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Abstract 
Accurate predictions of the onset of ductile fracture play an increasingly important role in 

the design of lightweight sheet metal structures. With the development of virtual prototyping 

practices, most transportation vehicles are now computer-engineered in great detail before 

launching their mass production, thereby requiring reliable models for plasticity and fracture. 

This thesis reports on a comprehensive investigation into the effect of stress state on the onset of 

ductile fracture of an Advanced High Strength Steel (AHSS), covering development of new 

experimental procedures, material characterization and phenomenological as well as micro-

mechanical modeling of the onset of fracture. Based on an extensive multi-axial experimental 

program, the anisotropic plasticity of the present material is described by a non-associated 

quadratic anisotropic model. Comparison of model predictions to experimental results reveals 

that the proposed model provides better predictions than associated isotropic or anisotropic 

quadratic models. Moreover, a structural validation is presented that demonstrates the higher 

prediction accuracy of the non-associated plasticity model. A hybrid experimental-numerical 

approach is proposed to investigate the dependence of the onset of fracture to stress state. The 

experimental program covers the complete range of positive stress triaxialities, from pure shear 

to equi-biaxial tension. It includes different full thickness specimens as well as multi-axial 

fracture experiments where combinations of tension and shear loadings are applied to a newly 

developed butterfly-shaped specimen. Loading paths to fracture are determined for each 

experiment in terms of stress triaxiality, Lode angle parameter and equivalent plastic strain and 

show a non-monotonic and strong dependence of ductility to stress state. The extensive fracture 

characterization is used to evaluate the predictive capabilities of two phenomenological and 

physics-inspired fracture models (the Modified Mohr-Coulomb and a shear-modified Gurson 

model) that take the effect of the first and third stress tensor invariants into account in predicting 

the onset of fracture. Finally, a micro-mechanical model relating the onset of fracture to plastic 

localization into a narrow band at the micro-scale is developed. The effect of stress state on 

localization is investigated numerically by means of a 3D void-containing unit cell submitted to 

well-controlled and proportional loadings in the macroscopic stress state. Based on simulation 

results, an analytical localization criterion is proposed which defines an open convex envelope in 

terms of the shear and normal stresses acting on the plane of localization and correlates well with 

experimental results. 
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The accurate prediction of ductile fracture plays an important role in the design of 

lightweight thin-walled metal structures. Most transportation vehicles made from sheet 

materials are computer engineered in great detail before launching their mass production. In 

the specific example of automotive structures, both the engineering of the production 

process and of the final product require reliable models for plasticity and fracture. During 

the last decade, there has been a growing interest in fracture models that can be used in both 

sheet metal forming simulations as well as subsequent crash simulations. 

 



20 Chapter 1. General introduction 

1.1  Ductile fracture 

Within this thesis, ductile fracture is considered as being the appearance of 

macroscopic cracks in an initially uncracked material after a significant amount of inelastic 

deformation. Ductile fracture is the result of a progressive material deterioration occurring 

during plastic deformation. 

1.1.1 Experimental characterization 

Numerous experimental investigations have been carried out to characterize ductile 

fracture. For practical reasons, investigated stress states are often limited to axisymmetric 

stress states or plane stress states. 

 Clausing (1970, [39]) performed an experimental study on axisymmetric and plane 

strain tensile fracture specimens of several materials and found a lower ductility for plane 

strain loading. Hancock and MacKenzie (1976, [70]) investigated the relationship between 

the ductility and the stress triaxiality for three different steels. They used smooth and U-

notched axisymmetric tensile specimens and concluded that for all studied materials, the 

ductility is decreasing with stress triaxiality; the same authors also found good agreement 

between their experimental results and the predictions by Rice and Tracey’s (1969, [128]) 

fracture model. Hancock and Brown (1983, [69]) compared experimental results from 

notched axisymmetric specimens and flat grooved plane strain specimens and concluded that 

the ductility was determined by the stress state, and not the strain state. Using split 

Hopkinson bars, Johnson and Cook (1985, [76]) performed dynamic torsion and notched 

tensile tests at different strain rates and temperatures. They concluded that the effect of 

stress triaxiality on the ductility of their tested metals was more significant than that of strain 

rate and temperature.  

Bao (2003, [8]) carried out an extensive experimental program on aluminum 2024-

T351 covering stress triaxialities ranging from compression to multi-axial tension, based on 

a mix of axisymmetric tensions, axisymmetric compression and plane stress condition. 

Considering stress triaxiality as the only relevant stress state parameter, Bao’s results 
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suggested a transition region between shear and uniaxial tension, where ductility increases 

with stress triaxiality. Mohr and Henn (2007, [105]) proposed a butterfly-shaped flat 

specimen to study the onset of fracture over a wide range of stress triaxialities under plane 

stress condition. When using this specimen in conjunction with a dual actuator system 

(Mohr and Oswald, 2008, [109]), virtually any loading condition between pure shear and 

transverse plane strain tension can be imposed. 

Reliable experimental results on ductile fracture at low and intermediate stress 

triaxialities are still difficult to obtain because of significant experimental challenges 

associated with the proper introduction of loading, the inherent localization deformation at 

the macroscopic level (necking), and the detection of the onset of fracture (e.g. Bao and 

Wierzbicki, 2004, [9]; Mohr and Henn, 2007, [105]; Barsoum and Faleskog, 2007, [14]; 

Brunig et al, 2008, [29]; Fagerholt et al, 2010, [54]; Gao et al, 2011, [58]; Haltom et al, 

2013, [68]). 

1.1.2 Ductile fracture models 

1.1.2.1 Void growth models 

Mechanisms responsible for ductile fracture are generally identified as the nucleation 

and growth of micro-voids that ultimately link to form cracks. The early investigations of 

McClintock (1968, [101]) and Rice and Tracey (1969, [128]) on the evolution of cylindrical 

and spherical holes in ductile matrices have set the foundation for numerous studies on the 

micromechanics associated with void growth. The most prominent is that of Gurson (1977, 

[66]), who proposed a porous plasticity model based on the micromechanical analysis of a 

thick spherical shell subject to hydrostatic pressure. The model describes the growth of 

voids and its influence on the material’s stress carrying capacity at large mean stresses (but 

becomes less accurate for shear loads). The original Gurson model has been repeatedly 

modified to account for additional processes responsible for the material deterioration and 

subsequent ductile fracture: void nucleation (e.g. Chu and Needleman, 1980, [38]), loss of 

load-carrying capacity associated with void coalescence (e.g. Tvergaard and Needleman, 
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1984, [148]), enhanced strain hardening models (e.g. Leblond et al., 1995, [85]), void shape 

effects (e.g. Gologanu et al., 1993, [60]; Gologanu et al., 1994, [61]; Garajeu et al., 2000, 

[59]; Pardoen and Hutchinson, 2000, [123]) and plastic anisotropy (e.g. Benzerga et al., 

2004, [20]). The reader is referred to Lassance et al. (2007, [82]) and Benzerga and Leblond 

(2010, [21]) for a comprehensive review of successive improvements of the Gurson model. 

Gurson type of models are not only used to describe macroscopic plastic behavior of 

materials with small void volume fractions, but also to predict ductile fracture assuming that 

fracture occurs as the void volume fraction reaches a critical value. As a result, “traditional” 

Gurson models are unable to predict fracture under shear-dominated loading conditions, 

where the void growth mechanism is inactive. Numerical investigations of an initially 

spherical void contained in a cubic unit cell submitted to various tri-axial loadings (e.g. 

Zhang et al., 2001, [157]; Gao and Kim, 2006, [56]) showed that the third stress invariant (or 

Lode parameter) has a strong influence on void shape evolution and on coalescence. The 

influence of the third stress invariant on the ductility of metals is also shown experimentally 

(e.g. Barsoum and Faleskog, 2007, [14]). This particular shortcoming of Gurson models has 

been addressed by the recent models of Xue (2008, [155]) and Nahshon and Hutchinson 

(2008, [112]). The latter consider the void volume fraction as damage parameter, and 

introduce a dependency of the damage evolution on the third stress invariant. This empirical 

modification has been introduced in an ad-hoc manner to deal with the material deterioration 

due to void distortion and inter-void linking under shearing. As a result, the Nahshon-

Hutchinson model can predict failure under shear-dominated loading, such as during the 

cutting of sheet metal (Nahshon and Xue, 2009, [113]). However, Nielsen and Tvergaard 

(2009, [117]) found that this modification is inadequate in the case of high stress 

triaxialities, compromising the predictive capabilities of the original Gurson model for 

loading conditions where void growth is the main damage mechanism. Consequently, 

Nielsen and Tvergaard (2010, [118]) proposed a slight modification of the Nahshon-

Hutchinson model, making the damage accumulation under shear-dominated stress states 

active only for low stress triaxialities. It is noted that these two recent shear-modified 

Gurson models do not account for the effect of void distortion at large shear strains. 

Micromechanical models that are able to deal with general ellipsoidal void shape evolution 
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are still at an early stage of development and require further validation (e.g. Leblond-

Gologanu, 2008, [84]). 

1.1.2.2 Uncoupled models 

As an alternative to Gurson type of models, uncoupled fracture models have been 

developed for metals where standard incompressible plasticity models are used in 

conjunction with a separate fracture model (e.g. Fischer et al., 1995, [55]). Unlike in Gurson 

models, it is assumed that the evolution of damage has no effect on the effective stress-strain 

response of the material before fracture occurs. Within this framework, damage is measured 

through the scalar variable    and its increase      is defined though the increment of the 

equivalent plastic strain  ̅  with respect to a stress-state dependent reference failure strain  ̂,  

   
  ̅ 

 ̂( )
 (1-1) 

Assuming an initial value of     for the material in its undeformed configuration, it 

is postulated that fracture initiates as     . The reference failure strain may be interpreted 

as a weighting function and corresponds to the strain to fracture for monotonic proportional 

loading. It is either chosen empirically or inspired by micromechanical results. A 

comparative study of various weighting functions (including models based on the work of 

McClintock (1968, [101]), Rice and Tracey (1969, [128]), LeRoy et al. (1981, [92]), 

Cockcroft and Latham (1968, [41]), Oh et al. (1979, [119]), Brozzo et al. (1972, [27]), and 

Clift et al. (1990, [40])) showed that none of them can accurately describe the fracture 

behavior of a aluminum 2024 over a large range of stress triaxialities (Bao and Wierzbicki, 

2004, [9]). Wilkins et al. (1980, [154]) proposed a weighting function depending on the 

asymmetry of the deviatoric principal stresses in addition to hydrostatic pressure. It was 

assumed that the effect of hydrostatic pressure and stress asymmetry on ductility were 

separable. Attempts to define a more general fracture criterion have led to the introduction 

of the third invariant of the stress tensor in the weighting function (e.g. Wierzbicki and Xue, 

2005, [153]). Recently, Bai and Wierzbicki (2010, [5]) transposed the classical Mohr 
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Coulomb fracture criterion into the space of stress triaxiality, Lode angle and equivalent 

plastic strain, defining the so-called Modified Mohr-Coulomb (MMC) fracture criterion. 

1.1.2.3 Damage mechanics and FLCs 

There exist two more widely-used alternatives to the above two modeling approaches: 

Continuum Damage Mechanics (CDM) and Forming Limit Curves (FLC).  In the 

framework of Continuum Damage Mechanics, material degradation is modeled through an 

internal damage variable while the constitutive equations are derived from the first and 

second principles of thermodynamics for continuous media (e.g. Lemaitre, 1985, [91]; 

Chaboche, 1988, [34, 35]). Most sheet metal forming processes are still designed against 

failure based on the concept of FLCs. The FLC is typically constructed in the space of the 

principal in-plane strains based on the experimental results for uniaxial tension and a series 

of Nakazima tests (e.g. Banabic et al., 2000, [6]). It is then assumed that failure (either 

necking or fracture) occurs as the strain path in a sheet metal forming operation crosses the 

FLC. In this approach, it is assumed that the FLC is independent of the loading path. Both 

the CDM and FLC approach are not considered in the present work and the detailed review 

of the associated literature is therefore omitted. 

1.2 Ductile failure by plastic localization 

The localization of plastic deformation within a narrow band is often an important 

precursor to ductile fracture (e.g. Dunand et al., 2013, [49]). Following the works of 

Marciniak and Kuczynski (1964, [100]) and Rice (1977, [127]), it is common practice to 

predict the onset of localization based on macroscopic constitutive theories through infinite 

band localization analysis (e.g. Mear and Hutchinson, 1985, [102], Duszek and Perzyna, 

1991, [52]). As noted by Rice (1977, [127]), the identified onset of localization corresponds 

to the loss of ellipticity of the governing equilibrium equations. Consequently, onset of 

localization maps can also be directly computed by assessing the existence of non-positive 
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eigenvalues of the acoustic tensor (Michel et al., 2007, [103]; Danas and Ponte Castaneda, 

2012, [45]).  

For most metals, the strains at the onset of localization are very large. As a consequence, 

the effect of voids on the elasto-plastic moduli, even for very low porosities, needs to be 

taken into account when computing the instant of the onset of localization. This requires 

advanced constitutive theories such as the Gurson model (Gurson, 1977, [66]) and its 

extensions accounting for void nucleation (e.g. Chu and Needleman, 1980, [38]), for the loss 

of load-carrying capacity associated with void coalescence (e.g. Tvergaard and Needleman, 

1984, [148]), for void shape effects (e.g., Gologanu et al., 1993, 1994, [60, 61]; Garajeu et 

al., 2000, [59]; Pardoen and Hutchinson, 2000, [123]) and for plastic anisotropy (e.g., 

Benzerga et al., 2004, [20]). As shown by Nahshon and Hutchinson (2008, [112]), additional 

modifications representing shear softening are necessary to obtain reasonable predictions of 

strain localization at low stress triaxialities.  

Unit cell models provide a computationally-expensive alternative to macroscopic 

constitutive theories to describe the large deformation response of metals of low porosity. 

The early analysis with unit cell models was mostly limited to two-dimensional models, e.g. 

axisymmetric mechanical systems with spheroidal voids (e.g. Koplik and Needleman, 1988, 

[78]; Brocks et al, 1995, [24]; Pardoen and Hutchinson, 2000, [123]) or plane strain models 

with cylindrical voids (e.g. Tvergaard, 1981, [144]). Fully three-dimensional models have 

only been employed rather recently for plane strain conditions (e.g. Scheyvaerts et al., 2011, 

[131]; Nielsen et al., 2012, [116]; Rahman et al, 2012, [125]) and selected three-dimensional 

stress states (e.g. Barsoum and Faleskog, 2007, 2011, [13, 15]; Tekoglu, 2012, [141]). Aside 

from the macroscopic response, unit cell models provide valuable insight in the local 

deformation fields and allow for the detailed analysis of the void growth and coalescence 

process (e.g. Scheyvaerts et al., 2011, [131]). As discussed by Pardoen and Hutchinson 

(2000, [123]), it is useful to define void growth as the phase prior to the localization of 

deformation inside the intervoid ligament, while void coalescence describes the deformation 

process thereafter.  Normal localization may be seen as diffuse necking of the ligament, 

while shear localization is characterized by the development of a shear band at the 

microscale. Due to the inherent periodicity of microstructures defined through unit cell 
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models, the onset of coalescence corresponds to the onset of normal and/or shear 

localization of plastic flow within a narrow band at the scale of the void.  

Substantial efforts have been devoted to the development of micromechanics-based 

coalescence criteria. The first generation of coalescence criteria (Brown and Embury, 1973, 

[26]; Thomason, 1985, [142]; Benzerga 2002, [18]) is primarily concerned with the 

prediction of internal necking as a function of the void shape, relative spacing and the 

applied maximum normal stress. The effect of shear in addition to normal loads on the 

coalescence has been addressed recently by Tekoglu et al. (2012, [141]). They demonstrate 

that the introduction of non-linear parameter functions into the Benzerga model leads to an 

excellent agreement with their unit cell simulations for combined shear and tension. 

Furthermore, Tekoglu et al. (2012, [141]) present a micromechanical analysis to come up 

with an analytical coalescence model for general loading conditions.         

Reliable experimental results on ductile fracture at low stress triaxialities are still 

difficult to obtain because of significant experimental challenges associated with the proper 

introduction of loading, the inherent localization deformation at the macroscopic level 

(necking), and the detection of the onset of fracture (e.g. Bao and Wierzbicki, 2004, [9]; 

Mohr and Henn, 2007, [105]; Brunig et al, 2008, [29]; Fagerholt et al, 2010, [54]; Gao et al, 

2011, [58]; Haltom et al, 2013, [68]). Numerical results on localization are therefore of 

particular value for the development of ductile fracture modes at low stress triaxialities. 

Tvergaard (2008, 2009, [145, 146]) analyzed the behavior of a row of circular cylindrical 

holes under shear loading. He reports the formation of rotating micro-cracks as the result of 

void closure at low stress triaxialities. Furthermore, he points out that a maximum in the 

macroscopic shear stress accompanies the onset of localization of plastic flow. Nielsen et al. 

(2012, [116]) confirmed these observations using a three-dimensional unit cell model. In his 

most recent work, Tvergaard (2012, [147]) considered a square unit cell with a cylindrical 

void and fully periodic boundary conditions. By varying the normal stress during shearing, 

he found that increasing the stress triaxiality facilitates failure through shear localization.   

Barsoum and Faleskog (2007, [13]) performed a micromechanical analysis on three-

dimensional unit cells with spherical voids for combined tension and shear loading. Their 

model represents a layer of preexisting voids in a Levy-von Mises material; it features a 



1.2. Ductile failure by plastic localization 27 

height to width ratio of 2:1 along with periodic boundary conditions on all three pairs of 

parallel boundaries. Using a kinematic condition comparing the deformation gradient rate 

inside and outside a band of localization (as proposed by Needleman and Tvergaard, 1992, 

[115]), they define the onset of shear localization and report the corresponding macroscopic 

von Mises equivalent strain as strain to failure  (due to localization). Their simulation results 

for a constant stress triaxiality of 1.0 elucidate the effect of the Lode parameter on shear 

localization for stress states between generalized shear and axisymmetric tension. Their 

computational results also agree well with the observations from experiments where 

coalescence occurred by internal necking (triaxiality above 0.7). However, for low stress 

triaxialities and stress states closer to generalized shear, the macroscopic strains to failure 

predicted by the unit cell model are significantly higher than those found experimentally.  

Gao et al. (2010, [57]) applied macroscopic normal stresses along the symmetry axes of 

a cubic unit cell with a spherical void and boundaries that remain flat and perpendicular 

throughout deformation. Assuming that void coalescence occurs when the macroscopic 

strain state shifts to a uniaxial strain state, they computed the corresponding  macroscopic 

effective strain as a function of the stress triaxiality (ranging from 0.33 to 2) and of the Lode 

angle. Their results indicate that the macroscopic strain to coalescence increases 

monotonically as a function of the Lode angle from axisymmetric tension to axisymmetric 

compression. Furthermore, their simulations indicate that this Lode angle effect on 

coalescence becomes more pronounced at low stress triaxialities. They also show that the 

effective strain to coalescence decreases when assuming a Gurson instead of a Levy-von 

Mises matrix.  

More recently, Barsoum and Faleskog (2011, [15]) made use of their unit cell model to 

investigate the localization of deformation into a narrow planar band different from the 

plane of normal stress axisymmetry and for a wider range of stress states. Irrespective of the 

stress state, they observe the lowest macroscopic effective strain to localization for bands 

oriented at an angle of about 45
◦
 with respect to the direction of the minimum principal 

macroscopic stress. The computed localization loci for stress triaxialities ranging from 0.75 

to 2 show the lowest strains to localization for generalized shear. The loci are approximately 
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symmetric with respect to the Lode parameter, showing slightly higher localization strains 

for axisymmetric compression than axisymmetric tension.    

1.3 Thesis outline and objectives 

This thesis is a comprehensive investigation on the onset of ductile failure in initially 

uncracked Advanced High Strength Steel (AHSS) sheets. The two main objectives of this 

work consist in characterizing and modeling the effect of stress state on the onset of ductile 

fracture of a representative AHSS under positive stress triaxialities. Investigations are 

limited to room temperature and low strain rate loading conditions. A possible anisotropy of 

the fracture properties is disregarded.  

Experimental procedures are developed to investigate fracture of sheet materials for 

stress states ranging from pure shear to equi-biaxial tension. A hybrid experimental-

numerical method is used to evaluate the evolution of strains and stresses within the 

specimen during loading and the material state at the onset of fracture. This approach 

permits to account for complex specimen geometries and through-the-thickness localization 

of deformation that occurs before failure in most ductile fracture experiments on sheet 

specimens. A key component of this hybrid experimental-numerical approach is the constitutive 

model. The proposed plasticity model, built upon a non-associated flow rule, is validated over a 

wide range of loading conditions and large strains. The extensive experimental work is used to 

perform a critical evaluation the predictive capabilities of two state-of-the-art ductile 

fracture models: the shear-modified Gurson model (Nielsen and Tvergaard, 2010, [118]) and 

the Modified Mohr-Coulomb (MMC) fracture model (Bai and Wierzbicki, 2010, [5]). 

Finally, and considering that plastic localization at the micro-scale is an important precursor 

to ductile fracture, a numerical model based on three-dimensional unit cell is built to 

investigate the effect of stress state on the onset of plastic localization into a narrow planar 

band in a void-containing material. An analytical criterion is proposed to relate the onset of 

plastic localization to the normal and shear stresses acting on the plane of localization. 
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The Thesis is decomposed in seven chapters. Each chapter, apart from Chapter 1 and 

Chapter 7, addresses one specific topic and corresponds to a peer-reviewed publication. A 

list of publications related to the present thesis is given in Appendix A. 

Chapter 2 is focused on the experimental characterization and phenomenological 

modeling of the plasticity of AHSS sheets under multi-axial monotonic loading conditions.  

The accuracy of quadratic plane stress plasticity models is evaluated for a dual phase and a 

TRIP-assisted steel. Both sheet materials exhibit a considerable direction-dependence of the 

r-ratio while the uniaxial stress-strain curves are approximately the same irrespective of the 

specimen direction. Isotropic and anisotropic associated as well as non-associated quadratic 

plasticity models are considered to describe this behavior. Using a newly-developed dual-

actuator system, combinations of normal and tangential loads are applied to a flat specimen 

in order to characterize the sheet material response under more than 20 distinct multi-axial 

loading states. The comparison of the experimental results with the plasticity model 

predictions reveals that both the associated and non-associated quadratic formulations 

provide good estimates of the stress-strain response under multi-axial loading. However, the 

non-associated model is recommended when an accurate description of the thinning 

behavior is important. Moreover, a structural validation example is presented that 

demonstrates the higher prediction accuracy of the non-associated plasticity model. 

In Chapter 3, a basic ductile fracture testing program is carried out on specimens 

extracted from TRIP780 steel sheets including tensile specimens with a central hole and 

circular notches. In addition, equi-biaxial punch tests are performed. The surface strain 

fields are measured using two- and three-dimensional digital image correlation. Due to the 

localization of plastic deformation during the testing of the tensile specimens, finite element 

simulations are performed of each test to obtain the stress and strain histories at the material 

point where fracture initiates. Error estimates are made based on the differences between the 

predicted and measured local strains. The results from the testing of tensile specimens with a 

central hole as well as from punch tests show that equivalent strains of more than 0.8 can be 

achieved at approximately constant stress triaxialities to fracture of about 0.3 and 0.66, 

respectively. The error analysis demonstrates that both the equivalent plastic strain and the 

stress triaxiality are very sensitive to uncertainties in the experimental measurements and the 
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numerical model assumptions. The results from computations with very fine solid element 

meshes agree well with the experiments when the strain hardening is identified from 

experiments up to very large strains. 

Chapter 4 is concerned with multi-axial ductile fracture experiments on sheet metals. 

Different stress-states are achieved within a flat specimen by applying different 

combinations of normal and transverse loads to the specimen boundaries. The specimen 

geometry is optimized such that fracture initiates remote from the free specimen boundaries. 

Fracture experiments are carried out on TRIP780 steel for four different loading conditions, 

varying from pure shear to transverse plane strain tension. Hybrid experimental-numerical 

analyses are performed to determine the stress and strain fields within the specimen gage 

section. The results show that strain localization cannot be avoided prior to the onset of 

fracture. Through-thickness necking prevails under tension-dominated loading while the 

deformation localizes along a band crossing the entire gage section under shear-dominated 

loading. Both experimental and simulation results demonstrate that the proposed fracture 

testing method is very sensitive to imperfections in the specimen machining. The loading 

paths to fracture are determined in terms of stress triaxiality, Lode angle parameter and 

equivalent plastic strain. The experimental data indicates that the relationship between the 

stress triaxiality and the equivalent plastic strain at the onset of ductile fracture is not unique. 

In Chapter 5, the predictive capabilities of the shear-modified Gurson model (Nielsen 

and Tvergaard, 2010, [118]) and the Modified Mohr-Coulomb (MMC) fracture model (Bai 

and Wierzbicki, 2010, [5]) are evaluated. Both phenomenological fracture models are 

physics-inspired and take the effect of the first and third stress tensor invariants into account 

in predicting the onset of ductile fracture. The MMC model is based on the assumption that 

the initiation of fracture is determined by a critical stress state, while the shear-modified 

Gurson model assumes void growth as the governing mechanism. Fracture experiments on 

TRIP-assisted steel sheets covering a wide range of stress states (from shear to equibiaxial 

tension) are used to calibrate and validate these models. The model accuracy is quantified 

based on the predictions of the displacement to fracture for experiments which have not 

been used for calibration. It is found that the MMC model predictions agree well with all 

experiments (less than 4% error), while less accurate predictions are observed for the shear-
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modified Gurson model. A comparison of plots of the strain to fracture as a function of the 

stress triaxiality and the normalized third invariant reveals significant differences between 

the two models except within the vicinity of stress states that have been used for calibration. 

In Chapter 6, the effect of the stress state on the localization of plastic flow in a Levy-

von Mises material is investigated numerically. A unit cell model is built with a spherical 

central void that acts as a defect triggering the onset of flow localization along a narrow 

band. Periodic boundary conditions are defined along all boundaries of the unit cell. Shear 

and normal loading is applied such that the macroscopic stress triaxiality and Lode 

parameter remain constant throughout the entire loading history. Due to the initially 

orthogonal symmetry of the unit cell model the deformation-induced anisotropy associated 

with void shape changes, both co-rotational and radial loading paths are considered. The 

simulation results demonstrate that the macroscopic equivalent plastic strain at the onset of 

localization decreases in stress triaxiality and is a convex, non-symmetric function of the 

Lode parameter. In addition to predicting the onset of localization through unit cell analysis, 

an analytical criterion is proposed which defines an open convex envelope in terms of the 

shear and normal stresses acting on the plane of localization. 

1.4 Material 

1.4.1 TRIP780 steel 

All the experimental work presented in this manuscript is performed on specimens 

extracted from 1.4mm thick TRIP780 steel sheets provided by POSCO (Korea). The 

chemical composition of the present TRIP780 material as measured by energy-dispersive X-

ray analysis is given in Table 1-1. Micrographs (Fig. 1-1) reveal a fine grain structure with a 

maximum grain size of about      and show that martensite and austenite grains (in 

blue/brown in Fig. 1-1) tend to segregate in bands parallel to the sheet rolling direction. 
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Figure 1-1: Optical micrograph of the undeformed TRIP material. The RD and Th 

orientations correspond to the sheet rolling and through-the-thickness directions, 

respectively. 

 

TRansformation Induced Plasticity (TRIP) steels present complex multi-phase 

microstructures consisting of a ferritic matrix and a dispersion of multiphase grains of 

bainite, martensite and metastable retained austenite (Jacques et al., 2001, [75]). The 

austenitic phase transforms to martensite when subject to mechanical or thermal loading 

(e.g. Angel, 1954, [2]; Lecroisey and Pineau, 1972, [86]; Olsen and Cohen, 1975, [120]; 

Stringfellow et al., 1992, [137]). The austenite-to-martensite formation is displacive which 

gives rise to internal stresses that may cause the yielding of the surrounding austenite matrix 

(e.g. Greenwood and Johnson, 1965, [65]). The active formation of martensite substantially 

increases the macroscopic work-hardening rate while the associated transformation strain 

contributes to the ductility of TRIP steels. 
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Table 1-1: Chemical composition of the TRIP780 material in wt-% 

C Al Mn Si Mo 

1.70 0.47 2.50 0.59 0.08 

 

1.4.2 Plasticity of AHSS 

From a mechanical point of view, TRIP-assisted and DP steels may be considered as 

composite material at the micro-scale. Papatriantafillou et al. (2006, [122]) made use of 

homogenization techniques for nonlinear composites (e.g. Ponte Castaneda, 1992, [124]) to 

estimate the effective properties of TRIP-assisted steels. Based on the work by Stringfellow 

et al. (1992, [137]) for fully austenitic TRIP steels, Papatriantafillou et al. (2006, [122]) 

formulated the computational procedure for a four phase metallic composite with evolving 

phase volume fractions and isotropic viscoplastic phase behavior. Turteltaub and Suiker 

(2005, [143]) presented a more detailed multi-scale model for TRIP-assisted steels which 

includes anisotropic features associated with the phase crystal orientations and the 

martensite twinning. A mean-field model which describes DP steels as a composite of 

isotropic elasto-plastic phases with spherical inclusions has been proposed by Delannay et 

al. (2007, [47]). This model has been enhanced further to TRIP-assisted steels (Delannay et 

al., 2008, [48]) using the assumption that spherical austenite inclusions transform 

instantaneously into spherical martensite inclusions. Based on the intermediate strain rate 

tensile testing of TRIP600 and DP600 steels, Huh et al. (2008, [74]) conclude that both the 

flow and ultimate tensile strength increase as the level of pre-strain increases.    

Most AHSS exhibit a pronounced Bauschinger effect. Banu et al. (2006, [7]) adopted 

an isotropic Swift law combined with saturated kinematic hardening of the Amstrong-

Frederick type to model a series of Bauschinger simple shear tests on a DP600 steel. The 

accurate modeling of the cyclic behavior of AHSS is important in drawing operations where 

the sheet material is both bent and unbent. Using a stack of laminated dogbone specimens 
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along with an anti-buckling device, Yoshida et al. (2002, [156]) measured the response of a 

DP590 steel under cyclic uniaxial tension-compression loading at large strains. Their study 

shows that the combination of isotropic, non-linear kinematic and linear kinematic 

hardening provides a satisfactory model for the observed transient and permanent softening 

in the dual phase steel. As Yoshida et al. (2002, [156]), Lee et al. (2005, [89]) emphasize the 

importance of an accurate description of the Bauschinger and transient behavior in view of 

springback computations. Based on the comparison of uniaxial experiments on a DP steel 

and simulations, Lee et al. (2005, [89]) concluded that a modified Chaboche type combined 

isotropic-kinematic hardening law provides a good representation of the Bauschinger and 

transient behavior. However, a recent study by Tarigopula et al. (2008, [140]) on a DP800 

steel demonstrated that the modeling of transient anisotropy in plastic flow induced by 

strain-path changes cannot be represented correctly when using a non-linear combined 

isotropic-kinematic hardening model. Broggiato et al. (2008, [25]) performed 3-point-

bending tests on two DP600 and a TRIP700 steel. Their results show that the cyclic 

hardening behavior of both steel grades is very similar and can be modeled using a non-

linear combined isotropic-kinematic hardening model. Using a double-wedge device, Cao et 

al. (2008, [32]) performed uni-axial tension-compression tests on 1.6mm thick DP600 steel. 

They modeled their experiments using using a modified Chaboche type combined isotropic-

kinematic hardening law (with permanent softening and non-symmetric reloading) as well as 

the two-surface model by Lee et al. (2007, [88]).     

The dynamic testing of TRIP steels is of particular interest because of the temperature 

sensitivity of the austenite-to-martensite transformation. Extrapolating from the results on 

temperature-dependence of fully austenitic stainless steels (e.g. Olsen and Cohen, 1975, 

[120]), it may be expected that phase transformation in TRIP-assisted steels will cease as the 

temperature rises due to adiabatic heating. However, despite the smaller amount of 

martensite being formed at high strain rates, the experiments by Wei et al. (2007, [152]) on a 

cold-rolled TRIP steel suggest an increase of both the initial yield and tensile strength with 

increasing strain rate. The observation is also supported by the high strain rate experiments 

of Durrenberger et al. (2007, 2008, [50, 51]) on TRIP700 and TRIP800 steels. Furthermore, 

Durrenberger et al. (2007, [50]) proposed a single internal parameter model to describe the 
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BCC-like strain rate history effect in a DP600 and TRIP700 steel and the FCC-like effect in 

a TRIP800 steel. Rusinek and Kelpaczko (2008, [130]) investigated the effect of heating 

during the mechanical testing and reported that the stored energy in TRIP steels is affected 

by phase transformation. 

1.5 Characterization of the stress state 

1.5.1 Stress invariants 

Throughout our discussion, a clear description of the stress state is important. The 

frame invariant part of the stress is described through the first invariant of the Cauchy stress 

tensor  , and the second and third invariants of the corresponding deviatoric stress tensor, 
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Note that the hydrostatic stress    and the von Mises equivalent stress  ̅ are respectively 

proportional to the first and second invariants,  
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The stress state may be characterized through two dimensionless functions of the above 

invariants. We define the stress triaxiality   as the ratio of the mean stress and equivalent 

von Mises stress, 
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with        . The normalized third invariant   is written as 
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and lies in the range       ; it characterizes the position of the second principal stress 

    with respect to the maximum and minimum principal stresses    and     .  

Alternatively the third invariant can be described in terms of the so-called Lode angle 

parameter 
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According to the definition above, the Lode angle parameter approximates the 

negative Lode number   (Lode, 1925, [95]), 
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As compared to the original Lode number, it has the advantage of being independent 

of    and thus being perpendicular to the coordinate  . 

Note that the principal stresses   ,     and      are got back using 
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with the deviator dependent functions 



1.5. Characterization of the stress state 37 

 

Figure 1-2: Characterization of the stress states in terms of stress triaxiality and Lode angle 

parameter. The blue, black and red lines highlight the plane stress states as described by 

Eq. (1-18). 
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Throughout this manuscript, the term stress state is employed to make reference to the 

pair of parameters (   ̅). Well-known stress states that we will refer to frequently are: 

 Uniaxial tension (        ̅   ) 
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Figure 1-3: Relation between the normalized third stress invariant  , the Lode angle 

parameter  ̅ and the deviatoric stress measure  . 

 

 Pure shear (      ̅   ) 

 Generalized shear (  ̅   ) 

 Axisymmetric tension (  ̅   ) 

 Axisymmetric compression (  ̅    ) 

A representation of the (   ̅) stress state space is depicted in Fig. 1-2. 

Note that the shear-modeified Gurson model (Chapter 5) is not formulated in terms of the 

normalized third invariant or Lode angle parameter but makes use of a non-dimensional 

metric  ,  

       (1-17) 

with      . The relation between the normalized third invariant  , the Lode angle 

parameter  ̅ and   is depicted in Fig. 1-3. Note that   is an even function of   and therefore 
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does not differentiate between stress states with opposite third invariants. For example, 

axisymmetric stress states with two equal minor principal stresses (e.g. uniaxial tension) and 

two equal major principal stresses (e.g. equibiaxial tension) both feature    . 

1.5.2 Plane stress condition 

In sheet materials, the plane stress condition often prevails: one of the principal stress 

direction is parallel to the sheet thickness direction and the corresponding principal stress is 

equal to zero. 

In case of plane stress, the stress triaxiality   and the normalized third invariant   are 

uniquely related according to the relationship 
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In this investigation we focus more specifically on stress states in the vicinity of 

biaxial tension, i.e. plane stress states between uniaxial tension and equi-biaxial tension. In 

this case the stress triaxiality varies between 1/3 (uniaxial tension) and 2/3 (equi-biaxial 

tension). At the same time, the third invariant decreases from 1 (uniaxial tension) to -1 

(equi-biaxial tension). 
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2.1 Introduction 

In this Chapter, we investigate the large deformation behavior of a DP590 and 

TRIP780 steel under monotonic multi-axial loading. The key purpose of this study is to 

evaluate existing phenomenological plasticity models for sheet materials. The reader is 

referred to Chaboche (2008, [36]) for a recent review of macroscopic plasticity theories. 

Different yield surfaces have been used in the past to model advanced high strength steels: 

von Mises yield surface (e.g. Yoshida et al., 2002, [156]; Durrenberger et al., 2007, [50]), 

quadratic anisotropic Hill (1948, [73]) yield function (e.g. Banu et al., 2006, [7]; 

Padmanabhan et al., 2007, [121]; Broggiato et al., 2007, [25]; Chen and Koc, 2007, [37]), 

high exponent isotropic Hershey (1954, [72]) yield function (Tarigopula et al., 2008, [140]), 

non-quadratic anisotropic Barlat (2003, [10]) yield function (Lee et al., 2005, 2008, [89, 

90]). Here, we focus on simple quadratic yield functions and evaluate their predictive 

capabilities for multi-axial loading conditions. Moreover, following the work by Stoughton 

(2002, [134]), we include both associated and non-associated quadratic flow rules. The 

discussion of non-associated formulations in metal plasticity has been partially initiated by 

the experimental observations of Spitzig and Richmond (1984, [133]). Non-associated 

plasticity models for metals have been considered by Casey and Sullivan (1985, [33]), 

Brünig and Obrecht (1998, [30]), Brünig (1999, [28]), Lademo et al. (1999, [81]), Stoughton 

(2002, [134]), Stoughton and Yoon (2004, 2008, [42, 135, 136]) and Cvitanic et al. (2008).  

Kuwabara (2007, [79]) provides a comprehensive review of experimental techniques 

measuring the anisotropic behavior of sheet materials. As an alternative to the testing of 

cruciform specimens (e.g. Makinde et al., 1992, [98]; Boehler et al., 1994, [23]; Lin and 

Ding, 1995, [93]; Müller and Pöhlandt, 1996, [111]; Kuwabara et al., 1998, [80]), we make 

use of a newly-developed combined tension and shear technique (Mohr and Oswald, 2008, 

[109]). Similar to the experimental work reported in Wang et al. (2008, [151]), the technique 

of Oswald and Mohr (2008, [109]) achieves multi-axial stress-states through the application 

of normal and tangential loads to a rectangular sheet specimen. The DP590 and TRIP780 

sheet materials are each loaded monotonically along more than 20 different multi-axial 

loading paths. The comparison of the simulation and experimental results suggests that the 
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use of Hill’s (1948, [73]) quadratic anisotropic yield surface along with a non-associated 

flow rule provides satisfactory results from a phenomenological point of view. 

2.2 Experiments 

2.2.1 Material 

In addition, to the TRIP780 steel described in Section 1.5, experiments described 

thereafter have also been performed on a 2.3mm thick DP590 provided by POSCO (Korea). 

This Dual-Phase steel is composed of a ferrite matrix with martensite inclusions (Fig. 2-1). 

The chemical composition of the DP steel is given in Table 2-1. 

 

Table 2-1: Chemical composition of the DP590 material in wt-% 

C Mn Si Mo 

~ 0.08 ~ 1.5 ~ 0.8 ~ 0.08 

 

2.2.2 Uniaxial experiments 

Dogbone-shaped tensile specimens are cut from the sheet materials using a waterjet. In 

accordance with ASTM E8 [3], the specimens featured a 12.7mm wide and 50mm long gage 

section. The specimens have been placed into an electro-mechanical universal testing 

machine with wedge grips (Model G45, MTS, Eden-Prarie). All experiments have been 

carried out at a cross-head loading velocity of less than 1mm/min. Both the axial and width 

strain are continuously measured using a digital image correlation system (VIC2D, 

Correlated Solution, SC). For this, a random speckle pattern with an average speckle size of 

about 10m has been applied to the specimen gage section.   
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Figure 2-1: Micrographs showing the different phases in the undeformed microstructures of 

the DP590 steel (white=martensite, dark=ferrite). 

 

In the case of the DP590 steel, tensile specimens are cut from three different directions: 

     (rolling direction),       and       (transverse direction). The corresponding 

uniaxial engineering stress-strain curves are plotted in Fig. 2-2a up to their respective stress 

maximum. The results show that except for a short plateau at the beginning of the 

experiment along the rolling direction, all stress-strain curves lie almost on top of each 

other. The maximum engineering stress is 630MPa for      and 620MPa for the other 

directions. Tensile specimens are cut every 15° from the TRIP780 sheet. The second group 

of curves in Fig. 2-2a shows only the results for     ,       and       since nearly 

the same stress-strain response is measured irrespective of the specimen orientation. The 

maximum differences in the stress level of up to 5% are observed at the very beginning of 

plastic deformation. The engineering stress at necking is about 850MPa for the TRIP780 

steel specimens. 

Using a Young’s modulus of          (      ) and an elastic Poisson’s ratio of 

     , we calculated the logarithmic plastic axial and width strains from the measured 

TRIP (DP590) stress-strain curves. Assuming plastic incompressibility, the plastic thickness 
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(a) 

 

(b) 

Figure 2-2: Results from uniaxial tensile testing of the DP590 and TRIP780 : (a) 

engineering stress-strain curves; (b) calculated and measured r-ratio variations (black 

curves and solid dots, respectively) and calculated yield stress variations (dotted blue 

curves). 
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strain is determined from the measured axial and width strain. The r-values are then 

determined from the slopes of the corresponding linear approximation of the logarithmic 

plastic width strain versus logarithmic plastic thickness strain curves (     
     

 ⁄ ).  The 

solid dots in Fig. 2-2b show the identified r-values as a function of the specimen orientation 

angle  . The average r-value,  ̅, defined as 

 ̅  
 

 
(           ) (2-1) 

is 0.91 for the DP590 and 0.89 for the TRIP780 steel. 

2.2.3  Biaxial experiments 

2.2.3.1 Biaxial testing technique 

A series of biaxial experiments is performed using a newly-developed dual actuator system. 

The reader is refereed to Mohr and Oswald (2008, [109]) for details on the multi-axial 

testing procedure. The dual actuator system applies tangential and normal loads to the 

boundaries of a flat specimen. The horizontal actuator applies the tangential force to the 

lower specimen boundary. As shown in Fig. 2-3, the lower specimen clamp is mounted onto 

a low friction sliding table. A load cell positioned between the horizontal actuator and the 

lower specimen clamp measures the tangential force. The normal force is applied through 

the vertical actuator in the upper cross-head. Two additional load cells have been integrated 

into the lower sliding table to measure the total vertical force. For all tests, the hydraulic 

dual actuator system is run in the force-controlled mode.  

Figure 2-4 shows the exact shape and dimensions of the specimen. It features a 

        high and        wide gage section. The thickness of the gage section has 

been symmetrically reduced to about         using a conventional milling process. The 

displacements are measured directly on the specimen surface using a digital image 

correlation system (VIC2D, Correlated Solutions Inc, SC). More than 200 photographs are  
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Figure 2-3: Schematic of the dual actuator system 

 

 

Figure 2-4: Specimen geometry and the definition of the biaxial loading angle   
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taken throughout each monotonic experiment. The data is acquired using the software 

packages FastTrack DAX (Instron, Canton, MA) and VicSnap (Correlated Solution, SC). 

The experimental technique allows for the testing of the sheet material for different 

combinations of normal and shear loading. As illustrated in Fig. 2-4, we define the so-called 

biaxial loading angle  ,         , to quantify the ratio of normal to shear loads, 

     
  
  

 (2-2) 

The limiting cases of      and       correspond to pure shear and transverse plane 

strain tension, respectively. In the case of orthotropic sheet materials, we introduce the 

specimen orientation angle   to report the orientation of the sheet rolling direction with 

respect to the vertical axis of the dual actuator system. We refer to the horizontal and 

vertical axis as the x- and y-direction, respectively. 

As demonstrated by Mohr and Oswald (2008, [109]), the specimen is designed such 

that the engineering stress along the y-direction,   , may be approximated by 

   
  
  

 (2-3) 

with the initial cross-sectional area of      . Equation (2-3) implies that the variations of 

the stress    are negligible along the x-direction. Similarly, due to the large width-to-height 

ratio, we may assume that the shear stress variations along the x-direction are small. Hence, 

the engineering shear stress     associated with the horizontal force measurement    reads 

    
  
  

 (2-4) 

The corresponding engineering normal strain    and engineering shear strain     are 

determined from DIC. The state of stress in the specimen gage section is plane stress, while 

the state of deformation in this specimen is transverse plane strain. In other words, the strain 

along the x-direction is approximately zero,      . In order to study distinct features of 

the material’s constitutive response, it may be useful to map the measured stresses and 
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strains into a coordinate system which is attached to the material’s orthotropy axes (see 

Mohr and Jacquemin, 2008, [106]). However, the present work focuses on the validation of 

existing constitutive models which may be readily performed in the machine coordinate 

system.  

2.2.3.2  Biaxial testing program 

Biaxial tests are performed over a wide range of loading conditions by varying the 

biaxial loading angle   as well as by cutting the specimens at different angles   relative to 

the rolling direction. Three different batches of specimen have been extracted along three  

 

 

Figure 2-5: Visualization of the loading states in the 3-dimensional stress-space. The solid 

dots represent the intersection of the linear stress paths with a quadratic yield surface. The 

labels next to the data points denote the biaxial loading angle   while the point color 

corresponds to the specimen orientation   (see legend). The green dots correspond to 

uniaxial tension (UT). 
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different sheet directions (    ,      ,     ) and subsequently tested at the 

following biaxial loading angles:     ,      ,      ,      ,      ,       

and      . Note that the limiting cases      and       correspond to pure shear and 

transverse plane strain loading, respectively. Figure 2-5 shows a graph which illustrates the 

different loading states on a generic von Mises yield surface in the plane stress subspace 

(        ), where    is the normal stress in the rolling direction,     is the normal stress in 

the cross-rolling direction, and   is the corresponding shear stress component. From each 

experiment, we obtain a normal stress versus normal strain curve as well as a shear stress 

versus shear strain curve. All measured normal and shear stress-strain curves are depicted in 

Figures 2-8 and 2-11. The results will be discussed in detail throughout our comparison of 

the experimental results with the numerical simulations in Section 2.4.   

2.3 Quadratic plane stress plasticity models 

In the case of aluminum alloys, direct measurements of distinct points on the yield 

surface (e.g. Green et al., 2004, [64]) have shown that non-quadratic functions are needed to 

describe the boundary of the elastic domain with satisfactory accuracy. To the best 

knowledge of the authors, no such yield surface measurements have been published in the 

open literature for dual phase or TRIP-assisted steel sheets. The use of non-quadratic yield 

envelopes for steels is usually justified through the upper bound calculations by Logan and 

Hosford (1980, [96]) or by r-value measurements. In the latter case, the assumption of 

associated plastic flow is imposed and the shape of the yield surface is adjusted such that the 

r-values are predicted accurately. However, as pointed out by Stoughton (2002, [134]), 

Bishop and Hill’s (1951, [22]) proof of the associated flow rule is only valid if slip 

according to Schmid’a law is the dominant deformation mechanism at the crystal level.  

Similar to the results by Padmanabhan et al. (2007, [121]) on a DP600, the present 

uniaxial experiments indicated a pronounced direction dependency of the r-value (Fig. 2-

2b), while nearly the same stress-strain curve has been measured for all specimen directions. 

In other words, the r-value measurements suggest planar anisotropy while the material’s 
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response is planar isotropic as far as the stress level is concerned. It is straightforward to 

show that a standard associated plasticity model with a quadratic yield surface cannot 

replicate this behavior. As an alternative to the formulation of non-quadratic associated 

plasticity models (e.g. Barlat, 2003, [10, 11]), we loosen the constraint of associated plastic 

flow. As suggested by Stoughton (2002, [134]), we make use of a quadratic yield surface in 

conjunction with a non-associated quadratic plastic flow potential. Thus, the computational 

efficiency of quadratic plasticity models is maintained while providing a model structure 

that can describe the present uniaxial experiments accurately. The reader is referred to 

Stoughton (2002, [134]) for the proof of the uniqueness of the states of stress and strain as 

well as the proof of stability of plastic flow.  

2.3.1  Plane stress yield surface 

As discussed above, we limit our attention to the quadratic yield function proposed by 

Hill (1948, [73]). It may be written in the form  

 (   )   ̅      (2-5) 

where  ̅ is the equivalent stress, 

 ̅  √(  )    (2-6) 

  denotes the Cauchy stress vector in material coordinates  

  [      ]  (2-7) 

with the true stress components    along the rolling direction,     along the cross-rolling 

direction and the corresponding shear stress  .   is a symmetric positive-definite matrix 

defined through the three independent parameters    ,     and    : 

  [
     
       
     

] (2-8) 
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2.3.2 Flow rule 

The flow rule describes the incremental evolution of the plastic strain vector  

    [   
     

    ]
 

 (2-9) 

  
 
 and    

 
 denote the plastic strain components along the rolling and cross-rolling direction, 

while    denotes the plastic engineering shear strain (which is twice the mathematical shear 

strain). The direction of plastic flow is assumed to be aligned to the stress derivative of the 

flow potential function  ( ), 

      
  

  
 (2-10) 

where      is a scalar plastic multiplier. In close analogy with the yield function, the 

potential function  ( ) is defined as a quadratic function in stress space,   

 ( )  √(  )    (2-11) 

with the positive definite coefficient matrix 

  [
     
       
     

] (2-12) 

Note that in the special case of    , we recover the associated flow rule. 

2.3.3  Isotropic hardening 

The distinction between isotropic and kinematic hardening is omitted since the present 

evaluation is limited to monotonic loading conditions. Isotropic strain hardening is described 

through the relationship between the deformation resistance   and the equivalent plastic 

strain. Formally, we introduce the hardening modulus    ( ̅ ) and the evolution equation 

    ( ̅ )  ̅      ( ̅   )     (2-13) 
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The equivalent plastic strain  ̅  is defined as incrementally work-conjugate to the equivalent 

stress, i.e.  

       ̅  ̅  (2-14) 

Upon evaluation of this relationship for non-associated plastic flow, we obtain the following 

relationship between the equivalent plastic strain and the plastic multiplier,  

  ̅  
 ( )

 ̅
   (2-15) 

as well as the relationship between the equivalent plastic strain and the plastic strain tensor, 

  ̅  (
 

 ̅
)
 

√[    (   )]     (   ) (2-16) 

The evaluation of the present experimental data for the TRIP780 and DP590 steel revealed 

that the Swift (1952, [139]) law provides a good approximation of the relationship between 

the equivalents stress and the equivalent plastic strain. In the case of monotonic loading, the 

Swift law reads  

 ̅   ( ̅    )
  (2-17) 

with the model parameters  ,    and  . Consequently, we chose the following special 

function to define the hardening modulus as a function of the equivalent plastic strain:  

 ( ̅ )    ( ̅    )
    (2-18) 

In the case of the structural validation simulations (see Section 2.5), the modified Swift law 

approximation is employed for an equivalent plastic strain of up to 0.2. Thereafter, we use a 

piecewise-linear extrapolation curve which has been determined from biaxial punch 

experiments (see Section 3.4.4). In the context of non-associated plastic flow, it may be 

computationally convenient to consider the option of defining the hardening as a function of 

the plastic multiplier integral   with   
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  ∫  

 

 

 (2-19) 

In this special case, the hardening law (2-18) is rewritten as  

 ( )    (    )
    (2-20) 

Stoughton (2002, [134]) proposed the second option while Cvitanic et al. (2008, [42]) chose 

the work-conjugate hardening law formulation in their non AFR model. It is noted that both 

approaches are identical in the case of associated plastic flow.  

2.3.4  Model calibration 

It is common practice to calibrate anisotropic plasticity models based on Lankford’s r-

values. According to our flow rule, the dependence of the r-value on the loading direction is 

 ( )  
(              )    

           
(     )              

 (2-21) 

where   denotes the angle between the material rolling direction and the loading axis. In the 

present comparative study, we consider four special parameter settings of the general non-

associated quadratic plasticity model. For historic reasons, we refer to these special cases as 

different models:  

 Model #1: Isotropic yield surface with associated plastic flow. By setting     

       ,          and        , we recover the isotropic von Mises yield 

surface. Furthermore, we assume     which corresponds to associated plastic 

flow. 

 Model #2: Orthotropic yield surface with associated plastic flow. By imposing 

associated plastic flow,    , we may use the r-value measurements to calibrate 

both coefficient matrices. The relationships among the r-values   ,     and     and 

the coefficients read: 
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  (2-22) 

 Model #3: Planar isotropic (normal anisotropic) yield surface with associated plastic 

flow. In this case, we still have    , while both matrices are calibrated based on 

the average r-value:  

     
 ̅

   ̅
              

    ̅

   ̅
  (2-23) 

 Model #4: Isotropic yield surface with non-associated orthotropic plastic flow 

potential. As in model #1, we set            ,          and        . At the 

same time, we make use of the coefficients determined for model #2 to predict the 

direction of plastic flow.  

 Model #5: Planar isotropic yield surface with non-associated orthotropic plastic flow 

potential. The same   matrix as for model #2 is used to define the flow rule. The 

yield surface is defined through the Hill parameters for planar isotropy (see Eq. 

2-23). However, instead of using the measured average r-value, a suitable  ̅ may be 

identified from calibrating the model with respect to the transverse plane strain 

tension tests (     ). The analytical expressions for the yield stresses under 

transverse plane strain conditions read   

  
      

 

√      (
   
   
)     (

   
   
)
 

 
(2-24) 

for loading along the rolling direction and  

  
      

 

√   
             

 (2-25) 
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for loading along the cross-rolling direction. In the present case,  ̅       yielded 

the best result which incidentally corresponds to the real average of the measured r-

values.   

 Model #6:  The same yield surface and flow rule as for model #5, but with hardening 

defined through the plastic multiplier integral (Stoughton approach) instead of the 

work-conjugate equivalent plastic strain.   

Tables 2-2 and 2-3 summarize the corresponding parameter settings for the DP590 and 

TRIP780 steel, respectively.   

 

 

Table 2-2: Swift hardening law parameters for the TRIP780 and DP590 sheets 

   [   ]   [ ]    [ ] 

TRIP780 1460 0.204 1.63 x 10
-3

 

DP590 1017 0.182 3.23 x 10
-3

 

 

 

Table 2-3: Plasticity model parameters for the TRIP780 and DP590 sheets 

r0 r45 r90 P12 P22 P33 G12 G22 G33

TRIP780

isotropic 1.00 1.00 1.00 -0.50 1.00 3.00 -0.50 1.00 3.00

orthotropic 0.89 0.82 1.01 -0.47 0.94 2.64 -0.47 0.94 2.64

planar isotropic 0.89 0.89 0.89 -0.47 1.00 2.94 -0.47 1.00 2.94

non associated 0.89 0.82 1.01 -0.50 1.00 3.00 -0.47 0.94 2.64

DP590

isotropic 1.00 1.00 1.00 -0.50 1.00 3.00 -0.50 1.00 3.00

orthotropic 0.75 1.00 0.87 -0.43 0.92 3.19 -0.43 0.92 3.19

planar isotropic 0.91 0.91 0.91 -0.48 1.00 2.95 -0.48 1.00 2.95

non associated 0.75 1.00 0.87 -0.50 1.00 3.00 -0.43 0.92 3.19
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2.4 Results and comparison  

A standard return-mapping algorithm is used to implement the constitutive model(s) 

into a commercial finite element program (user subroutine for ABAQUS/explicit [1]). Using 

the different sets of parameters (Table 2-3), finite element simulations are performed to 

investigate the predicative capabilities of all six plasticity models. The finite element model 

of the biaxial experiment comprises a single reduced integration plane stress element 

(Abaqus element CPS4R) that is subject to different radial engineering stress paths as 

specified by the biaxial loading angle  . The transverse plane strain condition is imposed by 

imposing kinematic constraints on displacement boundary conditions. The outcomes of each 

single-element simulation are two engineering stress-strain curves (normal and shear) which 

are the compared to the experimental results.  

2.4.1  Uniaxial stress-strain curve and r-ratios 

Figure 2-6 and 2-7 compare all experimental and simulation results for uniaxial loading. 

Models #1, #3, #4, #5 and #6 all predict the same uniaxial stress-strain curves irrespective of 

the loading direction. Note that the curves labeled isotropic, planar isotropic and non-

associated are all lying on top of each other in Figures 2-6a and 2-7a. Model #2 is the only 

one using a fully-orthotropic yield surface and consequently the stress-level can only be 

predicted with high accuracy for the specimens loaded along the rolling direction, while the 

stress level is respectively under- and overestimated for 45° and 90° loading. 

The orthotropic Hill model with associated flow rule (model #2) can describe the 

direction dependency of the r-values. The solid black lines in Fig. 2-2b show the r-value 

variations that are predicted after calibrating the Hill model. Observe the good agreement of 

the model with the experimental data points (solid dots) for the TRIP780 steel. However, 

since the flow rule and the yield surface are associated in the standard Hill model, the r-

value direction dependency translates into a direction-dependency of the stress-strain curves. 

The direction-dependent yield stress which is given by 
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(a) 

 

(b) 

Figure 2-6: Model predictions for uniaxial loading of TRIP780. (a) engineering stress-

curves; (b) strain along the width direction as a function of the axial engineering strain. The 

experimental results are shown by dots, while the solid lines correspond to the model 

predictions. 
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(a) 

 

(b) 

Figure 2-7: Model predictions for uniaxial loading of DP590. (a) engineering stress-curves; 

(b) strain along the width direction as a function of the axial engineering strain. The 

experimental results are shown by dots, while the solid lines correspond to the model 

predictions. 
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  ( )  
 

√                (        )          
 (2-26) 

is plotted as dotted blue lines in Fig. 2-2b. The ratio of the maximum and minimum yield 

stress is 1.05 for the TRIP780 and 1.08 for the DP590. Due to this direction-dependency of 

the yield stress, the standard Hill model (model #2) cannot predict the uniaxial stress-strain 

curves to a great degree of accuracy for all specimen orientations (see red curves in Figs. 2-

6a and 2-7a. Model #4 makes use of a von Mises yield surface and a Hill flow rule. As a 

result, both the r-ratio variations and the uniaxial stress-strain curves are modeled accurately 

for all specimen orientations. The same accuracy with respect to the uniaxial experiments 

may be achieved by using a planar isotropic (i.e. normal anisotropic) yield surface along 

with the Hill flow rule (models #5 and #6).   

2.4.2  Multi-axial experiments 

Each multi-axial experiment is simulated using the plasticity models. Subsequently, 

we extracted one normal stress-strain curve and one shear stress-strain curve from each 

simulation and compared the computational and experimental results. Figure 2-8 

summarizes the stress-strain curves for the TRIP780 material. The solid curves represent the 

simulation results for the isotropic von Mises model; the experimental results are shown by 

dashed lines. The model and the experiments show a remarkably good overall agreement. 

Note that the transverse plane strain stress-strain response (     ) is predicted accurately 

for all three specimen orientations (    , 45° and 90°). The same holds true for the shear 

stress-strain curves where the relative error in the estimated stress level is less than 5% 

irrespective of the specimen orientation   and the biaxial loading angle  . The simulation 

results for the other models are more or less identical (within 1% as far as the stress level is 

concerned). Even though the other models predict different r-ratios than the isotropic von 

Mises model, this anisotropic feature played only a minor role as far as the predictions under 

multi-axial loading are concerned. The only noteworthy exception is the prediction of the 
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Figure 2-8: TRIP780 results : Normal stress-strain curves (left column) and shear stress-
strain curves (right column) for different specimen orientations and biaxial loading angles 
The experimental results are shown by dashed curves while the solid lines depict the 
prediction of the associated isotropic von Mises model. 
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Figure 2-9: DP 590 results for a specimen orientation of      . Each row of figures 

corresponds to a different simulation model (dashed lines = experiment, solid 

lines=simulation). 
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Figure 2-10: DP 590 results for a specimen orientation of       . Each row of figures 

corresponds to a different simulation model (dashed lines = experiment, solid 

lines=simulation). 
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Figure 2-11: DP 590 results for a specimen orientation of       . Each row of figures 

corresponds to a different simulation model (dashed lines = experiment, solid 

lines=simulation). 

 

pure shear stress-strain curve for the associated Hill model (model #2). Here, the Hill model 

overestimates the shear stress by about 5%. This is due to the low value of the parameter 

   . Note that the yield stress    for pure shear loading is     √   ⁄ . 

The differences among the plasticity models become more apparent when simulating 

the multi-axial experiments on the DP590.  Note that the anisotropy described by the 

measured r-ratio variations is relatively weak in the case of the TRIP780 steel, but more 

pronounced for the DP590 (Fig. 2-2b). Figures 2-9 to 2-11 show the comparison of all 

experiments with the simulation results for different models and specimen orientations. As 

for the TRIP780, we observe a good overall agreement for all curves. Despite small 

differences between the predicted stress-strain curves of the isotropic von Mises and 

orthotropic Hill models, there is no visible difference between the associated and non-

associated isotropic models (models #1 and #4). This suggests that the multi-axial stress-

strain curve predictions are more sensitive to the yield surface than to the flow rule. The 

yield strength under transverse plane strain tension is overestimated by models #1 and #4, 

while the transversely isotropic model #3 provides a better approximation. Note that the 
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even though both models #1 and #3 are isotropic with respect to rotations in the sheet plane, 

the yield envelopes for     are not identical; we have            in the case of model 

#3 and hence its yield surface lies inside the von Mises envelope of model #1 (where 

        ).  

The orthotropic model #2 underestimates the pure shear strength (    ) of the 

DP590 for         . As for the TRIP780, this is due to the value of     which is larger 

than 3 in the present case. All simulations are less accurate for       than for      

   . In particular the shear stress-strain curves show more pronounced differences between 

the simulations and experiments. This appears to be the case irrespective of the choice of the 

plasticity model. In terms of normal stresses along the material axes, shear loading for 

      may be considered as the combination of tension along the rolling direction and 

compression along the transverse direction. In other words, unlike for      and      , 

the experiments on       specimens involve compressive loading along one material 

axis. Therefore, an initial back stress in the cold-rolled DP590 material may be partially 

responsible for the increased discrepancy between the simulations and experiments for 

     . Cyclic experiments or in-plane compression tests would be needed to quantify this 

effect. 

The use of the planar isotropic yield surface in combination with an orthotropic flow 

rule (model #5) may be seen as the most accurate model. It provides an accurate description 

of all uniaxial data while its prediction accuracy for multi-axial loading is similar to that of 

model #3. The differences between Cvitanic’s and Stoughton’s formulation of the isotropic 

hardening law (models #5 and #6) do not become apparent for the present set of data and 

loading condition (the label “modified hardening” is used in Figs. 2-9 to 2-11 to indicate the 

use of the Stoughton’s approach).   

2.5 Structural validation 

The analysis of the biaxial plasticity experiments does not provide a clear answer as to 

whether the direction of plastic flow is associated or non-associated with the yield surface. 
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In this section, a structural experiment is presented to elucidate the difference between these 

two modeling approaches. In the previous material experiments, the stress and strain fields 

are approximately uniform throughout the entire specimen. In a structural experiment, the 

fields are usually non-uniform and a wider range of stress states is covered by a single 

experiment. Even though it is difficult to deduce material properties from a structural 

experiment, the comparison of numerical simulations with the experimental results can be 

used to validate the underlying material model. Here, we perform a structural experiment on 

a butterfly-shaped specimen. Subsequently, a finite element analysis is performed to assess 

the influence of the flow rule assumption on the simulation results.  

 

Figure 2-12: Schematic of the butterfly-shaped specimen. The clamping pressure is applied 

over an area of 10mm x 78mm on the top and bottom of the specimen. 

2.5.1  Experiment 

Figure 2-12 shows the geometry of the butterfly-shaped specimen. It has been 

developed for fracture testing (see Chapter 4), but in the present context we are only 

interested in its elasto-plastic response. The specimen is extracted from a 1.4mm thick 

TRIP780 sheet using CNC machining. The material rolling direction is aligned with the 

vertical direction of the testing machine (corresponds also to vertical direction of Fig. 2-12). 

After verifying the dimensions of the machined specimens, we make use of the same dual-

actuator system as for biaxial plasticity testing to subject the specimen to a combination of 
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horizontal (tangential) and vertical (normal) loads (      until the maximum force is 

reached). The displacements of the specimen boundaries are measured using digital image 

correlation. The measured vertical and horizontal force-displacement curves are shown as 

solid dots in Fig. 2-13.   

2.5.2  Finite elements model 

The specimen geometry is discretized using first-order reduced integration solid 

elements (element C3D8R of the Abaqus element library). Due to the symmetry of the 

mechanical problem only one half of the specimen is meshed with at least five elements 

along the thickness direction. A total of 80,000 elements is used to mesh the entire specimen 

geometry. The DIC measured displacements and rotations (almost zero) are applied to the 

boundaries of the virtual specimen assuming that the boundary surfaces remain plane 

throughout testing. The simulations are performed using Abaqus/explicit with double 

precision. The material density and loading velocity are scaled such that more than 500,000 

explicit time steps are required to compute the quasi-static solution of the boundary value 

problem.  

A user subroutine of the associated and non-associated plasticity model is 

programmed for solid elements. In the three-dimensional case, the Cauchy stress vector   is 

written as  

  [               ]  (2-27) 

where we introduced the through-thickness normal stress    and the out-of-plane shear 

stress components     and     . The corresponding  -matrix defining the quadratic yield 

function reads:  
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Analogously, the  -matrix is extended from the two- to the three-dimensional case. 

2.5.3  Results 

The numerical simulations are performed for material model #1 (isotropic yield with 

AFR), model #2 (orthotropic yield with AFR) and model #5 (planar isotropic yield with 

non-AFR). Figure 2-13 shows the predicted vertical and horizontal force-displacement 

curves. It is interesting to observe that the isotropic model overestimates the vertical force 

(Fig. 2-13a) while it underestimates the horizontal force (Fig. 2-13b). The simulation with 

the associated orthotropic model (red curves) provides an accurate prediction of the vertical 

force up to a displacement of about 0.3mm, but overestimates the vertical force level 

thereafter. The same model overestimates the horizontal force up to its maximum. Beyond 

this point, the horizontal force decreases much faster in the simulation than in the 

experiments. The non-associated planar isotropic model (blue curves) provides the best 

overall predictions. It slightly underestimates the vertical force level at the beginning of the 

experiments, but provides very accurate predictions of the tangential force-displacement 

curve including its decreasing branch.  

The advantages of the non-associated model become also apparent when comparing 

the fields of deformation. Figure 2-14a shows the DIC measured field of deformation 

towards the end of the experiment. A band of deformation localization is clearly visible at 

that point. The corresponding numerical predictions (Figs. 2-14b and 2-14c) reveal that the 

predictions of both the associated isotropic and the associated orthotropic models are 

noticeably different from the experimental result. The orientation of the band of localization 

is almost opposite to that observed in the experiment. However, the predicted orientation of 
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(a) 

 

(b) 

Figure 2-13: Results for butterfly specimen : (a) vertical force-displacement curve, (b) 

horizontal force-displacement curve. 
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(a) (b) 

  

(c) (d) 

Figure 2-14: Contour plot of the maximum principal strain fields before the onset of fracture 

: (a) experiment, (b) isotropic model with AFR, (c) orthotropic model with AFR, (d) planar 

isotropic model with AFR. The Lagrangian strain ranging from 0 to 0.8 is shown for the 

experiment, while the logarithmic strain ranging from 0 to 0.95 is depicted for the 

simulations. In all four cases, the strain fields are plotted on the undeformed configuration 

of the butterfly specimen. 

 

the simulations with non-associated flow rule (Fig. 2-14d) agrees well with the experimental 

observation (Fig. 2-14a).      
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2.6 Discussion 

The results for uniaxial tension clearly indicate that the anisotropy of the material 

needs to be taken into account in order to obtain satisfactory predictions of the direction-

dependent thickness reduction. Thus, different anisotropic models have been considered for 

the multi-axial simulations in addition to the isotropic Levy-von Mises model. The 

comparison of the simulation and experimental results shows that all models provide overall 

good estimates of the stress-strain curves for a wide range of multi-axial loading conditions. 

Both associated and non-associated plasticity models have been considered. The present 

comparison of the respective model predictions with the results from biaxial plasticity tests 

does not provide a clear answer to the question as to whether the plasticity of the DP and 

TRIP steels is associated or non-associated. However, the example of a butterfly-shaped 

specimen shows strong evidence that the plasticity of the TRIP steel is non-associated.   

Both the associated and non-associated model types appear to perform well under the 

tested multi-axial loading conditions. Highly accurate measurements and repeatable material 

properties would be needed to shed more light on this issue. Here, the accuracy of the 

experimentally-measured stresses is only about     for the multi-axial experiments (Mohr 

and Oswald, 2008, [109]). The uniaxial tensile experiments have shown that almost the 

same stress-strain curve is obtained while the r-ratio varies for different specimen 

orientations. Therefore, a non-associated plasticity model with a planar isotropic yield 

surface and a non-associated anisotropic flow potential is proposed to model the uniaxial 

experiments.  

Most of the present biaxial plasticity experiments have been performed under force 

control. The material has been loaded along radial loading paths in stress space. Thus, the 

choice of the yield surface had a stronger effect on the measured stress-strain curves for 

multi-axial loading than the flow rule. Note that the multi-axial simulation results for model 

#1 (isotropic yield surface and isotropic flow rule) and model #4 (isotropic yield and 

orthotropic flow rule) are almost identical for loading angles and specimen orientations. 

Similarly, all multi-axial predictions for model #3 (planar isotropic yield surface and 

associated flow) and model #5 (planar isotropic yield surface and non-associated flow) were 
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almost identical. The differences between the isotropic von Mises surface and the 

orthotropic Hill’48 surface are small for the tested DP590 material. A future study on a sheet 

material with a higher degree of anisotropy may allow for a better differentiation between 

the prediction accuracy of associated and non-associated plasticity models. Furthermore, it is 

recommended to include equi-biaxial tensile tests in the experimental program to validate 

the assumption of a quadratic yield function.      

2.7 Concluding remarks 

The isotropic Levy-von Mises model and the associated orthotropic Hill (1948, [73]) 

plasticity models are considered in this study to describe the large deformation response of 

advanced high strength steel sheets. The uniaxial tensile experiments on a dual phase and 

TRIP-assisted steel reveal a pronounced in-plane direction-dependence of the r-ratios while 

the measured stress-strain curves appeared to be direction-independent. Here, Stoughton’s 

(2002, [134]) non-associated quadratic flow rule is employed as an alternative to non-

quadratic associated plasticity models. Using a newly-developed testing technique for sheet 

materials (Mohr and Oswald, 2008, [109]), a series of multi-axial experiments has been 

performed on the dual phase steel DP590 and the TRIP-assisted steel TRIP780. The 

comparison of the biaxial experiments with the simulation results shows that both the 

associated and non-associated quadratic plasticity model provide a satisfactory description 

of the mechanical response under multi-axial loading. However, the non-associated model is 

recommended for the DP590 and TRIP780 materials when the thinning of the sheets needs 

to be predicted with a high degree of accuracy. Moreover, a structural validation example is 

presented that elucidates substantial differences between the simulations with associated and 

non-associated flow rule. In the case of the non-associated flow rule the force-displacement 

curves as well as the position of the strain localization band are predicted accurately. 

The present results for the TRIP780 also show that - unlike in fully austenitic steels 

(see Mohr and Jacquemin, 2008, [106]) - the presence of martensitic phase transformation in 

TRIP-assisted steel does not require a modification of the associated hardening model. 
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3.1 Introduction 

In most fracture experiments on sheet materials, the localization of plastic deformation 

through necking cannot be avoided. After necking, the stress fields within the specimen gage 

section become non-uniform and of three-dimensional nature (stresses in the thickness 

direction develop). Consequently, the stress history prior to fracture can no longer be 

                                                 
2
 This Chapter is reproduced from: Dunand, M. and D. Mohr (2010). "Hybrid experimental-numerical 

analysis of basic ductile fracture experiments for sheet metals". International Journal of Solids and Structures 

47(9): p. 1130-1143. 
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estimated from the force history measurements using simple analytical formulas. Unless 

reliable in-situ neutron diffraction stress measurements (e.g. Lee et al., 2003, [87]) and 

three-dimensional tomography based digital image correlation measurements (e.g. Baranger 

et al., 2009, [12]) are available, the stress and strain histories prior to fracture need to be 

determined in a hybrid experimental-numerical approach. In other words, a detailed finite 

element analysis of each experiment is required to identify the stress and strain fields. This 

forced marriage of experimental and computational mechanics involves the risk of adding 

up the errors from both the experiment and the numerical simulation.  

In this Chapter, we limit our attention to the determination of the stress triaxiality and 

the equivalent plastic strain history to fracture. In an attempt to identify the intrinsic material 

behavior, we analyze the local stress and strain fields after necking. A series of three 

different types of fracture experiments is carried out on TRIP assisted steel: notched tensile 

tests, punch tests and tensile test on specimens with a central hole. The common feature of 

these three types of fracture experiments is their simplicity: (1) the specimens can be easily 

extracted from sheet material, and (2) all experiments can be performed on a universal 

testing machine. For each type of specimen, the accuracy of the hybrid experimental-

numerical loading history identification is evaluated from the comparison of local digital 

image correlation measurements with FE predictions. It is found that the shell element 

meshes are not suitable for post-necking analysis of local strain fields. Conversely, solid 

element simulations provide accurate estimates of the measured local strain fields when the 

plasticity model is identified for large strains. The results demonstrate the stress triaxiality in 

specimens with a central hole is close to 0.3 all the way to fracture. Furthermore, it is noted 

that this type of experiment is also suitable for the identification of the stress-strain curve for 

very large strains. 

3.2 Methodology 

The goal of this Chapter is to obtain reliable time histories of the stress triaxiality and 

the equivalent plastic strain at the point of the onset of fracture. In particular, we focus on 
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three fracture tests that may be easily performed on full-thickness specimens: (1) notched 

tensile specimens, (2) a tensile specimen with central hole, and (3) a disc specimen for 

punch testing. It is noted that the first two types of specimens can develop diffuse necking 

(localization through the width of the gage section) prior to the onset of localized necking 

(through the thickness localization) while the punch test cannot develop diffuse necking 

because of its geometry. Here, we make use of a hybrid experimental-numerical approach to 

determine the loading histories. As a result, the determination of the strain to fracture is not 

affected by these different necking behaviors. In this section, we discuss the methodology to 

assess the error of the hybrid experimental-numerical approach.  

3.2.1  Determination of the onset of fracture 

The displacement fields on the specimen surface are measured using either two-

dimensional or three-dimensional Digital Image Correlation (DIC). Based on the DIC 

measurements, we define the instant of onset of fracture (not the location) by the first 

detectable discontinuity in the measured displacement field at the specimen surface. 

Subsequently, a finite element simulation is performed of each experiment. Post-processing 

of those simulations gives then access to the evolution of the stress triaxiality and the 

equivalent plastic strain. For the three types of experiments performed within this study, it is 

assumed that the location of the onset of fracture coincides with the location of the highest 

equivalent plastic strain within the specimen at the instant of onset of fracture. The 

corresponding equivalent plastic strain is referred to as fracture strain   ̅.  

3.2.2  Sources of error 

3.2.2.1 Experimental error 

Among all experimental uncertainties, we consider the error in the optical 

displacement field measurement as critically important for the determination of the fracture 

strain and triaxiality. Possible errors in the initial specimen geometry including thickness 
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can be easily eliminated through dimensional verification prior to each experiment. The 

accuracy of the DIC procedure used to measure the fracture displacement depends mainly on 

the quality of the speckle pattern applied on the specimen and on the interpolation function 

used during the correlation. In order to get the least error, the pattern has been applied 

following the recommendations of Sutton et al. (2009, [138]) in terms of speckle size and 

density. Based on correlations performed on computer-generated sinusoidal waves, Sutton et 

al. (2009, [138]) concluded that for an appropriate speckle pattern, cubic B-spline 

displacement field interpolation functions produce an interpolation bias of about 1/40 pixel.  

3.2.2.2 Computational error 

The solution obtained from finite element analysis usually differs from the exact 

solution of the corresponding physical problem. In addition to shortcomings of the material 

model, the FEA is affected by different sources of errors (e.g. Bathe, 1996, [16]). In 

particular, errors associated with the spatial and time discretization as well as the 

constitutive model are monitored in this study: 

- Spatial discretization errors are minimized by increasing the number of 

elements. To find a suitable mesh, we start with a coarse mesh that is 

successively refined by dividing the elements’ characteristic dimensions by two 

until the result converges. It is considered that convergence is achieved when an 

additional element division does not change the final plastic strain by more than 

0.5%. 

- Time discretization errors are minimized by increasing the number of implicit 

time steps. It is considered that convergence is achieved when adding 50% more 

time increments does not change the final plastic strain by more than 0.5%. 

Furthermore, round-off errors are minimized by using the double precision floating point 

format in our computations with explicit time integration. 
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3.2.3  Error estimation 

Due to the redundancy of measurements, we compare the logarithmic strain history 

obtained from DIC with that computed by FEA at the point on the surface where the first 

displacement field discontinuity appears. For every time step in the finite element 

simulation, there is a difference between the computed strain increment       at the surface 

of the specimen and the actual strain increment       measured by DIC. The error affecting 

the determined plastic strain increment at the location of the onset of fracture,  (  ̅ ), is 

then estimated based on the strain increment difference on the specimen surface, 

 (  ̅ )  
  ̅ 

|     |
|           | (3-1) 

Furthermore, we estimate the error in the accumulated equivalent plastic strain as 

  ̅  ∫
|           |

|     |

 ̅ 

 

  ̅  (3-2) 

It is noted that the above error estimate represents both computational and experimental 

uncertainties. Using the definition of the stress triaxiality,  

  
  
 ̅  

       
   

 
 (3-3) 

the error in the stress triaxiality is related to the error in the hydrostatic stress    and that in 

the von Mises stress, 

   
 

 ̅  
[        ̅  ] (3-4) 

It is assumed that all the components of the stress tensor are computed with the same 

relative error, 
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and thus  

    
 

 ̅  
  ̅ (3-6) 

Using the hardening law, the first order estimate of the error in stress triaxiality may be 

written as 

    
 

 ̅  
 ( ̅ )  ̅  (3-7) 

3.3 Notched tensile tests 

The first type of specimen considered in this study is a flat tensile specimen with 

circular cutouts (Figs. 3-1a to 3-1c). The stress triaxiality within the specimen is a function 

of the notch radius. For very large notch radii the stress state near the specimen center (prior 

to necking) corresponds to uniaxial tension, while the plane strain condition (along the width 

direction) is achieved for very small notch radii. In the case of isotropic materials, this 

variation of stress state corresponds to a range of triaxialities from 0.33 to 0.58.  

3.3.1  Experimental procedure 

Specimens are extracted from the sheet material using water-jet cutting. The specimen 

loading axis is always oriented along the rolling direction. All specimens are 20mm wide 

and feature a b=10mm wide notched gage section. Three different notch radii are 

considered: R=20mm, R=10mm and R=6.67mm. The specimens are tested on a hydraulic 

testing machine (Instron Model 8080) with custom-made high pressure clamps. All 

experiments are carried out under displacement control at a constant crosshead velocity of 

0.5mm/min.  
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 (a) (b) 

   
 (c) (d) 

Figure 3-1: (a)-(c) Tensile specimens with different notch radii, (d) tensile specimen with 

central hole. The special shape of specimen shoulders is due to the geometry of our high 

pressure grips; the total clamping force is applied to an area of 50 x 10 mm at the top of the 

shoulders. 
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During the tests, two digital cameras (QImaging Retiga 1300i with 105mm Nikon 

Nikkor lenses) take about 300 pictures (resolution 1300x1300 pixels) of the speckle-painted 

front and back surface of the specimens. The pictures of the front surface are used to 

determine the displacements of the specimen boundaries. The front camera is positioned at a 

distance of 1.25m to take pictures of the entire specimen (square pixel edge length of 51μm). 

The photographs of the back face are used to perform accurate DIC measurements of the 

displacement field at the center of the specimen gage section. For that purpose, the second 

camera is positioned at a distance of 0.25m which reduces the square pixel edge length to 

9.5μm. The average speckle size is about 70μm on both faces. The displacement field is 

calculated by DIC (VIC2D, Correlated Solutions) based on the assumption of an affine 

transformation of the 21x21 pixel neighborhood of each point of interest. The logarithmic 

axial strain at the center of the specimen is computed from the relative vertical displacement 

   of two points located at the center of the specimen,  

    (  
  

  
) (3-8) 

Both points are located on the vertical axis of symmetry at an initial distance of       

pixels (190μm). For each specimen geometry, we also performed an interrupted test: the 

monotonic displacement loading has been interrupted at a crosshead displacement of 

approximately 98% of the measured displacement to fracture. Subsequently, two 12 mm 

long samples have been extracted from the deformed specimen gage section; the small 

samples are embedded in an epoxy matrix for polishing; low magnification pictures are then 

taken to determine the thickness profile along the specimen’s planes of symmetry. 

3.3.2 Experimental results 

The force-displacement curves for the three different notched geometries (black solid 

dots in Fig. 3-2) are shown all the way to fracture. All feature a force maximum before 

fracture occurs. The displacement to fracture presents small variations for different tests 

carried out on a given geometry (less than 3%). The measured fracture displacements and 
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the corresponding experimental uncertainty are summarized in Table 3-1. DIC analysis of 

the strain fields shows significant strain localization near the center of the specimens. The 

evolution of the logarithmic axial strain with respect to displacement is shown as solid blue 

dots in Fig. 3-2. Irrespective of the notch radius, two consecutive increases of the local strain 

rate become apparent. The first corresponds to the development of diffuse necking, while the 

second indicates the onset of localized necking. The localized necking provokes a severe 

thickness reduction at the center of the specimens. The measured thickness variations along 

the axial plane of symmetry of the samples obtained from interrupted tests are depicted in 

Fig. 3-3. Observe the severe thickness reduction for all three geometries. 

3.3.3 Finite element model 

Implicit finite element simulations are performed of each experiment using 

Abaqus/standard. Reduced integration eight-node 3D solid elements (type C3D8R of the 

Abaqus element library) are used to mesh the specimens. Exploiting the symmetry of the 

specimen geometry, material properties and loading conditions, only one eighth of the 

specimen is modeled: the mesh represents the upper right quarter of the specimen, with half 

its thickness (Fig. 3-4). A constant velocity is uniformly imposed to the upper boundary. A 

zero normal displacement condition is imposed to the three boundaries that correspond to 

symmetry planes.  

The effect of mesh density and time discretization on the computational predictions is 

studied for the R=10mm notch specimen geometry. Four meshes are considered (Fig. 3-4):  

(i) coarse mesh with an element edge length of          at the specimen center 

and      elements in thickness direction (half thickness), 

(ii) medium mesh with          and     ;  

(iii) fine mesh with          and     ; 

(iv) very fine mesh with         and      ; 

The meshes are designed such that the elements near the specimen center feature the same 

dimension in the in-plane directions. In addition to solid element simulations, we make use  
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(c)          

Figure 3-2: Experimental (points) and simulation (solid curves) results for tensile specimen 

with circular cutouts. Force displacement curves are in black and central logarithmic axial 

strain versus displacement curves in blue. 

 

Table 3-1: Experimental results and fracture predictions for the tensile specimens with 

circular cutouts 

Notch radius 

[mm] 

Fracture displacement Fracture plastic strain 
Stress triaxiality at 

fracture 

Value 

[mm] 

Variation 

[%] 
Value [-] 

Variation 

[%] 

Value [-

] 

Variation 

[%] 

6.67 2.048 1.28 0.422 5.09 0.626 1.90 

10 2.336 1.21 0.552 5.22 0.653 1.97 

20 2.887 1.22 0.585 5.38 0.614 2.43 
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Figure 3-3: Thickness profile along the axial plane of symmetry for the 3 geometries. The 

curves corresponding to the 10mm and 6.67mm notched geometries are shifted by -0.3mm 

and -0.6mm respectively. 

 

of first-order plane stress shell elements (S4R) with five integration points in the thickness 

direction. The simulations are run up to the fracture displacement. Forty equally spaced time 

increments are used. The corresponding force-displacement curves as well the evolution of 

the equivalent plastic strain at the center of the specimen with respect to displacement are 

plotted in Fig. 3-5a. The force-displacement curves lie on top of each other for all solid 

element meshes. However, the comparison with the results from shell element simulations 

shows that solid elements are required in order to provide meaningful predictions after the 

force maximum has been reached (after the onset of necking). Therefore, we limit our 

attention to the solid element simulations.  

The predictions of force-displacement relationship are approximately mesh size 

independent, but the mesh density has a noticeable effect on the predicted strains at the 

specimen center. The final plastic strain computed with the coarse mesh is 7.3% lower than 

that for the very fine mesh. The relative error between the fine and very fine meshes being  
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 (a) (b) 

   

 (c) (d) 

Figure 3-4: Meshes of the 10 mm notched radius specimen. (a) Coarse mesh with 2 

elements through half the thickness, (b) medium mesh with 4 elements through half the 

thickness, (c) fine mesh with 8 elements through half the thickness, (d) very fine mesh, with 

16 elements through half the thickness. 
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(a) 

 

 

(b) 

 

Figure 3-5: Modeling of notched tensile specimens. (a) Effects of spatial discretization on 

the predicted force and strain versus displacement curves for R=10mm. (b) Influence of the 

strain hardening extrapolation on the prediction of the force-displacement curve for R= 

20mm. 
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only 0.2%. Errors due to time discretization are evaluated by running a simulation on the 

fine mesh with 40, 60 and 90 implicit time steps. The difference in the final plastic strain 

between 40 and 90 steps is 0.7%, while a difference of less than 0.2% is observed for 60 

time steps. In the following, all simulations of notched tensile tests are performed using at 

least 8 solid elements through the half-thickness and at least 60 equally spaced implicit time 

increments. 

3.3.4  Extrapolation of the stress-strain curve 

The Swift strain hardening curve has been validated for equivalent plastic strains of up 

to 0.2 (point of necking under uniaxial tension). However, in notched tensile specimens, the 

plastic strains at the specimen center are much higher than 0.2. The comparison of the 

experimentally-measured force-displacement curve for R=20mm (black solid dots in Fig. 3-

5b) with the simulation results shows that the Swift model assumption overestimates the 

force level (blue solid line). The assumption of a tangent modulus of          for strains 

greater than 0.2 yields an underestimation of the force level. To obtain a better extrapolation 

of the measured stress-strain curve, we defined two segments of constant slope    and   ; 

here,    corresponds to the range of intermediate plastic strains (from 0.2 to 0.35),    to the 

range of high plastic strains ( ̅  higher than 0.35). The two strain hardening rate moduli are 

calibrated such that the simulation provides a good prediction of the experimentally-

measured force-displacement curve (Fig. 3-5b). 

3.3.5  Comparison of simulations and experiments 

In Fig. 3-2, we show the simulated force-displacement curves (solid black lines) all the 

way to fracture. The agreement with the experimental results (depicted with black dots) is 

very good for the 20mm (Fig. 3-2a) and 10mm (Fig. 3-2b) notch geometries. The force 

difference between simulation and experimental results is less than 1% in both cases. For the 

6.67mm notch geometry (Fig. 3-2c), the peak of force, corresponding to the onset of 

localized necking, is delayed in the simulation by relative displacement of about 5%. As a 

result, the FEA predicted force drop is too small: the axial force at the onset of fracture is  
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(c)          

Figure 3-6: Loading paths at the center of the specimen. The red solid line depicts the 

loading path at the surface, the black solid line at the mid-plane; black dots and the crosses 

highlight the onset of fracture including experimental scatter (min/max). The dashed blue 

lines show the error envelopes. 

 

3.7% higher in the simulation than in the experiment. The comparison of the evolution of the 

logarithmic axial strain at the center of the gage section with respect to the displacement 

(depicted in blue in Fig. 3-2) also shows a good agreement. Irrespective of the notch radius, 

the simulations are able to describe the characteristic increases in strain rates that have been 

observed in the experiments. Relative differences between simulation and DIC strains in 

case of the 20mm notch geometry are about 3% (Fig. 3-2a). For the 10mm notch geometry 

(Fig. 3-2b), the computed strain is of up to 10% higher than the DIC measurement. As far as 

the 6.67mm notch geometry is concerned (Fig. 3-2c), the first increase of strain rate is too 

large in the simulation, while the predicted strain rate increase after the onset of localized 

necking appears to be smaller than that given by DIC. As a result, differences between 
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simulated and measured strains tend to decrease at the end of the simulation, to be almost 

zero at fracture. Figure 3-3 depicts the thickness profile along the axial plane of symmetry of 

the specimens (20mm in red, 10mm in blue, 6.67mm in black). Note that both the amplitude 

of thickness variation and the size of the area of localization are very well predicted by the 

simulations. 

3.3.6  Stress triaxiality and equivalent plastic strain evolution 

Figures 3-6a to 3-6c show the evolution of the equivalent plastic strain as a function of 

the stress triaxiality   at the center of the gage area. The red solid lines depict the evolution 

on the specimen surface, while the black solid lines show the evolution at the very center of 

the specimen (intersection point of all three symmetry planes). The large solid dot marks the 

onset of fracture that is obtained when using the average fracture displacement from three 

experiments. The crosses indicate the corresponding simulation results for the measured 

minimum and maximum displacement to fracture (see also Table 3-1). The comparison of 

the red and black curves clearly shows that the stress and strain state at the specimen surface 

is significantly different from that at the specimen mid-plane. In other words, there is a  

strong gradient along the thickness direction within the central zone of strain localization. 

The equivalent plastic strains to fracture inside the specimen are 11.5% (20mm notch) and 

15.8% (10mm notch) higher inside the specimen than on the surface (see Fig. 3-7). 

Localized necking also leads to the development of out-of-plane stress components in the 

middle of the specimen (while the surface deforms under plane stress), which increases the 

stress triaxiality. Furthermore, the strains measured at the specimen surface are not 

representative for the strain to fracture of the material (red line in Fig. 3-6). It is also noted 

that the stress triaxiality exhibits very strong variations during loading. For instance, for 

R=20mm it increases from        before the onset of localized necking to        at the 

onset of fracture.  
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Figure 3-7: Contour plot of the equivalent plastic strain at the instant of the onset of fracture 

in a notched specimen with R=10mm. 

 

3.3.7 Uncertainty analysis 

Three different types of errors affecting both the plastic strain and the stress triaxiality 

at the onset of fracture are summarized in Table 3-2. Considering DIC accuracy and camera 

resolution, the relative displacement of the specimen boundaries is measured in all 

experiments with an accuracy of 2.5μm. Due to the strain localization at the center of the 

specimen, the errors in the fracture displacement translate to even larger errors in the 

fracture strain. This small uncertainty in the measured fracture displacement (relative error 

of about 0.1%) leads to an error of about 0.004 on the fracture strain and 0.002 on the stress 

triaxiality at the onset of fracture. 
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Table 3-2: Errors in the evaluation of the plastic strain and stress triaxiality  

at the onset of fracture 

Notch 

radius 

[mm] 

Fracture plastic strain Stress triaxiality at fracture 

Displacement 

error [-] 

Modeling 

error [-] 

Total 

error [-] 

Displacement 

error [-] 

Modeling 

error [-] 

Total 

error [-] 

6.67 0.34 10
-2

 7.31 10
-2

 7.65 10
-2

 0.14 10
-2 

 3.16 10
-2

 3.30 10
-2

 

10 0.43 10
-2

 8.34 10
-2

 8.77 10
-2

 0.17 10
-2

 3.57 10
-2

 3.74 10
-2

 

20 0.46 10
-2

 6.34 10
-2

 6.80 10
-2

 0.17 10
-2

 2.55 10
-2

 2.72 10
-2

 

 

Errors due to the inaccuracy of the constitutive model are computed according to Eq. 

3-2. For all three specimen geometries, the estimated error  ( ̅ ) on the plastic strain is less 

than 0.03 at the onset of localized necking and reaches 0.063 at the point of fracture for the 

20mm notch geometry (0.083 and 0.073 for the 10mm and 6.67mm geometries, 

respectively). This emphasizes the difficulty of modeling the post necking behavior of the 

specimen with great accuracy. According to Eq. 3-7, this corresponds to errors on the stress 

triaxiality at the onset of fracture of 0.025 for the 20mm geometry, 0.036 for R=10mm and 

0.032 for R=6.67mm. The errors affecting the plastic strain versus stress triaxiality curves 

are depicted in Figs. 3-6a to 3-6c by dashed blue lines. Those lines can be seen as the upper 

and lower boundaries on the evolution of the actual material state in the stress 

triaxiality/plastic strain space at the fracture locus. Colored areas surrounding fracture points 

depict the uncertainty on the actual fracture point due to both errors (plus experimental 

scatter). Those areas represent the precision achievable when determining the material state 

at the onset of fracture using tensile specimens with circular cutouts. Note that errors 

affecting stress triaxiality are very important for small strains, even if strain errors are then 

very small. According to Eq. 3-7,    is proportional to the current strain hardening modulus 

 ( ̅ ); the latter is very high for small strains, but decreases monotonically as the strain 

increases (e.g.           for  ̅       and         for  ̅     ). 

To illustrate the large error associated with the use of shell elements, we added a red 

dashed line to Fig. 3-6b which shows the predicted loading path evolution from a shell 

element simulation. The loading path agrees well with the solid element simulation prior to 
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necking, whereas the predicted strain increases to unrealistically high values after the onset 

of necking.  

3.4 Circular punch test 

The circular punch test is a standard sheet metal forming test that characterizes the 

formability of sheet materials under stress states that are close to equi-biaxial tension. 

Analogously to our analysis of the notched tensile test, we assess the accuracy of the circular 

punch test.  

3.4.1  Experimental procedure 

The circular sheet specimen is clamped on a circular die and subsequently loaded 

through a hemispherical punch.  The punch and die have a diameter of 44.5mm and 100mm, 

respectively. The clamping pressure is applied through eight M10-12.9 screws. The 

experiment is carried out in a universal testing machine (MTS, Model G45) at a constant 

punch velocity of 5mm/min. In order to limit the effects of friction, a stack of six oil-

lubricated      thick Teflon layers is put between the specimen and the punch during each 

test.  

Three-dimensional Digital Image Correlation (Vic3D, Correlated Solutions) is used to 

measure the out-of-plane deformation of the specimen. In our vertical experimental set-up, 

the clamping die is fixed on a special metal frame (Walters, 2009, [150]). A leaning mirror 

is integrated into that frame to record pictures of the speckle-painted bottom surface of the 

specimen with two digital cameras. The cameras see the specimen at a distance of 2.5m at an 

angle of 20° from the punching direction. Each camera records about 300 pictures during the 

test; the edge length of a square pixel is about 100μm. The displacement field is calculated 

by DIC for the entire free surface of the specimen assuming an affine transformation of the 

21x21pixels neighborhood of each point. The interpolation of the gray values is performed 

with a 6-tap filter. The logarithmic strain field is then calculated by averaging the 

displacement gradient over an area of 11x11 pixels. 



98 Chapter 3. Hybrid experimental-numerical analysis of basic fracture experiments 

 

(a) 

 

(b) 

Figure 3-8: Punch test analysis. Influence of the mesh density on (a) the force-displacement 

curve, and (b) the equivalent plastic strain versus displacement curve. Results for solid and 

shell elements are depicted with solid and dashed lines, respectively; 
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(c) 

 

(d) 

 (c) Evolution of the major logarithmic strain on the specimen surface as a function of the 

punch force; (d) Loading paths in the (   ̅ ) space on the specimen’s outer surface at the 

center of the specimen. The black dot indicates the onset of fracture, the dashed blue lines 

shows the error envelope. 
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3.4.2 Experimental Results 

The measured force-displacement curve increases monotonically until a sharp drop in 

force level is observed at the instant of onset of fracture. The recorded cross-head 

displacement includes the deformation of the clamping fixture as well as the deformation of 

the punch and the testing frame in addition to the effective punch displacement. Since the 

punch behaves like a non-linear spring (because of the increasing contact area between the 

punch and the specimen) it is difficult to extract the displacement associated with permanent 

deformation of the specimen from these measurements. Moreover, we observed that most of 

the Teflon layers are torn apart during the punching which may be considered as permanent 

deformation of the testing device. The initial thickness of the Teflon stack is 0.55mm, but we 

measure a final thickness of 0.12mm after the experiment. In order to eliminate these 

experimental uncertainties in the punch displacement measurements, we present most 

experimental results as a function of the punch force instead of the punch displacement. 

Figure 3-8c depicts the evolution of the maximum principal true strain on top of the 

dome measured by DIC. Observe that the applied force reaches a plateau in this 

displacement controlled experiment. Fracture initiates on top of the dome which indicates 

that friction was close to zero in this experiment. After fracture initiation, cracks propagate 

along the rolling direction of the sheet. Both measured principal strains at the apex of the 

deformed specimen exceed 0.4 at the onset of fracture. Post-mortem analysis revealed that 

the sheet thickness is reduced by almost 60%, from 1.43mm (initial) to 0.58mm (final).  

In addition to measuring the strain at the specimen apex, the DIC measurements are 

used to verify two important features of this experiment. Firstly, the DIC measurements 

demonstrate that the radial displacements are negligibly small along the interface between 

the specimen and the clamping ring (less than 0.05mm). Secondly, the DIC measurements 

demonstrate that the strain maximum prior to fracture is located at the specimen center 

which re-confirms that friction effects have been successfully eliminated by the lubricated 

Teflon layers (Burford et al., 1991, [31]) 
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3.4.3  Numerical modeling 

A quarter of the mechanical system is modeled because of the symmetry of the punch 

experiment and the orthotropic material behavior. Eight-node reduced-integration solid 

element meshes are employed in conjunction with the implicit solver of Abaqus. In addition, 

we make use of a shell element mesh along with the explicit solver of Abaqus because of the 

high computational efficiency of the shell contact formulation. In all FE models, the punch 

and the die are modeled as rigid bodies. The portion of the specimen that is clamped in the 

die is limited to 5mm in the simulation (i.e. the diameter of the circular specimen in the FE 

model is 110mm). The displacements of all nodes located on the outer edge of the specimen 

are set to zero. A condition of zero-normal displacement is imposed along the two edges that 

correspond to planes of symmetry. For shell meshes, no rotation around the edge direction is 

allowed on those two boundaries. A frictionless node-to-surface contact is defined between 

the punch and the specimen. In the case of shell elements, contact is defined for the sheet 

surface while thickness variations are taken into account. A constant velocity is applied to 

the punch, while the die is fixed in space. 

The predicted force-displacement curves from an implicit simulation with 100 time 

steps using a coarse mesh (60/3 reduced-integration solid elements along the radial/thickness 

direction), an intermediate mesh (120/6) and a fine mesh (240/12) all lie on top of each other 

(Fig. 3-8a). Similarly, the results from quasi-static explicit simulations with reduced-

integratioon shell elements (using the same number of integration points through-the-

thickness as solid elements along that direction) are all identical. However, there is a 

noticeable difference between shell and solid element simulations for large punch 

displacements. This difference may be attributed to the errors associated with the 

assumption of plane stress and zero plastic out-of-plane shear strains in the shell element 

formulation. Analysis of the solid element simulations reveals that the out-of–plane 

compression stress reaches 90MPa on the contact surface with the punch; the maximal out-

of-plane logarithmic shear strain is about 0.035. Unlike the results for the force-

displacement curves, the solid element model predictions of the equivalent plastic strain 

feature a weak mesh size effect. At the center, the final equivalent plastic strain reaches 0.92 
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for a coarse mesh, whereas it is 0.90 for a fine mesh. Between a medium and fine mesh, the 

relative difference is almost zero. The results from implicit simulations with different 

numbers of time steps (65, 100, 150 and 200) revealed only small differences. The final 

maximal equivalent plastic strain reaches 0.92 when using 65 time steps and 0.90 for 200 

steps.  

Based on our brief analysis, the punch experiment will be analyzed using a finite 

element model with (i) 120 solid elements along the radial direction, (ii) 6 solid elements in 

thickness direction, (iii) 100 implicit time steps, and (iv) frictionless kinematic node-to-

surface contact. 

3.4.4  Identification of strain hardening response 

When plotting the evolution of the major principal strain at the center of the specimen 

as a function of the punching force (Fig. 3-8c), it becomes apparent that the simulation 

model (blue curve) underestimates the strain in comparison with the experiment (solid black 

dots). Recall that the hardening curve used in the simulation has been calibrated based on 

the experimental results from uniaxial and notched tensile tests. However, since the 

maximum equivalent plastic strain reached in a punch test (about 0.9) is still much larger 

than that reached in a notched tensile test (about 0.6), we may improve the extrapolation of 

the stress-strain curve for large strains. Here, a third linear hardening segment is introduced 

for  ̅     . The best correlation between simulation and the punch experiment is achieved 

when using a hardening modulus of           in this third segment. The corresponding 

simulation result is depicted as a black solid line in Fig. 3-8c. It is emphasized that this 

modification of the hardening curve does not affect the results from the previous section on 

notched tensile tests. Note that the hardening curve identification based on the biaxial 

experiments depends on the choice of the yield function (e.g. Banabic et al., 2000, [6]). Up 

to the strain of necking under uniaxial tension (about 0.2), we may interpret the good 

agreement of the simulations and the biaxial experiments as a partial validation of the 

plasticity model. Furthermore, the yield surface has been validated for the present material 

for a similar range of modest strains through multi-axial experiments (Chapter 2). However, 
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the assumption of a quadratic yield function may become inadequate for very large strains in 

the case of texture evolution.  

 

Table 3-3: Stress strain curve beyond the onset of necking 

Equivalent plastic strain [-] 0.2 0.35 0.6 
 

Equivalent stress [MPa] 1050 1140 1240  

Hardening modulus [MPa]    600 400 100 

 

3.4.5  Simulation results and uncertainty analysis 

The numerical simulation is performed up to the instance where the computed surface 

strain equals the measured surface strain at the onset of fracture (       ). The simulated 

curve shows very good agreement with the experimental results (depicted with black dots). 

Furthermore, the predicted thickness reduction is in excellent agreement with the 

experiment. Figure 3-8d depicts the evolution of the equivalent plastic strain as a function of 

the stress triaxiality (black curve); here, it is assumed that fracture initiates on the free 

specimen surface. The loading state at the onset of fracture is depicted as a black dot. 

Fracture occurs at a computed stress triaxiality of        (equi-biaxial tension). 

The modeling error affecting the computation of the equivalent plastic strain and the 

stress triaxiality is evaluated according to Eqs. (3-2) and (3-7); it is shown by blue dashed 

lines in Fig. 3-8d. Modeling errors at the onset of fracture are summarized in Table 3-4. A 

complete evaluation of the errors affecting the hybrid experimental-numerical result would 

require evaluating the precision of the 3D DIC method. However, the authors could not 

identify such an evaluation in the open literature. For the case of one-dimensional DIC, 

Sutton et al. (2009, [138]) reported that the 6-tap optimized filter interpolation function does 

not produce any significant error. Thus, we neglect this source of error in our analysis. 
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Table 3-4: Fracture point and error estimation for the circular punched specimen 

Fracture plastic strain Stress triaxiality at fracture 

Value [-] Error [-] Value [-] Error [-] 

0.896 6.86 10
-2

 0.662 0.73 10
-2

 

 

3.5 Tensile specimen with central hole 

Conventional uniaxial tensile specimens develop a pronounced neck at large strains 

which yields a change in stress state throughout the experiment from uniaxial tension to 

transverse plane strain. In an attempt to keep the stress triaxiality more constant throughout 

the experiment, we make use of tensile specimens with a central hole. The presence of a 

central hole creates a strain concentration which favors the fracture initiation at the 

intersection of the hole and the transverse axis of symmetry of the specimen. 

3.5.1  Experimental procedure 

The tensile specimens are 20mm wide and feature an 8mm diameter circular hole at the 

center (Fig. 3-1d). For the first set of specimens, the central hole is cut using a water-jet. In 

order to obtain a better edge finish, we prepared a second set of specimens with a 7mm 

diameter water jet cut hole that is subsequently enlarged to 8mm using CNC milling (with a 

0.125” diameter end mill). The experimental procedure follows closely the program outlined 

for the notched specimens. To evaluate the error in the computed strains, we determined the 

axial logarithmic strain on the transverse symmetry axis at a distance of 40 pixels (380µm) 

from the hole. A measurement right at the edge of the hole is not possible as the DIC 

algorithm needs a continuous displacement field in the vicinity of the point of interest. 
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3.5.2 Experimental results 

The measured force-displacement curves for the two sets of specimens are shown in Fig. 3-

9a as crosses for the waterjet cut specimens and as solid dots for the CNC milled specimens. 

The waterjet-prepared specimens are extracted from a slightly thinner part of the sheet 

(1.46mm instead of 1.5mm), resulting in a lower force displacement curve. The 

measurements demonstrate that the machining technique has a strong influence on the 

fracture displacement. It is about 2.1mm for CNC-milled specimens and only 1.7mm for the 

waterjet cut specimens. The waterjet cuts the sheet by abrasion (abrasive jet), which leaves a 

non-smooth edge with numerous geometric defects. It is speculated that those defects along 

with some residual plastic strains are responsible for the premature failure of the water-jet 

cut specimens. Consequently, the results for water-jet cut specimens are discarded in the 

following analysis. 

The force-displacement curve (Fig. 3-9a) exhibits a peak before fracture occurs. An 

important width reduction (diffuse necking) is observed within both specimen ligaments 

(Fig. 3-10a), which appears to intensify as the force reaches its maximum. The displacement 

to fracture varies among the CNC-milled specimens (Table 3-5). Observe from Fig. 3-10c 

that axial strain field features steep gradients around the transverse axis of symmetry of the 

specimen. The evolution of the surface strain (blue curve in Fig. 3-9a) shows that the surface 

strain reaches values of up to 0.7 prior to fracture. 

 

Table 3-5: Experimental results and fracture predictions  

for the tensile specimen with central hole 

Fracture displacement Fracture plastic strain Stress triaxiality at fracture 

Value [mm] Variation [%] Value [-] Variation [%] Value [-] Variation [%] 

2.089 2.24 0.834 6.67 0.282 1.45 
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(a) 

 

(b) 

Figure 3-9: Analysis of a tensile test with a central hole. (a) Force-displacement curves and 

logarithmic strain versus displacement curves from experiments (dots = CNC-machined, 

crosses = waterjet cut) and simulation (solid lines); (b) Loading path at the center of the 

specimen (black solid line); the black dot and the crosses highlight the onset of fracture 

including experimental scatter (min/max). The dashed blue lines show the error envelopes. 
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3.5.3  Numerical modeling 

Based on the results from Section 3.3, eight-node solid elements (with reduced 

integration) are used to mesh one eighth of the specimen (Fig 3-10b). A constant velocity is 

applied to the upper boundary. A zero normal displacement condition is imposed to the three 

boundaries corresponding to symmetry planes. Since the experimental results indicate that 

through-the-thickness localization is less important with this specimen design than for 

notched tensile specimens, we assume that 8 elements through the half thickness are enough 

to describe the stress and strain variations along the thickness direction. However, we use a 

biased mesh with the smallest elements at the intersection of the hole with the transverse 

plane of symmetry (Fig. 3-10b).  In this vicinity, the elements have also the same length in 

the axial and transverse directions. Implicit simulations are performed using a coarse mesh 

(smallest in-plane element edge length is 120µm), a medium mesh (60µm) and a fine mesh 

(30µm). As for the notched tensile tests, we find the same force-displacement curves for all 

mesh sizes. The effect of mesh size on the equivalent plastic strain is also weak for the 

element located at the hole boundary (on the specimen mid-plane). The final equivalent 

plastic strain computed with the coarse mesh is 0.83 compared to 0.86 when using the fine 

mesh. Errors due to time discretization are also evaluated by running simulations with 50, 

75, 100 and 150 time increments. The difference in final plastic strain is already negligible 

(0.004) when comparing the results for 75 and 100 time increments. Thus, we make use of 

the implicit analysis with 75 time steps and a medium mesh to determine the loading history 

to fracture.  

3.5.4  Numerical results and error estimation 

The simulated force-displacement curve is depicted as a black solid line in Fig. 9a. It 

is in excellent agreement with the experimental data (solid dots). The maximum difference 

between the experimentally-measured and numerically-predicted force level is smaller than 

2%. This good correlation is seen as a validation of the strain hardening curve that has been 

determined from the notched tension and punch tests. The FEA predicted evolution of the 

surface strain (blue line in Fig. 3-9a) is also close to the DIC measurements (blue dots).  
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Figure 3-10: Specimen with a central hole. (a) Specimen after crack initiation, (b) medium 

FE mesh, (c) Logarithmic axial strain computed on specimen surface at the instant of the 

onset of fracture. 
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Table 3-6: Errors in the evaluation of the plastic strain  

and stress triaxiality at the onset of fracture 

Fracture plastic strain Stress triaxiality at fracture 

Displacement 

error [-] 

Modeling 

error [-] 

Total  

error[-] 

Displacement 

error [-] 

Modeling 

error [-] 

Total 

error [-] 

0.22 10
-2

 9.49 10
-2

 9.71 10
-2

 0.03 10
-2

 0.43 10
-2

 0.46 10
-2

 

 

 

Similar to the results for notched tensile tests, the strains computed by FEA are higher than 

the DIC measurements. Here, the final computed strain is overestimated by about 10%.  

The evolution of the equivalent plastic strain as a function of the stress triaxiality is 

shown in Fig. 3-9b. The black solid dot highlights the instant of onset of fracture. The 

differences due to scatter in the measured fracture displacement is represented with solid 

crosses. The identified fracture strain as well as the stress triaxiality at the onset of fracture 

are summarized in Table 3-5 along with the corresponding error estimates (Table 3-6).  

As compared to the results for notched tensile specimens, the stress triaxiality 

variations in the tensile specimen with a central hole are small. It varies between 0.277 and 

0.338. At the onset of fracture, the stress triaxiality is         which is close to uniaxial 

tension (      ). The estimated equivalent plastic strain to fracture is 0.83. The relative 

displacements of the specimen boundaries are computed with a precision of 2.5µm which 

translates into an uncertainty of 0.002 for the fracture strain and of less than is 0.001 for the 

stress triaxiality. The modeling errors according to Eqs. 3-2 and 3-7 are 0.095 for the 

fracture strain and 0.004 for the stress triaxiality. 



110 Chapter 3. Hybrid experimental-numerical analysis of basic fracture experiments 

3.6 Discussion and recommendations  

3.6.1  Identification of the strain hardening response 

The proper identification of the strain hardening model for very large strains is 

critically important for the reliable determination of the fracture strains. It is emphasized that 

conventional extrapolation formulas such as the modified Swift model seem to provide a 

poor approximation of the strain hardening behavior of advanced high strength steels at 

large strains. The present study shows that the Swift assumption leads to substantial errors in 

the simulation results after the onset of necking which is consistent with earlier results on 

martensitic steel (Mohr and Ebnoether, 2009, [104]). When hydraulic bulge testing devices 

are not available or a bulge test is impossible to realize (because of the very large specimen 

size), we propose the following procedure to identify the strain hardening function  ( ̅ ): 

(i) Uniaxial tensile testing of dogbone specimens up to the strain of necking 

(ASTM E8, 2004, [3]); 

(ii) Uniaxial testing of a tensile specimen with a central hole;  the stress-strain curve 

can then be identified through inverse calibration; 

One may also model the post-necking behavior of uniaxial tensile test and determine the 

stress-strain curve from inverse analysis (e.g. Mohr and Ebnoether, 2009, [104]). However, 

since the stress state in the neck of a uniaxial tension specimen is close to transverse plane 

strain, the maximum equivalent plastic strain achieved using a uniaxial tensile specimen 

with a central hole is expected to be larger. Furthermore, the stress gradients through the 

sheet thickness are smaller for the later type of specimen. From an experimental point of 

view, we note that the location of the zone of localization is a priori known when using a 

specimen with a central hole. This allows for the proper positioning of the DIC system 

before the experiment. Note that in a uniaxial tensile test, the position of the emerging neck 

is unknown before the experiment and may thus occur outside the field of vision of the 

camera system.  
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3.6.2  Numerical modeling 

Shell element simulations provide accurate predictions of the large deformation 

behavior of sheet metal structures before the onset of through-the-thickness necking. 

However, the strain and stress state predictions of shell element simulations after the onset 

of through-the-thickness necking are not reliable as out-of-plane stresses become important. 

The same limitation becomes apparent under the presence of high surface pressures (e.g. 

final phase of the punch test). Thus, we strongly recommend using solid element meshes to 

determine the stress and strain histories all the way to fracture. When evaluating the effect of 

mesh density on the simulation results, it is important to monitor the strain evolution within 

the zone of localization. The global force-displacement curves are usually not mesh size 

sensitive since the material within the zone of localization contributes only little to the 

“internal energy” (elastic strain energy plus plastic dissipation) of the entire structure. As a 

rule of thumb, we recommend sixteen first-order solid elements through the full thickness of 

the sheet. 

3.6.3  Summary of the loading paths to fracture 

Figure 3-11a summarizes the results from all simulations in a single graph of 

equivalent plastic strain versus stress triaxiality. Recall that the critical element (integration 

point) is positioned on the sheet mid-plane for the notched tensile specimens and the 

specimen with a central hole, while it is located on the specimen surface for the punch 

experiment. We observe the high ductility for stress states close to uniaxial tension and those 

close to equi-biaxial tension. The strain path for the notched tensile specimen features stress 

states close to transverse plane strain which exhibit the lowest ductility. As an alternative to 

showing the results in the (   ̅ )-plane, we also computed the loading paths to fracture in 

terms of the principal plastic strains in the plane of the sheet. The minor and major strains 

shown in Fig. 3-11b are calculated from the in-plane components of the plastic strain tensor. 

Note that these strains are different from the eigenvalues of the plastic strain tensor (unless 

the out-of-plane shear strain components are zero).  
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(a) 

 

(b) 

Figure 3-11: Stress and strain histories for the 5 geometries in the stress triaxiality versus 

equivalent plastic strain space (a) and in the in-plane major strain versus in-plane minor 

strain space (b). 
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3.6.4 Effect of porosity 

All numerical results presented in this paper are obtained under the simplifying 

assumption that the effect of (micro-)porosity evolution on the effective plastic behavior can 

be neglected. There is strong theoretical evidence that the evolution of porosity changes the 

predicted stress triaxialities (e.g. Danas and Ponte Castaneda, 2009, [46]). However, it is 

difficult to quantify the effect of porosity on the plastic behavior of the TRIP780 steel based 

on our macroscopic measurements (surface displacement fields and total force). At the same 

time, the numerical predictions of the non-porous plasticity model employed in this study 

agree well with all macroscopic measurements for various loading conditions.  

The evolution of porosity clearly plays an important role as far as the onset of fracture 

is concerned. The initial microstructure is void free, but micrographs of highly deformed 

specimens indicate that voids initiate and grow throughout loading. Figure 3-12 shows 

micrographs of the axial plane of symmetry at the center of the notched specimens prior to 

fracture (after applying about 97% of the displacement to fracture). Voids and microcracks 

are clearly visible at this stage of deformation. Observe that the microcracks are aligned with 

the loading direction. This observation may be explained using the anisotropic porous 

plasticity model of Danas and Ponte Castaneda (2009, [44]). Their homogenization-based 

computations show that the severe elongation of initially spherical voids under transverse 

plane strain loading causes the loss of ellipticity of the effective porous medium. In other 

words, the axial microcracks may be considered as the result of the coalescence of highly 

elongated voids. However, in the present case, the onset of fracture is also affected by 

material heterogeneities at the microstructural level. Energy dispersive X-ray analysis 

revealed that the locations of the microcracks seen in Fig. 3-12 coincide with the position of 

Mn and Mo segregation bands.  
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(a) 

 

(b) 

Figure 3-12: Micrographs of the axial plane of symmetry of deformed notched tensile 

specimens : (a) R=20mm notch specimen strained to 98.3% of the fracture displacement, 

(b) R=6.67 mm notch specimen strained to 96.8% of the fracture displacement. The vertical 

and horizontal directions of the pictures correspond to the axial and thickness directions of 

specimen, respectively. 
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3.7 Concluding remarks 

Five different fracture tests have been performed on specimens extracted from 

TRIP780 sheets and analyzed in great detail to obtain reliable estimates of the loading path 

to fracture for stress triaxialities ranging from uniaxial tension to equi-biaxial tension. The 

main conclusions are: 

(1) Shell element simulations are not suitable for the evaluation of the local 

loading path after the onset of through-the-thickness necking. 

(2) Solid element simulations can provide accurate predictions. Both coarse 

and fine meshes predict usually the same overall force-displacement 

response, but it is important to evaluate the accuracy of an FE simulation 

through the comparison of the predicted strains within the neck with DIC 

surface strain measurements. For the present material and loading 

conditions, sixteen first order solid elements along the thickness 

direction provided sufficiently accurate results for the local fields.  

(3) It is important to identify the strain hardening curve for large strains 

from experiments. The analytical extrapolation (e.g. Swift law) based on 

data for uniaxial tension prior to necking is not sufficiently accurate. 

When data from hydraulic bulge tests is not available, we recommend 

the inverse identification of the stress-strain curve using the results from 

the testing of uniaxial tensile specimen with a large central hole.  

(4) The stress-triaxiality is approximately constant all the way to fracture for 

a tensile specimen with a central hole and during a punch test; it 

increases monotonically throughout notched tensile tests. 
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4.1 Introduction 

In sheet metal forming, the failure of the sheet metal is typically predicted using 

Forming Limit Diagrams (FLDs), e.g. Keeler et al. (1964, [77]). The FLD defines the onset 

of necking as failure while the so-called Fracture Forming Limit Diagram (FFLD) concept 

has been introduced to predict the fracture after necking (Embury et al., 1977, [53]). Most 

experimental techniques for determining FLDs and FFLDs comprise a plurality of 

specimens that are inserted into a testing system of only one degree of motion. For instance, 

the Hasek (1978, [71]) test makes use of a family of circular disc specimens with round cut-

outs of different radius that are inserted into a punch/die system. The axial motion of the 

punch is the only degree of freedom of the testing system. The Nakazima (1971, [114]) test 

relies on a similar punch/die system to load strips of different width all the way to fracture. 

In the hydraulic bulge test, only one type of specimen is used while different states of 

loading are achieved by varying the elliptical geometry of the die (e.g. Rees, 1995, [126]). 

The common feature of these testing techniques is a single degree of freedom loading 

system. This degree of freedom is used to vary the intensity of loading along a proportional 

loading path which is preset by the specific combination of specimen and testing system. It 

cannot by changed throughout the experiment. It is also worth noting that none of the 

aforementioned testing techniques allows for the reversal of the loading direction. In other 

words, the described experimental techniques for FLD and FFLD determination are limited 

to monotonic proportional loading paths.  

Due to this limitation, the effect of non-linear and/or non-monotonic loading paths can 

only be studied when the specimens are cut from pre-deformed sheets. Laukonis and Ghosh 

(1978, [83]) studied the failure under uniaxial tension of equibiaxialy pre-strained aluminum 

killed steel and 2036-T4 Aluminum specimens. Llod and Sang (1979, [94]) performed 

uniaxial tensile pre-straining followed by uniaxial tension in the orthogonal direction on 

2036-T4 and 5182-0 Aluminum sheets. Graf and Hosford (1994, [62]) characterized the 

influence of strain path changes on the FLD of 6111-T4 aluminum sheets by pre-straining 

their specimens under either uniaxial, transverse plane strain or equibiaxial tension. All 

experimental studies reported a significant dependence of failure on strain-path changes. 
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Mohr and Henn (2007, [105]) proposed an experimental technique that makes use of a 

universal biaxial loading device to test a butterfly-shaped specimen under different states of 

loading. This technique is fundamentally different from the established FLD tests in the 

sense that the state of loading is varied by changing the displacement boundary conditions 

rather than the shape of the specimen. In conjunction with a dual actuator system (Mohr and 

Oswald, 2008, [109]), this experimental technique can be employed to perform fracture tests 

along non-linear and non-monotonic loading paths, for stress states ranging from pure shear 

to transverse plane strain tension. However, it is not suitable to the calibration of 

conventional FLDs, as it does not cover stress states ranging from transverse plane strain to 

equi-biaxial tension. The original specimen by Mohr and Henn (2007, [105]) features a flat 

gage section of uniform thickness that is designed such that cracks are most likely to initiate 

within the specimen center. Bai (2008, [4]) modified this geometry by including a second 

curvature, resulting in a specimen with a non-flat gage section. Irrespective of the specific 

specimen geometry, a hybrid experimental-numerical approach is required to determine the 

stress and strain states at the onset of fracture.  

As part of this Thesis, the original specimen design by Mohr and Henn (2007, [105]) 

is revisited to come up with a reliable experimental technique to investigate the effect of 

combined loading histories on the onset of fracture. This involves the design of a new 

specimen and the presentation of a hybrid experimental-numerical technique to determine 

the loading path prior to the onset of fracture. The effect of the boundary curvatures on the 

stress and strain fields is investigated numerically. Subsequently, specimens with the 

apparently “optimal” geometry are extracted from TRIP780 steel sheets and tested over a 

wide range of multi-axial loading conditions. The analysis of the experiments reveals that 

the validity of the proposed hybrid experimental-numerical technique is very sensitive to 

imperfections in the initial specimen geometry. Furthermore, it is shown that the local stress 

and strain fields within the specimen gage section cannot be computed with high accuracy 

after the localization of deformation under shear-dominated loading conditions. The results 

for tension-dominated loading indicate that the equivalent plastic strain at the onset of 

fracture cannot be expressed as a monotonic function of the stress triaxiality only.  
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Figure 4-1: Schematic of the specimen. 

 

4.2 Specimen design 

Figure 4-1 shows a schematic of the proposed fracture specimen. The specimen 

features an abrupt change in thickness between the gage section of thickness t and the 

specimen shoulders. Different states of stress and strain may be achieved within the 

specimen gage section by applying different combinations of normal loading    and 

tangential loading    to the top and bottom specimen boundaries. An attempt is made to 

optimize the specimen geometry such that the cracks initiate within the flat      large 

central area of the gage section.  

In a plane stress specimen, the stress state is always uniaxial tension along the free 

boundaries, irrespective of the state of stress at the specimen center. This can pose a 

challenge when characterizing the onset of fracture at low stress triaxialities since early 
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cracks may initiate along the specimen boundaries rather than at the specimen center. The 

boundaries of the proposed specimen are curved to avoid the crack initiation at the gage 

section boundaries. A short parametric study is presented in subsection 4.2.2 to gain further 

insight into the effect of the boundary curvatures on the stress and strain distributions within 

the gage section. 

4.2.1  Theoretical range of loading states 

Prior to necking, the state of stress near the specimen center is plane stress in the (x,y)-

plane with the superposed transverse plane strain constraint in the x-direction (see Fig. 4-1 

for coordinate frame definition). The transverse plane strain condition implies that the strain 

along the specimen width direction (corresponds to x-direction in Fig. 4-1) is zero,      . 

For an isotropic rigid-plastic Levy-von Mises solid, the corresponding stress tensor may be 

written as 

  [
      
   
   

] (4-1) 

Throughout our discussion, we use the stress triaxiality   and the Lode angle parameter  ̅ to 

characterize the stress state (despite the small anisotropy of the material). The stress 

triaxiality is defined by the negative ratio of hydrostatic pressure          and the von 

Mises equivalent stress,  ̅  ,  

   
 

 ̅  
 

     

√    (
 
 )

 
 

(4-2) 

The stress triaxiality is zero for shear-dominated loading (  ⁄   ) while it approaches 

asymptotically its maximum value of     √       as the normal stress becomes 

dominant (  ⁄   ).  

The Lode angle parameter  ̅ is related to the normalized third invariant   of the stress 

tensor. We have 
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Unlike the stress triaxiality, the Lode angle parameter is not a monotonically increasing 

function in    . We have  ̅    for both   ⁄    (pure shear) and   ⁄    (transverse 

plane strain tension), while it reaches its maximum of  ̅    for   ⁄      , which 

corresponds to uniaxial tension. The theoretical relationship between the Lode angle 

parameter and the stress triaxiality for the present type of experiment is shown in Fig. 4-2. In 

addition, the biaxial loading angle,  , defined as  

     
  
  
 
 

 
 (4-5) 

is depicted as curve parameter in Fig. 4-2. In this notation,       corresponds to pure 

shear, while       corresponds to transverse plane strain tension.  

4.2.2  Parametric study on specimen geometry 

The geometry of the proposed fracture specimen is described by three geometric 

parameters (Fig. 4-1): the shoulder radius   , the lateral radius    and the fillet radius   . 

The gage section thickness   and height   are not considered as model parameters. From a 

theoretical point of view, the thickness does not affect the stress distribution in a plane stress 

specimen. The width is important and should be as large as possible for stress field 

uniformity. In view of the force limitations of real testing systems, it is usually advantageous 

to increase the specimen width at the expense of thickness. Here, a gage section thickness of 

        is chosen. This corresponds to a lower limit for thicknesses that can still be  
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Figure 4-2: Plot of the Lode angle parameter as a function of the stress triaxiality for plane 

stress conditions. The labels next to the solid dots indicate the corresponding biaxial 

loading angle. 

 

machined within reasonable dimensional tolerances (e.g. thickness variations of less than 

5%). In order to produce transverse plane strain conditions near the specimen center, the 

distance   between the top and bottom shoulders needs to be small. Furthermore, the risk of 

buckling under shear loading may be lowered by choosing a small gage section height. In 

the present design, a thickness of       is chosen to provide a sufficiently large flat area 

for two-dimensional DIC measurements.    

The finite element program Abaqus/explict [1] is used to compute the stress and strain 

fields within specimens of different geometry. The linear plane stress elements CPS4R and 

CPS3 are used in two-dimensional models while the solid elements C3D8R and C3D6 are 

employed to discretize three-dimensional geometries. It will be shown in Section 4.3 that 

very fine meshes are needed to provide an accurate estimation of all local stress and strain 

fields. Within the framework of this subsection, rather coarse finite element meshes are 

employed; however, these are chosen such that the effect of various geometric features can 

still be studied with satisfactory accuracy.  
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4.2.2.1 Effect of the shoulder curvature 

The main reason for introducing the shoulder radius    is to reduce the amount of plastic 

deformation towards the free specimen boundaries, thereby avoiding premature fracture 

away from the specimen center. Since this problem is expected to be most critical for pure 

shear loadings, we performed all simulations for this loading condition using plane stress 

elements. Furthermore, we neglect the deformation of the specimen shoulders and model the 

gage section only (see meshes shown in Fig. 4-3 to 4-5). Three different radii are considered 

to demonstrate the effect of the shoulder curvature:        ,          and 

        . Figure 4-3 to 4-5 includes plots of the variation of the equivalent plastic 

strain and stress triaxiality along the x-direction at an advanced stage of deformation. Each 

solid dot represents the result at one integration point of the plane stress mesh. The plot of 

the stress triaxiality shows a narrow zone at the specimen center with very small (    

    ) variations in stress triaxiality. The width of this zone in x-direction increases as the 

shoulder radius increases (compare Figs. 4-3 to 4-5). The corresponding equivalent plastic 

strain plots show more pronounced variations. For instance, for        , the equivalent 

plastic strain varies from 0.135 to 0.15 within a central zone of       . Note that the 

equivalent plastic strain reaches its maximum at the tangential point between the flat and 

curved boundary of the central gage section. The homogeneity of the strain distribution can 

be improved by increasing the shoulder radius (see Fig. 4-6). Since the small increase in the 

equivalent strain appears to be due to the change in curvature between the flat and round 

shoulder region, we considered a boundary of clothoidial shape where the curvature 

increases linearly with the distance from the specimen center. Figure 4-6 shows the smooth 

plastic strain profile which is obtained for the clothoidally-shaped boundary with the shape 

parameter √   (R is the radius of curvature and L is the length along the clothoidal 

boundary).     
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Figure 4-3: Equivalent plastic strain and stress triaxiality near the specimen center for 
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Figure 4-4: Equivalent plastic strain and stress triaxiality near the specimen center for 
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Figure 4-5: Equivalent plastic strain and stress triaxiality near the specimen center for 
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(a) 

 

(b) 

Figure 4-6: Influence of the shoulder curvature on the equivalent plastic strain : (a) 

Equivalent plastic strain at all integration points within the finite element mesh as a function 

of the corresponding x-coordinates; (b) magnified detail of (a).   
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4.2.2.2 Effect of the lateral boundary curvature 

The effect of the lateral boundary curvature on the maximum equivalent strain is 

investigated for the clothoidal shoulder geometry. The curvature of the lateral boundary is 

described by the radius    in Fig. 4-1. The same intersection points of the lateral boundaries 

with the specimen shoulders are chosen for all plane stress simulations while the lateral 

boundary radius    is varied. Figure 4-7 depicts the variation of the equivalent plastic strain 

at that boundary along the vertical direction (    corresponds to the specimen center line) 

for macroscopic shear loading (    ). The thick solid line shows the strain distribution for 

a straight boundary, i.e.      (configuration “D”). The strain distribution is non-uniform 

and increases monotonically from 0.0 at the specimen center to values as high as 0.1 near 

the specimen shoulder. Increasing the lateral boundary radius decreases the strain near the 

specimen shoulder (Fig. 4-7). Observe from curves A, B and C that the location of 

maximum strain is no longer at the corner with the specimen shoulder. It appears that 

configuration B with a radius of         provides the lowest maximum value of the 

equivalent plastic strain along the lateral boundary. In Fig. 4-7, we also show the results for 

negative curvatures, i.e. configurations where the gage section features an outward notch as 

initially proposed by Mohr and Henn (2007, [105]). The simulation results clearly show that 

these configurations (E and F) lead to very high strain concentrations near the specimen 

shoulders and should thus be avoided.     

4.2.2.3 Effect of the fillet radius 

A 3D solid element model is used to investigate the effect of the fillet radius between 

the specimen gage section and the specimen shoulders for macroscopic tensile loading 

(     ). Figure 4-8 shows the distribution of the stress triaxiality and the equivalent 

plastic strain in the central vertical cross-section (corresponds to section A-A in Fig. 4-1). 

The simulation results for         ,        and        demonstrate that the 

equivalent plastic strain decreases faster from the gage section to the shoulder area for 

smaller fillet radii. On the other hand, small fillet radii induce a peak in stress triaxiality 

within the radius area. For instance, in the case of         , the stress triaxiality  
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Figure 4-7: Variation of the lateral boundary curvature : (A)       , (B)        , (C) 

       , (D)     , (E)          and (F).         
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(a) 

 

(b) 

 

Figure 4-8: Influence of the fillet curvature on the stress  

triaxiality and equivalent plastic strain. 
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increase from 0.58 within the gage section to about 0.8 in the radius region. However, the 

plot of the equivalent plastic strain versus stress triaxiality reveals that the corresponding 

plastic strains at high stress triaxialities are very small. Thus, it is concluded that the choice 

of the fillet radius has only a little effect on the experimental results and should be made 

based on manufacturing constraints.  

4.2.3  Final specimen geometry 

The final specimen, sketched in Fig. 2-12 has the following dimensions: gage section 

thickness        , minimum gage section height      , maximum gage section 

height      , gage section width       , uniform gage section width       , 

free distance between clamps       , lateral boundary radius of         and fillet 

radius of         . The shape of the clothoidal boundary (     ) in the first quadrant is 

given by the Fresnel integrals  
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with the curve length L and the curvature parameter       .  

4.3 Hybrid experimental-numerical analysis procedure 

Specimens of the final geometry are prepared and tested in a dual actuator system 

under four different loading configurations:              and    . In this section, the 

underlying hybrid experimental-numerical analysis procedure is presented. The 

corresponding experimental results are discussed in Section 4.4.    
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4.3.1  Specimen preparation 

The specimens are extracted from the 1.5mm thick sheet material by waterjet cutting. 

The thickness reduction of the gage section is then performed by CNC-machining. The first 

set of specimens is machined using a ball end mill of hemispherical shape; the second set is 

machined using a corner radius end mill. Unlike the ball end mills, the corner radius end 

mill features a small flat area at the bottom of the end mill.    

4.3.2  Dual actuator system   

The tests are performed using a dual actuator system (Mohr and Oswald, 2008, [109]). 

The custom-made dual actuator system applies tangential and normal loads to the 

boundaries of the butterfly specimen, which is clamped using high pressure grips. The 

horizontal actuator applies the tangential force to the lower specimen boundary. As shown in 

Fig 2-3, the lower specimen clamp is mounted onto a low friction sliding table. A load cell 

positioned between the horizontal actuator and the lower specimen clamp measures the 

tangential force. The normal force is applied through the vertical actuator in the upper cross-

head. Two additional load cells are integrated into the lower sliding table to measure the 

total vertical force. Combined tension-shear experiments are performed for biaxial loading 

angles   between 0° and 90°. In all experiments, we observe a sudden drop in force level 

which is considered as the instant of the onset of fracture.  

4.3.3  Optical strain and displacement measurements 

During the tests, Digital Image Correlation (DIC) is used to measure the surface 

displacement and strain fields. For that purpose, two digital cameras (QImaging Retiga 

1300i with 105mm Nikon Nikkor lenses) take about 500 pictures (resolution 1300x1030 

pixels) of the speckle painted front and back surfaces of the specimen. The pictures of the 

front camera are used to determine the displacements of the specimen boundaries 

(translations and rotation). The front camera is positioned at a distance of 1.25m to take 

pictures of the entire specimen (square pixel edge length of 50μm). The photographs of the 
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back face are used to perform accurate DIC measurements of the displacement field at the 

center of the specimen gage section. For that purpose, the second camera is positioned at a 

distance of 0.25m which reduces the square pixel edge length to 9μm. The average speckle 

size is about 70μm on both faces. The displacement field is calculated by DIC (VIC2D, 

Correlated Solutions) based on the assumption of a quadratic transformation of the 35x35 

pixel neighborhood of each point of interest. The engineering axial and shear strains at the 

center of the specimen are computed from the relative horizontal and vertical displacements 

   and    of two points located at the center of the specimen: 

   
  

  
 (4-8) 

    
  

  
 (4-9) 

Both points are located on the vertical axis of symmetry at an initial distance of    

         (180μm). 

4.3.4  Finite Element model 

Simulations of each experiment are carried out using the explicit version of the finite 

element analysis software Abaqus [1]. The non-associated quadratic plasticity model (model 

#5 in Section 2.3) is implemented in a user material subroutine (VUMAT for 

Abaqus/Explicit). Reduced integration 3D solid elements (types C3D6R and C3D8R from 

the Abaqus element library) are used to mesh the specimen. Exploiting the symmetry of the 

specimen geometry, only half of its thickness is modeled. Note that the portion of the 

specimen shoulders between the clamps are not included in the mesh; DIC measurements 

have shown that the slip between the specimen and the high pressure clamp is negligibly 

small.  

The translations and rotations of the straight boundary line between the clamps and the 

specimen shoulders are measured by DIC during each experiment. Subsequently, the 

measured translation and rotation histories are imposed on the boundaries of the computa-  



4.3. Hybrid experimental-numerical analysis procedure 135 

 

 

(a) 

 

 

(b) 

 

Figure 4-9: Boundary conditions during a pure transverse loading (    ). Translation 

(black line) and rotation (blue line) of the lower clamp (a) and the upper clamp (b). 
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ional model. Figure 4-9 shows the corresponding time histories for pure transverse loading 

(    ). Due to the high rigidity of the testing machine, the rotations are very small. 

Assuming zero rotations in the FEA model does not change the predicted force-

displacement curves, but it has a significant effect on the fracture strain: in case of shear 

loading (    ), the fracture strain is about 5% higher when imposing both translations and 

rotations. 

Double precision simulations are run up to the experimentally measured instant of the 

onset of fracture. The loading velocity is artificially modified in order to complete the 

computational analysis after about 600,000 time increments. The mesh size is chosen such 

that dividing all element dimensions by two does not change the computed fracture strain by 

more than 0.5%. Spatial discretization errors are mostly significant in regions where strain 

gradients are steep; thus, different meshes are used for tension-dominated loadings (      

and    ) and for shear-dominated loadings (     and    ). In tension-dominated 

experiments, strains localize through the thickness at the center of the gage section; 

consequently, the corresponding mesh features eight elements in the through-thickness 

direction. On the other hand, the meshes used to simulate shear-dominated experiments have 

only four elements through the thickness, while an increased mesh density along the width 

of the gage section is required. Both meshes consist of about 70,000 elements. Their main 

characteristics are summarized in Table 4-1. Note that both meshes are very fine with 

elements dimensions close to the actual grain size of the TRIP steel.  

 

 

Table 4-1: Characteristics of meshes used in Finite Element Simulations 

Loading 

Number of elements  

in the gage section 
Size of the critical element [µm] 

Height Width Thickness Height Width Thickness 

Shear-dominated 60 210 4 36 215 65 

Tension-

dominated 
80 54 8 26 788 32 
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(a)  

(b)  

Figure 4-10: Influence of the specimen machining on a pure transverse loading experiment 

(    ). (a) Schematic of a ball end mill. (b) Schematic of a corner radius end mill. (c) 

Force displacement curves for a specimen prepared with ball end mills (red line) and for 

two specimens prepared with corner radius end mills (black lines) submitted to a pure 

transverse loading:     . (d) Engineering shear strain along the vertical symmetry axis of 

the specimen as measured by DIC on the surface of the specimen prepared with ball end 

mills (red points) or prepared with corner radius end mills (black points), and as computed 

by FEA for a mesh with a flat gage section (black line) or with a 10µm groove along the 

fillets (red line). The position 0 corresponds to the horizontal axis of symmetry of the 

specimen. 
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4.4 Results 

4.4.1  Effect of the milling procedure 

The sensitivity of the experimental results with respect to the machining process is 

investigated for pure shear loading experiments (    ). Figure 4-10a shows the measured 

force-displacement curves for specimens machined with ball and corner end mills, 

respectively. Observe that the horizontal displacement at which fracture occurs is about 55% 

lower for the specimen machined with ball end mills (red line in Fig. 4-10a). Figure 4-10b 

depicts the engineering shear strain at the surface for each type of specimen; it is plotted 

along the vertical axis of symmetry for a horizontal displacement of 1.5mm. In the specimen 

machined with the ball end mill (red dotted line in Fig. 4-10b), the strain remains constant 

along the vertical direction near the center of the gage section, but it exhibits pronounced 

peaks near the boundaries between the gage section and the specimen shoulders. The 

specimen machined with the corner radius end mill (black points in Fig. 4-10b) shows a 

more or less constant strain throughout the entire gage section. It is speculated that the use of 

a ball end mill has created a groove at the boundary of the clothoidally-shaped shoulder 

region. To shed more light on this issue, we introduced a      deep groove into the finite 

element mesh and ran the simulation to the same horizontal displacement as in the 

experiment. The corresponding simulation results confirm the experimentally-observed 

localization of shear deformation (red solid line in Fig. 4-10b), while a uniform shear strain 

distribution is observed for a simulation without groove (black solid line in Fig. 4-10b). 

Based on these observations, all subsequent experimental results are reported for specimens 

that have been machined using a corner radius end mill.  

4.4.2  Experimental results 

Experiments are performed for four different loading conditions:              and 

   . Pure shear and pure tension experiments (at      and      , respectively) are 

performed under displacement control, while both combined loading experiments (      
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and    ) are initially performed under force control, to guarantee proportional loading 

conditions. For       and    , the control mode is switched to displacement control 

shortly before the onset of localization to track the decreasing load thereafter. From each 

experiment, we obtain (1) the tangential force versus horizontal displacement curve and (2) 

the axial force versus vertical displacement curve. In addition, the evolution of engineering 

shear and axial strains is recorded. The measured force-displacement curves are depicted 

with black solid dots (blue solid dots represent the measured strain evolution at the specimen 

center) in Fig. 4-11b (    ), Fig. 4-11e-f (     ), Fig. 4-11c-d (     ) and Fig. 4-

11a (     ).  

In experiments with tension-dominated loading (      and      ), the vertical 

force-displacement curves exhibit a peak prior to fracture (see Figs. 4-11a and 4-11c). This 

maximum seems to coincide with the onset of localized necking. Note that this force peak is 

also associated with a noticeable surface strain rate increase at the center of the gage section 

(see Figs. 4-11a and 4-11c-d). The deformation localizes at the center of the specimen which 

leads to a pronounced thickness reduction in the form of a neck and subsequent onset of 

fracture.  

In the shear-dominated experiments (     and      ), the measured force-

displacement curves increase monotonically until fracture (Figs. 4-11b and 4-11e-f). At the 

same time, the engineering surface strains at the specimen center increase almost linearly 

with respect to the displacement. However, full-field DIC shows that, for large 

deformations, the deformation localizes along the clothoidally-shaped shoulders, away from 

the vertical axis of symmetry of the specimen. Figure 11a shows a contour plot of the 

maximum principal Lagrangian surface strain as measured by DIC close to the instant of 

failure for      . Since similar observations are made for     , it is tentatively 

concluded that fracture initiates along the shoulder radius for shear-dominated loading 

conditions. 

Regardless of the loading condition, the crack propagation is unstable, i.e. it is not 

possible to stop the experiment before the initiated crack has traveled through the entire  
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Figure 4-11: Experimental (dots) and simulation (lines) results. (a):      . (b):     . (c) 

and (d):      . (e) and (f):      . The force displacement curves are depicted in black, 

while engineering surface strains are plotted in blue. 
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gage section, breaking the specimen into two pieces (Fig. 4-13). It is therefore not possible 

to determine experimentally the location of fracture initiation.  

4.4.3  Comparison of simulations and experiments 

Figure 4-11 includes the simulation results for all four loading conditions. The 

simulated force-displacement curves are depicted with black solid lines, while the evolution 

of engineering axial and shear strains are plotted with blue solid lines. In case of pure tensile 

loading (     , in Fig. 4-11a), the correlation between simulation and experimental 

results is good for small displacements. However, the force level predicted by FEA is too 

high for displacements larger than 0.3mm. At the onset of fracture, the computed vertical 

force is about 9% higher than the experimental measurement. Note also that the 

characteristic force peak, which is associated with the onset of through-thickness 

localization, occurs later in the simulation. As a result, the axial engineering surface strain at 

the onset of fracture is about 18% lower in the simulation than in the experiment which 

corresponds to an absolute difference in strain of 0.086.  

The numerical results for       (Fig. 4-11c-d) are in good agreement with 

experimental results. The simulation is able to predict accurately the vertical and horizontal 

force histories, including the drop in force level prior to fracture. Shear and axial strains are 

also predicted with great accuracy. The relative difference between strains computed by 

FEA and those measured by DIC is about 6% 

The simulation results for shear-dominated experiments (     in Fig. 4-11b and 

      in Fig. 4-11.e-f) agree well with the experimental measurements up to about 85% 

of the displacement to fracture. Thereafter, the simulation results show an abrupt increase in 

strain rate while experimental shear and axial strains increase linearly all the way to fracture 

in both cases. As a result, at the instant of onset of fracture, surface strains obtained from 

FEA are much higher than the experimental measurements at the center of the gage section. 

For the loading at      , the computed engineering axial and shear strains at fracture are 

respectively 0.15 and 1.56, compared to 0.14 and 1.11 measured by DIC (note that the paint 

did not peel off despite these large strains). Also observe that this increase of strain rate cor- 
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(a) 

 

(b) 

Figure 4-12: Principal strain at the surface of a specimen loaded with an angle       just 

before failure, as measured by DIC (a) and as computed by FEA (b). Black dotted lines 

depict the axes of symmetry. Note that DIC measures Lagrangian strains while FEA 

computes logarithmic strains. Arrows show the orientation of the transverse loading. 

 

relates with a drop of the predicted horizontal force (Fig. 4-11f) and a substantial increase of 

the predicted vertical force (Fig. 4-11e); both phenomena are not observed in the 

corresponding experiments. Further analysis of the simulation results reveals that those 

abrupt strain rate increases are associated with the development of a narrow band of strain 

localization. Figure 4-12b depicts the contour plot of the maximum principal strain on the 

surface of a specimen submitted to a loading angle of      , as computed by FEA at the 
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instant of fracture.  The comparison with Fig. 4-12a shows that the localization of 

deformation is less severe in the experiment and does not extend from the specimen 

shoulders to the specimen center.  

4.4.4  Local stress and strain histories 

For each loading angle, we identify the location of the so-called ‘critical element’ 

where the equivalent plastic strain reaches its maximum at the instant of onset of fracture. 

Figure 4-14 shows the evolution of the equivalent plastic strain  ̅  as a function of the stress 

triaxiality   (Fig. 13a) and the Lode angle parameter  ̅ (Fig. 4-14b) at the locations of the 

respective ‘critical elements’. These four locations are represented by solid dots on the 

fractured specimens shown in Fig. 4-13.  Diamond shaped dots in Fig. 4-14 indicate the 

points where the reliability of the simulations breaks down. Recall that the comparisons of 

the experimental and numerical results had shown that the finite element simulations of the 

shear-dominated experiments are no longer reliable after the appearance of a band of strain 

localization. 

In tension-dominated experiments (     , in black in Fig. 4-14 and      , in 

red), the stress triaxiality is initially constant and then increases in a linear manner after the 

onset of through-thickness necking; a stress triaxiality of about 0.68 is reached at the onset 

of fracture in both experiments. Note that this increase is due to the development of a three-

dimensional stress state inside the neck. For pure tensile loading, we observe a nearly 

constant Lode angle parameter of  ̅   . In shear-dominated experiments, both stress 

triaxiality and Lode angle are approximately constant throughout loading. Observe that the 

TRIP780 material exhibits a very large ductility: the determined strains are greater than 0.6 

in both shear-dominated experiments, while a strain of 0.92 is reached for loading at 

     . Furthermore, it is worth noting that the apparent strain to fracture for       is 

almost twice as high as that for       even though the stress-triaxiality is the same at the 

instant of onset of fracture. This comparison clearly demonstrates that the strain to fracture 

does not depend on the stress triaxiality only. For example, the effect of loading history and/ 

 



144 Chapter 4. Fracture experiments under combined normal and shear loading 

(a)  

(b)  

(c)  

(d)  

 

Figure 4-13: Fractured specimens for different loading cases : (a)     ; (b)      ; (c) 

     ; (d)      . The vertical white lines indicate the position of the vertical axis of 

symmetry of the undeformed geometry. Black dots highlight the position where fracture is 

assumed to initiate according to the ‘critical element’ definition.   
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(a)  

(b)  

 

Figure 4-14: Loading paths for four loading conditions at the location of the corresponding 

‘critical element’ (in solid lines) and at the center of the gage section (in dashed lines): 

Evolution of equivalent plastic strain as a function of (a) the stress triaxiality, and (b) the 

Lode angle parameter. Diamonds shaped dots indicate the instant when the reliability of the 

simulations of shear-dominated experiments breaks down. 
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or the effect of the Lode angle need to be taken into account in order to predict the onset of 

ductile fracture.   

In shear-dominated experiments, the ‘critical element’ is located near the gage section 

boundary with the specimen shoulder (see Figs. 4-13a and 4-13b), while the highest 

equivalent strain is reached at the specimen center for the two tension-dominated loading 

cases. For reference, we also show the results at the specimen center for shear-dominated 

loading (dashed lines in Fig. 4-14). Observe that the equivalent plastic strain at the center of 

the gage section is about 20% lower than the strain inside the ‘critical element’. Note that 

the stress triaxialities are approximately the same at the two locations in each specimen, 

while the Lode angle parameter is lower by almost 0.2 at the center of the gage section for 

    . 

4.5 Discussion 

4.5.1  Strain localization during loading 

The localization of deformation within the specimen gage section occurs in all 

experiments. For tension-dominated loadings, we observe through-thickness necking which 

results in the development of three dimensional stress and strain states near the specimen 

center. It appears to be impossible to avoid this type of localization in experiments where the 

sheet mid-plane remains flat. In shear-dominated experiments, the deformation localizes 

along the gage section shoulders at very large strains. It is worth noting that the strain field 

is still approximately homogeneous at the gage section center for engineering shear strains 

of about 1.0. However, strain gradients of the order of          are present after the onset 

of strain localization (estimated based on the FE results shown in Fig 4-12). Clearly, very 

fine meshes are required to describe the strain localization under shear-dominated loading; 

coarse meshes would result in significant approximation errors especially for the fracture 

strain.  
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As far as the plasticity model is concerned, we note that our estimates of the local 

stress and strain fields are based on a simple phenomenological local plasticity model. The 

presence of large strain gradients may require the use of non-local material theories such as 

strain gradient plasticity models (e.g. Gurtin and Anand, 2005, [67]). Furthermore, the 

evolution of the mesostructure (void nucleation, growth and shape change) may need to be 

taken into account at very large strains (e.g. Danas and Ponte Castaneda, 2009, [46]). 

4.5.2  Determination of the location of fracture initiation 

In the present hybrid experimental-numerical procedure, the location of the onset of 

fracture cannot be determined experimentally. It is reemphasized that the loading histories 

shown in Fig. 4-14 have been identified based on the assumption that fracture initiates at the 

location of the maximum equivalent plastic strain. However, since the exact location of the 

onset of fracture is unknown, there is no experimental evidence that fracture initiates at a 

specific material point. The only conclusion that may be drawn is that the material remains 

intact when subject to the loading histories shown in Fig. 4-14. In other words, the end 

points of the trajectories shown in Fig. 4-14 should be interpreted as a lower bound rather 

than as the exact instant of onset of fracture for a particular loading history.   

In order to discuss the possible uncertainty associated with the assumption of the 

critical element definition, we plotted the simulation results for all Gauss integration points 

within the gage section in the same (   ̅ )- and ( ̅  ̅ )-diagrams (Fig. 4-15). The results for 

tension-dominated experiments (red and black in Fig. 4-15) are plotted for the instant of 

onset of fracture, while the results for shear-dominated experiments (blue and green in Fig 

4-15) are extracted from the simulation results shortly before the reliability of the 

simulations breaks down due to the development of a localization band. For       (green 

dots in Fig. 4-15), we observe that the equivalent strain reaches very high values at many 

integration points at the instant of onset of fracture. At the same time, the stress triaxiality 

varies significantly among these data points. For instance, the stress triaxiality (resp. Lode 

angle parameter) varies from 0.15 (resp. 0.44, for elements located on the surface of the 

specimen) to 0.25 (resp. 0.60, for elements located at mid-thickness) at the integration points  
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(a)  

(b)  

Figure 4-15: Stress and strain states for four loading conditions. (a) stress triaxiality versus 

equivalent plastic strain; (b) Lode angle versus equivalent plastic strain space. The dots 

represent the results at the Gauss points of the finite element mesh. The large dots 

correspond to the ‘critical elements’. Results are plotted at the instant of onset of fracture 

for the tension dominated loadings (in red and black) and shortly before the formation of a 

deformation localization band for the shear-dominated loadings (in blue and green). 
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where the equivalent plastic strain exceeds 98% of the value of the ‘critical element’. Thus, 

it is difficult to justify the specific choice of the ‘critical element’ without any experimental 

evidence on the location of the onset of fracture. This problem appears to be less significant 

for       and      . For these loading conditions, the data clouds in Fig. 4-15 show a 

more pronounced strain peak within a narrow range of stress triaxialities.  

4.6 Concluding remarks 

The experimental technique by Mohr and Henn (2007, [105]) for the combined shear 

and tension fracture testing of metals has been revisited. The butterfly specimen design has 

been optimized further to increase the homogeneity of the stress and strain fields at the 

specimen center. Subsequently, a hybrid experimental-numerical analysis is performed for 

fracture experiments on TRIP780 steel specimens submitted to different combinations of 

loading ranging from pure shear to transverse plane strain tension. It is concluded that: 

(1) The experimental results are very sensitive to inaccuracies in the initial 

specimen dimensions. It is important to verify the exact specimen 

geometry after machining to guarantee that local thickness variations do 

not exceed     .  

(2) For shear-dominated loading, a band of localized deformation emerges 

as the engineering shear strains exceed 1.0. For tensile-dominated 

loading, through-thickness necking initiates at equivalent plastic strains 

of less than 0.3.  

(3) Both the stress triaxiality and the Lode angle parameter remain more or 

less constant for shear-dominated loading conditions. In the case of 

tension-dominated loading, we observe a linear increase in stress 

triaxiality after the onset of through-thickness necking.  

(4) The numerical simulations agree with the experimental results for 

tensile-dominated loading. However, numerical predictions for shear-
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dominated loading become invalid with the development of a band of 

strain localization.  

(5) The results indicate that the equivalent plastic strain at the onset of 

fracture cannot be expressed as a function of the stress triaxiality only. 

We observed significantly different strains to fracture for two specimens 

that had been subject to different loading histories, but which failed at 

the same stress triaxiality.  

The loading paths have been determined in terms of equivalent plastic strain, stress 

triaxiality and Lode angle parameter for selected elements within the specimen gage section. 

It is recommended to interpret the determined strains to fracture as a lower bound for the 

respective loading histories since the exact location of the onset of fracture could not be 

determined experimentally. 
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5.1 Introduction 

In this Chapter, the fracture prediction capabilities of the shear-modified Gurson 

model by Nielsen and Tvergaard (2010, [118]) and the Modified Mohr-Coulomb (MMC) 

fracture model (Bai and Wierzbicki, 2010, [5]) are investigated for a representative 

advanced high strength steel sheet material. Both phenomenological fracture models are 

physics-inspired and take the effect of the first and third stress tensor invariants into account 

in predicting the onset of ductile fracture. The MMC model is based on the assumption that 

the initiation of fracture is determined by a critical stress state, while the shear-modified 

Gurson model assumes void growth as the governing mechanism. The results from an 

extensive experimental program (Chapter 3 and Chapter 4) are used to calibrate and validate 

the fracture models. The program includes fracture experiments under nine different loading 

conditions thereby covering a wide range of stress triaxialities and Lode angles. After 

calibration of the model parameters using inverse methods, the models are evaluated based 

on their ability to predict the fracture displacements in experiments that have not been used 

for calibration. It is found that the MMC model predictions agree well with all experiments 

(less than 4% error), while less accurate predictions are observed for the shear-modified 

Gurson model. A comparison of plots of the strain to fracture as a function of the stress 

triaxiality and the normalized third invariant reveals significant differences between the two 

models except within the vicinity of stress states that have been used for calibration 

5.2 Experimental results 

Experimental results are used to identify the material model parameters and to assess 

the predictive capabilities of the fracture models. Nine distinct experiments have been 

performed to characterize the fracture response. We briefly recall the experimental 

procedures that have been detailed in Chapter 3 and Chapter 4.  
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5.2.1  Tensile experiments 

Tensile experiments are performed on flat specimens with circular cutouts (Figs. 3-1a 

to 3-1c) and on a flat specimen with a central hole (Fig. 3-1d). The specimen loading axis is 

always oriented along the rolling direction. All notched specimens are 20mm wide and 

feature a b=10mm wide notched gage section. Specimens with three different notched radii 

are prepared: R=20mm, R=10mm and R=6.67mm. A forth type of specimen featuring an 

8mm diameter circular hole at the center is also used. All experiments are carried out under 

displacement control at a constant crosshead velocity of 0.5mm/min. Digital Image 

Correlation (DIC) is used to measure the relative displacement of specimen boundaries and 

the displacement field at the center of the gage section. The measured force-displacement 

curves are depicted in Fig 5-1 with black dots. For all four geometries, a force maximum is 

reached before fracture occurs. It is associated with the onset of through-the-thickness 

necking at the specimen center for the notched geometries and in the two specimen 

ligaments for the central hole geometry. 

The instant of the onset of fracture is defined through the first discontinuity in the 

measured surface displacement field. In all tests, the appearance of the first surface crack 

also corresponds to a sudden drop of the applied force. The corresponding relative 

displacement of the specimen boundaries is referred to as “displacement to fracture” or 

“fracture displacement”. Three specimens of each geometry are tested. The variations in the 

measured fracture displacement are less than 1.3% for each notched geometry, and about 

2.2% for the specimen with a central hole. 

5.2.2  Circular punch experiment 

A sheet specimen is clamped on a circular die and subsequently loaded through a 

hemispherical punch. The punch and die have a diameter of 44.5mm and 100mm, 

respectively. The clamping pressure is applied through eight M10-12.9 screws. The 

experiment is carried out on a screw-driven universal testing machine (MTS, Model G45) at 

a constant punch velocity of 5mm/min. In order to limit the effects of friction, a stack of six  
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(a)  

(b)  

 

 

Figure 5-1: Force displacement curves for tensile specimens with (a) a 20mm notch, (b) a 

10mm notch, (c) a 6.67mm notch and (d) a central hole. Experimental results are depicted 
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(c)  

(d)  

 

in black, numerical results using the 4-parameters MMC model in red, the 3-parameters 

MMC model in green and the Nieslsen-Tvergaard model in blue. Vertical dashed line show 

displacements to fracture. 
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Figure 5-2: Force displacement curves for the punch experiment. Experimental results 

depicted in black, numerical results using the 4-parameters MMC model in red, the 3-

parameters MMC model in green and the Nieslsen-Tvergaard model in blue. Vertical 

dashed line show displacements to fracture. 

 

oil-lubricated 90µm thick Teflon layers is put between the specimen and the punch during 

each test. Three-dimensional Digital Image Correlation is used to measure the out-of-plane 

deformation of the specimen. The applied force versus punch displacement curve is depicted 

with black dots in Fig. 5-2; it increases monotonically until a sharp drop in the force level is 

observed at the instant of the onset of fracture. 

5.2.3  Multi-axial fracture experiments 

Bi-axial fracture experiments are carried out in a dual actuator system (Mohr and 

Oswald, 2008, [109]) that permits to apply a combination of normal and transverse loads to 

the boundaries of a butterfly-shaped specimen. The specimen geometry is sketched in Fig. 2-
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12; it features a gage section of reduced thickness which is bounded by shoulders of clothoid 

shape. The butterfly specimen has been designed such that fracture initiates at the center of 

the gage section, remote from the lateral free edges. The ratio of the applied vertical force    

and the horizontal force   , is characterized by the biaxial loading angle  : 

     
  
  

 (5-1) 

     corresponds to pure shear while       corresponds to transverse plane strain 

tension. Four different loading conditions are investigated:      (pure shear),       

(shear-dominated),       (tension dominated) and       (transverse plane strain 

tension). All experiments are performed under force control to enforce a constant loading 

angle  . During the experiments for       and    , the control mode is switched to 

displacement control shortly before the onset of localized necking; the actuator velocities are 

chosen such that   remains approximately constant. Displacements of the specimen 

boundaries (both translations and possible rotations) are recorded by Digital Image 

Correlation (DIC) throughout the experiments. 

For each experiment, we measure two force-displacement curves: (1) the tangential 

force versus horizontal displacement curve, and (2) the axial force versus vertical 

displacement curve (depicted with black dots in Fig. 5-3). In experiments for tension-

dominated loading (      and      ), the vertical force-displacement curves exhibit a 

peak prior to fracture, which seems to coincide with the onset of localized necking. In the 

shear-dominated experiments (     and      ), the measured force-displacement 

curves increase monotonically until fracture. The fracture displacement is defined as the 

relative displacement (either horizontal or vertical) of the specimen boundaries at which a 

sudden drop of force occurs. 

5.2.4  Stress and strain states 

In almost all experiments described above, plastic deformation localizes within the 

gage section prior to fracture. A finite element simulation is performed of each experiment 

to obtain the stress and strain history at the location of fracture initiation. All specimens are 
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 (e) (f) 

 

Figure 5-3: Force displacement curves for the butterfly experiments. (a):      . (b): 

    . (c) and (d):      . (e) and (f):      . Experimental results depicted in black, 

numerical results using the 4-parameters MMC model in red, the 3-parameters MMC model 

in green and the Nieslsen-Tvergaard model in blue. Vertical dashed line show 

displacements to fracture. 

 

meshed with reduced-integration eight-node 3D elements (type C3D8R of the 

Abaqus/Explicit library). Exploiting the symmetry of the specimen geometry, only half of 

the butterfly specimen, a quarter of the punch specimen and an eighth of tensile specimens 

are meshed. Details on the FE meshes and discretization errors are given in Chapter 3. The 

displacements measured by DIC are directly imposed as boundary conditions in the 

numerical model. 

Table 5-1 provides an overview on the stress states and maximum strains reached in 

different specimens as obtained from hybrid experimental-numerical analysis. The final 

strain corresponds to the maximum equivalent plastic strain within the specimen gage  
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Table 5-1: Experimental program. 

Experiment  Stress state: initial / average / final  Final strain [-] 

Specimen Characteristic  Triaxiality   [-] Third invariant   [-]   

butterfly       0.06 / 0.09 / 0.12 0.24 / 0.31 / 0.35  1.04 

butterfly        0.16 / 0.16 / 0.17 0.67 / 0.65 / 0.60  1.08 

butterfly        0.39 / 0.51 / 0.68 0.94 / 0.87 / 0.85  0.93 

butterfly        0.57 / 0.58 / 0.61 0.02 / 0.02 / 0.0  0.33 

central hole   0.33 / 0.30 / 0.26 0.99 / 0.97 / 0.91  0.79 

notched R=6.67mm  0.47 / 0.53 / 0.62 0.68 / 0.54 / 0.30  0.42 

notched R=10mm  0.44 / 0.51 / 0.64 0.82 / 0.63 / 0.32  0.51 

notched R=20mm  0.38 / 0.47 / 0.64 0.96 / 0.77 / 0.42  0.59 

punch   0.65 / 0.66 / 0.66 -1.00  0.90 

 

Figure 5-4: Average stress state in each experiment at the location where the highest 

equivalent plastic strain is reached. Experiments used to calibrate the 4-parameter MMC 

model are depicted with red stars, while experiments used to calibrate the Nielsen-

Tvergaard model are depicted with blue crosses. The black dashed line show the relation 

between stress triaxiality and third stress invariant in case of plane stress condition. 
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section when the fracture displacement is reached. The average triaxiality and normalized 

third invariants, defined as  

    
 

  
∫    ̅ 

  

 

       
 

  
∫    ̅ 

  

 

 (5-2) 

are reported for the integration point of the highest equivalent plastic strain. The 

experimental program for the TRIP steel covers the entire range of positive stress 

triaxialities accessible in sheet materials (      ⁄ ), and the full range of third stress 

invariants (      ), as illustrated in Fig. 5-4. 

5.3 Phenomenological approach (uncoupled model) 

We make use of a non-associated plasticity model which has been validated for a 

series of uniaxial and multi-axial plasticity experiments (Chapter 2). The damage 

accumulation will be modeled independently using the so-called Modified Mohr-Coulomb 

(MMC) model (Bai and Wierzbicki, 2010, [5]). This particular weighting function is 

considered as it includes parameters that can adjust the damage accumulation function for 

low and high stress triaxialities as well as the Lode angle parameter.  

5.3.1  Plasticity Model 

The plasticity model presented in Chapter 2 with calibration #5 is used. We make use 

of a planar isotropic quadratic yield function,  

 (   )   ̅       ̅  √(  )    (5-3) 

in conjunction with a non-associated flow rule  

      
  

  
 (5-4) 

     denotes the plastic multiplier. The anisotropic quadratic flow potential reads  
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  √(  )    (5-5) 

P and G are symmetric positive-semidefinite matrices, with  ̅    and     if and only if 

  is a hydrostatic stress state. The values for the non-zero components of P and G are given 

in Table 5-2.    denotes the Cauchy stress vector in material coordinates,  

  [               ]  (5-6) 

The components   ,     and    represent the true normal stress in the rolling, transverse and 

out-of-plane directions;   denotes the corresponding in-plane shear stress, while     and 

     represent the corresponding out-of-plane shear stresses. Isotropic strain hardening is 

described as  

    ( ̅ )  ̅  (5-7) 

where    ( ̅ ) defines the strain hardening modulus. The strain hardening response of the 

material is modeled by a piecewise-linear stress-strain curve which has been determined 

from biaxial punch experiments and validated for multi-axial loading conditions, as detailed 

in Chapter 3 and Chapter 4. 

 

Table 5-2: Plasticity model coefficients. 

Yield function   Flow potential 

                                                         

1.00 -0.47 -0.53 1.00 -0.53 1.06 2.94  1.00 -0.47 -0.53 0.94 -0.47 1.00 2.64 

 

 

Table 5-3: Strain hardening parameters 

K [MPa]    [-]   [-] 

1460 1.63 x 10
-3

 0.204 
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5.3.2  MMC fracture model 

The original Mohr-Coulomb failure criterion (Mohr, 1900, [110]) is formulated in the 

stress space and assumes that failure occurs when the shear and normal stresses on any plane 

of normal vector n verify the condition 

   
 
(      )     (5-8) 

with the friction coefficient    and the cohesion   . Bai and Wierzbicki (2010, [5]) 

transformed Eq. (5-8) into the space of stress triaxiality, Lode angle and equivalent plastic 

strain to fracture assuming proportional monotonic loading, a pressure and Lode angle 

dependent isotropic plasticity model, and isotropic strain hardening according to the power 

law. The resulting explicit expression for the fracture strain reads 
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with 

   ( )  {
        
          

 (5-10) 

The exponent n describes the strain hardening of the material. The coefficient    is related to 

   in Eq. (5-8), while    and     characterize the dependence of the underlying plasticity 

model on the third stress invariant.    controls the amount of Lode angle dependence of the 

fracture locus and    ( ) controls the asymmetry of the fracture locus with respect to the 

plane    . Despite the discontinuity of    ( ), the fracture strain  ̂(   ) is a continuous 

function of the stress invariants   and  . To apply the MMC fracture model for non-

proportional loadings, Bai and Wierzbicki (2010, [5]) make use of Eq. (5-9) as reference 

strain in Eq. (1-1).  
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5.3.3  Calibration 

Even though the expression for  ̂(   ) is obtained from rigorous analytical derivations, 

the model parameters of the MMC model are identified through inverse calibration while 

their physical meaning is disregarded (Luo et al., 2010, [97]). This is due to the fact that the 

underlying plasticity model is not applicable to most engineering materials (e.g. the plastic 

behavior is pressure-independent). Furthermore, experimental evidence supporting the 

validity of the stress-based Mohr-Coulomb model is still scarce and the plasticity model 

parameters that control the pressure and Lode angle dependency are used (or abused) to 

obtain a good agreement of model predictions and experiments. Equation (5-9) is therefore 

considered as a physics-inspired function for the reference failure strain in an uncoupled 

damage model. 

 The power law exponent   is determined from the stress-strain curve for uniaxial 

tension while all other parameters:   ,   ,    and     are calibrated based on fracture 

experiments. We calibrate the four MMC model parameters using the three butterfly fracture 

experiments (at     ,       and      ) and the punch test. These four experiments 

cover a wide range of positive stress triaxialities and the complete range of third stress 

invariants (      ). The calibration consists in finding a set of parameters 

[         ] such that the model describes correctly the onset of fracture in all 

calibration experiments. This is done by minimizing the least square error (LSE) function  
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where N=4 is the number of calibration tests.  ( )  ( ) and  ̅ ( ) are the loading histories 

for the critical element where fracture is assumed to initiate. Recall that the constitutive 

equations are not coupled to damage evolution and hence the loading histories are 

independent from the fracture parameters             . An approximation of the minimum 

of Eq. (5-11) is determined through Monte Carlo sampling. A typical first guess for the 

critical element can be the integration point where the equivalent plastic strain is maximal 

when fracture displacement is reached. To validate the set of parameters obtained from 
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minimization of Eq. (5-11), it must be verified a posteriori that the chosen critical element is 

indeed the point where the damage indicator   is the highest at the instant of onset of 

fracture. The identified MMC model parameters are given in Table 5-4. They correspond to 

a least square error of         , showing that the MMC criterion is able to perfectly fit 

the results of all four calibration experiments.  

As an alternative to the four parameter MMC model (referred to as MMC4), an 

attempt is made to calibrate a simplified three parameter version of the MMC model 

(MMC3) where       is imposed prior to calibration (Beese et al., 2010, [17]). In this 

case, all nine tests are used for calibration. The least square error is             . 

Optimized parameters are given in Table 5-4. 

 

Table 5-4: Parameters of the Modified Mohr-Coulomb fracture model. 

Calibration    [-]    [-]    [-]     [-]   [-] LSE [-] 

MMC4 0.3472 0.9098 1.7003 1.546 0.204 < 10
-4

 

MMC3 0.2416 1.2820 1.2741 1 0.204 5.4 10
-2

 

5.4 Shear-modified Gurson model 

As outlined in the introduction, numerous modifications of the original Gurson model 

have been proposed to model ductile fracture. Here, we briefly recall the constitutive 

equations of a recent extension by Nielsen and Tvergaard (2010, [118]) which includes all 

features of the original Gurson model as well as the effect of the third invariant on the 

damage accumulation. 
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5.4.1  Constitutive equations of the coupled plasticity and fracture 

model 

In the framework of the Gurson model (1977, [66]), the material state is described by 

the void volume fraction f, the macroscopic plastic strain tensor   , and the deformation 

resistance   of the (undamaged) matrix material. According to the GTN-model, the 

macroscopic yield surface is given by  (     )   , where  

 (     )  (
 ̅

 
)
 

     
     (

 

 
  
  
 
 )  (   

 )    (5-12) 

is a function of the equivalent stress  ̅ and the mean stress    at the macroscopic level.    

and    are model parameters (Tvergaard, 1981, [144]), while the function      ( ) 

accounts for the loss of load carrying capacity before fracture (Tvergaard and Needleman, 

1984, [148]): 

   {

        

   
    
     

(  
    )        

      
  

 

  
 (5-13) 

The plastic anisotropy of the TRIP-assisted steel is introduced in the yield surface through 

the use of the Hill’48 equivalent stress  ̅. This technique is widely used in the literature (e.g. 

Grange et al., 2000, [63]; Benzarga & Besson, 2001, [19]) to apply Gurson type models to 

orthotropic materials. 

An associated flow rule is adopted  

 ̇   ̇ (
 

 
) (
  

  
) (5-14) 

where  ̇ is the plastic multiplier. The use of a non-associated flow rule is omitted in the case 

of the shear-modified Gurson model, since Stoughton’s (2002, [134]) proof of the 

uniqueness of stress and strain states and the stability of plastic flow for non-associated 

plasticity models is limited to quadratic flow potentials. 

The macroscopic and matrix behaviors are coupled through the rate of plastic work 

equivalence  
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   ̇  (   )   ̇ (5-15) 

while the strain hardening behavior of the matrix material is modeled by a modified Swift 

law 

   (     )
  (5-16) 

with the three material parameters K, ε0 and n.  

In the original GTN-model, the first term of the differential equation describing the 

evolution of the void volume fraction, 

 ̇  (   ) ̇        ̇ (5-17) 

is obtained from micromechanical analysis; it accounts for the growth of voids due to 

hydrostatic stress. The second term accounts for the nucleation of voids. Assuming that only 

plastic strain controlled void nucleation takes place, the nucleation coefficient   is given by 

(Chu & Needleman, 1980, [38]) 

  {

  

  √  
   { 

 

 
(
     
  

)
 

}        

        

 (5-18) 

where    represents the total amount of voids to be nucleated per unit volume,    is the 

average nucleation strain and    denotes the standard deviation of the assumed Gaussian 

void nucleation strain distribution. Voids nucleate only under positive stress triaxialities. 

The shear modified GTN-model considered in this study reads 

 ̇  (   ) ̇       ̇       ( )
   ̇ 

   
 (5-19) 

with the parameter    and the stress-state dependent weighting function  ( ). The special 

case of   ( )   ( ) corresponds to the extension proposed by Nahshon and Hutchinson 

(2008, [112]). Nielsen and Tvergaard (2010, [118]) propose a slightly different weighting 

function for the third term,  
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  ( )   ( ) ( )       ( )  
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The weighing factor  ( ) makes the shear correction term only active for stress triaxialities 

smaller than    . Note that when imposing      in (5-19), or           in (5-20), 

the Nielsen-Tvergaard model reduces to the well-known Gurson-Tvergaard-Needleman 

(GTN) model (Tvergaard and Needleman, 1984, [148]). Similarly, when setting        

   in (5-20), the Nahshon-Hutchinson model (2008, [112]) is obtained.  

It is emphasized that the original physical meaning of f is lost due to the addition of 

the empirical third term in (5-19). In other words,   can no longer be seen as the void 

volume fraction and is interpreted as an empirical damage parameter. Furthermore, the 

assumption of the original GTN-model of equal plastic dissipation at the macroscopic level 

and within the matrix material breaks down in the case of the shear modified Gurson models 

by Nahshon and Hutchinson (2008, [112]) and Nielsen and Tvergaard (2010[118]). 

5.4.2  Calibration 

The shear-modified Gurson model is implemented into the finite element software 

Abaqus/explicit using a standard elastic predictor / return mapping algorithm (e.g. Simo and 

Hughes, 1998, [132]). The loss of the stress carrying capacity with increasing   can lead to 

numerical instabilities (in particular as     ). To avoid this problem, the damage 

accumulation is stopped when the damage parameter reaches         (as suggested in 

Nielsen and Tvergaard (2010, [118])). Fourteen material parameters need to be calibrated:  

 the matrix strain hardening parameters K,    and n 

 the macroscopic yield function coefficients    and     

 the initial void volume fraction    , the void volume fractions at the onset of void 

coalescence     and at fracture     

 the void nucleation parameters   ,    and    
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 the shear damage parameters   ,    and    

The model parameters are determined from four experiments: (1) uniaxial tension, (2) punch 

experiment: (3) notched tension with       , and (4) shear-dominated butterfly 

experiment (    ). A Monte-Carlo based inverse method is used to identify most model 

parameters. Details on the calibration procedure along with examples of the effect various 

parameters are given in the next subsections. 

5.4.2.1 Initial void volume fraction f0 

Uthaisangsuk et al. (2009, [149]) measured an initial porosity of        
   for a 

TRIP600 steel by means of Scanning Electron Micrography and X-ray Spectroscopy. For 

initially non-porous materials such as the TRIP780 steel considered here, the initial void 

volume fraction    is orders of magnitude smaller than the nucleated void volume fraction 

   and has no significant impact on the model predictions. The result of Uthaisangsuk et al. 

(2009, [149]) will therefore be used here. 

5.4.2.2 Strain hardening of the matrix material 

The matrix strain hardening parameters          ,           
   and   

      are directly obtained from a fit of the macroscopic stress-strain curve for uniaxial 

tension up to the point of necking. Note that the initial porosity is very small and thus, the 

tensile behavior of the TRIP steel remains almost unaffected by the growth of voids for 

strains lower than the nucleation strain   . 

 

Table 5-5: Parameters of the shear modified Gurson model. 

q1 [-] q2 [-]    [-]    [-]    [-]    [-]    [-] 

1.0 0.7 6.7 x 10
-2

 8.0 x 10
-2

 2.4 0.35 0.7 

   [-]    [-]    [-]    [-]    

4.5 x 10
-2

 0.25 0.1 6 x 10
-5
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(a) 

 

(b) 

Figure 5-5: Influence of (a) the nucleation strain    and (b) the nucleated void volume 

fraction    on the predicted force displacement curve of the 20mm notched tensile test. 

Experimental results are shown with black points. 
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5.4.2.3 Void nucleation law 

The nucleation strain    and the nucleated void volume fraction    are chosen such 

that the model predicts correctly the maximum force and subsequent decrease of the load 

carrying capacity of the notched tensile specimen with       . Figure 5-5a depicts the 

influence of the nucleation strain    on the force maximum (shown by vertical dashed 

lines): the larger   , the later the force reaches its maximum. A nucleation strain of    

     (in red) yields a good agreement with the experimental results (in black). In a similar 

manner, the nucleated void volume fraction    influences the loss of load carrying capacity 

of the notched specimen beyond the force maximum (Fig. 5-5b). The simulation agrees well 

with the experimental force-displacement curve (in black) for           (red curve). The 

predicted loss of load carrying capacity is too small with a smaller nucleated void volume 

fraction          (in blue), while it is too high with a larger nucleated void volume 

fraction          (in green). A standard deviation        is chosen for the nucleation 

law. 

 

Figure 5-6: Influence of the parameters q1 and q2 on the predicted force displacement curve 

of the punch experiment. Black points depict experimental results. 
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5.4.2.4 Yield function coefficients q1 and q2 

Those two fitting coefficients are chosen such that the model predicts correctly the force-

displacement curve measured during the punch test. Figure 5-6 compares the experimental 

force-displacement curve (in black) to the simulation results for the following three sets of 

parameters: q1=1.5 and q2=1.0 (in green), q1=1.0 and q2=1.0 (in blue), q1=1.0 and q2=0.7 (in 

red). Observe that the punch force at the onset of fracture is correctly predicted when using 

the set of parameters q1=1.0 and q2=0.7. 

5.4.2.5 Critical void volume fractions fc and ff 

These parameters are chosen such that the fracture displacement in the punch 

experiment is predicted correctly. When a numerical simulation is run up to the 

experimental fracture displacement with the coalescence mechanism turned off (     in  

 

Figure 5-7: Influence of the fracture void volume fraction ff on the predicted force 

displacement curve of the punch experiment. Colored points depict the simulated onset of 

fracture. Experimental results are shown with black points. 
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Eq. (5-12)), the maximum final void volume fraction is             
  . Note that      

is independent from the parameter    since      in a punch experiment where     . 

The introduction of void causes a loss of load carrying in the range        . Figure 5-7 

shows the evolution of the punch force for           
   and different values of   . When 

   is significantly higher than    (e.g.       ),  punch force drops by about 40% before 

fracture (blue curve in Fig. 5-7). With    closer to   , the loss of load carrying capacity 

becomes unnoticeable: for example, it is only 0.2% for         (red curve in Fig. 5-7). For 

the present material, the experimental force-displacement curve (in black in Fig. 5-7) does 

not show any loss in load carrying capacity before fracture. Therefore, we chose    

         and         for our subsequent simulations. 

 

 

Figure 5-8: Influence of the shear damage parameter    on the predicted force 

displacement curve and displacement to fracture of the      butterfly experiment. Vertical 

dashed lines depict fracture displacements. Experimental results are shown with black 

points. 
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5.4.2.6 Shear damage parameter    

The shear damage parameter    is calibrated against the experimental result for a 

butterfly experiment at      . Figure 5-8 depicts the force-displacement curves for 

different values of   . The corresponding fracture displacements are shown with vertical 

dashed lines. The predicted force-displacement curves are not affected by the choice of   . 

As expected, no fracture is predicted for the limiting case of      (black line in Fig. 5-8). 

Among the simulations with non-zero values for   , the best agreement with the experiment 

is observed for        (red curve in Fig. 5-8). 

5.4.2.7 Weighting coefficients   and    of the shear damage accumulation 

The result for the tensile experiment on a specimen with a large notch radius (R=20mm) is 

used to identify the coefficients    and    that control the activation of the shear-damage 

accumulation term in Eq. (5-19). Figure 5-9 depicts the predicted force displacement curves 

for different values of    and   . The corresponding fracture displacements are shown with 

vertical dashed lines. Without the shear damage modification (       , in blue in Fig. 

5-9), the GTN model underestimates damage accumulation; observe that the fracture 

displacement is overestimated by about 8%. Conversely, the fracture displacement is 

underestimated by 5.6% when the shear damage term is fully active (       , see 

green curves in Fig. 5-9); note that this case corresponds to the Nahshon-Hutchinson model. 

With         and        (in red in Fig. 5-9), the experimental fracture displacement is 

predicted accurately. Note that the notched tension experiment for        is 

particularly suitable for the calibration    and   : the stress triaxiality increases continuously 

from          to            because of the development of a localized neck (as 

discussed in Section 5.2.3); the damage accumulation therefore occurs within the range of 

stress triaxialities where the shear damage term becomes progressively inactive. 
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Figure 5-9: Influence of the shear damage weighting coefficients    and    on the predicted 

force displacement curve and displacement to fracture of the 20mm notched tensile 

experiment. Vertical dashed lines depict predicted fracture displacements. Experimental 

results are shown with black points. 

 

5.4.2.8 Remarks 

It is worth noting that the nucleation law coefficients and the yield function 

coefficients q1 and q2 have a similar influence on predicted force-displacement curve (Figs. 

5-5 and 5-6): they control the specimen’s load carrying capacity before failure. Therefore it 

is necessary to use different experiments to calibrate each set of parameters. Also, each 

calibration step is not independent from all subsequent steps. For example, results from 

simulation results depicted in Fig. 5-5 depend on the values of the parameters q1, q2,   , 

  and   , The calibration procedure was repeated iteratively until satisfactory results were 

achieved. 
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Finite Element simulations using Gurson type models can be affected by spurious 

mesh sensitivity due to a possible true strain softening induced by void growth. However, 

with the present material model parameters, a converged solution of the computational 

problem seems to exist as the repetition of selected simulations with much finer meshes 

yielded the almost the same results in terms of force-displacement curves and displacement 

to fracture (less than 0.5% difference).  

5.5 Comparison of model predictions and experiments 

The fracture models are evaluated by comparing the predicted and experimentally-

measured displacements to fracture for nine distinct experiments. FE simulations are run of 

all experiments with the measured displacements imposed as boundary conditions. The 

predicted displacement to fracture corresponds to the applied displacement at the instant 

when     for the MMC model and         for the modified Gurson model. If this 

condition is not met before the experimental fracture displacement is reached, the simulation 

is continued with the same loading velocity. Since we are only interested in predicting the 

onset of fracture, the simulations are stopped as soon as one integration point fails. No 

attempt is made to model the propagation of cracks.  

5.5.1  Modified Mohr-Coulomb Model 

Figure 5-10 depicts the ratios of the predicted and measured displacements to fracture 

for all nine experiments. Error bars are included to represent the experimental scatter on the 

measured fracture displacements (when applicable). Figure 5-10 presents results from both 

the four-parameter MMC model (MMC4) and its simplified three parameter version 

(MMC3). Recall that only four experiments (three butterfly fracture experiments and the 

punch test) have been used to identify the parameters of the MMC4 model, while the 

simplified MMC3 has been calibrated through an optimization for all nine experiments. 
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Figure 5-10: Ratio of predicted to experimental fracture displacement for all 9 experiments. 

Results from the 4-parameter MMC model are in red, from the 3-parameter MMC model are 

in green, and from the Nielsen-Tvergaard model are in blue. Experiments used for 

calibration have their name underlined. Error bars depict the experimental scatter, when 

applicable. 

 

It is found that the MMC4 model predicts the displacements to fracture with great 

accuracy for all experiments. The relative error is smaller than 2% for eight of nine 

experiments. The largest relative error of 3.2% is observed for the tensile specimen with a 

central hole. Even though the MMC3 model has been calibrated for all nine experiments, it 

is less accurate that the MMC4 model for every experiment. In particular, the MMC3 model 

is not able to predict correctly the onset of fracture under equi-biaxial tension where a 

relative error of 17% is observed in the punch displacement to fracture. For all other 

experiments, the error is in the MMC3 model predictions is smaller than 5%.  
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5.5.2  Shear modified Gurson model 

All nine experiments are simulated with the shear modified Gurson model by Nielsen 

and Tvergaard (2010, [118]) to evaluate its predictive capabilities. Recall that this model has 

been calibrated based on uniaxial tension, notched tension (with       ), one butterfly 

experiment (with     ) and the punch test. Figures 5-1, 5-2 and 5-3 depict the force-

displacement curves of all experiments (black dots) along with the predictions of the 

Nielsen-Tvergaard model (blue solid lines). The experimental and predicted curves lie 

almost perfectly on top of each other for the first two calibration experiments (notched 

tension (Fig. 5-1a) and the punch experiment (Fig. 5-2)). For the third calibration test (shear 

butterfly experiment, Fig. 5-3b), the predicted horizontal force is about 2.5% higher than the 

one measured experimentally, but the fracture displacement is predicted correctly. 

The agreement of the predicted force-displacement curves with the experimental 

results is also very good for the two other notched tensile tests (       in Fig. 5-1b, and 

         in Fig. 5-1c). The difference between the simulation and the experimental 

results is less than 1% in both cases. For the specimen with a central hole (Fig. 5-1d), the 

predicted displacement at the force maximum is about 9% too low as compared to the 

experiment. As a result, the predicted force drops before fracture is too large. Butterfly 

experiments (Fig. 5-3) reveal more pronounced differences between the predicted and 

experimental results. In the simulation of the butterfly experiment for transverse plane strain 

tension (     , depicted in Fig. 5-3a), the force peak associated with the onset of 

localized necking is delayed by about 13%, resulting in a predicted force at fracture which is 

about 6.7% higher than that in the experiment. In the tension dominated experiment 

(     , Fig. 5-3c-d), both the horizontal and vertical force are predicted with 5% error. In 

addition, the Nielsen-Tvergaard model predicts fracture at only 82.3% of the experimental 

displacement to fracture which is even before the experimentally-measured force reaches its 

maximum.  

The predicted displacements to fracture for all nine experiments are summarized in 

Fig. 5-10 (blue bars). For the three experiments used for calibration, the fracture 

displacements are predicted with less than 0.5% error. The fracture displacement of the 
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10mm notched specimen is very accurately predicted, with a relative error of 0.2% which is 

less than the experimental scatter. For the two other full thickness tensile experiments 

(6.67mm notch and specimen with a central hole), the relative error affecting the predicted 

displacement to fracture is less than 10% (respectively 6.9% and 4.5%). However, the shear-

modified Gurson model is clearly inaccurate for three butterfly experiments (more than 10% 

error): it underestimates the displacement to fracture by 11% for the shear-dominated 

combined loading (     ) and by 17.7% for tension-dominated combined loading 

(     ); conversely, the fracture displacement is overestimated by 10.6% for the 

transverse plane strain tension experiment (     ). It is worth noting that the present 

results have been obtained after calibrating the model for a particular choice of experiments. 

A different choice of calibration experiments may change the results for the shear-modified 

Gurson model. However, due to the diversity of our selection (in terms of stress states), it is 

expected that the present results allow for a representative assessment of the model 

performance. 

5.6 Discussion 

5.6.1  Modeling of the elasto-plastic response 

The accumulation of damage affects the elasto-plastic material response prior to 

fracture when using the Gurson model. Conversely, the predictions of the standard plasticity 

model which is used in conjunction with the MMC model remain unaffected by the damage 

accumulation. The comparison of the force-displacement curves predicted by the standard 

plasticity model and the Nielsen-Tvergaard model (respectively in red and blue lines in Figs. 

5-1, 5-2 and 5-3) show that in eight out of nine cases, both models predict the same global 

response of the specimens at the early stages of loading. Before nucleation occurs, material 

damage is negligible and the Gurson yield function, given in Eq. (5-12), reduces to a 

standard Hill’48 yield function (Eq. 5-3). The predicted force-displacement curves differ 

only when material damage becomes significant. This observation also implies that 
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differences due to the use of associated and non-associated flow rules are very small, which 

is consistent with the results reported in Chapter 2. It is interesting to see that the Nielsen-

Tvergaard model does not always predict the force prior to fracture with greater accuracy; 

for tension with a central hole (Fig. 5-1d) and the butterfly experiment at      (Fig. 5-3b), 

the uncoupled plasticity model predicts the force-displacement curves more accurately than 

the Gurson model. 

The butterfly experiment at       is the only experiment for which the predicted 

force-displacement curves (depicted in Fig. 5-3c-d) are significantly different. The Nielsen-

Tvergaard model overestimates the vertical force by about 3% and underestimates the 

horizontal force by about 5%. It is speculated that this difference is due to the choice of the 

flow rule. Numerical predictions of the shear-dominated butterfly experiment (     ) 

from the standard plasticity model show an abrupt drop of the predicted horizontal force 

(Fig. 5-3e) and a substantial increase of the predicted vertical force (Fig. 5-3f) prior to 

fracture; these sudden changes are associated with the development of a narrow band of 

strain localization in the numerical simulation (see also discussion in Section 4.5). The 

corresponding predictions of the Nielsen-Tvergaard model cannot be evaluated for this 

loading condition as the model predicts failure before the point of severe strain localization. 

However, when delaying void coalescence and fracture in the simulation (by increasing the 

values of fc and ff), the Nielsen-Tvergaard model also predicts a sudden increase of vertical 

force and drop of horizontal force before reaching the experimental displacement to fracture. 

Based on the above observations, it is tentatively concluded that the modeling of the effect 

of damage on the elasto-plastic behavior does not yield any improvement of the accuracy of 

force-displacement curve predictions. 

5.6.2  Modeling of shear-induced material deterioration 

As detailed in Section 5.4.1, the damage evolution equation of the GTN fracture model 

is modified to account for material deterioration under shear loading conditions. Nahshon 

and Hutchinson (2008, [112]) modified the model such as to satisfy the following 

hypotheses: 
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1. The shear damage rate is proportional to f, under the assumption that the effective 

void volume fraction is small; 

2. The shear damage rate is the highest for generalized shear stress states (   ); 

3. The shear damage rate is zero for axisymmetric loadings (    ); 

4. For pure shear, the shear damage increase rate scales as   ̇         ̇
 , where  ̇  is 

the plastic shear strain increment. 

One simple form that satisfies these requirements is the assumption of a quadratic 

dependence of the rate of shear damage on the third stress invariant (Eq. 1-17). The results 

from shear-dominated butterfly experiments (     and      ) can be used to assess the 

validity of this choice. In those experiments, fracture occurs at stress triaxialities close to 

zero, while the corresponding third stress invariants are significantly different (Fig. 5-4). 

Before the onset of void coalescence (    ), the ratio of the rates of void growth-induced 

damage,  ̇      , and shear-induced damage,    ̇    , can be simplified as: 

 ̇      

 ̇     
 

(   ) ̇   

     ( )
   ̇ 

   

 
 

 

    
 

    ( )
  (5-21) 

This ratio is smaller than         in both experiments, and hence the predicted 

displacement to fracture is mostly controlled by the shear damage term. In the above 

calibration procedure, the experiment for      has been used to calibrate the material 

parameter   . The inability of the Nielsen-Tvergaard model to predict the fracture 

displacement for       suggests that the empirical choice of the quadratic relationship 

between  ̇       and   needs to be revisited. 

5.6.3  Fracture locus for proportional loading conditions. 

Proportional loadings are characterized by constant stress triaxiality   and normalized 

third invariant   throughout loading. In this specific case, the equivalent plastic strain to 

fracture, or fracture strain   ̅, can be represented as a function of   and   to create the so-

called fracture locus in the (     ̅ ) space. The MMC fracture locus is defined by Eq. 5-9.  
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 (c) (f) 

Figure 5-11: Fracture loci for proportional loading conditions in the (     ̅ ) plane of the 

MMC3 fracture criterion (in green), MMC4 fracture criterion (in red) and Nieslen-Tvergaard 

model (in blue). Cross sections at constant stress triaxiality: (a)      , (b)      , (c) 

     ; and constant third invariants: (d)    , (e)       and (f)     . 

 

The Nielsen-Tvergaard fracture locus for proportional loading is constructed by 

applying various combinations of normal stresses to a single solid element, covering a wide 

range of stress triaxialities and third invariants. For each set of prescribed stress ratios, the 

calculations are run to determine the corresponding fracture strain for proportional loading. 

Cross sections of the three fracture loci are depicted in Fig 5-11 (the MMC3 fracture 

locus is shown in green, the MMC4 locus in red and the Nielsen-Tvergaard locus in blue). 

Figures 5-11a to 5-11c depict the fracture strains for proportional loading as a function of 

the third stress invariant, at a fixed stress triaxiality (      in Fig. 5-11a,       in Fig. 

5-11b,       in Fig. 5-11c), while Figs. 5-11d to 5-11f depict the fracture strains for 

proportional loading as a function of the stress triaxiality, at fixed third invariants (    in 

Fig. 5-11d,       in Fig. 5-11e,      in Fig. 5-11f).  
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The MMC fracture strain decreases in stress triaxiality and exhibits a U-shaped 

dependence on the third invariant, resulting in a continuous fracture locus shaped as a half-

tube in the (     ̅ ) space (Bai and Wierzbicki, 2010, [5]). Note that both MMC3 and 

MMC4 fracture loci are asymmetric with respect to     and that, at a fixed stress 

triaxiality, the minimum ductility does not correspond to the generalized shear stress state 

(characterized by    ). The Nielsen-Tvergaard fracture locus shows a more complex 

dependence on the stress state. For low stress triaxialities (      ), the fracture locus is 

a U-shaped function of the third invariant. The fracture strain is smallest for generalized 

shear stress states (   ). For axisymmetric loading states (    ), there is no shear-

induced damage and the fracture strain increases asymptotically as the stress triaxiality 

decreases to 0. For intermediate stress triaxialities (       ), the fracture strain 

increases in stress triaxiality for loadings states with third invariants close to 0, as the shear-

induced damage slows down. For high stress triaxialities (    ), the shear damage term in 

Eq. 5-20 is inactive: the fracture strain decays almost exponentially in stress triaxiality and is 

independent of the third invariant. Note that the Nielsen-Tvergaard fracture locus is 

symmetric with respect to     and presents a discontinuity at    , because of the 

discontinuous nucleation behavior (Eq. 5-18). 

The MMC3 and MMC4 fracture loci are similar, except for stress states with third 

invariants close to     . In the specific case of      shown in Fig. 5-11f, the MMC3 

fracure strain is higher by about 0.8. As a result, fracture predictions of both models differ 

the most for the punch test, which is characterized by     . The calibrated MMC4 and 

Nielsen-Tvergaard fracture loci are remarkably different over the entire range of stress states 

considered, except within the vicinity of the experimental data that have been used to 

calibrate the Nielsen-Tvergaard model: for       and       (average stress state in the 

20mm notch tensile experiment) and for       and      (average stress state in the 

punch experiment), the two fracture loci intersect (see Fig. 5-11b-c).  
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5.7 Concluding remarks 

The ductile fracture of metals has been studied extensively over the past five decades. 

However, despite strenuous efforts in the area of micromechanical analysis, most state-of-

the-art models are only physics-inspired with a strong empirical component. The MMC 

model has been developed with a stress-based fracture criterion in mind, but very strong 

empirical assumptions are made regarding the damage accumulation under non-proportional 

loading. The Nielsen-Tvergaard model is based on the rigorous micromechanical analysis of 

void growth, but strong empirical assumptions are made regarding the effect of void 

nucleation, void coalescence and the effect of shear. As a result of these empirical 

assumptions, the physical meaning of most material model parameters is lost; consequently, 

our comparative study is mostly concerned with the calibration of the respective 

mathematical models. The results from an extensive experimental program on a TRIP780 

steel, including nine experiments with loading conditions ranging from pure shear to 

equibiaxial tension, are used as a basis for the calibration and validation of the models.  

The 3-parameter version of the MMC fracture model cannot predict the onset of 

fracture over the complete range of stress states considered. Its accuracy is good for loading 

conditions ranging from pure shear to transverse plane strain tension which are characterized 

by positive third stress invariants. A fourth parameter controlling the asymmetry of the 

fracture criterion with respect to     is required to improve the model accuracy. With this 

additional parameter, the onset of fracture in all nine experiments carried out is predicted 

correctly by the MMC fracture model. The predictions of the shear-modified Gurson model 

are found to be less accurate. It is shown that the Lode angle dependence of the shear-

induced damage mechanism needs to be modified further to improve the accuracy of the 

Nielsen-Tvergaard model.  

Aside from the small differences in the prediction accuracies, it is surprising to see 

that two fundamentally different fracture models (stress-based criterion versus void growth 

model) are both able to predict the fracture displacement over a wide range of stress states. 

This observation suggests that the underlying physical assumptions are less important than 

the models’ mathematical flexibility to be fitted to a wide range of experimental data. 
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Another key fundamental difference between the MMC model and the Nielsen-Tvergaard 

model lies in the coupling of plasticity and damage. The MMC model makes use of a 

damage indicator function which has no effect on the elasto-plastic behavior, while damage 

reduces the load carrying capacity and changes the shape of the yield surface in the case of 

the shear-modified Gurson model. However for the TRIP780 material, both models show 

equally good predictions of the force-displacement curves. The MMC model is 

recommended for practical applications because of the greater computational stability of 

uncoupled damage models, the smaller number of parameters to be identified and the ease of 

their identification based on experiments. However, it is important to identify the MMC 

model parameters based on experiments that cover a wide range of stress states. 
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6.1 Introduction 

The effect of the stress state on the localization of plastic flow in a Levy-von Mises 

material is investigated numerically. The particular focus is on the effect of the Lode 

parameter on the localization of plastic flow in void containing solids at intermediate stress 

triaxialities (from 0 to 1). A unit cell model is built with a spherical central void that acts as 

a defect triggering the onset of flow localization along a narrow band. Periodic boundary 

conditions are defined along all boundaries of the unit cell. Shear and normal loading is 

applied such that the macroscopic stress triaxiality and Lode parameter remain constant 

throughout the entire loading history. Due to the initially orthogonal symmetry of the unit 

cell model the deformation-induced anisotropy associated with void shape changes, both co-

rotational and radial loading paths are considered. The simulation results demonstrate that 

the macroscopic equivalent plastic strain at the onset of localization decreases in stress 

triaxiality and is a convex, non-symmetric function of the Lode parameter. In addition to 

predicting the onset of localization through unit cell analysis, an analytical criterion is 

proposed which defines an open convex envelope in terms of the shear and normal stresses 

acting on the plane of localization. 

6.2 Micromechanical model  

A unit cell model with an initial spherical void is built and used to obtain a relationship 

between the macroscopic equivalent plastic strain to plastic localization and the stress state. 

The underlying motivation is the hypothesis that the localization of plastic deformation in a 

band indicates that the onset of fracture is imminent (Rice, 1977, [127]). Even though the 

overall elasto-plastic response of many metals can be described accurately up to very large 

strains without considering the nucleation and growth of voids, a low porosity is needed as 

imperfection triggering the localization of plastic deformation.  
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6.2.1  Matrix material 

The matrix material is modeled as a rate-independent isotropic elastic-plastic Levy-von 

Mises solid. Only isotropic strain hardening is considered by a saturation hardening law that 

describes the relationship between the von Mises equivalent plastic strain   and the flow 

resistance     ( ). In differential form, the saturation law reads 

{

 ( )    
  

  
   (  

 

  
)
 
 (6-1) 

with the initial flow resistance    and the saturation value   . The strain hardening 

parameters {          } and the elastic constants used in the calculations (Table 6-1) 

correspond approximately to the hardening behavior of the TRIP material. 

 

Table 6-1: Matrix material model parameters 

Elastic  constants Strain hardening constants 

  [MPa]   [-]    [MPa]    [MPa]    [MPa]   [-] 

185,000 0.3 450 1,200 20,000 2.0 

 

6.2.2  Unit cell geometry and kinematic boundary conditions 

The undeformed unit cell consists of a rectangular cuboid of matrix material containing 

a spherical void at its center. We introduce the fixed Cartesian frame [        ] 

corresponding to the normals to the cell’s outer surfaces in the initial (undeformed) 

configuration. We limit our attention to a unit cell with the initial edge lengths          

and       (Fig. 6-1); the height-to-width ratio of           is chosen to facilitate the  
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Figure 6-1: Initial geometry of the unit cell ; the displacements   ,   ,    and    imposed to 

the unit cell boundaries are depicted in red. 

 

detection of localization using a purely kinematic criterion. The cell features a central 

spherical void of radius         which corresponds to an initial porosity of        . 

Defining the macroscopic deformation gradient   as the spatial average of the local 

deformation gradient over the unit cell volume, the boundary conditions are chosen such that 

a gradient of the form 

                                      (6-2) 

can be applied to the unit cell. In other words, the unit cell is subject to normal loading along 

all its boundaries and shear loading in the   -  -plane. Denoting the average normal 

displacement along a boundary of normal     as    , and the average tangential 

displacements along the direction     on the boundaries of normal the surfaces of normal 

    as     , the macroscopic deformation gradient reads 
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Figure 6-2: Finite element model of the unit cell. 
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 (6-3) 

For the isotopic matrix material, the associated mechanical problem is symmetric with 

respect to the (     ) plane, and antisymmetric with respect to the (     ) plane. Thus, 

only one quarter of the cell (           ,          and       ) is 

considered for finite element analysis (Fig. 6-2).  

Symmetry conditions are imposed to the boundaries of the quarter model with the 

normal vectors    , 

{
  (       )   

  (         )    
 (6-4) 
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while anti-symmetry conditions (with respect to the (     )-plane) plane are imposed to the 

boundary of normal vector     , 

{

  (       )    (        )   

  (       )    (        )   

  (       )    (        )   

 (6-5) 

Both tangential and normal displacements are applied to the boundary of normal vector    , 

i.e.  

{

  (       )    (        )     
  (       )    (        )   

  (       )    (        )     

 (6-6) 

The periodicity conditions for the boundaries of normal vectors     read 

{

  (         )    (          )     
  (         )    (          )   

  (         )    (          )   

 (6-7) 

Note that the periodicity boundary conditions impose a strong kinematic restriction on the 

possible formation of a planar band of localized plastic deformation. It can only take the 

vector    as normal vector in order to be kinematically admissible. 

6.2.3  Macroscopic rate of deformation 

According to the above boundary conditions, the four displacement degrees of freedom,  

 ( )  {            }
  (6-8) 

control the average deformation gradient in the unit cell. Introducing the velocity vector 

 ̇( ), the macroscopic rate of deformation tensor can also be expressed as a function of 

these four degrees of freedom,  
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  ̇ 

     
      

  ̇ 
     

      
 ̇ 

    
      

           
 

 (    )
(  ̇    ̇ 

  
     

) (           ) 

(6-9) 

This symmetric tensor features only four non-zero components which are summarized in a 

rate of deformation vector 

 ⃗⃗  {                }
  (6-10) 

The linear relationship (6-9) between the rate of deformation tensor and the current 

macroscopic velocities, can thus be conveniently rewritten as  

 ⃗⃗    ̇ (6-11) 

with the time-dependent linear transformation  

 ( )  

[
 
 
 
 
 
 
 
 

 

     
   

 
 

     
  

  
 

    
 

  

    

   
     

  
 

    ]
 
 
 
 
 
 
 
 

 (6-12) 

6.2.4 Control of the loading path in macroscopic stress space 

The macroscopic stress tensor  ( ) is defined as the spatial average of the local Cauchy 

stress field over the current volume  ( ) of the unit cell. However, without explicitly 

calculating the macroscopic stress tensor, the stress state and the directions of the principal 

stresses are controlled throughout the simulations through a time-dependent kinematic 

constraint on the applied macroscopic velocities  ̇( ).  

Consider first the rate of mechanical work for the unit cell at time  . It may be written as 
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 ̇         ⃗⃗   ⃗⃗     ̇ (6-13) 

In (6-13),   denotes the vector of the work conjugate forces to the macroscopic translational 

degrees of freedom, while the vector  ⃗⃗  is work conjugate to  ⃗⃗ . The vector  ⃗⃗  summarizes 

four of the six independent components of the symmetric macroscopic Cauchy stress tensor,  

 ⃗⃗  {               }
  (6-14) 

It is assumed that the shear components      and     (which may become non-zero due to 

the deformation induced anisotropy) remain always small as compared to the other stress 

components and may be neglected when computing the stress triaxiality and/or the Lode 

angle parameter.  

The stress vector may be written as 

 ⃗⃗    ( ) ̃( )    ( )‖ ̃‖ ( ) (6-15) 

with   ( )‖ ̃‖    denoting the amplitude and the unit vector      denoting the direction 

of the loading path in the reduced stress space. As will be shown below, the latter is a 

function of the orientation of the principal stresses and the stress state (i.e. the principal 

stress ratios). 

Instead of specifying four non-homogeneous boundary conditions on the components of 

 , a new set of velocity degrees of freedom  ̇ is created through a linear transformation of  ̇,  

 ̇    ̇ (6-16) 

Based on the rate of work, 

 ̃   ̇     ̇ (6-17) 

we define the work-conjugate force vector 

 ̃       (6-18) 
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The time-dependent transformation  ( ) is then chosen such that (6-15) is readily satisfied 

by specifying homogeneous boundary conditions on all but one component of the force 

vector  ̃. In other words,  ̃ takes the simple form 

 ̃   ( )   (6-19) 

with    denoting one of the four orthogonal basis vectors of   . Rewriting the rate of work, 

we have 

 ̃   ̇    ⃗⃗    ̇    ⃗⃗       ̇   (    )  ⃗⃗   ̇ (6-20) 

In the weak formulation of the unit cell problem, Eq. (6-20) must be fulfilled for any  ̇  and 

hence  

 ̃   (    )  ⃗⃗  (6-21) 

Satisfaction of the boundary condition  ̃   ( )   implies     ( ) ̃ if the transformation 

matrix   satisfies the identity 

   ‖ ‖̃(  
  )       (6-22) 

Among all invertible transformation matrices that satisfy (6-22), we chose   such that      

becomes a rotation matrix,  

                         (6-23) 

with the unit vectors  ,  ,   and   forming an orthogonal basis of   . Note that we also 

randomly chose the first component of  ̃ as the only non-zero force component, while a zero 

force boundary condition is imposed on the remaining three degrees of freedom. 

By updating the coordinate transformation at each time step, we can control the 

loading path in stress space. Note that instead of prescribing the time history of the first 

component of  ̃, the work-conjugate velocity (first component of  ̇) is applied.  
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6.2.5  Loading scenarios 

In the above control scheme, linear and non-linear loading paths can be prescribed by 

specifying  ̃( ).  The corresponding macroscopic Cauchy stress tensor in 3D reads 

 ( )    ( )[ ̃        ̃        ̃        ̃ (           )] (6-24) 

In terms of the principal stresses            , the same stress tensor may be written as 

 ( )  ∑   ( )  ( )    ( )

          

 

                                       (                              ) 

(6-25) 

with the unit vectors    ( )   
  denoting the principal stress directions. Note that the stress 

state {   ̅} is a function of the principal stress ratios            and               only, 

  
√ 

 

          

√(     )  (      )  (        ) 
 (6-26) 

 ̅    
 

 
      (

 

 

(          )(           )(           )

(     
      

                   ) 
) (6-27) 

The directions of the principal stresses can thus be chosen independently from the stress 

state. Recall that  

(a) according to the periodic boundary conditions, the (     )-plane is the only possible 

plane of localization.  

(b) according to Rudnicki and Rice (1975, [129]), the direction of the second principal 

stress is always parallel to the plane of localization. 

For computational convenience, we impose  

       (6-28) 
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in all simulations which is consistent with (a) and (b). The other two principal stress 

directions can then be expressed as a function of the angle  ( ) between the first principal 

stress and the normal      to the plane of localization,  

   {
    
 

    
}         {

     
 

    
} (6-29) 

Using (6-28) and (6-29) in (6-25) allows us to express the loading path direction  ̃ as a 

function of the stress state {   ̅}   (        ) and the orientation   of the principal 

stresses, 

 ̃  

{
 

 
             

  
   

             
  

(      )         }
 

 

 (6-30) 

Since the planar band of localization can only form with its normal in the   -direction, it is 

important to perform the unit cell analysis for all possible principal stress orientations to 

determine the lowest estimate of the strain to failure for a given stress state.  

When specifying the loading path, there are also two sources of anisotropy which are 

worth considering:  

1. Topological anisotropy associated with the spatial distribution of voids: 

According to the periodic boundary conditions, the determined effective 

behavior corresponds to a porous solid with voids positioned at the vertices of an 

orthorhombic lattice. The microstructure therefore features three orthogonal 

planes of symmetry which results in an orthotropic effective mechanical 

response.  

2. Morphological anisotropy due to deformation-induced void shape changes: The 

initially spherical void changes into an ellipsoidal-like void. Even in the 

hypothetical case of an isotropic spatial void distribution (topological isotropy), 

the effective behavior would become anisotropic due to the evolution of the void 
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shape. In the special case of rotation free loading, the void shapes are expected to 

remain symmetric with respect to the directions of the principal stress.  

The rotation   of the macroscopic material coordinate frame (Fig. 6-3a) is defined through 

the decomposition  

        (6-31) 

with       and      denoting the left and right stretch tensors, respectively. Due to the 

two sources of anisotropy, material rotation may affect the results of the localization 

analysis. In particular, since the orientation of the possible band of localization is fixed in 

space, the directions of loading must be rotated (i.e.     ) to simulate different band 

orientations.  

To shed some light on the effect of material rotation due to the (undesired, but 

unavoidable) anisotropy of the unit cell model on the predicted macroscopic strain to 

localization, we consider two scenarios for the evolution of the principal stress directions:  

 Co-rotational loading: The evolution of the principal stress directions is coupled 

with the rotation of the material,  

  ( )   ( )  
  (6-32) 

As illustrated in Fig. 6-3b, the angle between the principal stress directions and 

the directions of the orthogonal coordinate frame attached to the material 

remains constant throughout loading.  

 Radial loading: The principal stress directions are kept constant throughout 

loading, i.e.  

  ( )    
  (6-33) 

In this case, the material rotates with respect to the loading, i.e. the angle 

between the principal stresses and the material changes as illustrated in Fig. 6-3c. 
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(a) 

 

 
(b) Co-rotational loading  

 

 

 
(c) Radial loading 

Figure 6-3: Loading scénarii. (a) Rotation of the material coordinate system (blue) of an 

orthotropic solid; (b) simultaneous rotation of the material coordinate system (blue) and the 

principal stress directions.(c) Rotation of the material coordinate system (blue) with respect 

to the principal stress directions. 

Da

a0 a0
a0
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In both cases, the computations are performed over a wide range of initial principal stress 

orientations   . While   is kept constant throughout radial loading, the angle   evolves 

throughout co-rotational loading. After expressing   as a rotation by the angle    around 

the   -axis (Fig. 6-3a),  

  [
    (  )      (  )
   

     (  )      (  )
] (6-34) 

and decomposing the deformation gradient according to (6-31), the evolution of the 

principal stress directions (with respect to the stationary   -axis) for co-rotational loading 

reads  

 ( )        (6-35) 

with 

   (  )  
   

       
 (6-36) 

6.2.6 Definition of the strain to failure 

The definition of the “strain to failure” requires the definition of the instant of failure 

as well as that of a suitable macroscopic strain measure. Here, the onset of failure 

corresponds to the onset of localization of plastic flow. After the onset of localization, all 

additional plastic deformation is expected to accumulate within a narrow band of width   

and of normal vector    in the vicinity of     . At the same time, the matrix material 

outside this band (|  |     ) should experience partial elastic unloading. Let    be the 

volume average of the deformation gradient of the upper part of the unit cell delimited by 

  ⁄      , in which the deformation is expected to be approximately homogeneous 

(since   L). Knowing the displacements   
  and   

  of a point   located at (        )  

(  ⁄    ⁄    ⁄ ) (Fig. 6-2),    can then be estimated as 
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   (  
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 (6-37) 

Following Needleman and Tvergaard (1992, [115]), the localization of deformation into a 

narrow planar band is then assumed to occur when  

  
‖ ̇‖

‖  ̇‖
   (6-38) 

where the tensorial norm ‖ ‖ is defined as ‖ ‖  √   . In all our computations, the instant 

of onset of failure,   , is defined as the instant when    .  

The macroscopic equivalent strain   ̅ is defined based on the integral of the plastic 

work over the entire unit cell,  , using the stress-strain relationship for the matrix material, 

∫  ( )  

 ̅ 

 

 
 

 
 (6-39) 

This definition is identical to defining the macroscopic equivalent plastic strain as work-

conjugate to the macroscopic von Mises equivalent stress  ̅,  

 ̅   ̅  
  

 
 (6-40) 

provided that the deformation within the unit cell is uniform (i.e. approximately 

homogeneous local deformation field). We evaluated both definitions for selected 

computations and found almost identical results. However, definition (6-39) turned out to be 

more convenient from a computational point of view (no need to compute  ̅).  

With the definitions of the instant of failure and the equivalent plastic strain at hand, 

the macroscopic strain to failure   ̅ for a given stress state is then defined as the minimum of 

the macroscopic equivalent plastic strain at the instant of failure over all possible angles   ,   
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  ̅(   ̅)     
  
   ̅(   ̅      ) (6-41) 

Note that due to the strictly monotonic relationship between the equivalent plastic strain and 

the plastic work, the critical angle    can also directly determined from the minimization of 

the total plastic work.  

6.2.7  Computational aspects 

The implicit solver of the commercial Finite Element package Abaqus is used. The 

unit cell is discretized by 23,338 fully integrated first-order solid elements (element C3D8 of 

the Abaqus/Standard library), as shown in Fig. 6-2. The boundary conditions described by 

Eqs. (6-4) to (6-7) are then enforced by imposing the corresponding kinematic constrains to 

the nodes located on the cell boundaries. The non-linear loading path control is achieved 

through a user defined subroutine (time-dependent multi-point constraint). For low 

triaxiality loadings, initially spherical voids tend to collapse into penny-shaped cracks 

(Tvergaard, 2008, [145]). Here the kinematic self-contact formulation of Abaqus/Standard is 

used to prevent interpenetration of the void walls. The contact is modeled as frictionless 

(   ), therefore transmitting only normal forces at the interface. The reader is referred to 

Dahl et al. (2012, [43]) for more details on the effect of friction. 

6.3 Results  

Simulations are performed for a dense grid of stress states within the range 

            ̅    (6-42) 

Given the high computational costs, we performed the complete analysis for co-rotational 

loading only. Our discussion therefore makes reference to results for co-rotational loading. 

The only exception is Subsection 6.3.3, where results for radial loading are discussed and 

compared with those for co-rotational loading. Before showing the results for all stress states 

in Subsection 6.3.2, selected examples are discussed in detail in Subsection 6.3.1 showing 
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the evolution of the localization indicator, the effect of the shear band orientation and the 

captured deformation mechanisms at the unit cell level. 

6.3.1  Demonstration of the analysis procedure    

6.3.1.1  Evolution of the localization indicator 

Figure 6-4a shows the evolution of the localization indicator as a function of the 

macroscopic effective plastic strain for three different stress states. The corresponding 

macroscopic equivalent stress-strain curves are depicted in Fig. 6-4b.  

 The black curve (     ,  ̅   ) is representative for simulations in which 

localization occurred: The localization indicator initially remains close to 1 

followed by a moderate increase, before diverging to infinity. The divergence of 

the localization indicator is usually associated with a maximum of the 

macroscopic effective stress-strain curve. With the onset of localization (i.e. 

   ), the effective load carrying capacity drops. At this stage, most of the cell 

matrix material experiences elastic unloading, while increases in plastic 

deformation are limited to the material within the band of localization (grey area 

in Fig. 6-4c). 

 The red curve (        ̅   ) shows an example where no localization 

occurred. The localization indicator remains more or less constant (   ) and 

the effective stress-strain curve continues to follow the solution for a 

homogeneous deformation field inside the unit cell.  

 The blue curve (     ̅   ) depicts another example with no localization. 

However, in this case, the localization indicator evolution shows the signs of 

some pronounced non-uniform deformation at a strain of 0.6, but the unit cell 

remains stable and continues to deform in a uniform manner after an isolated 

peak in the localization indicator history.  
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(a) 

 

 

(b) 
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(c) 

 

Figure 6-4: Influence of the stress state on the onset of localization : (a) Evolution of the 

localization indicator, and (b) macroscopic equivalent stress-strain curves for uniaxial 

tension (        ̅   ), pure shear (     ̅   ) and a triaxial state of stress (  

     ̅   ). (c) Pre- and post-localization response observed at the microscale. The three 

contour plots correspond to the instants highlighted by dark dots in (b). 

 

Choosing a rather large critical value of the localization indicator (   ) increased the 

reliability of the localization detections. Note that changes in the effective equivalent plastic 

strain are almost insignificant when the localization indicator increases from 2 to 5. In other 

words, the uncertainty in the reported strain to failure due to the choice of the critical value 

of the localization indicator is small.     

6.3.1.2  Orientation of the localization band 

For each stress state {   ̅}, the localization analysis is repeated for different band 

orientations. In our model, the band orientation is indirectly varied by changing the initial 

angle    of the maximum principal stress. Figure 6-5 presents simulation results for a stress 

state of       and  ̅   , and three distinct initial orientations:        (black curves), 

         (red curves) and          (blue curves). The computed macroscopic 

equivalent stress-strain curves (Fig. 6-5a) lie on top of each other prior to the onset of  
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(a) 

 

(b) 
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(c) 

Figure 6-5: Effect of the initial orientation of the cell on localization behavior. (a) 

Macroscopic equivalent stress-strain curves, (b) evolution of the localization indicator for 

different initial orientations, and (c) predicted failure strain (in black) and orientation of the 

plane of localization   (in blue) as a function of the initial orientation   . Solid dots depict 

the onset of localization in (a) while each dot corresponds to a cell calculation in (c). The 

most favorable initial orientation   
  is shown in red. 

 

localization, but the evolution of the localization indicator   clearly depends on    (Fig. 

6-5b).  

The macroscopic plastic strain at which localization occurs for          is about 

20% lower than that for        and         . Figure 6-5c depicts the dependency of 

 (̅   ̅   ) – in black – and  (   ̅   ) – in blue – on    over the interval           . 

Each solid dot in Fig. 4c is the outcome of a unit cell analysis. A minimum of strain to 

localization is reached for          (red dot in Fig. 6-5c), which therefore corresponds to 

the initial principal stress orientation which is most favorable for localization. We typically  
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(c) 

Figure 6-6: Captured failure mechanisms : (a) Shear failure (       ̅      ̅      ) and 

(b) internal necking (     ̅      ̅      ). The contour plots show the local plastic strain 

after the onset of localization (   ); (c) Evolution of the macroscopic equivalent stresses 

and void volume fractions as a function of the macroscopic plastic strain. Solid dots depict 

the onset of localization (   ), while the triangles indicate the instants at which the 

contour plots are extracted. 

 

performed computations for ten initial orientations varying from     to    . In most cases, 

the plot of the dissipation  (  ) as a function of    showed a local minimum which is 

characterized with a relative precision of 3% on   . This local minimum is then assumed as 

the most critical orientation. Otherwise, the range of initial orientations is increased further 

until a minimum is found.          
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6.3.1.3  Captured failure mechanisms  

It is noted that the localization criterion captures both inter-void ligament shear bands 

and internal necking. The cross-sectional cuts shown in Fig. 6-6 provide some insight into 

the post-localization behavior of the cell for an intermediate stress triaxiality loading 

(     ,  ̅   ) and at high stress triaxiality loading (   ,  ̅   ). The superposed 

contour plots show the local equivalent plastic strain distribution for a macroscopic 

equivalent strain of   ̅       and   ̅      , respectively. The macroscopic equivalent 

stress-strain curves and the evolution of void volume fraction during deformation are also 

included in Fig. 6-6 (in black for      , in blue for    ). It can be seen that  

 at the intermediate stress triaxiality (     ), the overall shearing of the void is 

dominant and the void volume fraction remains approximately constant 

throughout loading.  

 at the high stress triaxiality (     ), the volume change associated with the 

hydrostatic pressure is more significant and the void volume fraction increases 

from its initial value of 0.01 to about 0.04 at the onset of localization; the inter-

void ligaments are therefore also being stretched in addition to shearing which 

introduces a neck into the sheared ligaments. 

A detailed analysis of the deformation response at the unit cell level is omitted as the 

observed responses are in agreement with those reported in the literature. Readers interested 

in a comprehensive discussion of the failure mechanism under shear loading are referred to 

the literature (e.g. Tvergaard (2008, 2012, [145, 147])).   

6.3.2  Strain to failure as function of stress state 

The localization analysis has been executed for 178 different stress states within the 

domain specified in (6-42). For each stress state, at least 10 different possible shear band 

orientations have been considered. With an average computation time of about 3h per 

simulation (parallelized on 12 CPUs), it took about 30 weeks of calculation on a high 

performance work station to obtain the results. Summary plots showing the strain to failure 
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as a function of the Lode angle parameter and the stress triaxiality are presented in Fig. 6-7. 

Solid dots correspond to simulation results, while the solid lines correspond to cubic spline 

interpolations. Dashed lines correspond to spline extrapolations in a range where no 

localization was found in the calculations.  

The failure strain   ̅ exhibits a strong dependence on both the stress triaxiality   and 

the Lode parameter  ̅. In particular, it is observed that: 

 The strain to failure is a monotonically decreasing function of the stress triaxiality. 

This can be clearly seen from Fig. 6-7a and 6-7b, where the strain to fracture is 

plotted as a function of the stress triaxiality for constant Lode angle parameters;  

 The strain to fracture exhibits an asymptotic behavior at low stress triaxiality: there 

appears to exist a “cut-off value” of triaxiality  ̃  below which no localization 

occurs. This can be seen from Figs. 6-7a and 6-7b and is elucidated further in Fig. 

6-7d. The cut-off stress triaxiality    depends on the Lode parameter, and increases 

as the stress state departs from generalized shear ( ̅   ) towards axisymmetric 

states of stress ( ̅    ):   ( ̅   )      , while   ( ̅   )      and   ( ̅  

  )      .  

 It is worth noting that no localization occurs for pure shear (   ,  ̅   ) and 

uniaxial tension (      ,  ̅   ). For stress triaxialities greater than      , 

localization occurs over the complete range of Lode parameters.  

 The strain to failure is a non-symmetric convex function of the Lode angle 

parameter  ̅, exhibiting its minimum in the interior of its domain of definition (Fig. 

6-7c). The minimum of the strain to failure does not exactly correspond to 

generalized shear loadings ( ̅   ): for a triaxiality of    , the minimum is at  

 ̅     ;  for      , the minimum is at   ̅       .  

 In the specific case of axisymmetric loadings, the failure strain   ̅ is almost twice 

higher for  ̅     than for  ̅     at the same triaxiality  .  
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(a) 

 

(b) 

 

Figure 6-7: Failure strain as function of the stress triaxiality for (a)  ̅   , and (b)  ̅   ; (c) 

representation of the same data as a function of the Lode parameter with stress triaxiality  
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(c) 

 

(d) 

as curve parameter. (d) Projection on the (   ̅)-plane showing the boundary of the domain 

of stress states with localization. Each solid dot corresponds to a unit cell analysis in which 

the onset of localization was reached. 
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(a) 

 

 

Figure 6-8: Computed void shape evolution (a) under uniaxial tension (        ̅   ), (b) 

pure shear (     ̅   ) and (c) triaxial loading (       ̅   ). The solid lines depict the 

void contour in the (     )-plane at different macroscopic equivalent plastic strain. The 
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(b) 

 

(c) 

 

dashed lines indicate the current orientation of the first principal macroscopic stress. Note 

that the picture boundaries do not correspond to the boundaries of the unit cell. 
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Figure 6-9: Comparison of the strain to failure for radial loading (blue curves) with that for 

co-rotational loading (black curves) for generalized shear ( ̅   ), for axisymmetric tension 

( ̅   ) and for axisymmetric compression ( ̅    ). 

 

6.3.3 Effect of loading path 

6.3.3.1 Void shape evolution under co-rotational loading 

As detailed in Section 6.2.5, the principal macroscopic stress directions    and      

evolve during the cell deformation, when a transverse displacement      is imposed (i.e. 

   ). Figure 6-8 depicts the evolution of the void shape in the (     )- cross-section 

(solid lines) along with the major principal macroscopic stress direction    (dashed lines) at 

different levels of deformation for the stress states considered under 6.3.1.1: (1) uniaxial 

tension (Fig. 6-8a), (2) pure shear (Fig. 6-8b) and (3) triaxial loading (Fig. 6-8c). In all three 
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cases, a transverse displacement is imposed to the cell boundaries (as     ), thereby 

inevitably shearing the unit cell. 

During loading, the void evolves from an initially spherical shape to an elongated 

ellipsoidal-like shape. At low triaxiality loadings, the void eventually reduces to a penny-

shaped crack (Fig. 6-8b). In addition to the evolution of its shape, the void also rotates with 

respect to the stationary unit cell frame (        ). Note that the major principal 

macroscopic stress direction    also rotates about the    axis (co-rotational loading), and 

remains approximately aligned with the major void axis throughout loading.  

6.3.3.2 Co-rotational versus radial loading 

The unit cell analysis is performed under radial loading for generalized shear ( ̅   ), 

axisymmetric tension ( ̅   ) and axisymmetric compression ( ̅    ). As for co-rotational 

loading, the simulations for radial loading predict a monotonic decrease of the strain to 

failure as a function of the stress triaxiality (Fig. 6-9). Furthermore, the simulations for 

radial loading confirm that the microstructure is more prone to localization under 

axisymmetric tension than under axisymmetric compression. However, the quantitative 

comparison reveals lower cut-off stress triaxialities for radial loading (blue curves) as 

compared to co-rotional loading (black curves). In other words, the rotation of the 

orthotropy axes with respect to the directions of the principal stresses (radial loading) makes 

the unit cell more prone to localization at low stress triaxialities. This effect vanishes at 

higher stress triaxialities which is anticipated intuitively as the deformation-induced 

morphological anisotropy is expected to be less pronounced.     

6.3.4  Effect of initial porosity 

The central void acts as a defect that triggers the localization of the plastic deformation 

in the cell matrix. The computed failure strains are therefore expected to depend on the 

initial porosity. All results presented hereinbefore have been obtained for an initial void 

volume fraction of         . To shed more light on the dependence of the cell behavior 
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Figure 6-10: Effect of initial porosity on the predicted strain to failure for generalized shear 

( ̅   ), for axisymmetric tension ( ̅   ) and for axisymmetric compression ( ̅    ). The 

results are shown for          (blue),          (black) and          (red). 

 

on the initial porosity, additional simulations have been carried out on unit cells of lower 

porosity (        ) and of higher porosity (        ), respectively.  

Figure 6-10 summarizes the simulation results for all three porosities (   

     =blue,         =black,         =red). It is observed that the initial volume 

fraction has two major effects on the onset of localization:  

1. For a given stress state, the failure strain decreases as a function of the porosity. 

For example, for      and  ̅     , the strain to failure for the lowest porosity 

is 1.5 times higher than that for         , and 2.4 times higher than that for 

        .  

2. The cut-off stress triaxiality below which no localization occurs decreases as the 

porosity increases. In case of a generalized shear stress state, the cut-off trixiality 
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is         for         , and         for         . For         , 

we have     , i.e. localization occurs for all stress triaxialities considered in 

this study. 

6.4 Macroscopic localization criterion 

In view of developing ductile fracture models, we propose a macroscopic criterion to 

describe the strain to failure as a function of the stress state. Starting point is the formulation 

of a criterion in stress space, followed by a transformation into the mixed stress-strain space 

{   ̅   ̅}. 

6.4.1  Criterion in terms of the normal and shear stress on the 

plane of localization  

An attempt is made to find a relationship between the shear and normal stresses on the 

plane of localization. According to our coordinate definitions, the vector normal to the plane 

of localization reads  

        ( )      ( )     (6-43) 

Recall that the direction of the second principal stress is always parallel to the plane of 

localization. As a consequence, the normal and shear stress acting on that plane are 

independent of the second principal stress. Denoting the normal and shear stress acting on 

the plane of maximum shear (     ) as 

    
       

 
 (6-44) 

    
       

 
 (6-45) 

we have 
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Figure 6-11: Shear stress versus the normal stress on the plane of localization. The solid 

dots represent the results from unit cell analyses, while the solid line represents the 

localization criterion defined by Eq. (6-48). 

 

      (  )        (6-46) 

     (  )    (6-47) 

The black dots in Figure 6-11 show the shear stress   as a function of the normal stress    at 

the onset of localization. Note that each data point {    } represents the result from a unit 

cell analysis for a specific stress state. The striking outcome is that all data points seem to lie 

on a smooth curve in that space. In particular, the plot is reminiscent of the criterion 

sketched by Mohr (1900, [110]). Here, we propose an open convex envelope as criterion for 

the onset of shear localization, 

| |

  
 [  

  
  
]
 

 (6-48) 
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with      ;     and    denote the respective limiting shear and normal stresses on the 

plane of localization. The black curve in Fig. 6-11 corresponds to a fit with          , 

           and       .  

Aside from the good agreement with the simulation results in terms of stresses, it is 

worth noting that the above shear localization criterion also provides a relationship between 

the orientation of the plane of localization and the stress state. For a given stress state {   ̅}, 

the mathematical problem determining the orientation   of the localization plane reads 

 (   ̅)        
 

{ ̅(     ̅)} 
(6-49) 

where  ̅(     ̅) is given through the implicit equation 

 ̅   [   ̅  ]    (6-50) 

With 

  (     ̅)     (  )
  ( ̅)      ( ̅)

   
 
     ( ̅)      ( ̅)

   
 (6-51) 

And 

  (     ̅)     (  )
  ( ̅)      ( ̅)

   
 (6-52) 

Figure 6-12a shows the predicted angle   as a function of the stress triaxiality and the Lode 

angle parameter. Apart from the immediate vicinity of the cut-off stress triaxiality, the 

model provides a reasonable approximation of the simulation results (Fig. 6-12b):  the angle 

  decreases as a function of the stress triaxiality and the Lode angle parameter, with values 

in the vicinity of       (i.e. close to the plane of maximum shear). 

 



222 Chapter 6. Modeling of plastic flow localization at intermediate stress triaxialities 

(a)  

(b)  

 

Figure 6-12: Orientation of the plane of localization (a) according to the analytical model, 

and (b) according to the unit cell analyses. 
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6.4.2 Criterion in mixed stress-strain space 

In the general framework provided by Mohr and Marcadet (2012, [108]), the solution  

 ̅ (   ̅)     { ̅(     ̅)} (6-53) 

of Eq. (6-49) corresponds to a conversion of the localization criterion from the two-

dimensional stress space {    } to the three-dimensional modified Haigh-Westergaard space 

{   ̅  ̅}. Using the isotropic hardening law, the localization criterion can then also be 

converted into the mixed stress-strain space {   ̅   ̅}, 

  ̅   
  [ ̅ (   ̅)] (6-54) 

with     denoting the inverse of the hardening function given by (6-1). The corresponding 

plot of the computed strain to failure as a function of stress triaxiality and the Lode angle 

parameter is shown in Fig. 6-13a. It agrees well with that obtained from localization analysis 

(Fig. 6-13b) which is another confirmation of the applicability of criterion (6-48) for 

predicting the onset of shear localization.  

6.4.3  Discussion  

One of the key features of the proposed localization criterion is its independence of the 

intermediate principal stress. It can thus be written in terms of two stress quantities only. 

However, the right pair of stress measures must be chosen, e.g.    and     , or    and  . 

Attempts were made in the past to formulate phenomenological ductile fracture criteria in 

terms of   ̅ and   (e.g. Johnson and Cook, 1985, [76]). For isotropic hardening Levy-von 

Mises materials, this corresponds to a criterion in terms of  ̅ and    in stress space. The 

poor agreement of such criteria with experimental data for non-axisymmetric stress states 

led to the introduction of the Lode (angle) parameter. Based on the above findings (and the 

assumption that ductile fracture is imminent with the onset of localization), the introduction 

of a third stress measure into ductile fracture criteria is only needed because the equivalent 

von Mises stress (and hence also the equivalent plastic strain) is not orthogonal to the second  
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(a)  

(b)  

 

Figure 6-13: Visualization in the mixed stress-strain space: (a) strain to failure according to 

the localization criterion as a function of the stress triaxiality and the Lode angle parameter, 

(b) Comparison of the analytical model (dark curves) with the simulation results (dark dots). 
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principal stress.  

It is worth noting that unlike the von Mises stress, the Tresca stress     is orthogonal to 

the second principal stress and could be used in conjunction with the normal stress     

acting on the plane of maximum shear to formulate a fracture criterion. As compared to 

using the normal and shear stresses on the plane of localization, the latter criterion would not 

require the identification of the critical plane. Preliminary computations actually showed 

that (6-48) also yields good results when using the {       } instead of {    }. 

6.5 Concluding remarks 

Motivated by the assumption that ductile fracture is imminent with the onset of 

localization, a fully three-dimensional unit cell model with a spherical void defect is built to 

investigate the effect of the stress state on the onset of localization in a Levy-von Mises 

solid. The particular feature of the present analysis is that it covers a rather dense grid of 

stress states, with stress triaxialities ranging from 0 to 1 and the full range of Lode 

parameters. The periodic boundary conditions are formulated such that the macroscopic 

stress triaxiality and Lode parameter are kept constant up to the onset of localization. The 

simulations are performed for co-rotational loading to compensate for the effect of 

unavoidable material rotation due to the tangential loading along the unit cell boundaries. 

The simulation results reveal that the macroscopic failure strain is a monotonically 

decreasing smooth function of the stress triaxiality, and a non-symmetric convex function of 

the Lode parameter. This observation is in qualitative agreement with the simulations of 

Nahshon and Hutchinson (2008, [112]) who carried out a localization analysis (based on the 

theoretical framework proposed by Rice (1977, [127])) using an isotropic shear-modified 

Gurson model (Fig. 6-14). A plot of the shear stress as a function of the normal stress acting 

on the plane of localization for all simulations suggests a simple open convex envelope as a 

criterion for predicting the onset of localization. The transformation of this criterion into the 

mixed stress-strain space of stress triaxiality, Lode angle parameter and equivalent plastic 

strain leads to an accurate analytical description of all simulation results. It is worth noting  
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Figure 6-14: Minimum effective plastic strain at localization for constant values of   as 

predicted by the shear-modified Gurson model. From Nahshon and Hutchinson (2008, 

[112]) 

 

that the proposed criterion can be found as a sketch in the early work of Mohr (1900, [110]), 

with the well-known Mohr-Coulomb model corresponding to a linear approximation of the 

proposed localization criterion. The present micromechanical analysis therefore provides 

strong support for phenomenological ductile fracture models that postulate the existence of a 

Mohr-Coulomb type of failure surface in stress space for proportional loading (e.g. Bai and 

Wierzbicki, 2010, [5]; Mohr and Marcadet, 2012, [108]). 
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7.1 Summary of the contributions 

7.1.1 Constitutive modeling of AHSS 

An extensive experimental program has been carried out to investigate the inelastic 

behavior of TRIP780 and DP590 materials under large deformations. Almost the same 

stress-strain curve has been determined from uniaxial tensile tests performed for seven 

different specimen orientations. However, the plastic flow (as characterized by Lankford’s r-

ratios) is direction dependent and its modeling requires the use of an anisotropic quadratic 

flow potential function. Here, a constitutive model with a planar isotropic quadratic yield 

function and a non-associated anisotropic flow rule is employed. Biaxial plasticity 
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experiments have demonstrated that this constitutive model yields accurate predictions of 

the mechanical response under multi-axial loading. 

7.1.2 Fracture experiments for sheet materials 

Two series of fracture experiments for sheet materials were developed and analyzed in 

detail. A first series, consisting of full thickness specimens with different geometries, 

permits to reach stress states ranging from uniaxial to equi-biaxial tension. A second series 

makes use of a butterfly-shaped reduced thickness specimen. Used in conjunction with a 

dual-actuator system, any stress state from pure shear to transverse plane strain tension can 

be achieved. The butterfly specimen is optimized more specifically for shear-dominated 

conditions. The shape of the specimen gage section is design such that fracture initiates 

away from the specimen boundaries and that the strain field is approximately uniform at the 

specimen center. It features clothoidal shaped boundaries for that purpose. However, 

experimental results showed that despite this optimization effort, the location of fracture 

initiation under shear loading is not completely controlled.  

7.1.3 Characterization of the effect of stress state on ductile 

fracture of AHSS 

An extensive experimental program covering stress states from pure shear to equi-

biaxial tension was carried on TRIP780 sheet specimens. Overall nine different loading 

conditions were investigated. Surface strains fields and displacement of specimen 

boundaries were measured using planar or stereo Digital Image Correlation, while detailed 

finite element simulations were performed of all experiments to determine the evolution of 

local stress and strain fields inside the specimens and the material state at the onset of 

fracture. Possible experimental and numerical sources of inaccuracy in the resulting loading 

paths to fracture were analyzed and minimized. Results of this hybrid experimental-

numerical method showed a strong dependence of ductility to stress state. Furthermore, 

strain to failure could not be considered as a function of the stress triaxiality only. For the 
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present TRIP780 sheet material, a minimum of ductility is observed for transverse plane 

strain tension loading.  

7.1.4 Plastic localization analysis 

A numerical model was developed to investigate the effect of the stress state on the 

onset of plastic localization in a void containing material. It is based on a cubic three-

dimensional unit cell containing an initially spherical cavity, deformed under a combination 

of normal and tangential displacements. Fully periodic boundary conditions are applied, 

while specific kinematic constraints are imposed to the cell degrees of freedom in order to 

control the macroscopic stress state as well as the macroscopic principal stress directions 

during deformation. The onset of plastic localization is defined by a kinematic criterion 

comparing the rates of deformation gradients inside and outside the band of localization.  

The complete range of intermediate stress triaxialities (from 0 to 1) is investigated, with 

Lode angle parameters varying from -1 to 1. To account for topological and morphological 

anisotropy, both radial and co-rotational loading paths are considered. 

Results of the localization analysis show that the macroscopic failure strain is a 

monotonically decreasing smooth function of the stress triaxiality, and a non-symmetric 

convex function of the Lode angle parameter. Furthermore it was found that no localization 

occurs in the vicinity of axisymmetric stress states at low stress triaxiality. An analysis of 

the shear and normal stresses acting on the plane of localization for all simulations suggests 

a simple open convex envelope as a criterion for predicting the onset of localization in the 

stress space. It is shown that this envelop can be approximated by a Mohr-Coulomb 

criterion. 

7.1.5 Modeling the onset of ductile fracture in AHSS 

The extensive experimental program carried out on the TRIP780 material is used to 

calibrate and evaluate the predictive capabilities of two fracture models: a Shear-modified 

Gurson model and the Modified Mohr-Coulomb (MMC) fracture model. The MMC model 
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is based on the assumption that the initiation of fracture is determined by a critical stress 

state, while the shear-modified Gurson model assumes fracture initiates when a critical void 

volume fraction is reached. In addition, the Gurson model explicitly includes damage in the 

constitutive equations, while the MMC model is based on an uncoupled approach where 

fracture model does not influence the plasticity model.  

 Considering the very low level of void volume fraction reached at the onset of 

fracture in the present TRIP material, it is found that embedding damage in the constitutive 

model does not noticeably improve predictions of the macroscopic behavior of the material. 

Furthermore, the MMC model can predict the onset of fracture with a higher accuracy while 

featuring less parameters. Results of the unit cell localization analysis also strongly support 

the choice of a Mohr-Coulomb type fracture criterion in the range of intermediate stress 

triaxialities.  

7.2 Future research 

7.2.1 Non-linear loading paths 

All the experiments presented in this work have been carried out under proportional 

loading conditions. As a result loading trajectories that have been investigated are close to 

linear (proportional) in the stress space. Small deviations from linear loading paths observed 

in fracture experiments described in Chapter 3 and Chapter 4 are due to localized necking 

and/or geometry effects caused by the large deformation of specimens. Note that because 

those necking and/or large deformation effects, strictly linear loading paths are highly 

difficult to achieve. 

However, in most industrial applications where an accurate prediction of the onset of 

ductile fracture in thin-walled structures is of interest (sheet metal forming, crash 

simulations…), loading paths are often highly non-linear in the stress space. An extension of 

the hybrid experimental-numerical method presented in Chapter 3 would be required to 

characterize the onset of ductile fracture under such non-proportional loadings. Note that the 



7.2. Future research 231 

biaxial tension-shear experimental procedure developed in Chapter 4 may be used to carry 

out non-proportional loading conditions. In addition, tension-compression experiments, 

using an appropriate anti-buckling device (Mohr and Mansour, 2009, [107]), can also be 

used for that purpose. Note that the plasticity model detailed in Chapter 2 was developed in 

view of proportional loading conditions only, as it can only describe isotropic hardening. An 

extension accounting for kinematic hardening would be needed in order to extend the hybrid 

experimental-numerical method to non-linear loading paths. 

7.2.2 Damage accumulation rule 

The uncoupled framework for phenomenological fracture models presented in Chapter 

5 is based on the definition of a reference fracture strain for proportional loading conditions. 

Application of this approach to non-linear loading paths requires introducing a damage 

indicator incrementally defined by a damage accumulation rule (Eq. 1-1). Here a linear 

accumulation rule is chosen, where the increment of damage is proportional to the increment 

of equivalent plastic strain. Note that the MMC fracture model is applied to almost 

proportional loading paths in Chapter 5, which therefore do not permit to assess the validity 

of a linear accumulation of damage. In addition, experimental evidence or theoretical 

justifications for a linear accumulation of damage are scarce in the open literature.  

 Recent experimental investigations on butterfly-shaped specimens submitted to shear 

followed by traction indicate that a linear accumulation of damage is not appropriate for 

highly non-linear loading paths (Marcadet, 2013, [99]). Additional research is needed to 

develop and validate a damage accumulation rule applicable to non-linear loading 

conditions. 

7.2.3 Unit cell calculations 

The unit cell model developed in Chapter 6 is subject to undesired topological 

anisotropy. The topological anisotropy may by suppressed by replacing the single-cavity 

cubic unit cell by a Representative Volume Element (RVE) containing multiple cavities 
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such that the resulting periodic material be isotropic. Significant challenges are associated 

with the choice of an isotropic distribution of cavities, as well as with simulation of the 

deformation of the RVE, due to large meshes involved. 

The physical scale representative of the unit cell model is the grain scale. Cavities 

observed in the deformed TRIP material have a diameter of 1 to 3   . At this scale the 

matrix material does not behave as a continuum but as a crystal aggregate. The maximum 

grain size is about 5   . Therefore a more representative model for the detection of plastic 

localization at the grain scale may be obtained by replacing the isotropic matrix material by 

a polycrystalline RVE whose deformation is governed by crystal plasticity. 
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