	1.150	1.136	1.113
9	1.487	1.315	1.256	1.219	1.197	1.183	1.172	1.149	1.148	1.138	1.118
10	1.454	1.289	1.235	1.200	1.181	1.168	1.160	1.142	1.146	1.140	1.123
$\widehat{E T A 1}=0.90 \quad \widehat{Y N}=3.00$											
e^{n}	4	5	6	7	8	9	10	15	20	30	60
1	3.464	2.550	2.160	1.936	1.789	1.683	1.604	1.384	1.283	1.186	1.092
2	2.511	2.134	1.507	1.773	1.675	1.600	1.540	1.364	1.270	1.193	1.116
3	2.332	2.016	1.841	1.732	1.651	1.588	1.537	1.383	1.299	1.224	1.144
4	2.159	1.897	1.757	1.668	1.602	1.550	1.508	1.379	1.309	1.242	1.165
5	2.020	1.789	1.674	1.600	1.546	1.504	1.470	1.365	1.309	1.252	1.181
6	1.901	1.695	1.599	1.536	1.492	1.457	1.430	1.346	1.304	1.257	1.193
7	1.803	1.613	1.532	1.479	1.442	1.414	1.392	1.326	1.297	1.259	1.202
8	1.720	1.544	1.474	1.428	1.397	1.375	1.357	1.307	1.289	1.259	1.209
s	1.651	1.486	1.425	1.385	1.359	1.340	1.327	1.289	1.281	1.258	1. 214
10	1.554	1.436	1.383	1.348	1.326	1.311	1.300	1.274	1.273	1.257	1.219

Table 3 (continued).

n	0.99	0.999	0.9999
4	1.127	1.909	3.446
5	1.139	1.641	2.478
6	1.121	1.477	2.016
7	1.103	1.376	1.760
8	1.089	1.309	1.604
9	1.078	1.262	1.500
10	1.070	1.227	1.425
15	1.044	1.135	1.244
20	1.033	1.095	1.170
30	1.021	1.060	1.103
60	1.010	1.028	1.049

TABLE 4. Values of $\left(\frac{n-3}{n-1}\right)^{1 / 2} t_{n-1}(P) / \Phi(P)$ in equation (III.I).

ℓ	PERFECT INFORMATION $\mathrm{n}=\infty$	$\mathrm{n}=10$	PENALTY RATIO eq. (III.14)
1	3.404	4.845	1.466
2	3.320	4.833	1.469
3	3.268	4.881	1.498
4	3.247	4.912	1.514
5	3.241	4.943	1.525
6	3.240	4.960	1.531
7	3.240	4.980	1.537
8	3.239	4.992	1.541
9	3.239	5.001	1.544
10	3.239	5.008	1.546

TABLE 5. 0.999 fractiles of the predictive distributions at lead ℓ for a sample size $n=\infty$ and for $\mathrm{n}=10$. Example following equations (III.15) in the text.

ℓ	$\mathrm{Y}_{\text {MAX }}=3.50$		$\mathrm{Y}_{\mathrm{MAX}}=4.50$		$\mathrm{Y}_{\text {MAX }}=5.50$	
	$\mathrm{P}_{\mathrm{f}_{\mathrm{n}=\infty}(\ell)}$	$\mathrm{P}_{\mathrm{f}_{\mathrm{n}=10}}(\ell)$	$\mathrm{P}_{\mathrm{f}_{\mathrm{n}=\infty}}(\ell)$	$\mathrm{P}_{\mathrm{f}_{\mathrm{n}=10}}(\mathrm{l})$	$\mathrm{P}_{\mathrm{f}_{\mathrm{n}=\infty}(\mathrm{l})}$	$\mathrm{P}_{\mathrm{f}_{\mathrm{n}=10}}(\mathrm{l})$
1	7.30-4	7.23-3	1.42-5	1.64-3	1.08-7	4.20-4
2	1.29-3	1.37-2	2.64	3.20	2.21	8.45
3	1.75	2.02	3.64	4.83	3.10	1.30-3
4	2.19	2.69	4.55	6.55	3.92	1.77
5	2.62	3.37	5.44	8.34	4.70	2.28
6	3.04	4.05	6.32	1.01-2	5.46	2.80
7	3.45	4.74	7.20	1.20	6.22	3.32
8	3.87	5.44	8.08	1.38	6.98	3.86
9	4.29	6.14	8.96	1.57	7.74	4.41
10	4.71	6.83	9.84	1.76	8.50	4.96

TABLE 6. Probability of system failure within the next l loading events. Example in Section III. 2.
$\stackrel{\circ}{\infty}$

Figure 1. Mean resistance curves in deteriorating systems.

Figure 2. Evolution of the resistance with time in deteriorating systems; dependence on the autoregressive coefficients $\left\{a_{t}\right\}$. See equation (III.16) and following comments.

Figure 3. Proof loading of systems with timedependent resistance.

Biography

The author was born in Florence, Italy, in 1946. From 1964 to 1969 he studied Architecture at the University of Florence where, after defending a thesis on the Control of the Progressive Replanning of Urban Districts, he was conferred the Laurea in Architecture (February, 1970).

In March, 1970 he was appointed Assistant (assistente incaricato) at the Institute of Materials and Structures in the Faculty of Engineering of L'Aquila, Italy. While holding that position, from March, 1970 to September, 1971, he worked on a research project on the reliability of inelastic structures with Prof. Carlo Gavarini.

In September, 1971 he came to M.I.T. as a graduate student in the Division of Structures (Department of Civil Engineering). During the three years of his study at M.I.T. he was granted a research assistantship (with the exception of the Fall term, 1972, during which he was a teaching assistant), allowing him to work on several research projects in the areas of random vibration, structural reliability, seismic risk analysis and optimal sampling, under the guidance of Professors E. H. Vanmarcke, C. A. Cornell and I. Rodriguez-Iturbe.

After winning a national competition held in July, 1972, in February, 1973 he was appointed "assistente
ordinario" at the Institute of Materials and Structures of L'Aquila, mentioned above. He resigned from that office in July, 1974, in the prospective of an offered faculty position in the Division of Constructed Facilities at M.I.T. The following is the list of publications and Research Reports he has authored or co-authored.

LIST OF PUBLICATIONS

(a) Technical journals

Gavarini, C. and Veneziano, D.: "Calcolo a rottura e programmazione stocastica. Problemi con una variabile casuale", Giornale del Genio Civile, April, 1970.
--: "Sulla teoria probabilistica degli stati limite delle strutture", Giornale del Genio Civile, Nov.-Dec., 1970.
--: "Minimum Weight Limit Design under Uncertainty", Meccanica, Vol. 7 , No. 2, 1972 .

Veneziano, D.: "Calcolo a rottura probabilistico con più parametri casuali", Giornale del Genio Civile, February, 1971.
(b) Congresses and Conferences

Gavarini, C. and Veneziano, D.: "On the Safety Domain of Structures", Proceedings, lst National Congress of Theoretical and Applied Mechanics, AIMETA, Udine, June, 1971.
--: "Probabilistic Structural Analysis and Synthesis", l5th Polish Solid Mechanics Conference, Zakopane, September, 1973.

Vanmarcke, E.H. and Veneziano, D.: "Probabilistic Seismic Response of Simple Inelastic Systems", Proceedings, Fifth World Conference on Earthquake Engineering, Rome, 1973.

Veneziano, D.: "Analysis and Design of Hysteretic Structures for Probabilistic Seismic Resistance", Proceedings, Fifth World Conference on Earthquake Engineering, Rome, 1973.
--: "Second Moment Reliability", ASCE, EM Division, Specialty Conference on Probabilistic Methods in Engineering, Stanford Univ., Stanford, Cal., June, 1974.
--: "Safe Regions and Second Moment Reliability Vectors", ASCE, EM Division, Specialty Conference on Probabilistic Methods in Engineering, Stanford Univ., Stanford, Cal., June, 1974.
(c) Research Reports

Gavarini, C. and Veneziano, D.: "Ricerca di un metodo numerico per lo studio del comportamento delle strutture snelle nel campo degli spostamenti finiti:, Publication No. 8, Istituto di Costruzioni, Facoltá di Ingegneria, L'Aquila, Italy, December, 1971.

Veneziano, D. and Vanmarcke, E.H.: "Seismic Damage of Inelastic Systems: a Random Vibration Approach", Res. Report R73-5, Dept. of Civil Engineering, M.I.T., May, 1973.

Veneziano, D.: "Analysis and Design of Simple Inelastic Structures in a Probabilistic Seismic Environment", Res. Report R70-40, Dept. of Civil Engineering, M.I.T., June, 1973.
--: "Contribution to Second Moment Reliability Theory", Res. Report R74-33, Dept. of Civil Engineering, M.I.T., April, 1974.

Veneziano, D. and Cornell, C.A.: "Earthquake Models with Spatial and Temporal Memory for Engineering Seismic Risk Analysis", Res. Report R74-l8, Dept. of Civil Engineering, M.I.T., May, 1974.

APPENDIX A

This appendix contains tables of simple-prediction limits for univariate stationary independent sequences with given marginal distribution but one or more unknown parameters. P denotes the desired probability content of the prediction interval and n is the available sample size. In the frequentist approach the tables can be used directly; see Paragraph II.2.1. For using the same tables in Bayesian prediction with "diffuse" or conjugate prior, refer to Paragraph II.2.2.

Values of the penalty ratios corresponding to the same prediction intervals are given also. For their definition and use the reader is referred to Section II. 2 in the text.

	n	$\mathrm{r}_{\mu}^{\mathrm{N}}(\mathrm{n})$
	1	1.414
	2	1.225
	3	1.155
	4	1.118
	5	1.095
	6	1.080
	7	1.069
	8	1.061
	9	1.054
	10	1.049
	11	10044
	12	1.041
	13	1.038
\cdots	14	1.035
$\stackrel{\sim}{\sim}$	15	1.033
	16	1.031
	17	1.029
	18	1.027
	19	1.026
	20	1.025
	30	1.017
	40	1.012
	60	1.008
	120	1.004
	∞	1.000

Table Al. Penalty ratios in simple prediction when a sample of size n is available from a normal population with unknown mean and known variance.

	n	Probability content, P					
		0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	1	2.099	3. 839	6,482	24.713	45.358	193.452
	2	1.394	1.775	2.195	3.853	5.019	9.602
	3	1.237	1.431	1.624	2.268	2. 655	3.927
	4	1.169	1.296	1.417	1.787	1.994	2.616
	5	1.131	1.225	1.311	1.565	1.701	2.087
	6	1.107	1.181	1.248	1439	1.538	1. 811
	7	1.090	1.152	1.206	1.359	1.436	1.643
	8	1.078	1.131	1.177	1.303	1.365	1.532
	9	1.069	1115	1.154	1262	1.314	1.453
	10	1.062	1.102	1.137	1.230	1.276	1.394
	11	1.056	1.092	1.123	1.206	1.246	1.348
	12	1.051	1.084	1.112	1.186	1.221	1.312
\cdots	13	1.047	1.077	1.102	1.169	1.201	1.282
∞	14	1.043	1.071	1.094	1. 156	1.185	1.258
	15	1.040	1.066	1.087	1.144	1.171	1.238
	16	1.038	1.062	1.082	1.134	1.159	1.220
	17	1.036	1.058	1.076	1.125	1.148	1.205
	18	1.033	1.054	1.072	1.117	1.139	1.192
	19	1.032	1.051	1.068	1.111	1.131	1.180
	20	1.030	1.049	1.064	1.175	1.123	1.170
	30	1.020	1.032	1.042	1.063	1.079	1.108
	40	1015	1.024	1.031	1.050	1.059	1.079
	60	1.010	1.016	1.020	1.033	1.038	1.051
	120	1.005	1.008	1.010	1.016	1.019	1.025
	-	1.000	1000	1.000	1.000	1.000	1.000

Table A2. Penalty ratios $r_{\sigma}^{N}(P, n)$ for central prediction intervals of P-content. Sampling is from a normal population with known mean and unknown variance; n is the sample size. See equation (II.17) in the text.

	n	Probability content, P					
		0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	2	2.571	4.702	7.939	30. 267	55.552	236.930
	3	1.610	2.050	2.535	4.449	5.796	11.087
	4	1.383	1.600	1.815	2.535	2.969	4.390
	5	1. 280	1420	1.552	1958	2. 185	2. 866
	6	1.222	1.323	1.417	1.691	1.837	2. 254
	7	1.183	1. 263	1.335	1.539	1.644	1.936
	8	1.157	1. 222	1.280	1.441	1.523	1.743
	9	1.137	$1.19 ?$	1.240	1.373	1.439	1.615
	10	1.121	1.169	1.210	1.323	1.379	1.524
	11	1.109	1. 151	1.187	1. 285	1.333	1.456
	12	1.099	1.136	1.169	1. 255	1.297	1.403
	13	1.091	1.125	1.154	1.231	1.268	1.361
$\stackrel{H}{\square}$	14	1.084	1.115	1.141	1.210	1.244	1.327
6	15	1.077	1.106	1.130	1.194	1. 224	1.299
	16	1.072	1.099	1.121	1.179	1.207	1.276
	17	1.068	1.092	1.113	1.167	1.192	1.255
	18	1.064	1.087	1.106	1.156	1.179	1.238
	15	1.060	1.082	1.100	1.146	1.168	1.223
	20	1.057	1.077	1.094	1.138	1.159	1.209
	21	1.054	1.073	1.089	1.131	1.150	1.197
	31	1.036	1.049	1.059	1. 085	1.097	1.125
	41	1.027	1.036	1.044	1.063	1.071	1.092
	61	1.018	1.024	1.029	1.041	1.047	1.060
	121	1.009	1.012	1.014 1.000	1.020	1.023	1.029 1.000
	∞	1.000	1.000	1.000	1.000	1,000	1.000

Table A3. Penalty ratios $r_{\mu}^{N}{ }_{\alpha}(P, n)$ for central prediction intervals of $p-c o n t e n t$. Sampling is from a normal population with unknown mean and variance; n is the sample size. See equation (II.10).

	n	Probability content, P					
		0.7500	0.9000	0.9500	0.9900	0,9950	0.9990
	1	1.484	2.401	3.838	13.681	24.712	103.013
	2	1.211	1.471	1.775	2. 994	3. 853	7. 225
	3	1.135	1.278	1.430	1.952	2.267	3.325
	4	1.099	1.196	1.296	1.611	1.787	2.321
	5	1. 079	1. 151	1.225	1.447	1,565	1.907
	6	1.065	1.123	1.181	1.351	1.439	1.685
	7	1.055	1.104	1.152	1.289	1.358	1.549
	8	1.047	1.090	1.131	1.245	1.302	1.457
	9	1.043	1.079	1.114	1.213	1.262	1.391
	10	1.039	1.070	1.102	1.188	1.230	1.341
	11	1.034	1.063	1.092	1.169	1.206	1.303
	12	1.031	1.058	1.083	1.153	1.186	1.272
\cdots	13	1.030	1.053	1.077	1139	1.169	1.247
\bigcirc	14	1.027	1.049	1.071	1.128	1.156	1.226
	15	1.025	1.046	1.066	1.119	1.144	1.208
	16	1.024	1.043	1.061	1.110	1.134	1.193
	17	1.022	1.040	1.058	1.104	1.125	1.180
	18	1.021	1.037	1.054	1.097	1.117	1. 168
	19	1.021	1.036	1.051	1.092	1.111	1.158
	20	1.019	1.034	1.049	1.087	1.104	1.150
	30	1013	1022	1032	1056	1.068	1.095
	40	1.010	1.016	1.024	1.042	1.050	1.070
	60	1.007	1.011	1.016	1.028	1.033	1.046
	120	1.004	1.005	1.008	1.014	1.016	1.023
	∞^{*}	1.000	1.000	1.000	1.000	1.000	1.000

Table A4. Penalty ratios $\bar{r}_{\sigma}^{N}(P, n)$ for one-sided prediction intervals of P-content. Sampling is from a normal population with known mean and unknown variance; n is the sample size. See equation (II.19)

	n	Probability content, P					
		0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	2	1.817	2.941	4.701	16.755	30.265	126.165
	3	1.398	1.699	2.050	3.458	4.449	8.343
	4	1.269	1.429	1.599	2.183	2.535	3.695
	5	1.204	1.310	1.420	1.765	1.958	2. 543
	6	1.165	1.244	1.323	1.563	1.691	2.060
	7	1.139	1.201	1.263	1.445	1.538	1.802
	8	1.119	1.171	1.222	1.367	1.441	10642
	9	1.104	1.149	1.192	1.312	1.373	1.535
	10	1.094	1.131	1.169	1.272	1.323	1.458
	11	1.085	1.118	1.150	1.241	1.285	1.401
	12	1.076	1.107	1.136	1.216	1.255	1.356
	13	1.070	1.098	1.124	1.196	1.231	1.320
$\stackrel{\sim}{N}$	14	1.066	1.090	1.114	1.179	1.210	1.290
$\stackrel{\sim}{\sim}$	15	1.060	1.084	1.106	1.165	1.194	1.266
	16	1.057	1.078	1.098	1.153	1.179	1.245
	17	1.053	1.073	1.092	1.143	1.167	1.227
	18	1.050	1.068	1.087	1.134	1.156	1.212
	19	1.047	1.064	1.081	1.126	1.146	1.199
	20	1.046	1.061	1.077	1.119	1.138	1.187
	21	1.043	1.058	1.073	1.112	1,130	1.177
	31	1.030	1.038	1.048	1.073	1.085	1.113
	41	1.023	1.029	1.036	1.054	1.062	1.083
	61	1.016	1.019	1.024	1.036	1.041	1.054
	121	1.009	1.010	1.012	1.018	1.020	1.027
	∞	1.000	1.000	1.000	1.000	1.000	1.000

Table A5. Penalty ratios $\vec{r}^{N}{ }_{(P, n)}(\mathrm{n}$ for one-sided prediction intervals of P-content. Sampling is from a normal population with unknown mean and variance; n is the sample size. See equation (II.12).

	n	Probability content, P					
		0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	1	1.627	2.326	2.772	3.643	3.970	4.654
	2	1.409	2.014	2.401	3.155	3.438	4.031
	3	1.328	1.899	2.263	2.974	3.241	3. 800
	4	1.286	1.839	2.191	2.880	3.138	3.679
	5	1.260	1.802	2.147	2.822	3.075	3.605
	6	1.242	1. 776	2.117	2.782	3.032	3.555
	7	1.230	1.758	2.095	2.754	3.001	3.518
	8	1.220	1.744	2.079	2.732	2. 977	3.491
	9	1.212	1.734	2.066	2.715	2.959	3.469
	10	1.206	1.725	2.056	2.702	2.944	3.452
	11	1.201	1. 718	2.047	2. 690	2,932	3.437
	12	1.197	1.712	2.040	2.681	2.922	3.425
v	13	1.194	1.707	2.034	2.673	2.913	3.415
N	14	1.191	1.702	2.029	2.666	2.905	3.406
	15	1.188	1.699	2.024	2.660	2.899	3.399
	16	1.186	1.695	2.020	2.655	2. 893	3. 392
	17	1.184	1.692	2.017	2.651	2.888	3.386
	18	1.182	1.690	2.014	2.646	2.884	3.381
	19	1.180	1.687	2.011	2.643	2.880	3. 376
	20	1.179	1.685	2.009	2.639	2.876	3.372
	30	1.169	1.672	1.993	2.618	2.853	3.345
	40	1.165	1.665	1.984	2.608	2.842	3.332
	60	1.160	1.658	1.976	2.597	2.830	3.318
	120	1.155	1.652	1.968	2.587	2. 819	3. 305
	∞	1.150	1.645	1.960	2.576	2.807	3.291

Table A6. Coefficients $\beta_{\mu}^{N}(P, n)$ in equations (II.13); to be used for constructing central prediction intervals of P-content when a sample of size n is available from a normal population with unknown mean and known variance.

	n	Probability content, P					
		7.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	1	2.414	6.314	12.706	63.657	127.319	636.632
	2	1. 603	2.920	4.303	9.925	14.089	31.599
	3	1.423	2.353	3.182	5.841	7.453	12.923
	4	1. 344	2. 132	2.777	4.604	5. 598	8.610
	5	1.301	2.015	2.571	4.032	4.773	6.869
	6	1.273	1.943	2.447	3.707	4.317	5.959
	7	1. 254	1.894	2.365	3.499	4.029	5.408
	8	1.240	1.860	2.306	3. 355	3.832	5.042
	9	1.230	1833	2. 262	3.250	3.690	4. 781
	10	1.221	1.812	2. 228	3.169	3.581	4.587
	11	1. 214	1.796	2. 201	3.106	3.497	4.437
	12	1. 209	1.782	2.179	3.055	3.428	4.317
N	13	1.204	1.771	2.160	3.012	3. 373	4.220
$\stackrel{\sim}{\omega}$	14	1.200	1.761	2. 145	2.977	3.326	4.140
	15	1. 197	1.753	2.131	2.947	3. 286	4.073
	16	1.194	1.746	2.120	2.921	3. 252	4.015
	17	1.191	1.740	2.110	2.898	3.222	3.965
	18	1.189	1.734	2.101	2.878	3.197	3.922
	19	1.187	1.729	2.093	2.861	3.174	3.883
	20	1185	1.725	2.086	2.845	3.153	3.850
	30	1.173	1.697	2.042	2.750	3.030	3.646
	40	1.167	1.684	2.02 .1	2.704	2.971	3.551 3.460
	60	1.161	1.671	2.000	2.660	2.915 2.860	3.460 3.373
	120 ∞	1.156 1.150	1.658 1.645	1.980 1.960	2.617 2.576	2.860 2.807	3.373 3.291

Table A7. Coefficients $\beta_{\sigma}^{N}(P, n)$ in equations (II.16); to be used for constructing central prediction intervals of P-content when a sample of size n is available from a normal population with unknown mean and known variance.

	n	Probability content, P					
		0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	2	2.957	7.733	15.562	77.963	155.933	779.712
	3	1.851	3.372	4.968	11.460	16.269	36.487
	4	1.591	2.631	3.558	6.530	8.333	14.448
	5	1.473	2.335	3.042	5.044	6.132	9.432
	6	1.405	2. 176	2.777	4.355	5.156	7.419
	7	1.361	2.077	2.616	3.963	4.615	6.370
	8	1.330	2.009	2. 508	3712	4.274	5.736
	9	1.307	1.960	2.431	3.537	4.040	5.315
	10	1.290	1.922	2.372	3.408	3.870	5.015
	11	1.276	1.893	2.327	3.310	3.741	4.791
	12	1.264	1.869	2. 291	3. 233	3.639	4.619
	13	1.254	1.850	2.261	3.170	3.558	4480
N	14	1.246	1.833	2.236	3.118	3.491	4.368
-	15	1.239	1.819	2.215	3.075	3.435	4.276
	16	1233	1.807	2.197	3.037	3.387	4.198
	17	1. 228	1.796	2.181	3.005	3.346	4.131
	18	1.224	1.787	2.168	2.978	3.311	4.073
	19	1.220	1.779	2.156	2.953	3.280	4.024
	20	1.216	1.772	2. 145	2.932	3.252	3.979
	21	1.213 1.192	1.765	2.135	2.912 2.794	3.228	3.940
	31	1.192 1.182	1.725	2.075	2.794 2.737	3.078 3.007	3.704 3.594
	41	1.182	1.704	2.046	2.737 2.682	3.007 2.938	3.594 3.488
	61 121	1.171 1.161	1.684 1.665	2.017 1.988	2.682 2.628	2.938 2.872	3.488 3.387
	∞	1.150	1.645	1.960	2.576	2.807	3. 291

Table A8. Coefficients $\beta_{\mu, \sigma}^{N}(P, n)$ in equations (II.7); to be used for constructing central prediction intervals of P-content when a sample of size n is available from a normal population with unknown mean and variance.

	n	Probability content, P					
		0.7500	0.9000	0.9500	0.9900	0.9950	029990
	1	0.953	1.813	2.326	3.289	3.643	4.370
	2	0.825	1.570	2.015	2.849	3.155	3.784
	3	0.778	1.480	1.899	2.686	2.975	3.568
	4	0.754	1.433	1.839	2.601	2.880	3.455
	5	0.738	1.404	1.802	2. 548	2.822	3.385
	6	9.728	1.385	1.777	2.512	2.782	3.338
	7	0.721	1.371	1.759	2.487	2.754	3.303
	8	0.715	1. 360	1.745	2.467	2.732	3.277
	9	0.710	1.351	1.734	2. 452	2.715	3.257
	10	0.707	1.345	1.725	2.440	2. 702	3.241
	11	0.704	1.339	1.718	2.429	2.691	3.227
	12	0.702	1.334	1.712	2.421	2.681	3.216
N	13	0.699	1.330	1.707	2.414	2.673	3.207
0	14	0.698	1.327	1.703	2.408	2.666	3.198
	15	0.696	1.324	1.699	2.402	2.660	3.191
	16	0.695	1.321	1.696	2. 398	2.655	3.185
	17	2. 694	1.319	1.693	2.393	2.651	3.180
	18	0.692	1.317	1.690	2. 390	2.647	3. 175
	19	0.692	1.315	1.688	2.386	2.643	3.170
	20	0.691	1.314	1.686	2. 383	2.640	3.166
	30	0.685	1.303	1.672	2. 364	2.619	3. 141
	40	0.682	1. 298	1.665	2.355	2.608	3.128
	63	0.680	1.293	1.659	2.345	2.597	3.116
	120 ∞	0.677 0.674	1.287 1.282	1,652	2.336	2.587	3.103
	∞	0.674	1.282	1.645	2.326	2.576	3.090

Table A9. Coefficients $\bar{\beta}^{\mathrm{N}}(\mathrm{P}, \mathrm{n})$ in equations (II.15); to be used for constructing onesided prediction intervals of P -content when a sample of size n is available from a normal population with unknown mean and known variance.

	n	Probability content, P					
		0.7500	0.9000	0.9500	0.9900	0,9950	0.9990
	1	1.000	3.078	6.314	31.821	63.657	318.310
	2	0.816	1.886	2.920	6.965	9.925	22.326
	3	0.765	1.638	2.353	4.541	5.841	10.213
	4	0.741	1.533	2.132	3.747	4.604	7.173
	5	0.727	1.476	2.015	3.365	4.032	5.893
	6	0.718	1.440	1.943	3.143	3.707	5.208
	7	0.711	1.415	1.895	2.998	3.499	4.785
	8	0.706	1.397	1.860	2.896	3.355	4.501
	9	0.703	1.383	1.833	2.821	3.250	4.297
	10	0.700	1.372	1.812	2. 764	3. 169	4.144
	11	0.697	1.363	1.796	2.718	3.106	4.025
	12	0.695	1.356	1.782	2.681	3.055	3.930
\cdots	13	0.694	1.350	1.771	2.650	3.012	3. 852
N	14	0.692	1.345	1.761	2.624	2.977	3.787
	15	0.691	1.341	1.753	2.602	2.947	3.733
	16	0690	1.337	1.746	2.583	2.921	3.686
	17	0.689	1.333	1.740	2.567	2.898	3.646
	18	0.688	1.330	1.734	2. 552	2. 878	3.610
	19	0.688	1.328	1.729	2.539	2.861	3.579
	20	0.687	1.325	1.725	2.528	2.845	3.552
	30	0.683	1.310	1.697	2.457	2.750	3. 385
	40	0.681	1.303	1.684	2.423	2.704	3.307
	60	0.679	1.296	1.671	2.390	2.660	3.232
	120	0.677	1.289	1.658	2.358	2.617	3.160
	∞	0.674	1.282	1.645	2.326	2.576	3.090

Table Al0. Coefficients $\bar{\beta}_{\sigma}^{N}(P, n)$ in equations (II.18); to be used for constructing one-sided prediction intervals of P -content when a sample of size n is available from a normal population with known mean and unknown variance.

	n	Probability content, P					
		0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	2	1.225	3.770	7.733	38.973	77.964	389.848
	3	0,942	2. 178	3.372	8.042	11.460	25.780
	4	0.855	1.831	2.631	5.077	6.530	11.418
	5	0.812	1.679	2.335	4.105	5.043	7.858
	6	0.785	1.594	2.176	3.635	4.355	6.365
	7	0.768	1.539	2.077	3.360	3.963	5.568
	8	0.754	1.501	2.010	3.180	3.711	5.075
	9	0.744	1.473	1.961	3.053	3.536	4.744
	10	0.737	1.451	1.922	2.959	3.409	4.507
	11	0. 731	1.433	1.893	2.887	3.310	4.328
	12	0.725	1.419	1.869	2.829	3.233	4.189
	13	0.721	1.407	1.849	2.782	3.170	4.078
N	14	0.718	1.397	1.833	2.743	3.118	3.987
N	15	0.715	1.389	1.819	2.710	3.075	3.911
	16	0.712	1.382	1.807	2.682	3.038	3. 848
	17	0.710	1.376	1.797	2.658	3.006	3.793
	18	0.708	1.370	1.788	2.637	2.977	3.746
	19	0. 706	1.365	1.779	2.618	2.953	3.704
	20	0.705	1.361	1.772	2.602	2.932	3.667
	21	0.703	1.356	1.766	2. 587	2.912	3.636
	31	0.694	1.331	1.724	2.496	2.794	3.439
	41	0.689	1.319	1.704	2.452	2.737	3.347
	61	0,685	1.307	1.685	2.410	2.682	3.258
	121 ∞	0.689 0.674	1.294 1.282	1.665 1.645	2.368 2.326	2.628 2.576	3.173 3.090
	∞	0.674	1.282	1.645	2.326	2.576	3.090

Table All. Coefficients $\bar{\beta} N(P, n)$ in equations (II.ll); to be used for constructing onesided predictiof ${ }^{\sigma}$ intervals of P-content when a sample of size n is available from a normal population with unknown mean and variance.

n	$\mathrm{r}_{\sigma}^{\mathrm{N}^{\prime}}$	$\mathrm{r}_{\mu, \sigma}^{\mathrm{N}^{\prime}}$
3	1.7321	$* * * * * *$
4	1.4142	1.9365
5	1.2910	1.5492
6	1.2247	1.3944
7	1.1832	1.3093
8	1.1547	1.2550
9	1.1339	1.2172
10	1.1180	1.1892
11	1.1055	1.1677
12	1.0954	1.1507
13	1.0871	1.1368
14	1.0801	1.1253
15	1.0742	1.1155
16	1.0690	1.1072
17	1.0646	1.1000
18	1.0607	1.0938
19	1.0572	1.0882
20	1.0541	1.0833
30	1.0351	1.0535
40	1.0260	1.0394
60	1.0171	1.0258
120	1.0084	1.0127
∞	1.0000	1.0000

Table Al2. "First-order" penalty ratios when predicting from independent normal sequences with unknown variance and known or unknown mean; see equations (II.21c,d).

n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
1	0.6667	0.8889	0.9474	0.9899	0.9950	0.9990	0.9995	0.9999
2	0.6906	0.8918	0.9480	0.9899	0.9950	0.9990	0.9995	0.9999
3	0.6581	0.8928	0.9483	0.9899	0.9950	0.9990	0.9995	0.9999
4	0.7017	0.8932	0.9484	0.9899	0.9950	0.9990	0.9995	0.9999
5	0.7039	0.8935	0.9484	0.9899	0.9950	0.9990	0.9995	0.9999
6	0.7053	0.8937	0.9485	0.9899	0.9950	0.9990	0.9995	0.9999
7	0.7063	0.8938	0.9485	0.9899	0.9950	0.9990	0.9995	0.9999
8	0.7071	0.8939	0.9485	0.9899	0.9950	0.9990	0.9995	0.99999
9	0.7077	0.8940	0.9486	0.9899	0.9950	0.9990	0.9995	0.9999
10	$0.7 C 81$	0.8941	0.9486	0.9899	0.9950	0.9990	0.9995	0.9999
∞	0.7123	0.8946	0.9487	0.9899	0.9950	0.9990	0.9995	0.9999

Table Al3 (Part 1). Coefficients $\beta_{\sigma}^{\mathrm{EX}}(\mathrm{P}, \mathrm{n})$ in equations (II.24); to be used for righthand prediction when a sample of size n is available from an exponential population with unknown parameter.

	${ }^{P}$	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
	1	2.000	8.000	18.000	98.000	198.00	998.01	1997.9	9996.3
	2	1.000	3.325	5.944	17.000	25.284	60.246	86.441	196.98
	3	0.762	2.463	4.143	9.925	13.544	26.000	33.797	60.629
	4	0.657	2.113	3.459	7.649	10.042	17.494	21.749	34.998
	5	0.558	1.924	3.103	6.559	8.427	13.905	16.865	25.547
	6	0.560	1.807	2.885	5.927	7.510	11.974	14.297	20.849
	7	0.533	1.726	2.739	5.515	6.922	10.779	12.733	18.093
	8	0.514	1.668	2.634	5.226	6.514	9.971	11.688	16.298
	9	0.499	1.624	2.555	5.013	6.215	9.390	10.942	15.043
	10	0.487	1.589	2.493	4.849	5.986	8.953	10.385	14.118
	15	0.452	1.489	2.316	4.390	5.355	7.773	8.898	11.717
	20	0.435	1.440	2.232	4.178	5.066	7.251	8.247	10.698
$\stackrel{\sim}{\omega}$	25	0.425	1.412	2.183	4.057	4.902	6.956	7.883	10.136
\bigcirc	30	0.419	1.393	2.150	3.977	4.795	6.768	7.650	9.780
	40	0.411	1.370	2.111	3.881	4.665	6.540	7.371	9.357
	50	0.406	1.356	2.087	3.824	4.589	6.408	7.209	9.113
	∞	0.386	1.303	1.996	3.605	4.298	5.908	6.601	8.210

Table Al3 (Part 2). Coefficients $\beta_{\sigma}^{E X}(P, n)$ in equations (II.26); to be used for lefthand prediction when a sample of size n is available from an exponential population with unknown parameter.

n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
1	0.863	0.948	0.975	0.995	0.998	1.000	1.000	1.000
2	0.930	0.974	0.987	0.997	0.999	1.000	1.000	1.000
3	0.953	0.983	0.991	0.998	0.999	1.000	1.000	1.000
4	0.964	0.987	0.994	0.999	0.999	1.000	1.000	1.000
5	0.972	0.990	0.995	0.999	1.000	1.000	1.000	1.000
6	0.576	0.991	0.996	0.999	1.000	1.000	1.000	1.000
7	0.980	0.993	0.996	0.999	1.000	1.000	1.000	1.000
8	0.982	0.993	0.997	0.999	1.000	1.000	1.000	1.000
9	0.984	0.994	0.997	0.999	1.000	1.000	1.000	1.000
10	0.986	0.995	0.997	1.000	1.000	1.000	1.000	1.000
∞	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table Al4 (Part 1). Penalty ratios $r_{\sigma}^{E X}(P, n)$ (see equation (II.25b)) for right-hand prediction intervals of content P. Sampling is from an exponential population with unknown parameter.

	${ }^{2}$	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
	1	5.177	6.142	9.019	27.183	46.065	168.93	302.67	1217.6
	2	2.589	2.552	2.978	4.715	5.882	10.198	13.095	23.993
	3	1.573	1.891	2.076	2.753	3.151	4.401	5.120	7.385
	4	1.700	1.622	1.733	2.122	2.336	2.961	3.295	4.263
	5	1.547	1.477	1.555	1.819	1.961	2.354	2.555	3.112
	6	1.448	1.387	1.446	1.644	1.747	2.027	2.166	2.539
	7	1.380	1.325	1.372	1.530	1.610	1.825	1.929	2.204
	8	1.330	1.281	1.320	1.450	1.515	1.688	1.771	1.985
	9	1.291	1.247	1.280	1.390	1.446	1.589	1.658	1.832
	10	1.261	1.220	1.249	1.345	1.393	1.515	1.573	1.720
	15	1.171	1.143	1.160	1.218	1.246	1.316	1.348	1.427
	20	1.127	1.106	1.118	1.159	1.179	1.227	1.249	1.303
$\underset{\sim}{\sim}$	25	1.101	1.084	1.094	1.125	1.140	1.178	1.194	1.235
	30	1.084	1.070	1.078	1.103	1.116	1.146	1.159	1.191
	40	1.063	1.052	1.058	1.076	1.085	1.107	1.117	1.140
	50	1.050	1.041	1.046	1.061	1.068	1.085	1.092	1.110
	∞	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table Al4 (Part 2). Penalty ratios $r_{\sigma}^{E X}(P, n)$ (see equation (II.27)) for left-hand prediction intervals of content P. Sampling is from an exponential population with unknown parameter.

	Probability content, P				
n	0.900	0.950	0.975	0.990	0.995
10	2.64	3.59	4.51	6.00	
20	2.41	3.24	4.04	5.12	6.18
30	2.33	3.06	3.89	4.90	5.86
	2.25	2.97	3.68	4.60	5.30

عモG

Table Al5. Coefficients $\beta_{a, b}^{E l}(P, n)$ in equation (II.28). (From Antle and Rademaker, 1972).

Table Al6. Penalty ratios $r_{a, b}^{E l}(P, n)$ from equation (II.30). n is the size of the sample from an Extreme type I population with unknown parameters a and b.

Table Al7. Upper limits of left prediction intervals when sampling from a Poisson Population with unknown parameter.
Z is the number of events observed during the "past" time interval $t_{p} ; t_{f}$ is the "future" time interval during which the number of o ${ }^{\text {Ccur }}$ fences, Y, must be predicted. For other values of Z see continuation of the table.

$\mathrm{Z}=1$		Probability content, P							
$\mathrm{Z} \mathrm{t}_{\mathrm{f}} / \mathrm{t}_{\mathrm{L}}$	t_{f} / t_{p}	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
10.00	10.00	27	40	49	*	**	**	**	**
5.00	5.00	14	20	25	35	40	**	**	**
2.00	2.00	6	9	11	16	17	22	24	28
1.00	1.00	3	5	6	9	10	12	13	16
0.50	0.50	2	3	3	5	6	7	8	10
0.20	0.20	1	1	2	3	3	4	5	6
0.10	0.10	**	1	1	2	2	3	3	4
0.05	0.05	***	***	1	1	2	2	2	3
0.02	0.02	**********)	***	**	1	1	2	2	2
0.01	0.01	**	**	*	1	1	1	1	2

σ

$\mathrm{Z}=2$		Probability content, P							
$2 t_{f} / t_{p}$	t_{f} / t_{p}	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
20.00	10.00	40	**	**	*	* ${ }^{\text {a }}$	**	**	**
10.00	5.00	20	28	33	45	49	**	**	**
4.00	2.00	8	12	14	19	21	26	28	33
2.00	1.00	4	6	8	11	12	15	16	19
1.00	0.50	2	4	4	6	7	9	10	11
0.40	0.20	1	2	2	3	4	5	5	6
0.20	0.10	**	1	1	2	3	3	4	5
0.10	0.05	**	1	1	2	2	3	3	3
0.04	0.02	**	**	1	1	1	2	2	2
0.02	$0 . \mathrm{Cl}$	**	家采	**	1	1	1	2	2

Table Al7 (cont.). Upper limits of left prediction intervals for Poisson sequences with unknown parameter; $\mathrm{Z}=1$ and $\mathrm{Z}=2$.

$\mathrm{Z}=5$		Probability content, P							
$2 t_{6} / t_{p}$	t_{f} / t_{p}	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
50.00	10.00	**	**	**	**	**	**	**	**
25.00	5.00	38	48	**	**	*	**	**	**
10.00	2.00	15	20	23	29	32	38	40	45
5.00	1.00	8	11	12	16	18	21	22	25
2.50	0.50	4	6	7	9	10	12	13	15
1.00	0.20	2	3	3	5	5	7	7	8
0.50	0.10	1	2	2	3	4	5	5	6
0.25	C. C5	1	1	1	2	3	3	4	4
0.10	$0 . \mathrm{C} 2$	**	1	1	1	2	2	2	3
0.05	0.01	**	**	1	1	1	2	2	2

\backsim
ω

$\mathrm{Z}=10$		Probability content, P								
$\mathrm{Z} t_{f} / \mathrm{t}_{\mathrm{p}}$	$\mathrm{t}_{\mathrm{f}} / t_{\mathrm{p}}$	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999	
20.00	2.00	27	33	37	44	48	$* *$	$* *$	$* *$	
10.00	1.00	14	17	19	24	26	30	31	35	
5.00	0.50	7	9	11	14	15	17	18	20	
2.00	0.20	3	4	5	7	8	9	10	11	
1.00	0.10	2	3	3	4	5	6	6	7	
0.50	0.05	1	2	2	3	3	4	5	5	
0.20	0.02	$* *$	1	1	2	2	3	3	4	
0.10	0.01	$*$	1	1	1	2	2	2	3	

Table Al7 (cont.). Upper limits of left prediction intervals for Poisson sequences with unknown parameter; $\mathrm{Z}=5$ and $\mathrm{Z}=10$.

$\mathrm{Z}=20$		Probability content, P								
$Z t_{f} / t_{p}$	t_{f} / t_{p}	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999	
20.00	1.00	25	30	32	38	40	45	47	$* *$	
10.00	0.50	13	16	18	21	22	26	27	30	
4.00	0.20	6	7	8	10	11	13	14	15	
2.00	0.10	3	4	5	6	7	8	9	10	
1.00	0.05	2	2	3	4	5	6	6	7	
0.40	0.02	1	1	2	3	3	4	4	5	
0.20	0.01	$* *$	1	1	2	2	3	3	3	

$\underset{\infty}{\omega}$	$\mathrm{z}=49$		Probability content, P							
	$2 t_{f} / t_{p}$	t_{f} / t_{p}	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
	24.50	0.50	29	33	36	41	43	48	49	**
	9.80	0.20	12	15	16	19	20	23	24	26
	4.90	0.10	6	8	9	11	12	14	15	16
	2.45	0.05	3	5	5	7	8	9	10	11
	0.98	0.02	2	2	3	4	4	5	6	7
	0.49	0.01	1	1	2	3	3	4	4	5

Table Al7 (cont.). Upper limits of left prediction intervals for Poisson sequences with unknown parameter; $\mathrm{Z}=20$ and $\mathrm{Z}=49$.

		Probability content, P							
	$\mathrm{m} \lambda$	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
	0.01	0	0		0	1	1	1	1
	0.02	0	0	0	1	1	1	1	2
	0.04	0	0	0	1	1	1	2	2
	0.05	0	0	0	1	1	2	2	2
	0.10	0	0	1	1	1	2	2	3
	0.20	0	1	1	2	2	3	3	3
	0.25	0	1	1	2	2	3	3	4
	0.40	1	1	2	2	3	3	4	4
	0.49	1	1	2	3	3	4	4	5
	0.50	1	1	2	3	3	4	4	5
	0.58	2	2	3	4	4	5	6	6
	1.00	2	2	3	4	4	5	6	6
v	2.00	3	4	5	6	6	8	8	9
$\underset{\sim}{\omega}$	2.45	3	5	5	7	7	8	9	10
	2.50	3	5	5	7	7	9	9	10
	4.00	5	7	8	9	10	11	12	13
	4.90	6	8	9	11	11	14	15	15
	5.00	6	8	9	11	12	14	15	15
	9.80	12	14	15	18	19	21	22	23
	10.00	12	14	15	18	19	21	22	24
	20.00	23	26	28	31	32	35	36	39
	24.50	28	31	33	37	38	41	42	46
	25.00	29	32	33	37	39	42	43	47

Table A18. Upper limits of left prediction intervals for Poisson sequences with known parameter λ. (denominator in equation (II.33).) $m \lambda$ is the expected value of the Poisson distribution.

$\mathrm{Z}=1$		Probability content, P							
$z t_{f} / t_{p}$	t_{f} / t_{p}	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
10.00	10.00	2.25	2.86	3.27	****	****	****	****	****
5.00	5.00	2.33	2.50	2.78	3.18	3.33	****	****	****
2.00	2.00	2.00	2.25	2.20	2.67	2.83	2.75	3.00	3.11
1.00	1.00	1.50	2.50	2.00	2.25	2.50	2.40	2.17	2.67
0.50	0.50	2.00	3.00	1.50	1.67	2.00	1.75	2.00	2.00
0.20	0.20	****	1.00	2.00	1.50	1.50	1.33	1.67	2.00
0.10	0.10	***	****	1.00	2.00	2.00	1.50	1.50	1.33
0.05	0.05	***	***	****	1.00	2.00	1.00	1.00	1.50
0.02	0.02	****	****	****	1.00	1.00	2.00	2.00	1.00
0.01	0.01	****	****	****	****	1.00	1.00	1.00	2.00

	$\mathrm{Z}=2$		Probability content, P							
	$\mathrm{zt} \mathrm{f}_{\mathrm{f}} / \mathrm{t}_{\mathrm{p}}$	t_{f} / t_{p}	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
	20.00	10.00	1.74	****	****	****	****	****	****	****
	10.00	5.00	1.67	2.00	2.20	2.50	2.58	****	****	****
	4.00	2.00	1.60	1.71	1.75	2.11	2.10	2.36	2.33	2.54
	2.00	1.00	1.33	1.50	1.60	1.83	2.00	1.88	2.00	2.11
	1.00	0.50	1.00	2.00	1.33	1.50	1.75	1.80	1.67	1.83
	0.40	0.20	1.00	2.00	1.00	1.50	1.33	1.67	1.25	1.50
	0.20	0.10	****	1.00	1.00	1.00	1.50	1.00	1.33	1.67
	0.10	0.05	****	****	1.00	2.00	2.00	1.50	1.50	1.00
	0.04	0.02	*****	****	****	1.00	1.00	2.00	1.00	1.00
	0.02	0.01	****	****	****	1.00	1.00	1.00	2.00	1.00

Table Al9. Values of the penalty ratio (II.33) for Poisson sequences with unknown parameter. A is the number of events observed during the "past" time interval t_{p}; prediction is for the number of events during the "future" time interval t_{f}. For other values of z see continuation of the table.

$\mathrm{Z}=5$		Probability content, P							
Z t_{f} / t_{p}	t_{f} / t_{p}	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
50.00	10.00	****	****	****	****	****	****	****	****
25.00	5.00	1.31	1.50	****	****	****	****	****	****
10.00	2.00	1.25	1.43	1.53	1.61	1.68	1.81	1.82	1.88
5.00	1.00	1.33	1.38	1.33	1.45	1.50	1.50	1.47	1.67
2.50	0.50	1.33	1.20	1.40	1.29	1.43	1.33	1.44	1.50
1.00	0.20	1.00	1.50	1.00	1.25	1.25	1.40	1.17	1.33
0.50	0.10	1.00	2.00	1.00	1.00	1.33	1.25	1.25	1.20
0.25	0.05	****	1.00	1.00	1.00	1.50	1.00	1.33	1.00
0.10	0.02	****	****	1.00	1.00	2.00	1.00	1.00	1.00
0.05	0.01	****	****	****	1.00	1.00	1.00	1.00	1.00

O	$\mathrm{Z}=10$		Probability content, P							
	$2 t_{f} / t_{p}$	t_{f} / t_{p}	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
	20.00	2.00	1.17	1.27	1.32	1.42	1.50	****	****	****
	10.00	1.00	1.17	1.21	1.27	1.33	1.37	1.43	1.41	1.46
	5.00	0.50	1.17	1.13	1.22	1.27	1.25	1.21	1.20	1.33
	2.00	0.20	1.00	1.00	1.00	1.17	1.33	1.13	1.25	1.22
	1.00	0.10	1.00	1.50	1.00	1.00	1.25	1.20	1.00	1.17
	0.50	0.05	1.00	2.00	1.00	1.00	1.00	1.00	1.25	1.00
	0.20	0.02	****	1.00	1.00	1.00	1.00	1.00	1.00	1.33
	0.10	0.01	****	****	1.00	1.00	2.00	1.00	1.00	1.00

Table Al9 (cont.). Values of the penalty ratio (II.33) for Poisson sequences with unknown parameter; $\mathrm{Z}=5$ and $\mathrm{Z}=10$.

$z=20$		Probability content, P							
$z t_{f} / t_{p}$	t_{f} / t_{p}	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
20.00	1.00	1.09	1.15	1.14	1.23	1.25	1.29	1.31	$* * * *$
10.00	0.50	1.08	1.14	1.20	1.17	1.16	1.24	1.23	1.25
4.00	0.20	1.20	1.00	1.00	1.11	1.10	1.18	1.17	1.15
2.00	0.10	1.00	1.00	1.00	1.00	1.17	1.00	1.13	1.11
1.00	0.05	1.00	1.00	1.00	1.00	1.25	1.20	1.00	1.17
0.40	0.02	1.00	1.00	1.00	1.50	1.00	1.33	1.00	1.25
0.20	0.01	$* * * *$	1.00	1.00	1.00	1.00	1.00	1.00	1.00

$\stackrel{N}{N}$	$\mathrm{z}=49$		Probability content, P							
	$2 t_{f} / t_{p}$	t_{f} / t_{p}	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
	24.50	0.50	1.04	1.06	1.09	1.11	1.13	1.17	1.17	****
	9.80	0.20	1.00	1.07	1.07	1.06	1.05	1.10	1.09	1.13
	4.90	0.10	1.00	1.00	1.00	1.00	1.09	1.00	1.00	1.07
	2.45	0.05	1.00	1.00	1.00	1.00	1.14	1.13	1.11	1.10
	0.98	0.02	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.17
	0.49	0.01	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Table Al9 (cont.). Values of the penalty ratio (II.33) for Poisson sequences with unknown parameter; $\mathrm{Z}=20$ and $\mathrm{Z}=49$.
$\mathrm{n}=1$

	k^{2}	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
	1	2.00	8, 00	18.00	98.00	198.00	998.00	1998.00	9998.00
	2	1.51	4.39	7.57	21.14	31.66	73.62	105.96	243.12
	3	1.35	3.58	5.65	12.88	17.40	32.62	42.12	71.84
	4	1.28	3.19	4.85	9.99	13.09	23.03	25.85	42.51
	5	1.23	2.96	4.40	8.53	10.74	17.34	20.79	31.02
	6	1.19	2.80	4.14	7.73	9.46	14.70	17.37	24.97
	7	1.18	2.71	3.96	7.13	8.71	13.08	15.22	21.17
	8	1.16	2.64	3.77	6.67	8.14	11.91	13.72	18.52
	9	1.15	2.57	3.66	6.35	7.67	11.05	12.63	16.99
	10	1.14	2.51	3.56	6.13	7.31	10.41	11.85	15.64
	15	1.10	2.34	3.26	5.38	6.29	8.60	9.62	12.22
	20	1.08	2.26	3.10	4.94	5.77	7.74	8.59	10.67
	25	1.06	2.20	2.99	4.68	5.50	7.21	7.99	9.76
O	30	1.05	2.18	2,91	4.56	5.25	6.89	7.49	9.18
$\stackrel{\sim}{\omega}$	40	1.04	2.13	2.82	4.35	5.02	6.40	6.99	8.36
	50	1.03	2.09	2.75	4.22	4.77	6.06	6.66	7.95

Table A20. Values of the parameter $\beta_{\lambda}^{G}(n, k, P)$ in equation (II.35) for the construction of left-hand prediction intervals when sampling is from a Gamma sequence. The shape parameter of the Gamma distribution, k, is known while the parameter λ of the underlying exponential distribution is unknown. n is the available sample size; here $n=1$. For other values of n, see continuation of the table.
$\mathrm{n}=2$

	${ }^{P}$	0.7500	0,9000	0.9500	0. 9900	0.9950	0.9990	0.9995	0.9999
	1	1.00	3.32	5.94	17.00	25.28	60.26	86.44	197.00
	2	0.94	2.56	4.02	8.47	10.96	18.94	23.49	37.97
	3	0.91	2.30	3.46	6.60	8.23	12.80	15.11	21.66
	4	0.90	2.16	3.17	5.76	7.03	10.39	12.02	16.47
	5	0.89	2.09	3.01	5.30	6.35	9.09	10.37	13.81
	6	0.89	2.03	2.90	4.96	5.93	8.30	9.37	12.25
	7	0.88	1.99	2.82	4.75	5062	7.72	8.73	11.17
	8	0.88	1.96	2.74	4.57	5.40	7.36	8.25	10.47
	9	0.88	1.94	2.69	4.42	5.20	7.04	7.85	9.87
	10	0.87	1. 91	2.65	4.30	5.04	6.76	7.54	9.39
N $0 \sim$	15	0.86	1.84	2.53	3.98	4.72	6.03	6.65	8.10
$\stackrel{\sim}{*}$	20	0.86	1.81	2.44	3.78	4. 38	5.61	6.17	7.41
	25	0.85	1.78	2.38	3.68	4.19	5.37	5.86	6.98

Table A20 (cont.). Values of the parameter $\beta_{\lambda}^{G}(n, k, P)$ in equation (II.35) for lefthand prediction from Gamma sequences. Sample size: $n=2$.
$\mathrm{n}=5$

K	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
1	0.60	1.92	3.10	6.56	8.43	13.91	16.87	25.55
2	0.65	1.76	2.63	4.86	5.89	8.64	9.88	13.27
3	0.68	1.69	2.45	4.29	5.10	7.14	8.07	10.40
4	0.69	1.66	2.36	3.97	4.69	6.41	7.18	9.05
5	0.69	1.64	2.28	3.80	4.43	5.97	6.64	8.23
7	0.70	1.60	2.20	3.56	4.14	5.45	6.02	7.35
10	0.71	1.56	2.12	3.37	3.88	5.04	5.52	6.67

Table A20 (cont.). Values of the parameter $\beta_{\lambda}^{G}(n, k, P)$ in equation (II.35) for lefthand prediction from Gamma sequences. Sample size: $n=5$.

n	10							
p	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
1	0.49	1.59	2.49	4.85	5.99	8.95	10.38	14.12
2	0.57	1.54	2.27	4.00	4.76	6.64	7.50	9.56
3	0.60	1.51	2.17	3.68	4.32	5.83	6.51	8.12
4	0.62	1.49	2.11	3.48	4.08	5.40	5.99	7.32
5	0.63	1.48	2.07	3.35	3.89	5.13	5.66	6.90

k	P	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995
1	0.41	1.36	2.09	3.82	4.59	6.41	7.21	9.11

Table A20 (cont.). Values of the parameter $\beta_{\lambda}^{G}(n, k, P)$ in equation (II. 35) for lefthand prediction from Gamma sequences. Sample sizes: $n=10$, $n=20$, $n=50$.

${ }_{k}^{P}$	0:7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
1	0.386	1.303	1.996	3.605	4.299	5,908	6.601	8. 210
2	0.490	1.336	1.940	3.280	3.840	5.115	5.656	6.899
3	0.531	1.341	1.903	3.121	3.622	4.751	5.226	6.309
4	0. 555	1. 340	1.877	3.023	3.489	4531	4.967	5.957
5	0.570	1.339	1.858	2.954	3. 396	4.380	4.790	5.717
6	0.581	1.337	1.842	2.902	3.327	4.268	4.658	5.539
7	0. 589	1. 335	1.830	2.861	3.273	4.181	4.556	5.401
8	0.594	1.333	1.820	2.828	3. 229	4.111	4.474	5.290
9	0.600	1.332	1.811	2.801	3. 193	4.052	4.406	5.198
10	0.605	1.330	1.804	2.777	3.162	4.003	4.348	5.121
15	0.620	1.324	1.778	2.697	3.056	3.835	4.152	4.858
20	0. 628	1.320	1.762	2.649	2.993	3.735	4.036	4.703
25	0.633	1.317	1.750	2.615	2.949	3.667	3.956	4.597
30	0.638	1.314	1.742	2.591	2.917	3.616	3.898	4.519
40	0.648	1.311	1.730	2.556	2.871	3.545	3.815	4.410
50	0.656	1.308	1.721	2. 532	2.840'	3.497	3.759	4.336
∞	0.674	1.282	1.645	2. 326	2. 576	3.090	3.291	3.719

Table A2l. Values of the parameter $\beta_{P I}^{G}(k, P)$ in equations (II.36) and (II.37) for the construction of left-hand prediction intervals when sampling is from a Gamma sequence with known parameters.

	${ }_{k}{ }^{P}$	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
	1	5.18	6.14	9.02	27.18	46.06	168.92	302.68	1217.71
	2	3.08	3.29	3.90	6.45	8.25	14.39	18.73	35.24
	3	2.54	2.67	2.97	4.13	4.80	6.87 .	8.06	11.39
	4	2. 31	2.38	2.58	3.31	3.75	5.08	5.20	7.14
	5	2.16	2.21	2.37	2.89	3.16	3.96	4.34	5.43
	6	2.05	2.09	2.25	2.66	2.84	3.44	3.73	4.51
	7	2.00	2. 03	2.16	2.49	2.66	3.13	3.34	3.92
	8	1.95	1.98	2.07	2.36	2. 52	2.90	3.07	3.50
	9	1.92	1.93	2.02	2.27	2.40	2.73	2.87	3.27
	10	1.88	1.89	1.97	2.21	2.31	2.60	2.73	3.05
	15	1.78	1.77	1.83	1.99	2.06	2.24	2. 32	2.52
	20	1.72	1.71	1.76	1.86	1.93	2.07	2.13	2.27
	25	1.67	1.67	1.71	1.79	1.87	1.97	2.02	2.12
~18	30	1.65	1.66	1.67	1.76	1.80	1.91	1.92	2.03
∞	40	1.60	1.63	1.63	1.70	1.75	1.81	1.83	1.90
	50	1.57	1.60	1.60	1.67	1.68	1.73	1.77	1.83

Table A22. Values of the penalty ratio $r_{\lambda}^{G}(n, k, P)$ in equation (II.39) for left-hand prediction from Gamma sequences. The shape parameter k is known, while the parameter λ of the underlying exponential distribution is not. n is the available sample size; here $n=1$. For other values of n, see continuation of the table.

	$k P$	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
	1	2.59	2.55	2.98	4.72	5.88	10.20	13.09	23.99
	2	1.92	1.92	2.07	2.58	2.85	3.70	4.15	5.50
	3	1.71	1.72	1.82	2.11	2.27	2.69	2.89	3.43
	4	1.62	1.61	1.69	1.91	2.02	2.29	2.42	2.76
	5	1.56	1.56	1.62	1.79	1.87	2.08	2.17	2.42
	6	1.53	1.52	1. 57	1.71	1.78	1.94	2.01	2.21
	7	1.49	1.49	1.54	1.66	1.72	1.85	1.92	2.07
	8	1048	1.47	1.51	1.62	1.67	1.79	1.84	1.98
	9	1.47	1.46	1.48	1.58	1.63	1.74	1.78	1.90
	10	1.44	1.44	1.47	1.55	1.59	1.69	1.73	1.83
N	15	1.39	1.39	1.42	1.48	1.54	1.57	1.60	1.67
\bigcirc	20	1.37	1.37	1.38	1.43	1.46	1.50	1.53	1.58
	25	1.34	1.35	1.36	1.41	1.42	1.46	1.48	1.52

Table A22 (cont.). Values of the penalty ratio $r{ }_{\lambda}^{G}(n, k, P)$ in equation (II.39) for left-prediction from Gamma sequences. Sample size: $n=2$.

$$
\mathrm{n}=5
$$

P	0.7500	C 9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
1	1.55	1.47	1.55	1.82	1.96	2.35	2.56	3.11
2	1.33	1.32	1.36	1.48	1.53	1.69	1.75	1.92
3	1.28	1.26	1.29	1.37	1.41	1.50	1.54	1.65
4	1.24	1.24	1.26	1.31	1.34	1.41	1.45	1.52
5	1.21	1.22	1.23	1.29	1.30	1.36	1.39	1.44
7	1.19	1.20	1.20	1.24	1.26	1.30	1.32	1.36
10	1.17	1.17	1.18	1.21	1.23	1.26	1.27	1.30

Table A22 (cont.). Values of the penalty ratio $r_{\lambda}^{G}(n, k, P)$ in equation (II.39) for left-prediction from Gamma sequences. Sample size: $n=5$.
$\mathrm{n}=10$

k	P	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995
1	1.27	1.22	1.25	1.35	1.39	1.51	1.57	1.72
2	1.16	1.15	1.17	1.22	1.24	1.30	1.33	1.39
3	1.13	1.13	1.14	1.18	1.19	1.23	1.25	1.29
4	1.12	1.11	1.12	1.15	1.17	1.19	1.21	1.23
5	1.11	1.11	1.11	1.13	1.15	1.017	1.18	1.21

$\mathrm{n}=20$								
K	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
1	1.14	1.11	1.12	1.16	1.18	1.23	1.25	1.30
2	1.04	1.08	1.08	1.11	1.11	1.14	1.15	1.17

k	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
1	1.06	1.04	1.05	1.06	1.07	1.08	1.09	1.11

Table A22 (cont.). Values of the penalty ratio $r_{\lambda}^{G}(n, k, P)$ in equation (II.39) for left-prediction from Gamma sequences. Sample sizes: $n=10$, $\mathrm{n}=20, \mathrm{n}=50$.
$\mathrm{n}=1$

	$k \geq$	0.7500	0. 9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
	1	0.67	0.89	0.95	0.99	0.995	0.999	0.9995	0.9999
	2	0.73	1.07	1.19	1.33	1.35	1.39	1.40	1.41
	3	0.76	1.17	1.33	1.53	1.58	1.64	1.66	1.69
	4	0.78	1.23	1.42	1.67	1.74	1.84	1.86	1.91
	5	0.79	1.27	1.48	1.77	1.85	1.98	2.02	2.09
	6	0.80	1.31	1.54	1.86	1.95	2.10	2.15	2.23
	7	0. 81	1.34	1.59	1.93	2.03	2.20	2.25	2.35
	8	0.82	1.36	. 1.62	1.99	2.10	2.29	2.34	2.45
	9	0.83	1.38	1.65	2.04	2.16	2.36	2.42	2.57
	10	0. 83	1.40	1.67	2.09	2.21	2.43	2.50	2.63
	15	0.85	1.46	1.77	2. 25	2.40	2.67	2.76	2.94
	20	0.87	149	1.82	2.35	2. 52	2.83	2.94	3.15
	25	0.88	1.53	1.87	2.42	2.62	2.95	3.07	3.31
u	30	0.89	1.56	1.91	2.49	2.69	3.05	3.17	3.43
N	40	0889	1.58	1.95	2.58	2.79	3.18	3.32	3.60
	50	0.90	1.59	1.98	2.64	2. 86	3.26	3.42	3.74

Table A23. Values of the parameter $\beta_{\lambda}^{G}(n, k, P)$ in equation (II.40) for the construction of right-hand prediction intervals when sampling is from a Gamma sequence. The shape parameter, k, is known, while the parameter λ of the underlying exponential distribution is not. n is the available sample size, here $n=1$. For other values of n, see continuation of the table.
$\mathrm{n}=2$

K	P	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
1	0.69	0.89	0.95	0.99	0.995	0.999	0.9995	0.9999	
2	0.73	1.06	1.18	1.32	1.35	1.39	1.39	1.41	

Table A23 (cont.). Values of the parameter $\beta_{\lambda}^{G}(n, k, P)$ in equation (II. 40) for rightprediction from Gamma sequences. Sample size: $n=2$.
$\mathrm{n}=5$

N

Table A23 (cont.). Values of the parameter $\beta_{\lambda}^{G}(n, k, P)$ in equation (II.40) for rightprediction from Gamma sequences. Sample size: $n=5$.
$\mathrm{n}=10$

k	P	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995
1	0.71	0.89	0.95	0.99	0.995	0.999	0.9995	0.9999
2	0.74	1.04	1.17	1.31	1.34	1.38	1.39	1.40
3	0.74	1.10	1.27	1.48	1.54	1.63	1.65	1.68
4	0.75	1.15	1.33	1.60	1.67	1.79	1.82	1.88
5	0.75	1.18	1.38	1.68	1.77	1.90	1.95	2.04

$ज$

$\mathrm{n}=20$								
K	P	0.7500	$\mathrm{C.9000}$	0.9500	0.9900	0.9950	0.9990	0.9995
1	0.71	0.90	0.95	0.99	0.995	0.999	0.9995	0.9999
2	0.74	1.04	1.16	1.31	1.34	1.38	1.39	1.40

| k | P | 0.7500 | 0.9000 | 0.9500 | 0.9900 | 0.9950 | 0.9990 | 0.9995 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.9999.

Table A23 (cont.). Values of the parameter $\beta_{\lambda}^{G}(n, k, P)$ in equation (II.40) for rightprediction from Gamma sequences. Sample sizes: $n=10$, $n=20$, $\mathrm{n}=50$.

Table A24. Values of the parameter $\beta_{\mathrm{P}}^{\mathrm{G}}(\mathrm{k}, \mathrm{P})$ for the construction of right-hand prediction intervals when sampling is from a Gamma sequence with known parameters.
$\mathrm{n}=1$

	k	0,7500	C 29000	0,9500	0 ± 9900	0.9950	0.9990	0.99995	0.9999
	1	0.94	0.99	1.00	1.00	1.00	1.00	1.00	1.00
	2	0.99	1.03	1.02	1.02	1.01	1.01	1.01	1.00
	3	1.03	1.07	1.06	1.03	1.03	1.01	1.01	1.09
	4	1.06	1.09	1.08	1.05	1.05	1.03	1.02	1.01
	5.	1.08	1.11	1.09	1.06	1.05	1.04	1.03	1.03
	6	1.10	1.13	1.11	1.08	1.07	1.05	1.05	1.03
	7	1.12	1.14	1.13	1.09	1.08	1.06	1.05	1.04
	8	1.13	1.15	1. 14	1.10	1.09	1.07	1.06	1.05
	9	1.15	1.16	1.15	1.11	1.10	1.08	1.07	1.07
	10	1.15	1.17	1.15	1.13	1.11	1.09	1.08	1.07
	15	1.19	1.20	1.19	1.16	1.15	1.12	1.11	1.10
	20	1.23	1.22	1.21	1.18	1.17	1.15	1.14	1.12
	25	1.25	1.24	1.23	1.19	1.19	1.16	1.16	1.14
v	30	1.26	1.26	1.24	1. 21	1.20	1.18	1.17	1.16
\checkmark	40	1.27	1.27	1.26	1.23	1.22	1.20	1.19	1.18
	50	1.29	1.27	1.27	1.25	1.24	1.21	1.21	1.19

Table A25. Values of the penalty ratio $r_{\lambda}^{G}(n, k, P)$ for right-hand prediction from Gamma sequences. The shape parameter k is known, while the parameter λ of the underlying exponential distribution is not. n is the available sample size, here $n=1$. For other values of n, see continuation of the table.
$\mathrm{n}=2$

	k ${ }^{\text {P }}$	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
	1	0.97	0. 99	1.00	1.00	1.00	1.00	1.00	1.00
	2	0.99	1.02	1.01	1.01	1.01	1.01	1.00	1.00
	3	1.02	1.04	1.03	1.02	1.01	1.01	1.01	1.00
	4	1.04	1.06	1.05	1.03	1.03	1.02	1.02	1.00
	5	1.06	1.06	1.06	1.04	1.04	1.02	1.02	1.02
	7	1,08	1.07	1.07	1.05	1.05	1.04	1.03	1.03
	10	1.10	1.10	1.09	1.07	1.07	1.06	1.05	1.04
	15	1.12	1.12	1.11	1.08	1.08	1.07	1.07	1.06
	20	1.13	1.14	1.13	1.10	1.10	1.09	1.08	1.08
\cdots	25	1.13	1.15	1.14	1.12	1.11	1.10	1.10	1.09

Table A25 (cont.). Values of the penalty ratio $r_{\lambda}^{G}(n, k, P)$ for right-prediction from Gamma sequences. Sample size: $n=2$.
$\mathrm{n}=5$

KP	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
1	0.98	0.99	1.00	1.00	1.00	1.00	1.00	1.00
2	0.99	1.01	1.01	1.01	1.00	1.00	1.00	1.00
3	1.01	1.02	1.02	1.01	1.01	1.00	1.00	1.00
4	1.02	1.02	1.02	1.02	1.02	1.01	1.01	1.01
5	1.03	1.03	1.03	1.02	1.02	1.01	1.01	1.01
7	1.03	1.04	1.03	1.02	1.02	1.02	1.02	1.02
10	1.04	1.05	1.04	1.04	1.04	1.03	1.03	1.02

Table A25 (cont.). Values of the penalty ratio $r_{\lambda}^{G}(n, k, P)$ for right-prediction from Gamma sequences. Sample size: $n=5$.
$\mathrm{n}=10$

$\mathrm{k} P$	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2	1.00	1.00	1.01	1.00	1.00	1.00	1.00	1.00
3	1.01	1.01	1.01	1.00	1.00	1.00	1.00	1.00
4	1.02	1.02	1.01	1.01	1.00	1.00	1.00	1.00
5	1.03	1.03	1.02	1.01	1.01	1.00	1.00	1.00

$\mathrm{n}=20$

k	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995	0.9999
1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Ö
$\mathrm{n}=50$

k	P	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	0.9995
1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Table A25 (cont.). Values of the penalty ratio $r_{\lambda}^{G}(n, k, P)$ for right-prediction from Gamma sequences. Sample sizes: $n=10, n=20, n=50$.

						LEFT P	PREDICTION		INTERVAL		$V_{Y}=0.05$					0.9995 I	
	$1 \mathrm{n} P 110.7500$. 9000	I	. 9500	1	0.9900	I	0.9950	1	0.9990	1		
	I	2	11	1.177	1	3.921	1	8.950	1	114.365	I	916.461	1	*******	I	*******	1
	1	3	II	0.893	1	2.164	I	3.468	-	9.390	1	14.681	1	49.972	1	98.758	I
	1	4	11	0.807	1	1.799	I	2.649	1	5.470	I	7.317	1	14.614	1	20.117	1
	I	5	II	0.764	1	1.642	1	2.331	1	4.310	1	5.430	1	9.131	1	11.438	I
	1	6	11	0.737	1	1.554	I	2.162	1	3.764	1	4.601	1	7.099	1	8.514	
	I	7	11	0.721	1	1.499	1	2.057	1	3.458	1	4.143	,	6.085	1	7.114	I
	1	8	II	0.707	1	1.458	1	1.986	I	3.254	1	3.854	1	5.470	1	6.294	1
	I	9	11	0.698	I	1.430	1	1.934	1	3.114	I	3.654	I	5.108	I	5.767	1
	1	10	II	0.690	I	1.407	I	1.895	1	3.008	I	3.508	I	4.783	I	5.394	I
	1	11	11	0.684	I	1.387	I	1.864	I	2.928	1	3.398	1	4.562	1	5.120	I
	1	12	II	0.679	I	1.374	I	1.839	I	2.865	I	3.312	1	4.407	1	4.915	I
	I	13	II	0.674	1	1.363	1	1.819	1	2.815	1	3.242	1	4.277	1	4.752	I
g	1	14	11	0.671	1	1.352	1	1.801	-	2.771	I	3.184	1	4.170	1	4.618	1
$\stackrel{ }{\circ}$	1	15	11	0.668	1	1.344	1	1.787	-	2.736	1	3.135	1	4.084	1	4.509	I
	1	16	11	0.665	1	1.336	1	1.774	I	2.706	I	3.094	1	4.011	1	4.418	I
	1	17	11	0.663	1	1.330	I	1.764	I	2.679	I	3.059	I	3.946	1	4.338	1
	1	18	11	0.661	I	1.323	1	1.753	1	2.655	I	3.029	I	3.890	I	4.269	I
	I	19	11	0.659	I	1.319	I	1.745	I	2.635	1	3.001	1	3.844	,	4.213	I
	1	20	11	0.658	1	1.315	1	1.738	1	2.618	.	2.978	1	3.803	I	4.162	I
	1	21	II	0.656	I	1.309	I	1.730	1	2.601	1	2.956	1	3.764	1	4.115	I
	I	31	11	0.649		1.286	I	1.688	1	2.507	1	2.827	1	3.548	1	3.849	1
	1	41	11	0.643	1	1.272	I	1.667	1	2.456	1	2.765	1	3.440		3.719	I
	I	61	11	0.639	I	1.261	I	1.646	I	2.413	,	2.705	1	3.343	1	3.602	I
	1	121	11	0.634	I	1.247	1	1.627	1	2.365		2.646	1	3.245	1	3.484	
	1	∞	II	0.628	1	1.235	I	1.606	I	2.321	I	2.590	I	3.153	I	3.377	I

Table A26. Values of the coefficient $\beta_{\mu}^{L N} \sigma\left(V_{Y}, n, P\right)$ in equation (II.45) for left-hand prediction in lognormal sequences with unknown mean and variance. V_{Y} is the estimated coefficient of variation of the lognormal population and n is the sample size. For other values of V_{Y}, see continuation of the
table.

Table A26 (cont.). Values of the coefficient $\beta_{\mu, \sigma}^{L N}\left(V_{Y}, n, P\right)$ in equation (II.45) for left-prediction in lognormal'sequences with unknown mean and variance. Estimated coefficient of variation: $V_{Y}=0.10$.

						EFT P	PRECICTION		INTERVAL		$V_{Y}=0.20$					0.9995 I	
			11	. 7500	I	9000	1	0.9500	I	0.9900	1	0.9950	1	0.9990			
	I	2	11	1.045	1	4.473	1	14.787	I	*******	I	*******	1	*******		*******	1
	1	3	II	0.760	1	2.131	I	3.815	1	15.996	1	35.502	1	673.651	I	*******	I
	1	4	II	0.676	1	1.712	I	2.723	1	7.028	I	10.766	I	35.188	1	67.561	1
	I	5	II	0.634	I	1.538	I	2.330	1	5.068	I	6.955	1	15.278	1	22.401	1
	1	6	II	0.609	I	1.441	I	2.128	1	4.241	1	5.534	I	10.282	I	13.643	I
	I	7	II	0.593	1	1.383	I	2.006	I	3.801	I	4.808	1	8.185	I	10.317	I
	I	8	II	0.579	1	1.339	1	1.924	I	3.518	1	4.372	I	7.028	1	8.596	I
	I	9	II	0.571	1	1.309	I	1.864	I	3.328	I	4.081	1	6.385	I	7.576	I
	I	10	II	0.563	1	1.284	I	1.820	1	3.187	1	3.872	I	5.833	I	6.891	I
	1	11	II	0.558	1	1.264	I	1.784	1	3.081	,	3.718	I	5.471	I	6.406	I
	1	12	II	0.553	I	1.250	I	1.756	1	3.000	1	3.598	1	5.222	I	6.056	
	1	13	11	0.548	I	1.238	1	1.734	I	2.935	I	3.501	I	5.017	I	5.782	I
G	1	14	11	0.546	1	1.226	I	1.714	I	2.878	I	3.423	1	4.851	1	5.561	
$\stackrel{\text { ® }}{ }$	1	15	11	0.543	1	1.218	1	1.698	I	2.834	I	3.357	1	4.718	1	5.385	1
	1	16	II	0.540	1	1.210	I	1.684	I	2.795	I	3.302	,	4.607	1	5.238	I
	1	17	11	0.538	1	1.204	1	1.672	1	2.760	I	3.254	1	4.511	I	5.112	I
	1	18	11	0.536	1	1.196	I	1.660	1	2.730	I	3.215	1	4.427		5.004	I
	1	19	11	0.534	1	1.192	I	1.651	I	2.706	I	3.178	I	4.359	1	4.917	1
	1	20	II	0.533	1	1.188	I	1.643	1	2.684	I	3.148		4.298	1	4.839	I
	1	21	11	0.531	1	1.181	I	1.635	1	2.662	1	3.119	1	4.241	I	4.766	I
	1	31	11	0.524	I	1.157		1.588	I	2.545	1	2.950	I	3.928	I	4.365	I
	1	41	11	0.518	1	1.143	I	1.565	I	2.483	1	2.870	I	3.776	I	4.175	1
	,	61	11	0.515		1.132	1	1.542	1	2.430	I	2.794	I	3.641	I	4.006	I
	I	121	11	0.510	1	1.117	1	1.521	1	2.372	I	2.719	1	3.506	I	3.837	I
	1		11	0.504	I	1.104	1	1.498	I	2.319	I	2.649	I	3.381	I	3.688	I

Table A26 (cont.). Values of the coefficient $\beta_{\mu, \sigma}^{L N}\left(V_{Y}, n, P\right)$ in equation (II.45) for left-prediction in lognormal'sequences with unknown mean and variance. Estimated coefficient of variation: $\mathrm{V}_{\mathrm{Y}}=0.20$.

					LEFT		PREDICTION		INTERVAL		$\mathrm{V}_{\mathrm{Y}}=0.40$					0.9995	
	1 n P 110.7500				1	. 9000	1	0.9500	1	0.9900	I	0.9950	1	0.9990	1		
	1	2	II	0.895	I	5.439	I	31.623	1	*******	1	*******	1	*******	I	*******	
	1	3	11	0.613	1	2.104	I	4.403	1	35.896	1	138.785	1	*******	I	*******	
	I	4	11	0.532	1	1.612	1	2.855	I	10.193	I	19.215	1	136.635	1	443.110	
	1	5	11	0.494	1	1.417	I	2.350	1	6.444	1	10.041	1	33.328	1	62.669	
	1	6	11	0.470	1	1.311	1	2.101	1	5.065	I	7.273	1	17.911	1	27.811	
	1	7	11	0.455	1	1.248	1	1.954	I	4.381	1	5.997	1	12.725	1	18.003	
	I	8	11	0.442	1	1.201	1	1.857	1	3.961	I	5.275	1	10.193	I	13.680	
	,	9	11	0.434	1	1.169	I	1.787	I	3.686	I	4.812	1	8.889	1	11.363	
	1	10	II	0.427	I	1.143	I	1.736	I	3.486	I	4.490	I	7.826	1	9.909	
	1	11	11	0.422	I	1.121	I	1.695	1	3.338	I	4.256	1	7.158	1	8.930	
	1	12	11	0.418	I	1.106	I	1.662	1	3.226	1	4.078	I	6.712	1	8.248	
	I	13	11	0.414	1	1.094	I	1.637	I	3.137	1	3.936		6.355	I	7.730	
a	1	14	II	0.411	I	1.081	I	1.614	I	3.061	I	3.822	1	6.070	I	7.322	
$\stackrel{\text { ® }}{ }$	1	15	11	0.408	1	1.072	I	1.596	1	3.001	1	3.727	I	5.845	I	7.004	
	1	16	11	0.406	1	1.065	I	1.580	1	2.949	1	3.648	I	5.661	I	6.742	
	1	17	11	0.404	I	1.058	I	1.567	I	2.904	I	3.581	1	5.501		6.520	
	1	18	11	0.402	1	1.050	I	1.554	I	2.864	I	3.525	I	5.364	I	6.333	
	I	19	II	0.401	1	1.046	I	1.543	I	2.831	I	3.474	1	5.254	I	6.183	
	1	20	11	0.400	1	1.041	1	1.534	I	2.803	I	3.431	1	5.156	I	6.048	
	I	21	11	0.398	1	1.035	1	1.525	1	2.774	I	3.390	I	5.065	I	5.925	
	I	31	II	0.391	1	1. 009	1	1.473	1	2.622	I	3.158	-	4.576	1	5.264	
	I	41	II	0.386	1	0.995	1	1.447	-	2.542	I	3.050	,	4.343		4.960	
	1	61	11	0.383	1	0.983	1	1.422	I	2.475	I	2.948	-	4.142	I	4.695	
	1	121	11	0.378	1	0.968	I	1.398	1	2.401	I	2.849	,	3.943	I	4.437	
	1	∞	II	0.373	1	0.955	I	1.374	I	2.335	I	2.756	1	3.761	I	4.211	

$\begin{aligned} \text { Table A26 (cont.). } & \text { Values of the coefficient } \beta_{\mu}{ }_{\mu}{ }^{\alpha N}\left(V_{Y}, n, P\right) \text { in equation (II.45) for } \\ & \text { left-prediction in lognormal sequences with unknown mean and } \\ & \text { variance. Estimated coefficient of variation: } V_{Y}=0.40 .\end{aligned}$

						LEFT	PREDICTION		INTERVAL		$V_{Y}=0.05$					0.99951	
		n	II	. 7500	1	. 9000	1	0.9500	I	0.9900	I	0.9950	1	0.9990	1		
	I	2	11	1.875	1	3.175	I	5.572	I	49.272	1	353.883	I	*******	1	*******	I
	1	3	II	1.423	I	1.752	I	2.159	I	4.045	I	5.669	I	15.851	1	29.246	I
	I	4	11	1.285	1	1.457	1	1.649	1	2.357	1	2.825	I	4.635	1	5.957	
	I	5	II	1.217	I	1.330	I	1.451	I	1.857	1	2.097	1	2.896	1	3.387	I
	1	6	11	1.174	1	1.258	I	1.346	I	1.622	1	1.777	I	2.252	1	2.521	
	I	7	11	1.148	1	1.214	1	1.281	1	1.490	1	1.600	I	1.930	I	2.107	
	1	8	II	1.126	1	1.181	1	1.237	1	1.402	1	1.488	I	1.735	I	1.864	
	I	9	11	1.111	I	1.158	I	1.204	1	1.342	I	1.411	I	1.620	I	1.708	
	1	10	11	1.099	1	1.139	1	1.180	I	1.296	I	1.355	1	1.517	I	1.597	
	1	11	II	1.089	1	1.124	1	1.160	1	1.261	1	1.312	1	1.447	I	1.516	
	1	12	11	1.082	I	1.113	I	1.145	1	1.234	1	1.279	1	1.398	1	1.456	
	1	13	11	1.074	I	1.104	I	1.132	1	1.213	I	1.252	I	1.357	,	1.407	
g	1	14	11	1.069	I	1.095	I	1.121	1	1.194	1	1.229	,	1.323	1	1.368	
9	1	15	II	1.064	I	1.088	1	1.112	1	1.179	1	1.211		1.295	I	1.335	
	1	16	II	1.060	1	1.082	1	1.105	I	1.166		1.195		1.272	I	1.308	
	1	17	11	1.056	I	1.077	1	1.098	1	1.154	1	1.181		1.252	1	1.285	
	1	18	II	1.053	1	1.072	I	1.092	1	1.144	1	1.170	1	1.234	1	1.264	
	1	19	11	1.050	1	1.068	I	1.086	I	1.135		1.159	I	1.219	1	1.248	
	1	20	11	1.049	1	1.065	I	1.082	1	1.128	1	1.150	1	1.206	I	1.233	
	1	21	11	1.045	I	1.060	I	1.077	I	1.120		1.141	1	1.194	I	1.219	
	1	31	11	1.033	1	1.041	I	1.051	1	1.080	I	1.092	I	1.125	I	1.140	
	1	41	11	1.023	I	1.030	I	1.038	1	1.058	1	1.067	I	1.091	1	1.101	
	1	61	II	1.017	I	1.021	I	1.025	I	1.040	1	1.044		1.060	I	1.067	
	1	121	11	1.009	I	1.010	1	1.013	I	1.019		1.022	I	1.029	I	1.032	
	1	∞	II	1.000	I	1.000	1	1.000	1	1.000	I	1.000	I	1.000	1	1.000	

Table A27. Values of the penalty ratio $r_{\mu}^{L N}\left(V_{Y}, n, P\right)$ in equation (II.47) for left-hand prediction in lognormal sequences with unknown mean and variance. V_{V} is the estimated coefficient of variation and n is the sample size. For other values of V_{Y}, see continuation of the table.
LEFT PREDICTION INTERVAL $\quad V_{Y}=0.10$

Table A27 (cont.). Values of the penalty ratio $r_{\mu}^{L N}\left(V_{Y}, n, P\right)$ in equation (II.47) for left-prediction in lognormal séquences with unknown mean and variance. Estimated coefficient of variation: $\mathrm{V}_{\mathrm{Y}}=0.10$.

						LEFT		ICTION		TERVAL		$\mathrm{V}_{\mathrm{Y}}=$					
			11	0.7500	1	0.9000	1	0.9500	1	0.9900	I	0.9950	1	0.9990	1	0.9995	1
	1	2	11	2.071	1	4.050	1	9.869	1	*******	I	*******	I	*******	1	*******	I
	I	3	II	1.506	1	1.930	I	2.546	1	6.899	I	13.404	1	199.265	I	*******	I
	I	4	11	1.339	1	1.550	1	1.818	1	3.031	1	4.065	1	10.409	1	18.320	1
	1	5	II	1.257	1	1.393	I	1.555	1	2.186	1	2.626	1	4.519	1	6.074	1
	1	6	11	1.207	1	1.305	1	1.420	1	1.829	1	2.089	I	3.041	1	3.700	I
	1	7	II	1.175	1	1.252	1	1.339	1	1.639	1	1.815	1	2.421	1	2.797	I
	1	8	II	1.148	1	1.212	I	1.284	1	1.517	1	1.651	1	2.079	1	2.331	I
	I	9	II	1.132	I	1.186	1	1.244	1	1.436	1	1.541	1	1.889	I	2.054	1
	1	10	11	1.117		1.163	I	1.215	I	1.374	I	1.462	1	1.725	1	1.869	1
	I	11	11	1.105	1	1.144	I	1.191	1	1.329	1	1.404	1	1.618	1	1.737	1
	I	12	11	1.096	I	1.132	1	1.172	1	1.294		1.358	1	1.545		1.642	I
	1	13	II	1.087	1	1.121	1	1.157	1	1.266		1.322	1	1.484	-	1.568	I
v	1	14	11	1.081	I	1.110	I	1.144	I	1.241	I	1.292	I	1.435	I	1.508	1
9	1	15	11	1.076	1	1.103	I	1.133	I	1.222	I	1.267	1	1.396	1	1.460	I
	1	16	II	1.070	I	1.096	1	1.124	1	1.205	I	1.247	1	1.363	I	1.420	I
	1	17	11	1.066	I	1.090	I	1.116	1	1.191	1	1.229	I	1.334	1	1.386	I
	1	18	11	1.063	I	1.083	I	1.108		1.178		1.214		1.309	I	1.357	I
	I	19	II	1.059	I	1.079	I	1.102	-	1.167	1	1.200	,	1.289	,	1.333	I
	I	20	11	1.057	I	1.075	I	1.097	1	1.158	1	1.188	1	1.271	I	1.312	1
	1	21	11	1.054	I	1.070	I	1.091	I	1.148	1	1.177		1.254	1	1.292	1
	I	31	II	1.039	I	1.048	I	1.060		1.098	1	1.114	I	1.162	I	1.184	1
	1	41	II	1.028	I	1.035	I	1.045	1	1.071	,	1.084	1	1.117		1.132	I
	1	61	II	1.020		1.025	1	1.029	I	1.048	-	1.055	,	1.077	-	1.086	I
		121	11	1.011	I	1.011	1	1.015	1	1.023	1	1.027	I	1.037	,	1.041	I
	1	∞	11	1.000	1	1.000	I	1.000	I	1.000	I	1.000	I	1.000	1	1.000	I

Table A27 (cont.). Values of the penalty ratio $r_{\mu}^{\mathrm{LN}}\left(\mathrm{V}_{\mathrm{Y}}, \mathrm{n}, \mathrm{P}\right)$ in equation (II.47) for left-prediction in lognormal séquences with unknown mean and variance. Estimated coefficient of variation: $V_{Y}=0.20$.

I	2	II	2.397	I	5.694	1	23.024	1	*******	I	*******	I	*******	I	******
I	3	11	1.643	1	2.203	1	3.206	I	15.373	1	50.352	1	*******	1	*******
1	4	11	1.427	I	1.687	I	2.078	I	4.365	1	6.971	1	36.329	1	105.219
1	5	11	1.323	I	1.483	1	1.711	I	2.760	I	3.643	1	8.861	1	14.881
1	6	11	1.258	1	1.373	1	1.530	1	2.169	I	2.639	1	4.762	I	6.604
1	7	11	1.218	1	1.306	1	1.423	1	1.876	1	2.176	1	3.383	1	4.275
1	8	11	1.185	1	1.257	1	1.352	I	1.696	I	1.914	1	2.710	1	3.248
1	9	II	1.164	I	1.224	I	1.301	1	1.579	1	1.746	1	2.363	I	2.698
1	10	11	1.145	1	1.196	1	1.264	1	1.493	1	1.629	1	2.081	1	2.353
1	11	11	1.131	1	1.174	1	1.234	1	1.430	I	1.544	1	1.903	1	2.121
1	12	11	1.120	1	1.158	1	1.210	1	1.382	1	1.479	1	1.785		1.959
1	13	11	1.108	1	1.145	I	1.192	1	1.344	1	1.428	1	1.690	1	1.835
I	14	11	1.101	1	1.132	I	1.175	1	1.311	1	1.387	I	1.614	I	1.739
1	15	II	1.094	I	1.123	I	1.162	I	1.285	I	1.352	1	1.554	I	1.663
I	16	II	1.087	I	1.115	I	1.150	I	1.263	1	1.324	1	1.505	1	1.601
1	17	11	1.083	1	1.108	1	1.141	I	1.243	I	1.299	,	1.463	1	1.548
1	18	II	1.078	1	1.099	I	1.131	I	1.226	1	1.279	-	1.426	I	1.504
1	19	11	1.073	1	1.095	1	1.124	1	1.212	I	1.260	1	1.397	1	1.468
I	20	II	1.071	1	1.090	I	1.117	I	1.200	I	1.245	I	1.371		1.436
I	21	II	1.066	1	1.083	I	1.110		1.188	I	1.230	,	1.347	I	1.407
,	31	11	1.048	1	1.057	I	1.072	I	1.123		1.146		1.217	1.	1.250
I	41	11	1.034		1.042	1	1.054	1	1.089	1	1.107	-	1.155	1	1.178
1	61	II	1.025	1	1.029	I	1.035	I	1.060	1	1.069	,	1.101	1	1.115
1	121	11	1.014	I	1.014	I	1.018	1	1.028	1	1.034	1	1.048	I	1.053
1	∞	11	1.000	1	1.000	1	1.000	1	1.000	1	1.000	1	1.000	1	1.000

Table A27 (cont.). Values of the penalty ratio $r_{\mu, \sigma}^{L N}\left(V_{Y}, n, P\right)$ in equation (II.47) for left-prediction in lognormal sequences with unknown mean and variance. Estimated coefficient of variation: $\mathrm{V}_{\mathrm{Y}}=0.40$.

						RIGHT P	RE	ICTION	IN	TERVAL	$v_{\mathrm{Y}}=0.05$						
			11	0.7500	1	0.9000	I	0.9500	1	0.9900	1	0.9950	1	0.9990	I	0.9995	
	1	2	11	1.153	I	3.291	1	6.122	1	16.337	1	18.664	I	19.051	1	19.051	
	1	3	11	0.899	1	1.986	1	2.974	1	6.322	1	8.318	1	13.806	1	15.978	
	1	4	11	0.819	1	1.687	1	2.368	1	4.287	1	5.321	I	8.297	1	9.808	
	1	5	II	0.780	1	1.556	1	2.119	1	3.554	1	4.262	1	6.205	1	7.177	
	I	6	11	0.756	1	1.480	1	1.984	1	3.183	1	3.744	I	5.206	1	5.917	
	I	7	II	0.740	I	1.434	1	1.899	1	2.967	1	3.442	1	4.648	1	5.215	
	1	8	II	0.727	1	1.399	1	1.842	1	2.820	1	3.245	1	4.287	1	4.766	
	1	9	11	0.719	I	1.375	I	1.799	1	2.717	1	3.106	1	4.065	1	4.463	
	I	10	11	0.712	1	1.354	I	1.767	1	2.639	1	3.003	1	3.861	,	4.241	
	1	11	11	0.706	1	1.338	1	1.741	1	2.579	I	2.924	1	3.719	1	4.073	
	i	12	11	0.702	1	1.326	1	1.720	1	2.532	I	2.862	I	3.618	1	3.945	
	1	13	11	0.697	I	1.316	I	1.704	1	2.494	1	2.811		3.532	1	3.841	
g	I	14	11	0.694	I	1.307	,	1.689	1	2.461	1	2.769	,	3.460	1	3.755	
\bigcirc	1	15	11	0.692	I	1.299	I	1.677	1	2.434	1	2.733	I	3.402	,	3.685	
	1	16	11	0.689	I	1.293	I	1.666	I	2.411	1	2.703	I	3.353	I	3.625	
	1	17	11	0.687	1	1.288	1	1.658	I	2.390		2.676	,	3.309	I	3.572	
	1	18	II	0.685	I	1.282	I	1.649	1	2.372	1	2.654	1	3.270	I	3.526	
	1	19	II	0.683	1	1.278	1	1.642	I	2.357	I	2.634	1	3.238	,	3.489	
	1	20	11	0.682	I	1.275	I	1.636	I	2.343	1	2.617	1	3.210		3.455	
	1	21	11	0.680	1	1.269	1	1.630	1	2.330	1	2.600	I	3.183	1	3.423	
	1	31	II	0.673	I	1.249	1	1.594	1	2.257	1	2.503	1	3.031	1	3.242	
	1	41	II	0.668	I	1.237	I	1.577	I	2.218	1	2.456	1	2.954		3.151	
	1	61	11	0.664	1	1.227	I	1.559	1	2.184	I	2.410	1	2.885	I	3.069	
	I	121	11	0.659	1	1.215	I	1.543	I	2.146	I	2.365	I	2.813	,	2.985	
	1	∞	11	0.654	1	1.204	,	1.525		2.111	I	2.322	1	2.746	,	2.909	

Table A28. Values of the coefficient $\beta_{\mu, \sigma}^{\mathrm{LN}}\left(\mathrm{V}_{\mathrm{Y}}, \mathrm{n}, \mathrm{P}\right)$ in equation (II.46) for right-hand prediction in lognormal sequences with unknown mean and variance. V_{v} is the estimated coefficient of variation of the lognormal population and n is the sample size. For other values of V_{Y}, see continuation of the table.

						RIGHT PREDICTION INTERVAL						$V_{Y}=0.10$					
	1		II	0.7500	1	0.9000	I	0.9500	1	0.9900	I	0.9950	I	0.9990	I	. 9995	
	I	2	II	1.086	1	2.883	1	4.911	I	8.911	1	9.092	1	9.096	I	9.096	
	1	3	11	0.857	1	1.813	I	2.630	I	5.039	1	6.210	I	8.405	I	8.858	
	I	4	11	0.785	1	1.556	1	2.134	I	3.642	1	4.377	1	6.199	1	6.955	
	I	5	11	0.749	1	1.442	I	1.926	1	3.087	I	3.624	1	4.965	1	5.565	
	1	6	11	0.727	1	1.376	1	1.811	1	2.797	1	3.234	1	4.299	1	4.778	
	I	7	II	0.713	1.	1.335	I	1.739	1	2.625	I	3.000	I	3.905	1	4.304	
	1	8	11	0.701	1	1.304	1	1.689	I	2.506	1	2.846		3.642	1	3.990	
	1	9	II	0.693	1	1.283	I	1.652	1	2.423	I	2.736	I	3.477	I	3.771	
	I	10	11	0.687	I	1.265	I	1.625	1	2.358	1	2.654	I	3.323	I	3.608	
	I	11	11	0.682	1	1.250	1	1.603	1	2.309	1	2.590	1	3.215	1	3.483	
	1	12	11	0.677	1	1.240	I	1.585	I	2.270	1	2.540	I	3.137	1	3.387	
	I	13	II	0.673	I	1.231	1	1.570	1	2.239	1	2.499	1	3.071	1	3.308	
G	1	14	11	0.671	I	1.222	1	1.558	1	2.212	1	2.464	I	3.015	1	3.242	
$\stackrel{1}{0}$	I	15	11	0.668	1	1.216	1	1.547	I	2.190	1	2.435	I	2.969	I	3.188	
	1	16	II	0.666	I	1.211	I	1.538	,	2.170	1	2.411	1	2.931	I	3.142	
	I	17	II	0.664	I	1.206	I	1.530	1	2.153	I	2.389	I	2.896	I	3.102	
	1	18	II	0.662	1	1.200	I	1.523	I	2.138	I	2.371		2.866	1	3.066	
	1	19	11	0.661	1	1.197	1	1.517	,	2.125	1	2.354	1	2.841	,	3.037	
	1	20	11	0.660	1	1.194	1	1.512		2.114	I	2.340	1	2.818	1	3.011	
	I	21	II	0.658	1	1.189	I	1.506	1	2.103	I	2.327	1	2.797	,	2.986	
	1	31	II	0.651	1	1.171	I	1.475	I	2.042	1	2.247		2.676	I	2.843	
	I	41	11	0.646	I	1.161	I	1.460	1	2.009	1	2.208		2.614	I	2.772	
	I	61	11	0.643	I	1.152	1	1.445	I	1.981	1	2.170	1	2.558		2.707	
	1	121	II	0.639	I	1.141	I	1.430	I	1.949	1	2.132	I	2.501	I	2.639	
	1	∞	11	0.634	I	1.132	1	1.415	I	1.919	1	2.096	1	2.446	1	2.578	

Table A28 (cont.). Values of the coefficient $\beta_{\mu}^{\mathrm{LN}}\left(\mathrm{V}_{\mathrm{Y}}, \mathrm{n}, \mathrm{P}\right)$ in equation (II.46) for right-prediction in lognormal sequences with unknown mean and variance. Estimated coefficient of variation: $\mathrm{V}_{\mathrm{Y}}=0.10$.

						IGHT P	RE	CTION	IN	RVAL	$V_{Y}=0.20$. 9995	
	1 n P II 0.7500				1	.9000	I	. 9500	1	. 9900	I	. 9950	I	. 9990			
	1	2	11	0.965	1	2.239	1	3.296	1	4.181	I	4.183	I	4.183		4.183	
	1	3	11	0.779	1	1.518	1	2.079	1	3.349	I	3.759	1	4.158	I	4.180	
	1	4	II	0.720	1	1.329	1	1.747	1	2.682	I	3.057	1	3.756	I	3.948	
	I	5	11	0.691	1	1.242	1	1.600	1	2.364	1	2.672	1	3.318	I	3.550	
	I	6	11	0.672	1	1.192	1	1.517	1	2.186	I	2.452	1	3.020	I	3.239	
	I	7	11	0.660	1	1.160	I	1.464	I	2.076	1	2.312	1	2.823	I	3.023	
	1	8	II	0.650	1	1.136	1	1.428	I	1.998	1	2.216	1	2.682	1	2.866	
	1	9	11	0.644	1	1.120	I	1.401	I	1.943	I	2.147	I	2.591		2.752	
	1	10	11	0.638	1	1.106	I	1.380	1	1.900	I	2.094	1	2.503		2.664	
	1	11	11	0.634	1	1.094	I	1.364	I	1.867	I	2.053	1	2.440	1	2.594	
	1	12	11	0.631	1	1.086	I	1.350	I	1.841	I	2.021	1	2.394		2.540	
	I	13	11	0.627	1	1.079	1	1.339	1	1.819	1	1.994	1	2.354	I	2.495	
v	I	14	11	0.625	1	1.073	I	1.330	I	1.800	1	1.971	1	2.321	1	2.456	
\checkmark	1	15	11	0.623	I	1.068	I	1.322	I	1.785	I	1.952	1	2.293	1	2.425	
	1	16	II	0.621	1	1.063	1	1.315	1	1.772	I	1.935	I	2.269	1	2.397	
	1	17	11	0.619	1	1.060	1	1.309	1	1.760	I	1.921	1	2.248	1	2.373	
	I	18	II	0.618	1	1.055	1	1.304	1	1.749	1	1.909	I	2.229	I	2.352	
	1	19	11	0.616	I	1.053	1	1.299	1	1.741	1	1.897		2.213	1	2.334	
	I	20	11	0.616	1	1.050	1	1.295	1	1.733	1	1.888		2.199	1	2.318	
	I	21	II	0.614	I	1.047	1	1.291	1	1.725	1	1.879	I	2.186	1	2.303	
	1	31	11	0.609	1	1.032	I	1.268	1	1.682	I	1.824	1	2.109	1	2.215	
	1	41	II	0.604	1	1.024	1	1.256	-	1.659		1.798	1	2.069	I	2.170	
	1	61	II	0.602	1	1.017	1	1.244	I	1.639	I	1.771	1	2.033	1	2.128	
	1	121	II	0.598	I	1.008	I	1.233	1	1.616	I	1.745	I	1.995	I	2.085	
	1	-	II	0.594	I	1.001	1	1.222	1	1.595	1	1.720	I	1.959	1	2.045	

Table A28 (cont.). Values of the coefficient $\beta_{\mu}^{\mathrm{LN}}\left(V_{Y}, n, P\right)$ in equation (II.46) for right-prediction in lognormal sequences with unknown mean and variance. Estimated coefficient of variation: $\mathrm{V}_{\mathrm{Y}}=0.20$.

						RIGHT PRECICTION			INTERVAL			$v_{Y}=0.40$					
		n P	II	0.7500	1	0.9000	1	0.9500	I	0.9900	I	0.9950	I	0.9990		. 9995	I
	1	2	11	0.771	1	1.434	1	1.745	I	1.832	I	1.832	1	1.832	I	1.832	I
	1	3	11	0.649	1	1.097	1	1.368	I	1.755	I	1.811	I	1.832	I	1.832	1
	1	4	II	0.608	1	0.992	I	1.215	I	1.591	I	1.694	I	1.811	1	1.825	1
	I	5	II	0.588	1	0.941	1	1.140	I	1.482	I	1.588	1	1.749		1.787	I
	1	6	11	0.575	I	0.911	1	1.096	I	1.412	1	1.514	1	1.685		1.734	I
	1	7	11	0.567	I	0.892	1	1.068	I	1.366	I	1.462	1	1.633		1.686	I
	I	8	11	0.560	1	0.878	I	1.048	1	1.332	1	1.425	1	1.591		1.645	I
	1	9	11	0.555	I	0.868	1	1.032	I	1.308	1	1.396	1	1.562	1	1.612	I
	I	10	11	0.551	I	0.859	I	1.021	,	1.288	1	1.374	1	1.532	1	1.585	1
	I	11	II	0.548	1	0.852	I	1.012	1	1.272	1	1.357	1	1.510	1	1.563	1
	1	12	11	0.546	1	0.847	I	1.004	1	1.260	1	1.342	I	1.493	I	1.545	I
	1	13	11	0.543	I	0.843	1	0.998	I	1.250	I	1.330	1	1.478	I	1.529	1
v	1	14	11	0.542	1	0.839	I	0.992	I	1.241	1	1.320	1	1.466	I	1.516	1
N	I	15	11	0.540	1	0.836	1	0.988	1	1.233	1	1.311	1	1.455	I	1.504	I
	I	16	II	0.539	1	0.833	I	0.984	1	1.227	1	1.304	I	1.446	I	1.494	I
	1	17	II	0.538	I	0.831	1	0.981	I	1.221	1	1.297	I	1.437	1	1.485	I
	I	18	11	0.537	1	0.828	1	0.977	1	1.216	1	1.292	1	1.430		1.477	1
	I	19	11	0.536	1	0.827	1	0.975	1	1.211	1	1.287	1	1.423	I	1.471	I
	1	20	11	0.536	1	0.825	1	0.972	1	1.208	1	1.282	1	1.418	1	1.465	I
	1	21	II	0.535	1	0.823	1	0.970	I	1.204	1	1.278	1	1.412	1	1.459	,
	1	31	11	0.531	1	0.814	1	0.956	I	1.182	I	1.252	1	1.380	I	1.424	
	1	41	11	0.527	I	0.809	1	0.950	,	1.170	1	1.239	I	1.363	I	1.406	1
	1	61	11	0.525	1	0.804	1	0.943	I	1.160	1	1.227	I	1.348	1	1.389	1
	1	121	11	0.523	1	0.799	1	0.936	I	1.148	1	1.214	1	1.331	I	1.370	1
	1	∞	11	0.520	I	0.794	1	0.929		1.138	I	1.201	I	1.315	I	1.353	I

Table A28 (cont.). Values of the coefficient $\beta_{\mu}^{\mathrm{LN}}\left(\mathrm{V}_{\mathrm{Y}}, \mathrm{n}, \mathrm{P}\right)$ in equation (II.46) for right-prediction in lognormal sequences with unknown mean and variance. Estimated coefficient of variation: $V_{Y}=0.40$.

	RIGHT PREDICTION INTERVAL																
			11	0.7500	1	. 9000	1	. 9500	I	. 9900	1	0.9950	I	0.9990	1	0.9995	
	1	2	11	1.764	1	2.733	I	4.014	1	7.738	1	8.039	I	6.938	1	6.549	I
	1	3	11	1.374	I	1.649		1.950	I	2.994	1	3.583	1	5.028	1	5.493	I
	1	4	II	1.253	1	1.401	I	1.552	1	2.030	I	2.292	1	3.022	I	3.372	I
	1	5	11	1.193	1	1.292	,	1.389	1	1.683	1	1.836	I	2.260	I	2.467	I
	I	6	II	1.156	I	1.229	1	1.301	1	1.508	I	1.613	1	1.896	1	2.034	
	1	7	II	1.132	1	1.191	I	1.245	I	1.405	1	1.482	1	1.693	I	1.793	
	1	8	II	1.112	1	1.161	I	1.208	I	1.336	1	1.398	I	1.561	I	1.639	I
	1	9	11	1.100	1	1.141	I	1.179	1	1.287	1	1.338	1	1.481	1	1.535	1
	1	10	11	1.088	1	1.125		1.159	1	1.250	1	1.293	1	1.406	1	1.458	1
	1	11	11	1.080	1	1.111	1	1.142	1	1.221	I	1.259	I	1.355	1	1.400	1
	I	12	II	1.073	1	1.101	I	1.128	1	1.199	1	1.233	1	1.318	I	1.356	
	1	13	11	1.066	I	1.093	-	1.117		1.181	I	1.211	1	1.286	1	1.321	
G	I	14	11	1.062	I	1.085	1	1.107	1	1.165		1.193	1	1.260	1	1.291	I
$\stackrel{\text { l }}{ }$	I	15	11	1.058	I	1.079	1	1.099	I	1.153	1	1.177	1	1.239	I	1.267	I
	I	16	II	1.053	1	1.074	1	1.093	1	1.142	1	1.164	1	1.221	,	1.246	I
	1	17	II	1.051	I	1.069	I	1.087	1	1.132	I	1.153	1	1.205	1	1.228	I
		18	II	1.048	I	1.064	1	1.081	I	1.123	I	1.143	1	1.191		1.212	I
	I	19	II	1.045	,	1.061	I	1.077	1	1.116	I	1.134	I	1.179	-	1.200	1
	I	20	11	1.044	1	1.058	I	1.073	1	1.110	1	1.127	1	1.169	I	1.188	I
	I	21	II	1.041	I	1.054	-	1.069	I	1.104	1	1.120	-	1.159	I	1.177	I
	1	31	11	1.030	,	1.037	-	1.045	I	1.069	1	1.078	1	1.104	1	1.114	I
	1	41	11	1.021	I	1.027	I	1.034	I	1.050	1	1.058	I	1.076	I	1.083	I
	I	61	II	1.015	I	1.019	1	1.022	1	1.034	I	1.038	-	1.051	1	1.055	1
	1	121	11	1.008	I	1.009	1	1.011	1	1.016	1	1.019	1	1.025	I	1.026	
	1		II	1.000	I	1.000	I	1.000		1.000	I	1.000	I	1.000		1.000	

Table A29. Values of the penalty ratio $r_{\mu, \sigma}^{L N}\left(V_{Y}, n, P\right)$ in equation (II.47) for right-hand
prediction in lognormal sequences with unknown mean and variance. $\frac{V_{V} \text { is }}{}$ prediction in lognormal sequences with unknown mean and variance. V_{Y} is the estimated coefficient of variation and n is the sample size. For other values of V_{Y}, see continuation of the table.

Table A29 (cont.). Values of the penalty ratio $r_{\mu, \sigma} \mathrm{LN}\left(\mathrm{V}_{\mathrm{Y}}, \mathrm{n}, \mathrm{P}\right)$ in equation (II.47) for right-prediction in lognormal sequences with unknown mean and variance. Estimated coefficient of variation: $V_{Y}=0.10$

						RIGHT PREDICTION			INTERVAL		$v_{Y}=0.20$					0.99951	
	1 n P II 0.7500				1	0.9000	I	. 9500	1	0.9900	1	0.9950	I	. 9990	I		
	I	2	II	1.625	1	2.237	I	2.698	1	2.621	I	2.432	1	2.136	1	2.045	
	1	3	11	1.312	1	1.517	1	1.702	1	2.099	1	2.185	1	2.123	I	2.044	
	1	4	II	1.213	I	1.328	I	1.430	1	1.681	I	1.777	1	1.917	I	1.930	
	I	5	II	1.163	I	1.241	I	1.310	1	1.482	I	1.553	1	1.694	I	1.736	
	1	6	11	1.131	1	1.190	I	1.242	1	1.370	1	1.425	I	1.542	1	1.584	
	1	7	II	1.111	1	1.159	1	1.199	1	1.301	1	1.344	1	1.441	1	1.478	
	I	8	11	1.095		1.135	1	1.169	I	1.253	I	1.288	1	1.369	1	1.401	
	1	9	II	1.084	I	1.119	1	1.147	1	1.218	I	1.248	1	1.323	1	1.346	
	I	10	11	1.075		1.105	1	1.130	1	1.191	I	1.217	1	1.278	1	1.302	
	I	11	11	1.068	1	1.093	1	1.116	1	1.170	I	1.194	1	1.246	1	1.268	
	I	12	II	1.062	1	1.085	I	1.105	I	1.154	I	1.175	1	1.222	I	1.242	
	I	13	11	1.056	I	1.078	1	1.096	1	1.140	I	1.159	1	1.202	1	1.220	
G	1	14	11	1.052		1.072	1	1.089	1	1.129	I	1.146	1	1.185	I	1.201	
v̌	I	15	11	1.049	I	1.067	1	1.082	1	1.119	1	1.134	1	1.171	I	1.185	
	1	16	11	1.045	I	1.062	1	1.077	I	1.111	I	1.125	I	1.158	I	1.172	
	I	17	11	1.043		1.059	I	1.072	I	1.103		1.117	1	1.148	1	1.160	
	I	18	II	1.041		1.054	I	1.067	I	1.097	I	1.110	I	1.138	I	1.150	
	I	19	11	1.038	I	1.052	I	1.063	1	1.091	I	1.103	I	1.130	I	1.141	
	I	20	11	1.037	I	1.049	I	1.060	I	1.086	I	1.097	1	1.123	I	1.133	
	1	21	11	1.035	1	1.046	1	1.057	I	1.081	1	1.092	1	1.116	1	1.126	
	I	31	11	1.025	1	1.031	1	1.038	1	1.055	I	1.060	I	1.077	I	1.083	
	1	41	11	1.018	1	1.023	I	1.028	I	1.040		1.045	I	1.056	I	1.061	
	I	61	11	1.013	I	1.016		1.019	I	1.027	I	1.030	1	1.038	I	1.041	
		121	11	1.007	I	1.008	1	1.010	1	1.013	1	1.015	1	1.019	I	1.019	
	I	∞	11	1.000	I	1.000	I	1.000	1	1.000	I	1.000	I	1.000	I	1.000	

Table A29 (cont.). Values of the penalty ratio $r_{\mu, \sigma}^{\mathrm{LN}}\left(\mathrm{V}_{\mathrm{Y}}, \mathrm{n}, \mathrm{P}\right)$ in equation (II.47) for right-prediction in lognormal sequences with unknown mean and variance. Estimated coefficient of variation: $V_{Y}=0.20$.
RIGHI PREDICTION INTERVAL $\quad V_{Y}=0.40$

Table A29 (cont.). Values of the penalty ratio $r_{\mu, \sigma}^{L N}\left(V_{Y}, n, P\right)$ in equation (II.47) for right-prediction in lognormal sequences with unknown mean and variance. Estimated coefficient of variation: $V_{Y}=0.40$.

Table A30. Values of the coefficient $\beta_{\sigma_{Z}}^{\mathrm{LN}}\left(\mathrm{V}_{\mathrm{Y}}, \mathrm{n}, \mathrm{P}\right)$ for left-hand prediction in lognormal sequences. In the associated normal sequence the mean is assumed known and the variance is unknown. V_{Y} is the estimated coefficient of variation of the lognormal population. For other values of V_{Y}, see continuation of the table.

Table A30 (cont.). Values of the coefficient $\beta_{\sigma}^{\mathrm{LN}}\left(V_{Y}, n, P\right)$ for left-prediction in lognormal sequences. In the associated normal sequence the mean is known and the variance is not. Estimated coefficient of variation of the lognormal population: $V_{Y}=0.10$.

						LEFT P	PRED	ICTION		TERVAL		$\mathrm{V}_{\mathrm{Y}}=$	0.2				
	I n PII 0.7500				1	0.9000	1	0.9500	1	0.9900	1	0.9950	1	0.9990	1	0.9995	1
	1	1	11	0.817	1	3.363	I	10.140	1	*******	1	*******	1	*******	1	*******	1
	1	2	II	0.638	I	1.776	1	3.130	1	12.110	1	25.099	1	337.159	1	*******	I
	I	3	II	0.590	I	1.490	I	2.354	1	5.899	1	8.859	1	26.818	1	48.849	I
	I	4	II	0.567	I	1.374	I	2.074	I	4.432	I	6.025	I	12.796	1	18.385	1
	I	5	II	0.554	1	1.311	1	1.930	1	3.804	I	4.932	I	8.994	I	11.804	1
	I	6	II	0.546	1	1.272	1	1.844	1	3.460	1	4.364	1	7.322	1	9.167	1
	1	7	II	0.539	I	1.245	1	1.787	1	3.244	1	4.019	I	6.398	1	7.787	I
	,	8	11	0.534	1	1.226	1	1.745	I	3.096	1	3.788	1	5.819	1	6.948	I
		9	II	0.531	1	1.211	1	1.714	1	2.988	I	3.624	I	5.423	I	6.389	I
	1	10	11	0.529	I	1.199	1	1.689	1	2.908	1	3.500	,	5.136	I	5.991	I
	1	11	II	0.526	1	1.190	1	1.671	I	2.843	1	3.405		4.919	I	5.693	I
	1	12	11	0.524	I	1.182	1	1.655	1	2.792	1	3.328	1	4.750	I	5.463	I
	1	13	11	0.523	1	1.176	I	1.642	1	2.750	I	3.265	I	4.613	I	5.280	I
$\underset{6}{ }$	I	14	11	0.521	I	1.171	I	1.630	I	2.714	1	3.213	I	4.500	I	5.129	I
	1	15	11	0.520	I	1.166	1	1.621	1	2.684	I	3.169	1	4.408	1	5.006	
	1	16	11	0.519	1	1.162	1	1.613	I	2.658	I	3.132	1	4.328	1	4.901	I
	1	17	11	0.518	1	1.158	1	1.606	I	2.636	I	3.098	I	4.261	1	4.812	I
	1	18	11	0.518	1	1.155	I	1.599	I	2.616	I	3.070	1	4.201	1	4.735	I
	1	19	11	0.518	I	1.153	1	1.594	1	2.599	I	3.045	I	4.150	1	4.667	,
	1	20	II	0.517	1	1.149	1	1.589	1	2.584	I	3.022	,	4.105	I	4.609	I
	1	30	11	0.513	1	1.134	1	1.557	1	2.490	I	2.888	1	3.836	I	4.261	I
	1	40	11	0.511	,	1.126	1	1.542	1	2.445	1	2.824		3.713	1	4.104	1
	1	60	11	0.509	I	1.119	1	1.528	1	2.402	I	2.763	1	3.596	1	3.956	1
	1	120	II	0.507	I	1.112	1	1.513	1	2.360	,	2.704	1	3.486	1	3.817	1
	1	∞	II	0.504	I	1.104	1	1.498	I	2.319	I	2.649	I	3.381	1	3.688	I
		30	t			s of th rmal se and th logno		oeffici nces. variance 1 popul	ent In is at	$\begin{aligned} & \text { t } \beta_{\sigma}^{\mathrm{LN}}\left(\mathrm{~V}_{\mathrm{Y}}\right. \\ & \text { the ass } \\ & \text { s not. } \\ & \text { ion: } V_{\mathrm{y}} \end{aligned}$		P) for ated no imated 0.20 .	$\begin{aligned} & \text { rma } \\ & \text { co } \end{aligned}$	t-predi 1 seque fficien		ion in e the me of varia	is ion

LEFT PREDICTION INTERVAL $V_{Y}=0.40$

1	1	11	0.668	1	3.735	1	17.534	1	*******	1	*******	I	*******	1	*******	I
1	2	11	0.497	1	1.685	1	3.406	1	23.055	1	76.010	1	*******	1	*******	I
1	3	11	0.452	1	1.365	1	2.379	1	7.950	1	14.308	1	85.144	1	245.331	I
1	4	11	0.431	I	1.238	1	2.035	1	5.372	I	8.190	1	25.131	I	45.071	I
I	5	II	0.419	1	1.171	1	1.865	1	4.386	1	6.208	1	14.635	1	22.151	1
I	6	11	0.411	1	1.130	I	1.763	1	3.876	1	5.262	1	10.815	1	15.059	I
1	7	11	0.405	1	1.102	1	1.698	1	3.566	I	4.715	1	8.914	1	11.828	I
1	8	11	0.401	1	1.081	1	1.650	1	3.358	I	4.362	I	7.800	1	10.027	
1	9	11	0.398	I	1.066	I	1.614	1	3.210	I	4.117	I	7.072	1	8.897	
1	10	11	0.395	1	1.054	1	1.587	1	3.101	I	3.934	I	6.562	1	8.124	
1	11	II	0.393	1	1.044	I	1.565	1	3.014		3.796	I	6.186	1	7.565	
1	12	11	0.391	1	1.036	1	1.547	I	2.946	1	3.686	1	5.898	I	7.144	
1	13	11	0.390	1	1.029	1	1.533	1	2.889	1	3.595	1	5.669	I	6.815	
1	14	11	0.389	1	1.024	I	1.520	I	2.842	I	3.523	1	5.484	1	6.549	
I	15	11	0.388	1	1.019	1	1.510	1	2.803	1	3.461	1	5.333	1	6.336	
1	16	11	0.387	1	1.015	1	1.501	1	2.769	I	3.409	1	5.205	1	6.155	
1	17	11	0.386	1	1.010	1	1.493	I	2.740		3.362	,	5.097	I	6.003	
1	18	II	0.385	1	1.007	I	1.485	I	2.714	I	3.322	I	5.002	1	5.874	
1	19	11	0.385	1	1.005	1	1.479	1	2.691	1	3.289	1	4.920	I	5.759	
1	20	11	0.384	I	1.002	I	1.474	1	2.672	I	3.257	1	4.851	1	5.663	I
1	30	11	0.381	1	0.985	I	1.438	1	2.551	I	3.074	1	4.434	I	5.097	
I	40	11	0.379	,	0.978	I	1.422	1	2.494	I	2.988	1	4.249	I	4.848	
1	60	11	0.377	I	0.970	I	1.406	1	2.439	I	2.907	1	4.076	1	4.618	
1	120	11	0.376	1	0.963	I	1.390	1	2.387	I	2.829	I	3.914		4.405	
1	∞	11	0.373	I	0.955	I	1.374	1	2.335	I	2.756	I	3.761	I	4.211	

Table A30 (cont.). Values of the coefficient $\beta_{\sigma}^{L N}\left(V_{Y}, n, P\right)$ for left-prediction in lognormal sequences. In the associated normal sequence the mean is known and the variance is not. Estimated coefficient of variation of the lognormal population: $\mathrm{V}_{\mathrm{Y}}=0.40$.

					LEFT	PREDICTION		INTERVAL			$\mathrm{V}_{\mathrm{Y}}=0.05$				0.9995 I	
	1 n P	11	0.7500	1	0.9000	I	0.9500	1	0.9900	I	0.9950	1	0.9990	I		
	11	II	1.515	1	2.542	I	4.379	1	31.987	1	169.422	1	*******	1	*******	1
	12	11	1.223	1	1.503	I	1.846	I	3.402	I	4.707	1	12.371	1	21.681	
	13	II	1.143	1	1.295	I	1.463	1	2.078	I	2.481	1	4.010	1	5.106	1
	14	II	1.105	1	1.207	I	1.317	I	1.678	1	1.891	1	2.594	I	3.022	
	15	II	1.083	1	1.160	I	1.240	1	1.491	1	1.631	1	2.059	I	2.300	1
	16	II	1.069	1	1.130	I	1.193	1	1.384	I	1.486	I	1.786	I	1.947	I
	17	II	1.058	I	1.110	I	1.162	1	1.314	I	1.394	1	1.622	I	1.741	I
	18	11	1.050	1	1.095	1	1.139	1	1.266	I	1.332	I	1.514	1	1.607	
	19	11	1.045	1	1.083	I	1.121	1	1.231	1	1.286	I	1.438	I	1.513	
	110	11	1.041	1	1.074	1	1.108	1	1.204	1	1.251	1	1.381	1	1.444	1
	111	11	1.036	I	1.067	1	1.097	I	1.182	I	1.224	1	1.337	1	1.391	1
	112	II	1.033	1	1.061	I	1.088	1	1.165	I	1.202	I	1.302	1	1.350	I
	113	11	1.031	I	1.056	I	1.081	1	1.150	,	1.184	1	1.273	1	1.316	I
$\stackrel{\infty}{\bullet}$	114	II	1.028	1	1.052	I	1.075	-	1.138	,	1.169	,	1.250	1	1.288	
	115	11	1.027	1	1.048	I	1.070	1	1.128	I	1.156	I	1.230	I	1.265	1
	$\text { I } 16$	11	1.025	1	1.045	I	1.065	1	1.119	1	1.145	1	1.213	I	1.245	1
	117	II	1.023	1	1.042		1.061	1	1.112	1	1.136		1.198	1	1.227	1
	118	11	1.022	I	1.039	I	1.057	1	1.105		1.127	I	1.185	I	1.213	
	119	11	1.022	1	1.038	I	1.054	1	1.099	I	1.120	I	1.174	1	1.199	I
	120	11	1.020	1	1.035	I	1.052	1	1.093	I	1.113	1	1.164	1	1.188	
	130	II	1.014	1	1.023	I	1.033	1	1.060	I	1.073	1	1.105	I	1.119	
	140	II	1.011	I	1.017	I	1.025	1	1.045		1.054	,	1.077	I	1.087	
	160	II	1.008	I	1.011	I	1.017	1	1.029	1	1.035		1.050	I	1.056	
	I 120	11	1.005	1	1.006		1.008	I	1.015	I	1.017		1.025	I	1.027	
	1∞	II	1.000	1	1.000	I	1.000	1	1.000		1.000	I	1.000		1.000	

Table A31. Values of the penalty ratio $r_{\sigma_{Z}}^{L N}\left(V_{y}, n, P\right)$ for left-hand prediction in lognormal sequences. In the associated normal sequence the mean is known but the variance is not. V_{y} is the estimated coefficient of variation of the lognormal population. For other values of V_{Y}, see continuation of the table.

Table A3l (cont.). Values of the penalty ratio $r_{\sigma}^{L N}\left(V_{y}, n, P\right)$ for left-prediction in lognormal sequences. The associated normal sequence has known mean and unknown variance. Estimated coefficient of variation of the lognormal population: $\mathrm{V}_{\mathrm{Y}}=0.10$.

						LEFT	PREDICTION		INTERVAL			$\mathrm{V}_{\mathrm{Y}}=0.20$				0.9995 I	
		n	11	0.7500	1	0.9000	I	0.9500	1	0.9900	1	0.9950	I	0.9990	1		
	I	1	11	1.620	1	3.045	1	6.767	I	963.371	1	*******	I	*******	I	*******	I
	I	2	11	1.265	1	1.608	I	2.089	1	5.223	I	9.476	1	99.731	I	579.484	I
	I	3	11	1.169	1	1.350	1	1.571	1	2.544	1	3.345	1	7.933	1	13.246	I
	I	4	11	1.124	1	1.244	I	1.384	1	1.911	I	2.275	1	3.785	1	4.985	I
	I	5	II	1.098	1	1.188	I	1.288	I	1.641	1	1.862	1	2.660	1	3.201	I
	I	6	11	1.081	1	1.152	1	1.231	1	1.492	1	1.648	1	2.166	I	2.486	I
	I	7	11	1.068	1	1.128		1.192	I	1.399	I	1.517	1	1.892	1	2.112	I
	I	8	II	1.059	I	1.110	1	1.165	1	1.335	1	1.430	I	1.721	I	1.884	1
	1	9	II	1.054	1	1.097	1	1.144	1	1.289	1	1.368	1	1.604	1	1.733	1
	1	10	II	1.048	1	1.086	1	1.127		1.254	I	1.321	1	1.519	1	1.624	1
	I	11	II	1.042	1	1.077	I	1.115	1	1.226	I	1.285	1	1.455	1	1.544	I
	1	12	11	1.039	1	1.071	1	1.104	1	1.204	1	1.257	1	1.405	I	1.481	I
	1	13	11	1.037	1	1.065	1	1.096	1	1.186	I	1.233	1	1.364	I	1.432	I
$\underset{\omega}{\infty}$	I	14	11	1.033	1	1.060	1	1.088		1.170	I	1.213	1	1.331	I	1.391	1
	1	15	11	1.031	1	1.056	1	1.082	I	1.158	I	1.197	1	1.304	I	1.357	I
	1	16	11	1.029	1	1.052	I	1.077	I	1.146	1	1.182	I	1.280	1	1.329	I
	1	17	11	1.028	1	1.049	1	1.072	I	1.137	I	1.170	1	1.260	I	1.305	I
	1	18	II	1.026	I	1.046	1	1.067	I	1.128	1	1.159	I	1.243	I	1.284	I
	1	19	11	1.026	,	1.044	1	1.064	1	1.121	1	1.150	1	1.228	I	1.265	I
	1	20	11	1.024	1	1.041	1	1.061	1	1.114	I	1.141		1.214	I	1.250	I
	1	30	II	1.017	I	1.027	1	1.039	I	1.074	1	1.090	1	1.135	I	1.155	I
	1	40	II	1.013	1	1.020	1	1.029	1	1.054	1	1.066	1	1.098	I	1.113	1
	1	60	11	1.009	1	1.013	1	1.020	I	1.036	1	1.043	1	1.064	I	1.073	1
	I	120	11	1.006	1	1.007	I	1.010	1	1.018	I	1.021	I	1.031	I	1.035	
	I	∞	II	1.000	I	1.000	1	1.000	1	1.000	I	1.000	I	1.000	I	1.000	I

Table A31 (cont.). Values of the penalty ratio $r_{\sigma_{Z}}^{\mathrm{LN}}\left(\mathrm{V}_{\mathrm{l}}, \mathrm{n}, \mathrm{P}\right)$ for left-prediction in lognormal sequences. The associated normal sequence has known mean and unknown variance. Estimated coefficient of variation of the lognormal population: $\mathrm{V}_{\mathrm{Y}}=0.20$.

						EFT	PREDICTION		INTERVAL			$V_{Y}=0.40$				0.9995 I	
			II	. 7500	I	. 9000	1	0.9500	1	0.9900		0.9950	1	0.9990	1		
	I	1	11	1.791	I	3.910	I	12.766	1	*******	1	*******	1	*******	1	*******	
	1	2	II	1.332	1	1.764	I	2.480	1	9.873	1	27.577	1	*******	1	*******	
	1	3	11	1.211	1	1.429	1	1.732	1	3.404	1	5.191	1	22.638	1	58.255	
	I	4	II	1.154	1	1.296	1	1.482	1	2.301	I	2.971	1	6.682	1	10.702	
	I	5	11	1.122	1	1.226	1	1.358	1	1.878	1	2.252	I	3.891	1	5.260	
	I	6	11	1.101	1	1.183	I	1.284	1	1.660	I	1.909	1	2.876	I	3.576	
	1	7	11	1.085	1	1.153	I	1.236	1	1.527	I	1.711	I	2.370	I	2.809	
	1	8	II	1.073	1	1.132	I	1.202	1	1.438	1	1.583	1	2.074	I	2.381	
	1	9	11	1.066	I	1.116	I	1.175	1	1.375	1	1.494	1	1.880	I	2.113	
	I	10	II	1.059	I	1.103	I	1.155	1	1.328	1	1.427	I	1.745	1	1.929	
	1	11	II	1.053	I	1.092	I	1.140	I	1.291	I	1.377	1	1.645	1	1.796	
	1	12	11	1.048	1	1.084	1	1.126	1	1.262	1	1.337	1	1.568	I	1.696	
	I	13	II	1.046	I	1.077	1	1.116	I	1.237	1	1.304	1	1.507	I	1.618	
$\stackrel{\infty}{\infty}$	1	14	II	1.041	1	1.072	1	1.107	1	1.217	1	1.278	I	1.458	1	1.555	
	1	15	11	1.039		1.067	I	1.099	I	1.200	1	1.256	1	1.418	1	1.504	
	1	16	11	1.037	I	1.062	I	1.093	1	1.186	I	1.237	1	1.384	1	1.462	
	1	17	II	1.034	1	1.058	I	1.087	1	1.174	I	1.220	1	1.355	1	1.425	
	1	18	II	1.032	I	1.054	I	1.081	1	1.162	1	1.205	1	1.330		1.395	
	I	19	11	1.032	1	1.052	1	1.077	I	1.153	I	1.193	1	1.308	I	1.368	
	1	20	11	1.030	1	1.049	1	1.073	1	1.144	I	1.182	1	1.290	I	1.345	
	I	30	II	1.021	1	1.032	1	1.047	I	1.092	I	1.115	1	1.179	I	1.210	
	I	40	II	1.016	1	1.024	I	1.035	1	1.068	1	1.084	I	1.130	I	1.151	
	I	60	11	1.011	I	1.016	1	1.023	I	1.045	1	1.055	1	1.084	1	1.097	
	I	120	11	1.007	I	1.008	1	1.012	1	1.022	I	1.026	1	1.041	I	1.046	
	I	∞	11	1.000	1	1.000	1	1.000	I	1.000	1	1.000	I	1.000	1	1.000	

Table A31 (cont.). Values of the penalty ratio $r_{\sigma Z}^{L N}\left(V_{y}, n, P\right)$ for left-prediction in lognormal sequences. The associated normal sequence has known mean and unknown variance. Estimated coefficient of variation of the lognormal population: $\mathrm{V}_{\mathrm{Y}}=0.40$.

						RIGHT PREDICTION			INTERVAL			$V_{Y}=0.05$					
	1	n	II	0.7500	I	0.9000	I	0.9500	I	0.9900	I	0.9950	I	0.9990	1	0.9995	I
	I	1	II	0.951	I	2.736	I	5.172	I	15.170	I	18.260	I	19.051	1	19.051	I
	I	2	11	0.784	I	1.735	I	2.607	I	5.616	I	7.463	1	12.815	I	15.127	I
	I	3	II	0.737	I	1. 519	I	2.134	I	3.886	I	4.840	1	7.628	1	9.075	I
	I	4	11	0.715	I	1.427	I	1.946	I	3.272	1	3.934	I	5.755	I	6.676	I
	I	5	11	0.703	1	1.376	I	1.846	I	2.968	I	3.495	I	4.877	I	5.551	I
	I	6	11	0.694	I	1. 345	I	1.784	I	2.789	I	3.241	I	4.383	I	4.923	I
	I	7	11	0.688	1	1. 323	I	1.743	I	2.671	I	3.076	I	4.070	I	4.529	I
	I	8	II	0.683	I	1.307	I	1.712	1	2.587	I	2.960	I	3.856	I	4.260	I
	I	9	11	0.680	I	1.294	I	1.689	I	2.525	I	2.876	I	3.700	I	4.067	I
	1	10	II	0.678	I	1.284	I	1.671	I	2.478	I	2.810	I	3.582	I	3.921	I
	1	11	II	0.675	1	1.276	I	1.657	I	2.440	1	2.759	1	3.490	I	3.807	I
	I	12	11	0.673	I	1.270	1	1.645	I	2.409	I	2.717	1	3.416	I	3.716	I
	I	13	11	0.672	I	1. 265	I	1.635	I	2.383	I	2.682	I	3.355	I	3.642	I
$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	I	14	I I	0.670	1	1.260	I	1.626	I	2.362	1	2.653	1	3.304		3.579	I
	I	15	11	0.669	I	1.257	1	1.619	I	2.343	I	2.629	I	3.261	I	3.527	I
	I	16	II	0.669	I	1. 253	I	1.613	I	2.327	I	2.608	I	3.224	I	3.482	I
	1	17	II	0.668	I	1. 250	I	1.608	1	2.314	I	2.589	1	3.193	I	3.443	I
	1	18	11	0.667	1	1.247	I	1.603	I	2.302	I	2.572	I	3.164	I	3.410	I
	1	19	11	0.667	1	1. 245	I	1.598	1	2.291	1	2.558	1	3.139	1	3.379	I
	1	20	11	0.666	I	1. 243	I	1.595	1	2.281	I	2.545	I	3.118	I	3.353	I
	I	30	II	0.662	I	1. 229	I	1.571	I	2.222	I	2.466	1	2.984	1	3.193	I
	1	40	11	0.660	I	1.223	1	1.559	1	2.193	I	2.428	I	2.922	1	3.117	I
	1	60	II	0.658	I	1.217	1	1.548	I	2.165	I	2.392	I	2.861	I	3.044	I
	I	120	II	0.657	I	1.211	I	1.536	I	2.138	1	2.356	I	2.803	I	2.975	I
	I	∞	II	0.654	I	1.204	I	1.525	1	2.111	I	2.322	I	2.746	I	2.909	I

Table A32. Values of the coefficient $\beta_{\sigma}^{L N}\left(V_{Y}, n, P\right)$ for right-hand prediction in lognormal sequences. In the associated normal sequence the mean is assumed known and the variance is unknown. V_{V} is the estimated coefficient of variation of the lognormal population. For other values of V_{y}, see continuation of the table.

Table A32 (cont.). Values of the coefficient $\beta_{\sigma_{Z}}^{L N}\left(V_{Y}, n, P\right)$ for right-prediction in lognormal sequences. In the associated normal sequence the mean is known and the variance is not. Estimated coefficient of variation of the lognormal population: $V_{Y}=0.10$.

					RIGHT PREDICTION INTERVAL						$V_{Y}=0.20$					
	$1 \mathrm{n}$	11	0.7500	1	0.9000	1	0.9500	I	0.9900	I	0.9950	1	0.9990	1	0.9995	I
	11	II	0.818	1	1.953	I	3.008	1	4.175	-	4.183	I	4.183	I	4.183	I
	12	11	0.693	1	1.360	I	1.882	1	3.150	1	3.608	I	4.134	1	4.175	I
	13	11	0.658	1	1.218	I	1.609	1	2.514	I	2.893	1	3.640	1	3.866	I
	14	II	0.641	1	1.155	1	1.494	1	2.230	I	2.535	I	3.192	I	3.437	I
	15	II	0.631	1	1.121	I	1.431	1	2.076	1	2.337	1	2.906	1	3.131	I
	16	II	0.625	I	1.099	1	1.391	1	1.982	I	2.214	,	2.721	1	2.923	I
	17	II	0.620	I	1.084	1	1.365	1	1.918.	I	2.132	1	2.593	1	2.777	I
	18	II	0.616	1	1.073	I	1.345	1	1.871	1	2.072	1	2.501	1	2.671	I
	19	11	0.614	1	1.064	1	1.330	I	1.837	I	2.028	1	2.432	1	2.592	I
	110	II	0.612	I	1.057	I	1.318	1	1.810	1	1.993	1	2.378	1	2.529	1
	111	11	0.610	I	1.052	1	1.309	1	1.789	I	1.966	I	2.335	I	2.479	I
	112	11	0.609	1	1.047	I	1.301	1	1.771	1	1.943	1	2.299	1	2.439	1
	113	11	0.608	I	1.043	I	1.295	1	1.756	I	1.924	1	2.270	1	2.405	1
$\stackrel{\infty}{\sim}$	114	II	0.607	1	1.040	1	1.289	I	1.744	I	1.908	1	2.245	1	2.376	I
	115	11	0.606	1	1.038	I	1.284	1	1.733	1	1.895	1	2.225	I	2.352	I
	116	II	0.605	1	1.035	I	1.280	1	1.724	1	1.883	1	2.206		2.331	1
	117	II	0.604		1.033	1	1.277	I	1.716		1.872	I	2.191		2.312	I
	118	11	0.604	1	1.031	I	1.273	I	1.709		1.863	1	2.176	1	2.296	I
	119	11	0.604	,	1.030	,	1.270	I	1.702	I	1.855	I	2.164	1	2.282	1
	I 20	11	0.603	I	1.028	I	1.268	I	1.697	I	1.848	I	2.153	I	2.269	I
	130	11	0.600	I	1.019	I	1.252	I	1.662	1	1.804	1	2.085	1	2.191	I
	140	11	0.599	I	1.014	1	1.244	I	1.644	1	1.782	I	2.052	1	2.153	1
	160	11	0.597	I	1.010	I	1.237	I	1.628	I	1.761	I	2.020	1	2.116	I
	1120	11	0.596	1	1.005	I	1.229	I	1.612		1.740	,	1.989	1	2.080	I
	1	11	0.594	I	1.001	,	1.222	1	1.595	1	1.720	1	1.959	I	2.045	I

Table A32 (cont.). Values of the coefficient $\beta \sigma_{Z} \mathrm{LN}_{Z}\left(V_{Y}, n, P\right)$ for right-prediction in lognormal sequences. In the associated normal sequence the mean is known and the variance is not. Estimated coefficient of variation of the lognomal population: $V_{Y}=0.20$.

Table A32 (cont.). Values of the coefficient $\beta_{\sigma_{Z}}^{\mathrm{LN}}\left(V_{Y}, n, P\right)$ for right-prediction in lognormal sequences. In the associated normal sequence the mean is known and the variance is not. Estimated coefficient of variation of the lognormal population: $V_{Y}=0.40$.

Table A33. Values of the penalty ratio $r_{\sigma}^{\mathrm{LN}}\left(V_{V}, n, P\right)$ for right-hand prediction in lognormal sequences. In the associated normal sequence the mean is known but the variance is not. V_{V} is the estimated coefficient of variation of the lognormal population. For other values of V_{Y}, see continuation of the table.
RIGHT PREDICTION INTERVAL $\quad V_{Y}=0.10$

Table A33 (cont.). Values of the penalty ratio $r_{\sigma_{Z}}^{\mathrm{LN}}\left(V_{Y}, n, P\right)$ for right-prediction in lognormal sequences. The associated normal sequence has known mean and unknown variance. Estimated coefficient of variation of the lognormal population: $\mathrm{V}_{\mathrm{Y}}=0.10$.

						RIGHT PR	PRE	ICTION		RVAL	$v_{Y}=0.20$					0.9995 I	
	1 n P 110.7500				1	0.9000	1	0.9500	1	0.9900	I	0.9950	I	0.9990	1		
	1	1	11	1.378	1	1.952	I	2.462	1	2.617	I	2.432	I	2.136	I	2.045	I
	1	2	11	1.168	I	1.358	1	1.541	1	1.975	1	2.098	1	2.110	I	2.041	
	1	3	11	1.108	1	1.216	1	1.317	1	1.576	1	1.682		1.859	I	1.890	I
	I	4	II	1.080	1	1.154	I	1.223	1	1.398	I	1.474	I	1.630	1	1.681	I
	I	5	11	1.063	1	1.120	I	1.171	I	1.302	1	1.359	I	1.484	1	1.531	I
	1	6	11	1.052	1	1.098	I	1.139	1	1.242	I	1.287	-	1.389	1	1.429	I
	I	7	11	1.044	1	1.083	I	1.117	1	1.202	1	1.239	1	1.324	I	1.358	I
	I	8	11	1.038	1	1.072	I	1.101	I	1.173	1	1.205	1	1.277	I	1.306	I
	1	9	II	1.035	1	1.063	I	1.089	I	1.151	I	1.179	I	1.241	I	1.267	I
	1	10	11	1.031	1	1.056	I	1.079	I	1.135	I	1.159	1	1.214	1	1.237	I
	I	11	II	1.027	1	1.051	I	1.071	1	1.121	1	1.143	I	1.192	I	1.212	I
	1	12	II	1.025	1	1.046	I	1.065	I	1.110	1	1.130	1	1.174	1	1.192	I
	1	13	II	1.024	1	1.043	1	1.060	1	1.101	1	1.118	1	1.159	1	1.176	1
$\stackrel{\square}{+}$	1	14	11	1.022	1	1.039	I	1.055	I	1.093		1.109	I	1.146	I	1.162	I
	1	15	11	1.020	1	1.037	I	1.051	1	1.086	I	1.101	1	1.136	I	1.150	1
	1	16	11	1.019	1	1.034	I	1.048	1	1.080	I	1.095	1	1.126	1	1.140	I
	1	17	11	1.018	1	1.032	I	1.045	I	1.076	1	1.088	1	1.118	I	1.131	I
	1	18	11	1.017	1	1.030	1	1.042	I	1.071	I	1.083	1	1.111	I	1.123	I
	,	19	11	1.017	I	1.029	I	1.040	I	1.067	1	1.079	I	1.105	1	1.116	I
	I	20	II	1.016	1	1.027	I	1.038	I	1.064	1	1.074	I	1.099	1	1.110	I
	1	30	11	1.011	1	1.018	1	1.025	I	1.042	1	1.048	I	1.064	1	1.071	I
	1	40	11	1.008	1	1.013	I	1.019	I	1.031	1	1.036	I	1.048	1	1.052	I
	1	60	11	1.006		1.009	I	1.012	I	1.020	I	1.024	I	1.031	I	1.034	I
	1	120	11	1.004	1	1.004	I	1.006	I	1.010	1	1.012	I	1.016	I	1.017	
	1	∞	II	1.000	1	1.000	I	1.000	I	1.000	I	1.000	,	1.000	I	1.000	I

Table A33 (cont.). Values of the penalty ratio $r_{\sigma}^{L N}\left(V_{Y}, n, P\right)$ for right-prediction in lognormal sequences. The associated normal sequence has known mean and unknown variance. Estimated coefficient of variation of the lognormal population: $\mathrm{V}_{\mathrm{Y}}=0.20$.

						RIGHT PREDICTION INTERVAL						$\mathrm{V}_{\mathrm{Y}}=0.40$					
			11	0.7500	1	0.9000	1	0.9500	1	0.9900	1	0.9950	I	0.9990	I	0.9995	1
	I	1	II	1.298	1	1.653	1	1.810	I	1.610	1	1.525	1	1.393	1	1.354	1
	I	2	11	1.134	I	1.271	I	1.377	1	1.508	1	1.494	1	1.393	1	1.354	I
	1	3	II	1.087	I	1.168	1	1.232	1	1.350	1	1.376	1	1.368	1	1.345	1
	1	4	11	1.064	I	1.120	1	1.166	I	1.257	I	1.285	1	1.312	I	1.308	1
	1	5	11	1.051	I	1.094	1	1.129	I	1.201		1.225	I	1.260	I	1.265	I
	1	6	11	1.042	1	1.077	I	1.105	I	1.165	-	1.185	1	1.219	1	1.227	1
	I	7	II	1.036	I	1.065	1	1.089	1	1.139	I	1.157	1	1.189	1	1.197	I
	I	8	11	1.031	1	1.057	I	1.077	1	1.120	I	1.136	I	1.165	1	1.173	1
	1	9	11	1.028	1	1.050	I	1.068	1	1.106	1	1.120	I	1.146	1	1.154	1
	1	10	11	1.025	1	1.045	I	1.061	I	1.095	1	1.107	1	1.131	1	1.139	I
	1	11	11	1.022	I	1.040	1	1.055	I	1.086	I	1.097	1	1.119	1	1.126	I
	1	12	11	1.020	I	1.037	1	1.050	1	1.078	1	1.088	1	1.109	1	1.116	I
	1	13	11	1.019	1	1.034	1	1.046	1	1.072	1	1.081	1	1.100	1	1.107	I
$\stackrel{\circ}{\sim}$	1	14	11	1.017	1	1.031	I	1.042	1	1.066	I	1.075	1	1.093	I	1.099	1
	1	15	11	1.016	1	1.029	1	1.040	I	1.062	I	1.070	1	1.086	I	1.092	I
	1	16	II	1.016	1	1.027	I	1.037	1	1.058	1	1.065		1.081	,	1.086	I
	1	17	11	1.015	1	1.025	I	1.035	I	1.054	1	1.061	1	1.076	,	1.081	1
	1	18	II	1.014	1	1.024	I	1.033	1	1.051	I	1.058	1	1.071	1	1.076	I
	1	19	II	1.014	I	1.023	I	1.031	1	1.048	I	1.055	1	1.068	1	1.072	I
	1	20	II	1.013	1	1.021	I	1.029	1	1.046	I	1.052	1	1.064	I	1.069	1
	1	30	II	1.009	1	1.014		1.019	I	1.030	I	1.034	1	1.042	1	1.045	1
	1	40	11	1.007	1	1.011	I	1.014	1	1.022	1	1.025	1	1.032	,	1.034	I
	1	60	11	1.005	1	1.007	1	1.010	I	1.015	1	1.017		1.021	-	1.022	I
		120	11	1.003	I	1.004	I	1.005	I	1.007	I	1.008	I	1.010	I	1.011	I
	1	∞	I I	1.000	1	1.000		1.000	I	1.000		1.000		1.000	I	1.000	I

Table A33 (cont.). Values of the penalty ratio $r_{\sigma_{Z}}^{\mathrm{LN}}\left(V_{Y}, n, P\right)$ for right-prediction in lognormal sequences. The associated normal sequence has known mean and unknown variance. Estimated coefficient of variation of the lognormal population: $\mathrm{V}_{\mathrm{Y}}=0.40$.

Table A34. Values of the coefficient $\beta_{\mu_{Z}}^{L N}\left(V_{Y}, n, P\right)$ for left-hand prediction in lognormal variance. V_{Y} is the coefficient of variation of the lognormal population. For other vafues of V_{Y}, see continuation of the table.

					LEFT	PR	CTION		rval		$\mathrm{v}_{\mathrm{Y}}=$					
	in	11	0.7500	1	0.9000	I	0.9500	I	0.9900	I	0.9950	1	0.9990	I	0.9995	I
	11	11	0.857	I	1.749	I	2.318	1	3.469	I	3.920	1	4.898	1	5.301	1
	12	11	0.732	I	1.489	1	1.970	1	2.930	I	3.302	1	4.107	1	4.435	I
	13	11	0.685	1	1.396	1	1.842	1	2.736		3.081	I	3.825	1	4.128	1
	14	II	0.662	1	1.346	I	1.777	1	2.635	1	2.967	1	3.679	1	3.968	1
	15	II	0.647	1	1.317	,	1.737	1	2.575	I	2.897	1	3.593	1	3.874	1
	16	11	0.637	I	1.296	I	1.710	1	2.532	I	2.850	I	3.530		3.806	I
	17	11	0.630	1	1.282	I	1.690	I	2.506	1	2.816	1	3.491	,	3.763	1
	18	11	0.624	I	1.270	I	1.676	1	2.481	I	2.790	1	3.455	1	3.725	I
	19	11	0.620	I	1.263	I	1.664	I	2.465	I	2.770	1	3.433	1	3.701	1
	110	11	0.616	I	1.254	1	1.654	1	2.449	1	2.755	1	3.409	1	3.675	1
	111	11	0.613	1	1.247	1	1.647	1	2.435	1	2.740	1	3.391	1	3.655	1
	112	11	0.611	1	1.244	1	1.640	I	2.427	I	2.730	1	3.379	1	3.642	I
	113	11	0.609	1	1.240	1	1.635	1	2.419	I	2.720	1	3.367	I	3.629	1
	I 14	11	0.607	1	1.236	I	1.631	1	2.411	I	2.712	1	3.356	1	3.617	1
	115	II	0.606	I	1.233	1	1.626	I	2.406	1	2.705	1	3.348	1	3.609	1
	I 16	II	0.605	I	1.231	,	1.623	I	2.401	I	2.699	1	3.341	1	3.600	1
	117	II	0.604	1	1.228	1	1.620	1	2.395	1	2.693		3.333	I	3.591	1
	118	11	0.603	1	1.226	1	1.617	I	2.390	I	2.689	I	3.325	,	3.584	1
	I 19	II	0.602	1	1.223	,	1.615	I	2.387	1	2.685	1	3.321	1	3.580	I
	I 20	II	0.601	I	1.222	I	1.612	1	2.385	1	2.680	1	3.317	1	3.575	
	I 30	II	0.595	I	1.212	1	1.598	1	2.364	I	2.656	1	3.288	1	3.542	I
	I 40	II	0.592	I	1.205	1	1.590	1	2.350	1	2.643	I	3.268	I	3.521	1
	160	11	0.590	I	1.202	1	1.583	I	2.342	1	2.631	1	3.257	1	3.509	1
	I 120	II	0.587	I	1.195	I	1.576	I	2.329	1	2.618	I	3.237	1	3.488	I
	1∞	I I	0.584	I	1.190	1	1.569	I	2.318		2.607	1	3.222	I	3.472	I

Table A34 (cont.). Values of the coefficient $\beta_{\mu Z}^{L N}\left(V_{Y}, n, P\right)$ for left-prediction in lognormal sequences. The associated normal sequences have unknown mean and known variance. Coefficient of variation of the lognormal population: $\mathrm{V}_{\mathrm{Y}}=0.10$.

Table A34 (cont.). Values of the coefficient $\beta_{\mu \mathrm{Z}}^{\mathrm{LN}}\left(\mathrm{V}_{\mathrm{Y}}, \mathrm{n}, \mathrm{P}\right)$ for left-prediction in lognormal sequences. The associated normal sequences have unknown mean and known variance. Coefficient of variation of the lognormal population: $\mathrm{V}_{\mathrm{Y}}=0.20$.

						LEFT P	PRED	diction		RVAL		$\mathrm{V}_{\mathrm{Y}}=$	0.4				
	In			0.7500	1	0.9000	I	0.9500	1	0.9900	1	0.9950	1	0.9990	I	0.9995	I
	1	1	11	0.623	1	1.588	1	2.335	1	4.207	1	5.086	1	7.322	1	8.381	1
	1	2	II	0.506	1	1.282	I	1.865	I	3.265	1	3.903	1	5.478	I	6.205	I
	1	3	II	0.463	1	1.177	1	1.703	I	2.955	I	3.517	I	4.894	I	5.523	I
	1	4	II	0.442	1	1.122	1	1.622	I	2.799	1	3.326	1	4.605	1	5.186	1
	I	5	11	0.429	1	1.090	1	1.573	I	2.709	1	3.212	1	4.439	I	4.994	I
	1	6	II	0.420	1	1.068	I	1.541	1	2.645	1	3.135	I	4.319	1	4.856	I
	1	7	II	0.414	1	1.054	1	1.516	I	2.605	1	3.082	I	4.246	1	4.771	1
	I	8	II	0.408	1	1.040	I	1.499	1	2.569	1	3.041	1	4.181	1	4.695	I
	I	9	11	0.405	1	1.032	1	1.485		2.546	1	3.009	1	4.140	I	4.648	1
	1	10	11	0.401	1	1.024	1	1.474	1	2.522	I	2.985	1	4.096	I	4.598	I
	1	11	11	0.399	I	1.016	1	1.465	I	2.502	1	2.962	1	4.062	I	4.559	1
	1	12	II	0.397	I	1.013	I	1.457	1	2.490	I	2.946	I	4.041	1	4.534	1
	1	13	II	0.395	I	1.008	I	1.451	I	2.479	I	2.931	1	4.019	I	4.509	I
$\begin{aligned} & \text { G } \\ & \text { O} \end{aligned}$	1	14	11	0.394	1	1.004	I	1.446	I	2.467	1	2.918	1	3.999	1	4.485	I
	I	15	11	0.392	I	1.001	I	1.441	1	2.461	I	2.907	I	3.985	I	4.470	I
	1	16	11	0.391	I	0.998	,	1.437	I	2.452	1	2.898	I	3.972	I	4.454	1
		17	11	0.390	1	0.995	1	1.433	1	2.444	,	2.889	1	3.958	I	4.437	1
	1	18	11	0.389	1	0.993	1	1.430	1	2.437	I	2.882	I	3.943		4.422	I
	1	19	11	0.389	1	0.991	1	1.427	1	2.432	I	2.876	I	3.936	I	4.415	I
	I	20	11	0.388	1	0.990	1	1.425	1	2.429	I	2.869	1	3.929	I	4.405	1
	I	30	11	0.383	1	0.979	I	1.407	I	2.400	1	2.831	1	3.876	1	4.343	1
	1	40	II	0.380	1	0.971	1	1.398	1	2.380	I	2.811	1	3.841	I	4.303	I
	1	60	11	0.378	1	0.968	1	1.390	1	2.369	I	2.794	1	3.822	I	4.282	1
	1	120	II	0.376	1	0.961	1	1.382	1	2.350	I	2.774	,	3.787	,	4.242	I
	1	∞	11	0.373	1	0.955	1	1.374	I	2.335	I	2.756	1	3.761	1	4.211	I
Table A34 (cont.). Values of the coefficient $\beta_{\mu_{Z}}^{L N}\left(V_{Y}, n, P\right)$ for left-prediction in lognormal sequences. The associlated normal sequences have unknown mean and known variance. Coefficient of variation of the lognormal																	

Table A35. Values of the penalty ratio $r_{\mu_{\mathrm{Z}}}^{\mathrm{LN}}\left(\mathrm{V}_{\mathrm{Y}}, \mathrm{n}, \mathrm{P}\right)$ for left-hand prediction in lognormal sequences. The associated normal sequences have unknown mean and known variance. V_{v} is the coefficient of variation of the lognormal population. For other values of V_{Y}, see continuation of the table.

						EFT	PREDICTION INTERVAL				$\mathrm{V}_{\mathrm{Y}}=0.10$					0.9995 I	
	1 n P 110.7500				I	.9000	1	. 9500		. 9900	1	. 9950	1	. 9990			
	I		11	1.468	1	1.470	1	1.478	I	1.496	I	1.504	I	1.520		1.527	1
	I	2	11	1.253	1	1.252	1	1.256	1	1.264	1	1.267	1	1.274	1	1.277	
	1	3	11	1.173	1	1.173	1	1.174	I	1.180	1	1.182	-	1.187	I	1.189	
	1	4	II	1.133	I	1.131	I	1.133	1	1.136	I	1.138		1.142	1	1.143	1
	I	5	II	1.108	1	1.107	1	1.107	1	1.111	1	1.112	1	1.115		1.116	I
	I	6	11	1.089	I	1.089	1	1.090	1	1.092	I	1.093		1.095		1.096	I
	I	7	II	1.078	I	1.078	I	1.077	1	1.081	1	1.080	1	1.083		1.084	I
	1	8	11	1.068	1	1.068	I	1.068	I	1.070		1.070	1	1.072		1.073	
	I	9	11	1.061	1	1.061	I	1.061	1	1.063	I	1.063	1	1.065		1.066	
	1	10	11	1.055	1	1.055	1	1.054	I	1.056	I	1.057	1	1.058		1.059	I
	I	11	11	1.050	1	1.048	I	1.050	1	1.050		1.051	1	1.052	I	1.053	1
	I	12	11	1.046	1	1.046	I	1.046	1	1.047	-	1.047	I	1.049	I	1.049	I
	I	13	11	1.043	1	1.042	1	1.042	1	1.043	1	1.044	1	1.045	1	1.045	I
\cdots	1	14	11	1.040	I	1.039	I	1.039	I	1.040	I	1.040		1.041	1	1.042	I
∞	I	15	11	1.036	I	1.036	I	1.037	I	1.038		1.038	,	1.039	1	1.040	1
	1	16	11	1.035	I	1.035	I	1.035	I	1.035	1	1.036	1	1.037	I	1.037	I
	1	17	11	1.033	1	1.032	I	1.033	1	1.033	1	1.033	I	1.034	1	1.034	I
	I	18	11	1.031	1	1.030	I	1.031	1	1.031	I	1.031		1.032		1.032	1
	I	19	II	1.030	1	1.029	1	1.029	1	1.030	1	1.030	I	1.031	1	1.031	1
	I	20	11	1.028	1	1.028	I	1.028	I	1.029	1	1.028	I	1.029	1	1.030	1
	1	30	11	1.018	1	1.019	1	1.018	1	1.020	1	1.019	1	1.020	1	1.020	1
	I	40	11	1.013	1	1.013	I	1.014	I	1.014	1	1.014	I	1.014	1	1.014	I
	1	60	11	1.010	1	1.010	I	1.009	1	1.010	I	1.009	I	1.011	1	1.011	I
	I	120	11	1.005	I	1.004	I	1.005	1	1.004	I	1.004		1.005	I	1.005	I
	I	∞	11	1.000	1	1.000	I	1.000	1	1.000	1	1.000	I	1.000	I	1.000	I

Table A35 (cont.). Values of the penalty ratio $r_{\mu_{Z}}^{\mathrm{LN}}\left(\mathrm{V}_{\mathrm{Y}}, \mathrm{n}, \mathrm{P}\right)$ for left-prediction in lognormal sequences. The associated normal sequences have unknown mean and known variance. Coefficient of variation of the lognormal population: $\mathrm{V}_{\mathrm{Y}}=0.10$.

					LEFT	PRED	ICTION		TERVAL		$\mathrm{V}_{\mathrm{Y}}=$	0.2				
		11	0.7500	1	0.9000	1	0.9500	I	0.9900	I	0.9950	1	0.9990	1	0.9995	
	1	11	1.528	I	1.531	1	1.547	I	1.589	I	1.606	1	1.645	I	1.661	1
	12	11	1.284	1	1.281	I	1.288	1	1.306	I	1.313	1	1.330	I	1.337	I
	13	11	1.193	1	1.192	1	1.196	I	1.207	I	1.212	1	1.223	1	1.227	
	14	11	1.148	1	1.145	1	1.149		1.156	1	1.160	1	1.168	1	1.170	
	15	11	1.120	1	1.118	1	1.120	1	1.127	I	1.129	1	1.136	I	1.138	
	16	11	1.100	1	1.099	1	1.100	1	1.105	I	1.107	-	1.112	I	1.114	I
	17	II	1.087	I	1.086	1	1.086	1	1.092	1	1.093	1	1.098	1	1.099	
	18	11	1.076	1	1.075	1	1.076	1	1.080	1	1.081	1	1.085	I	1.086	
	19	11	1.068	I	1.068	1	1.067	1	1.072	1	1.072	1	1.077	1	1.078	
	110	11	1.061	1	1.060	1	1.061	I	1.064	1	1.065	I	1.068	,	1.069	
	111	11	1.055	1	1.053	1	1.055	1	1.057	1	1.059	I	1.061	I	1.062	
	112	11	1.052	1	1.051	1	1.051	1	1.053	1	1.054	1	1.057	1	1.058	I
	113	11	1.048	I	1.047	1	1.047	1	1.049	I	1.050	I	1.052	I	1.053	I
\bigcirc	I 14	II	1.044	1	1.043	1	1.044	I	1.045	1	1.046	1	1.048	I	1.049	
\bigcirc	115	11	1.041	I	1.040	I	1.041	1	1.043	1	1.043	1	1.046	1	1.047	
	116	II	1.039	-	1.038	1	1.038	1	1.040	1	1.041	1	1.043	I	1.044	I
	I 17	II	1.037	I	1.035	I	1.036	1	1.037		1.038	1	1.040	1	1.041	
	118	11	1.035		1.033	1	1.034	1	1.035	I	1.036	1	1.037	1	1.038	I
	119	11	1.033	1	1.031	1	1.032	I	1.034		1.034	1	1.036	I	1.037	I
	120	II	1.031	I	1.030	1	1.031	I	1.032	1	1.032	1	1.034	I	1.035	I
	130	II	1.020	I	1.021	1	1.020	1	1.022	,	1.022		1.024	1	1.024	I
	140	II	1.015	1	1.014	1	1.015	1	1.016	1	1.016	1	1.016	1	1.017	I
	160	11	1.011	1	1.011	1	1.010	I	1.012	1	1.011	1	1.012	I	1.013	1
	1120	11	1.006	I	1.005	I	1.005	I	1.005	,	1.005	1	1.005	I	1.006	I
	1∞	11	1.000	1	1.000	1	1.000	1	1.000	1	1.000	1	1.000	1	1.000	1

Table A35 (cont.). Values of the penalty ratio $r_{\mu}^{L N}\left(V_{V}, n, P\right)$ for left-prediction in lognormal sequences. The associated normal sequences have unknown mean and known variance. Coefficient of variation of the lognormal population: $\mathrm{V}_{\mathrm{Y}}=0.20$.

Table A35 (cont.). Vaiues of the penalty ratio $r_{\mu}^{L N}\left(V_{y}, n, P\right)$ for left-prediction in lognormal sequences. The associated normal sequences have unknown mean and known variance. Coefficient of variation of the lognormal population: $\mathrm{V}_{\mathrm{Y}}=0.40$.

					RIGHT P	Pre	ICTION	IN	ERVAL	$V_{Y}=0.05$						
	1 n P	11	0.7500	1	0.9000	I	0.9500	I	0.9900	I	0.9950	1	0.9990	1	0.9995	1
	11	11	0.909	1	1.672	I	2.111	I	2.907	I	3.189	I	3.755	I	3.971	I
	12	11	0.793	1	1.459	1	1.846	I	2.548	I	2.799	1	3.302	,	3.495	I
	13	II	0.749	I	1.381	I	1.746	I	2.413	1	2.651	1	3.131	1	3.315	1
	14	11	0.727	1	1.338	I	1.694	,	2.342	1	2.574	1	3.040	1	3.219	1
	15	II	0.714	I	1.314	I	1.662	I	2.299	I	2.526	1	2.986	I	3.162	1
	16	11	0.703	I	1.296	I	1.640	I	2.268	1	2.493	1	2.946	1	3.119	1
	17	11	0.697	1	1.284	I	1.624	1	2.249	-	2.470	I	2.921	1	3.093	1
	18	11	0.692	I	1.274	I	1.612	I	2.231	1	2.452	1	2.898	1	3.069	1
	19	11	0.688	1	1.268	1	1.603	1	2.219	1	2.437	1	2.884	1	3.054	1
	110	11	0.684	1	1.260	I	1.595	I	2.208	I	2.427	1	2.868	1	3.038	1
	111	11	0.681	1	1.254	I	1.589	I	2.197	I	2.417	1	2.856	I	3.025	1
	112	11	0.680	I	1.252	I	1.584	I	2.192	1	2.409	1	2.849	I	3.017	1
	113	II	0.678	1	1.248	1	1.579	I	2.186	I	2.403	I	2.841	,	3.009	1
O	I 14	11	0.676	I	1.244	1	1.576	I	2.180	1	2.397	1	2.834	I	3.001	I
	115	11	0.674	I	1.242	1	1.572	1	2.176	1	2.392	1	2.829	I	2.996	I
	116	11	0.673	1	1.240	1	1.570	I	2.172	1	2.388	1	2.824	1	2.991	I
	117	11	0.672	1	1.237	I	1.567	I	2.168	I	2.383		2.819	,	2.985	1
	118	11	0.671	1	1.235	I	1.564	1	2.165	1	2.380	I	2.813	-	2.980	1
	119	11	0.670	1	1.234	1	1.563	I	2.162	1	2.378	1	2.811	,	2.978	1
	120	11	0.669	1	1.233	I	1.561	I	2.160	1	2.374	I	2.808	I	2.975	1
	130	11	0.664	1	1.224	1	1.549	I	2.145	1	2.357	I	2.789	,	2.954	1
	140	11	0.661	I	1.218	1	1.543	I	2.135	I	2.348	I	2.776	,	2.940	I
	160	11	0.659	1	1.215		1.536	I	2.129	I	2.339		2.769	I	2.933	1
	1120	II	0.657	I	1.209	I	1.531	I	2.119	I	2.330		2.756	,	2.919	1
	I ∞	11	0.654	1	1.204	1	1.525	I	2.111	1	2.322	I	2.746	1	2.909	

Table A36. Values of the coefficient $\beta_{\mu \mathrm{L}}^{\mathrm{LN}}\left(\mathrm{V}_{\mathrm{Y}}, \mathrm{n}, \mathrm{P}\right)$ for right-hand prediction in lognormal sequences. The associated normal sequences have unknown mean and known variance. V_{V} is the coefficient of variation of the lognormal population. For other values of V_{Y}, see continuation of the table.

					RIGHT PREDICTION			INTERVAL			$\mathrm{V}_{\mathrm{Y}}=0.10$				0.99951	
	n	I	0.7500	1	0.9600	I	0.9500	1	0.9900	I	0.9950	1	0.9990	1		
	1	11	0.866	I	1.542	I	1.919	1	2.577	1	2.802	I	3.242	1	3.406	I
	12	11	0.761	1	1.357	1	1.693	1	2.284	I	2.489	1	2.891	1	3.042	I
	13	II	0.721	1	1.288	1	1.607	1	2.172	1	2.368		2.756	1	2.901	1
	14	II	0.701	1	1.251	I	1.562	I	2.113	1	2.305		2.684	1	2.825	I
	15	II	0.688	1	1.229	1	1.534	1	2.077	1	2.266	1	2.640	1	2.780	1
	16	11	0.679	1	1.213	1	1.515	1	2.051	I	2.238	I	2.608	1	2.747	1
	17	II	0.673	I	1.203	1	1.501	I	2.035	I	2.219	I	2.588	I	2.726	1
	18	II	0.668	1	1.193	I	1.491	1	2.020	1	2.204	1	2.569	1	2.707	I
	19	11	0.665	1	1.188	I	1.483	I	2.010	,	2.192	1	2.558	1	2.695	1
	110	II	0.661	1	1.181	I	1.476	I	2.000	I	2.183	I	2.545	1	2.682	1
	111	II	0.659	-	1.176	I	1.471	I	1.992	-	2.175	1	2.535	1	2.671	1
	112	II	0.657	I	1.174	I	1.466	I	1.987	I	2.169	1	2.530	1	2.665	1
	I 13	11	0.656	-	1.170	1	1.462	I	1.982	I	2.163	I	2.523	1	2.659	1
9	I 14	11	0.654	I	1.167	I	1.459	1	1.977	I	2.159	,	2.517	1	2.652	1
N	I 15	II	0.652	I	1.165	I	1.456	I	1.974	I	2.154	-	2.513	1	2.648	I
	I 16	11	0.651	1	1.163	I	1.454	I	1.971	1	2.151	I	2.509	I	2.644	1
	I 17	11	0.650	,	1.161	I	1.452	1	1.967	,	2.148	I	2.505	1	2.639	I
	118	II	0.650	1	1.159	1	1.449	I	1.964	I	2.145	I	2.501		2.635	I
	119	11	0.649	1	1.158	I	1.448	1	1.962		2.143	I	2.499	I	2.634	1
	120	II	0.648	1	1.157	I	1.446	1	1.961	-	2.140	I	2.497	1	2.631	I
	I 30	II	0.643	1	1.149	I	1.435	I	1.948		2.125	I	2.481	1	2.614	I
	140	II	0.640	1	1.144	I	1.430	I	1.939	1	2.118	I	2.470	1	2.603	I
	160	11	0.639	1	1.141	I	1.425	I	1.934	I	2.111		2.464	I	2.597	1
	I 120	II	0.636	I	1.136	I	1.420	1	1.926	1	2.103	1	2.454	I	2.586	1
	1∞	11	0.634	I	1.132	1	1.415		1.919	1	2.096	I	2.446	1	2.578	1

Table A36 (cont.). Values of the coefficient $\beta_{\mu_{Z}}^{L N}\left(V_{Y}, n, P\right)$ for right-prediction in lognormal sequences. The associated normal sequences have unknown mean and known variance. Coefficient of variation of the lognormal population: $V_{Y}=0.10$.

						RIGHT PREDICTION			INTERVAL		$V_{Y}=0.20$					0.9995	
		n	II	0.7500	I	0.9000	I	0.9500	I	. 9900	1	0.9950	I	. 9990	I		I
	I	1	11	0.787	I	1.319	I	1.595	I	2.045	1	2.189	1	2.456	1	2.551	I
	1	2	11	0.700	1	1.177	1	1.431	I	1.850	I	1.987	I	2.245	1	2.337	I
	1	3	11	0.667	I	1.124	I	1.367	1	1.773	I	1.907	I	2. 160	I	2.251	1
	I	4	II	0.650	I	1. 095	I	1.333	1	1.732	I	1.864	1	2.114		2.203	I
	I	5	11	0.640	1	1.077	1	1.312	I	1.707	I	1.837	I	2.086	I	2.175	I
	I	6	11	0.632	1	1.065	I	1.298	I	1.689	I	1.819	I	2.065	I	2.154	I
	I	7	II	0.627	I	1.057	I	1.287	1	1.677	I	1.806	I	2.052	I	2.141	1
	1	8	II	0.623	1	1. 050	I	1.280	1	1.667	I	1.795	I	2.040	I	2.128	1
	I	9	11	0.620	I	1. 045	I	1.273	I	1.660	I	1.787	I	2. 032	I	2.121	I
	I	10	11	0.617	I	1.040	I	1.268	I	1.653	I	1.781	I	2.024	I	2.112	I
	I	11	11	0.615	I	1.036	I	1.264	I	1.647	I	1.775	1	2.018	I	2.106	I
	I	12	II	0.614	1	1.034	I	1.261	I	1.643	I	1.771	1	2.014	1	2.102	I
	I	13	11	0.612	1	1.032	I	1.258	1	1.640	1	1.767	I	2.010	I	2.098	I
O	1	14	II	0.611	1	1.029	I	1.255	I	1.636	I	1.764	I	2.006	I	2.094	I
ω	I	15	1 I	0.609	I	1.027	I	1.253	1	1.634	I	1.761	I	2.003	1	2.091	I
	1	16	11	0.609	I	1.026	I	1.251	1	1.632	I	1.758	I	2.000	I	2.088	I
	1	17	II	0.608	I	1.024	I	1.250	1	1.629	1	1.756	1	1.998	I	2.085	I
	I	18	11	0.607	1	1.023	I	1.248	1	1.627	I	1.754	I	1.995	I	2.083	1
	1	19	11	0.607	I	1.022	I	1.247	1	1.626	I	1.753	I	1.994	I	2.081	1
	1	20	1 I	0.606	1	1.021	I	1.246	I	1.625	I	1.751	1	1.992	I	2.080	I
	1	30	11	0.602	I	1.015	I	1.237	I	1.616	I	1.741	I	1.982	I	2.069	I
	I	40	II	0.599	I	1.010	I	1.233	1	1.610	I	1.735	I	1.975	I	2.062	I
	I	60	11	0.598	I	1.008	I	1.229	I	1.606	I	1.730	1	1.971	I	2.058	I
	I	120	11	0.596	I	1.004	I	1.226	I	1.600	I	1.725	1	1.964	1	2.051	I
	1	∞	II	0.594	I	1.001	I	1.222	1	1.595	I	1.720	I	1.959	1	2.045	I

Table A36 (cont.). Values of the coefficient $\beta_{\mu_{Z}}^{L_{N}}\left(V_{Y}, n, P\right)$ for right-prediction in lognormal sequences. The associated normal sequences have unknown mean and known variance. Coefficient of variation of the lognormal population: $\mathrm{V}_{\mathrm{Y}}=0.20$.

						RIGHT PREDICTION INTERVAL						$\mathrm{V}_{\mathrm{Y}}=0.40$					
			II	0.7500	I	0.9000	I	0.9500	1	0.9900	1	0.9950	1	0.9990	1	0.9995	1
	1	1	11	0.654	1	0.986	1	1.138	1	1.353	I	1.414	I	1.516	I	1.548	I
	1	2	II	0.595	I	0.903	I	1.049	1	1.264	1	1.327	1	1.436	1	1.472	I
	I	3	II	0.571	I	0.870	I	1.013	I	1.227	1	1.291	1	1.402	1	1.438	1
	1	4	11	0.560	I	0.853	1	0.994	I	1.207	1	1.271	1	1.382	I	1.420	1
	1	5	11	0.552	I	0.842	I	0.982	I	1.195	1	1.258	I	1.370	I	1.408	I
	1	6	11	0.547	1	0.834	1	0.974	1	1.186	1	1.249	1	1.361	1	1.399	1
	1	7	II	0.543	I	0.829	I	0.968	I	1.180	I	1.243	I	1.356	1	1.394	1
	1	8	11	0.540	1	0.825	1	0.963	1	1.175	I	1.238	1	1.351	1	1.389	1
	1	9	11	0.539	1	0.822	1	0.960	1	1.171	1	1.234	1	1.347	1	1.385	1
	1	10	11	0.537	1	0.819	1	0.957	I	1.167	I	1.231	1	1.344	1	1.382	I
	1	11	11	0.535	1	0.816	I	0.954	I	1.164	I	1.228	1	1.341	1	1.379	I
	1	12	11	0.534	I	0.815	1	0.952	1	1.162	I	1.226	1	1.339	1	1.377	1
	I	13	11	0.533	I	0.813	1	0.951	1	1.161	1	1.224	I	1.337	I	1.376	I
-	1	14	II	0.532	1	0.812	1	0.949	I	1.159	1	1.223	1	1.336	1	1.374	I
$\stackrel{\sim}{*}$	I	15	11	0.531	1	0.811	I	0.948	I	1.158	I	1.221	1	1.334	I	1.373	1
	1	16	11	0.531	1	0.810	1	0.947	1	1.157	1	1.220	1	1.333	1	1.372	,
	1	17	11	0.530	I	0.809	1	0.946	1	1.155	I	1.219	,	1.332	I	1.370	1
	1	18	II	0.530	I	0.808	1	0.945	1	1.154	1	1.218		1.331	1	1.369	,
	1	19	11	0.529	I	0.807	1	0.944	1	1.153	I	1.217	1	1.330	1	1.369	1
	1	20	11	0.528	1	0.807	1	0.943	1	1.153	I	1.216	I	1.330	I	1.368	1
	1	30	II	0.525	1	0.803	,	0.939	1	1.148	1	1.211	1	1.325	1	1.363	1
	1	40	II	0.524	1	0.800	1	0.936	I	1.145	1	1.209	1	1.322	1	1.360	1
	1	60	11	0.523	1	0.799	I	0.934	1	1.143	I	1.206	I	1.320	I	1.359	,
	\mathbf{I}	120	II	0.521	1	0.796	1	0.932	1	1.140	I	1.204	I	1.317	1	1.355	i
	1	∞	II	0.520	I	0.794	I	0.929	1	1.138	1	1.201	I	1.315	1	1.353	,
		36		$\begin{aligned} & \mathrm{Va} \\ & \mathrm{lo} \\ & \mathrm{me} \\ & \text { po } \end{aligned}$	p	es of th ormal se and kno lation:	que wn V_{Y}	oeffici nces. varianc $=0.40$		$\begin{aligned} & \beta_{\mu \mathrm{SSoc}}^{\mathrm{LN}}\left(\mathrm{~V}_{\mathrm{Y}}\right. \end{aligned}$ Coeffi				t-pre quenc tion		on in ve unk logn	nown normal

						IGHT	R	CTION	1	RVAL		$\mathrm{V}_{\mathrm{Y}}=0.05$. 9995	
	1 n P 0.7500				I	. 9000	I	. 9500	I	. 9900	I	. 9950	I	. 9990			
	1	1	11	1.389	I	1.388	I	1.384		1.377		1.374		1.368		1.365	
	1	2	11	1.213	I	1.212	1	1.210	1	1.207	1	1.205	1	1.203	I	1.201	
	1	3	11	1.146	I	1.147	I	1.145	1	1.143	I	1.142	I	1.140	I	1.140	
	1	4	11	1.112	I	1.111	1	1.111	1	1.109	1	1.109	1	1.107		1.107	
	1	5	11	1.091	1	1.091	1	1.090	1	1.089	1	1.088	I	1.087	I	1.087	
	1	6	11	1.076	1	1.076	I	1.076	1	1.074	I	1.074	I	1.073	1	1.072	
	1	7	11	1.066	1	1.066	1	1.065	1	1.065	1	1.064	1	1.064	I	1.063	
	1	8	11	1.058	I	1.058	I	1.057	1	1.057	1	1.056	I	1.056	1	1.055	
	1	9	11	1.052	I	1.052	1	1.051	1	1.051	1	1.050	1	1.050	1	1.050	
	1	10	11	1.046	1	1.047	I	1.046	1	1.046	I	1.045	I	1.045	I	1.044	
	I	11	11	1.042	I	1.041	I	1.042	I	1.041	1	1.041		1.040		1.040	
	I	12	11	1.039	I	1.039	I	1.038	1	1.038		1.038		1.038		1.037	
	I	13	11	1.037	1	1.036	I	1.036	I	1.035	I	1.035	I	1.035	I	1.035	
O-	I	14	11	1.034	I	1.033	1	1.033	1	1.032	1	1.032	I	1.032	I	1.032	
	1	15	11	1.031	1	1.031	1	1.031	1	1.031	1	1.030	1	1.030	1	1.030	
	1	16	11	1.030	I	1.030	1	1.029	I	1.029	1	1.028	1	1.028	1	1.028	
	I	17	11	1.028	I	1.027	I	1.028	1	1.027	1	1.027	I	1.027	1	1.026	
	1	18	11	1.027	1	1.026	1	1.026	I	1.025	I	1.025	1	1.025	,	1.025	
	I	19	11	1.025	I	1.024	1	1.025	1	1.024	I	1.024	I	1.024		1.024	
	1	20	11	1.024	I	1.024	I	1.024	I	1.023	1	1.023	1	1.023		1.023	
	,	30	11	1.015	I	1.016	I	1.015	1	1.016	1	1.015	1	1.016	1	1.016	
	I	40	11	1.011	1	1.011	I	1.011	1	1.011	I	1.011	1	1.011	I	1.011	
	1	60	11	1.008	I	1.009	I	1.007	1	1.008	I	1.008	1	1.008	I	1.008	
	1	120	11	1.004	I	1.004	I	1.004	I	1.004	I	1.004	1	1.004	1	1.004	
	1	∞	II	1.000	I	1.000	1	1.000	1	1.000	1	1.000	1	1.000	I	1.000	

Table A37. Values of the penalty ratio $r \mathrm{~L}_{\mathrm{Z}}\left(\mathrm{V}_{\mathrm{Y}}, \mathrm{n}, \mathrm{P}\right)$ for right-hand prediction in lognormal sequences. The associated normal sequences have unknown mean and known variance. V_{y} is the coefficient of variation of the lognormal population. For other values of V_{Y}, see continuation of the table.

						IGHT P	PRE	CTION	IN	ERVAL	$\mathrm{V}_{\mathrm{Y}}=0.10$						
		P	11	0.7500	1	. 9000	I	.9500	1	0.9900	1	0.9950	1	0.9990	1	0.9995	I
	1	1	II	1.367	I	1.363	I	1.357	I	1.342	I	1.337	1	1.326	I	1.321	1
	I	2	II	1.201		1.199	1	1.197	1	1.190	I	1.187	I	1.182	1	1.180	1
	1	3	11	1.138	1	1.138	1	1.136	1	1.132	1	1.130	I	1.127	I	1.125	1
	,	4	11	1.106	1	1.105	1	1.104	1	1.101	I	1.100	1	1.097	1	1.096	1
	,	5	11	1.086	1	1.086	1	1.084	1	1.082	I	1.081	1	1.079		1.078	1
	I	6	11	1.072	1	1.072	I	1.071	1	1.069	I	1.068	1	1.066	1	1.065	1
	1	7	II	1.062	1	1.063	I	1.061	1	1.060	1	1.059	1	1.058	1	1.057	I
	1	8	II	1.055	1	1.055	1	1.054	I	1.053	I	1.052	1	1.051	1	1.050	1
	I	9	II	1.049	1	1.050	I	1.048	I	1.047	1	1.046	1	1.046		1.045	1
	1	10	11	1.044	1	1.044	I	1.043	1	1.042	1	1.042	I	1.041	1	1.040	I
	I	11	11	1.040	1	1.039	I	1.039	I	1.038	I	1.038	I	1.037	1	1.036	1
	I	12	11	1.037	1	1.037	I	1.036	1	1.035	I	1.035	1	1.034	,	1.034	1
	1	13	II	1.035	I	1.034	I	1.033	1	1.033	I	1.032	I	1.032	1	1.031	1
9	1	14	II	1.032	1	1.032	I	1.031	I	1.030	I	1.030	,	1.029	1	1.029	1
	I	15	11	1.029	1	1.029	I	1.029	1	1.029	I	1.028	1	1.028	1	1.027	1
	I	16	11	1.028	1	1.028	I	1.028	1	1.027	I	1.026	1	1.026	1	1.026	I
	,	17	11	1.027	1	1.026	I	1.026	,	1.025	I	1.025	I	1.024	1	1.024	,
	1	18	11	1.025	1	1.025	I	1.024	1	1.023	1	1.023	I	1.022	I	1.022	1
	1	19	11	1.024	1	1.023	I	1.023	1	1.022	1	1.022	1	1.022	,	1.022	I
	1	20	iI	1.023	1	1.022	I	1.022	1	1.022	I	1.021	1	1.021	1	1.021	1
	1	30	II	1.015	1	1.015	,	1.015	1	1.015	1	1.014	I	1.014	I	1.014	,
	1	40	II	1.011	1	1.011	I	1.011	I	1.010	I	1.010	I	1.010	1	1.010	
	I	60	11	1.008	I	1.008	I	1.007	I	1.008	I	1.007	1	1.008	I	1.008	1
		120	II	1.004	I	1.004	I	1.004	1	1.003	I	1.003	1	1.003	1	1.003	
	1	∞	II	1.000	I	1.000	I	1.000	I	1.000	I	1.000	,	1.000	I	1.000	,

Table A37 (cont.). Values of the penalty ratio $r_{\mu}^{L N}(V, n, P)$ for right-prediction in lognormal sequences. The associated normal sequences have unknown mean and known variance. Coefficient of variation of the lognormal population: $\mathrm{V}_{\mathrm{Y}}=0.10$.

Table A37 (cont.). Values of the penalty ratio $r_{\mu_{Z}}^{\mathrm{LN}}\left(\mathrm{V}_{\mathrm{Y}}, \mathrm{n}, \mathrm{P}\right)$ for right-prediction in lognormal sequences. The associafed normal sequences have unknown mean and known variance. Coefficient of variation of the lognormal population: $\mathrm{V}_{\mathrm{Y}}=0.20$.

						RIGHT PREDICTION			INTERVAL			$v_{Y}=0.40$				0.9995	
	I P P II 0.75001					0.9000	1	0.9500	1	0.9900	1	0.9950	1	0.9990	1		
	1	1	11	1.257	1	1.242	1	1.224	1	1.189	1	1.177	1	1.153	I	1.144	1
	1	2	11	1.143	I	1.137	1	1.129	I	1.111	1	1.105	1	1.092	1	1.088	
	I	3	11	1.099	1	1.096	I	1.091	I	1.079	I	1.075	I	1.066	I	1.063	
	1	4	11	1.077	1	1.074	1	1.070	1	1.061	1	1.058	1	1.052	1	1.049	
	1	5	11	1.062	1	1.061	I	1.057	1	1.050	1	1.047	1	1.043	I	1.041	
	I	6	11	1.052	1	1.051	I	1.048	I	1.042	I	1.040	I	1.036	1	1.034	
	I	7	11	1.045	I	1.045	I	1.041	1	1.037	I	1.035	1	1.031	I	1.030	
	1	8	11	1.040	1	1.039	I	1.037	1	1.032	1	1.031	1	1.027	1	1.026	
	1	9	11	1.036	1	1.035	1	1.033	1	1.029	1	1.027	I	1.025	1	1.024	
	1	10	II	1.032	1	1.031	1	1.029	I	1.026	I	1.025	I	1.022	I	1.021	
	1	11	II	1.029	I	1.028	1	1.027	I	1.024	1	1.023	1	1.020	I	1.019	
	I	12	11	1.027	1	1.026	I	1.025	1	1.022	I	1.021	1	1.019	1	1.018	
	1	13	11	1.025	1	1.024		1.023	1	1.020	I	1.019	1	1.017	I	1.017	
\bigcirc	1	14	11	1.023	I	1.022	1	1.021	1	1.019	I	1.018	1	1.016		1.015	
	I	15	11	1.021	1	1.021	I	1.020	1	1.018	I	1.017	1	1.015	I	1.015	
	1	16	11	1.020	1	1.020	1	1.019	I	1.017	I	1.016	1	1.014		1.014	
	1	17	11	1.019	1	1.019	1	1.018	I	1.016	1	1.015	1	1.013	1	1.013	
	1	18	11	1.018	1	1.018	I	1.017	I	1.015	1	1.014	1	1.012	1	1.012	
	1	19	11	1.017	I	1.017	1	1.016	1	1.014	I	1.013	1	1.012	1	1.012	
	1	20	11	1.016	1	1.016	I	1.015	1	1.013	I	1.013	1	1.011	1	1.011	
	1	30	11	1.011	1	1.011	I	1.010	I	1.009	1	1.008		1.008	1	1.008	
	1	40	11	1.008	1	1.008	I	1.007	1	1.007	I	1.006	1	1.006	I	1.005	
	1	60	11	1.006	1	1.006	1	1.005	1	1.005	I	1.004	1	1.004	I	1.004	
	1	120	11	1.003	1	1.003	I	1.003	I	1.002	I	1.002	1	1.002	I	1.002	
	1	∞	11	1.000	1	1.000	I	1.000	I	1.000	I	1.000	1	1.000	I	1.000	

Table A37 (cont.). Values of the penalty ratio $r_{\mu_{\eta}}^{\mathrm{LN}}\left(\mathrm{V}_{\mathrm{V}}, \mathrm{n}, \mathrm{P}\right)$ for right-prediction in lognormal sequences. The associated normal sequences have unknown mean and known variance. Coefficient of variation of the lognormal population: $V_{Y}=0.40$.

APPENDIX B

The tables in this appendix contain simple-prediction limits and associated penalty ratios for k-variate independent normal sequences with $k>1$. For $k=1$ see Appendix A. The values refer to ellipsoidal prediction regions centered on the mean. n denotes the available sample size and P is the desired probability content of the region.

For using the tables in Bayesian prediction with "diffuse" or conjugate prior see Paragraph II.2.4(a).

Table Bl. Values of $\beta_{\underline{\mu}, \underline{\Sigma}}^{N}(k, n, P)$ such that the prediction ellipsoid (II.92) has probability content P. Sampling is from a k-variate normal population with unknown mean vector $\underline{\mu}$ and covariance matrix $\underline{\Sigma}$. (For the case $k=1$ see Table A8 in Appendix A.)

$\mathrm{k}=3$	Probability content, P					
n	07500	0.9000	0,9500	0. 9900	09950	0.9990
4	9.605	24.554	49.262	246.550	493.179	2465.665
5	4.765	8.122	11.747	26.721	37. 869	84.819
6	3.707	5.608	7.356	13.108	16.640	28.689
7	3.245	4.643	5.822	9.266	11.170	16.998
8	2.984	4.136	5.056	7.549	8.838	12.525
9	2.816	3.823	4.598	6.593	7.577	10.263
10	2.699	3.611	4.295	5.988	6.795	8.924
11	2.612	3.459	4.078	5.573	6.266	8.047
12	2.546	3.343	3.917	5.270	5.884	7.431
13	2.493	3.252	3.792	5.040	5.597	6.975
14	2.450	3.179	3.691	4.860	5.373	6.627
15	2.414	3.119	3.610	4.714	5.194	6350
16	2.384	3.068	3.542	4.594	5.047	6.128
17	2.358	3.026	3.484	4.494	4.924	5.943
18	2. 336	2. 989	3.435	4409	4.821	5790
19	2.316	2.957	3.392	4.336	4.732	5.655
20	2.300	2.929	3.355	4.272	4.655	5.544
21	2284	2.905	3.322	4.217	4.588	5.445
22	2.270	2.883	3.292	4.167	4.529	5.357
23	2.258	2.863	3.266	4.124	4.476	5. 281
33	2.181	2.739	3.104	3.856	4.156	4.821
43	2.142	2.679	3.025	3.729	4.005	4.612
63	2.104	2.618	2.947	3.605	3.859	4.408
123	2.065	2.559	2.871	3.485	3.719	4.219
∞	2.027	2.500	2.796	3.368	3.583	4.032

Table Bl (cont.).

$\frac{\mathrm{k}=4}{}$		Probability content, P					
		0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	5	12.836	32.741	65.665	328.622	657:267	3286.329
	6	6.141	10.384	14.985	34.028	48.214	107.969
	7	4.675	6.989	9.130	16.202	20.551	35.405
	8	4.032	5687	7.093	11217	13.504	20. 514
	9	3.669	5.003	6.076	9.001	10.518	14.869
	10	3.434	4.582	5.470	7.770	8.910	12.028
	11	3.271	4.296	5.068	6.994	7.915	10.352
	12	3.149	4.089	4.782	6.461	7.243	9. 260
	13	3.055	3.933	4.568	6.073	6. 760	8 c 493
	14	2.981	3.810	4.402	5.779	6.396	7.928
	15	2.920	3.711	4.270	5.548	6.113	7.497
	16	2.870	3.630	4.161	5.362	5.886	7. 153
$\stackrel{\circ}{\bullet}$	17	2.828	3. 562	4.071	5.209	5.700	6.876
N	18	2.791	3. 504	3.994	5.081	5.545	6.648
	19	2.759	3.454	3.929	4.972	5.415	6.456
	20	2.732	3.411	3. 873	4.879	5.303	6.293
	21	2.708	3.373	3.823	4.798	5. 206	6.153
	22	2.686	3. 340	3.780	4.727	5.121	6.033
	23	2.667	3.309	3.741	4.664	5.046	5.923
	24	2.649	3. 283	3.706	40608	4.979	5.833
	34	2.54%	3. 115	3.491	4.266	4.576	5. 265
	44	2.486	3.032	3.385	$4 \cdot 103$	4.386	5.007
	64	2.431	2. 951	3.282	3.945	4.202	4.759 4.573
	124	2.375 2.320	2.869 2.789	3.180 3.080	3.792 3.644	4.026 3.855	4.523 4.299
	∞	2.320	2.789	3.080	3.644	3.855	4.299

Table Bl (cont.).

	$\mathrm{k}=5$	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	6	16.039	40. 860	81.933	410:009	820.111	4100,184
	7	7.499	12.622	18.188	41.259	58.451	130.885
	8	5.624	8.347	10.877	19.251	24.408	42.031
	9	4. 798	6.709	8.337	13.133	15.796	23.970
	10	4.331	5. 847	7.071	10.420	12.162	17.162
	11	4.028	5.315	6.315	8.917	10, 209	13. 754
	12	3.816	4.954	5.815	7.969	9.003	11.746
	13	3.659	4.693	5.458	7.319	8.189	10.438
	14	3. 537	4. 495	5.191	6846	7.603	9.519
	15	3.440	4.339	4.983	6.487	7.163	8.846
	16	3.362	4.214	4.818	6.206	6.821	8.331
	17	3.296	4.111	4.682	5. 979	6.546	7.922
$\stackrel{\square}{\square}$	18	3.249	4.025	4.569	5.793	6.322	7.591
ω	19	3.193	3.951	4.474	5.637	6.135	7.321
	20	3.152	3.888	4.392	5.514	5.977	7.095
	21	3.116	3.833	4.321	5.390	5.842	6.899
	22	3. 084	3. 784	4.260	5.291	5.725	6.733
	23	3.055	3.742	4.205	5.205	5.622	6.590
	24	3.031	3.704	4.156	5.128	5.531	6.460
	25	3.008	3.670	4.113	5060	5.451	6.349
	35	2.864	3.456	3.843	4.643	4.964	5.677
	45	2.791	3.351	3.711	4.445	4.734	5.370
	65	2.720	3.246	3.581	4.252	4.512	5.077
	125	2.647	3.142	3.453	4.066	4.299	4.798
	∞	2. 574	3039	3.327	3,884	4.093	40528

Table Bl (cont.).

Table Bl (cont.).

	$\mathrm{k}=10$	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	11	31.886	81.035	162.441	812.793	1625.479	8128.035
	12	14.185	23.656	33.995	76.958	109.000	244.024
	13	10.263	15.010	19.454	34.248	43.380	74.602
	14	8.515	11.683	14.411	22.506	27.020	40.904
	15	7.513	9.923	11.892	17.326	20.167	28.355
	16	6859	8.833	10.385	14.462	16.500	22.114
	17	6.395	8.088	9.382	12.658	14.241	18.460
	18	6.048	7.545	8,665	11.420	12.718	16.089
	19	5.778	7.132	8.127	10.520	11.623	14.429
	20	5.563	6.808	7.708	9.836	10.800	13.212
	21	5.386	6.544	7.373	9. 298	10.159	12.282
	22	5.239	6.327	7.097	8.866	9.646	11.549
	23	5.112	6.144	6.868	8.509	9.226	105958
$\stackrel{H}{\mathrm{G}}$	24	5, 004	5.988	6.673	8.210	8.875	10.465
	25	4.910	5.853	6.506	7.957	8.580	10.058
	26	4.829	5. 736	6.361	7.739	8.326	9.709
	27	4.756	5.634	6.234	7.549	8.105	9.408
	28	4.690	5.542	6.121	7.382	7.914	9.151
	29	4.631	5.461	6.021	7.235	7.743	8.921
	30	4.580	5.387	5.931	7.104	7.592	8.724
	40	4.243	4.925	5.371	6.300	6.675	7.517
	50	4.072	4.693	5.094	5.915	6.241	6.954
	70	3.899	4.462	4.822	5.541	5.820	6.426
	130	3.722	4.230	4. 550	5.175	5.413	5.924
	∞	3.543	3.999	4.279	4.818	5.019	5.441

Table Bl (cont.).

Table Bl (cont.).

	$\mathrm{k}=20$	Probability content, P					
	n	0. 7500	0.9000	0. 9500	0,9900	0.9950	0.9990
	21	63.363	160.848	322.378	1612.990	3226.309	16130.281
	22	27.426	45527	65.340	147.762	209.257	468.416
	23	19.403	28.170	36.405	63.912	80.913	139.085
	24	15.796	21.459	26.366	40.981	49.151	74. 313
	25	13.708	17.894	21.332	30.883	35.892	50.348
	26	12.331	15.666	18.310	25.299	28.807	38.491
	27	11.346	14.139	16.291	21775	24.441	31.561
	28	19.606	13.020	14.840	19.356	21.493	27.068
	29	10.024	12.162	13.749	17.592	19.375	23.935
	30	9.557	11.483	12.894	16.248	17.779	21.621
	31	9.169	10.933	12.206	15.192	16.534	19.867
	32	.8.844	10.477	11.642	14.337	15.536	18.466
	33	8.567	10.090	11.168	13.634	14.717	17.343
$\stackrel{\sim}{\sim}$	34	8.325	9.760	10.765	13.042	14.035	16.426
	35	8.117	9.472	10.419	12. 539	13.456	15.646
	36	7.931	9.221	10.116	12.105	12.958	14.979
	37	7.767	9.000	9.849	11.728	12.526	14.419
	38	7.620	8.804	9.615	11.394	12.149	13.916
	39	7.489	8.627	9.405	11.100	11.814	13.481
	40	7.368	8.468	9.214	10.837	11.517	13.096
	50	6.589	7.453	8.023	9.216	9.699	10.784
	60	6.186	6.938	7.427	8.429	8.827	9.720
	80	5.768	6.416	6,827	7.655	7.978	8.686
	140	5.335	5.880	6.222	6.891	7.145	7.683
	∞	4.881	5.331	5.605	6.129	6.325	6.738

Table B1 (cont.).

	$\mathrm{k}=40$	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	41	126.180	320.135	641.580	3210.006	6420,395	32100.687
	42	53.826	89.146	127.853	288.982	409.218	916.027
	43	37.598	54.376	70.175	123.021	155.703	267.634
	44	30.259	40.901	50.142	77.747	93. 201	140.817
	45	25.981	33.704	40.078	57.820	67.146	94.083
	46	23.147	29.197	34.012	46.792	53.222	70.987
	47	21.104	26.087	29.944	39.825	44.640	57.532
	48	19.561	23.799	27.019	35.033	38.839	48.783
	49	18.339	22.043	24.803	31.531	34.661	42.685
	50	17.352	20.645	23.065	28.856	31.509	38.202
	51	16.530	19.504	21.661	26.750	29.046	34.766
	52	15.834	18. 550	20.502	25,041	27.066	32.054
\cdots	53	15.241	17.747	19.527	23.629	25.440	29.862
$\stackrel{+}{\infty}$	54	14.726	17.051	18.695	22.444	24.081	28.046
	55	14.271	16.447	17.976	21.429	22.927	26.529
	56	13.867	15.920	17.351	20.552	21.932	25.207
	57	13.508	15.453	16.796	19.790	21.070	24.095
	58	13.189	15.933	16.304	19.113	20.309	23.124
	59	12.895	14.657	15.861	18.516	19.639	22.259
	60	12.632	14.314	15.467	17.981	19.040	21.519
	70	17.886	12.115	12.931	14.647	15.347	16.926
	80	9.959	10.975	11.637	13.004	13.552	14.777
	100	8.974	9.787	10.308	11.360	11.772	12.675
	160	7.916	8.541	8.929	9.697	9.989	10.608
	∞	6,753	7. 197	7.467	7.980	8. 171	8. 579

Table Bl (cont.).

Table B2. Values of $\beta_{\underline{\Sigma}}^{N}(k, n, P)$ such that the prediction ellipsoid (II.94) has probability content P. Sampling is from a k-variate normal population with known mean vector and unknown covariance matrix. (For the case $k=1$ see Table A7 in Appendix A.)

Table B2 (cont.).

	$\mathrm{k}=4$	Probability content, P					
	n	0.7500	0.9000°	0.9500	0.9900	0.9950	0.9990
	4	11.717	29.889	59.944	299.989	600.000	2999.986
	5	5.685	9.614	13.873	31.504	44.637	99.960
	6	4.373	6.538	8.540	15.155	19.224	33.118
	7	3.801	5.362	6.687	10.575	12.731	19.341
	8	3.481	4.746	5.764	8.539	9.978	14. 106
	9	3. 274	4.369	5.216	7.409	8.495	11.468
	10	3.131	4.113	4.852	6.696	7.578	9.911
	11	3.025	3. 928	4.594	6.207	6.959	8.896
	12	2.944	3.790	4.402	5.852	6. 514	8.185
	13	2.880	3.680	4.253	5.583	6.179	7.659
	14	2. 827	3.593	4.134	5.372	5.919	7.259
	15	2.784	3.521	4.037	5.202	5.710	6.939
9	16	2.748	3.462	3.956	5. 062	5.540	6.682
$\stackrel{\sim}{\sim}$	17	2.716	3.411	3.888	4.945	5.398	6.471
	18	2.690	3.366	3.830	4.846	5.278	6.293
	19	2.667	3. 329	3.779	4.761	5. 175	6.141
	20	2.645	3. 296	3.735	4.687	5.086	6.012
	21	2.627	3.266	3.696	4.623	5.008	5.900
	22	2.611	3.240	3.662	4.565 4.515	4.940	5.799
	23 33	2.596	3.216	3.631	4. 515	4.879 4.510	5.715 5.189
	33 43	2.503 2.458	3.070 2.999	3.440 3.348	4.205 4.057	4.510 4.337	5.189 4.951
	63	2.412	2.928	3.257	3.915	4.170	4.722
	123	2. 366	2. 858	3.167	3.777	4.009	4.505
	∞	2.32 ?	2.789	3.080	3.644	3.855	4.299

Table B2 (cont.).

	$\mathrm{k}=5$	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0,9990
	5	14.849	37.829	75.855	379.595	759.276	3796.043
	6	7.014	11.807	17.013	38.594	54.676	122.432
	7	5.303	7.870	10.255	18.150	23.012	39.627
	8	4.55 ?	6.365	7.909	12.459	14.985	22.740
	9	4130	5.575	6.742	9.935	11.596	16. 363
	10	3.857	5.089	6.046	8.537	9.774	13.169
	11	3.667	4.759	5.586	7.656	8.650	11.286
	12	3.526	4.522	5.259	7.053	7.891	10.059
	13	3.417	4.342	5.015	6. 614	7.346	9.196
	14	3.331	4.202	4.825	6.281	6.936	8. 565
	15	3.261	4.088	4.674	6.020	6.617	8.082
	16	3.203	3.995	4.550	5.810	6.362	7.698
9	17	3. 154	3.917	4.447	5638	6.153	7. 389
N	18	3.113	3.851	4.361	5.494	5.980	7. 135
	19	3.076	3.794	4.286	5.372	5.833	6.924
	20	3.044	3.745	4.222	5.266	5.707	6.741
	21	3.716	3.701	4.166	5.175	5.599	6.585
	22	2.991	3.663	4.117	5.095	5.503	6.451
	23	2.970	3.629	4.072	5.024	5.429	6.330
	24	2.950	3.598	4.033	4.962	5.345	6.226
	34	2. 824	3.407	3.789	4578	4.895	5. 598
	44	2.761	3.314	3.671	4.396	4.682	5.312
	64 124	2.699	3.222 3.130	3.554 3.440	4.220	4.478 4.282	5.039 4.779
	124 ∞	2.636 2.574	3.130 3.039	$\begin{aligned} & 3.440 \\ & 3.327 \end{aligned}$	4.050 3.884	4.282 4.093	4.779 4.528

Table B2 (cont.).

	$\mathrm{k}=7$	Probability content, P					
	n	0.7500	O. 9000	0.9500	0.9900	0.9950	0.9990
	7	21.119	53.725	107.711	538.968	1078.091	5390.000
	8	9.663	16. 179	23.278	52. 744	74.713	167. 282
	9	7.144	10. 516	13.661	24.106	30.547	52.570
	10	6.032	8.345	10.327	16.189	19.452	29.480
	11	5401	7.202	8, 665	12.689	14.788	20.825
	12	4.991	6.497	7.674	10.754	12.288	16.506
	13	4.702	6.017	7.016	9.535	10.747	13.974
	14	4.489	5.670	6.549	8.699	9.708	12.325
	15	4.323	5.406	6.198	8.092	8.962	11.173
	16	4.192	5.200	5.926	7.632	8.402	10,326
	17	4.084	5.034	5.708	7.270	7.965	9.679
	18	3.995	4.896	5.531	6.980	7.617	9.165
	19	3.919	4.781	5.383	6.741	7.331	8.754
$\stackrel{\sim}{\omega}$	20	3.854	4.683	5.257	6.541	7.093	8.414
	21	3.798	4.599	5.151	6.371	6.892	8.127
	22	3.749	4.526	5.057	6.225	6.720	7.885
	23	3.706	4.462	4.976	6.098	6.571	7.675
	24	3.667	4 -404	40904	5.987	6.441	7.496
	25	3.633	4. 354	4.841	5.889	6.326	7.340
	26	3.601	4.309	4.783	5.802	6.224	7.196
	36	3.405	4.023	4.428	5.269	5.606	6.363
	46	3.305	3.883	4.255	5.015	5.315	5.978
	66	3.206	3.742	4.085	4.768	5.034	5.612
	126	3.107	3.604	3.917	4.530	4.763	5.264
		3.006	3.467	3.751	4.298	4.503	4.928

Table B2 (cont.).

	$\mathrm{k}=10$	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	10	30.529	77.585	155.525	778.190	1556. 277	7782.023
	11	13.628	22.728	32.662	73.939	104.723	234.450
	12	9.889	14.464	18.747	33.002	41.802	71.889
	13	8.226	11.287	13.922	21.743	26. 104	39. 517
	14	7.275	9.688	11.514	16.776	19.527	27.455
	15	6.654	8.569	10.075	14.030	16.008	21.453
	16	6.215	7.860	9.118	12.301	13.840	17.940
	17	5.887	7.344	8.433	11.115	12.379	15.660
	18	5.632	6. 951	7.921	10.254	11.329	14.064
	19	5.429	6.644	7.522	9598	10,540	12.894
	20	5.262	6.393	7.204	9.084	9.925	12.000
	21	5.123	6.188	6.941	8.671	9.434	11.295
	22	5. 005	6.015	6.723	8.330	9.032	10.727
\sim	23	4.903	5.867	6.538	8.044	8.696	10.254
	24	4.815	5.740	6.380	7.803	8.413	9.853
	25	4.738	5.629	6.242	7.594	8.170	9.528
	26	4.670	5.532	6.121	7.413	7.959	9.238
	27	4.609	5.446	6.015	7.254	7. 776	8.992
	28	4.554	5.369	5.920	7.114	7.613	8.771
	29	4.506	5.300	5.835	6.988	7.469	8.583
	39	4.191	4.864	5.305	6.223	6.593	7.424
	49	4.032	4.647	5.044	5.857	6.179	6.885
	69	3.871	4.431	4.787	5.502	5.779	6.380
	129	3.708	4.214	4.532	5.155	5.392	5.902
	∞	3.543	3.999	4.279	4.818	5.019	5.441

Table B2 (cont.).

	$\mathrm{k}=15$	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	15	46.216	117.365	235.242	1177.027	2354,092	11770,863
	16	20.229	33.630	48.285	109.233	154.698	346.306
	17	14.446	21.024	27.198	47.792	60.516	104.062
	18	11.858	16.160	19, 885	30.957	37. 142	56. 181
	19	17.366	13.586	16.226	23.540	27.374	38.430
	20	9.386	11.981	14.032	19.441	22.152	29.631
	21	8.690	10.883	12.570	16.856	18.936	24.483
	22	8.167	10.082	11.521	15.083	16.765	21.146
	23	7.760	9.471	10.735	13.792	15.207	18, 820
	24	7.431	8.988	10.120	12.810	14.034	17.108
	25	7.160	8.595	9.628	12.038	13.120	15.797
	26	6. 935	8.271	9.222	11.416	12.387	14.767
	27	6.742	7.997	8.883	10.972	11.788	13.932
N	28	6.575	7.765	8.596	10.473	11.288	13.248
	29	6.431	7.562	8.350	10.106	10.864	12.675
	30	6.304	7.387	8.133	9.792	10.501	12.175
	31	6.190	7. 232	7.945	9.518	10.186	11.753
	32	6.090	7.094	7.779	9.276	9.910	11.396
	33	6.000	6.971	7.629	9.063	9.667	11.066
	34	5. 919	6. 859	7.495	8.874	9450	10.783
	44	5.391	6.155	6.658	7.707	8.132	9.083
	54	5.121	5.801	6.243	7.146	7.504	8.298
	74	4, 845	5.446	5.828	6.596	6.897	7.549
	134	4.563	5.087	5.416	6.059	6.305	6.824
	-	4.271	4.723	4.999	5. 530	5.728	6. 136

Table B2 (cont.).

	$\mathrm{k}=20$	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	20	61.906	157. 150	314.967	1575,907	3152. 125	15759.391
	21	26.823	44.526	63.904	144.514	204.657	458.120
	22	18.995	27.577	35.639	62.566	79.209	136.157
	23	15.477	21.025	25.833	40.153	48.158	72.811
	24	13.441	17.546	20.918	30.283	35.195	49.370
	25	12.100	15.373	17.968	24.826	28, 268	37. 771
	26	11.141	13.884	15.997.	21.383	24.000	30.992
	27	10.421	12.794	14.582	19.019	21.120	26.597
	28	9. 855	11.958	13.518	17.296	19.049	23. 532
	29	9.402	11.296	12.684	15.984	17.490	21.270
	30	9.024	10.761	12.014	14.953	16.273	19.554
	31	8.709	10.317	11.465	14118	15.299	18.184
	32	8.440	9.940	11.003	13.432	14.499	17.086
N	33	8.205	9.620	10.610	12.854	13.833	16.190
	34	8.003	9.339	10.273	12.364	13.268	15.427
	35	7.823	9.096	9.979	11.941	12.781	14.775
	36	7.664	8.880	9.718	11.572	12.360	14.228
	37	7.521	8.690	9.491	11.247	11.992	13.737
	38	7.395	8.518	9.287	10.960	11.665	13.312
	39	7.277	8. 365	9.101	10-704	11.375	12.935
	49	6.524	7.379	7.944	9.125	9.603	10.677
	59	6.135	6.881	7.365	8.360	8.754	9.640
	79	5.733	6.376	6.785	7.608	7.928	8.633
	139	5.316	5. 859	6.199	6.866	7.120	7.656
	∞	$4=881$	5. 331	5.605	6129	6.325	6.738

Table B2 (cont.).

	$\mathrm{k}=40$	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	40	124669	316.301	633.896	3171.567	6343.465	31716.055
	41	53.196	88.103	126.357	285.602	404.432	905.312
	42	37.169	53.755	69.373	121.615	153.924	264.575
	43	29.921	40.444	49.581	76.879	92.159	139.243
	44	25.697	33.336	39.640	57.188	66.412	93.055
	45	22.900	28.884	33.648	46. 291	52.653	70.228
	46	20.883	25.814	29.630	39.408	44.172	56.930
	47	19.360	23.555	26.741	34.674	38.441	48.283
	48	18.155	21.821	24.554	31. 214	34.313	42.256
	49	17.181	20.442	22.838	28.572	31.198	37.826
	50	16.371	19.316	21.452	26.492	28.766	34.430
	51	15.684	18.374	20.308	24.804	26.810	31.751
	52	15.100	17.582	19.345	23.409	25.203	29.584
N	53	14.591	16.895	18.524	22. 239	23.861	27. 790
	54	14.143	16.300	17.815	21.237	22.721	26.291
	55	13.745	15.780	17.198	20.371	21.739	24.985
	56	13.391	15.319	16.650	19.618	20.887	23.886
	57	13.077	14.905	16.165	18.950	20.136	22.927
	58	12.787	14.534	15.728	18.361	19.475	22.073
	59	12.528	14.197	15.339	17.833	18.884	21.342
	69	10.809	12.030	12.840	14.543	15.238	16.806
	79	9.897	10. 908	11.565	12.923	13.468	14.686
	99	8.929	9.739	10.257	11.304	11.714	12.612
	159	7.891	8.515	8.901	9.666	9.958	10.575
	∞	6. 753	7197	7.467	7. 980	8.171	8.579

Table B2 (cont.).

	$\mathrm{k}=2$	Probability content, P					
	n	0,7500	0.9000	0.9500	0.9900	0.9950	0,9990
	1	2.355	3.035	3.462	4.292	4.603	5.257
	2	2.039	2.628	2.998	3.717	3,987	4.553
	3	1.922	2.478	2.827	3. 504	3.759	4.293
	4	1.861	2.399	2.737	3.393	3.639	4.156
	5	1.824	2.351	2.681	3.324	3.566	4.072
	6	1.798	2.318	2.644	3.278	3.516	4.015
	7	1.780	2. 294	2.617	3.244	3.480	3.974
	8	1.766	2.276	2.596	3.219	3.453	3.943
	9	1.755	2.262	2.580	3.199	3.431	3.919
	10	1.746	2. 251	2.567	3183	3.414	3.899
	11	1.739	2. 242	2. 557	3.170	3.400	3.883
	12	1.733	2.234	2.548	3.159	3. 388	3. 869
a	13	1.728	2.227	2.540	3.149	3.378	3.858
N	14	1.723	2.221	2. 534	3.141	3.369	3.848
	15	1.720	2.217	2. 528	3.134	3.362	3.839
	16	1.716	2.212	2.523	3.128	3.355	3.832
	17	1.713	2. 208	2.519	3.123	3.350	3.825
	18	1.711	2.205	2.515	3.118	3.344	3.819
	19	1.708	2. 202	2. 511	3.114	3.340	3.814
	20	1.706	2. 199	2.508	3.110	3.336	3.809
	30	1.692	2.182	2.488	3.085	3.309	3.779
	40	1.686	2.173	2.478	3.072	3.296	3.764
	60 120	1.679	2. 164	2.468	3.060 3.047	3.282 3.269	3.748 3.733
	120 ∞	1.672 1.665	2. 155	2.458 2.448	3.047 3.035	3.269 3.255	3.733 3.718

Table B3. Values of $\beta_{\underline{\mu}}^{N}(k, n, P)$ such that the prediction ellipsoid (II.96) has probability content P. Sampling is from a k-variate normal population with unknown mean vector and known covariance matrix. (For the case k=1 see Table A6 in Appendix A.)

	$\mathrm{k}=3$	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	1	2.866	3.536	3.953	4.764	5.067	5.703
	2	2.482	3.062	3.424	4.125	4.388	4.939
	3	2.340	2.887	3. 228	3.889	4.137	4.656
	4	2.266	2.796	3.125	3.766	4.006	4.508
	5	2.220	2.739	3.062	3.690	3.925	4.417
	6	2.189	2.701	3.020	3.638	3.870	4.355
	7	2. 166	2.673	2.989	3. 601	3.830	4.311
	8	2.150	2.652	2.965	3. 573	3.800	4.277
	9	2.136	2.636	2.947	3.551	3.777	4.250
	10	2125	2.622	2.932	3.533	3.758	4.229
	11	2.117	2.612	2.920	3. 518	3.742	4.212
	12	2.109	2. 602	2.910	3. 506	3.729	4.197
N	13	2.103	2. 595	2.901	3.496	3.718	4.185
6	14	2.098	2.588	2.894	3.487	3.709	4.174
	15	2.093	2.582	2.887	3.479	3.700	4.165
	16	2.089	2. 577	2.882	3.472	3.693	4.156
	17	2.085	2. 573	2.877	3.466	3.687	4149
	18	2. 082	2. 569	2.872	3.461	3.681	4.143
	19	2.079	2. 565	2.868	3.456	3.676	4.137
	20	2.077	2562	2.865	3.452	3.671	4.132
	30	2.060	2. 542	2.842	3.424	3.642	4.099
	40	2.052	2.531	2.830	3.410	3.627	4.082
	60 120	2.043 2.035	2. 5211	2.819 2.807	3.396 3.382	3,613	4.066
	120 ∞	2.035 2.027	2.511 2.500	2.807 2.796	3.382 3.368	3.598 3.583	4.049 4.032

Table B3 (cont.).

	$\mathrm{k}=4$	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	1	3.281	3.945	4.356	5.153	5.452	6. 079
	2	2.842	3.416	3.773	4.463	4.721	5.265
	3	2.679	3.221	3.557	4.207	4.451	4.964
	4	2.594	3.118	3.444	4.074	4.310	4.806
	5	2. 542	3.055	3.374	3.991	4.223	4.709
	6	2. 506	3.013	3.327	3.936	4.164	4.643
	7	2.481	2.982	3.293	3.895	4.121	4.596
	8	2.461	2.958	3. 267	3. 965	4.089	4.560
	9	2.446	2.940	3.247	3.841	4, 063	4.531
	10	2.434	2.925	3.231	3.821	4.043	4.509
	11	2.424	2. 913	3.217	3. 806	4.026	4.490
	12	2. 415	2.903	3.206	3.792	4.012	4.474
$\stackrel{\sim}{\omega}$	13	2.4198	2.895	3.197	3.781	4.000	4.461
$\underset{\sim}{0}$	14	2.402	2.887	3.188	3.772	3.990	4.450
	15	2.396	2. 881	3. 181	3.763	3.981	4.440
	16	2. 392	2. 875	3.175	3. 756	3.974	4.431
	17	2.388	2.870	3.170	3.749	3.967	4.423
	18	2.384	2.866	3.165	3.743	3.960	4.417
	19	2.381	2. 862	3.160	3.738	3.955	4.411
	20	2.378	2. 858	3.156	3.734	3.950	4.405
	30	2.359	2. 835	3.131	3.704	3.919	4.370
	40	2. 349	2. 824	3.119	3.689	3.903	4.352
	60	2. 340	2. 812	3.106	3674	3.887	4.335
	120	2.339	2.801	3.093	3.659	3.871	4.317
	∞	2.320	2.789	3.080	3. 644	3.855	4.299

Table B3 (cont.).

	$\mathrm{k}=5$	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	1	3.640	4.298	4.705	5.493	5.788	6.403
	2	3.152	3.722	4.075	4.757	5.012	5.545
	3	2.972	3.509	3.842	4.485	4.726	5.228
	4	2. 878	3.398	3.720	4.342	4.576	5. 062
	5	2.820	3.329	3.645	4. 255	4.483	4.960
	6	2.780	3.282	3.594	4.195	4.421	4.890
	7	2.752	3. 249	3.557	4.152	4.375	4.840
	8	2.730	3. 223	3.529	4.120	4.341	4.802
	9	2.713	3.203	3.507	4.094	4.314	4.773
	10	2.700	3.187	3.490	4.074	4.292	4.749
	11	2.688	3.174	3.475	4.057	4.275	4.729
	12	2.679	3.163	3.463	4.043	4. 260	4.713
$\stackrel{9}{\omega}$	13	2.671	3. 154	3.453	4.031	4.247	4.699
$\stackrel{\text { ■ }}{ }$	14	2.664	3.146	3.444	4.020	4.236	4.687
	15	2.658	3.139	3.436	4.011	4.227	4.676
	16	2.653	3.132	3.430	4.003	4.219	4.667
	17	2.649	3.127	3.424	3. 997	4.211	4.659
	18	2.644	3.122	3.418	3.990	4.205	4.652
	19	2.641	3.118	3.414	3.985	4.199	4.645
	20	2.637	3. 114	3.409	3.980	4.194	4.640
	30	2.616	3.089	3. 382	3.948	4.160	4.603
	40	2.606	3.077	3.368	3.932	4.144	4.584
	60	2.595	3.064	3.355	3.916	4.127	4.565
	120	2.585	3.052	3. 341	3.900	4.110	4.547
	∞	2. 574	3.039	3. 327	3.884	4.093	40528

Table B3 (cont.).

	$\mathrm{k}=7$	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	1	4251	4.903	5.305	6.078	6,369	6.970
	2	3.682	4.246	4.594	5.264	5.515	6.036
	3	3.471	4.003	4.331	4.963	5.200	5.691
	4	3.361	3.876	4.194	4.805	5.035	5.510
	5	3.293	3.798	4.109	4.708	4.933	5.399
	6	3.247	3.745	4.052	4642	4.864	5.323
	7	3. 214	3.706	4.010	4.595	4.814	5.269
	8	3.189	3.677	3.979	4.559	4.776	5.227
	9	3. 169	3. 654	3.954	4.531	4,747	5.195
	10	3.153	3.636	3.934	4.508	4.723	5.169
	11	3.140	3.621	3.918	4.489	4.703	5.148
	12	3.129	3.608	3.904	4.474	4.687	5.130
	13	3.120	3.598	3.893	4.460	4.673	5.115
$\stackrel{\sim}{\sim}$	14	3.112	3,589	3.883	4.449	4.661	5.101
	15	3.195	3.581	3.874	4.439	4.651	5.090
	16	3.099	3.574	3.866	4.430	4.642	5.080
	17	3.093	3.567	3860	4.423	4.634	5.071
	18	3.089	3.562	3. 854	4.416	4.627	5.064
	19	3.084	3.557	3.848	4.410	4.620	5.057
	20	3.080	3.552	3.844	4.404	4.614	5.050
	30	3.056	3.524	3.813	4.369	4.578	5.010
	40	3.044	3510	3. 798	4.351	4.559	4.990
	60	3.031	3.496	3.782	4.334	4.541	4.969
	120	3.019	3.481	3.767	4.316	4.522	4.949
		3.006	3.467	3.751	4.298	4.503	4.928

Table B3 (cont.).

	k=10	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	1	5.010	5. 655	6,051	6.813	7.098	7.694
	2	4.339	4.897	5.241	5.900	6.147	6.663
	3	4.091	4.617	4.941	5.563	5.795	6. 282
	4	3.961	4.471	4.784	5.386	5.611	6.083
	5	3.881	4.380	4.687	5.277	5.498	5.960
	6	3. 826	4.319	4.622	5.204	5,421	5. 877
	7	3.787	4.275	4.574	5.150	5.365	5.816
	8	3.757	4.241	4.539	5.110	5.323	5.771
	9	3. 734	4.215	4.510	5.078	5.290	5.735
	10	3.716	4.194	4.488	5.053	5.264	5.706
	11	3.700	4.177	4.469	5.032	5.242	5.683
	12	3.687	4.162	4.454	5.714	5.224	5.663
	13	3.676	4.150	4.441	5.000	5.208	5.646
$\underset{\omega}{\omega}$	14	3.667	4.139	40429	4.987	5.195	5.632
	15	3.659	4.130	4.419	4.976	5.184	5.619
	16	3.652	4.122	4.411	4.966	5.173	5.608
	17	3.645	4.115	4.403	4.957	5.164	5.598
	18	3.640	4.108	4.396	4.950	5.156	5.590
	19	3.635	4103	4.390	4.943	5.149	5. 582
	20	3.630	4.097	4.385	4.937	5.143	5.575
	30	3.601	4.065	4.350	4.897	5.102	5.531
	40	3.587	4. 048	4.332	4.878	5.081	5.508
	60	3.572	4.032	4.315	4.858	5.061	5.486
	120	3.557	4.015	4.297	4.838	5.040	5.463
	∞	3. 543	3.999	4.279	4.818	5.019	5.441

Table B3 (cont.).

$\mathrm{k}=15$	Probability content, P					
n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
1	6.040	6.679	7.070	7.821	8.100	8.678
2	5.231	5.784	6.122	6.773	7.015	7.515
3	4.932	5.453	5.772	6.386	6,614	7.085
4	4.775	5. 280	5.589	6.183	6.404	6.869
5	4.678	5.174	5.476	6.058	6.274	6.722
6	4,613	5.101	5.400	5.973	6.186	6.628
7	4.566	5.049	5.344	5.912	6.123	6.560
8	4.530	5.009	5.302	5. 966	6.075	6.508
9	4.502	4.978	5. 269	5.830	6.037	6.468
10	4.479	4.953	5.243	5.800	6.007	6.435
11	4.461	4.933	5. 221	5.776	5.982	6.409
12	4.445	4.916	5.203	5.756	5.961	6.397
13	4.432	4.901	5.188	5.739	5.944	6.368
14	4.421	4.889	5.174	5.724	5.929	6.351
15	4.411	4.878	5.163	5.712	5.915	6.337
16	4.402	4.868	5.153	5:701	5.904	6.325
17	4.395	4.860	5.144	5.691	5.894	6.314
18	4.388	4.852	5.136	5.682	5.885	6.304
19	4.382	4.846	5.129	5.674	5.876	6.295
20	4.376	4.839	5.122	5.667	5.869	6.287
30	4.341	4.801	5.082	5.622	5.822	6.237
40	4.324	4.781	5.061	5.599	5.799	6.212
60	4.306	4.762	5.040	5.576	5.775	6.187
120	4.289	4.742	5.020	5. 553	5.751	6.161
∞	4.271	4.723	4.999	5.530	5.728	6.136

Table B3 (cont.).

	$\mathrm{k}=20$	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	1	6.902	7.539	7.927	8.667	8.944	9.529
	2	5.977	6.529	6.865	7.506	7.746	8.252
	3	5.636	6. 156	6.472	7.077	7.303	7.780
	4	5.457	5.960	6.267	6.852	7.071	7.533
	5	5.346	5.840	6.140	6.714	6.928	7.381
	6	5.272	5.758	6.054	6.620	6.831	7.278
	7	5.218	5.699	5.992	6.552	6.761	7.203
	8	5.177	5.654	5.945	6.500	6.708	7.147
	9	5.145	5.619	5.909	6.460	6.667	7.102
	10	5.119	5.591	5.879	6.428	6.633	7.067
	11	5.098	5. 568	5.855	6.401	6.606	7.038
	12	5.080	5.549	5.834	6.379	6.583	7.013
$\stackrel{9}{\text { a }}$	13	5.065	5.532	5.817	6.360	6.563	6.992
$\stackrel{\omega}{\omega}$	14	5.052	5.518	5.802	6.344	6.547	6.974
	15	5.041	5.506	5.789	6.330	6.532	6.959
	16	5.031	5.495	5.778	6.317	6. 519	6.945
	17	5.022	5.486	5.768	6.306	6.508	6.933
	18	5.014	5.477	5.759	6.297	6.498	6.923
	19	5.007	5470	5.751	6.288	6.489	6.913
	20	5.001	5.463	5.744	6.280	6.481	6.904
	30	4.961	5.419	5.698	6.230	6,429	6. 849
	40	4.941	5.397	5.675	6.205	6.403	6.822
	60	4.921	5.375	5.652	6.179	6.377	6.794
	120	4.901	5. 353	5.629	6.154	6.351	6.766
	∞	4.881	5.331	5.605	6.129	6.325	6.738

Table B3 (cont.).

$\mathrm{k}=40$	Probability content, P					
n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
1	9.550	10.178	10.560	11. 285	11.555	12.133
2	8.270	8.815	9.145	9.773	10.007	10.507
3	7. 797	8. 311	8.622	9.214	9.435	9.906
4	7. 550	8.047	8.349	8. 922	9.135	9.592
5	7.397	7.884	8.180	8. 742	8.951	9.398
6	7.294	7.774	8.066	8.619	8.825	9.266
7	7. 219	7.694	7.983	8.531	8.735	9.171
8	7.162	7.634	7.920	8.464	8.666	9.099
9	7.118	7.587	7.871	8.412	8.613	9.043
10	7.082	7.549	7.832	8.369	8. 569	8.998
11	7.053	7.517	7.799	8.335	8.534	8.961
12	7.029	7.491	7.772	8. 306	8.504	8.929
13	7.008	7.469	7.749	8. 281	8,479	88903
14	6.990	7.450	7.729	8.260	8.457	8.880
15	6.974	7.433	7.712	8.242	8.439	8.860
16	6.961	7.419	7. 697	8.226	8.422	8.843
17	6.949	7.406	7.684	8. 211	8.408	8.828
18	6.938	7.394	7.672	8.199	8.395	8.814
19	6.928	7.384	7.661	8.187	8.383	8.822
20	6.920	7. 375	7.652	8.177	8.372	8.791
30	6.864	7.316	7.591	8. 112	8. 306	8.721
40	6.837	7. 287	7.560	8.079	8.272	8.686
60	6.809	7.257	7.529	8.046	8.238	8.650
120	6. 781	7.227	7.498	8.013	8. 205	8.615
∞	6.753	7.197	7.467	7.980	8.171	8.579

Table B3 (cont.).

	$\mathrm{k}=2$	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	3	3.799	7571	13.326	53.806	100.333	439.269
	4	2.015	2.707	3.448	6.349	8.392	16.464
	5	1.622	1.948	2.259	3.272	3.878	5.864
	6	1.451	1.655	1.838	2.388	2.690	3. 595
	7	1.354	1. 500	1.627	1.988	2.177	2.714
	8	1.292	1.405	1.501	1.765	1.898	2. 265
	9	1.248	1.340	1.417	1.623	1.724	1.996
	10	1.216	1.293	1.357	1.525	1.606	1.820
	11	1.192	1. 258	1.312	1.453	1.521	1.696
	12	1.172	1.230	1.277	1.399	1.456	1.604
	13	1.156	1.208	1.250	1.356	1.406	1.532
	14	1143	1.189	1.227	1.321	1.365	1.476
	15	1.132	1. 174	1.208	1. 293	1.332	1.431
$\underset{\sim}{\boldsymbol{v}}$	16	1.122	1.161	1.192	1.269	1.305	1.393
	17	1.114	1.150	1.178	1.249	1.281	1.361
	18	1.107	1. 140	1.166	1.231	1.261	1.334
	19	1.100	1.131	1.213	1.216	1.244	1.311
	20	1.095	1. 124	1.147	1.203	1.229	1.291
	21	1.090	1.117	1.139	1.191	1.215	1.273
	22	1.085	1.111	13131	1.181	1.203	1.257
	32	1.057	1.073	1.086	1.117	1.131	1.163
	42	1.043	1.054	1.064	1.086	1.096	1.119
	62	1.028	1.036	1.042	1.057	1.063	1.077
	122 0	1.014	1.018	1.021	1.028	1.031	1.038
	-	1.000	1000	1.000	1000	1.000	1.000

Table B4. Values of the penalty ratio $r_{\mu, \Sigma}^{N}(k, n, P)$ in equation (II.93). These values apply to the ellipsoidal $\underline{\underline{\prime}} \underline{\underline{L}}$ prediction region (II.92) and to sampling from a k-variate normal population with unknown mean vector and covariance matrix. (For the case $k=1$ see Table A3 in Appendix A.)

$\mathrm{k}=3$	Probability content, P						
n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990	
4	4.739	9.820	17.622	73.196	137.649	611.468	

Table B4 (cont.).

	$\mathrm{k}=4$	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	5	5.532	11.738	21.318	90.191	170.503	764.469
	6	2.646	3.723	4.865	9.339	12.507	25.116
	7	2.015	2.506	2.964	4.447	5.331	8.236
	8	1.738	2. 039	2. 303	3.079	3. 503	4.772
	9	1.581	1.794	1.973	2.470	2.728	3.459
	10	1.480	1.643	1.776	2.133	2.311	2.798
	11	1.410	1.540	1.645	1.920	2.053	2.408
	12	1.357	1.466	1.552	1.773	1.879	2.154
	13	1.317	1.410	1.483	1.667	1.754	1.976
	14	1.285	1.366	1.429	1.586	1.659	1.844
	15	1.258	1.330	1.386	1.523	1.586	1.744
	16	1237	1301	1.351	1.472	1.527	1.664
$\stackrel{\text { ® }}{\omega}$	17	1.219	1.277	1.322	1.430	1.479	1.599
$\stackrel{\square}{6}$	18	1.203	1.256	1.297	1.394	1.439	1.546
	19	1.189	1.238	1.276	1.365	1.405	1.502
	20	1.178	1.223	1.257	1.339	1.376	1.464
	21	1.167	1209	1.241	1317	1.350	1.431
	22	1.158	1.197	1.227	1.297	1.328	1.403
	23	1.149	1.186	1.214	1.280	1.309	1.378
	24	1.142	1.177	1.203	1265	1.292	1.357
	34	1.095	1.117	1.133	1.171	1.187	1.225
	44	1.071	1.087	1.099	1.126	1.138	1.165
	64	1.048	1.058	1.065	1.083	1.090	1.107
	124	1.024	1.029	1.032	1.041	1.044	1.052
	∞	1.000	1000	1,000	1.000	1.000	1.000

Table B4 (cont.).

Table B4 (cont.).

	$\mathrm{k}=7$	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	8	7.451	16.437	30.457	133.006	253.927	1159.982
	9	3.388	4.919	6.542	12.936	17.489	35.778
	10	2.492	3. 181	3.820	5. 882	7.114	11.187
	11	2.096	2.514	2.876	3.934	4.512	6.247
	12	1.870	2.162	2.405	3.073	3.418	4.398
	13	1.723	1945	2.123	2.596	2.832	3.475
	14	1.619	1.797	1.936	2.296	2.470	2.935
	15	1.542	1.689	1.803	2.090	2. 227	2. 583
	16	1.482	1.607	1.703	1.941	2.051	2.337
	17	1.435	1.543	1.626	1.877	1.920	2.156
	18	1. 396	1.492	1.563	1738	1.817	2.018
	19	1.363	1.449	1.513	1.666	1.735	1.908
ロ	20	1.336	1.413	1.470	1.607	1.668	1.820
$\stackrel{\rightharpoonup}{1}$	21	1.312	1.383	1.435	1.558	1.612	1.747
	22	1.292	1.356	1.494	1.516	1.565	1.686
	23	1.274	1.334	1.377	1.479	1.524	1.634
	24	1.258	1.314	1.354	1.448	1.489	1.589
	25	1.244	1.295	1.333	1.421	1.459	1.551
	26	1.232	1.280	1.315	1.396	1.432	1.518
	27	1.220	1.266	1.299	1.375	1.407	1.487
	37	1.148	1.176	1.196	1.242	1.262	1.308
	47	1.111	1132	1146	1.179	1.193	1.226
	67	1.074	1.088	1.097	1.118	1.126	1.147
	127	1.037	1.044	1.048	1.058	1.062	1.072
	∞	1.000	1.000	1.000	1.000	1.000	1.000

Table B4 (cont.).

Table B4 (cont.).

	$\mathrm{k}=15$	Probability content, P					
	n	0.7500	09000	0.9500	0.9900	0.9950	0.9990
	16	11.154	25.615	48.506	219.380	423.661	1977.395
	17	4. 874	7.327	9.939	20.324	27.792	58.075
	18	3.475	4.574	5.590	8.879	10.855	17.424
	19	2.849	3.511	4.081	5.743	6.653	9.394
	20	2.487	2.948	3.326	4.362	4.897	6.418
	21	2.249	2. 597	2.873	3.598	3.959	4.943
	22	2.080	2356	2.571	3.116	3.380	4.080
	23	1.953	2.181	2.354	2.786	2.990	3.520
	24	1.855	2.047	2.192	2.545	2.710	3.130
	25	1.774	1.941	2.065	2. 362	2.499	2.843
	26	1.709	1.855	1.963	2.218	2.334	2.624
	27	1.654	1.783	1.879	2.102	2. 202	2.451
$\stackrel{\square}{\circ}$	28	1.607	1.723	1.808	2.006	2.094	2.311
$\stackrel{\stackrel{\sim}{\omega}}{ }$	29	1.566	1.672	1.749	1.926	2.004	2.196
	30	1.531	1.628	1.698	1.858	1.928	2. 100
	31	1.500	1.589	1.653	1.799	1. 863	2.016
	32	1.472	1.555	1.614	1.748	1.806	1.945
	33	1447	1525	1.579	1.703	1.756	1.885
	34	1.425	1.497	1.548	1.663	1.712	1.830
	35	1.406	1.473	1.521	1.627	1.673	1.782
	45	1.276	1.318	1.347	1.409	1.436	1.497
	55	1.210	1.239	1.260	1.304	1.322	1.365
	75	1.142	1.161	1.174	1201	1.212	1. 238
	135	1.072	1.081	1.087	1.100	1.105	1.116
	∞	1.000	1.000	1.000	1.000	1.000	1.000

Table B4 (cont.).

Table B4 (cont.).

	$\mathrm{k}=40$	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	41	18.686	44480	85.919	402.258	785.785	3741.756
	42	7.971	12.386	17.122	36.213	50.084	106.775
	43	5.568	7.555	9.398	15.416	19.056	31.196
	44	4.481	5.683	6.715	9. 743	11.407	16.414
	45	3.847	4.683	5.367	7.246	8.218	10.967
	46	3.428	4.057	4.555	5.864	6.514	8.275
	47	3.125	3.625	4.010	4.991	5.463	6.796
	48	2.897	3.307	3.618	4.390	4.753	5.686
	49	2,716	3. 063	3.322	3.951	4.242	4.976
	50	2.570	2.869	3.089	3.616	3.856	4.453
	51	2.448	2.710	2.901	3.352	3.555	4.052
	52	2. 345	2.577	2.746	3138	3.313	3.736
9	53	2.257	2.466	2.615	2.961	3.114	3.481
$\stackrel{*}{*}$	54	2.181	2.369	2.504	2.813	2.947	3.269
	55	2.113	2.285	2.407	2.685	2.806	3.092
	56	2.054	2.212	2.324	2.575	2.684	2.938
	57	2.000	2.147	2.249	2.480	2. 579	2. 809
	58	1.953	2.089	2.183	2.395	2.486	2.695
	59	1.910	2.036	2.124	2.320	2.404	2.595
	60	1871	1.989	2.071	2.253	2.330	2.508
	70	1.612	1.683	1.732	1.835	1.878	1.973
	80	1.475	1.525	1.558	1.630	1.659	1.722
	100	1.329	1.360	1.380	1.424	1.441	1.477
	160	1.172	1.187	1.196	1.215	1.223	1.236
	¢	1,000	1000	1.000	1000	1.000	1.000

Table B4 (cont.).

	$\mathrm{k}=2$			bility	ent, P		
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	2	3.290	6.556	11.540	46.598	86.891	380.418
	3	1.802	2.421	3.084	5.679	7.506	14.726
	4	1.481	1.778	2.062	2.987	3.540	5. 353
	5	1.343	1.532	1.702	2.210	2.490	3.329
	6	1.266	1.403	1.522	1.860	2.037	2.539
	7	1. 218	1.325	1.415	1.664	1.790	2.135
	8	1.184	1.271	1.344	1.539	1.636	1.894
	9	1.160	1.233	1.294	1.454	1.531	1.735
	10	1.141	1.204	1.256	1.391	1.456	1.623
	11	1.126	1.182	1.227	1.344	1.399	1.541
	12	1114	1.164	1.204	1.307	1.355	1.477
	13	1.104	1.149	1.185	1.277	1.319	1.426
	14	1.096	1.137	1.170	1.252	1.290	1.385
合	15	1.089	1.126	1.156	1231	1.266	1.351
	16	1.083	1.117	1.145	1.214	1.245	1.323
	17	1.077	1.109	1.135	1.199	1.228	1. 299
	18	1.073	1.103	1.182	1.185	1.212	1.278
	19	1.068	1.097	1.119	1.174	1.199	1.260
	20	1.065	1.091	1.112	1.164	1.187	1.244
	21	1.061	1.086	1.106	1.155	1.177	1.230
	31	1.040	1.057	1.069	1.100	1.113	1.145
	41	1.031	1.042	1.052	1.074	1.083	1.106
	61	1.029	1.028	1.034	1.048	1.055	1.069
	121	1.010	1.014	1.017	1.024	1.027	1.034
	∞	1.000	1.000	1.000	1.000	1.000	1.000

Table B5. Values of the penalty ratio $r_{\Sigma}^{N}(k, n, P)$ in equation (II.95). These values apply to the ellipsoidal $\quad \underline{\Sigma}$ prediction region (II.94) and to sampling from a k-variate normal population with known mean and unknown covariance matrix. (For the case $k=1$, see Table A2 in Appendix A.)

	$\mathrm{k}=3$			lity con	t, P		
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	3	4.239	8.783	15.761	65.468	123.117	546.913
	4	2.146	2.965	3.836	7.242	9.648	19.202
	5	1.694	2.076	2.436	3.603	4.300	6.587
	6	1.498	1.737	1.948	2.573	2.916	3.943
	7	1.388	1.559	1.705	2.113	2.326	2.928
	8	1.318	1.451	1.560	1.857	2.006	2.415
	9	1.270	1.377	1.465	1.695	1.808	2.110
	10	1.234	1.324	1.397	1. 584	1.674	1.911
	11	1.207	1.284	1.346	1.503	1.578	1.770
	12	1.185	1.253	1.307	1.442	1.505	1.667
	13	1.168	1228	1.276	1.394	1.449	1.588
	14	1.153	1.208	1.250	1.355	1.404	1.525
ำ	15	1.141	1.191	1.229	1.323	1.367	1.474
$\stackrel{\sim}{2}$	16	1.131	1.176	1.211	1.297	1.336	1.432
	17	1.122	1.164	1.196	1.274	1.310	1.398
	18	1.114	1.153	1.183	1.255	1. 287	1.367
	19	1.107	1.143	1.171	1.238	1.268	1.342
	20	1.101	1.135	1.161	1.223	1.251	1.319
	21	1.096	1.128	1.152	1.210	1.236	1.299
	22	1.091	1.121	1.144	1.198	1.223	1.282
	32	1.060	1.079	1.094	1.128	1.143	1.178
	42	1.045	1.059	1.070	1.094	1.105	1.131
	62	1.030	1.039	1.046	1.062	1.069	1.085
	122	1.015	1. 019	1.023	1.030	1.034	1.042
	∞	1.000	1.000	1.000	1.000	1.000	1.000

Table B5 (cont.).

	$\mathrm{k}=4$	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	4	5.050	10.716	19.461	82.333	155.647	697.860
	5	2.450	3.447	4.504	8.646	11.579	23.253
	6	1.884	2.344	2.773	4.159	4.987	7.704
	7	1.638	1.922	2.171	2.902	3.303	4.499
	8	1.500	1.702	1.871	2.343	2. 588	3.281
	9	1.411	1.566	1.693	2.033	2.204	2.668
	10	1.350	1.475	1.575	1.838	1.966	2.306
	11	1.304	1.408	1.492	1.704	1.805	2.069
	12	1.269	1.359	1.429	1.606	1.690	1.904
	13	1.241	1.320	1.381	1.532	1.603	1.782
	14	1.218	1.288	1.342	1.474	1.535	1.689
	15	1.200	1.262	1.311	1.428	1.481	1.614
)	16	1.184	1.241	1.284	1.389	1.437	1.554
$\stackrel{\sim}{\infty}$	17	1.171	1.223	1.262	1.357	1.400	1.505
	18	1.159	1.207	1.243	1.330	1.369	1.464
	19	1.149	1193	1.227	1.307	1.342	1.429
	20	1.140	1.182	1.213	1.286	1.319	1.398
	21	1.132	1.171	1.200	1.269	1. 299	1.373
	22	1.125	1.161	1.189	1.253	1.281	1.349
	23	1.119	1.153	1.179	1.239	1.266	1.329
	33	1.079	1.101	1.117	1.154	1.170	1.207
	43	1.059	1.075	1.087	1.113	1.125	1.152
	63	1.039	1.050	1.057	1.074	1.082	1.099
	123	1.020	1.025	1.028	1.037	1.040	1.048
	-	1.000	1.000	1.000	1.000	1.000	1.000

Table B5 (cont.).

	$\mathrm{k}=5$	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	5	5.769	12.448	22.799	97.735	185.521	838.406
	6	2.725	3.885	5.113	9.937	13.360	27.041
	7	2.060	2.590	3.082	4.673	5.623	8.752
	8	1.768	2.094	2.377	3.208	3.661	5.022
	9	1.604	1.834	2,026	2.558	2.833	3.614
	10	1.498	1.675	1.817	2.198	2.388	2.908
	11	1.425	1.566	1.679	1.971	2.113	2.493
	12	1.370	1.488	1.581	1.816	1.928	2.222
	13	1.328	1.429	1.507	1.703	1.795	2.031
	14	1.294	1.383	1.450	1.617	1.695	1.892
	15	1.267	1.345	1.405	1.550	1.617	1.785
	16	1.244	1.315	1.368	1.496	1.554	1.700
9	17	1.225	1. 289	1.337	1.452	1.504	1.632
$\stackrel{\sim}{6}$	18	1.209	1.267	1.311	1.414	1.461	1.576
	19	1.195	1.249	1.288	1.383	1.425	1.529
	20	1.183	1.232	1.269	1.356	1.395	1.489
	21	1.172	1.218	1.252	1.332	1.368	1.454
	22	1.162	1. 205	1.237	1. 312	1.345	1.425
	23	1.154	1.194	1.224	1.294	1.324	1.398
	24	1.146	1.184	1.212	1.277	1.306	1.375
	34	1.097	1.121	1.139	1.179	1.196	1.236
	44	1.073	1.091	1.103	1.132	1.144	1.173
	64	1.049	1.060	1.068	1.087	1.094	1.113
	124	1.024	1.030	1.034	1.043	1.046	1.055
	-	1.000	1.000	1.000	1.000	1.000	1.000

Table B5 (cont.).

Table B5 (cont.).

	$\mathrm{k}=10$	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	10	8.618	19.402	36.346	161.528	310.079	1430.365
	11	3.847	5.684	7.633	15.347	20.866	43.093
	12	2.792	3.617	4.381	6.850	8. 329	13.213
	13	2.322	2. 823	3. 254	4. 513	5.201	7. 263
	14	2.053	2.403	2.691	3.482	3.891	5.046
	15	1.878	2.143	2.354	2. 912	3.189	3.943
	16	1754	1. 966	2.131	2. 553	2.758	3.297
	17	1.662	1.837	1.971	2. 307	2.466	2.878
	18	1.590	1.738	1.851	2.128	2.257	2.585
	19	1.532	1.661	1.758	1.992	2.100	2.370
	20	1.485	1.599	1.683	1.886	1.978	2.206
	21	1,446	1. 547	1.622	1.800	1.880	2.076
\cdots	22	1.413	1.504	1.571	1.729	1.799	1.972
$\stackrel{\square}{1}$	23	1.384	1.467	1.528	1.670	1.733	1.885
	24	1359	1.435	1.491	1620	1.676	1.813
	25	1.338	1.408	1.459	1.576	1.628	1.751
	26	1.318	1.383	1.431	1.539	1.586	1.698
	27	1.301	1.362	1.406	1.506	1.549	1.653
	28	1.285	1.343	1.383	1.477	1.517	1.612
	29	1272	1325	1.364	1.451	1.488	1. 578
	39	1.183	1. 216	1.240	1.292	1.314	1.365
	49	1.138	1.162	1.179	1.216	1.231	1.266
	69	1.093	1.108	1.119	1.142	1.151	1.173
	129	1.047	1.054	1.050	1.070	1.074	1.085
	∞	1.000	1.000	1.000	1.000	1,000	1.000

Table B5 (cont.).

	$\mathrm{k}=15$	Probability content, P					
	n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
	15	10.821	24.851	47.058	212.830	411.011	1918.342
	16	4.736	7. 121	9.659	19.751	27.009	56.439
	17	3.382	4.452	5.441	8.642	10.566	16.959
	18	2.776	3.422	3.978	5. 598	6.485	9.156
	19	2.427	2. 877	3.246	4. 257	4.779	6.263
	20	2.198	2. 537	2.807	3.515	3.868	4.829
	21	2.035	2. 304	2. 514	3.048	3.396	3.990
	22	1.912	2. 135	2. 305	2.727	2.927	3.446
	23	1.817	2.005	2.147	2. 494	2.655	3.067
	24	1.740	1. 903	2.024	2.316	2.450	2.788
	25	1.677	1.820	1.926	2.177	2. 291	2.574
	26	1.624	1.751	1. 845	2. 064	2.163	2.407
9	27	1.579	1.693	1.777	1.971	2.058	2.270
N	28	1.540	1.644	1.720	1.894	1.971	2.159
	29	1.506	1.601	1.670	1.827	1.897	2.066
	30	1.476	1. 564	1.627	1.771	1.833	1.984
	31	1.449	1.531	1.589	1.721	1.778	1.915
	32	1.426	1. 502	1.556	1.677	1.730	1.857
	33	1.405	1.476	1.526	1.639	1.688	1.803
	34	1.386	1.452	1.499	1.605	1.650	1.757
	44 54	1.262	1.303	1.332	1. 394	1.420	1.480
	54	1.199	1. 228	1.249	1. 292	1. 310	1.352
	74	1.134	1.153	1.166	1.193	1.204	1.230
	134	1.068	1.077	1.083	1.096	1.101	1.112
	∞	1,000	1.000	1.000	1.000	1,000	1.000

Table B5 (cont.).

$\mathrm{k}=20$	Probability content, P					
n	0.7500	0.9000	0.9500	0.9900	0.9950	0.9990
20	12.684	29.478	56.190	257. 139	498.395	2338.899
21	5.496	8.352	11.400	23.580	32.359	67.991
22	3.892	5.173	6.358	10.209	12.524	20.207
23	3.171	3.944	4.609	6.552	7.614	10.806
24	2.754	3.291	3.732	4.941	5.565	7.327
25	2.479	2.884	3.205	4. 051	4.470	5.606
26	2.283	2.604	2.854	3.489	3.795	4.600
27	2.135	2.400	2.601	3.103	3.339	3.947
28	2.019	2. 243	2.412	2. 822	3.012	3.493
29	1.926	2.119	2.263	2.608	2.765	3.157
30	1.849	2.019	2.143	2.440	2.573	2.902
31	1.784	1935	2.045	2.304	2.419	2.699
32	1.729	1.865	1.963	2.192	2.292	2.536
33	1.681	1.804	1.893	2.097	2.187	2.403
34	1.640	1.752	1.833	2.017	2.098	2.290
35	1.603	1.706	1.780	1.948	2.021	2.193
36	1.570	1.666	1.734	1.888	1.954	2.112
37	1.541	1.639	1.693	1.835	1.896	2.039
38	1.515	1.598	1.657	1.788	1.844	1.976
39	1491	1.569	1.624	1.747	1.799	1.920
49	1.337	1.384	1.417	1.489	1.518	1.585
59	1.257	1.291	1.314	1.364	1.384	1.431
79	1.175	1.196	1.210	1.241	1.254	1.281
139	1.089	1.099	1.106	1.120	1.126	1.136
∞	1.000	1.000	1.000	1.000	1.000	1.000

Table B5 (cont.).

Table B5 (cont.).

APPENDIX C

Abstract

Collected in this appendix are tables of simultaneous prediction limits and associated penalty ratios when sampling from independent and stationary univariate sequences. The distribution type of the sequence is known, but at least one distribution parameter is unknown. N denotes the number of future observations, n the available sample size and P the desired content of the prediction interval. For the use of these tables see Paragraph II.3.2.

$n{ }^{N}$	1	2	3	4	5	10	20
2	3.770	7.733	11.145	15.562	******	38.973	******
3	2.178	3.372	4.134	4.969	5.485	8.042	******
4	1.831	2.631	3.091	3.558	3.826	5.077	6.418
		(2.48)	(2.87)	(3.15)	(3.36)	(4.02)	(4.64)
5	1.679	2.335	2.692	3.041	3.237	4.105	4.984
		(2.24)	(2.57)	(2.80)	(2.98)	(3.52)	(4.04)
6	1.594	2.176	2.482	2.777	2.938	3.635	4.299
		(2.11)	(2.40)	(2.61)	(2.76)	(3.25)	(3.71)
7	1.539	2.077	2.352	2.616	2.758	3.360	3.921
		(2.02)	(2.29)	(2.48)	(2.63)	(3.08)	(3.50)
8	1.501	2.010	2.268	2.508	2.638	3.180	3.672
		(1.56)	(2.22)	(2.40)	(2.54)	(2.96)	(3.36)
9	1.473	1.961	2.203	2.431	2.552	3.053	3.500
		(1.92)	(2.17)	(2.34)	(2.47)	(2.87)	(3.26)
10	1.451	1.922	2.154	2.372	2.488	2.959	3.377
		(1.88)	(2.13)	(2.29)	(2.42)	(2.81)	(3.18)
11	1.433	1.893	2.119	2.327	2.439	2.887	3.280
		(1.86)	(2.09)	(2.26)	(2.38)	(2.76)	(3.11)
12	1.419	1.869	2.090	2.291	2.399	2.829	3.204
		(1.84)	(2.07)	(2.23)	(2.35)	(2.71)	(3.06)
15	1.389	1.819	2.039	2.215	2.313	2.710	3.047
		(1.79)	(2.01)	(2.16)	(2.28)	(2.62)	(2.95)
20	1.361	1.772	1.982	2.145	2.240	2.602	2.910
		(1.75)	(1.96)	(2.11)	(2.21)	(2.54)	(2.85)
25	1.344	1.745	1.935	2.105	2.193	2.541	2.830
		(1.72)	(1.93)	(2.07)	(2.18)	(2.49)	(2.79)
30	1.333	1.727	1.912	2.079	2.165	2.503	2.765
		(1.71)	(1.91)	(2.05)	(2.15)	(2.46)	(2.75)
40	1. 319	1.766	1.883	2.048	2.136	2.455	2.723
		(1.69)	(1.89)	(2.02)	(2.12)	(2.42)	(2.70)
60	1.307	1.685	1.865	2.018	2.107	2.412	2.672
		(1.67)	(1.86)	(1.99)	(2.09)	(2.38)	(2.65)
∞	1.282	1.645	1.812	1.960	2.036	2.326	2.559

Table Cl. One-sided simultaneous prediction intervals of 0.90 -content for normal sequences with ${ }_{N}$ unknown mean and variance. Approximate values of $\bar{\beta} \mu, \sigma(0.90, n, N)$ from equation (II.130). In, parenthesis are the exact values from Hahn (1970). $n=$ available sample size; $N=$ future sample size. Missing values are due to limitations in the available tables of the "Student's" t-distribution.

n N	1	2	3	4	5	10	20
2	38.973	77.964	******	155.936	******	389.847	779.696
3	8.042	11.460	*******	16.269	\#*****	25.781	36.486
4	$5 . C 77$	6.530	7.524	8.333	8.989	11.420	14.449
		(6.30$)$	(7.07)	(7.63)	(8.07)	(9.43)	(10.76)
5	4.105	5.343	5.647	6.132	6.518	7.858	9.432
		(4.94)	(5.46)	(5.83)	(6.13)	(7.04)	(7.95)
6	3.635	4.355	4.812	5.155	5.433	6.365	7.419
		(4.30)	(4.70)	(4.99)	(5.22)	(5.94)	(6.64)
7	3.360	3.963	4.338	4.615	4.843	5.568	6.370
		(3.93)	(4.27)	(4.51)	(4.70)	(5.30)	(5.90)
8	3.180	3.711	4.033	4.273	4.462	5.075	5.736
		(3.69)	(3.99)	(4.20)	(4.37)	(4.90)	(5.43)
9	3.053	3.536	3.830	4.040	4.209	4.744	5.314
		(3.52)	(3.79)	(3.99)	(4.14)	(4.62)	(5.09)
10	2.559	3.409	3.674	3.870	4.024	4.507	5.014
		(3.39)	(3.65)	(3.83)	(3.97)	(4.41)	(4.85)
11	2.887	3.310	3.555	3.740	3.885	4.328	4.791
		(3.30$)$	(3.54)	(3.71)	(3.84)	(4.25)	(4.67)
12	2.829	3.233	3.471	3.640	3.769	4.189	4.618
		(3.22)	(3.45)	(3.61)	(3.74)	(4.13)	(4.52)
15	2.710	3.075	3.284	3.435	3.553	3.911	4.276
		(3.07)	(3.27)	(3.42)	(3.53)	(3.88)	(4.22)
20	2.602	2.932	3.117	3.252	3.354	3.667	3.979
		(2.93)	(3.11)	(3.24)	(3.34)	(3.65)	(3.95)
25	2.541	2.852	3.029	3.151	3.247	3.536	3.819
		(2.85)	(3.32)	(3.14)	(3.24)	(3.52)	(3.80)
30	2.503	2.802	2.968	3.088	3.161	3.452	3.719
		(2.30)	(2.97)	(3.08)	(3.17)	(3.44)	(3.71)
40	2.455	2.741	2.901	3.013	3.098	3.354	3.601
		(2.74)	(2.90)	(3.01)	(3.09)	(3.35)	(3.59)
60	2.412	2.684	2.833	2.941	3.025	3.262	3.492
		(2.68)	(2.83)	(2.94)	(3.02)	(3.26)	(3.49)
∞	2.226	2.576	2.713	2.807	2.878	3.090	3.291

Table C2. One-sided simultaneous prediction intervals of 0.99 content for normal sequences with unknown mean and variance. Approximate values of $\mathcal{\beta}_{\mu, \sigma}(0.99, n, N)$ from equation (II.130). In parenthesis are the exact values from Hahn (1970). $n=$ available sample size; $N=$ future sample size. Missing values are due to limitations in the available tables of the "Student's" t-distribution.

n	1	2	3	4	5	10	20
2	389.847	779.696	$* * * * * *$	$* * * * * *$	$* * * * * *$	3898.40	7796.70
3	25.781	36.486	$* * * * *$	$* * * * * *$	$* * * * * *$	81.637	115.461
4	11.420	14.449	$* * * * * *$	$* * * * * *$	$* * * * * *$	24.820	31.305
5	7.858	9.432	$* * * * *$	$* * * * * *$	$* * * * * *$	14.274	17.028
6	6.365	7.419	8.096	8.614	9.041	10.456	12.074
7	5.568	6.370	6.874	7.259	7.574	8.574	9.709
8	5.675	5.736	6.152	6.459	6.693	7.488	8.363
9	4.744	5.314	5.660	5.935	6.145	6.788	7.505
10	$4.5 C 7$	5.014	5.323	5.559	5.726	6.303	6.916
11	4.328	4.751	5.071	5.275	5.434	5.943	6.487
12	4.189	4.618	4.866	5.058	5.204	5.673	6.163
15	3.911	4.276	4.495	4.565	4.699	5.164	5.539
20	3.667	3.979	4.160	4.293	4.406	4.714	5.018
25	3.536	3.819	3.982	4.100	4.191	4.487	4.746
30	3.452	3.719	3.898	4.003	4.066	4.320	4.580
40	3.354	3.601	3.749	3.848	3.927	4.161	4.385
60	3.262	3.492	3.623	3.719	3.788	4.002	4.209
∞	3.090	3.291	3.403	3.481	3.540	3.719	3.891

Table C3. One-sided simultaneous prediction intervals of 0.999-content for normal sequences with unknown mean and variance. Approximate values of $\bar{\beta}_{\mu, \sigma}^{N}(0.999, n, N)$ from equation (II.130). $n=$ available sample size; $\mathrm{N}=$ future sample size. Missing values are due to limitations in the available tables of the "Student's" t-distribution.

$n \sqrt[N]{n}$	1	2	3	4	5	10	20
2	3898.40	7756.70	**が***	****	******	38984.9	77988.5
3	81.637	115.461	******	*****	******	258.653	365.145
4	24.820	31.3 C 5	******	******	******	53.565	67.526
5	14.274	17.028	******	******	******	25.557	30.422
6	10.456	12.074	******	******	******	16.785	19.331
7	8.574	9.709	******	******	******	12.861	14.491
8	7.488	8.363	8.888	9.334	9.599	10.723	11.895
9	6.788	7.565	7.958	8.275	8. 538	9.381	10.311
10	6.303	6.916	7.289	7.551	7.793	8.495	9.258
11	5.943	6.487	6.841	7.067	7.259	7.865	8.512
12	5.673	6.163	6.453	6.682	6.821	7.411	7.860
15	5.164	5.539	5.763	5.939	6.068	6.507	6.926
20	4.714	5.018	5.200	5.349	5.446	5.790	6.096
25	4.487	4.746	4.905	5.038	5.109	5.405	5.676
30	4.320	4.580	4.732	4.839	4.930	5.184	5.423
40	4.161	4.385	4.532	4.627	4.698	4.920	5.128
60	4.002	4.209	4.333	4.416	4.477	4.679	4.871
∞	3.719	3.891	3.988	4.056	4.107	4.265	4.417

Table C4. One-sided simultaneous prediction intervals of 0.9999-content for normal sequences with unknown mean and variance. Approximate values of $\beta_{\mu, \sigma}^{N}(0.9999, n, N)$ from equation (II.130). $n=$ available sample size; $\mathrm{N}=$ future sample size. Missing values are due to limitations in the available tables of the "Student's" t-distribution.

$n N$	1	2	3	4	5	10	20
2	16.755	(30.266)	$* * * * * *$	(55.553)	$* * * * * *$	(126.16)	(236.92)
3	3.457	(4.449)	$* * * * *$	(5.796)	$* * * * * *$	(8.343)	(11.087)
4	2.183	2.446	2.606	2.718	2.804	3.052	3.270
5	1.765	1.918	2.013	2.077	2.130	2.278	2.416
6	1.563	1.669	1.732	1.778	1.814	1.922	2.018
7	1.445	1.526	1.574	1.607	1.633	1.715	1.793
8	1.367	1.432	1.471	1.496	1.518	1.586	1.650
9	1.313	1.366	1.397	1.421	1.438	1.495	1.547
10	1.272	1.316	1.345	1.364	1.379	1.427	1.474
11	1.241	1.281	1.305	1.322	1.334	1.375	1.419
12	1.216	1.250	1.272	1.286	1.300	1.337	1.373
15	1.165	1.192	1.205	1.218	1.227	1.256	1.282
20	1.119	1.137	1.146	1.154	1.161	1.181	1.200
25	1.092	1.106	1.113	1.119	1.126	1.139	1.155
30	$1 . C 76$	1.087	1.095	1.097	1.101	1.113	1.127
40	1.055	1.064	1.069	1.072	1.074	1.084	1.091
60	1.037	1.040	1.043	1.047	1.049	1.055	1.060
∞	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table C5. One-sided simultaneous prediction for normal sequences with unknown mean and variance. Values of the penaity ratio $\bar{r}_{\mu}^{N}, \sigma(0.99, n, N)$ in equation (II.128) (in parenthesis: approximate values). $\mathrm{n}=$ available sample size; $\mathrm{N}=$ future sample size.

$n \sqrt[N]{ }$	1	2	3	4	5	10	20
2	126.164	236.918	******	*****	*****	1048.24	2003.78
3	8.343	11.087	**	****	******	21.951	29.674
4	3.696	4.390	******	******	******	6.674	8.045
5	2.543	2. 866	******	******	******	3.838	4.376
6	2.060	2.254	2.379	2.475	2.554	2.812	3.103
7	1.802	1.936	2.020	2.085	2.140	2.305	2.495
8	1.642	1.743	1.808	1.856	1.891	2.013	2.149
9	1.535	1.615	1.663	1.705	1.736	1.825	1.929
10	1.459	1.524	1.564	1.597	1.618	1.695	1.777
11	1.401	1.456	1.490	1.515	1.535	1.598	1.667
12	1.356	1.403	1.430	1.453	1.470	1.525	1.584
15	1. 266	1.299	1.321	1.311	1.327	1.389	1.424
20	1.187	1.209	1.222	1.233	1.245	1.268	1.290
25	1.144	1.160	1.170	1.178	1.184	1.207	1.220
30	1.117	1.130	1.145	1.150	1.149	1.162	1.177
40	1.C85	1.094	1.102	1.105	1.109	1.119	7.127
60	1.056	1.061	1.065	1.068	1.070	1.076	1.082
∞	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Tabłe C6. One-sided simultaneous prediction for normal sequences with unknown mean and variance.
Approximate values of the penalty ratio $\dot{\bar{r}}_{\mu, \sigma}^{N}$ (0.999 , n, N) in equation (II.128). $\mathrm{n}=$ available sample size; $N=$ future sample size.

$n \sqrt[N]{n}$	1	2	3	4	5	10	20
2	1048.24	2003.78	******	※******	******	9140.65	17651.9
3	21.551	29.674	*******	*****	******	60.645	82.668
4	6.674	8.045	******	******	******	12.559	15.288
5	3.838	$4.37 t$	******	*******	******	5.992	6.887
6	2.812	3.103	******	******	*******	3.936	4.376
7	2.305	2.455	******	******	******	3.015	3.281
8	2.013	2.149	2.229	2.301	2.337	2.514	2.693
9	1.825	1.929	1.995	2.040	2.079	2.200	2.334
10	1.655	1.777	1.828	1.862	1.897	1.992	2.096
11	1.598	1.667	1.715	1.742	1.767	1.844	1.927
12	1.525	1.584	1.618	1.647	1.661	1.738	1.779
15	1.389	1.424	1.445	1.464	1.477	1.526	1.568
20	1.268	1.290	1.304	1.319	1.326	1.358	1.380
25	1.207	1.220	1.230	1.242	1.244	1.267	1.285
30	1.162	1.177	1.187	1.193	1.200	1.215	1.228
40	1.119	1.127	1.136	1.141	1.144	1.154	1.161
60	1.076	1.082	1.087	1.089	1.090	1.097	1.103
∞	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table C7. One-sided simultaneous prediction for normal sequences with unknown mean and variance. Approximate values of the penalty ratio $\bar{r}_{\mu}^{N}, \sigma(0.9999, n, N)$ in equation (II.128) . $n=$ aváilable sample size; $N=$ future sample size.

$\mathrm{n}{ }^{\mathrm{N}}$	1	2	3	4	5	10	20
1	31.821	63.657	******	127.32	******	318.31	636.62
2	6.565	9.925	******	14.089	******	22.327	31.598
3	4.541	5.841	6.730	7.453	8.040	10.214	12.924
4	3.747	4.604	5.155	E. 598	5.950	7.173	8.610
5	3.365	4.032	4.455	4.773	5.030	5.893	6.869
		(4.00)	(4.39)	(4.67)	(4.90)	(5.61)	
6	3.143	3.767	4.058	4.317	4.530	5.208	5.959
		(3.68)	(4.01)	(4.25)	(4.44)	(5.03)	
7	2.998	3.499	3.802	4.029	4.207	4.785	5.408
		(3.48)	(3.77)	(3.98)	(4.15)	(4.67)	
8	2.896	3.355	3.633	3.833	3.993	4.501	5.041
		(3.34)	(3.61)	(3.80)	(3.95)	(4.42)	
9	2.821	3.250	3.503	3.690	3.837	4.297	4.781
		(3.24)	(3.49)	(3.66)	(3.80)	(4.23)	
10	2.764	3.165	3.404	3.581	3.720	4.144	4.587
		(3.16)	(3.39)	(3.56)	(3.69)	(4.09)	
11	2.718	3.106	3.335	3.497	3.621	4.025	4.437
		(3.10)	(3.32)	(3.48)	(3.60)	(3.98)	
14	2.624	2.977	3.180	3.326	3.440	3.787	4.140
		(2.97)	(3.17)	(3.31)	(3.42)	(3.76)	
19	2.539	2.861	3.042	3.174	3.273	3.579	3.883
		(2.86)	(3.04)	(3.16)	(3.26)	(3.56)	
24	2.492	2.757	2.965	3.090	3.184	3.467	3.745
		(2.79)	(2.96)	(3.08)	(3.17)	(3.46)	
29	2.462	2.756	2.922	3.038	3.130	3.396	3.659
		(2.75)	(2.92)	(3.03)	(3.12)	(3.39)	
39	2.426	2.707	2. 865	2.976	3.060	3.313	3.557
59	2.391	2.662	2.810	2.917	3.000	3.235	3.463
∞	2.326	2.576	2.713	2.807	2.878	3.090	3.291

Table C8. One-sdied simultaneous prediction intervals of 0.99-content for normal sequences with known mean and unknown variance. Approximate values of $\beta \mathrm{N}(0.99, \mathrm{n}, \mathrm{N})$ from equation (II.132a). In parenthesis are exact values from Krishnaiah and Armitage (1966), equations (II.131).

$n \mathrm{~N}$	1	2	3	4	5	10	20
1	318.31	636.62	******	******	******	3183.00	6366.20
2	22.33	31.60	*******	4*****	******	70.70	99.99
3	10.21	12.92	******	******	******	22.20	28.00
4	7.17	8.61	******	******	******	13.03	15.54
5	5.89	6.87	7.49	7.98	8.37	9.68	11.18
6	5.21	5.96	6.43	6.79	7.09	8.02	9.08
7	4.78	5.41	5.80	6.09	6.31	7.06	7.89
8	4.50	5.04	5.37	5.63	5.83	6.44	7.12
5	4.30	4.78	5.07	5.30	5.46	6.01	6.59
10	4.14	4.59	4.85	5.05	5.20	5.69	6.21
11	4.02	4.44	4.68	4.86	5.00	5.45	5.92
14	3.79	4.14	4.27	4.42	4.55	5.00	5.36
19	3.58	3.88	4.06	4.19	4.30	4.60	4.90
24	3.47	3.74	3.90	4.02	4.11	4.40	4.65
29	3.4 C	3.66	3.84	3.94	4.00	4.25	4.51
39	3.31	3.56	3.70	3.80	3.88	4.11	4.33
59	3.23	3.46	3.59	3.69	3.76	3.97	4.17
∞	3.09	3.29	3.40	3.48	3.54	3.72	3.89

Table C9. One-sided simultaneous prediction intervals of 0.999-content for normal sequences with known mean and unknown variance. Approximate values of $\beta_{\sigma}^{\mathrm{N}}(0.999, n, N)$ from equation (II.132a).

n	1	2	3	4	5	10	20
1	3183.0	6366.2	$* * * * * *$	$* * * * * *$	$* * * * * *$	31831.	63662.
2	70.70	99.99	$* * * * * *$	$* * * * * *$	$* * * * * *$	224.00	316.23
3	22.20	28.00	$* * * * * *$	$* * * * * *$	$* * * * * *$	47.91	60.40
4	13.03	15.54	$* * * * * *$	$* * * * * *$	$* * * * * *$	23.33	27.77
5	9.68	11.18	$* * * * * *$	$* * * * * *$	$* * * * * *$	15.54	17.90
6	8.02	9.08	$* * * * * *$	$* * * * * *$	$* * * * * *$	12.03	13.56
7	7.06	7.89	8.38	8.80	9.05	10.11	11.22
8	6.44	7.12	7.55	7.85	8.10	8.90	9.78
9	6.01	6.59	6.95	7.20	7.43	8.10	8.83
10	5.69	6.21	6.55	6.77	6.95	7.53	8.15
11	5.45	5.92	6.20	6.42	6.55	7.12	7.65
14	5.00	5.36	5.58	5.75	5.88	6.30	6.71
19	4.60	4.90	5.07	5.22	5.31	5.65	5.95
24	4.40	4.65	4.81	4.94	5.01	5.30	5.57
29	4.25	4.51	4.65	4.76	4.85	5.10	5.34
39	4.11	4.33	4.48	4.57	4.64	4.86	5.06
59	3.97	4.17	4.30	4.38	4.44	4.64	4.83
∞	3.72	3.89	3.99	4.06	4.11	4.27	4.42

Table Cl0. One-sided simultaneous prediction intervals of 0.9999-content for normal sequences with known mean and unknown variance. Approximate values of $\beta_{\sigma}^{N}(0.9999, n, N)$ from equation (II.132a).

$n \sqrt[N]{N}$	1	2	3	4	5	10	20
1	13.68	(24.71)	******	(45.36)	******	(103.01)	(193.44)
2	2.95	(3.85)	******	(5.02)	******	(7.23)	(9.60)
3	1.55	(2.27)	(2.48)	(2.66)	(2.79)	(3.31)	(3.93)
4	1.61	(1.75)	(1.90)	(1.99)	(2.07)	(2.32)	(2.62)
5	1.45	1.55	1.62	1.66	1.70	1.82	(2.09)
6	1.35	1.43	1.48	1.51	1.54	1.63	(1.81)
7	1.29	1.35	1.39	1.42	1.44	1.51	(1.64)
8	1.25	1.30	1.33	1.35	1.37	1.43	(1.53)
9	1.21	1.26	1.29	1.30	1.32	1.37	(1.45)
10	1.19	1.23	1.25	1.27	1.28	1.32	(1.39)
11	1.17	1.20	1.22	1.24	1.25	1.29	(1.35)
14	1.13	1.15	1.17	1.18	1.19	1.22	(1.26)
19	1.05	1.11	1.12	1.13	1.13	1.15	(1.18)
24	1.07	1.C8	1.09	1.10	1.10	1.12	(1.14)
29	1.06	1.07	1.08	1.08	1.08	1.10	(1.11)
39	1.64	(1.C5)	(1.06)	(1.06)	(1.06)	(1.07)	(1.08)
59	1.03	(1.03)	(1.04)	(1.04)	(1.04)	(1.05)	(1.05)
∞	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Table Cll. One-sided simultaneous prediction intervals of $0.99-c o n t e n t$ for normal sequences with known mean and unknown variance. Values of $r_{\sigma}^{N}(0.99, n, N)$. In parenthesis are approximate values from using equation (II.132a).

n^{N}	1	2	3	4	5	10	20
1	103.01	193.44	******	******	******	855.88	1636.1
2	7.23	9.60	******	******	******	19.01	25.70
3	3.31	3.93	******	******	******	5.97	7.20
4	2.32	2.62	******	******	******	3.50	3.99
5	1.91	2.09	2.20	2.29	2.36	2.60	2.87
6	1.69	1.81	1.89	1.95	2.00	2.16	2.33
7	1.55	1.64	1.70	1.75	1.78	1.90	2.03
8	1.46	1.53	1.58	1.62	1.65	1.73	1.83
9	1.39	1.45	1.49	1.52	1.54	1.62	1.69
10	1.34	1.39	1.43	1.45	1.47	1.53	1.60
11	1.30	1.35	1.37	1.40	1.41	1.47	1.52
14	1.23	1.26	1.26	1.27	1.29	1.34	1.38
19	1.16	1.18	1.19	1.20	1.21	1.24	1.26
24	1.12	1.14	1.15	1.15	1.16	1.18	1.20
29	1.10	1.11	1.13	1.13	1.13	1.14	1.16
39	1.07	1.08	1.09	1.09	1.10	1.11	1.11
59	1.05	1.05	1.06	1.06	1.06	1.07	1.07
∞	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Table Cl2. One-sided simultaneous prediction intervals of 0.999 -content for normal sequences with known mean and unknown variance. Approximate values of $\mathrm{i}_{\sigma}^{\mathrm{N}}(0.999, \mathrm{n}, \mathrm{N})$.

n^{N}	1	2	3	4	5	10	20
1	855.88	1636.13	******	******	******	7463.3	14412.9
2	19.01	25.70	******	\#*****	******	52.52	71.59
3	5.97	7.20	******	******	*******	11.23	13.67
4	3.50	3.99	******	******	******	5.47	6.29
5	2.60	2.87	******	******	******	3.64	4.05
6	2.16	2.33	******	******	******	2.82	3.07
7	1.90	2.03	2.10	2.17	2.20	2.37	2.54
8	1.73	1.83	1.89	1.94	1.97	2.09	2.21
9	1.62	1.69	1.74	1.78	1.81	1.90	2.00
10	1.53	1.60	1.64	1.67	1.69	1.77	1.85
11	1.47	1.52	1.55	1.58	1.60	1.67	1.73
14	1.34	1.38	1.40	1.42	1.43	1.48	1.52
19	1.24	1.26	1.27	1.29	1.29	1.32	1.35
24	1.18	1.20	1.21	1.22	1.22	1.24	1.26
29	1.14	1.16	1.17	1.17	1.18	1.20	1.21
39	1.11	1.11	1.12	1.13	1.13	1.14	1.15
59	1.07	1.07	1.08	1.08	1.08	1.09	1.09
∞	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Table Cl3. One-sided simultaneous prediction intervals of 0.9999-content for normal sequences with known mean and unknown variance. Approximate values of $r_{\sigma}^{N}(0.9999 \mathrm{~F} \cdot \mathrm{~N})$.

Table Cl4. Probability content P of the interval (II.133a) for $\beta_{\mu}^{N}(\cdot)=2.50$ and for several values of n and N. In parenthesis, approximate values from equation (II.134). (Where approximate values are missing they coincide with the exact ones up to the precision of the table.)

Table Cl5. Probability content P of the interval (II.133a) for $\beta_{\mu}^{N}(\cdot)=3.50$ and for several values of n and N. In parenthesis, approximate values from equation (II.134). (Where approximate values are missing they coincide with the exact ones up to the precision of the table.)

$P=0.990$							$A / B=1.0$
N	10	20	30	40	60		
1	1.438	1.168	1.099	1.068	1.040		
2	1.408	1.158	1.094	1.064	1.038		
3	1.394	1.153	1.091	1.063	1.037		
4	1.385	1.150	1.089	1.062	1.037		
5	1.378	1.148	1.088	1.061	1.036		
6	1.373	1.146	1.087	1.060	1.036		
7	1.369	1.145	1.087	1.060	1.036		
8	1.365	1.143	1.086	1.060	1.036		
9	1.362	1.142	1.085	1.059	1.035		
10	1.360	1.142	1.085	1.059	1.035		
15	1.350	1.138	1.083	1.058	1.035		
20	1.344	1.136	1.082	1.057	1.034		
25	1.340	1.135	1.081	1.057	1.034		
30	1.336	1.134	1.080	1.056	1.034		
40	1.331	1.132	1.080	1.056	1.034		
60	1.324	1.130	1.078	1.055	1.033		

$P=0.590$					
N	n	10	20	30	40
1	1.372	1.142	1.084	1.057	1.034
2	1.352	1.136	1.081	1.056	1.033
3	1.343	1.133	1.079	1.055	1.032
4	1.336	1.131	1.078	1.054	1.032
5	1.332	1.130	1.077	1.054	1.032
6	1.328	1.129	1.077	1.053	1.032
7	1.325	1.128	1.076	1.053	1.032
8	1.323	1.127	1.076	1.053	1.031
9	1.321	1.126	1.076	1.052	1.031
10	1.319	1.126	1.075	1.052	1.031
15	1.313	1.124	1.074	1.052	1.031
20	1.308	1.122	1.073	1.051	1.031
25	1.305	1.121	1.073	1.051	1.031
30	1.303	1.120	1.072	1.051	1.031
40	1.299	1.119	1.072	1.050	1.030
60	1.294	1.118	1.071	1.050	1.030

Table Cl6. Left-hand simultaneous prediction interval when sampling is from the Extreme Type I distribution (II.136) with a and b unknown. Each table collects penalty factors $r_{a, b}^{E l}(P, n, N)$ for fixed P and a / b ratios. Other valúes of P and a / b are considered in the continuation of the table.

$P=0.990$							$A / B=3$
$N \sim$	10	20	30	40	60		
1	1.323	1.124	1.073	1.050	1.029		
2	1.310	1.120	1.071	1.049	1.029		
3	1.303	1.118	1.070	1.048	1.029		
4	1.299	1.117	1.070	1.048	1.028		
5	1.296	1.116	1.069	1.048	1.028		
6	1.293	1.115	1.069	1.048	1.028		
7	1.291	1.114	1.068	1.047	1.028		
8	1.290	1.114	1.068	1.047	1.028		
9	1.288	1.113	1.068	1.047	1.028		
10	1.287	1.113	1.068	1.047	1.028		
15	1.282	1.112	1.067	1.047	1.028		
20	1.279	1.111	1.066	1.046	1.028		
25	1.277	1.110	1.066	1.046	1.028		
30	1.275	1.109	1.066	1.046	1.028		
40	1.272	1.109	1.065	1.046	1.028		
60	1.269	1.108	1.065	1.046	1.028		

$\rho=0.990$					
N	n	10	20	30	40
1	1.285	1.109	1.065	1.044	1.00
2	1.277	1.107	1.064	1.044	1.026
3	1.272	1.106	1.063	1.043	1.026
4	1.269	1.105	1.063	1.043	1.026
5	1.267	1.104	1.062	1.043	1.026
6	1.265	1.104	1.062	1.043	1.026
7	1.264	1.103	1.062	1.043	1.026
8	1.263	1.103	1.062	1.043	1.026
9	1.261	1.103	1.062	1.043	1.026
10	1.261	1.103	1.061	1.043	1.026
15	1.257	1.102	1.061	1.042	1.026
20	1.255	1.101	1.061	1.042	1.025
25	1.253	1.101	1.061	1.042	1.025
30	1.252	1.100	1.060	1.042	1.025
40	1.250	1.100	1.060	1.042	1.025
60	1.248	1.099	1.060	1.042	1.025

Table Cl6 (cont.).

$P=0.990$							$A / B=5 . C$
N	10	20	30	40	60		
1	1.256	1.098	1.058	1.040	1.023		
2	1.250	1.097	1.057	1.039	1.023		
3	1.247	1.096	1.057	1.039	1.023		
4	1.245	1.095	1.057	1.039	1.023		
5	1.243	1.095	1.057	1.039	1.023		
6	1.242	1.095	1.057	1.039	1.023		
7	1.241	1.094	1.057	1.039	1.023		
8	1.240	1.094	1.056	1.039	1.023		
9	1.239	1.094	1.056	1.039	1.023		
10	1.239	1.094	1.056	1.039	1.023		
15	1.236	1.093	1.056	1.039	1.023		
20	1.235	1.093	1.058	1.039	1.023		
25	1.234	1.093	1.056	1.039	1.023		
30	1.233	1.093	1.056	1.039	1.023		
40	1.231	1.092	1.056	1.039	1.024		
60	1.229	1.092	1.055	1.039	1.024		

$P=0.990$					
N	10	20	30	40	60
N	1.	0.0			
2	1.231	1.089	1.053	1.036	1.021
3	1.228	1.088	1.052	1.036	1.021
4	1.226	1.088	1.052	1.036	1.021
5	1.223	1.087	1.052	1.036	1.021
6	1.222	1.087	1.052	1.036	1.021
7	1.222	1.087	1.052	1.036	1.021
8	1.221	1.087	1.052	1.036	1.021
9	1.221	1.087	1.052	1.036	1.022
10	1.220	1.087	1.052	1.036	1.022
15	1.219	1.086	1.052	1.036	1.022
20	1.218	1.086	1.052	1.036	1.022
25	1.217	1.086	1.052	1.036	1.022
30	1.216	1.086	1.052	1.036	1.022
40	1.215	1.086	1.052	1.036	1.022
60	1.214	1.086	1.052	1.036	1.022

Table Cl6 (cont.).

$P=0.990$					
N	10	20	30	40	60
N	1.212	1.081	1.048	1.033	1.019
2	1.209	1.081	1.048	1.033	1.019
3	1.208	1.081	1.048	1.033	1.020
4	1.207	1.081	1.048	1.033	1.020
5	1.206	1.081	1.048	1.033	1.020
6	1.206	1.081	1.048	1.033	1.020
7	1.205	1.081	1.048	1.033	1.020
8	1.205	1.081	1.048	1.033	1.020
9	1.205	1.080	1.048	1.033	1.020
10	1.204	1.080	1.048	1.033	1.020
15	1.203	1.080	1.048	1.034	1.020
20	1.203	1.080	1.048	1.034	1.020
25	1.202	1.080	1.048	1.034	1.020
30	1.202	1.080	1.048	1.034	1.020
40	1.201	1.080	1.048	1.034	1.020
60	1.200	1.080	1.048	1.034	1.021

$\mathrm{P}=C .990$							$A / E=8.0$
N	n	10	20	30	40		
1	1.195	1.075	1.044	1.030	1.018		
2	1.193	1.075	1.044	1.030	1.018		
3	1.193	1.075	1.045	1.031	1.018		
4	1.192	1.075	1.045	1.031	1.018		
5	1.192	1.075	1.045	1.031	1.018		
6	1.191	1.075	1.045	1.031	1.018		
7	1.191	1.075	1.045	1.031	1.019		
8	1.191	1.075	1.045	1.031	1.019		
9	1.191	1.075	1.045	1.031	1.019		
10	1.191	1.075	1.045	1.031	1.019		
15	1.190	1.075	1.045	1.031	1.019		
20	1.190	1.075	1.045	1.031	1.019		
25	1.189	1.075	1.045	1.032	1.019		
30	1.189	1.075	1.045	1.032	1.019		
40	1.189	1.075	1.045	1.032	1.019		
60	1.188	1.075	1.045	1.032	1.019		

Table Cl6 (cont.).

$P=0.990$					
N	10	20	30	40	60
1	1.180	1.069	$1 . C 41$	1.028	1.016
2	1.180	1.070	1.041	1.028	1.017
3	1.180	1.070	1.042	1.029	1.017
4	1.179	1.070	1.042	1.029	1.017
5	1.179	1.070	1.042	1.029	1.017
6	1.179	1.070	1.042	1.029	1.017
7	1.179	1.070	1.042	1.029	1.017
8	1.179	1.070	1.042	1.029	1.017
9	1.179	1.070	1.042	1.029	1.017
10	1.179	1.070	1.042	1.029	1.018
15	1.178	1.071	1.042	1.029	1.018
20	1.178	1.071	1.042	1.030	1.018
25	1.178	1.071	1.043	1.030	1.018
30	1.178	1.071	1.043	1.030	1.018
40	1.178	1.071	1.043	1.030	1.018
60	1.178	1.071	1.043	1.030	1.018

$\mathrm{P}=0.990$					
N	n	10	20	30	40
1	1.168	1.064	1.038	1.026	1.015
2	1.168	1.065	1.039	1.026	1.016
3	1.168	1.065	1.039	1.027	1.016
4	1.168	1.066	1.039	1.027	1.016
5	1.168	1.066	1.039	1.027	1.016
6	1.168	1.066	1.039	1.027	1.016
7	1.168	1.066	1.039	1.027	1.016
8	1.168	1.066	1.040	1.027	1.016
9	1.168	1.066	1.040	1.027	1.016
10	1.169	1.066	1.040	1.028	1.016
15	1.168	1.066	1.040	1.028	1.017
20	1.168	1.067	1.040	1.028	1.017
25	1.168	1.067	1.040	1.028	1.017
30	1.168	1.067	1.040	1.028	1.017
40	1.168	1.067	1.040	1.028	1.017
60	1.168	1.067	1.041	1.028	1.017

Table Cl6 (cont.).

$P=0.995$	$A / B=1.0$			
N	n	20	30	40
1	1.219	1.137	1.096	1.059
2	1.205	1.128	1.090	1.056
3	1.198	1.124	1.087	1.054
4	1.194	1.121	1.085	1.053
5	1.191	1.119	1.084	1.052
6	1.188	1.118	1.083	1.051
7	1.186	1.116	1.082	1.051
8	1.194	1.115	1.081	1.051
9	1.183	1.114	1.081	1.050
10	1.181	1.114	1.080	1.050
15	1.177	1.111	1.078	1.049
20	1.174	1.109	1.077	1.048
25	1.171	1.107	1.076	1.047
30	1.170	1.106	1.075	1.047
40	1.167	1.105	1.074	1.046
60	1.164	1.103	1.073	1.046

$P=C .995$	$A / B=2.0$			
N	n	20	30	40
1	1.189	1.118	1.083	1.051
2	1.180	1.112	1.079	1.049
3	1.175	1.109	1.077	1.048
4	1.172	1.107	1.075	1.047
5	1.169	1.106	1.074	1.046
6	1.167	1.105	1.074	1.046
7	1.166	1.104	1.073	1.045
8	1.165	1.103	1.073	1.045
9	1.163	1.102	1.072	1.045
10	1.163	1.102	1.072	1.045
15	1.159	1.100	1.070	1.044
20	1.157	1.098	1.069	1.043
25	1.155	1.097	1.069	1.043
30	1.154	1.096	1.068	1.043
40	1.152	1.095	1.067	1.042
60	1.149	1.094	1.066	1.042

Table Cl6 (cont.).

$P=0.995$				$A / B=3.0$	
N	n	20	30	40	
1	1.167	1.104	1.073	1.045	
2	1.160	1.100	1.070	1.043	
3	1.156	1.098	1.068	1.042	
4	1.154	1.096	1.068	1.042	
5	1.152	1.095	1.067	1.042	
6	1.151	1.094	1.066	1.041	
7	1.150	1.094	1.066	1.041	
8	1.149	1.093	1.066	1.041	
9	1.148	1.093	1.065	1.041	
10	1.147	1.092	1.065	1.040	
15	1.145	1.091	1.064	1.040	
20	1.143	1.090	1.063	1.039	
25	1.142	1.089	1.063	1.039	
30	1.141	1.088	1.062	1.039	
40	1.139	1.087	1.062	1.039	
60	1.137	1.086	1.061	1.038	

$P=0.995$		$A / E=4.0$		
N	20	30	40	60
1	1.149	1.093	1.065	1.040
2	1.144	1.090	1.063	1.039
3	1.141	$1 . C 88$	1.062	1.038
4	1.139	1.087	1.061	1.038
5	1.138	1.086	1.061	1.038
6	1.137	1.086	1.060	1.038
7	1.136	1.085	1.060	1.037
8	1.136	1.085	1.060	1.037
9	1.135	$1 . C 85$	1.060	1.037
10	1.135	1.084	1.059	1.037
15	1.133	1.083	1.059	1.037
20	1.131	1.082	1.058	1.036
25	1.130	1.082	1.058	1.036
30	1.130	1.081	1.057	1.036
40	1.128	1.081	1.057	1.036
60	1.127	1.080	1.056	1.035

Table Cl6 (cont.).

$p=0.995$	$A / B=5$			
N	n	20	30	40
1	1.134	1.084	1.058	1.036
2	1.131	1.082	1.057	1.035
3	1.129	1.081	1.056	1.035
4	1.127	1.080	1.056	1.035
5	1.127	1.079	1.056	1.035
6	1.126	1.079	1.055	1.034
7	1.125	1.078	1.055	1.034
8	1.125	1.078	1.055	1.034
9	1.124	1.078	1.055	1.034
10	1.124	1.078	1.055	1.034
15	1.122	1.077	1.054	1.034
20	1.121	1.076	1.054	1.034
25	1.121	1.076	1.053	1.033
30	1.120	1.075	1.053	1.033
40	1.119	1.075	1.053	1.033
60	1.118	1.074	1.052	1.033

	$\mathrm{p}=0.995$		$A / B=6.0$	
N	20	30	40	60
1	1.122	1.076	1.053	1.033
2	1.120	1.075	1.052	1.032
3	1.118	1.074	1.052	1.032
4	1.117	1.074	1.052	1.032
5	1.117	1.073	1.051	1.032
6	1.116	1.073	1.051	1.032
7	1.116	1.072	1.051	1.032
8	1.115	1.072	1.051	1.032
9	1.115	1.072	1.051	1.032
10	1.115	1.072	1.051	1.032
15	1.114	1.071	1.050	1.031
20	1.113	1.071	1.050	1.031
25	1.112	1.070	1.050	1.031
30	1.112	1.070	1.050	1.031
40	1.111	1.070	1.049	1.031
60	1.110	1.069	1.049	1.031

Table Cl6 (cont.).

$P=0.995$	$A / B=7.0$			
$N \sim$	20	30	40	60
1	1.112	1.070	1.049	1.030
2	1.111	1.069	1.048	1.030
3	1.110	1.069	1.048	1.030
4	1.109	1.068	1.048	1.030
5	1.108	1.068	1.048	1.030
6	1.108	1.068	1.048	1.030
7	1.108	1.067	1.047	1.029
8	1.107	1.067	1.047	1.029
9	1.107	1.067	1.047	1.029
10	1.107	1.067	1.047	1.029
15	1.106	1.066	1.047	1.029
20	1.106	1.066	1.047	1.029
25	1.105	1.066	1.047	1.029
30	1.105	1.066	1.046	1.029
40	1.104	1.065	1.046	1.029
80	1.104	1.065	1.046	1.029

$\mathrm{P}=0.995$	$A / B=8.0$			
N n	20	30	40	60
1	1.104	1.065	1.045	1.028
2	1.103	1.064	1.045	1.028
3	1.102	1.064	1.045	1.028
4	1.101	1.063	1.045	1.028
5	1.101	1.063	1.044	1.028
6	1.101	1.063	1.044	1.028
7	1.101	1.063	1.044	1.028
8	1.100	1.063	1.044	1.028
9	1.100	1.063	1.044	1.028
10	1.100	1.063	1.044	1.027
15	1.099	1.062	1.044	1.027
20	1.099	1.062	1.044	1.027
25	1.099	1.062	1.044	1.027
30	$1 . C 99$	1.062	1.044	1.027
40	1.098	1.062	1.044	1.027
60	1.098	1.061	1.043	1.027

Table Cl6 (cont.).

	$p=0.995$		$A / B=$	9.0
N	20	30	40	60
1	1.097	1.060	1.042	1.026
2	1.096	1.060	1.042	1.026
3	1.055	1.060	1.042	1.026
4	1.095	1.059	1.042	1.026
5	1.095	1.059	1.042	1.026
6	1.095	1.059	1.042	1.026
7	1.094	1.059	1.042	1.026
8	1.094	1.059	1.042	1.026
9	1.094	1.059	1.041	1.026
10	1.094	1.059	1.041	1.026
15	1.054	1.059	1.041	1.026
20	1.053	1.059	1.041	1.026
25	1.053	1.058	1.041	1.026
30	1.093	1.058	1.041	1.026
40	1.093	1.058	1.041	1.026
60	1.092	1.058	1.041	1.026

$p=0.995$	$A / B=10.0$			
N	n	20	30	40
1	1.090	1.056	1.039	1.024
2	1.090	1.056	1.039	1.024
3	1.089	1.056	1.039	1.024
4	1.089	1.056	1.039	1.024
5	1.089	1.056	1.039	1.024
6	1.089	1.056	1.039	1.024
7	1.089	1.056	1.039	1.024
8	1.089	1.056	1.039	1.024
9	1.089	1.056	1.039	1.024
10	1.089	1.056	1.039	1.024
15	1.088	1.055	1.039	1.024
20	1.088	1.055	1.039	1.024
25	1.088	1.055	1.039	1.024
30	1.088	1.055	1.039	1.024
40	1.088	1.055	1.039	1.024
60	1.088	1.055	1.039	1.024

Table Cl6 (cont.).

Table Cl7. Penalty factors for left-hand simultaneous intervals of $\mathrm{P}=0.99$-content for the next $\mathrm{N}=2$ observations. Comparison is between Gamma sequences with given shape factor $k=1(1) 5$ and lognormal sequences with known or estimated coefficient of variation V_{V}. For lognormal sequences the associated normal population has unknown mêan (first lognormal column), unknown variance (following two columns) or both mean and variance unknown (last two columns). Other combinations of P and N are considered in the continuation of the table.

Table Cl7 (cont.). $P=0.99 ; N=10$.

	n	$\begin{gathered} \mathrm{k}=1 \\ (\mathrm{EX}) \end{gathered}$	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$	$\mathrm{k}=5$	$\mathrm{V}_{\mathrm{Y}}=0.25$	$\widehat{\mathrm{V}}_{Y}=0.1$	$\widehat{\mathrm{V}}_{\mathrm{Y}}=0.3$	$\widehat{\mathrm{V}}_{\mathrm{Y}}=0.1$	$\widehat{\mathrm{V}}_{\mathrm{Y}}=0.3$
	1	302.69	18.73	8.06	5.20	4.34	1.74	*****	*****	*****	* ${ }^{*} * * *$
	2	13.10	4.15	2.89	2.42	2.17	1.37	58.33	*****	*****	*****
	3	5.12	*****	*****	*****	*****	1.25	6.84	27.40	96.66	*****
	4	3.29	*****	*****	* $* * * *$	*****	1.19	3.53	7.25	8.40	43.25
	5	2.56	1.75	1.54	1.45	1.39	1.15	2.55	4.08	4.06	9.42
	6	2.17	*****	*****	*****	*****	1.12	2.10	2.97	2.84	4.92
	7	1.93	*****	* $* * * *$	*****	*****	1.11	1.85	2.43	2.30	3.45
	8	1.77	*****	*****	* $* * * *$	*****	1.09	1.69	2.11	2.00	2.74
	9	1.66	*****	*****	*****	*****	1.08	1.58	1.91	1.81	2.35
\cdots	10	1.57	1.33	1.25	1.20	1.18	1.08	1.50	1.77	1.68	2.09
$\stackrel{\infty}{\omega}$	15	1.35	*****	*****	*****	*****	1.05	1.29	1.43	1.37	1.56
ω	20	1.25	1.15	*****	*****	*****	1.04	1.21	1.30	1.26	1.37
	25	1.19	*\#\#**	*** * *	*****	* $\#$ \#**	*****	*****	*****	*****	*****
	30	1.16	*****	*****	*****	*****	1.03	1.13	1.18	1. 15	1.22
	40	1.12	*****	*****	*****	*****	1. 02	1.10	1.13	1.11	1.15
	50	1.09	*****	*****	*****	*****	*****	*****	*****	*****	*****
	60	*****	*****	*****	*****	*****	1.01	1. 06	1.08	1.07	1.10

Table Cl7 (cont.). $P=0.999 ; N=2$.

Table Cl7 (cont.). $P=0.999 ; ~ N=10$.

[^0]: (*) If one removes the restriction $\rho \geq 0$, equation (I.54) yields $m=\infty$ when $\rho=-1 /(n-1)(n \geq 2)$. In fact $-1 /(n-l)$ is the minimum value attainable by ρ for a set of n equicorrelated variables. If $\rho=-1 /(n-1), X$ is a deterministic function of \underline{Z}.

