
Data-driven optimization and analytics for operations

management applications

by

Joline Ann Villaranda Uichanco

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2013

c⃝ Massachusetts Institute of Technology 2013. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sloan School of Management

August 1, 2013

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Georgia Perakis

William F. Pounds Professor of Management
Professor of Operations Research and Operations Management

Thesis Supervisor

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Retsef Levi

J. Spencer Standish (1945) Professor of Management
Associate Professor of Operations Managementat

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dimitris Bertsimas

Boeing Professor of Operations Research
Co-director, Operations Research Center

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/19894027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2



Data-driven optimization and analytics for operations management

applications

by

Joline Ann Villaranda Uichanco

Submitted to the Sloan School of Management
on August 1, 2013, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Operations Research

Abstract

In this thesis, we study data-driven decision making in operation management contexts,
with a focus on both theoretical and practical aspects.

The first part of the thesis analyzes the well-known newsvendor model but under the
assumption that, even though demand is stochastic, its probability distribution is not part of
the input. Instead, the only information available is a set of independent samples drawn from
the demand distribution. We analyze the well-known sample average approximation (SAA)
approach, and obtain new tight analytical bounds on the accuracy of the SAA solution.
Unlike previous work, these bounds match the empirical performance of SAA observed in
extensive computational experiments. Our analysis reveals that a distribution’s weighted
mean spread (WMS) impacts SAA accuracy. Furthermore, we are able to derive distribution
parametric free bound on SAA accuracy for log-concave distributions through an innovative
optimization-based analysis which minimizes WMS over the distribution family.

In the second part of the thesis, we use spread information to introduce new families
of demand distributions under the minimax regret framework. We propose order policies
that require only a distribution’s mean and spread information. These policies have several
attractive properties. First, they take the form of simple closed-form expressions. Second,
we can quantify an upper bound on the resulting regret. Third, under an environment of
high profit margins, they are provably near-optimal under mild technical assumptions on
the failure rate of the demand distribution. And finally, the information that they require
is easy to estimate with data. We show in extensive numerical simulations that when profit
margins are high, even if the information in our policy is estimated from (sometimes few)
samples, they often manage to capture at least 99% of the optimal expected profit.

The third part of the thesis describes both applied and analytical work in collaboration
with a large multi-state gas utility. We address a major operational resource allocation
problem in which some of the jobs are scheduled and known in advance, and some are
unpredictable and have to be addressed as they appear. We employ a novel decomposition
approach that solves the problem in two phases. The first is a job scheduling phase, where
regular jobs are scheduled over a time horizon. The second is a crew assignment phase, which
assigns jobs to maintenance crews under a stochastic number of future emergencies. We
propose heuristics for both phases using linear programming relaxation and list scheduling.
Using our models, we develop a decision support tool for the utility which is currently being
piloted in one of the company’s sites. Based on the utility’s data, we project that the tool
will result in 55% reduction in overtime hours.
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Chapter 1

Introduction

In managing the operations of a firm, decisions often have to be made in an environment

having some underlying uncertainty. Some examples include inventory management, supply

chain coordination, revenue management, and workforce management. In this thesis, we

discuss decision making in operations management contexts under uncertainty, with a focus

on both theoretical and practical aspects.

In the first part of the thesis, we make the assumption that the probability distribution

of the underlying uncertainty is not known as part of the input. This is particularly relevant

in real-world applications since the decision maker does not have a complete description of

the underlying uncertainty.

In Chapter 2, we consider the well-known newsvendor model, however the only infor-

mation available is a set of independent samples drawn from the demand distribution. We

consider the well-known sample average approximation (SAA) approach, but there is a cost

associated with the sampling process. Gathering more samples incurs a sampling cost. On

the other hand, gathering less samples incurs an inaccuracy cost. The sample size must be

carefully chosen to balance the cost tradeoffs involved with sampling. We model inaccuracy

cost as the expected penalty, where a fixed penalty is incurred in the event that the relative

regret of the SAA quantity exceeds a threshold. We obtain new tight analytical bounds

on the probability of this event which match the empirical performance observed in ex-

tensive computational experiments. Unlike previous work, this bound reveals the weighted

mean spread (WMS) as an underlying property of the demand distribution which impacts

the accuracy of the SAA procedure. Furthermore, we are able to derive a bound indepen-

dent of distribution parameters based on an innovative optimization-based analysis which

minimizes WMS over a distribution family.

In Chapter 3, we study a minimax regret approach to the newsvendor problem. Using

a distribution statistic, called absolute mean spread (AMS), we introduce new families of

demand distributions under the minimax regret framework. We propose order policies that

require only a distribution’s mean and information on the AMS. Our policies have several

attractive properties. First, they take the form of simple closed-form expressions. Second,
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we can quantify an upper bound on the resulting regret. Third, under an environment of

high profit margins, they are provably near-optimal under mild technical assumptions on

the failure rate of the demand distribution. And finally, the information that they require

is easy to estimate with data. We show in extensive numerical simulations that when profit

margins are high, even if the information in our policy is estimated from (sometimes few)

samples, they often manage to capture at least 99% of the optimal expected profit.

In the second part of the thesis, we demonstrate using a real-world example how analytics

and optimization is used for decision-making in a gas utility.

In Chapter 4, we describe a project which addresses a major operational resource allo-

cation challenge that is typical to the industry and to other application domains. We study

the resource allocation problem in which some of the tasks are scheduled and known in

advance, and some are unpredictable and have to be addressed as they appear. The utility

company has maintenance crews that perform both standard jobs (each must be done before

a specified deadline) as well as repair emergency gas leaks (that occur randomly throughout

the day, and could disrupt the schedule and lead to significant overtime). The goal is to

perform all the standard jobs by their respective deadlines, to address all emergency jobs

in a timely manner, and to minimize maintenance crew overtime.

We employ a novel decomposition approach that solves the problem in two phases. The

first is a job scheduling phase, where standard jobs are scheduled over a time horizon. The

second is a crew assignment phase, which solves a stochastic mixed integer program to

assign jobs to maintenance crews under a stochastic number of future emergencies. For

the first phase, we propose a heuristic based on the rounding of a linear programming

relaxation formulation and prove an analytical worst-case performance guarantee. For the

second phase, we propose an algorithm for assigning crews to replicate the optimal solution

structure.

We used our models and heuristics to develop a decision support tool for the utility

which is currently being piloted in one of the company’s sites. Using the utility’s data, we

project that the tool will result in 55% reduction in overtime hours.
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Chapter 2

The data-driven newsvendor

2.1 Introduction

In the classical newsvendor problem, a retailer plans to sell a product over a single period to

meet a stochastic demand with a known distribution (Zipkin, 2000). She needs to commit

to a stocking quantity before observing the actual demand at the end of the sales period.

The retailer incurs an underage cost for each unit of unsatisfied demand, and an overage

cost for each unsold unit of product at the end of the period. The goal of the retailer is to

choose an order quantity that minimizes the expected cost. The basic assumption of the

newsvendor model is that the demand distribution is known.

In reality, managers need to make inventory decisions without having complete knowl-

edge of the demand distribution. Often, the only information available comes from a set

of demand data. Nonparametric data-driven heuristics are a class of heuristics that as-

sume the demand data is a random sample drawn from the unknown demand distribution.

Typically, these data-driven heuristics are more accurate as the sample size increases. If

there is no cost incurred for gathering samples, then it is better to gather as many demand

samples as possible. However, in some realistic settings, there is a cost associated with the

data-collection or sampling process. Gathering more samples incurs a sampling cost. On

the other hand, gathering less samples incurs an inaccuracy cost. The sample size must

be carefully chosen to balance the cost tradeoffs involved with sampling. In this chapter,

we analyze the cost tradeoffs under the popular nonparametric data-driven heuristic called

sample average approximation (SAA) (Homem-De-Mello, 2000; Kleywegt et al., 2001). The

SAA heuristic minimizes the cost averaged over the empirical distribution induced by the

sample, instead of the true expected cost that cannot be evaluated.

In our model, let D be the stochastic single-period demand. Let C(q) denote the ex-

pected underage and overage cost of an inventory level q. If the true distribution of D is

known, then the optimal newsvendor quantity q∗ = minq≥0C(q) is a well-specified quantile

of the distribution (sometimes called the critical quantile). In our setting, the distribution

of D is unknown, but a random sample of size N drawn from the unknown distribution is
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available. Let Q̂N denote the SAA solution, which is stochastic since its value depends on

the random sample. We assess the accuracy of the SAA solution by comparing its expected

cost C(Q̂N ) against the optimal expected cost C(q∗). The difference, C(Q̂N ) − C(q∗), is

often called the error (or the regret) of ordering the SAA solution. The regret normalized

by C(q∗) is referred to as the relative regret.

Let θS(N) denote the sampling cost of a sample of size N . For instance, θS(N) may

be linear and increasing in the sample size: θS(N) = ρN , where ρ > 0 is the cost in-

curred for each demand data. Let θI(N) denote the inaccuracy cost of the SAA solution.

There are multiple ways to define the inaccuracy cost θI depending on the specific problem

context. Suppose a penalty K is incurred whenever the relative regret of the SAA solu-

tion exceeds a specified threshold ϵ. In this chapter, we choose to model the inaccuracy

cost of sampling as the expected penalty incurred by ordering the SAA solution. That is,

θI(N) , E
(
K · 1[C(Q̂N )>(1+ϵ)C(q∗)]

)
= K · Pr

(
C(Q̂N ) > (1 + ϵ)C(q∗)

)
, where 1[A] is the

indicator function of event A; it takes a value of 1 if event A occurs and zero otherwise.

The optimal choice of the sample size N minimizes the total cost θS(N)+θI(N). Solving

this requires evaluating θI or, equivalently, having a probabilistic understanding of the

relative regret of the SAA heuristic, (C(Q̂N )−C(q∗))/C(q∗), as a function of the sample size.

In this work, we provide an entirely new optimization-based analysis that: (i) Obtains tight

analytical probabilistic bounds on SAA accuracy that match the empirical performance.

As a result they can be used to accurately estimate the value of additional samples; and

(ii) Highlights several new important properties of the underlying demand distribution that

drive the accuracy of the SAA heuristic.

2.1.1 Contributions and Insights

Our work has multifold contributions and provides several important insights:

Informative probabilistic bound. We derive a new analytical bound on the proba-

bility that the SAA solution has at most ϵ relative regret. This bound depends only on the

sample size, the threshold ϵ, the underage and overage cost parameters, as well as a newly

introduced property of the demand distribution called weighted mean spread (WMS). To the

best of our knowledge, the WMS is an entirely new concept first introduced in this thesis.

The absolute mean spread (AMS) at x, ∆(x), is the difference between the conditional ex-

pectation of demand above x and the conditional expectation below the x (Definition 2.4.1).

The WMS at x is simply the AMS weighted by the density function value, i.e. ∆(x)f(x).

Our analysis shows that the WMS is the property that drives the accuracy of the SAA

method. Specifically, the probability that the SAA solution has a relative regret greater

than ϵ decays exponentially with a constant proportional to ∆(q∗)f(q∗). Thus, the SAA

procedure is more likely to be have smaller regret if samples are drawn from a distribution

with a large value for ∆(q∗)f(q∗).

Tight probabilistic bounds. Regression analysis demonstrates that the probabilistic

bounds we derive for SAA accuracy based on our analysis are tight. Hence, we are able to
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quantify the accuracy gained from obtaining additional samples. This is especially valuable

in settings where data-collection incurs a cost. Thus, we are able to characterize the optimal

sample size that balances the sampling cost and inaccuracy cost.

Probabilistic bounds for log-concave distributions. The new notion of WMS

is used to develop a general optimization-based methodology to derive tight probabilistic

bounds for the accuracy of the SAA method over any nonparametric family of distributions.

This is done through a specified optimization problem that minimizes the WMS, ∆(q∗)f(q∗),

over the family of distributions. We are able to solve this problem in closed form for the

important family of log-concave distributions, providing a tight lower bound on ∆(q∗)f(q∗)

of all log-concave distributions. As a consequence, we obtain a uniform probabilistic bound

for the accuracy of the SAA solution under any log-concave demand distribution. This

bound is independent of distribution-specific parameters, and only depends on the sample

size, the regret threshold, and the underage and overage cost parameters. (Note that

many of the common distributions assumed in inventory and operations management are

log-concave, e.g., normal, uniform, exponential, logistic, chi-square, chi, beta and gamma

distributions.) The new bound is significantly tighter than the bound in Levi et al. (2007).

The methodology we developed could potentially be used to derive probabilistic bounds

for SAA accuracy under other distribution families. We believe this is a promising future

research direction.

Comparing SAA vs. traditional fitting approaches. Finally, we conduct an

extensive computational study comparing the accuracy of the SAA method against the

naive (but commonly used in industry) approach that first fits the samples to a specified

distribution and then solves the newsvendor problem with respect to that distribution.

The comparison is made based on the average relative regret each method incurs. To

implement the fitting approach, we used the distribution-fitting software EasyFit to find the

distribution that best describes the samples from its database of more than 50 distributions.

We investigate the effect of the sample size and the effect of sampling from nonstandard

demand distributions on the magnitude of the relative regret. In most cases, even when the

critical quantile is high, the errors of the SAA method are on par or dominate those of the

distribution fitting approach. Moreover, when the samples are drawn from a nonstandard

distribution (e.g., mixed normals), the distribution fitting method results in huge errors

compared to the SAA method.

2.1.2 Literature Review

There exists a large body of literature on models and heuristics for inventory problems that

can be applied when limited demand information is known. One may use either a paramet-

ric approach or a nonparametric approach. A parametric approach assumes that the true

distribution belongs to a parametric family of distributions, but the specific values of the

parameters are unknown. In contrast, a nonparametric approach requires no assumptions

regarding the parametric form of the demand distribution. The following are some exam-
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ples of parametric approaches. Scarf (1959) proposed a Bayesian procedure that updates

the belief regarding the uncertainty of the parameter based on observations that are col-

lected over time. More recently, Liyanage & Shanthikumar (2005) introduced operational

statistics which, unlike the Bayesian approach, does not assume any prior knowledge on

the parameter values. Instead it performs optimization and estimation simultaneously. In

another recent work, Akcay et al. (2009) propose fitting the samples to a distribution in

the Johnson Translation System, which is a parametric family that includes many common

distributions. Besides SAA, the following are other examples of nonparametric approaches

proposed in previous work. Concave adaptive value estimation (CAVE) (Godfrey & Powell,

2001) successively approximates the objective cost function with a sequence of piecewise

linear functions. The bootstrap method (Bookbinder & Lordahl, 1989) estimates the crit-

ical quantile of the demand distribution. The infinitesimal perturbation approach (IPA)

is a sampling-based stochastic gradient estimation technique that has been used to solve

stochastic supply chain models (Glasserman & Ho, 1991). Huh & Rusmevichientong (2009)

develop an online algorithm for the newsvendor problem with censored demand data (i.e.,

data is on sales instead of demand) based on stochastic gradient descent. Another nonpara-

metric method for censored demand is proposed by Huh et al. (2008), based on the well-

known Kaplan-Meier estimator. Robust optimization addresses distribution uncertainty by

providing solutions that are robust against different distribution scenarios. It does this by

allowing the distribution to belong to a specified family of distributions. Then one can use

a max-min approach, attempting to maximize the worst-case expected profit over the set of

allowed distributions. Scarf (1958) and Gallego & Moon (1993) derived the max-min order

policy for the newsvendor model with respect to a family of distributions with the same

mean and variance. Another robust approach attempts to minimize the worst-case “regret”

(or hindsight cost of suboptimal decision) over the distribution family. Some recent works

using a minimax regret criterion include Ball & Queyranne (2009); Eren & Maglaras (2006);

Perakis & Roels (2008); Levi et al. (2013b).

In general, the sample average approximation (SAA) method is used to solve two types

of stochastic optimization problems. The first type of problems are those that are computa-

tionally difficult even though the underlying distribution is known (e.g. two-stage discrete

problems where the expectation is difficult to evaluate due to complicated utility functions

and multivariate continuous distributions). In this case, sampling is used to approximate

the complicated (but known) objective function. The resulting sample approximation leads

to a deterministic equivalent problem (e.g. an integer program) that is finite, though pos-

sibly with a large dimension due to the number of samples. Some analytical results about

probabilistic bounds for SAA accuracy have been derived for two-stage stochastic integer

programs (Kleywegt et al., 2001; Swamy & Shmoys, 2005; Shapiro, 2008). It was shown

by Kleywegt et al. (2001) that the optimal solution of the SAA problem converges to the

true optimal value with probability 1. They also derive a probabilistic bound on the SAA

accuracy that depends on the variability of the objective function and the size of the feasible
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region, however they observe it to be too conservative for practical estimates. In this first

type of problems, understanding the accuracy of SAA is importance since the sample size

directly influences the computational complexity of the problem.

The second type of problems SAA is used to solve are problems whose objective functions

are easy to evaluate if the distribution is known (like for the newsvendor problem), however

the complication is that the distribution is unknown. Sampling is used to estimate the

unknown distribution. The problem we are dealing with in this chapter falls under this

second category of problems. If there is an explicit cost for sampling, the accuracy of the

SAA solution as a function of the sample size needs to be understood to determine the

tradeoff between sampling cost and inaccuracy cost. The accuracy of the SAA solution for

the newsvendor problem is analyzed by Levi et al. (2007) who derive a probabilistic bound

on its relative regret. This probabilistic bound is independent of the underlying demand

distribution, and only depends on the sample size, the error threshold, and the overage and

underage cost parameters. Since it applies to any demand distribution, it is uninformative

and highly conservative. It is uninformative since it does not reveal the types of distributions

for which the SAA procedure is likely to be accurate. It is conservative because, as we

demonstrate in computational experiments later in this chapter, the probabilistic bound

in Levi et al. (2007) does not match the empirical accuracy of the SAA seen for many

common distributions. Since it is not tight, this probabilistic bound is of limited value

in a setting where data-collection incurs a cost. We show later in Section 2.6 that the

analysis of Levi et al. (2007) greatly underestimates the benefit of gathering additional

samples. Similar to the probabilistic bounds derived for the first type of problems using

SAA, our probabilistic bounds are distribution-specific. However, unlike those bounds, our

bounds are tight. Since the demand distribution is unknown, we use an optimization-based

framework to derive probabilistic bounds for SAA accuracy that do not depend on any

distribution-parameters.

Other works have analyzed the regret of a nonparametric data-driven heuristic under

censored demand data. When data is censored, the choice of the inventory level affects the

demand data for the next period. Thus, the problem of choosing inventory levels is an

online convex optimization problem, because the objective function is not known, but an

iterative selection of a feasible solution yields some pertinent information. Since the choice

of the current period’s solution influences the next period’s information, the choice of the

sample size is not the critical factor; rather, the critical issue is the design of an online policy

to ensure that the regret diminishes over time. Recent results in online convex optimiza-

tion propose algorithms with convergence of O(1/
√
N) for the expected regret averaged

over N periods for perishable inventory (Flaxman et al., 2005). Huh & Rusmevichientong

(2009) propose an online algorithm for nonperishable inventory which achieves the same

convergence rate. The convergence rate can be improved to O(log(N + 1)/N) when the

probability density function f has a nonzero lower bound on an interval containing q∗ (Huh

& Rusmevichientong, 2009). In contrast with these works, the focus of our chapter is on

21



the case of uncensored demand. Therefore, since the choice of the inventory level does not

affect the next period’s data, the accuracy of the heuristic only depends on the regret of

the current period. Moreover, the focus of our chapter is bounding the probability that the

relative regret exceeds a small threshold, rather than the more conservative expected relative

regret criterion. Finally, we observe if we were concerned with the regret (rather than the

relative regret) of the SAA solution, then the probability bound on the SAA solution having

regret exceeding ϵ decays exponentially with a constant proportional to f(q∗). Therefore,

as with Huh & Rusmevichientong (2009), if a nonzero lower bound on f(q∗) exits, then

a probability bound independent of the distribution can be derived. However, since our

chapter is concerned with relative regret, the probability bound decays with a constant of

∆(q∗)f(q∗). As we show in the chapter, the task of finding a uniform lower bound for

∆(q∗)f(q∗) is achievable for the class of log-concave distributions.

Finally, our results are also related to quantile estimation literature. This is because the

SAA solution for the newsvendor problem is a particular sample quantile of the empirical

distribution formed by the demand samples. The confidence interval for the quantile esti-

mator are well-known (Asmussen & Glynn, 2007). However, unlike in quantile estimation,

the accuracy of the SAA solution does not depend on the absolute difference between the

true quantile and the quantile estimator. Rather it depends on the cost difference between

the true quantile and the estimator Thus, in our work, we find a relationship between the

two types of accuracies.

2.1.3 Outline

This chapter is structured as follows. In §2.2, we describe the data-driven single-period

newsvendor problem. We also discuss a general setting where data-collection incurs a cost

linear in the sample size. §2.3 briefly discusses the analysis of Levi et al. (2007). §2.4
contains the main theoretical contributions of this work. In §2.6, we revisit the problem

of choosing a sample size to balance the marginal cost and benefit of sampling. Finally,

in §2.7, we perform computational experiments that compare the performance of the SAA

approach to other heuristic methods. Unless given, the proofs are provided in Appendix B.

2.2 The Data-driven Newsvendor Problem

In the newsvendor model, a retailer has to satisfy a stochastic demandD for a single product

over a single sales period. Prior to observing the demand, the retailer needs to decide how

many units q of the product to stock. Only then is demand realized and fulfilled to the

maximum extent possible from the inventory on hand. At the end of the period, cost is

incurred; specifically, a per-unit underage cost b > 0 for each unit of unmet demand, and a

per-unit overage cost h > 0 for each unsold product unit. The goal of the newsvendor is to

minimize the total expected cost. That is,

min
q≥0

C(q) , E
[
b(D − q)+ + h(q −D)+

]
,
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where x+ , max(0, x). The expectation is taken with respect to the stochastic demand D,

which has a cumulative distribution function (cdf) F .

Much is known about the newsvendor objective function and its optimal solution (see

Zipkin 2000). In particular, C is convex in q with a right-sided derivative ∂+C(q) = −b +
(b + h)F (q) and a left-sided derivative ∂−C(q) = −b + (b + h) Pr(D < q). The optimal

solution can be characterized through first-order conditions. In particular, if ∂−C(q) ≤ 0

and ∂+C(q) ≥ 0, then zero is a subgradient, implying that q is optimal (Rockafellar, 1972).

These conditions are met by

q∗ , inf

{
q : F (q) ≥ b

b+ h

}
,

which is the b
b+h quantile of D, also called the critical quantile or the newsvendor quantile.

The basic assumption of the newsvendor problem is that there is access to complete

knowledge of F . If the cdf F of the demand is unknown, then the optimal ordering quantity

q∗ cannot be evaluated. Let {D1, D2, . . . , DN} be a random sample of size N drawn from

the true demand distribution, and let {d1, d2, . . . , dN} be a particular realization. Instead of

optimizing the unknown expected cost, the SAA method optimizes the cost averaged over

the drawn sample:

min
q≥0

ĈN (q) , 1

N

N∑
k=1

(
b(dk − q)+ + h(q − dk)+

)
. (2.1)

Based on the particular sample, the empirical distribution is formed by putting a weight

of 1
N on each of the demand values. Note the function ĈN is the expected cost with respect to

the empirical distribution. Hence, the optimal solution to (2.1) is the b
b+h sample quantile.

Formally, we denote the empirical cdf as F̂N (q) , 1
N

∑N
k=1 1[Dk≤q]. Let Q̂N denote the

optimal solution to the SAA counterpart with a sample of size N . Thus, Q̂N is the b
b+h

quantile of the random sample:

Q̂N , inf

{
q : F̂N (q) ≥ b

b+ h

}
. (2.2)

Note that Q̂N is a random variable since its value depends on the particular realization of

the random sample.

The SAA procedure is more accurate if the sample size N is large. With a larger sample

size, the b
b+h sample quantile, Q̂N , is a closer approximation to the true b

b+h quantile, q∗.

However, we consider in this work the setting where there is a tradeoff between having

too few samples and too many samples. Thus, the choice of the sample size needs to be

made carefully. In particular, for some constant ρ > 0, we denote by θS(N) = ρN the

sampling cost incurred from choosing a sample size N . We denote by θI(N) the inaccuracy

cost incurred from a sample size N , where θI(N) = K · Pr
(
C(Q̂N ) > (1 + ϵ)C(q∗)

)
for

some ϵ > 0. Note that θI represents the expected penalty from ordering the SAA solution
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Figure 2-1: The intervals SLRS
ϵ and Sf

ϵ of a newsvendor cost function C.
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Note: SLRS
ϵ is defined in (2.3); Sf

ϵ will be defined in Section 4 in (2.6)

if a penalty of K is incurred whenever the relative regret of the SAA solution exceeds a

threshold ϵ. We are interested in finding the sample size N for which θS(N) + θI(N) is

minimized. This can only be accomplished by developing a probabilistic understanding of

how the relative regret of the SAA solution, (C(Q̂N ) − C(q∗))/C(q∗), is influenced by the

sample size. In the next section, we discuss a probabilistic bound due to Levi et al. (2007).

Sections 2.4 and 2.5, we introduce a novel asymptotic analysis of the SAA procedure which

results in a tighter probabilistic bound. Armed with this analysis, we will again revisit the

problem of sample size selection in Section 2.6.

2.3 Distribution-Free Uniform Probability Bounds

As a background for the new analysis discussed in Section 2.4, the bound of Levi et al.

(2007) (referred to as the LRS bound) will be discussed first. As part of the discussion, it

will be shown that in fact their bound can be improved.

The SAA solution is called ϵ-optimal if its relative regret is no more than ϵ. Let us denote

the interval consisting of all ϵ-optimal quantities as Sϵ, where Sϵ , {q : C(q) ≤ (1+ϵ)C(q∗)}
(see Figure 2-1). Levi et al. (2007) use the left and right one-sided derivatives of C, denoted

by ∂−C and ∂+C, to define the following interval:

SLRS
ϵ ,

{
q : ∂−C(q) ≤ ϵ

3
min(b, h) and ∂+C(q) ≥ − ϵ

3
min(b, h)

}
, (2.3)

and then show that SLRS
ϵ ⊆ Sϵ (see left plot of Figure 2-1). Note that SLRS

ϵ consists of all

points for which there exists a subgradient with magnitude bounded by ϵ
3 min(b, h).

Using large deviations results, specifically the Hoeffding inequality (Hoeffding, 1963),

Levi et al. (2007) derive a bound on the probability that the SAA solution Q̂N solved with

a sample of size N has the properties that ∂−C(Q̂N ) ≤ γ and ∂+C(Q̂N ) ≥ −γ. The bound
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depends on N , γ, and the cost parameters b and h. Note that when γ = ϵ
3 min(b, h), the

property is equivalent to Q̂N ∈ SLRS
ϵ . Then using the fact that SLRS

ϵ ⊆ Sϵ, they obtain the

following theorem.

Theorem 2.3.1 (LRS bound (Levi et al., 2007)). Consider the newsvendor problem with

underage cost b > 0 and overage cost h > 0. Let Q̂N be the SAA solution (2.2) with sample

size N . For a given ϵ > 0, Q̂N ∈ SLRS
ϵ and C(Q̂N ) ≤ (1 + ϵ)C(q∗) with probability at least

1− 2 exp

(
−2

9
Nϵ2

(
min{b, h}
b+ h

)2
)
. (2.4)

By using the Bernstein inequality (Bernstein, 1927), we are able to prove a tighter bound

than (2.4). Unlike the Hoeffding inequality, the Bernstein inequality uses the fact that we

seek to estimate the specific b
b+h quantile. The proof is provided in Appendix B.

Theorem 2.3.2 (Improved LRS bound). Consider the newsvendor problem with underage

cost b > 0 and overage cost h > 0. Let Q̂N be the SAA solution (2.2) with sample size N .

For a given ϵ > 0, Q̂N ∈ SLRS
ϵ and C(Q̂N ) ≤ (1 + ϵ)C(q∗) with probability at least

1− 2 exp

(
− Nϵ2

18 + 8ϵ
· min{b, h}

b+ h

)
. (2.5)

The improved LRS bound (2.5) depends on min(b,h)
b+h rather than on

(
min(b,h)

b+h

)2
. This

is significant because in many important inventory systems, the newsvendor quantile b
b+h

is typically close to 1, reflecting high service level requirements. Thus, h
b+h is close to

zero, resulting in a very small value for min(b,h)
b+h . Hence, the improved LRS bound gives a

significantly tighter bound on probability of an ϵ-optimal SAA solution. As an illustration,

consider the SAA method applied to a newsvendor problem in which the service level

increases from 95% to 99%. In order to maintain the likelihood of achieving the same

accuracy, the LRS bound suggests that the sample size needs to be increased by 25 times.

In contrast, the improved LRS bound suggests that the accuracy is maintained by a sample

size that is only five times as large.

The analysis of Levi et al. (2007) yields a probability bound that is general, since

it applies to any demand distribution. However, it is uninformative in that it does not

shed light on relationship between the accuracy of the SAA heuristic and the particular

demand distribution. Furthermore, the LRS bound is very conservative. We demonstrate

this empirically through the following experiment. Draw 1000 random samples, each with

a sample size of N = 100, from a particular distribution. The respective SAA solutions

{q̂1100, . . . , q̂1000100 } are computed, where q̂i100 is the SAA solution corresponding to random

sample i. We note that although the samples are drawn from specific distributions, the SAA

solution is computed purely based on the resulting empirical distribution. The respective

25



Table 2.1: Theoretical bounds and actual empirical performance of SAA.

Distribution ϵ = 0.02 ϵ = 0.04 ϵ = 0.06 ϵ = 0.08 ϵ = 0.10

Uniform Emp conf 81.8% 93.7% 96.6% 99.0% 98.9%
(A = 0, B = 100) NLRS 1,088,200 395,900 209,200 154,300 97,800

Nf 956 692 544 428 416
Normal Emp conf 75.8% 89.7% 94.7% 97.3% 99.4%
(µ = 100, σ = 50) NLRS 958,830 339,630 186,370 125,390 109,210

Nf 3,812 2,676 2,184 1,940 2,096
Exponential Emp conf 69.6% 84.4% 91.5% 94.0% 98.2%
(µ = 100) NLRS 855,280 292,090 162,120 102,130 88,560

Nf 1,472 996 824 684 736
Lognormal Emp conf 75.1% 90.5% 96.5% 98.2% 98.7%
(µ = 1, σ = 1.805) NLRS 945,890 348,880 207,670 137,190 94,680

Nf 1,272 932 824 720 616
Pareto Emp conf 79.1% 92.6% 98.0% 98.1% 99.5%
(xm = 1, α = 1.5) NLRS 1,025,400 377,500 236,400 135,600 112,600

Nf 1,152 840 780 592 612

a “Emp conf” refers to the empirical confidence, or the fraction of random samples where
the SAA procedure achieves relative regret less than ϵ.

relative regret of the SAA solutions are {ϵ1, . . . , ϵ1000} where ϵi , C(q̂i100)−C(q∗)
C(q∗) . We refer to

the fraction of sets that achieve a relative regret less than the target ϵ to be the empirical

confidence. Using Theorem 2.3.1, we can calculate the minimum sample size predicted

by the LRS bound to match the empirical confidence level. If this LRS sample size is

significantly greater than 100, then this would imply that the LRS bound is very loose (i.e.,

conservative) since the same accuracy and confidence probability can be achieved with a

smaller number of samples.

Table 2.1 summarizes the results of the outlined experiment for a newsvendor critical

quantile of 0.9. Rows labeled NLRS correspond to the LRS sample size. One can see from

the table that if, for example, the SAA counterpart is solved with samples drawn from a

uniform distribution, the relative errors are less than 0.02 in 81.8% of the sets. However,

to match this same error and confidence level, the LRS bound requires 1,088,200 samples.

This is almost a thousand times as many samples as the 100 used to generate this confidence

probability. We can observe that this large mismatch between the empirical SAA accuracy

and the theoretical guarantee by the LRS bound prevails throughout various target errors

ϵ and distributions.

One way to understand why the LRS bound is conservative is to observe that the interval

SLRS
ϵ is typically very small relative to Sϵ (see the left plot of Figure 2-1). Naturally, the

probability of the SAA solution falling within SLRS
ϵ can be significantly smaller than the

probability of it falling within the larger interval Sϵ.
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2.4 New Approximation to the Sϵ Interval

In this section, we shall develop a tighter approximation of Sϵ. Specifically, we develop an

informative probabilistic bound on the relative regret of the SAA solution that identifies the

important properties of the underlying demand distribution that determine the procedure’s

accuracy.

Suppose the demand is a continuous random variable with a probability density function

(pdf) f , which we assume to be continuous everywhere. (Later in §5, we will show that

this assumption is automatically satisfied under some simple conditions.) Let C̃ be the

second-order Taylor series approximation of C at the point q = q∗, where q∗ is the optimal

newsvendor quantile. Note that since a pdf exists, the cost function is twice differentiable.

It is straightforward to verify that

C̃(q) , bh

b+ h
∆(q∗) +

1

2
(b+ h)(q − q∗)2f(q∗),

where ∆ is the absolute mean spread operator defined below.

Definition 2.4.1 (Absolute Mean Spread (AMS)). Let D be a random variable. We

define the absolute mean spread (AMS) at x as ∆(x) , E(D|D ≥ x)− E(D|D ≤ x).

Observe that ∆(q∗) is simply equal to b+h
bh C(q∗). Consider an approximation to Sϵ using

a sublevel set of C̃ (see the right plot of Figure 2-1):

Sf
ϵ ,

{
q : C̃(q) ≤ (1 + ϵ)C̃(q∗)

}
. (2.6)

The superscript f is to emphasize that the interval is defined by the particular distribution

f . The two endpoints of Sf
ϵ are:

q , q∗ −

√
2ϵ

bh

(b+ h)2
∆(q∗)

f(q∗)
, q , q∗ +

√
2ϵ

bh

(b+ h)2
∆(q∗)

f(q∗)
. (2.7)

It is clear from Figure 2-1 that Sf
ϵ is not necessarily a subset of Sϵ. However, by imposing

a simple assumption on the pdf, we can guarantee that Sf
ϵ ∩ [q∗,∞) is a subset of Sϵ.

Assumption 2.4.1. The cost parameters (b, h) are such that f(q) is decreasing for all

q ≥ q∗.

Observe that C̃ matches the first two derivatives of C at the point q = q∗. Moreover,

C ′′(q) = (b + h)f(q) and C̃ ′′(q) = (b + h)f(q∗). Thus, Assumption 2.4.1 implies that C̃

increases faster than C over the interval [q∗,∞). That is, C̃(q) ≥ C(q) for each q ∈ [q∗,∞),

implying that Sf
ϵ ∩ [q∗,∞) is a subset of Sϵ. Hence, under Assumption 2.4.1, if an order

quantity q falls within Sf
ϵ ∩ [q∗,∞), then this implies that q ∈ Sϵ or, equivalently, C(q) ≤

(1 + ϵ)C(q∗).

For distributions that are unimodal or with support ℜ+, when the newsvendor quantile
b

b+h is sufficiently large, then Assumption 2.4.1 is clearly satisfied. Table D.1 in Appendix D
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summarizes the range of b
b+h values for which Assumption 1 holds under common demand

distributions. In many important inventory systems, the newsvendor quantile is typically

large, so Assumption 2.4.1 would hold in a broad set of cases.

Recall that Theorems 2.3.1 and 2.3.2 give lower bounds on the probability that the SAA

solution (i.e., the b
b+h sample quantile) lies in SLRS

ϵ , implying that it is ϵ-optimal. However,

in our new analysis, the SAA solution is ϵ-optimal if it lies in the interval Sf
ϵ and if it is

at least as large as q∗. Therefore, instead of taking the b
b+h sample quantile, we bias the

SAA solution by a small amount. Later in Theorem 2.4.1, we prove a lower bound on the

probability that this biased SAA solution lies in Sf
ϵ ∩ [q∗,∞), implying that it is ϵ-optimal.

Recall that F̂N is the empirical cdf of a random sample of size N drawn from the demand

distribution D. For some α ≥ 0, define

Q̃α
N , inf

{
q : F̂N (q) ≥ b

b+ h
+

1

2

α

b+ h

}
. (2.8)

Note that Q̃α
N is a random variable since its value depends on the particular realization of

the random sample. The following theorem states that for an appropriately chosen bias

factor α, the probability that Q̃α
N is ϵ-optimal can be bounded. The proof is found in

Appendix B.

Theorem 2.4.1 (Distribution-dependent bound). Consider the newsvendor problem with

underage cost b > 0 and overage cost h > 0. Let Q̃α
N be defined as in (2.8), with α =√

2ϵbh∆(q∗)f(q∗) + O(ϵ). Under Assumption 1, for a given ϵ > 0, Q̃α
N ∈ Sf

ϵ ∩ [q∗,∞) and

C(Q̃α
N ) ≤ (1 + ϵ)C(q∗) with probability at least 1− 2U(ϵ), where

U(ϵ) ∼ exp

(
−1

4
Nϵ∆(q∗)f(q∗)

)
, as ϵ→ 0. (2.9)

Note that we say that g1(x) ∼ g2(x) as x→ 0 if limx→0
g1(x)
g2(x)

= 1. Thus, in an asymptotic

regime as ϵ→ 0, the probability bound in Theorem 2.4.1 only depends on the distribution

through the quantity ∆(q∗)f(q∗). In particular, the data-driven quantity Q̃α
N is more likely

to be near-optimal when the sample is drawn from a distribution with a high value for

∆(q∗)f(q∗). Next, we further formalize this insight through the following definition.

Definition 2.4.2 (Weighted Mean Spread (WMS)). Let D be a random variable. We

define the weighted mean spread (WMS) at x as ∆(x)f(x).

From this point onward, any references to the AMS or the WMS are with respect to the
b

b+h quantile of the demand distributions, i.e., ∆(q∗) or ∆(q∗)f(q∗), respectively.

We briefly discuss the intuition behind the dependence of the bound Ñf on the weighted

mean spread. The AMS ∆(q∗) can be thought of as a measure of dispersion around q∗. Note

that the slope C ′(q) = −b+ (b+ h)F (q) is zero at q∗. How fast the slope changes depends

on how fast the distribution changes around the neighborhood of q∗. In other words, a

28



Figure 2-2: Probability density function and cost function (b = 5, h = 5) for a uniform and
normal distribution.
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distribution whose mass is concentrated around q∗ (i.e., has a small AMS) has a steeper

cost function C around q∗. This is illustrated in Figure 2-2. The left plot shows the pdf of a

Normal and a uniform distribution. The right plot shows the relative error (as a function of

q) when b = h = 5 and the optimal order quantity is 100 units for both distributions. The

uniform distribution, which has a smaller AMS, has a steeper error function. The decision

of ordering 110 units has a larger relative error under the uniform distribution. On the

other hand, the size of the confidence interval for the quantile estimator of q∗ is inversely

proportional to f(q∗) (Asmussen & Glynn, 2007). Thus, if f(q∗) is large, less samples are

needed for the quantity Q̃α
N to be close (in absolute terms) to q∗. In many distributions

the absolute mean spread ∆(q∗) and the density value f(q∗) exhibit an inverse relationship.

Therefore, a large weighted mean spread ∆(q∗)f(q∗) corresponds to a distribution for which

this inverse relationship is balanced.

Recall the empirical experiment in §2.3 that produced Table 2.1. The experiment drew

1000 random samples, each with a sample size of N = 100, from a particular distribution.

For each of these 1000 sets, the SAA solution was computed and its relative error is noted.

(For these experiments, we simply take the b
b+h sample quantile and ignore the bias term.

Biasing the SAA solution does not change the insights.) The empirical confidence level is

the fraction of the 1000 sets that achieve a relative error less than a target ϵ. Now, we

can calculate the sample size predicted by Theorem 2.4.1 to match the empirical confidence

level for a target ϵ. The results are reported in Table 2.1 under the rows labeled Nf . Recall

that the empirical confidence is generated from an actual sample size N = 100. We compare

this with Nf and the sample size NLRS predicted by the LRS analysis (Theorem 2.3.1). We

find that the sample size predicted by Theorem 2.4.1 using our new analysis are empirically

significantly smaller. NLRS typically has an order of magnitude between 100,000 to 1 million
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Table 2.2: Regression analysis of ϵ = CNk

b
b+h = 0.8 b

b+h = 0.9 b
b+h = 0.95

k C R2 k C R2 k C R2

Uniform (A = 0, B = 100) -0.992 2.620 0.994 -1.002 2.807 0.992 -1.051 3.903 0.998
Normal (µ = 100, σ = 50) -1.016 3.155 0.994 -1.026 4.729 0.994 -0.97 5.131 0.994
Exponential (µ = 100) -0.983 3.066 0.995 -0.979 4.556 0.991 -1.02 9.712 0.998
Lognormal (µ = 1, σ = 1.805) -0.994 1.933 0.994 -1.014 4.384 0.995 -0.948 5.731 0.997
Pareto (xm = 1, α = 1.5) -1.021 2.977 0.997 -0.999 4.73 0.991 -0.984 7.85 0.992

samples, whereas Nf is typically between 100 to 1,000 samples.

2.4.1 Tightness of distribution-dependent bound

In what follows, we demonstrate through regression analysis that the new probability bound

(Theorem 2.4.1) is indeed tight ; that is, it explains precisely how different factors influence

the accuracy of the SAA procedure. First, we verify that it explains how the sample size

influences the errors. We estimated empirically the error–sample size relationship by es-

timating parameters C, k in the equation ϵ = CNk through regression. We fix a 90%

confidence level and cost parameters h = 1 and b. The number of samples N is varied

from {100, 200, . . . , 1000}. For each N , a total of 1000 independent sets of N indepen-

dent samples are drawn from a distribution. The SAA solutions {q̂1N , . . . , q̂1000N } are cal-

culated, and the resulting errors are labeled {ϵ1N , . . . , ϵ1000N } where ϵkN =
C(q̂kN )−C(q∗)

C(q∗) . The

90% quantile of the errors is denoted by ϵN . We perform the regression using the data

{(100, ϵ100), (200, ϵ200), . . . , (1000, ϵ1000)}. Table 2.2 shows the estimated parameters as well

as the R2 value. The probability bound of Theorem 2.4.1 explains a tight relationship if k

is observed to be close to -1. From Table 2.2, all estimates for k are close to -1, and the

estimated power function is almost a perfect fit to the data (since R2 is close to 1).

From Theorem 2.4.1, we can infer that the accuracy of the SAA procedure is only

distribution-dependent through the weighted mean spread. We verify this by estimating the

relationship ϵ = C{∆(q∗)f(q∗)}k through regression. We fix a 90% confidence level and a

sample sizeN . We consider a pool of ten distributions, i.e., the five distributions in Table 2.2

each under two values of the newsvendor quantile, 0.9 and 0.95. Let ωi be the weighted

mean spread of distribution i. A total of 1000 independent sets of N independent samples

are drawn from distribution i. We denote by ϵi the 90% quantile of the errors of the 1000

SAA solutions. We perform the regression using the data {(ω1, ϵ1), (ω2, ϵ2), . . . , (ω10, ϵ10)}.
The results of the regression are reported in Table 2.3 for different values of N . If k is

close to -1, then Theorem 2.4.1 precisely explains the relationship between the error and

weighted mean spread. From Table 2.3, we observe that all estimates for k are close to -1,

and the R2 value is close to 1 signifying that the estimates are a close fit to the data.

To conclude this section, we note that the probabilistic bound of Theorem 2.4.1 depends

on the distribution only through the WMS ∆(q∗)f(q∗). However, computing it still requires
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Table 2.3: Regression analysis of ϵ = C {∆(q∗)f(q∗)}k

N k C R2

100 -0.843 0.0166 0.928
300 -0.939 0.0048 0.990
500 -0.947 0.0029 0.993

knowledge of the specific underlying distribution. In the following section, we shall develop a

new optimization framework to get a lower bound on the WMS for a family of distributions.

This in turn leads to a uniform probability bound for that family. In particular, we obtain

a uniform nonparametric probability bound for all log-concave distributions L.

2.5 Optimization-Driven Bound on WMS

In this section, we assume that the demand distribution f is such that it belongs to F, where
F is a specified family of distributions. Suppose v∗ is a lower bound on the weighted mean

spread ∆(q∗)f(q∗) of any distribution in F. Suppose we choose to bias Q̃α
N , as defined in

(2.8), by the factor α =
√
2ϵbhv∗+O(ϵ). With minor changes to the proof of Theorem 2.4.1,

we can show that C(Q̃α
N ) ≤ (1 + ϵ)C(q∗) with probability at least 1− 2U∗(ϵ), where

U∗(ϵ) ∼ exp

(
−1

4
Nϵv∗

)
, as ϵ→ 0.

Note that both the bias factor and this new bound does not depend on specific parameters

of the distribution beyond v∗. That is, unlike the bound in Theorem 2.4.1 which depends

on the weighted mean spread, this bound is independent of any distribution parameters.

Next, we will use an optimization framework to find a lower bound v∗ for a family of

distributions F. This is accomplished by the following optimization problem:

inf
f,q∗

∆(q∗)f(q∗)

s.t. f ∈ F,
∫ q∗

−∞
f(s)ds =

b

b+ h
.

(2.10)

Note that q∗ is a decision variable, but because of the second constraint, it is forced to

take the value of the b
b+h quantile. Hence, (2.10) finds a distribution in F with the smallest

WMS at the b
b+h quantile. Solving (2.10) or finding a lower bound v∗ on its optimal value

provides a probability bound for the relative regret of Q̃α
N over all demand distributions

that belong to F.

In what follows, we will restrict our attention to the family of log-concave distributions

L, which includes many of the distributions commonly used in inventory theory (Zipkin,

2000). We shall show that if F = L, then (2.10) can be solved in closed form. Moreover,

the resulting probability bound on the relative regret incurred by the SAA solution is

significantly tighter than the LRS bound (2.5).
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Definition 2.5.1 (Log-Concave Distribution). A distribution f with support X is log-

concave if log f is concave in X .

It is known that the Normal distribution, the uniform distribution, the logistic distri-

bution, the extreme-value distribution, the chi-square distribution, the chi distribution, the

exponential distribution, and the Laplace distribution are all log-concave for any respective

parameter values. Some families have log-concave density functions for some parameter

regimes and not for others. Such families include the gamma distribution, the Weibull

distribution, the beta distribution and the power function distribution. Note that L is

not characterized through any parameterization (i.e, it does not depend on distributional

parameters such as moments that need to be estimated), but rather describes properties

satisfied by many common distributions.

Log-concave distributions are necessarily unimodal (Chandra & Roy, 2001). Any dis-

tribution in this class must also have monotonic failure rate and reversed hazard rate (see

Definition 2.5.2 below).

Definition 2.5.2 (Failure Rate and Reversed Hazard Rate). The failure rate is

defined as f
1−F . The reversed hazard rate is defined as f

F .

Log-concave distributions have both an increasing failure rate (IFR) and decreasing

reversed hazard rate (DRHR). Intuitively, this implies that the distribution falls off quickly

from its mode.

When we introduced our new analysis in §4, we made the technical assumption that

f is continuous everywhere. In fact, if f is log-concave, then it can have at most one

jump discontinuity, and the jump can only occur at the left end-point of its support (Sen-

gupta & Nanda, 1997). Therefore, assuming that the demand distribution is log-concave

automatically implies that this continuity assumption is also satisfied.

2.5.1 Probability bound for log-concave distributions

To solve (2.10) for log-concave distributions, we first solve a constrained version of (2.10).

Specifically, for some γ0 > 0 and γ1, fix the value of q∗ and add the constraints f(q∗) = γ0

and γ1 ∈ ∂ log f(q∗), where ∂ log f(q∗) is the set of all subgradients of log f at q∗. The

following optimization problem is obtained:

min
f

b+ h

h

∫ ∞

q∗
sf(s)ds− b+ h

b

∫ q∗

−∞
sf(s)(ds)

s.t. f ∈ L,
∫ q∗

−∞
f(s)ds =

b

b+ h
,

f(q∗) = γ0, γ1 ∈ ∂ log f(q∗).

(2.11)

Note that since the density value f(q∗) is fixed, the objective of the constrained problem

reduces to minimizing the absolute mean spread ∆(q∗). The following lemma provides
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necessary conditions on values of γ0 and γ1 for the feasible set of (2.11) to be nonempty.

The proof is provided in Appendix B.

Lemma 2.5.1. Let f be a log-concave pdf. Suppose q∗ is the b
b+h quantile with f(q∗) = γ0

and γ1 ∈ ∂ log f(q∗) for some γ0 > 0 and γ1. Then − b+h
h ≤

γ1
γ0
≤ b+h

b .

Solving the constrained problem (2.11) for log-concave distributions proves to be much

simpler than solving (2.10). We shall first show that the optimal value of (2.11) is attained

by an exponential-type distribution. As a consequence, we are able to obtain a uniform

lower bound for the WMS of any log-concave distribution. Particularly, we show that

∆(q∗)f(q∗) ≥ min(b,h)
b+h .

To solve (2.11), we note that for a log-concave distribution f , specifying a value for a

subgradient of log f bounds how fast the pdf f can grow or decay. This is formalized in the

next lemma. The proof is provided in Appendix B.

Lemma 2.5.2. Let f be a log-concave pdf. Suppose that for some t in its support, f(t) = γ0

and γ1 ∈ ∂ log f(t). Then for any x, f(x) ≤ γ0e
γ1(x−t).

In fact, the upper bound in Lemma 2.5.2 is sufficient to obtain the optimal solution

to (2.11). The next lemma characterizes useful conditions that imply the AMS of one

random variable D2 is lower than another random variable D1. The proof is given in

Appendix B.

Lemma 2.5.3 (Domination Lemma). Let f1 and f2 be two pdfs, with respective cdfs F1 and

F2. Suppose that f1(x) ≤ f2(x) for all x with f2(x) > 0, and that for some t, F1(t) = F2(t).

Then ∆1(t) ≥ ∆2(t), where ∆1 and ∆2 are the respective AMS of f1 and f2.

Finally, the following proposition constructs the optimal solution to optimization prob-

lem (2.11).

Proposition 2.5.4. Let Lq∗,γ0,γ1 be the set of all log-concave distributions with b
b+h quantile

q∗, and f(q∗) = γ0 and γ1 ∈ ∂ log f(q∗). The distribution with the smallest AMS ∆(q∗) in

Lq∗,γ0,γ1 is:

f̃(x) = γ0e
γ1(x−q∗), ∀x ∈ [x, x], (2.12)

where x = q∗ + 1
γ1

log
(
1− γ1

γ0
b

b+h

)
and x = q∗ + 1

γ1
log
(
1 + γ1

γ0
h

b+h

)
.

Proof. Note that f̃ is log-concave and therefore belongs in the set Lq∗,γ0,γ1 . The range of f̃

is well-defined since by Lemma 2.5.1, we have that γ1
γ0
∈
[
− b+h

h , b+h
b

]
. From Lemma 2.5.2,

we know that f̃(x) ≥ f(x) for all x ∈ [x, x] for each f ∈ Lq∗,γ0,γ1 . Thus, by the Domination

Lemma 2.5.3, f̃ has a smaller AMS than any f ∈ Lq∗,γ0,γ1 , and is therefore the optimal

solution to problem (2.11).
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A graphical illustration of the distribution f̃ in (2.12) is given in Appendix C (Figure C-

1). Finally, using the optimal value for problem (2.11), we are able to derive a uniform

lower bound on the WMS of any log-concave distribution. To do this, we will need the

following Lemma 2.5.5. The proof is provided in Appendix B.

Lemma 2.5.5. Let β ∈ (0, 1) and η ∈
(
− 1

1−β ,
1
β

)
. Then, the following relationships are

true:(
1

1− β
+ η

)
log (1 + η(1− β)) +

(
1

β
− η

)
log (1− ηβ)−min{β, 1− β}η2 ≥ 0,

β

1− β
log

(
1

β

)
− β ≥ 0,

1− β

β
log

(
1

1− β

)
− (1− β) ≥ 0.

Proposition 2.5.6. Suppose D has a log-concave pdf f , with b
b+h quantile q∗ and AMS

∆(q∗). Then ∆(q∗)f(q∗) ≥ min(b,h)
b+h .

Proof. Suppose that f belongs to the set Lq∗,γ0,γ1 , i.e., it has a
b

b+h quantile q∗ with f(q∗) =

γ0 and γ1 ∈ ∂ log f(q∗). Denote the optimal value of problem (2.11) by z∗q∗,γ0,γ1 . From

Proposition 2.5.4, the distribution f̃ defined in (2.12) is the optimal solution of problem

(2.11), which achieves the minimum AMS z∗q∗,γ0,γ1 . We consider three cases. If γ1
γ0
∈(

− b+h
h , b+h

b

)
, then

z∗q∗,γ0,γ1 =
γ0
γ21

[(
b+ h

h
+

γ1
γ0

)
log

(
1 +

γ1
γ0

h

b+ h

)
+

(
b+ h

b
− γ1

γ0

)
log

(
1− γ1

γ0

b

b+ h

)]
.

If γ1
γ0

= b+h
b , then z∗q∗,γ0,γ1 = 1

γ0
b
h log

(
b+h
b

)
. If γ1

γ0
= − b+h

h , then z∗q∗,γ0,γ1 = 1
γ0

h
b log

(
b+h
h

)
.

By applying Lemma 2.5.5 with η = γ1
γ0

and β = b
b+h , we find that in all three cases

z∗q∗,γ0,γ1 ≥
1
γ0

min(b,h)
b+h . Since f is a feasible solution of problem (2.11), we have that ∆(q∗) ≥

z∗q∗,γ0,γ1 ≥
1
γ0

min(b,h)
b+h = 1

f(q∗)
min(b,h)

b+h .

Recall our original objective is to find the smallest WMS among distributions in the

set L. To do this we partitioned the set into subsets Lq∗,γ0,γ1 . The derivation of Propo-

sition 2.5.6 implies that even solving the problem (2.11) restricted to a subset Lq∗,γ0,γ1 ,

regardless of the value of γ1, the minimum absolute mean spread is always bounded below

by a term that only depends on b, h and γ0. Hence, we are able to prove that min(b,h)
b+h is a

uniform lower bound on the weighted mean spread for any log-concave distribution. Finally,

this implies a probability bound for log-concave distributions. The proof is in Appendix B.

Theorem 2.5.7 (Log-concave bound). Consider the newsvendor problem with underage

cost b > 0 and overage cost h > 0. Suppose that D is log-concave and satisfies Assumption

1. Let Q̃α
N be defined as in (2.8), with α =

√
2ϵbhmin{b,h}

b+h + O(ϵ). Then for a given ϵ > 0,
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C(Q̃α
N ) ≤ (1 + ϵ)C(q∗) with probability at least 1− 2U∗(ϵ), where

U∗(ϵ) ∼ exp

(
−1

4
Nϵ

min{b, h}
b+ h

)
, as ϵ→ 0. (2.13)

We point out that there are several nonparametric tests proposed in the literature that

check whether a set of samples have been drawn from a log-concave distribution. An

(1995) proposes to test two necessary conditions for log-concavity. Another test proposed

by Sengupta & Paul (2005) involves finding the Least Concave Majorant (LCM) to the log

of empirical probability distribution function. The distribution is log-concave with high

probability if the “distance” between the LCM and the log of the distribution function does

not exceed a threshold.

Theorems 2.4.1 and 2.5.7 require that f(q) is decreasing for all q ≥ q∗ (Assump-

tion 2.4.1). We can in fact use the log-concave statistical tests to check if this true. The

advantage of the test by Sengupta & Paul (2005) is that it estimates the mode of the

(unimodal) log-concave distribution. If the cumulative density at the estimated mode is

significantly smaller than b
b+h , then Assumption 2.4.1 holds with high probability.

Finally, we would like to stress that the insights from our results are not limited to log-

concave distributions. In fact, if we can find a lower bound on the weighted mean spread of

any distribution family, then we can bound the relative error of the SAA procedure applied

to a distribution in that family.

2.6 Balancing the cost and benefit of sampling

Recall that our work is motivated for a setting where ordering decisions are determined

completely from data which incur a sampling cost. In this section, we will revisit the problem

of choosing the “right” sample size which balances the tradeoff between inaccuracy costs

and sampling costs. Suppose there is a cost θS incurred from data-collection proportional

to the sample size. That is, θS(N) , ρN for some ρ > 0. Whenever the SAA solution has a

relative regret greater than a threshold ϵ, a penaltyK > 0 is incurred. We let the inaccuracy

cost of a sample with size N be the expected penalty of ordering the SAA quantity:

θI(N) , E
(
K · 1[C(Q̂N )>(1+ϵ)C(q∗)]

)
= K · Pr

(
C(Q̂N ) > (1 + ϵ)C(q∗)

)
.

We are interested in choosing a sample size N in which the total cost is minimized:

min
N≥0

θS(N) + θI(N). (2.14)

Column’s labeled ‘Exact’ in Table 2.4 are sample sizes that equate the marginal cost to

the actual marginal benefit of an additional sample ρ, with ρ ∈ {0.001, 0.005, 0.01}.1 Note

1The actual marginal benefit is estimated from simulations experiments. In the simulation, we draw
from the demand distribution 1000 random samples of size N , where N = 100, 150, 200, . . . , 1000. For each
sample size Nk, we denote by θk the fraction of the 1000 random samples whose SAA solutions have relative
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Table 2.4: Sample size equating marginal cost to estimated marginal benefit of additional
sample.

ρ = 0.001 ρ = 0.005 ρ = 0.01

Exact f L LRS Exact f L LRS Exact f L LRS

Normal 1336 6148 16226 0 922 4213 9466 0 759 3380 6555 0
Exponential 1554 7787 16226 0 1139 5186 9466 0 917 4066 6555 0
Lognormal 1548 7223 16226 0 1086 4857 9466 0 870 3838 6555 0
Pareto 1427 6845 16226 0 1018 4633 9466 0 834 3680 6555 0
Uniform 1038 4417 16226 0 698 3130 9466 0 588 2575 6555 0
Gamma 1531 7379 16226 0 1055 4948 9466 0 885 3902 6555 0
Beta 1392 6690 16226 0 999 4540 9466 0 805 3615 6555 0

that since the true demand distribution is not known, the function θI cannot be evaluated.

However, from Theorems 2.3.2, 2.4.1 and 2.5.7, we instead have upper bounds on θI .

For a fixed threshold ϵ, penalty K, and newsvendor cost parameters b, h, let us define

θLRS(N) , 2K exp

(
− ϵ2

18 + 8ϵ
· min{b, h}

b+ h
·N
)
,

θf (N) , 2K exp
(
− ϵ

4
∆(q∗)f(q∗)N

)
,

θL(N) , 2K exp

(
− ϵ

4
· min{b, h}

b+ h
·N
)
.

Note that each of these functions is an upper bound on the inaccuracy cost, θI(N), of the

SAA solution (unbiased and biased). Figure 2-3 plots the derivative of these functions to-

gether with the true marginal benefit of additional data, θ′I(N), when b = 95, h = 5,K =

100. Note that the marginal benefit of an additional data point is decreasing as the sample

size increases. However, since the distribution (in this case, a Normal distribution) is un-

known, the actual function θ′I cannot be evaluated. Hence, in practice we cannot determine

the exact sample size which equates the marginal benefit θ′I with the marginal cost ρ.

Suppose we use the functions θLRS , θf , θL to replace the unknown θI in (2.14). That

is, the derivatives of these functions are used to estimate the marginal benefit of additional

data (Figure 2-3). In Table 2.4, columns labeled ’LRS’, ’f ’, and ’L’ are the sample size

which equates θ′LRS , θ
′
f , and θ′L, respectively, to ρ. Note that due to the fact that the LRS

probability bound (Theorem 2.3.2) is loose, the derivative θ′LRS greatly underestimates the

marginal benefit of additional data. Table 2.4 shows the LRS analysis suggests that a

sample size of 0 is optimal, since the benefit gained from each extra sample is negligibly

smaller than the cost ρ. Observe that the ‘f ’ sample size is closest to the optimal sample

size in magnitude. Moreover, demand distributions that have a larger optimal sample size

under ‘Exact’ also have a larger sample size under ‘f ’. This demonstrates that the weighted

mean spread ∆(q∗)f(q∗) is the only demand distribution information necessary to infer the

regret larger than ϵ. We use data points {(Nk, θk)}k to estimate the parameters of an exponential function
θI = Ae−kN .
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Figure 2-3: Marginal benefit of additional data as a function of the sample size.
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Note: The function θ′I is computed for a Normal distribution with mean 100 and standard
deviation 50. This function is estimated using simulation.

benefit of additional samples. Note that ‘L’ and ‘LRS’ sample sizes do not depend on the

demand distribution, since they only use information of the cost parameters. However,

unlike the ‘LRS’ sample size, the ‘L’ sample size (since it is based on the weighted mean

spread) reasonably suggests that additional data decreases the inaccuracy of the data-driven

heuristic.

2.7 Computational Experiments

Thus far in this chapter, we have performed an analytical analysis of the accuracy of the

SAA procedure. In this section, we conduct computational experiments to analyze its

empirical accuracy vis-à-vis another widely-used data-driven heuristic. We compare how

the accuracy of the two heuristics is affected by the sample size, the critical quantile, and

the specific demand distribution.

The SAA heuristic estimates the unknown demand distribution with the empirical distri-

bution formed by the samples. Another popular data-driven heuristic is a distribution-fitting

approach. This heuristic infers the true distribution by fitting the samples to a distribution

family the true distribution is assumed to belong. For instance, a common practice is to

assume demand is normally distributed, and the sample is used to estimate its parameters.

The argument for a distribution-fitting approach is that the tail of the distribution cannot

be accurately approximated by the empirical cdf. Hence, when the critical quantile is close

to 1, a distribution-fitting approach results in smaller ordering errors by hopefully better

approximating the distribution tail. However, the distribution-fitting approach is sensitive

to the specification of the distribution family. That is, if the true demand distribution is
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non-normal, then fitting the sample to a normal distribution might potentially result in a

suboptimal order quantity. However, to reduce this risk it is possible to use distribution-

fitting softwares, such as EasyFit, which finds the distribution that “best” fits the sample.

EasyFit in particular has more than 50 distributions in its database, and chooses the distri-

bution that has the smallest Kolmogorov-Smirnov statistic (based on the largest difference

between the fitted distribution and the empirical cdf).

Consider the following experiment. A random sample is drawn from one of the following

distributions: (i) an exponential distribution with mean µ = 100, (ii) a Normal distribution

with mean µ = 100 and standard deviation σ = 100, (iii) a Pareto distribution with scale

parameter xm = 1 and shape parameter α = 1.5, (iv) a scaled beta distribution with range

[0, 50] and shape parameters α = 5, β = 1, and (v) a mixture of three Normal distributions

where µ = (100, 500, 1000), the standard deviation for each is σ = 100 and the weight vector

is w = (59 ,
1
3 ,

1
9). The drawn sample is used to generate two order heuristics. The first is the

SAA order quantity, which is simply the b
b+h quantile of the sample. The second is the Best

Fit order quantity, which is the b
b+h quantile of the distribution F chosen by the software

EasyFit to be the “best” fit for the sample.

We conduct the experiment for N ∈ {25, 50, 100, 200} and newsvendor quantile b
b+h ∈

{0.1, 0.2, . . . , 0.9, 0.95, 0.99} (where we fix h = 1). For a given b
b+h , 100 random samples of

size N are drawn from a specific distribution. For the kth sample, the order quantity q̂k is

found through one of the heuristics (SAA or Best Fit). If q∗ is the true solution, then the

relative error of q̂k is given by ϵk = C(q̂k)−C(q∗)
C(q∗) . The average relative error of the heuristic

is the average of {ϵ1, . . . , ϵ100}. Tables D.2, D.3, D.4, D.5 and D.6 in Appendix D present

the average errors for different critical quantiles b
b+h and sample sizes N when the samples

are drawn from an exponential, a Normal, a Pareto, a beta distribution, and a mixture of

Normal distributions, respectively.

We first analyze the effect of the shape of the distribution on the inaccuracy of the

SAA method and the Best Fit method. Table D.6 shows the average errors of the methods

when the samples are drawn from a nonstandard distribution: a mixture of three Normal

distributions. Note that when the sample size is at least 50, the average errors of the SAA

heuristic is small (less than 5%, and in most cases less than 1%). The largest average

error of the SAA heuristic is about 10%. However, the Best Fit method (which fits the

data to standard distributions with at most two modes) show instances when the errors are

25% or even 30%. This suggests that, overall, the SAA method can handle nonstandard

distributions better than the Best Fit heuristic, especially if the number of samples available

is limited.

We next observe the effect of the sample size on the accuracy of the two heuristics. The

cases when the inaccuracy of the solution from the SAA method is most apparent is when

the newsvendor quantile is large, e.g. b
b+h = 0.99, while the sample size is small. In fact,

we observe that when estimating a quantile that corresponds to a rare event (characterized

by a small density), the number of samples that need to be taken must be sufficiently large
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(usually N = 100 or more) for the average errors to be small. When N = 200, the average

errors are uniformly small for all distributions.

2.8 Conclusions

The sample average approximation (SAA) method is a simple and powerful tool for solving

inventory problems. It relies only on observing samples of the demand distribution. In

many realistic settings, there is a cost incurred in the data-collection process. The sample

size must be carefully chosen to minimize the sampling cost and the inaccuracy cost of the

SAA procedure. This work derived a bound on the probability that the SAA solution has

a relative regret exceeding a specified threshold. This bound reveals the weighted mean

spread (WMS) as an important property of a distribution which drives the accuracy of the

SAA solution to the newsvendor problem. With a fixed sample size, a distribution with a

large WMS is more likely to have a small relative regret. The relationship between the error

and the sample size and weighted mean spread predicted by our bound is tight, as exhibited

in our regression analysis. Hence, our work characterizes precisely the additional accuracy

gained in collecting additional samples. We introduce an optimization-based framework to

derive a uniform lower bound on the WMS of a family of distributions. This results in a

probabilistic bound SAA accuracy for that family. We demonstrate this method for log-

concave distributions, and derive a probabilistic bound that does not rely on any distribution

parameters (such as moments) that need to be estimated. The optimization framework

developed seems promising to study and obtain sampling bounds for other interesting classes

of distributions.
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Chapter 3

Regret optimization with spread

information

3.1 Introduction

Inventory decisions often have to be made in an uncertain demand environment. Stochastic

inventory models address this demand uncertainty by assuming demand to be stochastic

with a known probability distribution (Zipkin, 2000). There are per-unit costs incurred for

both understocking and overstocking. The optimal inventory level is highly dependent on

the specification of the demand distribution. For example, in the well-known newsvendor

problem, the optimal order quantity is a particular quantile of the demand distribution. In

reality however, managers have to make inventory decisions using only limited information

on the demand distribution. This goes against the basic assumption of stochastic inventory

models that the complete demand distribution is known. Typically, if a manager only

has limited demand information, this often leads him to overstock, resulting in very high

inventory costs (Badinelli, 1990).

Often, the only demand information available is demand data collected from previous

selling periods. An approach widely-used in industry is to chose the demand distribution

that best fits the available data. However, this can often result in suboptimal inventory

decisions. Levi et al. (2013a) demonstrate in simulation experiments that it can be costly

to misspecify the demand distribution in the newsvendor problem. They observe that when

the demand distribution is chosen by fitting available samples to the best distribution1,

resulting costs can be much greater compared to the optimal cost. With large sample sizes,

the cost is between 5% to 10% higher. With small sample sizes, the cost is between 15% to

as much as 75% higher.

The focus of this chapter is on distributionally robust methods that do not assume one

specific demand distribution, but rather assume that the true distribution belongs to a

1The best distribution is determined by distribution-fitting software EasyFit which chooses out of a
database of more than fifty distributions.
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certain distribution family. The advantage of such methods is that they mitigate the cost of

distribution misspecification. This is because the resulting policies are robust against any

distribution that belongs in the family. We focus on one particular such method called the

minimax regret approach. Regret is defined as the “hindsight cost” of making a suboptimal

decision after the parameters of the problem are fully realized. As an example, suppose

that the demand is normally distributed, and it is optimal to order 150 units. Due to not

having complete information about the demand distribution, a retailer decides to order 300

units. The regret (or hindsight cost) of her decision is the difference between the maximum

expected profit (i.e., with 150 units) and the expected profit of ordering 300 units. The

minimax regret criterion, first introduced by Savage (1951), attempts to minimize the worst-

case regret that a retailer can incur given that she only knows partial information about

the distribution. It can be motivated by the following game. Suppose that a retailer needs

to commit to an order quantity, but she only knows partial information about the demand

distribution. Regardless of which quantity she chooses, nature always tries to hurt her the

most by choosing a distribution (out of those that satisfy the known information) which

results in the largest regret for her order. Her best strategy is to choose the minimax

regret quantity, i.e., the quantity that minimizes the maximum regret over the family of all

distributions satisfying the known information. Examples of information that has been used

in a minimax regret framework include range, mean, mode, median, variance, skewness or

kurtosis (Scarf, 1958; Bertsimas & Popescu, 2004; Yue et al., 2006; Perakis & Roels, 2008).

3.1.1 Contributions

In this chapter, we propose partial-information policies that require only first-order dis-

tribution information. In particular, we propose policies that only require information

about a distribution’s mean and its absolute mean spread. Absolute mean spread (AMS)

is a first-order measure of a distribution’s dispersion around some benchmark value (see

Definition 3.2.1). We highlight the advantages of our partial-information policy:

1. Our policy achieves the minimum worst-case regret over a distribution family. The

policy that we propose can be shown to minimize the maximum regret over any

distribution with the same mean and the same absolute mean spread. Therefore, it is

robust against a family of distributions.

2. Our policies require information that is easy to estimate with data. In reality, the

demand information is often inferred from primitive data. Previous work on distribu-

tionally robust policies typically ignore the connection of distribution families to data.

When the sample size is small, estimating statistics such as skewness or kurtosis can

be prone to error. Since the partial information that we require is first-order, we will

show (Section 3.5) that they are easy to estimate using data. Therefore, the policies

are of practical use when the information has to be estimated from historical demand

data.
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3. The minimax regret problem is tractable. We are able to derive closed-form expressions

for the solution of the minimax regret problem using mean and AMS information. In

general, the tractability of the minimax regret problem depends on type of demand

information. Information such as range, median or mode results in closed-form solu-

tions (Perakis & Roels, 2008). Second-order information such as variance (Yue et al.,

2006; Perakis & Roels, 2008) results in a minimax regret problem that can be solved

numerically through techniques such as gradient descent. However, with higher order

information such as skewness or kurtosis, solving distributionally robust problems is

known to be NP-hard (Bertsimas & Popescu, 2004). Since our information is first-

order, then the resulting minimax regret problem is tractable and can be solved in

closed-form.

4. Our policy is provably near-optimal when profit margins are high. Under mild techni-

cal conditions on the failure rate of the demand distribution (see Definition 3.3.1), our

ordering policies are near-optimal in an environment of high profit margins. It can

be verified that most common distributions satisfy this technical condition, including

those that have an increasing failure rate (IFR). This illustrates the power of our poli-

cies in realistic settings, since it has been pointed out by Smith & Agrawal (2000) that

the opportunity costs of shortages are quite high in many retail settings. Therefore

under scenarios that often lead managers to overstock, our policy can aid managers

in making decisions that are almost as good as if there was perfect knowledge of the

distribution. We demonstrate through computational experiments in Section 3.6 that

this property still holds even when the information has to be estimated from a small

number of samples.

3.1.2 Literature Review

Our work belongs under the umbrella of distribution-free methods for stochastic inventory

models. These are methods that only assume partial information about the distribution.

Distribution-free approaches can be either parametric or nonparametric.

Parametric approaches are those in which the distribution is assumed to belong to a

parametric family of distributions, but the specific values of the parameters are unknown.

Scarf (1959) has analyzed a Bayesian procedure that updates the belief regarding the un-

certainty of the parameter based on observations that are collected over time. Liyanage

& Shanthikumar (2005) introduced operational statistics which, unlike the Bayesian ap-

proach, does not assume any prior knowledge of the parameter values. Instead, it performs

optimization and estimation simultaneously. In another recent work, Akcay et al. (2009)

propose fitting demand samples to a distribution in the Johnson Translation System, which

is a parametric family that includes many common distributions.

Nonparametric approaches, on the other hand, require no assumptions regarding the

parametric form of the demand distribution. Sample average approximation (SAA) is one
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such method (Kleywegt et al., 2001; Levi et al., 2007, 2013a) which uses the empirical

distribution formed by samples drawn from the true distribution. Concave adaptive value

estimation (CAVE) (Godfrey & Powell, 2001) successively approximates the objective cost

function with a sequence of piecewise linear functions. The bootstrap method (Bookbinder

& Lordahl, 1989) estimates the newsvendor quantile of the demand distribution. The in-

finitesimal perturbation approach (IPA) is a sampling-based stochastic gradient estimation

technique that has been used to solve stochastic supply chain models (Glasserman & Ho,

1991). Huh & Rusmevichientong (2009) develop an adaptive algorithm for inventory plan-

ning problems with censored demand data based on stochastic gradient descent. Huh et al.

(2009) propose an adaptive data-driven policy for censored demand based on the well-known

Kaplan-Meier estimator.

Distributionally robust methods address uncertainty about the distribution by providing

solutions that are robust against different scenarios. The distribution is allowed to belong to

a family of distributions with the same parameters. The minimax regret approach belongs

to this category. Another such method is the max-min approach (Scarf, 1958; Gallego &

Moon, 1993), which attempts to maximize the worst-case expected profit over the set of

allowed distributions. Scarf (1958); Gallego & Moon (1993) derived the max-min order

quantity for the newsvendor model with respect to a family of distributions with the same

mean and variance. However, one major issue with the max-min approach is that it typically

leads to policies that are too conservative, whereas the minimax regret approach does not

(Perakis & Roels, 2008). Other recent works on robust regret for other revenue management

models include Ball & Queyranne (2009); Eren & Maglaras (2006); Perakis & Roels (2008).

To the best of our knowledge, absolute mean spread (AMS) was first introduced in

Levi et al. (2013a) as a distribution statistic. There, they use it as a tool to analyze the

performance of sample average approximation (SAA) method applied to the newsvendor

problem. In their analysis, they show that the inaccuracy of the SAA solution is inversely

proportional to the AMS value of the demand distribution. Our work, on the other hand,

uses AMS in the robust minimax regret framework as a type of information about the

demand distribution.

3.1.3 Outline

The chapter is organized as follows. In Section 3.2, we introduce our minimax regret frame-

work using mean and AMS information. Section 3.3 presents optimality results of our

policies. Section 3.4 discusses the minimax regret problem under interval AMS informa-

tion. Section 3.5 introduces a point estimator and a confidence interval estimator for AMS.

Finally, in Section 3.6, we conduct computational experiments and compare the empirical

performance of our policies to other minimax regret policies.
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3.2 Regret optimization under spread information

In this section, we introduce the minimax regret criterion in the context of the single period

newsvendor problem. A retailer is selling a product with an uncertain demand D. At the

beginning of the sales period, she needs to make a decision on how many units to order,

before observing the actual demand. Once the demand occurs, it is satisfied to the maximum

extent possible from the units on hand. For simplicity, we assume that the revenue per unit

sale is normalized to $1. Each unit that she purchases costs $(1 − β), where β ∈ (0, 1) is

the per-unit profit margin of the product.

If the demand distribution F is known, the retailer will choose an order quantity y that

maximizes her expected profit. The optimal order quantity can be found by solving

max
y≥0

ΠF (y) , EF (min{y,D} − (1− β)y) ,

where ΠF (y) is the expected profit of ordering y units under a distribution F . It is well-

known that the optimal order quantity is the β quantile of F , i.e.,

F−1(β) , inf {y | F (y) ≥ β} .

Now suppose the true distribution F is unknown, but it is possible to specify a family of

distributions D to which it belongs. The maximum regret (over the distribution family D)
of ordering y units is:

ρD(y) , sup
F∈D

(
max
z≥0

ΠF (z)−ΠF (y)

)
. (3.1)

The expression inside the parentheses is the regret (or hindsight cost) of ordering y instead

of the optimal quantity after the demand distribution is revealed to be F . The minimax

regret criterion chooses the order quantity that minimizes the maximum regret:

ρ∗D , min
y≥0

ρD(y). (3.2)

The family D is the set of all demand distributions that satisfy the partial information.

Information can be a combination of known statistics such as mean, variance, range, mode

or median (Yue et al., 2006; Perakis & Roels, 2008). In what follows, we present a novel

approach to representing distribution families in a minimax regret framework. Unlike pre-

vious distribution families proposed in the literature, ours uses only first-order information,

is easy to estimate with data, results in a tractable problem, and is provably near-optimal

when profit margins are high.

In Levi et al. (2013a), a new distribution statistic was introduced, which they referred

to as the absolute mean spread or AMS.

Definition 3.2.1 (Absolute mean spread). For a random variable D with a distribution F ,

the absolute mean spread at t is defined as ∆F (t) , EF (D|D > t)− EF (D|D ≤ t).
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The absolute mean spread measures the dispersion of the distribution around some

point t. It is a first-order measure of spread, in contrast to variance (second-order) or range

(zeroth order).

We introduce the family of all distributions with a specified mean and a specified AMS

measured at the newsvendor quantile:

Dµ,δ =
{
F | EF (1[−∞,∞]) = 1, EF (D) = µ, ∆F (F

−1(β)) = δ
}
.

We also introduce the family which is a restriction of Dµ,δ to distributions with nonnegative

support:

Dµ,δ,+ =
{
F | EF (1[0,∞]) = 1, EF (D) = µ, ∆F (F

−1(β)) = δ
}
.

When it is clear from the context, we will use the notation ∆F (β) to denote the absolute

mean spread of a distribution around its β quantile, instead of ∆F (F
−1(β)). These two

families assume exact knowledge of the true value of ∆F (F
−1(β)). In Section 3.4, we relax

this assumption by admitting bounds on the value of ∆F (F
−1(β)).

We will show that there exist solutions to the minimax regret problems under Dµ,δ and

Dµ,δ,+. Due to the fact that all information required is first-order, the problem has a closed-

form solution. Consider the demand distribution families Dµ,δ and Dµ,δ,+, respectively. We

first discuss the conditions on µ and δ that guarantee that these families are, respectively,

nonempty. For the set Dµ,δ, since the support is the whole real line, then any combination

of values for µ and δ admits a feasible distribution. In particular, note that the following

two-point support distribution is an element of Dµ,δ:

D =

µ− (1− β)δ, w.p. β,

µ+ βδ, w.p. 1− β.
(3.3)

However, this is not true once the support is the nonnegative real line, as it is for Dµ,δ,+.

The following proposition states conditions on µ and δ that are necessary and sufficient for

the existence of a distribution in Dµ,δ,+.

Proposition 3.2.1. The distribution family Dµ,δ,+ is nonempty if and only if µ−(1−β)δ ≥
0.

Proof. Suppose µ− (1− β)δ ≥ 0. Consider the two-point support distribution (3.3). This

distribution is an element of Dµ,δ,+, proving that Dµ,δ,+ is nonempty. To prove the reverse

implication, suppose that Dµ,δ,+ is nonempty. Let F be a distribution in Dµ,δ,+ where

F−1(β) = w for some w ≥ 0. Note that

µ− w = E(D − w)+ − E(w −D)+

= (1− β)E(D − w|D ≥ w)− βE(w −D|D ≤ w)

= (1− β) {E(D|D ≥ w)− E(D|D ≤ w)}+ E(D − w|D ≤ w)
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= (1− β)δ + E(D|D ≤ w)− w. (3.4)

Thus, this implies that µ − (1 − β)δ = E(D|D ≤ w), which is nonnegative (since D has

nonnegative support).

For any values of µ and δ > 0, the minimax regret problem over Dµ,δ is well-defined. For

the distribution family Dµ,δ,+ however, we must require that µ and δ satisfy the condition

µ − (1 − β)δ ≥ 0 (Proposition 3.2.1). Denote the minimax regret values under Dµ,δ and

Dµ,δ,+ as ρ∗µ,δ and ρ∗µ,δ,+, respectively. In the next two theorems, we will characterize in

closed-form an expression for the minimax regret solutions, which we denote as y∗µ,δ and

y∗µ,δ,+, respectively.

Theorem 3.2.2. Consider the nonempty set Dµ,δ consisting of all distributions with mean

µ and AMS (at the β quantile) δ. Then the minimax regret and minimax regret quantity

are:

ρ∗µ,δ = β(1− β)δ,

y∗µ,δ = µ+ (2β − 1)δ.

Theorem 3.2.3. Consider the nonempty set Dµ,δ,+ consisting of all nonnegative distribu-

tions with mean µ and AMS (at the β quantile) δ. Then the minimax regret and minimax

regret quantity are:

ρ∗µ,δ,+ =
1

µ
β(1− β)δ(µ− (1− β)δ),

y∗µ,δ,+ =
1

µ
(µ− (1− β)δ)(µ+ βδ).

The proofs of Theorems 3.2.2 and 3.2.3 are discussed in Appendix B (Sections B.9 and

B.10). The following is a sketch of the proofs. For a fixed z and y, the optimization problem

in (3.1) reduces to a linear semi-infinite program (LSIP) (Goberna & Lopez, 1998). We take

the dual formulation of this LSIP. Unlike for a finite LP, a positive duality gap may exist for

an LSIP. However, since we are able to identify primal and dual solutions that achieve the

same cost, then weak duality guarantees that these solutions are primal and dual optimal,

respectively.

Our choice of distribution families Dµ,δ,Dµ,δ,+ is motivated by the connection between

AMS information and the regret function. We observe that a distribution with a small

AMS at the newsvendor quantile, ∆F (β), typically has a steep expected profit function,

ΠF (y). Since the regret function under a distribution F (i.e., ΠF (F
−1(β)) − ΠF (y)) is

simply a transformation of the expected profit function, then this means that a small AMS

at the newsvendor quantile also implies a steep regret function. We briefly discuss the basis
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Figure 3-1: Regret function under a normal and a uniform distribution when β = 0.5.
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behind this observation. Note that the slope of ΠF (y) (assuming a continuous distribution)

is Π′(y) = β − F (y). At the point y = F−1(β), the slope is equal to zero, and the rate of

change of the slope around this neighborhood depends on how fast the probability density

(or the spread) changes at F−1(β). As an illustration, see the left plot of Figure 3-1

which shows a uniform and a normal distribution, both with mean 100. If β = 0.5, the

optimal order quantity under both distributions is 100 units. However, under the uniform

distribution (which has the smaller value of ∆F (β)), the regret function is steeper, as seen in

the right plot of Figure 3-1. Therefore, even simple first-order information already provides

strong insight into the impact of suboptimal decisions on the regret.

Due to this strong connection between regret and absolute mean spread information, we

can prove attractive optimality properties of the policies using AMS information, as shown

in the next section.

3.3 Optimality properties of policies using spread informa-

tion

In this section, we prove a general result (Theorem 3.3.2 and Theorem 3.3.4) that under a

large class of demand distributions, the policies using AMS information are near-optimal

when profit margins are high, which is the case in most realistic settings.

Let us first compare the performance of our policies to other distributionally robust

policies that use common types of information. One such policy is by Scarf (1958) who uses

the mean, variance and nonnegativity information in a max-min framework (we denote this

policy as MM-µσ+). Another recent one is Perakis & Roels (2008) who use mean, variance

and nonnegativity information in a minimax regret framework (which we denote as MR-

µσ+). Through the following experiment, we compare these two policies to the minimax

regret policy using mean, AMS and nonnegativity information (which we denote MR-µδ+).

First, fix a demand distribution F and a profit margin β. Using the distribution’s exact

48



values for the mean µ, standard deviation σ, and AMS (at the β quantile) δ, compute the

three partial information policies. Since we know the true demand distribution, we know

the actual relative regret incurred by each policy. That is, for a given ordering quantity y,

the actual relative regret is:

Actual relative regret =
ΠF (F

−1(β))−ΠF (y)

ΠF (F−1(β))
. (3.5)

Figures 3-2–3-3 compare the actual relative regret of the three policies (MR-µδ+, MR-

µσ+, M-µσ+) as a function of the profit margin, under fourteen different demand distribu-

tions (see Figures C-3 and C-4 in Appendix C for a plot of the demand densities). In almost

all of the distributions, the MR-µδ+ policy clearly dominates the other two policies. This is

because, even though it is using only first-order information, the MR-µδ+ policy captures

quantile-specific spread information. In contrast, variance is a static information that does

not necessarily provide insight into ordering at high profit margins. This experiment high-

lights that the type of information used in the minimax regret framework is important in

having near-optimal policies under high profit margin environments.

In the remainder of this section, we will prove that a mild technical condition on the

distribution guarantees the near-optimality of our policies under high profit margins. First,

we define the failure rate of a random variable.

Definition 3.3.1 (Failure rate). Let D be a random variable with distribution F and density

f . The failure rate of D is defined as r(x) , f(x)/(1− F (x)).

If the failure rate of D satisfies limx→∞ r(x) > 0, then we can prove that its AMS value,

∆F (β), does not grow faster than 1
1−β as β → 1. This is formalized in the following lemma.

Lemma 3.3.1. If D has a failure rate r such that limx→∞ r(x) > 0, then limβ→1(1 −
β)∆F (β) = 0.

Proof. Note that for any t ∈ ℜ,∫ t

−∞
F (u)du = F (t)EF (t−D|D ≤ t) ,∫ ∞

t
(1− F (u)) du = (1− F (t))EF (D − t|D ≥ t) ,

implying that

lim
β→1

(1− β)∆F (β) = lim
t→∞

(∫ ∞

t
(1− F (u))du+

1− F (t)

F (t)

∫ t

−∞
F (u)du

)
.

The limit of the first term in the summation is clearly zero. By L’Hopital’s rule, the second

term goes to zero if F (t)(1−F (t))2

f(t) = 1
r(t)F (t)(1 − F (t)) goes to zero. Since limt→∞ r(t) > 0,

then limt→∞
1

r(t) exists. Thus,

lim
t→∞

1

r(t)
F (t)(1− F (t)) = lim

t→∞

1

r(t)
× lim

t→∞
F (t)(1− F (t)) = 0.
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Figure 3-2: Actual relative regret of partial information policies plotted against the profit
margin β.
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The regret incurred by each policy is exact. The mean, variance and AMS for each
distribution is known exactly by each policy.
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Figure 3-3: Actual relative regret of partial information policies plotted against the profit
margin β.
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The regret incurred by each policy is estimated using 100,000 sample points. The mean
and variance for each distribution is known exactly. The AMS is estimated using 100,000

sample points.
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Remark Most common demand distributions satisfy the condition of Lemma 3.3.1. That

is, the failure rate r(t) is strictly positive in the limit as t approaches infinity. Moreover, if

a random variable D has an increasing failure rate (IFR), then this condition is guaranteed

to be met. This is because for any point s in the interior of the support of D, limt→∞ r(t) ≥
r(s) = f(s)

1−F (s) > 0.

In the next theorem, we prove that if the true demand distribution has a failure rate r

such that limx→∞ r(x) > 0, then the actual regret of ordering using our policies goes to zero

as the profit margin approaches 1. This attractive optimality property of our policies is a

consequence of its AMS having bounded growth in β (Lemma 3.3.1). Since most common

distributions assumed in inventory management have this property, this implies that our

policies would achieve near-optimality under most demand distributions.

Theorem 3.3.2. Let D have a failure rate r such that limx→∞ r(x) > 0, and that EF (D) =

µ and ∆F (β) = δβ. Then, the actual regret of ordering y∗µ,δβ goes to zero as β → 1. If in

addition, D is nonnegative, then the actual regret of ordering y∗µ,δβ ,+ goes to zero as β → 1.

Proof. Let us prove the result for the case without nonnegativity. For a fixed β, the actual

regret of ordering y∗µ,δβ is ΠF (F
−1(β))−ΠF (y

∗
µ,δβ

). Moreover, since F ∈ Dµ,δβ , we have that

ΠF (F
−1(β))−ΠF (y

∗
µ,δβ

) ≤ ρ∗µ,δβ = β(1− β)δβ. From Lemma 3.3.1, we have that ρ∗µ,δβ → 0

as β → 1, implying that the actual regret goes to zero. Let us now prove the result for

nonnegative distributions. The actual regret of ordering y∗µ,δβ ,+ is ΠF (F
−1(β))−ΠF (y

∗
µ,δβ ,+

),

which is bounded above by ρ∗µ,δβ ,+. Since Dµ,δβ ,+ ⊂ Dµ,δβ , we have that ρ∗µ,δβ ,+ ≤ ρ∗µ,δβ .

Following from the first result, this implies that ρ∗µ,δβ ,+ → 0 as β → 1.

In fact, we can prove an even stronger result. Theorem 3.3.4 below states that the

relative regret of ordering our policies disappears as the profit margin approaches one. The

proof requires the following lemma.

Lemma 3.3.3. If D is a random variable with EF (D) = µ and ∆F (β) = δ, then the optimal

newsvendor profit is ΠF (F
−1(β)) = β(µ− (1− β)δ).

Proof. The result can be established through the following arithmetic arguments.

ΠF (F
−1(β)) = EF

(
min{F−1(β), D}

)
− (1− β)F−1(β),

= EF

(
min{F−1(β), D}|D ≤ F−1(β)

)
Pr(D ≤ F−1(β))

+EF

(
min{F−1(β), D}|D > F−1(β)

)
Pr(D > F−1(β))− (1− β)F−1(β),

= EF

(
D|D ≤ F−1(β)

)
β + F−1(β)(1− β)− (1− β)F−1(β),

= βEF

(
D|D ≤ F−1(β)

)
= β(µ− (1− β)δ),

where the last equality is established in (3.4).
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Theorem 3.3.4. Let D have a failure rate r such that limx→∞ r(x) > 0, and that EF (D) =

µ and ∆F (β) = δβ. Then, the actual relative regret of ordering y∗µ,δβ goes to zero as β → 1.

If in addition, D is nonnegative, then the actual relative regret of ordering y∗µ,δβ ,+ goes to

zero as β → 1.

Proof. Let us first prove the result for the case without nonnegativity. If F is in the family

Dµ,δβ , then for a fixed β, the relative regret of ordering y∗µ,δβ is

ΠF (F
−1(β))−ΠF (y

∗
µ,δβ

)

ΠF (F−1(β))
≤

ρ∗µ,δβ
ΠF (F−1(β))

=
(1− β)δβ

µ− (1− β)δβ
,

where the last equality follows from Lemma 3.3.3 and Theorem 3.2.2. Moreover, from

Lemma 3.3.1 the right-hand side expression goes to zero as β → 1. If D is nonnegative,

then the actual relative regret of ordering y∗µ,δβ ,+ is

ΠF (F
−1(β))−ΠF (y

∗
µ,δβ ,+

)

ΠF (F−1(β))
≤

ρ∗µ,δβ ,+

ΠF (F−1(β))
=

(1− β)δβ
µ

,

which follows from Lemma 3.3.3 and Theorem 3.2.3. The limit of the righthand side ex-

pression is zero as β → 1, following from Lemma 3.3.1.

In fact we can use Lemma 3.3.3 to prove that under any demand distribution family

that is specified by mean and AMS (at the β quantile), there exists an order quantity that:

(i) minimizes the maximum regret over the family, (ii) minimizes the maximum relative

regret over the family, and (iii) maximizes the minimum expected profit over the family.

Note that Dµ,δ and Dµ,δ,+ are examples of such families. This is formalized in the following

theorem.

Theorem 3.3.5. Let D be a distribution set in which all elements have the same mean µ and

AMS (at the β quantile) δ. Then there exists an order quantity that, under D, minimizes

the maximum regret and maximizes the minimum expected profit. If µ− (1− β)δ > 0, then

it also minimizes the maximum relative regret.

Proof. Denote µ as the common mean and δ as the common AMS (at the β quantile) under

family D. Denote by y∗ the order quantity that maximizes the minimum expected profit,

i.e.,

y∗ = argmax
y

{
min
F∈D

ΠF (y)

}
.

From Lemma 3.3.3, any distribution in D has the same optimal newsvendor profit β(µ −
(1− β)δ). Therefore, the minimax regret problem is

min
y

max
F∈D

{
ΠF (F

−1(β))−ΠF (y)
}
= min

y
max
F∈D
{β(µ− (1− β)δ)−ΠF (y)} ,

= β(µ− (1− β)δ)−max
y

min
F∈D

ΠF (y),
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which can be solved by choosing y∗ as an order quantity. Using similar arguments, we have

that the minimax relative regret problem is

min
y

max
F∈D

{
ΠF (F

−1(β))−ΠF (y)

ΠF (F−1(β))

}
= min

y
max
F∈D

{
β(µ− (1− β)δ)−ΠF (y)

β(µ− (1− β)δ)

}
,

= 1− 1

β(µ− (1− β)δ)
max
y

min
F∈D

ΠF (y),

which is also solved with the order quantity y∗.

3.4 Interval Information on AMS

Under some types of distribution families, the minimax regret problem becomes intractable

under interval information. For instance, to the best of our knowledge, there is no known

solution procedure if information about the standard deviation comes in the form of bounds

on its value.

In contrast, even if the only information available about ∆F (β) are upper and lower

bounds on its value, the minimax regret problem remains tractable. In fact, we can solve

the problem in closed-form. Consider the following family of distributions:

Dµ,δL,δU ,+ =
{
F | EF (1[0,∞](D)) = 1, EF (D) = µ and ∆F (F

−1(β)) ∈ [δL, δU ]
}
.

The next proposition provides conditions on the values of µ, δL and δU that ensure the set

Dµ,δL,δU ,+ is nonempty. The proof can be found in Appendix B (Section B.10).

Proposition 3.4.1. Distribution set Dµ,δL,δU ,+ is nonempty if and only if µ−(1−β)δL ≥ 0.

The minimax regret problem under Dµ,δL,δu,+ is tractable and has a closed-form ex-

pression, which we denote as y∗µ,δL,δU ,+ (we provide the expression and its derivation in the

appendices, in Sections A.3 and B.10, respectively). From the closed-form expression, we

observe that when δL = 0 and δU ≥ µ
1−β , the minimax regret solution y∗µ,δL,δU ,+ is in fact

equivalent to the minimax regret solution under only mean information (Perakis & Roels,

2008, Theorem 2). This is because under this case, the bounds on the AMS do not give any

additional meaningful information.

3.5 Data-driven estimation of AMS

Most partial information policies assume exact knowledge of statistics of a distribution. In

reality however, these are rarely if ever available. At most, they have to be estimated from

historical demand data or forecasts. In this section, we introduce a data-driven estimator

for ∆F (β). Since estimation is subject to error, we also propose a procedure for providing

confidence interval estimates of ∆F (β) (Algorithm 1 below). These data-driven confidence

intervals can then be used as input to the minimax regret policy in the previous section,

i.e., as values for δL and δU .
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Suppose D1, D2, . . . , Dn are i.i.d. random variables drawn from the same distribution

F . The order statistics of this set is a reordering of the random variables in terms of

nondecreasing values, expressed as D(1) ≤ D(2) ≤ · · · ≤ D(n). We can use the order

statistics to estimate the AMS value at the β quantile, ∆F (β). For any β ∈ (0, 1), we

propose the following estimator:

∆n , 1

n

n∑
i=1

Ji(β, n)D(i), (3.6)

where the weights are defined as:

Ji(β, n) ,


− 1

β , if i ≤ βn,
i−1+β(1−n)

β(1−β) , if βn < i ≤ βn+ 1,
1

1−β , if i > βn+ 1,

for i = 1, 2, . . . , n.

Note that ∆n is a random variable whose realization depends on the specific values taken

on by D1, D2, . . . , Dn. In fact from (3.6), ∆n is a linear combination of the order statistics

or L-statistic. Govindarajulu & Mason (1983) prove that L-statistics of the form (3.6) can

be written as a sum of independent random variables. In particular, we have that

∆n = ∆F (β) +Rn +
1

n

n∑
i=1

Zn, (3.7)

where Zi are i.i.d. with mean 0, and Rn is such that
√
nRn → 0 a.s. as n→∞. Interested

readers are referred to Appendix A (Section A.1) for a further discussion on the distribution

of the estimator ∆n.

From (3.7), ∆n is a biased estimator of the absolute mean spread ∆F (β), however the

bias goes to zero as the sample size goes to infinity. We attempt to numerically estimate

the bias B , E(∆n)−∆F (β) through regression analysis. We provide the complete details

in Appendix A (Section A.2). In what follows, we sketch the idea behind the analysis. The

factors that affect B are the sample size n, the profit margin β, and the demand distribution

F . We can vary values for each one of these factors and perform regression to estimate their

effect on B. For instance, to estimate the effect of n, we first fix a distribution and profit

margin. We estimate the bias for different values of n, giving us multiple bias–sample size

pairs. We use these pairs to perform regression to estimate the relationship between the

bias and sample size. We find that the relationship B = 1
n∆F (F

−1(β)) closely estimates

the observed bias in many simulations. Motivated by this, we propose the following scaled

estimator of AMS:

∆̃n , n+ 1

n
∆n =

n+ 1

n2

n∑
i=1

Ji(β, n)D(i). (3.8)

Stigler (1974) shows that under some technical conditions, L-statistics are asymptotically
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normally distributed. Thus, we have that

∆n − E(∆n)√
Var(∆n)

→d N(0, 1). (3.9)

We use this observation to propose a procedure to build confidence intervals around the

AMS estimator. Define the following sample estimate of nVar(∆n) (see Section A.1 of

Appendix A for a motivation behind the choice of estimator):

s2n =
1

n

1

(1− β)2

∑
i=⌈(n+1)β⌉

(d(i) −∆u
n)

2 +
1

n

1

β2

⌈(n+1)β⌉−1∑
i=1

(d(i) −∆l
n)

2

+

(√
1− β

β

[
∆l

n − d(⌈(n+1)β⌉)

]
+

√
β

1− β

[
∆u

n − d(⌈(n+1)β⌉)
])2

, (3.10)

where

∆u
n =

1

n

1

1− β

n∑
i=⌈(n+1)β⌉

d(i), and ∆l
n =

1

n

1

β

⌈(n+1)β⌉−1∑
i=1

d(i).

The following Algorithm 1 builds (1−α)-confidence intervals around the sample spread ∆n,

given a significance level α ∈ (0, 1).

Algorithm 1 Confidence Interval for the Absolute Mean Spread

Require: A sequence of ranked scalars (d(1), . . . , d(n)) and a significance level α ∈ (0, 1)
Ensure: A confidence interval ∆n ± θn.

1: Compute ∆̃n, sn, and Z-statistic z , Z1−α/2

2: Return confidence interval ∆̃n ± z × sn√
n

To demonstrate the validity of this confidence interval procedure, we perform the follow-

ing experiment. We draw 10,000 sets of n ∈ {40, 80, 160, 320} samples from some distribu-

tion (we use the demand distributions from Figure C-3 in Appendix C). Using Algorithm 1

and with a 5% level of significance, we construct 1,000 sample-based confidence intervals

from the sets. The procedure is valid if the fraction of these confidence intervals that con-

tain the true absolute mean spread is close to 95%. Table 3.1 shows this fraction when

the samples are drawn from one of six distributions. Observe that for smaller sample sizes

(n = 40 or 80), the true AMS lies in the confidence interval between 70% to 95% of the

time. However for n = 160 or 320, the procedure is successful between 90% to 95% of the

time.

3.6 Computational Experiments

The goal of the computational experiments in this section is to study the empirical per-

formance of various partial information policies (including our proposed policies) when the

information has to be estimated from samples. We will assume that all the methods have
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the same information available to them, particularly, a set of independent samples drawn

from the true distribution. Using these samples, we will use the following partial information

policies to compute order quantities for the newsvendor problem.

MR-µ̂+: A minimax regret approach with only mean and nonnegativity information (Per-

akis & Roels, 2008). The sample mean is computed and used as an input.

MR-µ̂σ̂: A minimax regret approach with only mean and variance information (Yue et al.,

2006). The sample mean and sample variance is computed and used as an input.

MR-µ̂σ̂+: A minimax regret approach with only mean, variance, and nonnegativity infor-

mation (Perakis & Roels, 2008). The sample mean and sample variance is computed

and used as an input.

MR-µ̂δ̂+: A minimax regret approach with only mean, AMS, and nonnegativity informa-

tion. The sample mean and the point AMS estimate from (3.8) are computed and

used as an input to compute the policy, according to Theorem 3.2.3.

MR-µ̂δ̂Lδ̂U+: A minimax regret approach with only mean, AMS and nonnegativity in-

formation. The sample mean and the 95% confidence intervals for the AMS estimate

(using Algorithm 1 above) are computed and used as an input to compute the policy,

according to Theorem A.3.1.

The first four policies have been previously proposed from recent works (Yue et al., 2006;

Perakis & Roels, 2008). The last policy is our robust policy using first-order information

(Theorem 3.2.3 and Theorem A.3.1). Note that once the distribution information is known,

policies MR-µ̂+, MR-µ̂δ̂+ and MR-µ̂δ̂Lδ̂U+ can be computed in closed-form. Policy MR-

µ̂σ̂, on the other hand, requires optimizing a function using gradient method (Yue et al.,

2006). To compute the policy MR-µ̂σ̂+ requires solving for the intersection of two functions

using bisection method. However, each iteration of the bisection method requires solving

an optimization problem using gradient descent. Therefore, it can become computationally

inefficient compared to the other methods.

For each ordering policy, we first fix a distribution and a profit margin β ∈ {0.9, 0.95, 0.99, 0.995}.
The distributions we use are Uniform, Normal, Exponential, Lognormal, Pareto, Gamma,

Beta, and Power Law distributions (see Figure C-3 in Appendix C for a plot of their densi-

ties). We also fix a sample size n, where n ∈ {20, 40, 80, 160}. We then draw n independent

samples from the distribution, estimate the required information, and compute the cor-

responding order quantity. We also calculate the actual relative regret (3.5) under the

distribution F . Finally, we take the average of the relative regrets over 100 repetitions of

the same experiment.

Using the results of our experiments, we would like to address the question of when

should one use point estimates of AMS and when to be conservative and use confidence

intervals. Table 3.2 summarizes the average relative regret of the two AMS-based policies
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Table 3.2: Average relative regret (%) of policies using sample estimates of AMS informa-
tion.

Uniform Normal

n = 20 n = 40 n = 80 n = 160 n = 20 n = 40 n = 80 n = 160

β = 0.9 MR-µ̂δ̂+ 0.6 0.4 0.3 0.3 0.3 0.2 0.1 0.1

MR-µ̂δ̂Lδ̂U+ 0.5 0.2 0.1 0.1 1.0 0.6 0.4 0.3

β = 0.95 MR-µ̂δ̂+ 0.3 0.1 0.1 0.1 0.2 0.1 0.1 0.1

MR-µ̂δ̂Lδ̂U+ 0.8 0.3 0.1 0.0 0.7 0.5 0.4 0.3

β = 0.99 MR-µ̂δ̂+ 0.3 0.1 0.5 0.0 0.2 0.1 0.0 0.0

MR-µ̂δ̂Lδ̂U+ 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1

β = 0.995 MR-µ̂δ̂+ 0.3 0.1 0.0 0.0 0.3 0.1 0.0 0.0

MR-µ̂δ̂Lδ̂U+ 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.1

Exponential Lognormal

n = 20 n = 40 n = 80 n = 160 n = 20 n = 40 n = 80 n = 160

β = 0.9 MR-µ̂δ̂+ 2.3 1.3 0.7 0.4 7.0 3.7 2.6 1.8

MR-µ̂δ̂Lδ̂U+ 2.7 1.8 1.2 0.9 8.5 5.1 3.2 2.0

β = 0.95 MR-µ̂δ̂+ 2.2 1.3 0.8 0.6 8.8 5.3 3.8 3.0

MR-µ̂δ̂Lδ̂U+ 4.0 3.1 2.5 2.0 8.5 5.4 3.9 3.0

β = 0.99 MR-µ̂δ̂+ 2.7 1.1 0.6 0.4 10.8 6.6 4.4 3.4

MR-µ̂δ̂Lδ̂U+ 2.0 1.2 1.4 1.3 9.4 6.3 5.7 5.7

β = 0.995 MR-µ̂δ̂+ 3.3 1.4 0.6 0.3 12.6 7.1 4.4 2.6

MR-µ̂δ̂Lδ̂U+ 2.3 1.0 0.6 0.8 10.4 6.3 5.0 5.5

MR-µ̂δ̂+ and MR-µ̂δ̂Lδ̂U+ under four demand distributions. Observe that in majority of

the cases, MR-µ̂δ̂+ clearly has a smaller average relative regret than MR-µ̂δ̂Lδ̂U+. The

only instances when MR-µ̂δ̂Lδ̂U+ has a slightly smaller regret is when the sample size is

small (n = 20 or 40) while the profit margin is extremely high (β = 0.99 or 0.995). That

is, we can infer that confidence interval estimates for AMS produces order quantities that

are often conservative compared to the quantities produced from point estimates. Thus, in

the remainder of this section, we will only report the results for policy MR-µ̂δ̂+.

Tables 3.4 and 3.5 report the average relative regret incurred by policies MR-µ̂+, MR-

µ̂σ̂, MR-µ̂σ̂+ and MR-µ̂δ̂+ under high and extremely high profit margins, respectively.

First, we observe (Table 3.4) that when profit margins are high (but not extremely so), the

four policies incur average regrets of the same magnitude under many instances. Surpris-

ingly, even MR-µ̂+ which only uses mean information, sometimes incurs relative regrets on

par with the other three policies that use additional information. However, this is not the

case once profit margins are extremely high (Table 3.5), which is the case in many realistic

settings. Using only mean information in this setting results in clearly suboptimal decisions.

MR-µ̂+ incurs average relative regrets in the range of 10% to as much as 25%. By including

additional variance information, MR-µ̂σ̂ usually incurs smaller average relative regrets than
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MR-µ̂+, in both environments of high and extremely high profit margins. However, when

the demand distribution is skewed (Exponential, Lognormal, Pareto) and profit margins are

extremely high, MR-µ̂σ̂ can incur very large average relative regrets in the range of 10% to

30%. This is due to the fact that MR-µ̂σ̂, even though it accounts for demand variability,

ignores the variability around the particular optimal quantile. By adding additional non-

negativity information, MR-µ̂σ̂+ manages to decrease the regret significantly. Of the four

policies, MR-µ̂σ̂+ and MR-µ̂δ̂+ consistently achieve the smallest average relative regret

in both profit margin environments. However, because of its computational inefficiency,

solving for policy MR-µ̂σ̂+ can take significantly longer than solving for policy MR-µ̂δ̂+.

Table 3.3 summarizes the average run times of each of the methods (averaged over distri-

butions, sample sizes, and profit margins) On average, solving for policy MR-µ̂δ̂+ takes 10

microseconds, whereas solving for MR-µ̂σ̂+ takes 3×106 microseconds. Finally, we observe

that while MR-µ̂+ and MR-µ̂σ̂ both appear to incur a significantly larger regret when profit

margins are extremely high, the performance of MR-µ̂δ̂+ seems to be robust with respect

to the level of profit margin. Under highly skewed distributions (Exponential, Lognormal,

Pareto), it incurs an average regret of 1% to 10%. Under all other demand distributions,

its average relative regret is usually less than 1%. This is mostly unsurprising based on

Theorem 3.3.4 that for large enough profit margins, the minimax regret policy using AMS

information is near-optimal for high profit margins. However, the theorem assumes that

exact knowledge of the AMS is known, whereas the AMS information in MR-µ̂δ̂+ is esti-

mated from samples. Moreover, these estimates are prone to error since in the experiments

MR-µ̂δ̂+ attempts to estimate AMS around a high quantile using only a few samples. How-

ever, Tables 3.4 and 3.5 indicate that policies using AMS information remain near-optimal

even when information has to be estimated from (sometimes few) data.

3.7 Concluding Remarks

Many inventory management settings require decisions that have to be made in the presence

of uncertain demand. Stochastic inventory problems model this uncertainty by assuming

that demand is stochastic with a fully-specified probability distribution. Contrary to this

assumption, in reality, managers often have to make decisions knowing only limited informa-

tion about the demand distribution. In this chapter, we have proposed partial-information

inventory policies that only require first-order information on demand. In particular, they

only require mean and absolute mean spread (AMS) information. First, we demonstrated

that the resulting policies that we propose are robust, since they are the solution to the

minimax regret problem of a family of distributions. Second, we proved that the resulting

minimax regret problem is tractable since they only require first-order information. Third,

we showed that the policies we proposed are near-optimal for high profit margins under a

large class of demand distributions. We showed that other distributionally-robust policies

previously proposed in the literature do not exhibit this near-optimal behavior. Finally, we

also proposed a sample estimator of a distribution’s AMS. In computational experiments,
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Table 3.3: Average run times of each method

Method Average runtime (in microseconds) Standard deviation (in microseconds)

MR-µ̂+ 6.7 6.5
MR-µ̂σ̂ 283.0 278.6
MR-µ̂σ̂+ 3,233,427.6 7,361,979.1

MR-µ̂δ̂+ 8.0 47.5

MR-µ̂δ̂Lδ̂U+ 10.5 13.6

we find that even though the AMS information is estimated from data, and the minimax

regret policy that uses these estimates are near-optimal even when the sample size is small.

Moreover, it clearly dominates other minimax regret policies using mean and variance.

Through this, we can conclude that there is much value in making inventory decisions that

incorporate some information about spread around the optimal quantile.
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Table 3.4: Average relative regret (%) of policies using sample estimates of information under
high profit margins (β = 0.9, 0.95).

β = 0.9 β = 0.95

Distribution Policies n = 20 n = 40 n = 80 n = 160 n = 20 n = 40 n = 80 n = 160

Uniform MR-µ̂+ 7.5 7.5 7.5 7.4 16.9 16.8 17.0 16.9
MR-µ̂σ̂ 3.4 3.0 2.7 2.6 4.3 3.8 3.7 3.5
MR-µ̂σ̂+ 1.9 1.8 1.5 1.4 0.7 0.3 0.2 0.1

MR-µ̂δ̂+ 0.6 0.4 0.3 0.3 0.3 0.1 0.1 0.1

Normal MR-µ̂+ 13.3 13.3 13.3 13.3 19.3 19.3 19.3 19.3
MR-µ̂σ̂ 0.6 0.5 0.4 0.4 1.1 0.9 0.8 0.8
MR-µ̂σ̂+ 0.4 0.3 0.2 0.1 0.1 0.1 0.0 0.0

MR-µ̂δ̂+ 0.3 0.2 0.1 0.1 0.2 0.1 0.1 0.1

Exponential MR-µ̂+ 2.1 1.2 0.8 0.5 7.7 7.3 7.1 7.1
MR-µ̂σ̂ 4.2 2.9 2.2 1.8 7.8 6.2 5.9 5.5
MR-µ̂σ̂+ 2.9 1.9 1.2 0.9 2.5 2.0 1.1 0.8

MR-µ̂δ̂+ 2.3 1.3 0.7 0.4 2.2 1.3 0.8 0.6

Lognormal MR-µ̂+ 7.9 5.3 2.8 2.1 7.8 5.2 3.9 2.7
MR-µ̂σ̂ 15.6 13.0 13.3 8.7 13.6 8.6 5.9 4.4
MR-µ̂σ̂+ 15.8 6.2 5.1 4.2 11.2 8.1 5.0 3.2

MR-µ̂δ̂+ 7.0 3.7 2.6 1.8 8.8 5.3 3.8 3.0

Pareto MR-µ̂+ 6.1 5.3 5.4 5.0 10.3 9.8 9.9 9.9
MR-µ̂σ̂ 3.7 3.9 2.9 2.8 4.2 3.6 3.7 2.3
MR-µ̂σ̂+ 4.4 3.6 2.6 2.8 4.0 1.8 2.4 1.8

MR-µ̂δ̂+ 4.9 4.2 4.5 4.0 5.0 3.8 3.7 3.7

Gamma MR-µ̂+ 3.3 2.9 2.7 2.6 11.9 12.1 12.0 12.0
MR-µ̂σ̂ 2.8 2.1 1.7 1.5 5.2 4.4 3.9 3.8
MR-µ̂σ̂+ 1.9 1.4 1.0 0.7 1.9 0.9 0.7 0.5

MR-µ̂δ̂+ 1.6 0.8 0.6 0.4 1.5 0.9 0.6 0.5

Beta MR-µ̂+ 5.6 5.4 5.4 5.3 15.1 15.4 15.3 15.3
MR-µ̂σ̂ 2.5 2.1 1.8 1.7 4.2 3.7 3.4 3.3
MR-µ̂σ̂+ 1.7 1.1 1.0 0.9 1.2 0.4 0.4 0.3

MR-µ̂δ̂+ 0.8 0.4 0.2 0.1 0.7 0.4 0.2 0.1

Power Law MR-µ̂+ 14.9 14.9 14.9 14.9 20.2 20.2 20.2 20.2
MR-µ̂σ̂ 0.3 0.3 0.2 0.2 0.4 0.3 0.2 0.2
MR-µ̂σ̂+ 0.2 0.1 0.0 0.0 0.3 0.4 0.4 0.4

MR-µ̂δ̂+ 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

a Highlighted rows correspond to the policies using AMS information.
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Table 3.5: Average relative regret (%) of policies using sample estimates of information under
extremely high profit margins (β = 0.99, 0.995).

β = 0.99 β = 0.995

Distribution Policies n = 20 n = 40 n = 80 n = 160 n = 20 n = 40 n = 80 n = 160

Uniform MR-µ̂+ 23.5 23.6 23.4 23.5 24.4 24.2 24.2 24.2
MR-µ̂σ̂ 5.4 4.5 4.4 4.4 5.2 4.8 4.4 4.5
MR-µ̂σ̂+ 1.1 1.2 1.2 1.2 1.0 1.0 1.1 1.1

MR-µ̂δ̂+ 0.3 0.1 0.5 0.0 0.3 0.1 0.0 0.0

Normal MR-µ̂+ 23.9 23.8 23.9 23.8 24.4 24.4 24.4 24.4
MR-µ̂σ̂ 1.7 1.6 1.5 1.4 1.8 1.6 1.6 1.5
MR-µ̂σ̂+ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3

MR-µ̂δ̂+ 0.2 0.1 0.0 0.0 0.3 0.1 0.0 0.0

Exponential MR-µ̂+ 20.4 20.6 20.7 20.6 22.5 22.8 22.5 22.7
MR-µ̂σ̂ 13.3 11.8 11.3 11.0 14.3 13.5 12.5 12.2
MR-µ̂σ̂+ 0.9 0.4 0.3 0.1 0.5 0.4 0.3 0.2

MR-µ̂δ̂+ 2.7 1.1 0.6 0.4 3.3 1.4 0.6 0.3

Lognormal MR-µ̂+ 12.1 10.5 10.3 10.0 14.6 14.2 14.3 14.1
MR-µ̂σ̂ 24.3 21.6 17.7 15.7 28.7 24.7 22.3 20.0
MR-µ̂σ̂+ 7.2 5.2 3.7 2.1 7.0 5.3 2.5 1.7

MR-µ̂δ̂+ 10.8 6.6 4.4 3.4 12.6 7.1 4.4 2.6

Pareto MR-µ̂+ 17.6 17.6 17.8 18.1 19.5 19.6 19.9 20.1
MR-µ̂σ̂ 9.3 8.1 6.6 6.2 11.5 9.8 8.8 7.7
MR-µ̂σ̂+ 2.8 2.4 1.3 1.2 2.1 1.6 1.9 0.8

MR-µ̂δ̂+ 4.2 2.9 2.2 2.0 4.5 2.8 1.8 1.5

Gamma MR-µ̂+ 21.9 22.1 22.0 22.0 23.2 23.4 23.3 23.4
MR-µ̂σ̂ 8.8 7.9 7.5 7.3 9.6 8.7 8.1 8.0
MR-µ̂σ̂+ 0.4 0.2 0.2 0.1 0.3 0.3 0.3 0.3

MR-µ̂δ̂+ 1.6 0.7 0.3 0.2 1.9 0.9 0.3 0.2

Beta MR-µ̂+ 22.9 23.0 22.9 23.0 23.9 23.8 24.0 23.9
MR-µ̂σ̂ 6.3 5.7 5.5 5.4 6.8 6.2 5.8 5.8
MR-µ̂σ̂+ 0.5 0.5 0.5 0.5 0.6 0.7 0.7 0.6

MR-µ̂δ̂+ 0.9 0.3 0.1 0.1 1.0 0.4 0.1 0.1

Power Law MR-µ̂+ 24.1 24.1 24.1 24.1 24.6 24.6 24.5 24.6
MR-µ̂σ̂ 0.4 0.3 0.2 0.2 0.4 0.3 0.2 0.2
MR-µ̂σ̂+ 0.4 0.4 0.4 0.4 0.3 0.4 0.4 0.4

MR-µ̂δ̂+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

a Highlighted rows correspond to the policies using AMS information.
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Table 3.6: Maximum regret achieved by SAA policy out of family Dµ,δ,+, which includes
the distribution used to generate the samples.

Distribution β Average max regret of SAA Minimax regret % difference

Uniform 0.7 21.1 14.7 43.3
0.8 16.1 12.8 26.0
0.9 9.1 8.1 12.7
0.95 5.0 4.5 10.1

Normal 0.7 7.1 6.3 14.1
0.8 6.7 5.2 28.2
0.9 6.0 3.4 76.6
0.95 5.2 2.0 158.4

Exponential 0.7 22.6 17.5 29.4
0.8 22.5 19.2 17.1
0.9 21.5 17.1 25.2
0.95 20.2 12.6 59.8

Lognormal 0.7 16.1 12.6 27.6
0.8 20.2 17.4 16.2
0.9 26.9 22.4 20.4
0.95 31.8 23.0 38.0

Pareto 0.7 0.445 0.320 39.2
0.8 0.543 0.341 59.2
0.9 0.659 0.328 100.8
0.95 0.720 0.283 154.0

Gamma 0.7 0.767 0.653 17.4
0.8 0.752 0.646 16.4
0.9 0.712 0.512 39.0
0.95 0.660 0.351 87.9

Beta 0.7 0.050 0.042 20.0
0.8 0.044 0.039 14.6
0.9 0.036 0.028 30.1
0.95 0.029 0.017 68.5

Power Law 0.7 0.047 0.037 25.0
0.8 0.032 0.028 15.3
0.9 0.017 0.015 8.2
0.95 0.009 0.008 7.8
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Chapter 4

Business analytics for scheduling

with random emergencies

4.1 Introduction

Allocating limited resources to a set of tasks is a problem encountered in many industries.

It has applications in project management, bandwidth allocation, internet packet routing,

job shop scheduling, hospital scheduling, aircraft maintenance, air traffic management, and

shipping scheduling. In the past decades, the focus has been primarily on developing meth-

ods for optimal scheduling for deterministic problems. These approaches assume that all

relevant information is available before the schedule is decided, and the parameters do not

change after the schedule is made. In many realistic settings, however, scheduling decisions

have to be made in the face of uncertainty. After deciding on a schedule, a resource may

unexpectedly become unavailable, a task may take longer or shorter time than expected, or

there might be an unexpected release of high-priority jobs (see Pinedo (2002) for an overview

of stochastic scheduling models). Not accounting for these uncertainties may cause an un-

desirable impact, say, in a possible schedule interruption or in over-utilizing some resources.

Birge (1997) demonstrated that in many real-world applications, when using stochastic op-

timization to model uncertainties explicitly, the results are superior compared to using a

deterministic counterpart.

In this chapter, we study the problem of scheduling a known set of jobs when there

is an uncertain number of emergency jobs that may arrive in the future. There are many

interesting applications for this type of problem. For instance, Lamiri et al. (2008) describe

the problem of scheduling surgeries in hospital intensive care units, where operating rooms

are shared by two classes of patients: elective patients and emergency patients. Emergency

cases arrive randomly but must be served immediately upon arrival. Elective cases can be

delayed and scheduled for future dates. In scheduling the elective surgeries, the hospital

needs to plan for flexibility (say, by having operating rooms on standby) to handle random

arrivals of emergency cases.
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This work is motivated by a project with a major electric and gas utility. We worked

on improving scheduling of services for the utility’s Gas business segment which faces un-

certainty in its daily operations. In 2011, the Gas business segment of the utility generated

several billion dollars in revenue. The following is a brief description of natural gas trans-

mission and distribution in the United States. Natural gas is either produced (in the US

Gulf Coast, midcontinent, and other sources) or imported (from the Middle East or South

America). Afterwards, it is delivered to US interstate pipelines to be transmitted across

the US. Once it reaches a neighborhood, the gas is delivered by a local gas utility, which

owns and operates a network of gas pipelines used to deliver gas to the end customers. The

gas utility involved in the project owns several of these local networks.

A major part of daily operations of the gas utility is the maintenance of the large gas

pipeline network. This entails executing two types of jobs: (i) standard jobs and (ii) emer-

gency gas leak repair jobs. The first type of jobs includes new gas pipeline construction,

maintenance and replacement of gas pipelines, and customer requests. The key character-

istics of standard jobs are that they have deadlines by when they must be finished, they

are known several weeks to a few months in advance of their deadlines, and they are often

mandated by regulatory authorities or required by customers. The second type of job is

to attend to any reports of gas leaks. In the US, more than 60% of the gas transmission

pipes are 40 years old or older (Burke, 2010). Most of them are composed of corrosive steel

or cast-iron. Gas leaks are likely to occur on corroding bare steel or aging cast iron pipes,

which pose a safety hazard especially if they occur near a populated location. If undetected,

a gas leak might lead to a fire or an explosion. Such was the case in San Bruno, California

in September 2010, where a corrosive pipe ruptured, causing a massive blast and fire that

killed 8 people and destroyed 38 homes in the San Francisco suburb (Pipeline & Hazardous

Materials Safety Administration, 2011a). To reduce the risk of such accidents occurring,

company crews regularly monitor leak prone pipes to identify any leaks that need imme-

diate attention. In addition, the company maintains an emergency hotline for reports of

suspected gas leaks. It is the company’s policy to attend to a report within 24 hours of re-

ceiving it. The key characteristic of emergency gas leak jobs is that they are unpredictable,

they need to be attended to immediately, they require several hours to complete, and they

happen with frequency throughout a day. The leaks that do not pose significant risk to the

public are fixed later within regulatory deadlines dictated by the risk involved. These jobs

are part of the standard jobs.

The company keeps a roster of maintenance crews to execute both types of jobs. The

company has experienced significant crew overtime driven by both controllable factors (such

as workforce management, scheduling processes, and information systems) and uncontrol-

lable factors (such as uncertainty related to emergency leaks, diverse and unknown site

conditions, and uncertainty in job complexity). Maintenance crews historically worked a

significant proportion of their hours on overtime. An average crew member may work be-

tween 25% to 40% of his or her work hours on overtime pay. From our analysis, one of the
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major causes of overtime is suboptimal job scheduling and planning for the occurrence of

emergencies. Currently, the company has no standard procedures or does not use quan-

titative methods for job scheduling and crew assignment. Past studies undertaken by the

company suggested that a better daily scheduling process that optimizes daily resource al-

location can provide a significant opportunity for achieving lower costs and better deadline

compliance.

In this chapter, we study the utility’s problem of daily resource allocation along with

associated process and managerial factors. However, the models proposed and insights

gained from this chapter have wider applicability in settings where resources have to be

allocated under stochastic emergencies.

4.1.1 Literature Review and Our Contributions

Our work makes theoretical contributions in several key areas, as well as contributions to the

utility’s practice. We contrast our contributions with previous work found in the literature.

Modeling and problem decomposition. We develop a multiperiod model for the

utility’s operations under stochastic emergencies. Before realizing the number of emergen-

cies, the utility has to decide a standard job’s schedule (which date it will be worked on)

and its crew assignment (the crew assigned to execute it). We model the problem as a

stochastic mixed integer program (MIP).

Several practical limitations discussed in Section 4.3.1 (such as computational intractabil-

ity, the utility’s restrictive computing resources, and employees’ perception of the model as a

“black box”) prevented the utility from implementing the multiperiod stochastic MIP model.

Therefore, we propose a two-phase decomposition which addresses the original model’s lim-

itations. The first phase is a job scheduling phase, where standard jobs are scheduled so

as to meet all the deadlines, but while evenly distributing work over all days (Section 4.4).

This scheduling phase solves a deterministic MIP. The second phase is a crew assignment

phase, which takes the standard jobs scheduled for each day from the first phase and assigns

them to the available crews (Section 4.5). Since the job schedules are fixed, the assignment

decisions on different days can be made independently. The assignment decisions must be

made before arrivals of emergencies, hence, the assignment problem on each day is solved

as a two-stage stochastic MIP.

This type of decomposition is similar to what is often done in airline planning problems

(see for example Barnhart et al., 2003), which in practice are solved sequentially due to

the problem size and complexity. Airlines usually first solve a schedule design problem,

which determines the flights flown during different time periods. Then in the next step,

they decide which aircraft to assign to each flight depending on the forecasted demand for

the flight. Airline planning problems are solved through deterministic models which are

intractable due to its problem size. In contrast, the models in this chapter are stochastic in

nature, adding a layer of modeling and computational difficulties.

LP-based heuristic for scheduling phase. In this work, we propose a heuristic
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for the NP-hard job scheduling problem based on solving its linear programming (LP)

relaxation, and rounding the solution to a feasible schedule. The scheduling phase problem

is equivalent to scheduling jobs on unrelated machines with the objective of minimizing

makespan (Pinedo, 2002). In our problem, the dates are the “machines”. The makespan

is the maximum number of hours scheduled on any day. Note that a job can only be

“processed” on dates before the deadline (the job’s “processing set”). Scheduling problems

with processing set restrictions are known to be NP-hard.

Some other common heuristics in the literature are list scheduling rules (Kafura &

Shen, 1977; Hwang et al., 2004). However these are applicable for problems with parallel

machines. For the case of unrelated machines, a well-known algorithm by Lenstra et al.

(1990) performs a binary search procedure, in each iteration solving the LP relaxation of an

integer program, and then rounding the solution to a feasible schedule. Our algorithm is also

based on solving an LP-relaxation, but it applies for unrelated machines with processing set

restrictions. Moreover, it does not require initializing the algorithm with a binary search,

therefore only solving an LP once. Since this heuristic is based on linear programming, in

practice it solves very fast with commercial off-the-shelf solvers.

Performance guarantee for the LP-based heuristic. We are able provide a data-

dependent performance guarantee for our proposed LP-based heuristic (Theorem 4.4.2).

Lenstra et al. (1990) prove that the schedule resulting from their LP-based algorithm is

guaranteed to have a makespan of no more than twice the optimal makespan. Their proof

relies on graph theory. On the other hand, the bound we derive uses a novel technique based

on stochastic analysis. Moreover, when the algorithm is initialized with a binary search, we

can prove, using graph theoretic and stochastic arguments, a performance guarantee that is

the minimum of 2 and a data-driven factor (Theorem A.7.1). Since, with real utility data,

the data-driven factor is less than 2, we improve upon the bound by Lenstra et al. (1990)

in realistic settings.

Algorithm for crew assignment under a stochastic number of emergencies.

The assignment phase problem is a two-stage stochastic MIP. In the first stage the assign-

ment of standard jobs to crews is determined, and in the second stage (after the number of

emergencies is known) the assignment of emergencies to crews is decided. Most literature

on problems of this type develops iterative methods to solve the problem. For instance, a

common method is based on Benders’ decomposition embedded in a branch and cut pro-

cedure (Laporte & Louveaux, 1993). However, if the second stage has integer variables,

the second stage value function is discontinuous and non-convex, and optimality cuts for

Benders’ decomposition cannot be generated from the dual. Sherali & Fraticelli (2002) pro-

pose introducing optimality cuts through a sequential convexification of the second stage

problem. There are other methods proposed to solve stochastic models of scheduling under

uncertainty. For instance, Lamiri et al. (2008) introduce a local search method to plan

for elective surgeries in the operating room scheduling problem. Godfrey & Powell (2001)

introduce a method for dynamic resource allocation based on nonlinear functional approxi-
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mations of the second-stage value function based on sample gradient information. However,

since they are developed for general two-stage stochastic problems, these solution methods

do not give insights on how resources should be allocated in anticipation of an uncertain

number of emergencies.

We exploit the structure of the problem and of the optimal assignment and propose a

simple and intuitive algorithm for assigning the standard jobs under a stochastic number of

emergencies (Algorithm Stoch-LPT). This algorithm can be thought of as a generalization

of the Longest-Processing-Time First (LPT) algorithm in the scheduling literature (Pinedo,

2002). We prove that this algorithm terminates with an optimal crew assignment for some

special cases.

Models and heuristics for resource allocation with random emergencies. Our

work is motivated by the specific problem of a gas distribution company. However, the

models and algorithms we develop in this chapter are also applicable to other settings

where resources need to be allocated in a flexible manner in order to be able to handle

random future emergencies. As a specific example, in the operating room planning problem

described in the introduction, the resources to be allocated are operating rooms. Elective

surgeries and emergency surgeries are equivalent to standard jobs and gas leak repair jobs,

respectively, in our problem.

Business analytics for a large US utility. We collaborated with a large multi-

state utility on improving the scheduling of operations in its Gas business segment. The

job scheduling and crew assignment optimization models described above are motivated

by the company’s resource allocation problem under randomly occurring emergencies. The

job scheduling heuristic and the crew assignment heuristics described earlier are motivated

from practical requirements, including the company’s need for fast solution methods. We

developed a Web-based planning tool based on these heuristics which is being piloted in

one of the company’s sites.

We also used our models to help the utility make strategic decisions about its operations.

In simulations using actual data and our models, we highlight how different process changes

impact crew-utilization and overtime labor costs. In this work, we analyzed three process

changes: (i) maintaining an optimal inventory of jobs ready to be scheduled, (ii) having

detailed crew productivity information, and (iii) increasing crew supervisor presence in the

field. We demonstrate the financial impact of these new business processes on a hypothetical

utility.

4.1.2 Outline

In Section 4.3, we present the job scheduling and crew assignment problem, and motivate

the two-stage decomposition. In Section 4.4, we discuss the job scheduling phase, introduce

an LP-based heuristic, and develop a data-driven performance guarantee of the heuris-

tic. Section 4.5 discusses the crew assignment phase. In this section, we prove structural

properties of the optimal solution, propose a crew assignment heuristic, and show that it
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terminates with an optimal solution for some cases. In Section 4.6, we discuss the devel-

opment of planning tool, the pilot project, and how we used simulation and the models we

developed for business analytics at the Gas business of a large multi-state utility company.

Proofs not shown in the chapter can be found in Appendix B.

4.2 Gas utility operations and background

In this section, we give a background of the company operations and organization. The

discussion serves to motivate the model, assumptions, and our choice of heuristics later in

the chapter.

Gas utilities in the US operate large networks of gas pipelines. Some of these pipelines

are aging and are composed of corrosive material. Some gas pipes that are still in service

in many cities today are composed of corrosive cast iron that have been installed since

the 1830’s (Pipeline & Hazardous Materials Safety Administration, 2011b). Gas utility

companies are involved in a government-mandated cast iron main replacement program

which aims to replace many of the cast iron pipes into more durable steel or PVC pipes.

To meet the requirements of this program, the company has a dedicated department called

the Resource Management Department that sets yearly targets for standard jobs to be

performed in the field and monitors the progress relative to these targets throughout the

year. All targets are yearly and company-wide.

Standard jobs that occur within a geographical region (usually a town or several neigh-

boring towns) are assigned to a yard. A yard is the physical company site which houses

maintenance crews who are dispatched to complete the standard jobs. After the Resource

Management Department decides on a company-wide target for standard jobs, it is trans-

lated into monthly targets for each yard based on yard size, number of workers available,

and other characteristics of the region the yard serves. Several years ago, the utility ex-

panded in the US from a string of mergers of small independent local utilities operating in

towns. As a result, even today, separate yards belonging to the company operate indepen-

dently. Small yards can have 10 crews, while large yards can have up to 30 crews, with each

crew composed of two or three crew members. Each standard job has a deadline set by the

Resource Management Department to ensure that the targets are met and the company

does not incur the heavy regulatory fines for not meeting the requirements of the main re-

placement program. The company maintains a centralized database of standard jobs which

lists each job’s deadline, status (e.g. completed, pending or in progress), location, job type,

other key job characteristics, and also information on all past jobs completed. A large yard

can complete close to 500 standard jobs in one month. The focus of the project and hence

of this chapter is on yard-level operations, which we describe below.

Daily yard operations. Each yard has a resource planner who is charged with making

decisions about the yard’s daily operations. At the start of each day, the resource planner

reviews the pending standard jobs and their upcoming deadlines, and decides which jobs

should be done by the yard that day. He or she also determines which crews should execute
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Figure 4-1: Historical distribution of the number of emergencies in a given yard for April.

Note: Since most emergencies are found by monitoring, there are often more emergencies
discovered during weekdays when more monitoring crews are working.

these jobs. Shortly after, the maintenance crews are dispatched to their first assignments.

Throughout the day, the yard might receive reports of emergency gas leaks that also need to

be handled by maintenance crews. These gas leaks are found by dedicated company crews

(operated by a department independent from the yards) monitoring leak prone pipes to

identify any leaks that need immediate attention. Leaks found that do not pose significant

risk to the public are fixed later within regulatory deadlines (usually within 12 months)

dictated by the risk involved. These less severe leaks are categorized as standard jobs.

Emergencies are highly unpredictable; a given yard can have between zero to six emergencies

per day (Figure 4-1). They also are long duration jobs since, for regulatory compliance,

the utility requires its crews to dedicate 8 hours (equal to a crew’s shift) for attending to

emergencies.

In compliance with regulation, the yard needs to dispatch a crew to an emergency

within 24 hours of receiving the report of the gas leak. The resource planner typically

dispatches an idle crew to an emergency, if they can. However, if all crews are working

when an emergency arrives, they continue their work until the first crew finishes. Only then

is that crew dispatched to the emergency. Once started, a standard job will not be paused

even when an emergency arrives, due to the significant startup effort for the job. Startup

activities include travel to the site, digging the street to access the gas pipe, and arranging

mandatory police presence at the site.

Resource planners make crew assignment decisions at the beginning of the day. Then

they monitor the arrival of emergencies throughout the day. However, once the crew assign-

ment is made, it is usually fixed for the rest of the day. They do not reassign a standard

job to another crew once it has been initially assigned to a crew. Yards rarely postpone

standard jobs in the case of multiple emergencies. This is because the set of jobs to be
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done in a given day needs to be known ahead of time in order to arrange for work permits,

police detail protection at the work site, crew equipment, and other logistical requirements

for performing the job.

Costs of operations at yards. Maintenance crews have eight hour shifts, but can

work beyond their shifts if necessary. Any hours worked in excess of the crew’s shift is

billed as overtime, and costs between 1.5 to 2 times as much as the regular hourly wage.

Discussions with management reveal that it is preferable for maintenance crews to work

overtime to complete standard job assignments, rather than postpone standard jobs and risk

incurring any regulatory fines for not meeting deadlines. Based on data from the company’s

yards, crews in each yard have been working a significant proportion of their hours at

overtime. An average crew member works 25% to 40% of his or her hours on overtime.

Figure 4-2 shows the actual crew-hours worked in April 2011 for one of the company’s

average-sized yards (with 25 weekday crews and 4 weekend crews). From Figure 4-2, we

observe that even without the randomness introduced by the emergencies, the hours spent

working on standard jobs are unevenly divided among the workdays. We observed that one

of the major causes of overtime is suboptimal job scheduling and planning for the occurrence

of emergencies. Currently, the company has no guidelines or does not use quantitative

methods for job scheduling and crew assignment. Instead, resource planners depend on

their experience and feedback from supervisors. The company does not currently measure

and analyze crew productivity. This results in resource planners relying on subjective input

from supervisors on crew assignment decisions. Also, resource planners do not provide

slack capacity (i.e., idle crew hours) to attend to any emergencies that might occur later in

the day. The variability of emergencies put resource planners in a reactive mode to meet

deadlines as well as to handle emergencies, resulting in suboptimal resource allocation.

4.3 Modeling and Problem Decomposition

In this section, we discuss how we developed a stochastic optimization model for multiperiod

planning of yard operations. Under a random number of emergencies, the model decides the

job schedule (i.e, determining which date each standard job is done) and, at the same time,

decides the crew assignment (i.e., once a standard job is scheduled on a date, determining

which crew is assigned to complete the job). Later in this section, we discuss a novel

decomposition motivated by the practical limitations encountered during the project.

In what follows, we discuss all the assumptions in our model, motivated from the yard

operations.

A1. The number of crews available per day is deterministic, although this number can vary

daily.

A2. There is no preemption of standard jobs.

A3. Standard jobs have deterministic durations. They do not necessarily have equal dura-

tions.
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Figure 4-2: Current system: Actual crew-hours worked in April 2011 in an average-sized
yard.

A4. The number of emergencies per day is stochastic. Emergencies have equal durations.

A5. Crew assignment does not take distances (geography) into consideration.

A6. The day can be divided into two parts (pre-emergency and post-emergency). In pre-

emergency, the standard jobs are assigned to the available crews. Then, the number

of emergencies are realized. In post-emergency, these emergencies are assigned to the

crews.

Some of these assumptions were imposed for simplicity of the model. One of the require-

ments of the utility was to have a simple model for various reasons which we discuss later

in Section 4.3.1.

Assumption A1 is due to staffing decisions not being part of yard operations, since

they are being made by the Resource Management Department based on company-wide

projections of work for the year. A2 reflects the actual situation in yard operations due

to significant startup effort for standard jobs (see “Daily yard operations” in Section 4.2

for further discussion). A3 is because standard job durations are accurately predicted

using factors such as the job type, the size and diameter of the pipe, the age of the pipe,

and whether or not the job is on a main street. Based on historical job data, we built

a simple regression model which predicts job durations based on job characteristics. We

observe minimal variation between predicted values and actual values of job durations. A4’s

assumption of emergencies having equal durations is due to the utility requiring its crews to

devote a fixed amount of time on emergencies. However, the total number of emergencies

in each day is stochastic based on the variation seen in yards (Figure 4-1). A5 and A6
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are reasonable from a practical point of view since the factors they ignore are second-order

in the model. Assumption A5 is made since travel time between jobs is usually much less

compared to the duration of jobs. A6 means that we ignore the specific time that an

emergency arrives. This is a reasonable assumption since regulation only requires a crew

to be dispatched to an emergency within 24 hours (and not immediately as soon as the

emergency arrives). Therefore, when crews are already working on standard jobs when an

emergency arrives, the emergency does not have to be attended to until a crew finishes its

current job. On the other hand, it is possible that a crew might be idling if an emergency

arrives after the crew finishes all its standard job assignments. Therefore, the model can

incorporate dynamics in a given day and account for specific arrival times of emergencies.

In Section 4.5.4, we provide a rolling horizon implementation for a dynamic assignment of

standard jobs and emergencies which depends on specific arrival times of emergencies.

Next, we present our model for yard operations. Consider a set of standard jobs that

need to be completed within a time horizon (e.g. one month). Each standard job has a

known duration and a deadline. Without loss of generality, the deadline is assumed to be

before the end of the planning horizon. Within a given day, a random number of emergencies

may be reported. Reflecting actual yard operations, the number of emergencies is only

realized once the standard job schedule and crew assignments for that day have been made.

The following is a summary of the notation used in our model.

T length of planning horizon

Kt number of crews available for work on day t, where t = 1, . . . , T

n total number of known jobs

di duration of job i, where i = 1, . . . , n

τi deadline of job i, with τi ≤ T , where i = 1, . . . , n

dL duration of each emergency

L(ω) number of emergencies under scenario ω

Ωt (finite) set of all scenarios in day t, where t = 1, . . . , T

Pt(·) probability distribution of scenarios on day t, Pt : Ωt 7→ [0, 1]

We can estimate the probability distribution of the number of emergencies, which is

different for each yard and each month, from historical yard data. For example, Figure 4-1

can be used as the probability distribution for a yard on the month of April.

At the start of the planning horizon, the job schedule has to be decided. At the start

of each day, the crew assignments need to be decided before the number of emergencies is

known. This is because the calls for emergencies occur later in the day, but the crews must

be dispatched early in the morning to their assigned standard jobs before these reports are

received. After the number of emergencies is realized, the model decides on an assignment

of the emergencies to the crews.
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Let the binary decision variable Xit take a value of 1 if and only if the job i is scheduled

to be done on day t. Let the binary decision variable Yitk take a value of 1 if and only

if job i is done on day t by crew k. If scenario ω is realized on day t, let Ztk(ω) be the

second-stage decision variable denoting the number of emergencies assigned to crew k. It

depends on the number of standard jobs that have already been assigned to all the crews

on day t. The variables {Xit}it, {Yitk}itk are the first-stage decision variables. The variables

{Ztk(ω)}tkω are the second-stage decision variables.

For each day t, a recourse problem is solved. In particular, given the day t crew assign-

ments, Yt , (Yitk)ik, and the realization of the number of emergencies, L(ω), the objective

of the day t recourse problem is to choose an assignment of emergencies, Zt(ω) , (Ztk(ω))k,

so as to minimize the maximum number of hours worked over all crews. Thus, the day t

recourse problem is:

Ft(Yt, L(ω)) , minimize
Zt(ω)

max
k=1,...,Kt

{
dLZtk(ω) +

n∑
i=1

diYitk

}

subject to

Kt∑
k=1

Ztk(ω) = L(ω)

Ztk(ω) ∈ Z+, k = 1, . . . ,Kt,

(4.1)

where the term in the brackets of the objective function is the total hours (both standard

jobs and emergencies) assigned to crew k. We refer to Ft as the day t recourse function.

The constraint of the recourse problem is that all emergencies must be assigned to a crew.

In developing the model, we originally considered an objective of minimizing total ex-

pected labor cost (which equivalent to minimizing total expected overtime, since straight

hours are a fixed cost). However, due to internal company reasons, they chose not to have

a monetary objective in the model. Moreover, in solving the recourse problem with a cost

objective, the resulting solution did not correspond to a solution acceptable to the company.

In addition, the root cause of the problem that the company has been facing is an uneven

distribution of both planned and unplanned work to the yard’s crews. In discussions with

the company, it has been decided that high overtime labor costs is a symptom of this prob-

lem, and not the root cause that they wanted to solve. As a result, we chose the objective

of minimizing the maximum work hours over all the crews. This results in a solution with

slightly higher expected total overtime hours, but it is “fair” in that it distributes overtime

evenly over the crews.1

The objective of the first-stage problem is to minimize the maximum expected recourse

1To illustrate this, consider a recourse problem with two emergencies (of 8 hour durations each), two
standard jobs (of 8 hour durations each), and two maintenance crews. Under an objective of minimizing
overtime, an optimal solution is to assign one emergency to the first crew (8 hours), and assign the remaining
work to the second crew (24 hours). Under a min-max objective, an optimal solution is to assign one
emergency and one standard job to each of the crews (16 hours). Under both solutions, the total overtime
is 16 hours. However, the overtime is shared by the two crews under a min-max objective.
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function over all days in the planning horizon:

minimize
X,Y

max
t=1,...,T

Et [Ft (Yt, L(ω))]

subject to

τi∑
t=1

Xit = 1, i = 1, . . . , n,

Kt∑
k=1

Yitk = Xit, i = 1, . . . , n, t = 1, . . . , T,

Xit ∈ {0, 1}, i = 1, . . . , n, t = 1, . . . , T,

Yitk ∈ {0, 1}, i = 1, . . . , n, t = 1, . . . , T, k = 1, . . . ,Kt,

(4.2)

where Ft(Yt, L(ω)) is described in (4.1). The constraints are: (i) job i must be scheduled

before its deadline τi, and (ii) if a job is scheduled for a certain day, a crew must be assigned

to work on it. The optimization problem (4.2) can be rewritten as a mixed integer program.

Section A.4 in Appendix A provides the MIP formulation.

In our model, we assume that standard jobs cannot be postponed if multiple emergencies

appear in one day. However, it is possible to explicitly incorporate job postponement

using a dynamic model. Note that such models are difficult to solve computationally (see

a discussion by Godfrey & Powell (2001) on difficulties of solving multistage problems).

In practical applications, the most natural solution strategy is to use a rolling-horizon

procedure, solving the static problem at each time period using what is known at that

period and a forecast of future events over some horizon. Later in Section 4.4.3, we compare

our rolling-horizon procedure to other dynamic models for job scheduling.

4.3.1 Practical limitations of the joint job scheduling and crew assign-

ment problem

The job scheduling decisions and crew assignment decisions in (4.2) are made jointly. How-

ever, there were several practical issues that prevented the implementation of the joint job

scheduling and crew assignment problem in yard operations which we discuss below.

Firstly, the full optimization problem is intractable to solve for actual yard problems

within a reasonable amount of time. For actual yard settings, crew assignments need to

be determined within at most a few minutes. If there are no emergencies, the problem is

known to be NP-hard (Pinedo, 2002). Additionally, the presence of a stochastic number

of emergencies makes the problem even more computationally intractable when solving

the deterministic equivalent problem using commercial off-the-shelf solvers. This is due

to the structure of a stochastic MIP (Ahmed, 2010). We demonstrate this by solving the

deterministic equivalent problem with actual yard data using Gurobi.2 Figure 4-3 shows the

gap between the current upper and lower bounds on the optimal cost in Gurobi’s branch-

and-bound search. A gap of zero means that the current solution is optimal. Note that

2Actual yard data had 481 standard jobs, 20 crews per weekday, 5 crews per weekend, 0 to 6 emergencies
per weekday, 0 to 3 emergencies per weekend.
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Figure 4-3: Relative MIP gap in Gurobi’s branch and bound.

Note: The gap is the difference between the current upper and lower bounds on the
optimal cost in the branch-and-bound procedure. When the gap is zero, the current

solution is optimal.

even after 140 hours, Gurobi still is only able to reduce this gap to about 40%.

Secondly, the yard employees and resource planners required transparency in how deci-

sions are being made. There are general-purpose computational methods that solve stochas-

tic optimization problems efficiently such as the integer L-shaped method (Laporte & Lou-

veaux, 1993), scenario decomposition (Carøe & Schultz, 1999), or cutting plane approaches

with sequential convexification of the second stage problem (Sherali & Fraticelli, 2002).

However, since yard decisions are traditionally being made by resource planners without

guidance from any quantitative models or data, resource planners were naturally suspicious

of “black box” decision models that do not give insights as to how decisions are being made.

Finally, due to issues about integration with the company’s current databases and other

strategic issues, the company chose not to invest in a commercial integer programming

solver for a implementation of the project throughout the whole company. Therefore, a

limitation faced in the project was the fact that our models and heuristics needed to be

solved using Excel’s Solver or Premium Solver.

These practical issues motivated us to consider a decomposition of the joint problem, into

one in which the two decisions (job scheduling and crew assignment) are made sequentially.

First is the job scheduling phase, which crudely schedules the jobs on the planning horizon

assuming only an average number of emergencies on each day. The goal is to meet all

the standard job deadlines while evenly distributing work (i.e., the ratio of scheduled work

hours to the number of crews) over the planning horizon. Once the schedule of jobs is fixed,

then the crew assignment problem can be solved independently for each day. In the crew

assignment phase, the standard jobs are assigned to crews under a stochastic number of

emergencies. The goal is to minimize the expected maximum hours worked by any crew.

Note that the two-phase decomposition results in two layers of resource allocation problems.

The first layer is a longer term problem where the “resources” are the days that needed to
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be allocated to the standard jobs. The second layer is a one-day planning problem where

the “resources” are the crews that needed to be allocated to the standard jobs and the

random emergencies. The decomposition provides transparency in how decisions about job

schedules and crew assignments are made. Moreover, the problem is more tractable due to

the smaller problem dimensions. Sections 4.4–4.5 provide more details on the two phases

of the decomposition.

4.4 Phase I: Job scheduling

In this section, we discuss the job scheduling phase, where standard jobs of varying durations

and deadlines have to be scheduled on a planning horizon. We present a deterministic mixed

integer program (MIP) whose solution is a feasible job schedule that evenly distributes work

over the horizon. We also present a tractable algorithm for producing a job schedule. The

algorithm is based on solving the LP-relaxation which, based on actual problem sizes, can

be solved using Excel Premium Solver. The schedule resulting from the heuristic is near-

optimal in computational experiments and in actual yard problems.

In yard operations, there is a random number of emergencies per day, and the number

of crews can change for different days. For instance, yards usually have less crews working

during weekends compared to weekdays. Moreover, there are less company crews moni-

toring gas leaks during weekends, so there are usually less emergencies discovered during

weekends. We chose to model the job scheduling phase to schedule standard jobs assuming

a deterministic number of emergencies (equal to the average). That is, the standard jobs are

scheduled to meet all the deadlines, while balancing (over all the days), the average hours

scheduled scaled by the number of crews. The job scheduling phase solves the following

optimization problem:

minimize
X

max
t=1,...,T

{
1

Kt

(
dLEt[L(ω)] +

n∑
i=1

diXit

)}

subject to

τi∑
t=1

Xit = 1, i = 1, . . . , n,

Xit ∈ {0, 1}, i = 1, . . . , n, t = 1, . . . , T.

The motivation behind scaling the average scheduled hours per day by the number of crews

is so that the optimal solution will schedule less hours on days when there are only a few

crews.

Note that the scheduling decisions are made without a detailed description of the uncer-

tainties. Rather, this phase simply takes the expected value of the number of emergencies

per day. The stochasticity in emergencies will be handled in the crew assignment phase

described in Section 4.5. Due to these modeling assumptions, the problem can be cast as

an MIP with only a small number of variables and constraints.

Proposition 4.4.1. Scheduling phase problem (4.4) can be cast as the mixed integer pro-
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gram:

minimize
C,X

C

subject to dLEt[L(ω)] +

n∑
i=1

diXit ≤ KtC, t = 1, . . . , T,

τi∑
t=1

Xit = 1, i = 1, . . . , n,

Xit ∈ {0, 1}, i = 1, . . . , n, t = 1, . . . , T.

(4.3)

This problem is related to scheduling jobs to unrelated machines with the objective

of minimizing makespan when there are processing set restrictions (Pinedo, 2002). The

makespan is the total length of the schedule when all machines have finished processing

the jobs. In our setting, “machines” are equivalent to the dates {1, 2, . . . , T}. Each job

i is restricted to be only scheduled on dates (or “machines”) before the deadline, i.e., on

“machines” {1, 2, . . . , τi}. In our setting, the makespan of machine t is the ratio of scheduled

hours to number of crews for day t.

Note that even the simpler problem of scheduling jobs on parallel machines is well-known

to be NP-hard (Pinedo, 2002). List scheduling heuristics (where standard jobs are sorted

using some criterion and scheduled on machines one at a time) are commonly used to ap-

proximately solve scheduling problems with parallel machines (Kafura & Shen, 1977; Hwang

et al., 2004; Glass & Kellerer, 2007; Ou et al., 2008). For the case of unrelated machines, a

well-known algorithm by Lenstra et al. (1990) performs a binary search procedure, in each

iteration solving the linear programming relaxation of an integer program, and then rounds

the solution to a feasible schedule. Using a proof based on graph theory, they show that

the schedule resulting from their algorithm is guaranteed to have a makespan of no more

than twice the optimal makespan.

In what follows, we introduce a heuristic for approximating the solution for the job

scheduling problem (4.4). Similar to Lenstra et al. (1990), our algorithm is also based on

solving the LP-relaxation and rounding to a feasible schedule. However, we do not require

initializing the algorithm with a binary search procedure, therefore only solving the LP-

relaxation only once. We are able to provide a data-dependent performance guarantee for

the heuristic (Theorem 4.4.2) which we derive using a novel technique based on stochastic

analysis.

4.4.1 LP-based job scheduling heuristic

The details of the job scheduling algorithm, which we call Algorithm LP-schedule, are found

in Appendix A. The idea is to solve the linear programming relaxation of the scheduling

phase MIP (4.3). The LP solution is rounded into a feasible job schedule by solving a

smaller scale MIP.

Consider the LP relaxation of the scheduling phase MIP (4.3) where all constraints of
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the form Xit ∈ {0, 1} are replaced by Xit ≥ 0. Denote the solutions to the LP relaxation

by CLP and XLP . The algorithm takes the LP solution and converts it into a feasible

job schedule using a rounding procedure. The idea in the rounding step is to fix the jobs

that have integer solutions, while re-solving the scheduling problem to find schedules for

the jobs that have fractional solutions. However, a job i with a fractional solution can now

only be scheduled on a date t when the corresponding LP solution is strictly positive, i.e.

XLP
it ∈ (0, 1). The rounding step solves an MIP, however it only has O(n + T ) binary

variables, instead of the original scheduling phase integer problem which had O(nT ) binary

variables (the proof of this is similar to that in Lenstra et al. (1990)).

The following theorem states that the schedule resulting from Algorithm LP-schedule

is feasible (in that it meets all the deadlines), and its maximum ratio of hours scheduled to

number of crews can be bounded.

Theorem 4.4.2. Let COPT be the optimal objective cost of the scheduling phase prob-

lem (4.3), and let CLP be the optimal cost of its LP relaxation. If XH is the schedule pro-

duced by Algorithm LP-schedule, then XH is feasible for the scheduling phase problem (4.3),

and has an objective cost CH where

CH

COPT
≤ 1 +

1

CLP

(
min

t=1,...,T
Kt

)−1

√√√√1

2

(
n∑

i=1

d2i

)
(1 + ln δ), (4.4)

where δ = maxt=1,...,T δt and δt ,
{
r = 1, . . . , T : XLP

ir > 0 and XLP
it > 0

}
.

The stochastic analysis based proof is in Appendix B. Outline of the proof: Introduce X̃

as the randomized schedule derived by interpreting the LP solution XLP as probabilities.

For example, if XLP
i1 = XLP

i2 = 0.5, then job i is equally likely to be scheduled on day 1 and

day 2 in the random schedule. Note that all realizations of X̃ are all the possible roundings

of XLP . Moreover, the algorithm produces the rounding XH with the smallest cost (the

maximum ratio of scheduled hours to number of crews). Define Bt as the “bad” event that

X̃ has a day t ratio of scheduled hours to number of crews greater than the right-hand

side of (4.4). To prove the theorem, we need to show that there is a positive probability

that none of the bad events B1, B2, . . . , BT occur. Note that each bad event is mutually

dependent on at most δ other bad events. Then if there exists a bound on Pr(Bt) for all

t, we can use Lovász’s Local Lemma (Erdős & Lovász, 1975) to prove that the event that

none of these “bad” events occur is strictly positive. Since Bt is the event that a function

of independent random variables deviates from its mean, Pr(Bt) can be bounded using the

large deviations result McDiarmid’s inequality (McDiarmid, 1989).

Let us try to gain some intuition on (4.4). Suppose that there are K crews per day.

Note that CLP takes its smallest value when all jobs are due on the last day, with CLP =

(
∑n

i=1 di) /(KT ). On the other extreme, if all the deadlines are on the first day, CLP

takes its largest value with CLP = (
∑n

i=1 di) /K. Hence, the bound is smaller under more

restrictive deadlines. Furthermore, note that δt represents (based on the LP solution) the
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number of days that share a fractional job with day t. With more restrictive deadlines,

we would expect δt to be smaller, implying that δ = maxt δt is smaller. Finally, consider

the case where CLP = (
∑n

i=1 di) /(αK), for some constant α > 0 (note that this is the

case when deadlines are either all on the first day or all on the last day). Then the bound

simplifies to 1 + α ||d||2
||d||1

√
1
2(1 + ln δ), where d is the vector of job durations. Interpreting

||d||2
||d||1 as the coefficient of variation in job durations, we can infer that the bound is smaller

if there is less variance in the job duration data.

In both randomly generated job scheduling problem instances as well as actual yard

problems, we observe that the data-dependent bound (4.4) is less than 2. But in some

cases, the bound might become large, for instance as T increases. However, we can modify

the algorithm ensuring that the resulting schedule has a cost of no more than αCOPT , where

α is the minimum of 2 and a data-dependent expression (Theorem A.7.1 in Appendix A).

Hence, the bound will not explode in asymptotic regimes. The modification is to initialize

the algorithm with binary search procedure (described in Section A.6 of Appendix A).

4.4.2 Computational experiments comparing to a sensible resource plan-

ner

We implement Algorithm LP-schedule to solve randomly generated problem instances. The

size of the problem instance is chosen so that the job scheduling problem solves to optimality

within a reasonable amount of time. In these experiments, we randomly generate 100 prob-

lem instances and compare the schedule resulting from Algorithm LP-schedule to a schedule

that a sensible resource planner might otherwise produce following some rules-of-thumb (we

call this second heuristic SRP). SRP’s rules have been determined after consulting with sev-

eral resource planners of the utility we worked with. In SRP, the standard jobs are sorted

with increasing deadlines so that the job with the earliest deadline comes first in the list.

Then, SRP will determine a cutoff value for work hours per day. Starting from the first

day in the horizon, SRP will go through the sorted list of jobs. If the current job has a

deadline of today or if the current work hours scheduled for today is less than the cutoff,

SRP will schedule the current job for today and remove it from the list. Otherwise, it does

not schedule it today and moves on to the next day. The cutoff used by SRP is the total

average work hours divided by the number of days.

In each problem instance, there are 7 days in the planning horizon, and 3 crews available

each day. There are 70 standard jobs to be scheduled (with durations randomly generated

between 0 to 8 hours, and deadlines randomly chosen from the 7 days). For each problem

instance, we apply both LP-schedule and SRP, noting the cost of both schedules, i.e.,

maximum ratio of average scheduled hours to number of crews. A schedule is near-optimal

if its cost is close to the optimal cost from solving the scheduling problem (4.3). For

each problem instance, we compute the percentage difference of the heuristics’ cost to the

optimal cost. Algorithm LP-schedule has a sample mean (taken over 100 instances) for the

percentage difference equal to 3.6%. The 95% confidence interval for this sample mean is

81



[2.94%, 4.25%]. On the other hand, SRP has a sample mean for the percentage difference

equal to 9.7%. The 95% confidence interval for this sample mean is [9.13%, 10.21%].

Additionally, Algorithm LP-schedule manages to improve computational efficiency. Solv-

ing for the optimal schedule in (4.4) often requires several hours, which is not viable in actual

yard operations. On the other hand, Algorithm LP-schedule only takes a few seconds to

solve.

We also implemented the algorithm on actual yard data for one month. During that

month, there were 481 standard jobs with durations ranging between 3 hours to 9 hours.

On weekdays, there were 20 crews available per day, and the number of emergencies ranged

between 0 to 6 per day. On weekends, there were 5 crews available per day, and emergencies

ranged between 0 to 3 per day. Due to the size of the problem, the job scheduling problem

(4.3) even implemented in Gurobi does not solve to optimality within several days. However,

since COPT is bounded below by CLP , we used the LP relaxation solution to determine

that our algorithm results in a schedule that is at most 5.6% different from the optimal job

schedule.

4.4.3 Dynamic job scheduling

The Phase I model results in a static job schedule. In the case of the utility we have been

working with, yards rarely postpone standard jobs in the case of multiple emergencies (see

discussion in Section 4.2). However, one can potentially solve the job scheduling prob-

lem with a rolling horizon so that standard jobs can be rescheduled as more information

is revealed. In practice, static models are often solved with a rolling horizon rather than

solving a dynamic program. This is because dynamic resource allocation models are compu-

tationally intractable, with solution methods often only approximating the value function

(Godfrey & Powell, 2001; Huh et al., 2013).

We compare our job scheduling model solved using a rolling horizon to the perfect

hindsight job schedule, which is the optimal job schedule after knowing the sequence of

emergencies occurring each day. The cost of the perfect hindsight job schedule is clearly

smaller than any dynamic job schedule, since it has the benefit of complete information.

The cost of the perfect hindsight model is unachievable in reality. However, we use it to

evaluate the performance of our model.

We conduct experiments using actual yard data for one month (481 standard jobs, 20

weekday crews, 5 weekend crews). To implement the rolling horizon schedule, the job

scheduling problem is re-solved every day, with a horizon starting from the current day

until the end of the month. On the current day, the number of emergencies is known (for

our experiments, it is randomly drawn from the empirical probability distribution shown in

Figure 4-1). The job scheduling model is solved using the known number of emergencies for

the current day and an expected number of emergencies for the remaining days. We compare

the rolling horizon job schedule to the perfect hindsight schedule where the sequence of

emergencies is known.
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Figure 4-4: Cost difference between rolling horizon job scheduling model and perfect hind-
sight model.

Figure 4-4 demonstrates the percentage cost difference between the rolling horizon sched-

ule and the perfect hindsight schedule in 100 simulation trials. In the experiments, the total

number of emergencies for the month varied between 48 to 94. The average cost difference

between the rolling horizon schedule and the perfect hindsight schedule is only 12%. More-

over, for 80% of the simulation trials, the cost difference is no more than 20%.

4.5 Phase II: Crew Assignment

In this section, we focus on the second phase of the decomposition, i.e., the crew assignment

problem within one day. The basic problem is determining which crews should execute which

standard jobs, and which crews to reserve for emergencies, given the stochastic number of

emergencies. We develop a heuristic for crew assignment (Algorithm Stoch-LPT) motivated

from a property of the optimal crew assignment. Later in this section, we prove that

Algorithm Stoch-LPT terminates with an optimal crew assignment for certain special cases.

We also modify the algorithm for a multiperiod setting which allows reassignments and

evolution of forecasts for the emergencies within the day.

Denote by I the set of standard job indices to be assigned in one day (as determined

in the job scheduling phase). Let L be the stochastic number of emergencies on that day.

Suppose there are K crews available on that day. The crew assignment problem assigns all

standard jobs in set I to the available crews. However, these assignments must be made

before the number of emergencies for the day is realized. After the number of emergencies

is known, all emergencies must be assigned to the crews. The objective is to minimize the

expected maximum hours worked on that day.

The crew assignment problem for one day solves a two-stage stochastic mixed integer
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program. The first stage problem is:

minimize
Y

E [F (Y, L(ω))]

subject to

K∑
k=1

Yik = 1, i ∈ I,

Yik ∈ {0, 1}, i ∈ I, k = 1, . . . ,K,

(4.5)

where F (Y, L(ω)) is defined as:

F (Y, L(ω)) , minimize
Z

max
k=1,...,K

{
dLZk +

∑
i∈I

diYik

}

subject to
K∑
k=1

Zk = L(ω)

Zk ∈ Z+, k = 1, . . . ,K.

(4.6)

Note that the term in the brackets of the objective function is the number of hours assigned

to crew k during scenario ω and under the standard job assignments Y . The assignment

phase problem can also be rewritten as a mixed integer program (see Section A.8 of Ap-

pendix A).

A limitation encountered in our project was that resource planners, who traditionally

made daily yard operations decisions without the use of models, were resistant of “black

box” decision models which did not give insight into how crew assignment decisions are

being made (see Section 4.3.1). Therefore, problem (4.5) cannot be solved using IP solvers

or computational techniques aimed for solving general stochastic optimization problems.

Motivated by this, we developed a crew assignment algorithm which exploits the specific

structure of the crew assignment problem, which we will introduce later in Section 4.5.2.

This algorithm is simple and intuitive since it can viewed as a stochastic variant of the

Longest Processing Time First (LPT) rule. The algorithm we developed also resulted

in natural guidelines for resource planners to follow in making yard operations under a

stochastic number of emergencies.

4.5.1 Stochastic model compared to using averages

The stochasticity of the number of emergencies makes (4.5) makes computationally in-

tractable. In what follows, we compare the two-stage stochastic model (4.5) to a natural

heuristic which ignores stochasticity. In particular, this heuristic solves a deterministic

model assuming that the number of emergencies is equal to the expectation E[L(ω)]. We

now demonstrate that solving (4.5) results in more robust assignments than the determin-

istic model ignoring stochasticity.

We refer to the deterministic heuristic as AVG, and the two-stage stochastic model as

OPT. In the following example, we compare the cost (i.e., maximum work hours in each

emergency scenario) under AVG and OPT. Suppose there are 7 crews available, and 15
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Table 4.2: Maximum work hours in different scenarios under
optimal assignment and assignment based on average number
of leaks.

Scenario Probability OPT max hours AVG max hours

0 leaks 0.4 11.76 10.66
1 leak 0.2 11.77 10.66
2 leaks 0.4 11.83 18.28
Expected maximum hours 11.79 13.70

a OPT is the optimal solution to (4.5). AVG optimizes assuming
an average number of leaks.

standard jobs need to be assigned. Standard job durations are between 1 hour and 7 hours.

The emergency gas leak job duration is 8 hours. The probability of 0 leaks is 40%, the

probability of 1 leak is 20%, and the probability of 2 leaks is 40%. The average number of

leaks is 1.

Table 4.2 summarizes the work hours with assignments from AVG and OPT. Based on

the table, if there are no leaks, all crews work less than 11.76 hours under OPT, whereas

all crews work less than 10.66 hours under AVG. Note that, regardless of the number of

leaks, all the crews work less than 11.83 under OPT. But under AVG, at least one crew is

working 18.28 hours if there are 2 leaks. Hence, with 40% probability, a crew under the

AVG assignment works 18.28 hours. Since OPT results in a crew assignment where all

crews work less than 11.83 hours on any leak scenario, it is more robust to stochasticity of

gas leaks. These results agree with Birge (1997) who demonstrated that in many real-world

applications stochastic optimization models are superior to their deterministic counterparts.

4.5.2 Crew assignment heuristic

We conducted computational experiments on several examples in order to gain insight into

the structure of the optimal crew assignment solution to (4.5). The appendix (Section A.9)

explains in detail the experiments we conducted. An observation we make from the exper-

iments is that in the optimal solution, if a crew is assigned to work on an emergency in a

given scenario, that crew should also be assigned to work on an emergency in a scenario

with more emergencies. This is formalized in the following proposition.

Proposition 4.5.1. There exists an optimal solution (Y ∗, Z∗(ω), ω ∈ Ω) to the stochastic

assignment problem (4.5) with the property that if L(ω1) < L(ω2) for some ω1, ω2 ∈ Ω, then

Z∗
k(ω1) ≤ Z∗

k(ω2) for all k = 1, . . . ,K.

This proposition motivates our heuristic for crew assignment under stochastic emer-

gencies. The heuristic aims to mimics the property of the optimal crew assignment in

Proposition 4.5.1. We refer to the heuristic as Algorithm Stoch-LPT, since it is is a variant

of the Longest-Processing-Time First (LPT) algorithm under a stochastic number of emer-

gencies. Recall that LPT applies when there are no emergencies, and the objective is to
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minimize the maximum work hours of the crews. In each iteration of LPT, it keeps track

of the current number of assigned work hours (current load) for each crew. LPT initializes

the current load for each crew to be zero. Then it sorts the standard jobs in decreasing

duration. Starting with the longest duration job, each iteration of LPT assigns the current

standard job to the crew with the smallest current load, updating the current load after an

assignment is made.

In what follows, we describe the proposed Algorithm Stoch-LPT for stochastic emergen-

cies, with the objective of minimizing the expected maximum work hours of the crews. The

algorithm begins by first making assignments of emergencies in each scenario. For exam-

ple, in a scenario with two emergencies, the algorithm needs to assign two emergencies to

the crews. For each scenario, the algorithm assigns emergencies, starting with the scenario

with the least emergencies, then the one with the second least, continuing until it assigns

all emergencies under all scenarios. For the current scenario, Algorithm Stoch-LPT uses a

procedure for assigning the emergencies that preserves the monotonicity property described

in Proposition 4.5.1. It assigns the emergencies in the current scenario to the crews by the

LPT rule. But in case of ties (where more than one crew has the smallest current load), it

chooses a crew whose current load is strictly smaller than its load in the previous scenario’s

assignment.

After emergencies have been assigned for all scenarios, the next step in Stoch-LPT is

to assign the standard jobs. The algorithm keeps track of the current load of each crew

in each scenario, which is initialized after the crews’ emergency job assignments. Then,

like LPT, the algorithm sorts the standard jobs in decreasing order of duration. Starting

with the longest duration job, each iteration of Stoch-LPT assigns the current standard

job to a crew according to the following rule. Under each crew, determine the increase in

expected maximum load that results from assigning the current job to that crew. Note that

different assignments result in different loads for each crew in each scenario. The expected

maximum load is computed by summing over all scenarios the maximum load in the scenario

multiplied by the probability of the scenario. The standard job is assigned to the crew that

has the smallest amount of increase in the expected maximum load. If there are any ties,

the standard job is assigned to the crew with the smallest expected current load. After a

standard job is assigned, the current load of each crew in each scenario is updated.

We conduct computational experiments comparing the crew assignment produced by

Algorithm Stoch-LPT to the optimal crew assignment. Table 4.3 compares expected max-

imum hours worked under both crew assignments. Each experiment uses the same set of

15 standard jobs and 7 crews, but a different probability distribution for the number of

emergency gas leaks (see Table D.23–D.24 in Appendix D for the data). Note that under

all probability distributions, Algorithm Stoch-LPT results in expected maximum hours no

more than 8.25% of the optimal.

Finally, we would like to discuss another implication of Proposition 4.5.1. In reality, the

leak scenario reveals itself over time since leaks are discovered throughout the day. However,
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Table 4.3: Expected maximum hours worked under the optimal crew assignment and the
assignment from Algorithm Stoch-LPT.

Expected maximum hours
E[no. leaks] Stdev[no. leaks] Optimal Algorithm Stoch-LPT % Difference

Leak distribution 1 1.0 0 10.66 11.50 7.96%
Leak distribution 2 1.0 0.45 11.41 12.06 5.72%
Leak distribution 3 1.0 0.63 11.78 12.75 8.22%
Leak distribution 4 1.0 0.89 11.79 12.67 7.50%
Leak distribution 5 1.0 0.89 12.18 12.19 0.11%
Leak distribution 6 1.0 1 12.50 12.95 3.62%
Leak distribution 7 1.0 1.18 12.85 13.34 3.79%

as the proposition states, if a crew is assigned to an emergency for a scenario with one leak,

then this same crew is assigned at least one emergency for scenarios with two, three, and

more leaks. Therefore, the first leak that appears is always assigned to that crew, under any

scenario. This way, one can “rank” the crews that handle the emergencies. Thus, the crew

assignment solution of the static model can be easily implemented in a real-time setting

where leaks arrive throughout the day. This ranking of crews based on the optimal leak

assignment is formalized in the following proposition.

Proposition 4.5.2. Suppose (Y,Z(ω), ω ∈ Ω) is a feasible solution to the stochastic assign-

ment problem (4.5) such that, if L(ω1) < L(ω2) for some ω1, ω2 ∈ Ω, then Zk(ω1) ≤ Zk(ω2)

for all k = 1, . . . ,K. The crews can be relabeled as k1, k2, . . . , kK so that Zkj−1
(ω) ≥ Zkj (ω)

for all ω ∈ Ω.

Corollary 4.5.3. There exists an optimal solution (Y ∗, Z∗(ω), ω ∈ Ω) to the stochas-

tic assignment problem (4.5) where the crews can be relabeled as k1, k2, . . . , kK so that

Z∗
kj−1

(ω) ≥ Z∗
kj
(ω) for all ω ∈ Ω and

∑
i∈I diY

∗
i,kj−1

≤
∑

i∈I diY
∗
i,kj

.

4.5.3 Special case: Two crews and two emergency scenarios

In what follows, we derive some results about how our heuristic performs relative to the

optimal crew assignment solution when there are only two crews and two scenarios (either

no leak, or one leak). For this section, we assume that the probability of no leak is p, and

the probability of one leak is 1 − p. The duration of an emergency is dL. Let x and y be

the number of standard job hours that are assigned to crew A and crew B, respectively.

Without loss of generality, we assume that leaks are assigned to crew A. Then it is easy to

verify that the expected makespan is given by pmax(x, y) + (1− p)max(dL + x, y).

Proposition 4.5.4. In the optimal crew assignment, the standard jobs assigned to crew A

has a shorter total duration than the standard jobs assigned to crew B.

Proof. We prove this by contradiction. Consider an assignment where we swap the standard

job assignments of the crews. Then in both leak scenarios, the maximum work hours
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(makespan) is no greater under this new assignment. This implies that the new assignment

has an expected makespan that is less than or equal to that of the original assignment.

Proposition 4.5.5. If p ≤ 1
2 , then Algorithm Stoch-LPT will begin by assigning the longest

duration standard job. It will then assign subsequent jobs to crew B until the duration of

the emergency is shorter than the cumulative duration of the assigned jobs.

Proof. Let D be the cumulative duration of assigned standard jobs by Algorithm Stoch-

LPT, where D ≤ dL. We will show that it is optimal to assign all D hours to crew B. Let

x+ y = D, and consider two cases. First, note that if x ≤ y, then the expected makespan

is py + (1− p)(dL + x) = (2p− 1)y + (1− p)(D + dL). Therefore, since p ≤ 1
2 , it is optimal

to assign the most amount of standard job hours to crew B. For the second case, if x > y,

then the expected makespan is px+ (1− p)(dL + x) = D − y + (1− p)dL. Therefore, even

in this case, it is optimal to assign the most amount of standard job hours to crew B.

The next proposition considers the special case of standard jobs with equal durations.

The proposition states that, under this special case, Algorithm Stoch-LPT terminates with

an optimal crew assignment.

Proposition 4.5.6. Suppose all standard jobs have equal duration d. Then the following

statements are true for the crew assignment resulting from Algorithm Stoch-LPT:

1. If p ≤ 1
2 , then Stoch-LPT will assign the first ⌊dLd ⌋ longest duration standard jobs to

crew B. The algorithm will assign the subsequent jobs alternately between crew A and

crew B.

2. If p > 1
2 , then Stoch-LPT will assign the longest duration job to crew B. The algorithm

will assign the subsequent jobs alternately between crew A and crew B.

3. For any value of p ∈ (0, 1), Stoch-LPT terminates with an optimal crew assignment.

4.5.4 Dynamic crew reassignment

Motivated by yard operations where assignment of standard jobs is determined once in

the beginning of the day and cannot be changed later, our model for the crew assignment

is static. In what follows, we demonstrate a modification of Algorithm Stoch-LPT where

standard jobs that have not yet been started can be re-assigned later in the day, as more

information about the emergencies becomes available.

We assume that the standard jobs can be reassigned every hour. We also assume that

the arrival of emergencies follow a Poisson process with an arrival rate λ. Any arrival process

can be used, however we chose a Poisson process for the purpose of illustration. Recall that

the emergencies are found by dedicated company crews that monitor for gas leaks in a shift

of 8 hours. Then there is a natural update rule for the belief on the number of emergencies.

Suppose there are s hours remaining until company crews stop monitoring for leaks. Then
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the probability that n emergencies are found within s hours is P (L = n) = (λs)n

n! e−λs, for

n = 0, 1, 2, . . .

What we refer to next as the dynamic crew reassignment is the following. At the start

of the day, determine the standard job and emergency assignments according to Algorithm

Stoch-LPT. We make a distinction between Stoch-LPT’s assignments and the actual as-

signments that are based on the realization of emergencies. In the first hour, the number of

emergencies are realized according to the Poisson distribution. Make the actual emergency

assignment based on Algorithm Stoch-LPT. For example, if there is one emergency, assign

that emergency based on the algorithm’s emergency assignment under the scenario with

one emergency. If a crew has an actual emergency assignment, it starts work on that emer-

gency in the current hour. Otherwise, choose an actual standard job assignment from the

set of standard jobs that Stoch-LPT assigns to that crew. We choose the longest duration

job in the set.3 The crew starts work on the chosen standard job (if any) in the current

hour. Moving to the next hour, we again apply Algorithm Stoch-LPT, but (i) with only

the standard jobs not yet started, (ii) with the current load of some crews reflecting the job

they started from the previous hour, and (iii) with an updated probability distribution of

the number of emergencies. Emergencies are realized for that hour according to the Poisson

distribution, and actual assignments of emergencies and standard jobs are determined as

before. Then, continue the re-assignment at the beginning of each hour until either there

are no more standard jobs left or the end of 8 hours is reached. At the end of the last hour,

the LPT rule is applied for the remaining standard jobs (if any).

Figure 4-5 illustrates through an example how the crew assignment evolves as the emer-

gencies arrive. The example uses four crews, six jobs, and an emergency arrival rate of 0.2

per hour. Grey rectangles represent standard jobs. Black rectangles represent emergency

jobs. Figure 4-5(a) shows the job assignment when there are no emergencies. Figure 4-5(b)

shows the job assignment when two emergencies arrive at t = 3 and t = 5. White space

between jobs shows that the crew is idle during that period. Note that, depending on the

arrival of emergencies, the standard jobs assignments are different.

We compare the dynamic reassignment solution to the static solution using simulation

experiments. Consider a yard with 17 crews and 21 standard jobs with durations varying

from 3 to 9 hours. An emergency has a duration of 8 hours. Emergency arrivals follow

a Poisson process with rate 0.352 per hour. Emergencies can only arrive in an 8 hour

period, during which there is an expected number of 2.8 emergencies. We simulate 100

sequences of emergency arrivals. For each sequence, we apply both the static Stoch-LPT

and the dynamic Stoch-LPT. Figure 4-6 shows the number of overtime hours saved by the

dynamic reassignment plotted against the number of emergencies in the sequence. The

static assignment (which is made based on an expected number of 2.8 emergencies) is

conservative, and reassignment can adjust this conservative solution as more information

3It is possible to have a different rule for choosing the actual standard job assignments. For instance, one
can choose the shortest duration job in the set.
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Figure 4-5: An example of a dynamic assignment

The horizontal axis represents time. A rectangle represents a job; its duration is
proportional to the length of the rectangle. Grey rectangles are standard jobs. Black

rectangles are emergency jobs.

Figure 4-6: Overtime hours saved by dynamic reassignment

Each data point corresponds to a different sequence of emergency arrivals.
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is revealed. Note that the benefits of dynamic reassignment decreases if there are more

emergency arrivals during the 8 hour period.

4.6 Business analytics for a utility’s Gas business

In this section, we describe how the research above applies to the scheduling of operations

at the Gas business of a large multi-state utility. This is based on a joint project between

the research team and the company that gave rise to the results of this chapter.

The company maintains a network of gas pipeline. It keeps a roster of maintenance

crews who have two types of tasks: to execute standard jobs by their deadlines, and to

respond to emergencies. We discuss how we used the optimization models and heuristics

described in this chapter so that the company could develop better strategies to create

flexibility in its resources to handle emergencies.

4.6.1 Overview of the project

At the onset of the project, our team analyzed sources of inefficiency in yard operations by

mapping in detail the existing yard processes. We visited several company yards and inter-

viewed a number of resource planners, supervisors and crew leaders, as well as members of

the Resource Management Department. We also did extensive job shadowing of crews from

multiple yards performing different types of jobs, and documented the range of processes

followed. We also constructed historical job schedules based on data gathered from the

company’s job database (see Figure 4-2 for a schedule of a yard’s one month operations).

Our project with the utility company had three main objectives. The first was to develop

a tool that can be used with ease in the company’s daily resource allocation. Based on the

models and heuristics we discuss in this chapter, we created a tool – the Resource Allocation

and Planning Tool (RAPT) – to optimally schedule jobs and to assign them to crews while

providing flexibility for sudden arrival of emergencies. RAPT has access to the job database

and the time-sheet database, and uses this information to estimate leak distributions and

job durations. The resource planner can view a webpage showing RAPT’s output of the

weekly schedule for each crew and detailed plans under different gas leak scenarios. This

tool is being piloted in one of the company’s yards.

The second objective was to create and improve processes related to daily resource

allocation so that the tool could be easily embedded into daily scheduling process. We

observed that a lot of the data in the database was either missing, inappropriately gathered

or not vetted before entry into the system. Having missing or inaccurate data makes it

very difficult to apply a data-driven tool such as RAPT and makes it even more difficult to

address the right issues. Processes were created to ensure that when new jobs were added

to the database, they had the right database fields set in a consistent manner across all jobs

and yards.

The third objective was to analyze the impact of key process and management drivers on

operating costs and the ability to meet deadlines using the optimization model we developed.
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Figure 4-7: Hypothetical scenario: Crew-hours worked if optimization model is used to
schedule jobs.

Results from this analysis will help the company deploy the optimization model with all

the necessary process and management changes in order to capture the potential benefits

outlined in this chapter. The key process and management drivers selected for the study are

work queues of available jobs for scheduling, availability of detailed productivity data (down

to crew level) and supervisor presence in the field. These are discussed in Section 4.6.2.

Finally, we set out to determine the potential impact of the RAPT tool to the company.

Recall Figure 4-2 which shows the actual one-month profile of work hours in an average-

sized yard. Figure 4-7 shows the profile for the same set of jobs if RAPT is used to schedule

jobs and assign them to crews. The result is a 55% decrease in overtime crew-hours for

the month. Clearly, the schedule and crew assignments produced by RAPT is superior

to those produced previously by the resource planner. However, even if compared to the

best possible schedule where uncertainty is removed, the decisions produced by RAPT

compare favorably. The “perfect hindsight” scheduling and assignment decisions are based

on complete knowledge of the realizations of emergencies that occur in the month. The

“perfect hindsight” model results in the maximum possible reduction in overtime since the

yard can plan completely for emergencies. However, even though the RAPT model assumes

a random number of emergencies, it still is able to capture 98.6% of the maximum possible

overtime reduction by “perfect hindsight”.

4.6.2 Using the model to recommend changes

Using our models from this chapter, we conducted a study to understand the impact of

changes in yard operations on productivity. Based on past studies the company had con-

ducted, the company understands that yard productivity is a complex phenomenon driven
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by process settings such as the size of work queues (i.e., jobs available for scheduling), ef-

fective supervision, incentives, and cultural factors. The research team and the company

agreed to analyze three specific drivers of productivity using RAPT: work queue level, use

of crew-specific productivity data, and the degree of field supervision.

Optimal work queue level.

Jobs need to be in a “workable” state before crews can begin to execute them. For example,

the company needs to apply for a permit with the city for the job. Jobs in a “workable jobs

queue” are jobs ready to be scheduled by RAPT. A queue is maintained since “workable”

jobs are subject to expiration and require maintenance to remain in a workable state (e.g.,

permits need to be kept up-to-date). We observed some yards kept a low level of jobs in the

workable jobs queue. The low workable jobs queue adversely impacted the RAPT output by

not fully utilizing the tool’s potential. The team decided to run simulations to determine

the strategic target level for the workable jobs queue to maximize the impact of RAPT

while minimizing the efforts to sustain the workable jobs queue level.

For our simulations we used actual data from one of the company’s yards. Table D.39 in

Appendix D provides the data used in the experiment. Five crews, each with 8 hour shifts,

are available to work in each simulated day. There are ten different job types to be done.

On each day, the Resource Management Department announces a minimum quota of the

number of jobs required to be done for each type. These quotas are random and depend

on various factors beyond the yard’s control. Based on historical quotas, we estimate the

probability distribution of daily quotas for each job type. The yard maintains a workable

jobs queue for each job type. Suppose today the quota for CMP jobs is 10, however there

are only 6 jobs in the workable CMP job queue. Then, today, the yard will execute 6 CMP

jobs, and will carry over the remaining 4 CMP jobs as a backlog for the next day.

The yard uses a continuous review policy for the workable jobs queue specified by a

reorder point and an order quantity. Each time the total workable jobs (both in the queue

and in the pipeline) drops below the reorder point, the yard requests new workable jobs.

The size of the request is equal to the order quantity. The request is added to the pipeline

and arrives after a lead time of 3 days. For instance, this lead time may include time used

for administrative work to apply for a permit. Suppose the yard chooses a reorder point of

2 and an order quantity of 10 for the CMP workable jobs queue. Then, each time the total

CMP workable jobs drops below 2, the yard places an additional request for 10 workable

CMP jobs. In our simulations, the order quantity is set for each job type queue so that, on

average, new requests are made every week. The reorder point is determined from a service

level the yard chooses, where the service level is the probability that there is enough jobs in

the workable jobs queue to meet new quotas during the lead time period (i.e., while waiting

for new workable jobs to arrive).

For each simulated day, quotas are randomly generated and met to the maximum extent

possible from the workable jobs queue. The jobs are assigned to the 5 crews using the RAPT
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Figure 4-8: Workable jobs queue over one simulated month with 50% service level.

Table 4.4: Effect of service levels on average workable jobs inventory, backlogged jobs, and
overtime crew-hours for one simulated month.

Service Level 50% 75% 90% 99%

Average inventory per day 28.8 35.6 37.6 50.6

Total backlogged jobs 7 0 0 0

crew assignment model. Figure 4-8 shows the evolution of the workable jobs queue in one

simulated month for a 50% service level. The net inventory level corresponds to the total

number of workable jobs currently in the queue. When the net inventory is negative, then

there is a backlog of workable jobs for that job type (i.e., there are not enough workable jobs

to meet the quotas). Table 4.4 summarizes the results of the simulation for different service

levels. Note that increasing the service level increases the average size of the workable jobs

queues. With 50% service level, the average inventory per day in the workable jobs queue

is 28.8. However, a total of 7 quotas have not been met in time. Increasing the service level

to 75% requires increasing the average inventory per day to 35.6, resulting in eliminating

any backlogged jobs. Increasing the service level further to 90% or 99% results in higher

average inventories of workable jobs, but with essentially the same effect on backlogged jobs

as the smaller service level 75%.

Using crew productivity data.

Presently, detailed crew productivity is not available in the company’s database. As such,

it is not possible to make crew assignments to take advantage of the inherent job-specific

productivity differences between crews in the crew assignment phase. We used our model

to aid company management in understanding the impact of using job-specific productivity

data in crew assignment versus assigning jobs based on average productivity. The hope
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Table 4.5: Total expected overtime crew-hours for different expertise factors.

Base case γ = 5% γ = 10%

Total expected overtime
crew-hours

340.4 329.4 302.6

% Improvement over base
case

— 3.23% 11.1%

is this work can motivate upper management to provide the appropriate resources to keep

track of crew productivity.

In the simulation, we assume that each of the five crews are “experts” in one of the

job types. We let γ ∈ [0, 1) be an expertise factor which is the percentage reduction in

a job’s duration if an expert works on it. Larger values of γ mean that experts are more

productive relative to regular crews. In our experiments, we let γ = 0% (base case), 5%,

and 10%. We run the simulation for 30 days. In each day, the work that has to be assigned

is randomly generated (the distribution of quotas is given in Table D.39 of Appendix D).

We observe that the assignment model assigns most jobs to crews that have expertise in

them. Table 4.5 shows the total expected overtime crew-hours over a one month period.

By having expert crews who work with 5% reduced durations, overall overtime hours can

decrease by 3.23%. The decrease in overtime hours is nonlinear, since if expert crews can

work with 10% reduced durations, the total overtime hours in one month are reduced by as

much as 11.1%.

Increasing supervision over crews.

A prior study conducted by the company observed that crew productivity is directly related

to field supervision. More time spent overseeing crews in the field results in more productive

crews. The team used RAPT to validate and measure the appropriate level of supervision

to maximize productivity since field supervision has a cost.

In these simulations, we compare the effect of having an increased supervisor presence

in the field to the average expected overtime incurred by crews. Consider the work types

given in Table D.39 of Appendix D. Assume that by having increased supervisor presence,

the durations of work types can be decreased. We will compare different cases: the base

case (no reduction), 5% reduction, 10% reduction and 25% reduction. Let there be 5 crews,

and the daily quotas are randomly generated based on Table D.39. Unlike the previous

simulations, we assume that there is an infinite supply of permitted work (so the inventory

policy is not a factor). Each day, we assign the work to the 5 crews using RAPT and note

the total expected overtime incurred by the five crews during that day. For the different

cases, we run this simulation for 30 days and calculate the total expected overtime averaged

over 30 days.

Table 4.6 reports the result of the simulation for the different cases. We can infer that

each 5% decrease in job durations (by increasing supervisor presence) results in a reduction
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of 1.6 overtime crew-hours each day for the five-crew yard. Therefore, assuming that there

are 3 members in a crew, a 5% increase in productivity results in reducing a total of 143

overtime hours charged for the yard in one month.

Projected financial impact from changes.

In our project, we used our models to illustrate projected financial impact of implementing

process changes in the utility. We illustrate this with a hypothetical utility that has an

operating profit of $3.5 billion per year. The hypothetical utility employs 10,000 field

personnel. The straight-time hours per person per year are 2,000, with an additional 500

overtime hours per person per year. The average wage of a field personnel is $50 per hour.

Overtime is paid out at $75 per hour. The hypothetical utility spends $1 billion in straight-

time labor costs (20 million hours), with an additional $375 million in overtime labor costs

(5 million hours). Table 4.7 summarizes the projected financial impact to this hypothetical

utility of introducing the business process changes described earlier in this section. The

percentage savings in overtime costs are all based on the analyses in Sections 4.6.2–4.6.2.

If the utility were to keep crew-specific productivity data as described in Section 4.6.2,

we would anticipate annual savings of about $12 million, which represents 0.3% of the

utility’s annual operating profit. Suppose the company were to increase crew supervision

as described in Section 4.6.2. Based on previous company studies, increased supervisor

presence reduces job durations by at least 10%. This results in annual savings of $74

million (or 2% of the annual operating profit). If the company is able to implement both

changes, this has a cumulative savings of about $84 million per year which represents 2.4%

of the annual operating profit.

4.7 Conclusions

In many industries, a common problem is how to allocate a limited set of resources to

perform a specific set of tasks or jobs. However, sometimes these resources are also used to

perform emergencies that randomly arrive in the future. For example, in hospitals, operating

rooms are used both for elective surgeries (that are known in advance) and emergency

surgeries (which need to be performed soon after they arrive). Another example which in

fact motivated this chapter is scheduling crews in a gas utility company. Maintenance crews

have to perform both standard jobs (pipeline construction, pipe replacement, customer

service) as well as gas leak repair jobs. The second type of jobs arrive randomly throughout

the day. With randomly arriving emergencies, the problem becomes more complicated since

the resources need to be allocated before realizing the number of emergencies that have to

be performed. Thus, a schedule needs to be flexible in that there must be resources available

to perform these future emergencies.

We use stochastic optimization to model the problem faced by the gas utility. The prob-

lem is decomposed into two phases: a job scheduling phase and a crew assignment phase.

The optimization problems resulting from each phase are computationally intractable, but
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we provide tractable heuristics for solving each of them. The job scheduling phase heuris-

tic solves a mixed integer program, for which we propose an LP-based heuristic. We are

able to prove a data-driven performance guarantee for this heuristic. The crew assignment

phase solves a two-stage stochastic mixed integer program. Here, we propose an algorithm

which replicates the structure of the optimal crew assignment. We demonstrate how the

two heuristics can be implemented in a rolling horizon for rescheduling and reassignment

in response to the state of emergencies.

We used our models and algorithms to improve job scheduling and crew assignment in

the Gas business of a large multi-state utility company which faced significant uncertainty in

its daily operations. Our models were also used to help the utility make strategic decisions

about changes in its business and operations. In simulations using actual data and our

models, we project the impact of different process changes to crew utilization and overtime

labor costs.

4.7.1 Future Directions

There are several future directions that go beyond the scope of this chapter that could be

pursued.

In this chapter, we focused on the job scheduling and crew assignment problems as-

suming that there is no travel time between two jobs. In the real-world application, this

simplifying assumption makes sense due to small distances between jobs. However, a fu-

ture direction might be considering geography in making decisions. For instance, the job

scheduling model can include a penalty for two jobs of long distances scheduled for the same

day.

Another possible direction is to have emergencies with random durations. This is related

to literature on scheduling under stochastic job durations, where jobs need to be processed

on parallel machines without preemption. The number of jobs is known (unlike our setting),

but the processing time of each job is an independent random variable. The objective is

to minimize expected makespan (like our setting). It is known that the longest-expected-

processing-time (LEPT) rule minimizes the expected makespan for exponential jobs or for

remainders of i.i.d. decreasing hazard rate jobs (Pinedo & Weiss, 1979; Weber, 1982). In

general, LEPT is a good but not optimal heuristic (Pinedo & Weiss, 1979). For this reason,

and based on preliminary experiments, we believe that Algorithm Stoch-LPT would perform

well under the case where emergency durations are random.

Another potential direction is an analytical performance guarantee for the crew as-

signment heuristic, Stoch-LPT. We are able to prove that Stoch-LPT terminates with the

optimal crew assignment under special cases. However, establishing a guarantee for the

general case is an interesting direction.

We demonstrated the potential impact of the Resource Allocation Planning Tool (RAPT)

in managing uncertainty in yard operations and decreasing labor costs. However, there is

still some further work to be done in order for the yards to achieve these results. These
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include gaining grassroot support from the workers’ union and continuing with strong man-

agement leadership. Some new processes need to be also introduced in all of the company’s

yard to ensure that the tool can be implemented successfully. The purpose of these new

processes is to ensure integrity of the data fed into the model, and to create multiple levels

of accountability for better oversight and cost control.
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Appendix A

Miscellaneous

A.1 Distribution of estimator ∆n

We use the strong representation for L-statistics by Govindarajulu & Mason (1983) to derive

the distribution of ∆n. We can write the weight functions in (3.6) as

Ji(β, n) = n

∫ i/n

(i−1)/n
J(u)du, for i = 1, 2, . . . , n,

where J : [0, 1] 7→ R is the score function

J(u) =

{
− 1

β , if u ∈ [0, β],
1

1−β , if u ∈ (β, 1].

Note that the score function has only a single point of discontinuity at u = β.

Define

µ(J, F ) ,
∫ 1

0
J(u)F−1(u)du,

σ2(J, F ) , 1

2
E

∫ ∞

−∞

∫ ∞

−∞
J(F (u))J(F (v)) [I(u,D1)− I(u,D2)] [I(v,D1)− I(v,D2)] dudv,

where I(x,D) is an indicator function which takes a value 0 if x ≤ D and 1 otherwise.

Govindarajulu & Mason (1983) show that

∆n = µ(J, F ) +Rn +
1

n

n∑
i=1

Zn, (A.1)

where Zi are i.i.d. with mean 0, and Rn is such that
√
nRn → 0 a.s. as n → ∞. Stigler

(1974) shows the limiting values of the mean and variance of an L-statistic. We have that

lim
n→∞

E(∆n) = µ(J, F ), (A.2)

lim
n→∞

nVar(∆n) = σ2(J, F ), (A.3)
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where

µ(J, F ) =
1

1− β
E(D|D ≥ F−1(β))− 1

β
E(D|D ≤ F−1(β)) = ∆(F−1(β)),

σ2(J, F ) =
1

β
Var(D|D ≤ F−1(β)) +

1

1− β
Var(D|D ≥ F−1(β))

+

(√
1− β

β

[
E(D|D ≤ F−1(β))− F−1(β)

]
+

√
β

1− β

[
E(D|D ≥ F−1(β))− F−1(β)

])2

.

Moreover, if the distribution F is such that the score function J is continuous a.e. F−1

and E(D2) < ∞, then from Theorem 2 of Stigler (1974), ∆n is asymptotically normally

distributed. In particular,

∆n − E(∆n)√
Var(∆n)

→d N(0, 1). (A.4)

A.2 Regression analysis to estimate the bias of ∆n

In this section, we estimate numerically the bias B , E(∆n) − ∆F (β) using regression

analysis. The factors that affect B are the sample size n, the profit margin β, and the

demand distribution F . We vary values for each one of these factors and perform regression

to estimate B.

First, we estimate its dependence on n. For a given n, we fix a distribution and profit

margin, generate n samples from the distribution and compute ∆n. We do this for 10,000

repetitions and take the average difference of ∆n−∆F (β). We denote this average difference

as bn. We can generate (n, bn) pairs for n ∈ {20, 40, 80, 160, 320, 640, 1280, 2560, 5120}. We

now use this pairwise data to estimate a relationship B = Ĉ1n
k̂1 using power regression.

Table D.7 summarizes the results for various distributions and profit margins. The results

seem to suggest that the bias is inversely proportional to the sample size, i.e., B ∝ 1
n .

Estimating how the bias is affected by the distribution and profit margin is more com-

plicated. This is because it is unclear which property of the distribution directly influences

the bias. We fix a sample size n = 100 and vary the profit margin and distribution. Same as

before, we generate n samples to compute ∆n. We take the average difference of ∆n−∆F (β)

over 10,000 repetitions. From analyzing the results, we observe that distributions with larger

values for ∆F (β) tend to have a larger bias (see Figure C-2 for pairwise values). Therefore,

we use pairs of AMS values and bias values to estimate the relationship B = Ĉ2∆F (β)
k̂2 .

Figure C-2 plots the pairwise values and the regression equation. Based on the regression

analysis, B ∝ ∆F (β). Moreover, the coefficient of regression equation is almost entirely

explained by the factor 1
n .

Combining these observations, we conjecture that B = − 1
n∆F (β). This motivates the

following modified estimator of spread: ∆̃n = ∆n + 1
n∆n.
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A.3 Theorem A.3.1

Theorem A.3.1. Consider the set Dµ,δL,δU ,+ consisting of all nonnegative distributions

with common mean µ and AMS (at the β quantile) in the range [δL, δU ]. Then the minimax

regret and minimax regret quantity are:

1. If δL < (β−1/2)µ
β(1−β) , then

y∗µ,δL,δU ,+ =


1
µ (µ− (1− β)δU ) (µ+ βδU ) , if δU ∈

[
δL,

βµ
1−β2

)
,

(1−β)
4µ

(
µ

1−β + µ− (1− β)δU

)2
, if δU ∈

[
βµ

1−β2 ,
µ

1−β

)
,

µ
4(1−β) , if δU ∈

[
µ

1−β ,∞
)
,

ρ∗µ,δL,δU ,+ =


1
µβ(1− β)δU (µ− (1− β)δU ) , if δU ∈

[
δL,

βµ
1−β2

)
,

1
4µ

(
βµ+ (1− β)2δU

)2
, if δU ∈

[
βµ

1−β2 ,
µ

1−β

)
,

µ
4 , if δU ∈

[
µ

1−β ,∞
)
,

2. If (β−1/2)µ
β(1−β) ≤ δL < βµ

(1−β)(1+β) , then

y∗µ,δL,δU ,+ =



1
µ (µ− (1− β)δU ) (µ+ βδU ) , if δU ∈

[
δL,

βµ
1−β2

)
,

(1−β)
4µ

(
µ

1−β + µ− (1− β)δU

)2
, if δU ∈

[
βµ

1−β2 ,
βµ−2β(1−β)δL

(1−β)2

)
,

µ+βδL
µ (µ− (1− β)δU + β(1− β)(δU − δL)) , if δU ∈

[
βµ−2β(1−β)δL

(1−β)2
, µ
1−β

)
,

β
µ (µ− (1− β)δL) (µ+ βδL) , if δU ∈

[
µ

1−β ,∞
)

ρ∗µ,δL,δU ,+ =



1
µβ(1− β)δU (µ− (1− β)δU ) , if δU ∈

[
δL,

βµ
1−β2

)
,

1
4µ

(
βµ+ (1− β)2δU

)2
, if δU ∈

[
βµ

1−β2 ,
βµ−2β(1−β)δL

(1−β)2

)
,

β(1−β)
µ (µ− (1− β)δL) ((1− β)δU + βδL) , if δU ∈

[
βµ−2β(1−β)δL

(1−β)2
, µ
1−β

)
,

β(1−β)
µ (µ− (1− β)δL) (µ+ βδL) , if δU ∈

[
µ

1−β ,∞
)

3. If βµ
(1−β)(1+β) ≤ δL ≤ µ

1−β , then

y∗µ,δL,δU ,+ =


µ+βδL

µ (µ− (1− β)δU + β(1− β)(δU − δL)) , if δU ∈
[
δL,

µ
1−β

)
,

β
µ (µ− (1− β)δL) (µ+ βδL) , if δU ∈

[
µ

1−β ,∞
)

ρ∗µ,δL,δU ,+ =


β(1−β)

µ (µ− (1− β)δL) ((1− β)δU + βδL) , if δU ∈
[
δL,

µ
1−β

)
,

β(1−β)
µ (µ− (1− β)δL) (µ+ βδL) , if δU ∈

[
µ

1−β ,∞
)
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A.4 Deterministic equivalent of the joint job scheduling and

crew assignment problem

Proposition A.4.1. The deterministic equivalent of the optimization problem (4.2) is the

following mixed integer program.

minimize
C,V,X,Y,Z

C

subject to
∑
ω∈Ωt

Pt(ω)Vt(ω) ≤ C, t = 1, . . . , T,

dLZtk(ω) +

n∑
i=1

diYitk ≤ Vt(ω), t = 1, . . . , T, ω ∈ Ωt, k = 1, . . . ,Kt,

τi∑
t=1

Xit = 1, i = 1, . . . , n,

Kt∑
k=1

Yitk = Xit, i = 1, . . . , n, t = 1, . . . , T,

Kt∑
k=1

Ztk(ω) = L(ω), t = 1, . . . , T, ω ∈ Ωt,

Xit ∈ {0, 1}, i = 1, . . . , n, t = 1, . . . , T,

Yitk ∈ {0, 1}, i = 1, . . . , n, t = 1, . . . , T, k = 1, . . . ,Kt,

Ztk(ω) ∈ Z+, t = 1, . . . , T, ω ∈ Ωt, k = 1, . . . ,Kt.

(A.5)

Proof. Let us denote by F the feasible region of (4.2). We can write the first-stage problem

as:

minimize
W,X,Y

W

subject to Et [Ft (Yt, L(ω))] ≤W, t = 1, . . . , T, (A.6)

(X,Y ) ∈ F .

Using the probability distribution Pt for the gas leak scenarios Ωt, we can rewrite constraint

set (A.6) for each t as
∑

ω∈Ωt
Pt(ω)× Ft(Yt, L(ω)) ≤W .

Similarly, we can rewrite the second-stage recourse problem Ft(Yt, L(ω)) as an MIP:

minimize
V,Z

Vt(ω)

subject to dLZtk(ω) +

n∑
i=1

diYitk ≤ Vt(ω), k = 1, . . . ,Kt,

Kt∑
k=1

Ztk(ω) = L(ω)

Ztk(ω) ∈ Z+, k = 1, . . . ,Kt.

Combining the above two reformulations results in the optimization problem (A.5) in the
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proposition. Since Ωt is finite, there is a finite number of constraints, and problem (A.5) is

a MIP.

A.5 Job scheduling LP-based heuristic

The following describes the job scheduling algorithm (Algorithm LP-schedule) in detail.

Consider the following linear programming (LP) relaxation of the job scheduling MIP:

minimize
C,X

C

subject to dLEt[L(ω)] +

n∑
i=1

diXit ≤ KtC, t = 1, . . . , T,

τi∑
t=1

Xit = 1, i = 1, . . . , n,

Xit ≥ 0, i = 1, . . . , n, t = 1, . . . , T.

(A.7)

Denote the optimal solution as XLP and the optimal cost as CLP . To round XLP into a

feasible job schedule, define the following sets:

Is(t) =
{
i : 0 < XLP

it < 1
}
,

If (t) =
{
i : XLP

it = 1
}
,

Ti =
{
t : 0 < XLP

it < 1
}
.

The rounding step of the algorithm consists of solving the following MIP:

minimize
W,X

W

subject to dLEt[L(ω)] +
∑

i∈If (t)

di +
∑

i∈Is(t)

diXit ≤ Kt ·W, t = 1, . . . , T,

∑
t∈Ti

Xit = 1, i ∈ Is(1) ∪ · · · ∪ Is(T ),

Xit ∈ {0, 1}, t = 1, . . . , T, i ∈ Is(t).

(A.8)

Note that any set of variables {Xit} satisfying the last two constraints in (A.8) is a rounding

of the fractional variables of the LP solution {XLP
it }. Let us denote by {XR

it } the solution

to the MIP (A.8). For all i = 1, . . . , n and t = 1, . . . , T , set the rounded solution XH
it by

the following equation:

XH
it =


0, if XLP

it = 0,

1, if XLP
it = 1,

XR
it , otherwise.

Note that XH is a feasible solution to the original job scheduling problem (4.3).
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Algorithm 2 [LP-schedule] LP-based job scheduling algorithm

Require: Planning horizon {1, . . . , T}, and standard jobs indexed by 1, . . . , n, where job i
has deadline τi ≤ T and duration di

Ensure: Feasible schedule XH with
∑τi

t=1X
H
it = 1, for all i = 1, . . . , n, and XH

it ∈ {0, 1}
1: XLP ← solution to the linear relaxation (A.7)
2: Initialize XH

it ← 0 for all i, t
3: If (t), Is(t)← ∅ for all t, and Ti ← ∅ for all i
4: for i = 1 to n do
5: for t = 1 to T do
6: if XLP

it = 1 then
7: XH

it ← 1
8: If (t)← If (t) ∪ {i}
9: else if XLP

it ∈ (0, 1) then
10: Is(t)← Is(t) ∪ {i}
11: Ti ← Ti ∪ {t}
12: XR ← solution deterministic rounding MIP (A.8)
13: for t = 1 to T do
14: for i ∈ Is(t) do
15: XH

it ← XR
it

A.6 Binary search initialization for the job scheduling LP-

based heuristic

Here, we describe the details of the job scheduling algorithm (Algorithm BinLP-schedule)

which is initialized by a binary search procedure, then solves an LP relaxation of a MIP,

and rounds the LP solution to a feasible schedule. The binary search procedure is adapted

from Lenstra et al. (1990). For a fixed parameter C, define the following set of job-date

pairs:

ΓC ,
{
(i, t) : t ≤ τi and

di
Kt
≤ C

}
.

Consider the solving the following linear optimization problem LP (C):

minimize
X

C

subject to dLEt[L(ω)] +
∑

i:(i,t)∈ΓC

diXit ≤ KtC, t = 1, . . . , T,

∑
t:(i,t)∈ΓC

Xit = 1, i = 1, . . . , n,

Xit ≥ 0, (i, t) ∈ ΓC .

(A.9)

Using binary search, find the smallest value of C for which the LP- problem LP (C) is

feasible. Let CB be this value, and XB the corresponding optimal solution. We round XB

into a feasible job schedule in the same manner described in Section A.5 for rounding XLP .
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Algorithm 3 [BinLP-schedule] LP-based job scheduling algorithm with binary search ini-
tialization procedure

Require: Planning horizon {1, . . . , T}, and standard jobs indexed by 1, . . . , n, where job i
has deadline τi ≤ T and duration di

Ensure: Feasible schedule XH′
with

∑τi
t=1X

H′
it = 1, for all i = 1, . . . , n, and XH′

it ∈ {0, 1}
1: Initialize u← makespan of arbitrary feasible job schedule
2: Initialize l← 0
3: while l < u do
4: C ←

⌊
1
2 (l + u)

⌋
5: Solve LP (C) in (A.9)
6: if LP (C) is feasible then
7: u← C
8: else
9: l← C

10: CB ← C
11: XB ← solution of LP (CB)
12: Initialize XH′

it ← 0 for all i, t
13: If (t), Is(t)← ∅ for all t, and Ti ← ∅ for all i
14: for i = 1 to n do
15: for t = 1 to T do
16: if XB

it = 1 then
17: XH′

it ← 1
18: If (t)← If (t) ∪ {i}
19: else if XB

it ∈ (0, 1) then
20: Is(t)← Is(t) ∪ {i}
21: Ti ← Ti ∪ {t}
22: XR′ ← solution deterministic rounding MIP (A.8)
23: for t = 1 to T do
24: for i ∈ Is(t) do
25: XH′

it ← XR′
it
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A.7 Performance guarantee for job scheduling heuristic with

binary search initialization

Theorem A.7.1. Let COPT be the optimal objective value of the scheduling phase prob-

lem (4.3). If CB is the result of the binary search in Algorithm BinLP-schedule and XH′
is

the schedule. Then XH′
is feasible for the scheduling phase problem (4.3), and has a cost

CH′
such that

CH′

COPT
≤ min

2, 1 +
1

CB

(
min

t=1,...,T
Kt

)−1

√√√√1

2

(
n∑

i=1

d2i

)
(1 + ln δ)

 ,

where δ = maxt=1,...,T |δt| and δt ,
{
r = 1, . . . , T : XLP

ir > 0 and XLP
it > 0

}
.

Proof. Using the binary search procedure in Section A.6, Lenstra et al. (1990) show that the

LP solution has a rounding in which the makespan is at most 2 times the optimal makespan

COPT . Since the rounding procedure of Algorithm BinLP-schedule results in the rounding

XH′
with the smallest makespan, then the makespan of XH′

is at most 2COPT . Moroever,

with a minor modification of the proof of Theorem 4.4.2 (see Section B.11), we can prove

that CH′ ≤ CB
(
1 +H

(
CB, 1

eδ

))
. Thus, since CB ≤ COPT , we have that

CH′

COPT
≤ min

2, 1 +
1

CB

(
min

t=1,...,T
Kt

)−1

√√√√1

2

(
n∑

i=1

d2i

)
(1 + ln δ)

 .

A.8 Deterministic equivalent of the assignment phase prob-

lem

Proposition A.8.1. The deterministic equivalent of the day t two-stage assignment phase

problem (4.5) is the following mixed integer program.

minimize
V,Y,Z

∑
ω∈Ωt

Pt(ω)V (ω)

subject to dLZk(ω) +
∑
i∈It

diYik ≤ V (ω), ω ∈ Ωt, k = 1, . . . ,Kt,

Kt∑
k=1

Yik = 1, i ∈ It,

Kt∑
k=1

Zk(ω) = L(ω), ω ∈ Ωt,

Yik ∈ {0, 1}, i ∈ It, k = 1, . . . ,Kt

Zk(ω) ∈ Z+, ω ∈ Ωt, k = 1, . . . ,Kt.

(A.10)
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Proof. Let us denote by F the feasible region of (4.5). Using the probability distribu-

tion Pt for the gas leak scenarios Ωt, we can rewrite the objective function of (4.5) as∑
ω∈Ωt

Pt(ω)Ft(Y, L(ω)).

Similarly, we can rewrite the second-stage recourse problem Ft(Y,L(ω)) as an MIP:

minimize
V,Z

V (ω)

subject to dLZk(ω) +
n∑

i=1

diYik ≤ V (ω), k = 1, . . . ,Kt,

Kt∑
k=1

Zk(ω) = L(ω),

Zk(ω) ∈ Z+, k = 1, . . . ,Kt.

Therefore, (4.5) is equivalent to:

minimize
V,Y,Z

∑
ω∈Ωt

Pt(ω)V (ω)

subject to dLZk(ω) +

n∑
i=1

diYik ≤ V (ω), ω ∈ Ωt, k = 1, . . . ,Kt,

Kt∑
k=1

Zk(ω) = L(ω), ω ∈ Ωt,

Zk(ω) ∈ Z+, ω ∈ Ωt, k = 1, . . . ,Kt,

Y ∈ F .

Since Ωt is finite, there is a finite number of constraints, and this problem is a MIP.

A.9 Optimal crew assignment for examples

In these examples, we will assign 15 standard jobs to 7 crews, under different probability

distributions for the number of leaks. Table D.23 gives the durations of the standard jobs.

Table D.24 show the seven different probability distributions used in our experiments. The

optimal crew assignment solution is given in the Tables D.25–D.31.

A.10 Crew assignment with Algorithm Stoch-LPT

The algorithm for performing crew assignment under random occurrence of emergencies

(Stoch-LPT) is described in the following Algorithm 4.

In several examples, we will assign using Algorithm Stoch-LPT standard jobs to crews,

under different probability distributions for the number of leaks. Table D.23 gives the

durations of the standard jobs. Table D.24 show the seven different probability distributions

used in our experiments. The crew assignment resulting from Algorithm Stoch-LPT is given

in the Tables D.32–D.38.
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Algorithm 4 [Stoch-LPT] Crew assignment algorithm (stochastic variant of LPT)

Require: Ω = {ω1, ω2, . . . , ωm}, where L(ω1) < L(ω2) < · · · < L(ωm), and standard jobs
sorted in decreasing job duration, i.e. d1 ≥ d2 ≥ · · · ≥ dn

Ensure: Assignment of all standard jobs and gas leak jobs to crews under all leak scenarios

1: Bk(ωm+1)← 1, for all k ∈ K
2: for s = m to 1 do
3: Bk(ωs)← 0, for all k ∈ K
4: for l = 1 to L(ω2) do
5: K̃ ← argmink∈K (Bk(ωs)) {set of crews with smallest current load}
6: Bk0(ωs)← Bk0(ωs) + dL, where k0 ∈ K̃ such that Bk0(ωs) < Bk0(ωs+1)
7: for i = 1 to n do
8: for k ∈ K do
9: B̃k(ω) ← Bk(ω) + di, for all ω ∈ Ω {Load in scenario ω if job i is assigned to

crew k}
10: Ak(ω) ← max

(
B1(ω), . . . , Bk−1(ω), B̃k(ω), Bk+1(ω), . . . , BK(ω)

)
, for all ω ∈

Ω {Makespan in scenario ω if job i is assigned to crew k}
11: Ki ← argmink∈K {

∑
s P (ωs)Ak(ωs)}

12: k0 ∈ argmink∈Ki
{
∑

s P (ωs)Bk(ωs)}
13: Bk0(ω)← B̃k0(ω), for all ω ∈ Ω
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Appendix B

Proofs

B.1 Proof of Theorem 2.3.2

As a preliminary for the proof, let us first state a version of Bernstein’s inequality (Bernstein,

1927):

Theorem B.1.1 (Bernstein’s inequality). Let X1, X2, . . . , XN be i.i.d. random variables

such that |X1| ≤ c almost surely, and Var(X1) = σ2. Then, for any t > 0,

Pr

(
1

N

N∑
i=1

Xi − E[X1] ≥ t

)
≤ exp

(
−Nt2

2σ2 + 2tc/3

)
.

For the proof of Theorem 2.3.2, we will require the following proposition.

Proposition B.1.2. Suppose Q̂N is the b
b+h quantile of a random sample from D with size

N . Then, for any γ > 0,

Pr
(
∂−C(Q̂N ) ≤ γ and ∂+C(Q̂N ) ≥ −γ

)
≥ 1− 2 exp

(
−3Nγ2

6bh+ 8γ(b+ h)

)
.

Proof. Let F̄ be the complementary cdf ofD, i.e., F̄ (q) = Pr(D ≥ q) = 1−F (q)+Pr(D = q).

For a random sample
{
D1, . . . , DN

}
drawn from D, let Q̂N be the b

b+h sample quantile.

Define

F̂N (q) , 1

N

N∑
i=1

1[Di≤q],

ˆ̄FN (q) , 1

N

N∑
i=1

1[Di≥q].

For simplicity, define α , γ
b+h and β , b

b+h . Define the events B , [∂+C(Q̂N ) <

−γ] = [F (Q̂N ) < β − α] and L , [∂−C(Q̂N ) > γ] = [F̄ (Q̂N ) < 1 − β − α]. To prove

Proposition B.1.2, we need to find an upper bound for Pr(B) and for Pr(L).
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Define the quantile q1 , inf{q : F (q) ≥ β − α}. Since F is nondecreasing, we have

that B = [Q̂N < q1]. Consider a monotonically decreasing, nonnegative sequence {τk}∞k=1,

where τk ↓ 0. Define the sequence of events {Bk}∞k=1, where

Bk , [Q̂N ≤ q1 − τk] = [F̂N (q1 − τk) ≥ β].

Note that since F̂N (q1 − τk) ≤ F̂N (q1 − τk+1), then it follows that Bk ⊆ Bk+1. Thus, we

have that Bk ↑ limk→∞Bk , B̄, which implies Pr(Bk) ↑ Pr(B̄). Note also that B ⊆ B̄,

thus Pr(B) ≤ Pr(B̄).

From the definition of q1, observe that for every k ≥ 1, there exists εk > α such that

F (q1 − τk) = β − εk < β − α. Note that

F (q1 − τk)
(
1− F (q1 − τk)

)
< (β − α)(1− β + εk). (B.1)

Thus, we have that

Pr(Bk) = Pr(F̂N (q1 − τk) ≥ β),

= Pr(F̂N (q1 − τk)− F (q1 − τk) ≥ εk),

≤ exp

(
−Nε2k/2

F (q1 − τk)(1− F (q1 − τk)) + εk
3

)
, (B.2)

≤ exp

(
−Nεk/2

1
εk
(β − α)(1− β) + β − α+ 1

3

)
, (B.3)

where (B.2) follows from Bernstein’s inequality and (B.3) follows from inequality (B.1).

Now, since εk > α, for all k ≥ 1, we have that

Pr(Bk) ≤ exp

(
−Nα/2

1
αβ(1− β)− 2

3 + 2β − α

)
,

≤ exp

(
−Nα/2

1
αβ(1− β) + 4

3 − 2min(β, 1− β)− α

)
,

≤ exp

(
−Nα/2

1
αβ(1− β) + 4

3

)
= exp

(
−3Nγ2

6bh+ 8γ(b+ h)

)
, δ.

Thus, Pr(B) ≤ Pr(B̄) ≤ δ. In fact, by going through a similar argument, we can show that

Pr(L) ≤ δ. Thus, by the union bound, we have that

Pr
(
∂−C(Q̂N ) > γ or ∂+C(Q̂N ) < −γ

)
= Pr(B ∪ L) ≤ Pr(B) + Pr(L) ≤ 2δ,

proving Proposition B.1.2.

We can now proceed with the proof of Theorem 2.3.2. Note that SLRS
ϵ consists of all

q for which ∂−C(q) ≤ γ and ∂+C(q) ≥ −γ, with γ = ϵ
3 min(b, h). From Proposition B.1.2,
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the SAA solution from a random sample with size N lies in SLRS
ϵ with probability at least

1− 2 exp

(
−Nϵ2min{b, h}2

18bh+ 8ϵ(b+ h)min{b, h}

)
= 1− 2 exp

(
−Nϵ2min{b, h}

18max{b, h}+ 8ϵ(b+ h)

)
.

≥ 1− 2 exp

(
−Nϵ2

18 + 8ϵ
· min{b, h}

b+ h

)

B.2 Proof of Theorem 2.4.1

Since C is convex, Sf
ϵ ∩[q∗,∞) can be equivalently expressed as {q : C ′(q) ≤ C ′(q) and q ≥ q∗}.

Note that,

C ′(q) = (b+ h)(F (q)− F (q∗)) = (b+ h)
[
(q − q∗)f(q∗) +O(q − q∗)2

]
=
√

2ϵbh∆(q∗)f(q∗) +O(ϵ), (B.4)

which follows from Taylor series approximation and from the definition of q in (2.7).

To prove Theorem 2.4.1, note that the event that Q̃α
N ∈ Sf

ϵ ∩ [q∗,∞), where α = C ′(q),

is equivalent to the intersection of events [Q̃α
N ≥ q∗] and [C ′(Q̃α

N ) ≤ α]. We will prove an

upper bound on the probability of [Q̃α
N < q∗] and on the probability of [C ′(Q̃α

N ) > α]. It

follows similar lines to the proof of Lemma 3.5 in Levi et al. (2007), except we will use

Bernstein’s inequality instead of Hoeffding’s inequality.

Define β , b
b+h and γ , 1

2
α

b+h . First, let us bound the probability of B , [Q̃α
N < q∗].

For a real-valued sequence {τk}∞k=1 where τk ↓ 0, define

Bk , [Q̃α
N ≤ q∗ − τk] =

[
−b+ (b+ h)F̂N (q∗ − τk) ≥ α

2

]
= [F̂N (q∗ − τk) ≥ β + γ].

Note that since F̂N is monotonically increasing, it follows that Bk ⊆ Bk+1. Thus, if B̄ is

the limiting event of the sequence of events {Bk}∞k=1, then Bk ↑ B̄, implying that Pr(Bk) ↑
Pr(B̄). Note also that B ⊆ B̄, thus Pr(B) ≤ Pr(B̄). Therefore, to bound Pr(B), we only

need to find a uniform upper bound for Pr(Bk).

Note that for any k ≥ 1, there exists εk > 0 such that F (q∗ − τk) = β − εk. Thus,

F (q∗ − τk)
(
1− F (q∗ − τk)

)
= (β − εk)(1− β + εk) < β(1− β + εk).

From Bernstein’s inequality, we have that

Pr(Bk) = Pr
(
F̂N (q∗ − τk) ≥ β + γ

)
= Pr

(
F̂N (q∗ − τk)− F (q∗ − τk) ≥ γ + εk

)
≤ exp

(
−N(γ + εk)2

2F (q∗ − τk)(1− F (q∗ − τk)) + 2
3(γ + εk)

)

= exp

(
−N(γ + εk)

2
(γ+εk)

(β − εk)(1− β − γ) + 2(β − εk) + 2
3

)

≤ exp

(
−N(γ + εk)

2
(γ+εk)

β(1− β − γ) + 2β + 2
3

)
≤ exp

(
−Nγ

2
γβ(1− β − γ) + 2β + 2

3

)
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where the inequality follows when 1− β − γ ≥ 0. Hence, for all k ≥ 1,

Pr(Bk) ≤ exp

(
−3Nα2

24bh+ 4α(b+ h)

)
.

Since α = C ′(q), from (B.4) we have that

Pr(Bk) ≤ exp

(
−6Nϵbh∆(q∗)f(q∗) +O(ϵ3/2)

24bh+O(ϵ1/2)

)
, U(ϵ). (B.5)

Now, let us bound the probability of L , [C ′(Q̃α
N ) > α] =

[
F̄ (Q̃α

N ) < h
b+h −

α
b+h

]
.

Define q0 , sup
{
q : F̄ (q) ≥ h

b+h −
α

b+h

}
. Thus, L = [Q̃α

N > q0]. Note that Q̃α
N = sup{q :

h− (b+ h) ˆ̄FN (q) ≤ α
2 }. For a real-valued sequence {τk}∞k=1 where τk ↓ 0, define

Lk , [Q̃α
N ≥ q0 + τk] =

[
h− (b+ h) ˆ̄FN (q0 + τk) ≤ α

2

]
=

[
ˆ̄FN (q0 + τk) ≥ h

b+ h
− 1

2

α

b+ h

]
=
[
ˆ̄FN (q0 + τk) ≥ 1− β − γ

]
.

Since ˆ̄FN is nonincreasing, then it follows that Lk ⊆ Lk+1. Thus, if L̄ is the limiting event

of the sequence {Lk}∞k=1, then Lk ↑ L̄, implying that Pr(Lk) ↑ Pr(L̄). Note also that L ⊆ L̄,

implying that Pr(L) ≤ Pr(L̄). Therefore, to prove a bound on Pr(L), it is sufficient to prove

a uniform upper bound on Pr(Lk).

Note that for some ϵk > 0, we have that F̄ (q0 + τk) = 1 − β − 2γ − ϵk. Thus, Lk =

[ ˆ̄FN (q0 + τk)− F̄ (q0 + τk) ≥ γ + ϵk]. Finally, from Bernstein’s inequality, we have that

Pr(Lk) ≤ exp

(
−N(γ + ϵk)2

2F̄ (q0 + τk)(1− F̄ (q0 + τk)) + 2
3(γ + ϵk)

)

= exp

(
−N(γ + ϵk)

2
γ+ϵk

(1− β − 2γ − ϵk)(β + 2γ + ϵk) + 2
3

)

= exp

(
−N(γ + ϵk)

2
γ+ϵk

(1− β − 2γ − ϵk)(β + γ) + 2(1− β − 2γ − ϵk) + 2
3

)

≤ exp

(
−N(γ + ϵk)

2
γ+ϵk

(1− β − 2γ)(β + γ) + 2(1− β − 2γ) + 2
3

)

≤ exp

(
−Nγ

2
γ (1− β − 2γ)(β + γ) + 2(1− β − 2γ) + 2

3

)

= exp

(
−Nγ

2
γβ(1− β − 2γ) + 4(1− β − 2γ) + 2

3

)
.

Therefore, we have that for all k ≥ 1,

Pr(Lk) ≤ exp

(
−3Nα2

24bh+ 4α(7h− 5b− 6α)

)
.
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Since α = C ′(q), we have from (B.4) that

Pr(Lk) ≤ exp

(
−6Nϵbh∆(q∗)f(q∗) +O(ϵ3/2)

24bh+O(ϵ1/2)

)
, U(ϵ). (B.6)

Summarizing from (B.5) and (B.6), we have that Pr(B) ≤ Pr(B̄) ≤ U(ϵ) and that

Pr(L) ≤ Pr(L̄) ≤ U(ϵ). Thus,

Pr
{
Q̃α

N < q∗ or C ′(Q̃α
N ) > C ′(q)

}
= Pr(B ∪ L) ≤ Pr(B) + Pr(L)

≤ 2U(ϵ) ∼ 2 exp

(
−1

4
Nϵ∆(q∗)f(q∗)

)
, as ϵ→ 0.

B.3 Proof of Lemma 2.5.1

Denote by ∂−g(x) (or ∂+g(x)) the left-side (or right-side) derivative of a function g at

x. The failure rate and reverse hazard rate is given by r̄(x) = f(x)
1−F (x) and r(x) = f(x)

F (x) .

Since f is a log-concave distribution, it has an increasing failure rate. This implies that

log r̄(x) = log f(x)− log(1− F (x)) is increasing, and ∂− log r̄(x) ≥ 0 for all x. Thus,

γ1 + γ0
b+ h

h
= γ1 +

f(q∗)

1− F (q∗)
≥ ∂− log f(q∗) +

f(q∗)

1− F (q∗)
= ∂− log r̄(q∗) ≥ 0. (B.7)

A log-concave distribution also has a decreasing reversed hazard rate. This implies that

log r(x) = log f(x)− logF (x) is decreasing and ∂+ log r(x) ≤ 0 for all x. Thus,

γ1 − γ0
b+ h

b
= γ1 −

f(q∗)

F (q∗)
≤ ∂+ log f(q∗)− f(q∗)

F (q∗)
= ∂+ log r̄(q∗) ≤ 0. (B.8)

Combining (B.7) and (B.8), we have that − b+h
h ≤

γ1
γ0
≤ b+h

b .

B.4 Proof of Lemma 2.5.2

Note that since log f is concave, then log f(x) ≤ log γ0 + γ1(x − t), for all x such that

f(x) > 0. Taking the exponent on both sides proves our result.

B.5 Proof of Lemma 2.5.3

Note that d
dxF1(x) ≤ d

dxF2(x) by our assumption that f1(x) ≤ f2(x). Moreover, since

F1(t) = F2(t), then F1(x) ≥ F2(x) for all x ≤ t and F1(x) ≤ F2(x) for all x ≥ t. Note that

E(D1 − t|D1 > t) =
∫∞
0 Pr(D1 > t+ s|D1 > t)ds,

= 1
1−F1(t)

∫∞
0 (1− F1(t+ s))ds,

≥ 1
1−F2(t)

∫∞
0 (1− F2(t+ s))ds,

= E(D2 − t|D2 > t)

With the same technique, we can also prove that E(t − D1|D1 ≤ t) ≥ E(t − D2|D2 ≤ t).

Combining these results proves the lemma.
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B.6 Proof of Lemma 2.5.5

We first introduce the following notation:

G(α) ,
(

1

1− β
+ α

)
log (1 + α(1− β)) +

(
1

β
− α

)
log (1− αβ)−min{β, 1− β}α2,

U(β) , β

1− β
log

(
1

β

)
− β,

L(β) , 1− β

β
log

(
1

1− β

)
− (1− β).

We need to prove that each of the three functions are nonnegative.

1. Let us prove the result for G. First, we prove the result for the case when β ≥ 1
2 .

Note that

G′(α) = log

(
1 + α(1− β)

1− αβ

)
− 2(1− β)α.

The derivative is nonnegative if and only if G1(α) , (1 + α(1 − β))e−(1−β)α − (1 −
αβ)e(1−β)α ≥ 0. Note that for α ≥ 0,

G′
1(α) = −α(1− β)2e−(1−β)α + βe(1−β)α − (1− β)(1− αβ)e(1−β)α,

≥ −α(1− β)2e−(1−β)α + β(1− β)αe(1−β)α,

≥ α(1− β)2
(
e(1−β)α − e−(1−β)α

)
≥ 0

Note that G1(0) = 0, thus, G1(α) ≥ 0 for all α ≥ 0. Now define G2(α) , (1 + α(1−
β))e−(1−β)α − (1− α(1− β))e(1−β)α. Note that G2(α) ≥ G1(α) if α ≤ 0. We have

G′
2(α) = α(1− β)2

(
e(1−β)α − e−(1−β)α

)
≥ 0, for α ≤ 0.

Note that G2(0) = 0, thus, G1(α) ≤ G2(α) ≤ 0 for all α ≤ 0. Thus, G(α) is

nondecreasing in α ≥ 0, and non-increasing in α ≤ 0. Since at α = 0, this function

is zero, then G(α) ≥ 0 for all α. Now we can also prove the result for β ≤ 1
2 , if we

define the function β̃ = 1− β ≥ 1
2 and G̃(α) = G(−α).

2. Let us prove the result for U . The result is true if and only if − log β ≥ 1− β. Note

that − log β is a convex function of β, thus the linear approximation at β = 1 (i.e.,

the function 1− β) bounds it from below.

3. Let us prove the result for L. Defining β̃ = 1− β, note that L(β) = U(β̃) ≥ 0, which

follows from (2).

B.7 Proof of Theorem 2.5.7

Recall that if q ∈ Sf
ϵ ∩ [q∗,∞), then C(q) ≤ (1 + ϵ)C(q∗). Also, Sf

ϵ ∩ [q∗,∞) can be

equivalently expressed as {q : C ′(q) ≤ C ′(q) and q ≥ q∗}. Let Q̃α
N be defined in (2.8), but
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with α =
√

2ϵbhmin{b,h}
b+h +O(ϵ). Since,

C ′(q) = (b+ h)(F (q)− F (q∗)) = (b+ h)
[
(q − q∗)f(q∗) +O(q − q∗)2

]
=
√

2ϵbh∆(q∗)f(q∗) +O(ϵ),

then it follows from Proposition 2.5.6 that α ≤ C ′(q) when the demand distribution is

log-concave. This implies that[
Q̃α

N ≥ q∗
]
∩
[
C ′(Q̃α

N ) ≤ α
]
⊆
[
Q̃α

N ≥ q∗
]
∩
[
C ′(Q̃α

N ) ≤ C ′(q)
]
.

Thus, we only need to derive a lower bound on the probability of the left-hand side event to

prove Theorem 2.5.7. Modifying the proof of Theorem 2.4.1 by letting α =
√

2ϵbhmin{b,h}
b+h +

O(ϵ), we can prove that

Pr
(
Q̃α

N < q∗ or C ′(Q̃α
N ) > α

)
≤ 2U∗(ϵ) ∼ 2 exp

(
−1

4
Nϵ

min{b, h}
b+ h

)
, as ϵ→ 0.

B.8 Proof of Proposition 3.4.1

Suppose µ − (1 − β)δL ≥ 0. Consider the two-point support distribution which puts a

weight β on µ− (1−β)δL and a weight 1−β on µ+βδL. This distribution is an element of

Dµ,δL,δU ,+, proving that Dµ,δL,δU ,+ is nonempty. To prove the reverse implication, suppose

that Dµ,δL,δU ,+ is nonempty. Let F be a distribution in Dµ,δL,δU ,+ where F−1(β) = w

for some w ≥ 0. From the arguments in the proof of Proposition 3.2.1, we have that

E(D|D ≤ w) = µ − (1 − β)∆F (F
−1(β)). Since D is nonnegative, we have that 0 ≤

µ− (1− β)∆F (F
−1(β)) ≤ µ− (1− β)δL.

B.9 Proof of Theorem 3.2.2

Consider the distribution set

Dµ,δ =
{
F : EF (1[−∞,∞](D)) = 1, EF (D) = µ and ∆(F−1(β)) = δ

}
.

We also define the following constrained distribution set

Dw,µ,δ =
{
F : EF (1[−∞,w](D)) = β,EF (1[w,∞](D)) = 1− β,EF (D) = µ and ∆(w) = δ

}
.

We note thatDw,µ,δ includes all distributions F ∈ Dµ,δ with F−1(β) ≤ w and F−1(β+ϵ) ≥ w

for any ϵ > 0.

Before proceeding with the proof, we require the following lemma which provides an

interval of valid values for w.

Lemma B.9.1. Suppose a distribution F has mean µ and AMS (at the β quantile) δ. Then,

F−1(β) ∈ [µ− (1− β)δ, µ+ βδ].

117



Proof. Suppose that F−1(β) = w. To prove the lower bound, note that w ≥ E(D|D ≤
w) = µ− (1− β)δ, where the latter equality is established (B.2) in the proof of Proposition

3.2.1. Now to prove the upper bound, we have that

µ− w = E(D − w)+ − E(w −D)+

= (1− β)E(D − w|D ≥ w)− βE(w −D|D ≤ w)

= −β {E(D|D ≥ w)− E(D|D ≤ w)}+ E(D − w|D ≥ w)

= −βδ + E(D − w|D ≥ w) ≥ −βδ,

which establishes that w ≤ µ+ βδ.

By changing the order of maximization, we can rewrite the maximum regret under Dw,µ,δ

as

ρ(y) , sup
F∈Dw,µ,δ

(
max
z≥0

ΠF (z)−ΠF (y)

)
= max

z≥0
G(z; y)

where

G(z; y) , sup
F∈Dw,µ,δ

∞∫
0

(min{x, z} −min{x, y}) dF (x) + (1− β)(y − z). (B.9)

To find a closed form expression for the minimax regret ρ∗, we first need to solve the inner

moment problem G(z; y) for fixed (z, y). Although G(z; y) is not necessarily concave on

R, Perakis & Roels (2008) prove that it is concave on z ∈ (−∞, y] and on z ∈ [y,∞).

Therefore, G−(y) , maxz∈[0,y]G(z; y) and G+(y) , maxz∈[y,∞) can be efficiently solved.

Thus,

ρ(y) = max
{
G−(y), G+(y)

}
.

Thus, to prove Theorem 3.2.2, we need to solve

(P ) sup
f

∫ ∞

−∞
(min{x, z} −min{x, y}) f(x)dx,

s.t.

∫ w

−∞
f(x)dx = β,

∫ ∞

w
f(x)dx = 1− β,∫ ∞

−∞
xf(x)dx = µ,

1

1− β

∫ ∞

w
xf(x)dx− 1

β

∫ w

−∞
xf(x)dx = δ,

f(x) ≥, ∀x ∈ R.
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The dual of the above moment problem is

(D) min
αL
0 ,α

U
0 ,α1,α2

αL
0 β + αU

0 (1− β) + α1µ+ α2δ,

s.t. αL
0 +

(
α1 −

1

β
α2

)
x ≥ min{x, z} −min{x, y}, ∀x ∈ (−∞, w],

αU
0 +

(
α1 +

1

1− β
α2

)
x ≥ min{x, z} −min{x, y}, ∀x ∈ [w,∞).

By weak duality, we have that the optimal primal cost is always less than or equal to the

optimal dual cost. In fact, we prove that the primal and dual optimal costs are equal (i.e,

there is no duality gap). We do this by constructing primal and dual feasible solutions that

have equal primal and dual objective costs. Let S(w; z, y) be the optimal primal and dual

cost. Tables D.8–D.13 construct these optimal solutions for different cases of y, z, w.

Note that

G(z; y) = max
w∈[µ−(1−β)δ,µ+βδ]

S(w; z, y) + (1− β)(y − z),

where from Lemma B.9.1, we need only consider w that belong in the range [µ − (1 −
β)δ, µ + βδ]. Table D.14 summarizes the closed form expression for G(z; y) based on the

primal optimal cost. From this, we have that

G−(y) =

0, for y ∈ (−∞, µ− (1− β)δ],

(1− β)(y − µ+ (1− β)δ), for y ∈ [µ− (1− β)δ,∞),

G+(y) =

β(µ+ βδ − y), for y ∈ (−∞, µ+ βδ],

0, for y ∈ [µ+ βδ,∞).

Finally, we have that the maximum regret is

ρ(y) = max{G−(y), G+(y)} =

β(µ+ βδ − y), for y ∈ (−∞, µ+ (2β − 1)δ],

(1− β)(y − µ+ (1− β)δ), for y ∈ (µ+ (2β − 1)δ,∞),

which is minimized at y∗ = µ+ (2β − 1)δ with a minimax regret ρ∗ = β(1− β)δ.

B.10 Proofs for Theorems 3.2.3 and A.3.1

Since Theorem 3.2.3 is a special case of Theorem A.3.1 (by letting δ = δL = δU ), we only

prove the latter theorem. Consider the distribution set

Dµ,δL,δU ,+ =
{
F : EF (1[0,∞](D)) = 1, EF (D) = µ and ∆(F−1(β)) ∈ [δL, δU ]

}
.

Consider the constrained distribution set

Dw,µ,δL,δU ,+ =
{
F : EF (1[0,w](D)) = β,EF (1[w,∞](D)) = 1− β,EF (D) = µ and ∆(w) ∈ [δL, δU ]

}
,
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which includes all distributions F ∈ Dµ,δL,δU ,+ such that F−1(β) ≤ w and F−1(β + ϵ) ≥ w

for any ϵ > 0. The following lemma provides an interval of valid values for w.

Lemma B.10.1. Suppose a nonnegative distribution F has mean µ and AMS (at the β

quantile) in the range [δL, δU ]. Then,

F−1(β) ∈
[
max{0, µ− (1− β)δU},min

{
µ+ βδU ,

µ

1− β

}]
.

Proof. Proof. Let F ∈ Dµ,δL,δU ,+ such that F−1(β) = w for some w ≥ 0. The proof that

w ≥ µ−(1−β)δU and w ≤ µ+βδU follows in a manner similar to the proof of Lemma B.9.1.

Moreover, from nonnegativity of D it follows that w ≥ 0. We are left to prove w ≤ µ
1−β .

Due to nonnegativity, we have that

µ =

∫ ∞

0
tdF (t) ≥

∫ ∞

w
tdF (t) ≥ w

∫ ∞

w
dF (t) = w(1− β).

By changing the order of maximization, we can rewrite the maximum regret under

Dµ,δL,δU ,+ as

ρ(y) , sup
F∈Dµ,δL,δU ,+

(
max
z≥0

ΠF (z)−ΠF (y)

)
= max

z≥0
G(z; y)

where

G(z; y) , sup
F∈Dµ,δL,δU ,+

∞∫
0

(min{x, z} −min{x, y}) dF (x) + (1− β)(y − z). (B.10)

To find a closed form expression for the minimax regret ρ∗, we first need to solve the inner

moment problem G(z; y) for fixed (z, y). Although G(z; y) is not necessarily concave on

R, Perakis & Roels (2008) prove that it is concave on z ∈ (−∞, y] and on z ∈ [y,∞).

Therefore, G−(y) , maxz∈[0,y]G(z; y) and G+(y) , maxz∈[y,∞) can be efficiently solved.

Thus,

ρ(y) = max
{
G−(y), G+(y)

}
.
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Consider the following moment problem

(P ) sup
f

∫ ∞

0
(min{x, z} −min{x, y}) f(x)dx

s.t.

∫ w

0
f(x)dx = β,

∫ ∞

w
f(x)dx = 1− β,

δL ≤
1

1− β

∫ ∞

w
xf(x)dx− 1

β

∫ w

0
xf(x)dx ≤ δU ,∫ ∞

0
xf(x)dx = µ, f(x) ≥ 0 ∀x ≥ 0.

The dual of the above moment problem is:

(D) min
αL
0 ,α

U
0 ,α1,αL

2 ,α
U
2

αL
0 β + αU

0 (1− β) + α1µ+ αL
2 δ

L + αU
2 δ

U

s.t. αL
0 +

(
α1 −

1

β
(αL

2 + αU
2 )

)
x ≥ min{x, z} −min{x, y}, ∀x ∈ [0, w),

αU
0 +

(
α1 +

1

1− β
(αL

2 + αU
2 )

)
x ≥ min{x, z} −min{x, y}, ∀x ∈ [w,∞),

αL
2 ≤ 0, αU

2 ≥ 0.

If we prove that there is a primal feasible distribution and dual feasible solution that both

achieve the same cost, then by weak duality, they are primal and dual optimal, respectively.

Tables D.15–D.20 construct these optimal solutions for different cases of w, z, y. We denote

by S(w; z, y) the optimal primal and dual cost.

Note that G(z; y) = max
w∈W

S(w; z, y)+ (1−β)(y− z), where W , [µ− (1−β)δU , µ+βδU ]

if µ ≥ (1−β)δU andW , [0, µ
1−β ], otherwise. It is straightforward to compute this function

due to the existence of a closed form for S(w; z, y). Tables D.21 and D.22 summarize the

values for G(z; y) under these cases. We have that when µ− (1− β)δU ≤ 0,

G−(y) = (1− β)y, for y ∈ [0,∞)

G+(y) =


β(µ−(1−β)δL)(µ+βδL−y)

µ+βδL
, for y ∈

[
0, (1−β)

µ (µ+ βδL)
2
]
,

(
√
µ−

√
(1− β)y)2, for y ∈

[
(1−β)

µ (µ+ βδL)
2, µ

1−β

]
,

0, for y ∈
[

µ
1−β ,∞

)
,

and when µ− (1− β)δU ≥ 0,

G−(y) =

{
0, for y ∈ [0, µ− (1− β)δU ],

(1− β)(y − µ+ (1− β)δU ), for y ∈ [µ− (1− β)δU ,∞),

G+(y) =



β(µ−(1−β)δL)(µ+βδL−y)
µ+βδL

, for y ∈
[
0, (1−β)

µ (µ+ βδL)
2
]
,

(
√
µ−

√
(1− β)y)2, for y ∈

[
(1−β)

µ (µ+ βδL)
2, (1−β)

µ (µ+ βδU )
2
]
,

β(µ−(1−β)δU )(µ+βδU−y)
µ+βδU

, for y ∈
[
(1−β)

µ (µ+ βδU )
2, µ+ βδU

]
0, for y ∈ [µ+ βδU ,∞) .
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Finally, solving for ρ(y) = max{G−(y), G+(y)} and y∗ gives us Theorem A.3.1.

Now we can proceed with a proof of Theorem 3.2.3. When the spread is exactly equal

to δ, i.e. δ = δL = δU , then functions G− and G+ reduce to

G−(y) =

{
0, for y ∈ [0, µ− (1− β)δ],

(1− β)(y − µ+ (1− β)δ), for y ∈ [µ− (1− β)δ,∞),

G+(y) =

{
β(µ−(1−β)δ)(µ+βδ−y)

µ+βδ , for y ∈ [0, µ+ βδ]

0, for y ∈ [µ+ βδ,∞) .

For any y ≥ 0, the maximum regret is the convex function ρ(y) = max{G−(y), G+(y)}, i.e.,

ρ(y) =


β(µ−(1−β)δ)(µ+βδ−y)

µ+βδ , for y ∈
[
0, 1

µ(µ− (1− β)δ)(µ+ βδ)
]

(1− β)(y − µ+ (1− β)δ), for y ∈
[
1
µ(µ− (1− β)δ)(µ+ βδ),∞

)
The quantity y∗ that minimizes ρ occurs at the breakpoint of the piecewise linear function

at 1
µ(µ− (1− β)δ)(µ+ βδ).

B.11 Proof of Theorem 4.4.2

Let XLP and CLP be the optimal solution for the LP relaxation (A.7) of the job scheduling

problem. To prove Theorem 4.4.2, we first require proving the following proposition.

Proposition B.11.1. Let XLP be the optimal solution to the LP relaxation (A.7). Define

the randomized rounding X̃ such that for each i = 1, . . . , n, randomly round exactly one of

the indices {1, 2, . . . , T} to 1, with index t chosen with probability XLP
it . Then with positive

probability,

max
t=1,...,T

1

Kt

(
dLEt[L(ω)] +

n∑
i=1

diX̃it

)
≤ CLP

(
1 +H

(
CLP ,

1

eδ

))
,

where

H(w, p) , 1

w

(
min

s=1,...,T
Ks

)−1

√√√√1

2

(
n∑

i=1

d2i

)
ln

(
1

p

)
. (B.11)

Proof. For a given t, define X̃t = (X̃1t, X̃2t, . . . , X̃nt). Moreover, define the function ft :

[0, 1]n 7→ R as

ft(x1, x2, . . . , xn) ,
1

Kt

(
dLEt[L(ω)] +

n∑
i=1

dixi

)
.

That is ft(X̃t) is a function of a random variable which represents the ratio of expected

hours scheduled on day t to the number of crews on day t under the randomly rounded

solution.
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Define the “bad” event Bt as the event that the random schedule results in a ratio of

scheduled hours to number of crews exceeding the bound in Proposition B.11.1, i.e.,

Bt ,
[
ft(X̃t) > CLP

(
1 +H

(
CLP ,

1

eδ

))]
.

Therefore, proving Proposition B.11.1 is equivalent to proving

0 < Pr

(
max

t=1,...,T
ft(X̃t) ≤ CLP

(
1 +H

(
CLP ,

1

eδ

)))
= Pr

(
T∩
t=1

Bt

)
. (B.12)

Since there is limited dependency among the “bad events” (i.e., each event Bt is mutually

dependent on at most δ− 1 other events), then we can use Lovász’s Local Lemma to prove

(B.12).

Lemma B.11.2 (Lovász’s Local Lemma). Let B1, . . . , Bm be a set of events with Pr(Bi) ≤
p < 1 and each event Bi is mutually of all but at most s of the other Bj. If e · p(s+1) ≤ 1,

then Pr

(
m∩
i=1

Bi

)
> 0.

Thus, to use Lovász’s Local Lemma, we need to find a bound p such that Pr(Bt) ≤ p

and e · p(s + 1) ≤ 1. Since ft a function of bounded differences, and X̃t are independent

random variables, we use a large deviations bound (McDiarmid’s inequality) to derive a

bound on Pr(Bt).

Lemma B.11.3 (McDiarmid’s inequality). Let X1, X2, . . . , Xm be independent random

variables all taking values in the set X . Further, let f : Xm 7→ R be a function of X1, . . . , Xm

that satisfies ∀i,∀x1, . . . , xm, x′i ∈ X ,

|f(x1, . . . , xi, . . . , xm)− f(x1, . . . , xi−1, x̂i, xi+1, . . . , xm)| ≤ ci. (B.13)

Then for any ϵ > 0, Pr (f − E[f ] ≥ ϵ) ≤ exp
(

−2ϵ2∑m
i=1 c

2
i

)
.

It is easy to verify that ft satisfies condition (B.13) in McDiarmid’s inequality, with

ci = di/Kt. Note that we can bound E[ft(X̃t)], since

E[ft(X̃t)] =
1

Kt

(
dLEt[L(ω)] +

n∑
i=1

diE[X̃it]

)
=

1

Kt

(
dLEt[L(ω)] +

n∑
i=1

diX
LP
it

)
≤ CLP ,

where the last inequality follows since CLP andXLP are feasible for the LP relaxation (A.7).
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Therefore, we have that

Pr

{
ft(X̃t) ≥ CLP

(
1 +H

(
CLP ,

1

eδ

))}
≤ Pr

{
ft(X̃t)− E[ft(X̃t)] ≥ CLPH

(
CLP ,

1

eδ

)}
(B.14)

≤ exp

(
−2
(
KtC

LPH
(
CLP , 1

eδ

))2∑
i d

2
i

)
, (B.15)

= exp

(
− ln(eδ)

(
Kt

minsKs

)2
)
, (B.16)

≤ exp(− ln(eδ)) =
1

eδ
(B.17)

where inequality (B.14) follows from E[ft] ≤ CLP , and inequality (B.15) follows from

McDiarmid’s inequality with ϵ = CLPH
(
CLP , 1

eδ

)
.

Therefore, since Pr(Bt) ≤ 1
eδ , and each event Bt is mutually dependent on at most

δ − 1 other events, the conditions of Lovász’s Local Lemma are met, proving (B.12) and

Proposition B.11.1.

Note that all realizations of X̃ are all the roundings of the LP solution XLP into a

feasible job schedule. Since out of all roundings, XH produced by Algorithm LP-schedule

has the smallest value for the maximum ratio of scheduled hours to number of crews

max
t=1,...,T

1

Kt

(
dLEt[L(ω)] +

n∑
i=1

diX
H
it

)
,

then by Proposition B.11.1, we have found a deterministic rounding XH for which the maxi-

mum threshold for worst-case scheduled hours per crew is at most CLP
(
1 +H

(
CLP , 1

e·δ
))
≤

COPT
(
1 +H

(
CLP , 1

e·δ
))
.

B.12 Proof of Proposition 4.5.1

We will use the following lemma to prove Proposition 4.5.1.

Lemma B.12.1. Let L(ω1) < L(ω2) for some ω1, ω2 ∈ Ω. Then for any optimal solution

(Y ∗, Z∗(ω), ω ∈ Ω) to the stochastic assignment problem, we have that

max
k=1,...,K

{
dLZ

∗
k(ω1) +

∑
i∈I

diY
∗
ik

}
≤ max

k=1,...,K

{
dLZ

∗
k(ω2) +

∑
i∈I

diY
∗
ik

}
. (B.18)

Proof. We will prove the lemma by contradiction. Suppose the converse is true, that is:

max
k=1,...,K

{
dLZ

∗
k(ω1) +

∑
i∈I

diY
∗
ik

}
> max

k=1,...,K

{
dLZ

∗
k(ω2) +

∑
i∈I

diY
∗
ik

}
. (B.19)
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We will show that we can define a new leak assignment for Z̃, which achieves a strictly

smaller maximum work hours. Let Z̃(ω) = Z∗(ω) for all ω ̸= ω1. Now, choose an ar-

bitrary crew k0 ∈ {1, . . . ,K}. Let Z̃k(ω1) = Z∗
k(ω2) for any k ̸= k0, and Z̃k0(ω1) =

Z∗
k0
(ω2) − (L(ω2) − L(ω1)). Since

∑K
k=1 Z̃k(ω) = L(ω) for all ω ∈ Ω, then Z̃ is a feasible

leak assignment. Moreover, by construction,

max
k=1,...,K

{
dLZ̃k(ω1) +

∑
i∈I

diY
∗
ik

}
≤ max

k=1,...,K

{
dLZ

∗
k(ω2) +

∑
i∈I

diY
∗
ik

}
.

And by (B.19), (Y ∗, Z̃(ω), ω ∈ Ω) has a strictly smaller maximum work hours than (Y ∗, Z∗(ω), ω ∈
Ω), violating the optimality of (Y ∗, Z∗(ω), ω ∈ Ω).

Now let us prove Proposition 4.5.1. Suppose that Z∗
k0
(ω1) > Z∗

k0
(ω2) for some k0 ∈

{1, . . . ,K}. We will construct a gas leak assignment Z̃(ω2) for scenario ω2 which has

maximum hours (makespan) no greater than that of Z∗(ω2). First, note that since there

are less gas leak jobs in scenario ω1, inequality (B.18) holds due to Lemma B.12.1.

Define Z̃(ω2), a new gas leak assignment for ω2, by letting Z̃k0(ω2) = Z∗
k0
(ω2) + 1,

Z̃k1(ω2) = Z∗
k1
(ω2) − 1 (where k1 is some crew in {1, . . . ,K} with Z∗

k1
(ω2) > 0), and

Z̃k(ω2) = Z∗
k(ω2) for all k ∈ {1, . . . ,K}\{k0, k1}. Note that the assigned work hours (load)

of crew k1 is strictly smaller under this new assignment. Now all that is left to prove is that

the load of crew k0 is smaller than the maximum load in assignment Z∗(ω2). Note that

since Z̃k0(ω2) ≤ Z∗
k0
(ω1), the load of crew k0 in assignment Z̃(ω2) under scenario ω2 is no

greater than its load in assignment Z∗(ω1) under scenario ω1. Inequality (B.18) implies that

the load of k0 under both scenarios is no greater than the maximum load of the assignment

Z∗(ω2) under scenario ω2. Therefore, the load of crew k0 does not increase the maximum

load beyond the makespan of assignment Z∗(ω2).

B.13 Proof of Proposition 4.5.2

Without loss of generality, let L(ωj) = j for j = 1, . . . ,m. Label the crews using the

following procedure. Let A be the set of labeled crews, which is initialized to be ∅. Starting
with j = 1, scan the solution Z(ωj) for leak assignments with Zk(ωj) > 0. If k /∈ A, let

kj = k. If all crews with positive leak assignments are in A, move on to the next leak

scenario, j = 2, scanning for leak assignments with Zk(ωj) > 0. Perform the labeling

procedure for each scenario, until all the scenarios are exhausted. If at the end of the

procedure, the number of labeled crews is less than the total number of crews, label the

rest of the crews arbitrarily with the remaining labels. This labeling procedure results with

labels k1, k2, . . . , kK with Zkj−1
(ω) ≥ Zkj (ω) for all ω ∈ Ω.

B.14 Proof of Corollary 4.5.3

From Proposition 4.5.1, there exists an optimal solution that satisfies the condition for

Proposition 4.5.2. Hence, from Proposition 4.5.2, there exists a ranking of the crews
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such that Z∗
kj−1

(ω) ≥ Z∗
kj
(ω) for all ω ∈ Ω. Next, we prove that with this labeling,∑

i∈I diY
∗
ikj−1

≤
∑

i∈I diY
∗
ikj

. We prove this contradiction. Suppose that for a pair of

crews kj−1, kj , we have that
∑

i∈I diY
∗
ikj−1

>
∑

i∈I diY
∗
ikj

. Then, we can find an assignment

Ỹ which has a makespan no greater than Y ∗, by letting Ỹikj−1
= Y ∗

ikj
and Ỹikj = Y ∗

ikj−1
.

This violates the optimality of Y ∗.

B.15 Proof of Proposition 4.5.6

Define Dk = kd as the cumulative duration of the first k jobs in Algorithm Stoch-LPT.

Denote by yk the total standard job hours assigned by the algorithm to crew B at the

end of the kth iteration. At the kth iteration of the algorithm, the cost function F k(y) =

pmax(Dk − y, y) + (1 − p)max(dL +Dk − y, y) for y ∈ {yk−1, yk−1 + d}. It chooses yk to

be the quantity which gives the smaller value for F k.

Let us prove the first statement of Proposition 4.5.6. Define m = ⌊dLd ⌋. It is easy to

verify that for k ≤ m, F k is a decreasing function. Therefore, Algorithm Stoch-LPT sets

yk = kd for k ≤ m. That is, Stoch-LPT assigns the first m standard jobs to crew B.

Now let us consider k > m. For easy reference later, note that

F k(y) =


kd− y + (1− p)md, if y ∈ [0, kd/2],

(2p− 1)y + (1− p)(m+ k)d, if y ∈ (kd/2, (m+ k)d/2],

y, if y ∈ [(m+ k)d/2, kd].

We would like to prove the following lemma, which if we are able to prove, is equivalent to

saying that Stoch-LPT assigns the remaining jobs alternatively between crew A and crew

B.

Lemma B.15.1. For p ≤ 1
2 , the Stoch-LPT algorithm produces a series of crew B assign-

ments such that ym+2k = (m+ k)d, for k = 0, 1, 2, . . .

ym+2k+1 = (m+ k)d, for k = 0, 1, 2, . . .
(B.20)

Proof. Let us prove this by induction. First, we check it for k = 0. Note that ym = md.

Next, we need to check ym+1. It is easy to verify that if m ≥ 1, then Fm+1(ym) =

(2p − 1)ym + (1 − p)(2m + 1)d = md + (1 − p)d. Otherwise, Fm+1(ym) = d + (1 − p)md.

Since Fm+1(ym + d) = (m + 1)d, then Fm+1(ym) ≤ Fm+1(ym + d). Therefore, Algorithm

Stoch-LPT will choose ym+1 = md. Therefore, the statement is true for k = 0.

Now suppose the statement is true for k = 0, 1, . . . , s − 1. Let us show that it is also

true for k = s. Let us check that ym+2s = ym+2s−1 + d = (m+ s)d. It is easy to verify that

Fm+2s is decreasing for y ≤ (m+ s)d. Therefore, Fm+2s(ym+2s−1) ≥ Fm+2s(ym+2s−1 + d),

implying that ym+2s = (m + s)d. Now let us check that ym+2s+1 = (m + s)d. It can

be verified that, if m ≥ 1, then Fm+2s+1(ym+2s) = (m + s)d + (1 − p)d. Otherwise,

Fm+2s+1(ym+2s) = (s + 1)d + (1 − p)md. Moreover, Fm+2s+1(ym+2s + d) = (m + s + 1)d.

126



Since Fm+2s+1(ym+2s) ≤ Fm+2s+1(ym+2s + d), then ym+2s+1 = ym+2s = (m+ s)d.

Thus, we prove the lemma by induction.

Now let us prove the second statement of Proposition 4.5.6. We first prove the following

lemma, which if we are able to prove, is equivalent to saying that Stoch-LPT assigns the

jobs alternatively between crew A and crew B.

Lemma B.15.2. For p > 1
2 , the Stoch-LPT algorithm produces a series of crew B assign-

ments such that y2k−1 = kd, for k = 1, 2, 3, . . .

y2k = kd, for k = 1, 2, 3, . . .

Proof. We prove the lemma by induction. First, let us check the condition when k = 1. Note

that F 1(0) = d+(1−p)md, and that F 1(d) = d ifm < 1 or F 1(d) = (2p−1)d+(1−p)(m+1)d

if m ≥ 1. In both cases, we have that F 1(d) ≤ F 1(0), implying that y1 = d. Now let us

check the condition for y2. Note that F 2 is increasing in y ≥ y1 = d. Therefore, y2 = d.

Now suppose that the statement is true for k = 1, 2, . . . , s − 1. We will show that it

is true for s. We have to check that F 2s−1(y) for y = y2(s−1) and y = y2(s−1) + d. Note

that F 2s−1((s − 1)d) = sd + (1 − p)md. Moreover, for m ≥ 1, we have that F 2s−1(sd) =

sd+ (1− p)md− (1− p)d. If m < 1, we have that F 2s−1(sd) = sd. Therefore, y2s−1 = sd.

Now let us check the condition for y2s. Since F 2s is increasing for y ≥ sd, then y2s = sd.

Now we will prove the third statement of Proposition 4.5.6. Let us consider the case

when p ≤ 1
2 . Recall (B.20) which gives the sequence of crew B assignments under Stoch-

LPT. Assume without loss of generality that the number of jobs is more than m. Note that

at the m+2k iteration, Stoch-LPT evaluates Fm+2k at y = (m+k−1)d and y = (m+k)d.

The unconstrained minimizer of Fm+2k is y = (m+ k)d, which is between these two values.

Therefore, there is no multiple of d which achieves a smaller value for Fm+2k than y = ym+2k.

Similarly, at the m + 2k − 1 iteration, Stoch-LPT evaluates Fm+2k+1 at y = (m + k)d

and y = (m + k + 1)d. The unconstrained minimizer of Fm+2k+1 is y = (m + k + 1/2)d,

which is between these two values. Therefore, there is no multiple of d which achieves a

smaller value for Fm+2k+1 than y = ym+2k+1.

The proof for p > 1
2 follows a similar line of argument.
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Appendix C

Figures
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Figure C-1: Upper bound for a log-concave distribution with b
b+h quantile q∗.

Figure C-2: Regression analysis to estimate relationship between bias of ∆n and AMS value
∆F (β).
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Figure C-3: Probability density functions of demand distributions used in experiments.
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Figure C-4: Probability density functions of demand distributions used in experiments.
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Tables
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Table D.1: Range of critical fractile values where Assumption 2.4.1 holds.

Distribution When is Assumption 1 satisfied? Notes

Normal(µ, σ) b
b+h ≥

1
2

Exponential(λ) b
b+h ≥ 0

Lognormal(µ, σ) b
b+h ≥

1
2 + 1

2erf
(
−σ

2

)
erf: error function

Pareto(xm, α) b
b+h ≥ 0

Uniform(A,B) b
b+h ≥ 0

Gamma(α, β) b
b+h ≥

1
Γ(α)γ(α, α− 1) Γ: gamma function, γ: incomplete gamma function

Beta(α, β) b
b+h ≥

B( α−1
α+β−2 ;α,β)
B(α,β) B: beta function

Power Law(α) b
b+h ≥ 0

Logistic(µ, s) b
b+h ≥

1
2

GEV(µ, σ, ξ) b
b+h ≥ e−1−ξ for ξ ≥ 0

Chi(k) b
b+h ≥ P

(
k
2 ,

k−1
2

)
for k ≥ 1; P : regularized gamma function

Chi-squared(k) b
b+h ≥

{
1

Γ( k
2 )
γ
(
k
2 ,

k−2
2

)
, if k ≥ 2

0, if k < 2

Laplace(µ, β) b
b+h ≥

1
2

Weibull(λ, k) b
b+h ≥

{
1− e−

k−1
k , if k ≥ 1

0 if k < 1

Table D.2: Average errors (%) with samples from an exponential distribution.
(a) Sample average approximation

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 2.39 1.83 2.08 2.24 2.62 3.22 4.05 4.67 7.65 10.87 33.76
50 0.77 0.73 0.81 0.87 1.35 1.49 1.93 2.38 3.10 7.33 16.89
100 0.54 0.34 0.48 0.60 0.70 0.91 0.96 1.50 2.03 3.24 8.56
200 0.27 0.23 0.27 0.29 0.34 0.40 0.49 0.64 1.22 2.22 4.36

(b) Distribution fitting

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 1.88 1.54 1.54 1.69 2.03 2.60 3.37 4.26 5.81 9.64 40.06
50 0.65 0.64 0.69 0.80 0.99 1.23 1.53 1.90 2.72 4.88 22.93
100 0.36 0.34 0.39 0.46 0.57 0.73 0.96 1.33 1.91 2.62 9.03
200 0.21 0.20 0.21 0.24 0.28 0.34 0.43 0.59 0.94 1.64 7.25
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Table D.3: Average errors (%) with samples from a normal distribution.
(a) Sample average approximation

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 6.03 3.84 3.81 3.11 2.60 2.95 3.50 4.91 6.23 8.71 42.85
50 2.31 1.69 1.62 1.58 1.41 1.60 1.59 2.06 3.26 4.57 13.76
100 1.63 1.15 0.92 0.86 0.83 0.75 0.92 1.08 1.56 2.18 5.94
200 0.81 0.45 0.38 0.36 0.30 0.29 0.38 0.47 0.81 1.41 3.65

(b) Distribution fitting

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 4.65 3.53 3.07 2.73 2.62 2.77 3.16 3.74 5.48 12.83 75.12
50 1.91 1.43 1.27 1.20 1.24 1.38 1.60 1.87 2.53 4.41 18.77
100 1.13 0.90 0.78 0.71 0.68 0.69 0.76 0.89 1.17 1.75 6.59
200 0.47 0.36 0.28 0.25 0.25 0.27 0.33 0.42 0.63 1.03 3.92

Table D.4: Average errors (%) with samples from a Pareto distribution.
(a) Sample average approximation

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 0.88 0.69 0.83 0.93 1.14 1.59 2.18 3.12 6.70 28.33 34.35
50 0.28 0.28 0.31 0.37 0.60 0.73 1.02 1.39 2.28 6.12 33.39
100 0.19 0.13 0.19 0.24 0.29 0.39 0.45 0.83 1.54 3.28 39.74
200 0.09 0.08 0.10 0.11 0.14 0.17 0.24 0.35 0.80 1.97 6.86

(b) Distribution fitting

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 0.70 0.61 0.69 0.79 0.96 1.24 1.68 2.47 4.83 9.69 40.31
50 0.25 0.25 0.28 0.32 0.39 0.53 0.76 1.15 2.25 4.52 18.92
100 0.15 0.14 0.16 0.20 0.24 0.31 0.41 0.62 1.34 2.85 11.71
200 0.08 0.08 0.09 0.10 0.12 0.15 0.19 0.30 0.72 1.65 6.97
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Table D.5: Average errors (%) with samples from a Beta distribution.
(a) Sample average approximation

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 5.15 4.80 4.07 3.07 3.06 2.63 2.92 2.90 4.30 4.27 14.99
50 2.69 2.28 2.15 1.99 1.63 1.41 1.26 1.25 1.34 1.88 2.47
100 1.86 1.17 0.94 0.82 0.88 0.85 0.73 0.77 0.79 0.89 0.78
200 1.11 0.59 0.40 0.35 0.36 0.35 0.32 0.31 0.32 0.30 0.41

(b) Distribution fitting

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 5.62 4.42 3.41 2.70 2.38 2.32 2.34 2.39 3.40 7.13 35.94
50 2.90 2.24 1.77 1.50 1.43 1.49 1.61 1.65 1.68 2.88 9.40
100 1.43 1.06 0.83 0.69 0.62 0.61 0.62 0.63 0.64 0.99 4.45
200 0.70 0.43 0.30 0.26 0.25 0.25 0.26 0.26 0.24 0.37 2.29

Table D.6: Average errors (%) with samples from a mixed normal distribution.
(a) Sample average approximation

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 3.99 2.64 1.89 2.14 6.17 3.98 5.52 11.72 5.78 3.84 4.41
50 1.29 0.86 0.61 0.39 0.38 0.35 0.53 0.79 1.81 1.62 4.26
100 0.74 0.43 0.35 0.27 0.39 0.45 0.33 0.39 0.55 0.71 2.51
200 0.37 0.21 0.16 0.13 0.08 0.08 0.12 0.19 0.22 0.59 1.47

(b) Distribution fitting

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 2.96 1.67 1.86 3.32 3.09 2.36 10.46 16.65 6.55 13.74 32.75
50 1.56 1.14 0.52 0.47 0.33 0.54 0.49 2.18 0.24 1.84 25.18
100 0.90 0.40 0.35 1.08 0.81 0.18 0.16 1.85 0.33 1.19 7.76
200 0.69 0.38 0.15 0.59 0.42 0.48 0.57 0.37 0.94 4.61 2.97
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Table D.7: Regression analysis to estimate relationship between bias of ∆n and sample size
n.

β = 0.8 β = 0.9 β = 0.95

Ĉ1 k̂1 R2 Ĉ1 k̂1 R2 Ĉ1 k̂1 R2

Lognormal -149.4 -0.84 0.87 -554.7 -0.88 0.97 -3132.6 -1.05 0.97
Normal -35.7 -1.01 0.99 -71.7 -1.06 0.99 -63.8 -0.92 1.00
Exponential -319.7 -1.05 0.97 -528.1 -1.04 0.98 -651.8 -0.92 0.99
Pareto -2.0 -0.91 0.74 -34.6 -1.36 0.88 -19.1 -1.04 0.88
Uniform -76.5 -0.95 0.99 -130.0 -1.07 0.99 -80.8 -0.96 0.99
Gamma -9.1 -1.08 0.97 -11.6 -0.98 0.99 -19.5 -0.97 1.00
Beta -0.4 -1.04 0.99 -0.4 -0.96 0.99 -1.2 -1.07 0.98
Power Law -0.6 -1.38 0.90 -0.6 -1.40 0.92 -0.1 -1.02 0.97

Table D.8: Theorem 3.2.2: Optimal primal and dual solutions when z ≤ y ≤ w

S(w; z, y) =

{
(1− β)(z − y) + β y−z

w−z (z − µ+ (1− β)δ) , if z < µ− (1− β)δ,

(1− β)(z − y), if z ≥ µ− (1− β)δ,

Primal and dual solutions
For S(w; z, y) = (1− β)(z − y) + β y−z

w−z (z − µ+ (1− β)δ) ,

D =


z, w.p. β

(
w−µ+(1−β)δ

w−z

)
,

w, w.p. β
(

µ−(1−β)δ−z
w−z

)
,

µ+ βδ, w.p. 1− β

αL
0 =

(
y−z
w−z

)
z, αU

0 = z − y,

α1 = −β(y−z)
w−z ,

α2 = β(1−β)(y−z)
w−z

For S(w; z, y) = (1− β)(z − y)

D =

{
µ− (1− β)δ, w.p. β,
µ+ βδ, w.p. 1− β

αL
0 = 0, αU

0 = −(y − z),
α1 = α2 = 0

Table D.9: Theorem 3.2.2: Optimal primal and dual solutions when z ≤ w ≤ y

S(w; z, y) =

{
(1− β)(z − w) + β(z − µ) + β(1− β)δ, if z < µ− (1− β)δ,

(1− β)(z − w), if z ≥ µ− (1− β)δ,

Primal and dual solutions
For S(w; z, y) = (1− β)(z − w) + β(z − µ) + β(1− β)δ

D =


µ− (1− β)δ, w.p. β,

w, w.p. (1− β)p,

x, w.p. (1− β)(1− p)

αL
0 = z, αU

0 = z − w,
α1 = −β, α2 = β(1− β)

where x = µ+βδ−pw
1−p and p→ 1

For S(w; z, y) = (1− β)(z − w),

D =


µ− (1− β)δ, w.p. β,

w, w.p. (1− β)p,

x, w.p. (1− β)(1− p)

αL
0 = 0, αU

0 = z − w,
α1 = α2 = 0

where x = µ+βδ−pw
1−p and p→ 1
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Table D.10: Theorem 3.2.2: Optimal primal and dual solutions when y ≤ z ≤ w

S(w; z, y) = z − y

Primal and dual solutions
αL
0 = αU

0 = z − y, α1 = α2 = 0
When z ≤ µ− (1− β)δ

D =

{
µ− (1− β)δ, w.p. β,

µ+ βδ, w.p. 1− β,

When z > µ− (1− β)δ,

D =


x, w.p. βp,

z, w.p. β(1− p),

µ+ βδ, w.p. 1− β,

where x = µ−(1−β)δ−z(1−p)
p and p→ 0

Table D.11: Theorem 3.2.2: Optimal primal and dual solutions when y ≤ w ≤ z

S(w; z, y) =

{
(1− β)(z − y) + β(w − y), if z ≤ µ+ βδ,

S(w; z, y) = (1− β)(µ+ βδ − y) + β(w − y), if z > µ+ βδ,

Primal and dual solutions
For S(w; z, y) = (1− β)(z − y) + β(w − y)

D =


x, w.p. βp,

w, w.p. β(1− p),

µ+ βδ, w.p. 1− β

αL
0 = w − y, αU

0 = z − y,
α1 = α2 = 0

where x = µ−(1−β)δ−w(1−p)
p and p→ 0

For S(w; z, y) = (1− β)(µ+ βδ − y) + β(w − y)

D =


x, w.p. βp,

w, w.p. β(1− p),

µ+ βδ, w.p. 1− β

αL
0 = w − y, αU

0 = −y,
α1 = 1− β, α2 = β(1− β)

where x = µ−(1−β)δ−w(1−p)
p and p→ 0

Table D.12: Theorem 3.2.2: Optimal primal and dual solutions when w ≤ z ≤ y

S(w; z, y) = 0

Primal and dual solutions
αL
0 = αU

0 = α1 = α2 = 0
When z ≤ µ+ βδ

D =


µ− (1− β)δ, w.p. β,

z, w.p. (1− β)p,

x, w.p. (1− β)(1− p),

where x = µ+βδ−pz
1−p and p→ 0

When z > µ+ βδ

D =

{
µ− (1− β)δ, w.p. β,

µ+ βδ, w.p. 1− β,
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Table D.13: Theorem 3.2.2: Optimal primal and dual solutions when w ≤ y ≤ z

S(w; z, y) =

{
(1− β)(z − y), if z ≤ µ+ βδ,
(1−β)(z−y)

z−w (µ+ βδ − w) , if z > µ+ βδ,

Primal and dual solutions
For S(w; z, y) = (1− β)(z − y)

D =

{
µ− (1− β)δ, w.p. β,

µ+ βδ, w.p. 1− β,

αL
0 = 0, αU

0 = z − y,
α1 = α2 = 0

For S(w; z, y) = (1−β)(z−y)
z−w (µ+ βδ − w)

D =


µ− (1− β)δ, w.p. β,

w, w.p. (1− β)
(

z−µ−βδ
z−w

)
,

z, w.p. (1− β)
(

µ+βδ−w
z−w

) αL
0 = 0, αU

0 = −w(z−y)
z−w ,

α1 = (1−β)(z−y)
z−w , α2 = β(1−β)(z−y)

z−w

Table D.14: Theorem 3.2.2: G(z; y)

G(z; y) for z ∈ (−∞, y]
If y ≤ µ− (1− β)δ

G(z; y) = −β(y − z)(µ− (1− β)δ − z)

µ+ βδ − z
, for z ∈ (−∞, y]

If µ− (1− β)δ < y ≤ µ− (1− β)δ + βδ

G(z; y) =


−β(y − z)(µ− (1− β)δ − z)

µ+ βδ − z
, for z ∈

(
−∞,

(µ− (1− β)δ)(µ+ βδ)− µy

µ− (1− β)δ + βδ − y

]
,

(1− β)y + βz − µ+ (1− β)δ, for z ∈
(
(µ− (1− β)δ)(µ+ βδ)− µy

µ− (1− β)δ + βδ − y
, µ− (1− β)δ

]
,

(1− β)(y − z), for z ∈ (µ− (1− β)δ, y]

If y > µ− (1− β)δ + βδ

G(z; y) =

{
(1− β)y + βz − µ+ (1− β)δ, for z ∈ (−∞, µ− (1− β)δ] ,

(1− β)(y − z), for z ∈ (µ− (1− β)δ, y]

G(z; y) for z ∈ [y,∞)
If y ≤ µ− (1− β)δ + βδ

G(z; y) =

{
β(z − y), for z ∈ [y, µ+ βδ],

−βy − (1− β)z + µ+ βδ, for z ∈ (µ+ βδ,∞)

If µ− (1− β)δ + βδ < y ≤ µ+ βδ

G(z; y) =


β(z − y), for z ∈ [y, µ+ βδ],

−βy − (1− β)z + µ+ βδ, for z ∈
(
µ+ βδ,

µy − (µ− (1− β)δ) (µ+ βδ)

y − µ+ (1− β)δ − βδ

]
,

− (1− β)(z − y)(z − µ− βδ)

z − µ+ (1− β)δ
, for z ∈

(
µy − (µ− (1− β)δ) (µ+ βδ)

y − µ+ (1− β)δ − βδ
,∞
)

If y > µ+ βδ

G(z; y) = − (1− β)(z − y)(z − µ− βδ)

z − µ+ (1− β)δ
, for z ∈ [y,∞)
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Table D.15: Theorem A.3.1: Optimal primal and dual solutions when z ≤ y ≤ w

If µ− (1− β)δU < 0,
S(w; z, y) = (1− β)(z − y),

If µ− (1− β)δU ≥ 0,

S(w; z, y) =

{
(1− β)(z − y) + β y−z

w−z (z − µ+ (1− β)δU ) , if z ≤ µ− (1− β)δU ,

(1− β)(z − y), if z > µ− (1− β)δU ,

Primal and Dual Solutions
For S(w; z, y) = (1− β)(z − y) + β y−z

w−z (z − µ+ (1− β)δU )

D =


z, w.p. β

(
w−µ+(1−β)δU

w−z

)
,

w, w.p. β
(

µ−(1−β)δU−z
w−z

)
,

µ+ βδU , w.p. 1− β

αL
0 =

(
y−z
w−z

)
z, αU

0 = z − y,

α1 = −β(y−z)
w−z ,

αL
2 = 0, αU

2 = β(1−β)(y−z)
w−z

For S(w; z, y) = (1− β)(z − y)

D =

{
µ− (1− β)δU , w.p. β,
µ+ βδU , w.p. 1− β

αL
0 = 0, αU

0 = −(y − z),
α1 = αL

2 = αU
2 = 0

Table D.16: Theorem A.3.1: Optimal primal and dual solutions when z ≤ w ≤ y

If µ− (1− β)δU < 0,
S(w; z, y) = (1− β)(z − w),

If µ− (1− β)δU ≥ 0,

S(w; z, y) =

{
(1− β)(z − w) + β(z − µ) + β(1− β)δU , if z ≤ µ− (1− β)δU ,

(1− β)(z − w), if z > µ− (1− β)δU ,

Primal and dual solutions
For S(w; z, y) = (1− β)(z − w) + β(z − µ) + β(1− β)δU

D =


µ− (1− β)δU , w.p. β,

w, w.p. (1− β)p,

x, w.p. (1− β)(1− p),

αL
0 = z, αU

0 = z − w,
α1 = −β, αL

2 = 0, αU
2 = β(1− β)

where x = µ+βδU−wp
1−p as p→ 1

For S(w; z, y) = (1− β)(z − w) when µ− (1− β)δU < 0,

D =


0, w.p. β,

w, w.p. (1− β)p,

x, w.p. (1− β)(1− p),

αL
0 = 0, αU

0 = z − w,
α1 = αL

2 = αU
2 = 0

where x = 1
1−p

(
µ

1−β − pw
)
as p→ 1

For S(w; z, y) = (1− β)(z − w) when µ− (1− β)δU ≥ 0,

D =


µ− (1− β)δU , w.p. β,

w, w.p. (1− β)p,

x, w.p. (1− β)(1− p),

αL
0 = 0, αU

0 = z − w,
α1 = αL

2 = αU
2 = 0

where x = µ+βδU−wp
1−p as p→ 1
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Table D.17: Theorem A.3.1: Optimal primal and dual solutions when y ≤ z ≤ w

If w < µ+ βδL,

S(w; z, y) =

{
z − y, if z ≤ µ− (1− β)δL,

(1− β)(z − y) + β(z−y)
z (µ− (1− β)δL) , if z > µ− (1− β)δL,

If w ≥ µ+ βδL,

S(w; z, y) =

{
z − y, if w ≤ µ−βz

1−β ,

(1− β)(z − y) + z−y
z (µ− (1− β)w) , if w > µ−βz

1−β ,

Primal and dual solutions
For S(w; z, y) = z − y when w < µ− (1− β)δL

D =

{
w, w.p. β,
µ−βw
1−β , w.p. 1− β,

αL
0 = αU

0 = z − y,
α1 = αL

2 = αU
2 = 0

For S(w; z, y) = z − y when µ− (1− β)δL ≤ w < µ+ βδL

D =

{
µ− (1− β)δL, w.p. β,

µ+ βδL, w.p. 1− β,

αL
0 = αU

0 = z − y,
α1 = αL

2 = αU
2 = 0

For S(w; z, y) = z − y when w ≥ µ+ βδL

D =

{
µ−(1−β)w

β , w.p. β,

w, w.p. 1− β,

αL
0 = αU

0 = z − y,
α1 = αL

2 = αU
2 = 0

For S(w; z, y) = (1− β)(z − y) + β(z−y)
z (µ− (1− β)δL)

D =


0, w.p. β

(
1− µ−(1−β)δL

z

)
,

z, w.p. β
(

µ−(1−β)δL
z

)
,

µ+ βδL, w.p. 1− β

αL
0 = 0, αU

0 = z − y,

α1 = β(z−y)
z , αL

2 = −β(1− β) z−y
z , αU

2 = 0

For S(w; z, y) = (1− β)(z − y) + z−y
z (µ− (1− β)w)

D =


0, w.p. β − µ−(1−β)w

z ,

z, w.p. µ−(1−β)w
z ,

w, w.p. 1− β

αL
0 = 0, αU

0 = z−y
z (z − w),

α1 = z−y
z , αL

2 = αU
2 = 0
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Table D.18: Theorem A.3.1: Optimal primal and dual solutions when y ≤ w ≤ z

If µ− (1− β)δU < 0 and w ≤ µ− (1− β)δL,

S(w; z, y) =


(1− β)(z − y) + β(w − y), if z ≤ µ−βw

1−β ,

µ− (1− β)y − y
w (µ− (1− β)z) , if µ−βw

1−β < z ≤ µ
1−β ,

µ− (1− β)y, if z > µ
1−β ,

If µ− (1− β)δU < 0 and w > µ− (1− β)δL,

S(w; z, y) =


(1− β)(z − y) + β(w−y)

w (µ− (1− β)δL) , if z ≤ µ+ βδL,

µ− (1− β)y − y
w (µ− (1− β)z) , if µ+ βδL < z ≤ µ

1−β ,

µ− (1− β)y, if z > µ
1−β ,

If µ− (1− β)δU ≥ 0 and w ≤ µ− (1− β)δL,

S(w; z, y) =


(1− β)(z − y) + β(w − y), if z ≤ µ−βw

1−β ,

µ− (1− β)y − y
w (µ− (1− β)z) , if µ−βw

1−β < z ≤ µ+ βδU ,

µ− (1− β)y − y
w (βµ− β(1− β)δU ) , if z > µ+ βδU ,

If µ− (1− β)δU ≥ 0 and w > µ− (1− β)δL,

S(w; z, y) =


(1− β)(z − y) + β(w−y)

w (µ− (1− β)δL) , if z ≤ µ+ βδL,

µ− (1− β)y − y
w (µ− (1− β)z) , if µ+ βδL < z ≤ µ+ βδU ,

µ− (1− β)y − y
w (βµ− β(1− β)δU ) , if z > µ+ βδU ,

Primal and dual solutions
For S(w; z, y) = (1− β)(z − y) + β(w − y)

D =

{
w, w.p. β,
µ−βw
1−β , w.p. 1− β,

αL
0 = w − y, αU

0 = z − y,
α1 = αL

2 = αU
2 = 0

For S(w; z, y) = (1− β)(z − y) + βw−y
w (µ− (1− β)δL)

D =


0, w.p. β

(
1− µ−(1−β)δL

w

)
,

w, w.p. β
(

µ−(1−β)δL
w

)
,

µ+ βδL, w.p. 1− β,

αL
0 = 0, αU

0 = z − y,
α1 = βw−y

w , αL
2 = −β(1− β)w−y

w , αU
2 = 0

For S(w; z, y) = µ− (1− β)y − y
w (µ− (1− β)z)

D =


0, w.p. β − µ−z(1−β)

w ,

w, w.p. µ−z(1−β)
w ,

z, w.p. 1− β,

αL
0 = 0, αU

0 = y(z−w)
w ,

α1 = w−y
w , αL

2 = αU
2 = 0

For S(w; z, y) = µ− (1− β)y − y
w (µβ − β(1− β)δU )

D =


0, w.p. β

(
1− µ−(1−β)δU

w

)
,

w, w.p. β
(

µ−(1−β)δU
w

)
,

µ+ βδU , w.p. 1− β,

αL
0 = 0, αU

0 = −y,
α1 = w−βy

w , αL
2 = 0, αU

2 = β(1−β)y
w

For S(w; z, y) = µ− (1− β)y

D =

{
0, w.p. β,
µ

1−β , w.p. 1− β,

αL
0 = 0, αU

0 = −y,
α1 = 1, αL

2 = αU
2 = 0
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Table D.19: Theorem A.3.1: Optimal primal and dual solutions when w ≤ z ≤ y

S(w; z, y) = 0

Primal and dual solutions
αL
0 = αU

0 = α1 = α2 = 0
If µ− (1− β)δU < 0 and z < µ

1−β ,

D =


0, w.p. β,

z, w.p. (1− β)p,

x, w.p. (1− β)(1− p),

where x = 1
1−p

(
µ

1−β − pz
)
and p→ 1,

If µ− (1− β)δU < 0 and z ≥ µ
1−β ,

D =

{
0, w.p. β,
µ

1−β , w.p. 1− β,

If µ− (1− β)δU ≥ 0 and z < µ+ βδU ,

D =


µ− (1− β)δU , w.p. β,

z, w.p. (1− β)p,

x, w.p. (1− β)(1− p),

where x = µ+βδU−pz
1−p and p→ 1,

If µ− (1− β)δU ≥ 0 and z ≥ µ+ βδU ,

D =

{
µ− (1− β)δU , w.p. β,

µ+ βδU , w.p. 1− β,

Table D.20: Theorem A.3.1: Primal and dual solutions when w ≤ y ≤ z

If µ− (1− β)δU < 0,

S(w; z, y) =

{
(1− β)(z − y), if z ≤ µ

1−β ,
z−y
z−w (µ− (1− β)w) , if z > µ

1−β ,

If µ− (1− β)δU ≥ 0,

S(w; z, y) =

{
(1− β)(z − y), if z ≤ µ+ βδU ,
(1−β)(z−y)

z−w (µ+ βδU − w) , if z > µ+ βδU ,

Primal and dual solutions
For S(w; z, y) = (1− β)(z − y) and µ− (1− β)δU < 0,

D =

{
0, w.p. β,
µ

1−β , w.p. 1− β,

αL
0 = 0, αU

0 = z − y,
α1 = αL

2 = αU
2 = 0

For S(w; z, y) = (1− β)(z − y) and µ− (1− β)δU ≥ 0,

D =

{
µ− (1− β)δU , w.p. β,

µ+ βδU , w.p. 1− β,

αL
0 = 0, αU

0 = z − y,
α1 = αL

2 = αU
2 = 0

For S(w; z, y) = (1−β)(z−y)
z−w (µ− w + βδ)

D =


µ− (1− β)δU , w.p. β,

w, w.p. (1− β)
(

z−µ−βδU
z−w

)
,

z, w.p. (1− β)
(

µ−w+βδU
z−w

) αL
0 = αL

2 = 0, αU
0 = −w(z−y)

z−w ,

α1 = (1−β)(z−y)
z−w , αU

2 = β(1−β)(z−y)
z−w

For S(w; z, y) = (z−y)
z−w (µ− (1− β)w)

D =


0, w.p. β,

w, w.p. (1−β)z−µ
z−w ,

z, w.p. µ−(1−β)w
z−w ,

αL
0 = 0, αU

0 = −w(z−y)
z−w ,

α1 = z−y
z−w , αL

2 = αU
2 = 0
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Table D.21: Theorem A.3.1: G(z; y) when µ− (1− β)δU < 0

G(z; y) for z ∈ [0, y]
G(z; y) = (1− β)(y − z), for z ∈ [0, y]

G(z; y) for z ∈ [y,∞)
If 0 ≤ y ≤ µ− (1− β)δL,

G(z; y) =


β(z − y), for z ∈ [y, µ− (1− β)δL],

β (z−y)
z (µ− (1− β)δL), for z ∈ [µ− (1− β)δL, µ+ βδL],

z−y
z (µ− (1− β)z) , for z ∈ [µ+ βδL,∞),

If µ− (1− β)δL ≤ y ≤ µ+ βδL,

G(z; y) =

{
β (z−y)

z (µ− (1− β)δL), for z ∈ [y, µ+ βδL],
z−y
z (µ− (1− β)z) , for z ∈ [µ+ βδL,∞),

If y > µ+ βδL,
G(z; y) = z−y

z (µ− (1− β)z) , for z ∈ [y,∞)
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Table D.22: Theorem A.3.1: G(z; y) when µ− (1− β)δU ≥ 0

G(z; y) for z ∈ [0, y]
If 0 ≤ y ≤ µ− (1− β)δU

G(z; y) = −β(y−z)(µ−(1−β)δU−z)
µ+βδU−z , for z ∈ [0, y]

If µ− (1− β)δU ≤ y ≤ 1
µ (µ− (1− β)δU ) (µ+ βδU )

G(z; y) =


−β(y−z)(µ−(1−β)δU−z)

µ+βδU−z , for z ∈
[
0, (µ−(1−β)δU )(µ+βδU )−µy

µ−(1−β)δU+βδU−y

]
,

(1− β)y − µ+ βz + (1− β)δU , for z ∈
[
(µ−(1−β)δU )(µ+βδU )−µy

µ−(1−β)δU+βδU−y , µ− (1− β)δU

]
,

(1− β)(y − z), for z ∈ [µ− (1− β)δU , y]

If y ≥ 1
µ (µ− (1− β)δU ) (µ+ βδU )

G(z; y) =

{
(1− β)y − µ+ βz + (1− β)δU , for z ∈ [0, µ− (1− β)δU ] ,

(1− β)(y − z), for z ∈ [µ− (1− β)δU , y]

G(z; y) for z ∈ [y,∞)
If 0 ≤ y ≤ µ− (1− β)δU

G(z; y) =


β(z − y), for z ∈ [y, µ− (1− β)δL],

β (z−y)
z (µ− (1− β)δL), for z ∈ [µ− (1− β)δL, µ+ βδL],

z−y
z (µ− (1− β)z) , for z ∈ [µ+ βδL, µ+ βδU ],

µ− (1− β)z − βy(µ−(1−β)δU )
µ+βδU

, for z ∈ [µ+ βδU ,∞)

If µ− (1− β)δU ≤ y ≤ µ− (1− β)δL

G(z; y) =


β(z − y), for z ∈ [y, µ− (1− β)δL],

β (z−y)
z (µ− (1− β)δL), for z ∈ [µ− (1− β)δL, µ+ βδL],

z−y
z (µ− (1− β)z) , for z ∈ [µ+ βδL, µ+ βδU ],

decreasing function in z, for z ∈ [µ+ βδU ,∞)

If µ− (1− β)δL ≤ y ≤ µ+ βδL

G(z; y) =


β (z−y)

z (µ− (1− β)δL), for z ∈ [y, µ+ βδL],
z−y
z (µ− (1− β)z) , for z ∈ [µ+ βδL, µ+ βδU ],

decreasing function in z, for z ∈ [µ+ βδU ,∞)

If µ+ βδL ≤ y ≤ µ+ βδU

G(z; y) =

{
z−y
z (µ− (1− β)z) , for z ∈ [y, µ+ βδU ],

decreasing function in z, for z ∈ [µ+ βδU ,∞) ,

If y ≥ µ+ βδU
G(z; y) = − (1−β)(z−y)(z−µ−βδU )

z−µ+(1−β)δU
, for z ∈ [y,∞)
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Table D.23: Durations of standard jobs.

Job no. Duration Job no. Duration Job no. Duration

1 6.58 6 5.36 11 3.48
2 6.41 7 4.96 12 2.66
3 5.63 8 4.85 13 2.61
4 5.49 9 4.25 14 2.26
5 5.47 10 3.83 15 1.51

Table D.24: Probability distributions of number of gas leaks.

Leak scenario
0 leaks 1 leak 2 leaks 3 leaks E[no. leaks] Stdev[no. leaks]

Leak distribution 1 0.0 1.0 0.0 0.0 1.0 0.00
Leak distribution 2 0.1 0.8 0.1 0.0 1.0 0.45
Leak distribution 3 0.2 0.6 0.2 0.0 1.0 0.63
Leak distribution 4 0.4 0.2 0.4 0.0 1.0 0.89
Leak distribution 5 0.3 0.5 0.1 0.1 1.0 0.89
Leak distribution 6 0.4 0.3 0.2 0.1 1.0 1.00
Leak distribution 7 0.5 0.2 0.1 0.2 1.0 1.18
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Table D.39: Data for job types used for simulations.

Job Type Average job Probability of daily quota Average daily Stdev daily

duration (hours) 0 1 2 3 quota (no. jobs) quota (no. jobs)

LEAK2A 6.24 0.93 0.07 0 0 0.07 0.25
CMP 5.85 0.45 0.4 0.12 0.03 0.71 0.79
PVIP 2.50 0.45 0.4 0.12 0.03 0.71 0.79
LKTPDP 5.45 0.73 0.28 0 0 0.28 0.45
LEAK2 6.76 0.45 0.4 0.12 0.03 0.71 0.79
LEAK3 7.80 0.46 0.54 0 0 0.54 0.5
CUSTREQ 6.24 0.05 0.1 0.1 0.75 2.86 0.86
SRP 6.34 0.45 0.4 0.12 0.03 0.71 0.79
MPP 3.87 0.89 0.11 0 0 0.11 0.31
LKEMER 8.79 — — — — — —

a LKEMER refers to an emergency job.
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