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ABSTRACT

A recent study by Gillies and others of persistent inversion events in the Intermountain West of the United

States found a substantive linkage between the intraseasonal oscillation (ISO) and the development of

persistent inversion events. Given that NCEP’s Climate Forecast System (CFS) has demonstrated skill in the

prediction of the ISO as far out as 1 month, it was decided to examine the CFS forecast’s capability in the

prediction of such winter persistent inversions. After initial analysis, a simple regression scheme is proposed

that is coupled to the CFS output of geopotential height as a way to predict the occurrence of persistent

inversion events for Salt Lake City, Utah. Analysis of the CFS hindcasts through the period 1981–2008 in-

dicates that the regression coupled with the CFS can predict persistent inversion events with lead times of up

to 4 weeks. The adoption of this coupled regression–CFS prediction may improve the forecasting of persistent

inversion events in the Intermountain West, which is currently restricted to the more limited time span

(;10 days) of medium-range weather forecast models.

1. Introduction

During the winter season, heavy rainfall events in the

western United States are known to be associated with

the intraseasonal oscillation (ISO; e.g., Mo and Nogues-

Paegle 2005). In the Intermountain West region, a dif-

ferent weather event is gaining increasing attention, that

is, persistent inversions. Deep inversions often develop

in valleys and mountain basins and frequently lead to

poor air quality and associated human health problems

(Reeves and Stensrud 2009). Recently, a close linkage

between the occurrence of persistent inversions and

the 20–40-day ISO was identified (Gillies et al. 2010,

hereinafter GWB). The 20–40-day ISO is a pronounced

mode in the wintertime midlatitude circulations (e.g.,

Horel and Mechoso 1988; Lau and Nath 1999), but, more

so, its intraseasonal time scale implies that forecast-

ing persistent inversions in the Intermountain West is

somewhat beyond the ;10-day horizon of weather fore-

cast models (GWB).

A number of studies (e.g., Weickmann et al. 1985; Mo

1999; Jones 2000) suggest that the ISO in North America

is an atmospheric response to diabatic heating anoma-

lies associated with the Madden–Julian oscillation (MJO;

Madden and Julian 2005). Empirical and dynamical fore-

casts of the MJO exhibit skill at lead times beyond 2 weeks

(Waliser 2005), including the operational Climate Fore-

cast System (CFS) of the National Centers for Envi-

ronmental Prediction (NCEP), which has demonstrated
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credible skill in predicting the MJO as far out as 1 month

(Seo et al. 2007, 2009; Weaver et al. 2009). Additionally,

the CFS shows similar skill in forecasting West Coast

extreme-rainfall events during winter (Jones et al. 2009).

Such circumstances, together with the inversion–ISO re-

lationship observed in GWB, imply that the CFS may

exhibit potential in predicting the inversion development

with a lead time beyond that of ;10 days. These cir-

cumstances lead us to undertake an investigation of the

CFS’s performance skill in predicting persistent inver-

sions for Salt Lake City, Utah.

2. Datasets and the inversion–ISO relationship

The CFS is a fully coupled ocean–land–atmosphere

dynamical seasonal prediction system and has been op-

erational at NCEP since August 2004. Model specifica-

tions of the CFS are detailed in Saha et al. (2006). The

NCEP provides historical CFS hindcast data starting at

1981 and extending through 2008. For each predicted

period, the CFS hindcast is initialized from three ensem-

ble means (denoted by m1, m2, and m3) of five consecutive

days computed from days 10 to 14 and from 20 to 24

of a particular month, and from days 1 to 4 of the fol-

lowing month (cf. Seo et al. 2009). Hence, the hindcasts

for m1, m2, and m3 start at days 12, 22, and 2, respectively,

and extend throughout the period of interest (i.e., to end

on 28 February). Observed atmospheric variables were

obtained from the NCEP–U.S. Department of Energy

Global Reanalysis 2 (GR-2; Kanamitsu et al. 2002). Upper-

air soundings at Salt Lake City International Airport

(KSLC) in Utah were utilized to analyze inversion con-

ditions over the period from December 1980 to February

2008, as identified in GWB. For air quality measure-

ments, we adopted daily observations of particulate

matter of 2.5 mm in diameter or smaller (PM2.5) from

a Utah Division of Air Quality station in Salt Lake City

(site identifier 4-035-3006). Criteria for capping and deep

stable layers (Wolyn and McKee 1989) were utilized by

GWB to classify two types of inversion layers: 1) a cap-

ping inversion with an inversion lid capping a mixed or

unstable layer above the ground level and 2) a surface

inversion with a neutral or increasing temperature profile

extending from the ground level up to a certain height.

The dates and classifications of inversions are summa-

rized in GWB.

GWB established an index via bandpass-filtered (20–

40 days) KSLC geopotential height (hereinafter Z30d)

at 300 hPa and used the index to conduct a composite

analysis for the inversion frequency and PM2.5 concen-

trations. The composite was made of eight phases that

evenly divide the Z30d ‘‘index cycle,’’ following Knutson

and Weickmann (1987). The selection of this 20–40-day

spectrum is due to the fact that the North American cir-

culation seems to respond only to the high-frequency end

(;30 days) of the MJO (GWB), corresponding to pre-

vious findings (e.g., Mo and Nogues-Paegle 2005) that the

tropical–extratropical linkages of the MJO are most

sensitive to shorter time scales of the MJO. Moreover,

the winter ISO in the midlatitudes has been attributed

to the dominant beta effect of the free Rossby wave

resulting in a distinct spectral peak at 30 days (Lau and

Nath 1999). It therefore seems feasible that such a mid-

latitude forcing would confine the variation time scale to

the higher-frequency end of the MJO.

The results of GWB are summarized in Fig. 1 and

show that the occurrence of surface inversions and the

PM2.5 concentrations in Salt Lake City are profoundly

modulated by the ISO, which is coherent with the Z30d

index. The surface inversion probability (SIP) in Fig. 1

was obtained from the relative frequency of surface in-

versions at each phase within a full cycle of the Z30d

index, through all identified cycles over the 1981–2008

period. Following from GWB, we used the 200-hPa Z30d

index at KSLC (since NCEP does not provide the CFS

FIG. 1. Composite 300-hPa Z30d index at KSLC and the evenly

divided eight phases (red line), probability of surface inversion

days (blue bars; %), and PM2.5 concentrations at the Salt Lake

City site (black line). Error bars are added for the probability and

PM2.5. Modified from Gillies et al. (2010).
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data at 300 hPa) and derived a second-order polynomial

regression to estimate the SIP:

SIP 5 0.000 01(Z
30d

)2
1 0.003(Z

30d
) 1 0.237. (1)

The SIP regression was derived from the composite

mean Z30d at 200 hPa for each phase from all signifi-

cantly strong cycles in the study (i.e., defined by the

1-standard-deviation criterion in GWB). The obtained

SIP was then regressed to estimate the PM2.5 concen-

tration as

PM2.5 5 52.16(SIP)2
1 24.82(SIP) 1 10.54. (2)

The regression models in Eqs. (1) and (2) have the largest

R2 values over linear and higher-order models. Figure 2a

shows that the climatological frequency of persistent

surface inversions (i.e., $4 days) and the frequency of

FIG. 2. (a) Climatological frequencies of persistent surface inversion events (gray bars) for

the period 1980–2008 and days with PM2.5 . 35 mg m23 (golden line) and PM2.5 . 70 mg m23

(dark red line) for the period 1999–2008. A 5-day smoothing was applied on all frequencies.

(b) Estimated SIP from Eq. (1) using the KSLC Z30d at 200 hPa (blue shaded curve) overlaid

with surface inversion days (dots) during December 2003–February 2004. (c) Estimated PM2.5

concentrations for Salt Lake City from Eq. (2) (green shaded curve) superimposed with the

observed PM2.5 concentrations (black line). In (b) and (c) three CFS ensembles (m1, m2, and

m3) are plotted as color lines. (d) The 200-hPa geopotential height from GR-2 (black solid

contours) and the average of all three CFS ensembles (pink dashed contours) for 10–20 Jan

2004. The contour interval is 100 m. KSLC is indicated with a blue star.
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alert-level (.35 mg m23) and unhealthy-level (.70

mg m23) PM2.5 concentrations in Salt Lake City are

distributed mostly in the deep winter season from mid-

December through mid-February. Thus, regression-model

Eqs. (1) and (2) are only applicable for this time period.

As an example, the estimated SIP and PM2.5 concen-

trations during the 2003/04 winter are shown in Fig. 2b.

A persistent surface inversion event occurred in mid-

January 2004 that lasted for 14 days (denoted by a se-

quence of black dots). Two shorter events also occurred

around 20 December 2003 and 16 February 2004. The

estimated SIP from the KSLC Z30d (blue-shaded area)

corresponds well to all three persistent surface inver-

sion events, with a higher probability centered around

the 14-day event. Shown in Fig. 2d is the circulation pat-

tern for this surface inversion event calculated as an av-

erage over the 10–20 January period. A ridge system is

dominant over western North America with Salt Lake

City situated to the east of the ridge axis; this is the

typical synoptic pattern associated with prolonged val-

ley cold pools in the Great Basin (Reeves and Stensrud

2009). Moreover, the estimated PM2.5 concentrations

(Fig. 2c; yellow-shaded area) are in good agreement with

observed PM2.5 (black line), and both strongly coincide

with the observed persistent surface inversion events.

Since Eqs. (1) and (2) use the filtered geopotential height,

short-term variations in the inversion and PM2.5 esti-

mates are inevitably smoothed out. Nevertheless, short

inversion events, such as observed on 24–25 January, are

coupled with higher-frequency synoptic modes that are

not as crucial as the 30-day cycle and so are not captured

in long-range predictions owing to the 2-week ‘‘Lorenz

limit’’ in weather forecasting.

3. CFS prediction skill

To predict the SIP, we constructed the Z30d index

using the CFS’s 200-hPa geopotential height at the grid

point nearest to KSLC (408N, 112.58W). For each CFS

member, 2 months of the observed (GR-2) data prior

to the initial day were added to the CFS output before

filtering in order to avoid ‘‘ends of data’’ problems as-

sociated with the second-order Butterworth bandpass

filter. The predicted SIP from all three CFS ensembles

for January 2004 (as denoted in Fig. 2b) captures the mid-

January persistent surface inversion event, but the CFS

nearly misses the mid-February event. The predicted

PM2.5 concentrations (as denoted in Fig. 2c) are similar,

indicating that the CFS exhibits reasonable skill in pre-

dicting the ISO for up to 1 month, consistent with Jones

et al. (2009). Further substantiation is found in the 200-hPa

geopotential height during 10–20 January 2004 aver-

aged from the three CFS ensembles (Fig. 2d); here, the

predicted ridge is phase coincident with the observed

ridge, albeit slightly weaker.

Forecast skill for the synoptic circulation pattern was

assessed by calculating the spatial correlation between

the CFS and the verifying values of the GR-2. For the

domain, as defined in Fig. 2d (208–658N, 1508–808W), the

bandpassed geopotential height at 200 hPa was added

to the mean eddy geopotential height of each winter in

both the CFS and the GR-2. Correlations were then

computed between the two: for the CFS, we used the

hindcast for December–February from 1981 to 2008. As

shown in Fig. 3a, the CFS correlation skills are positive

beyond 7 weeks of lead time. Using a threshold of 0.5 for

the correlation skill, as was used in Seo et al. (2009), the

CFS appears to predict the synoptic pattern that pertains

to persistent inversion events for up to about 4 weeks.

Moreover, the 1-standard-deviation range of the CFS

correlation skills exceeds 0.5 through day 49, suggesting

that the CFS can occasionally predict the ISO circula-

tion patterns for up to 7 weeks in advance.

For evaluation purposes, the CFS forecast skills were

compared with various empirical forecast skills, includ-

ing a principal component (PC)–lagged regression model

(PCRLAG) that uses the first two PCs of the filtered

geopotential height at 200 hPa, an autoregression (AR)

model with the filtered geopotential height at each grid

point, and the persistence forecast. These empirical fore-

cast methods have been operational for short-term cli-

mate prediction at the NCEP/Climate Prediction Center.

We used 3 months of the GR-2 data prior to the initial day

of each ensemble and applied these to the empirical

forecasts. As shown in Fig. 3a, the CFS skill is consistently

greater than the PCRLAG and AR forecasts and is

substantially better than the persistence forecast.

Next, we evaluated the CFS’s prediction of persistent

surface inversion events by averaging the composite SIP

during peak ISO phases 2–4 (as detailed in Fig. 1), which

yields a value of 35%, and subsequently used this 35% as

the threshold SIP in the prediction of persistent surface

inversion events. Such events were defined as any con-

secutive 4 days of surface inversions. On either the second

or the third day of a persistent surface inversion event

(events identified in GWB), if the predicted SIP is greater

than or equal to 35%, then this event was defined as a

‘‘hit’’; otherwise, the event was a ‘‘miss.’’ If an event oc-

curs without being predicted by the SIP (i.e., SIP , 35%),

this event was regarded as a miss. For any persistent sur-

face inversion event lasting longer than 4 days, the hits and

misses were computed independently within each 4-day

period. For instance, a 7-day persistent surface inversion

event would be evaluated as four individual 4-day events.

After obtaining such hits and misses, we constructed a

simple score,
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score 5
hit

(hit 1 miss)
%, (3)

to evaluate the CFS’s forecast skill for predicting per-

sistent surface inversion events via Eq. (1).

Figure 3b shows the number of hits (histogram) and the

score (time series) of the CFS prediction with respect

to lead time. The number of hits declines steadily with

longer lead time but reveals three peaks in weeks 1–2,

3–4, and 5–6. This ‘‘wavy pattern’’ may be partly due to

the 1-week interval between the three ensembles causing

uneven sample sizes. Regardless, the CFS’s score ex-

hibits a similar downward tendency but remains above

50% until week 4 and rises again to above 50% near

week 6. Such prediction skill is consistent with the 2004

case in which the CFS successfully predicted the per-

sistent surface inversion events out to 5 weeks (cf. red

line in Fig. 2b), yet the CFS barely predicts the mid-

February event with a similar lead time (cf. blue dashed

line in Fig. 2b). These forecasts echo the ;50% skill

scores between weeks 5 and 6 in Fig. 3b. Nevertheless,

skill scores of the CFS are consistently higher than those

obtained from the empirical models, suggesting that the

CFS offers a better forecast of persistent surface inver-

sion events with a 4-week lead time. Such skill greatly

surpasses the current inversion prediction procedure

that relies solely on medium-range weather forecast

models. Moreover, since Eq. (2) is practically a function

FIG. 3. (a) Correlation skill of the 200-hPa geopotential height as a function of forecast time

for the CFS, PCRLAG, AR, and persistence forecasts. The shaded area outlines 1 std dev of the

CFS skill. (b) Scores of persistent surface inversion forecasting (lines) for the CFS, PCRLAB,

and AR, superimposed with the number of hits of persistent surface inversion events by the

CFS (gray bars). The computation was performed over a 28-yr (1981–2008) period.
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FIG. 4. Composite eight phases of the 200-hPa Z30d index at KSLC in terms of the filtered

streamfunction (ST30d; contours) and velocity potential (VP30d; shadings) at 200 hPa super-

imposed with the divergent winds (vectors; above the 10% significance level). The calculation

was based on the 28-yr GR-2 data. The contour interval (CI) of ST30d is 1.5 3 106 m2 s21, and

the zero contours are omitted. The golden line at 1208W roughly indicates the position of the

winter mean ridge. The ST30d wave train is illustrated by a red dashed arrow at phases 3 and 7.
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of Eq. (1), the results also indicate an extended predict-

ability of prolonged, high-PM2.5 concentration events

by the CFS.

4. Discussion

Past studies of the MJO prediction have noted that

forecast skill for precipitation typically declines faster

than that for the atmospheric circulation (e.g., Waliser

2005). This is attributable to precipitation’s sensitivity

to high-frequency weather disturbances, which have

little long-term predictability. The proposed regression

scheme with the CFS output, to predict persistent sur-

face inversion events in the Intermountain West, may

show relatively high skill simply because such inversion

events are coupled with slow-moving circulation pat-

terns (i.e., ridges) in contrast to unstable, highly var-

iable precipitation systems (such as fronts). Another

factor may be the CFS’s documented capability in pre-

dicting tropical circulations associated with the MJO.

This factor was inspected through a compiled com-

posite of the 200-hPa streamfunction and velocity po-

tential, following the eight phases of the Z30d index at

KSLC (Fig. 1). Each phase covers 3 days centered on the

second day (dates of the composite are identical to

those analyzed in GWB). Prior to the composite analy-

sis, the streamfunction and velocity potential were band-

passed with 20–40 days, denoted respectively as ST30d

and VP30d.

As shown in Fig. 4, the eight phases of the composite

depict a clear eastward propagation of VP30d with pre-

dominant zonal wavenumber-1 patterns. Embedded

within this typical MJO structure are a series of short-

wave VP30d cells across the northeast Pacific Ocean and

North America. These regional short-wave cells are

accompanied by similarly definite, yet spatially in-

quadrature, wave trains of ST30d. At phases 2 and 3 when

the SIP in Salt Lake City is elevated, the ST30d wave

trains appear to follow the classic ‘‘great circle’’ route of

the Pacific–North America pattern (Horel and Wallace

1981), leading to a prevailing ridge in western North

America. An oppositely signed circulation anomaly is

also evident at phases 6 and 7. Despite the pronounced

eastward propagation of global VP30d, the regional

wave trains of both VP30d and ST30d appear to be

quasi-stationary. Such a feature underscores the fact

that wintertime stationary waves in North America

fluctuate in response to the tropical–extratropical link-

ages of the MJO excited by tropical Pacific diabatic

heating anomalies (e.g., Kushnir 1987; Mo and Nogues-

Paegle 2005). These results strongly suggest that the

occurrence of persistent inversions in the Intermountain

West region is ‘‘phase locked’’ with the MJO evolution.

As a result, the CFS’s skill in predicting the MJO (Seo

et al. 2007, 2009; Weaver et al. 2009) likely assists in

predicting the circulation systems in western North

America that lead to persistent inversions.
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