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Abstract 
 

 
This paper is concerned with the practical problem of conducting inference in a 

vector time series setting when the data is unbalanced or incomplete. In this case, 

one can work only with the common sample, to which a standard HAC/Bootstrap 

theory applies, but at the expense of throwing away data and perhaps losing 

efficiency. An alternative is to use some sort of imputation method, but this requires 

additional modelling assumptions, which we would rather avoid. We show how the 

sampling theory changes and how to modify the resampling algorithms to 

accommodate the problem of missing data. We also discuss efficiency and power. 

Unbalanced data of the type we consider are quite common in financial panel data, 

see, for example, Connor and Korajczyk (1993). These data also occur in cross-

country studies. 
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1 Introduction

Estimation of heteroskedasticity and autocorrelation consistent covariance matrices (HACs) is a

well established problem in time series. Results have been established under a variety of weak

conditions on temporal dependence and heterogeneity that allow one to conduct inference on a

variety of statistics, see Newey and West (1987), Hansen (1992), de Jong and Davidson (2000), and

Robinson (2004). Indeed there is an extensive literature on automating these procedures starting

with Andrews (1991). Alternative methods for conducting inference include the bootstrap for which

there is also now a very active research program in time series especially, see Lahiri (2003) for an

overview. One convenient method for time series is the subsampling approach of Politis, Romano,

andWolf (1999). This method was used by Linton, Maasoumi, andWhang (2003) (henceforth LMW)

in the context of testing for stochastic dominance.

This paper is concerned with the practical problem of conducting inference in a vector time series

setting when the data is unbalanced or incomplete. In this case, one can work only with the common

sample, to which a standard HAC/bootstrap theory applies, but at the expense of throwing away

data and perhaps losing efficiency. An alternative is to use some sort of imputation method, but

this requires additional modelling assumptions, which we would rather avoid.1 We show how the

sampling theory changes and how to modify the resampling algorithms to accommodate the problem

of missing data. We also discuss efficiency and power. Unbalanced data of the type we consider are

quite common in financial panel data, see for example Connor and Korajczyk (1993). These data

also occur in cross-country studies.

2 Model and Set-up

Suppose we have two samples denoted IX and IY on X and Y respectively with cardinalities TX and

TY .We will suppose that the samples are staggered and in particular IX = {X1, . . . , XTX} and IY =
{YTX+1, . . . , YTX+TY }. These observations can be partitioned into TXY common observations, denoted

IXY = {(XTX+1, YTX+1), . . . , (XTX+TXY , YTX+TXY )}, TX separate observations on X, denoted IX =

{X1, . . . ,XTX}, and T Y separate observations on Y, denoted IY = {YTX+TXY +1, . . . , YTX+TY }, so that
TX = TX + TXY and TY = T Y + TXY . There are a number of cases of interest with regard to the

relative magnitudes of TX , T Y , and TXY . The main case of interest theoretically is where they are

all of approximately the same size. The case where TXY is large relative to TX , T Y is trivial, while

the case where TX , T Y are large relative to TXY can be viewed as a limiting version of the main

case. In any case we assume throughout that TX , TY → ∞, and denote by T = TXTY /(TX + TY )

1But if we did go down that path we would advocate a general to specific approach.
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the dominant magnitude. We suppose that the data are temporally and cross-sectionally dependent,

but are stationary and mixing. We assume that the ‘missing data’ arises exogenously, i.e., the MAR

assumption applies, Little and Rubin (1987).

We are concerned with testing hypotheses about the marginal distributions of Xt and Yt. There

are two general types of hypotheses of interest.

Example 1. We want to test the hypothesis that

H0 : µX = E(Xt) = E(Yt) = µY (1)

with alternative either one sided or two-sided. This is a special case of the problem of testing whether

f(mX) = f(mY ), where mX ,mY are vectors of moments (including quantiles) from the distributions

X, Y respectively, and f is a smooth function. A more general version of this would involve regression

on a benchmark variable Zt. Thus suppose that Yt = β>YZt + uY t and Xt = β>XZt + uXt, where

E(ut|Zt) = 0 with ut = (uY t, uXt)
>, and we observe Yt,Xt as stated above but that Zt is observed

throughout t = 1, . . . , TX +TY .Want to test whether f(βY ) = f(βX) for some smooth function f. A

leading example here would concern comparison of two funds α0s (where these are computed relative

to a benchmark fund Zt).

Example 2. We want to test the hypothesis that the distribution of Xt first order dominates

the distribution of Yt. Let FX , FY denote the c.d.f. of X and Y respectively, the hypothesis can be

stated as

H0 : sup
z
{FX(z)− FY (z)} ≤ 0 (2)

with the alternative hypothesis that supz{FX(z)− FY (z)} > 0. More generally can consider tests of
higher order dominance and other related tests.

In the former case, we can expect a normal distribution theory to apply under moment and mixing

conditions, with the possibility of obtaining asymptotically pivotal test statistics, while in the latter

type we expect a more complicated non-normal distribution theory, with complicated dependence on

nuisance parameters precluding asymptotic pivotality.

In example 1 a natural test statistic to use is

τ =
√
T (X − Y ), (3)

where X = T−1X

PTX
t=1Xt and Y = T−1Y

PTX+TY
t=TX Yt. Under standard conditions τ/bσ =⇒ N(0, 1)

under the null hypothesis, where σ2 = avar(
√
T (X−Y )) and bσ2 is a consistent estimate thereof. The

test is based on comparing the studentized τ with standard normal critical values. An alternative

test statistic would be based on only the common sample IXY , τXY =
√
TXY (X

XY − Y
XY
), where

X
XY

= (TXY )−1
P

t∈IXY Xt and Y
XY

= (TXY )−1
P

t∈IXY Yt. In this case also τXY /bω =⇒ N(0, 1)
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under the null, where ω2 = avar(
√
TXY (X

XY − Y
XY
)) and bω2 is a consistent estimate thereof. In

some cases this test may be an attractive option, but when TX and/or T Y is large, this approach

while convenient, may lose power.

In example 2 a natural test statistic is

δ =
√
T max
1≤z ≤L(T )

{ bFX(z )− bFY (z )}, (4)

where bFX(z) = T−1X

PTX
t=1 1(Xt ≤ z) and bFY (z) = T−1Y

PTX+TY
t=TX 1(Yt ≤ z) are the empirical dis-

tribution functions. Here, z are grid points whose cardinality L(T ) increases with sample size.

In this case, the limiting null distribution is ∆F = supz WF (z), where WF is a Gaussian process

with covariance function depending on the joint distribution of X,Y and on the joint autodepen-

dence of these processes. The only feasible way of conducting inference here is to use some sort

of bootstrap procedure. LMW have proposed a subsampling algorithm for the statistic δXY =√
TXY max1≤z ≤L(T ){ bFXY

X (z )− bFXY
Y (z )}, where bFXY

X (z) = (TXY )−1
P

t∈IXY 1(Xt ≤ z) and bFXY
Y (z) =

(TXY )−1
P

t∈IXY 1(Yt ≤ z) are the empirical distributions based on the common sample. Because

δXY is using less data it can also be less powerful than δ. We show below how to modify the LMW

subsampling algorithm to obtain a consistent test based on δ.

3 Inference

3.1 Estimation of Long Run Variance

Here, we show how to estimate σ2 and conduct the test based on a studentized version of τ . Let

γX(j) and γY (j) be the marginal covariance functions of the processes X,Y respectively, and let

γXY (j) = cov(Xt, Yt−j).

Theorem 1. Suppose that (Xt, Yt) is jointly stationary with absolutely summable covariance

function such that
P∞

j=1 j|γXY (j)| <∞. Suppose that TX , TY →∞, and let T = TXTY /(TX+TY )→
∞. Then

var

"
X

Y

#
=

"
1
TX

P∞
j=−∞ γX(j)

TXY

TXTY

P∞
j=−∞ γXY (j)

TXY

TXTY

P∞
j=−∞ γXY (j)

1
TY

P∞
j=−∞ γY (j)

#
+ o(T−1).

This shows that the marginal variances are the usual terms proportional to the full marginal

sample sizes, while the covariance is proportional to the common sample size TXY . The reason is

basically because terms like
PTX+TXY

t=TX+1 Xt and
PTX+TY

t=TX+TXY +1 Yt are asymptotically independent. The

restriction
P∞

j=1 j|γXY (j)| <∞ is only needed for the covariance term, but in its absence this term

may change.
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A consequence of Theorem 1 is that

σ2 ' TY
TX + TY

∞X
j=−∞

γX(j) +
TX

TX + TY

∞X
j=−∞

γY (j)− 2
TXY

TX + TY

∞X
j=−∞

γXY (j), (5)

while ω2 ' P∞
j=−∞ γX(j) +

P∞
j=−∞ γY (j) − 2

P∞
j=−∞ γXY (j). To estimate these quantities we now

apply the HAC theory. Specifically, we can estimate the long-run variances lrv(X) =
P∞

j=−∞ γX(j),

lrv(Y ) =
P∞

j=−∞ γY (j), and lrcov(X, Y ) =
P∞

j=−∞ γXY (j) by corresponding HAC estimators based

respectively on the full sample of X 0s, the full sample of Y 0s, and on the common sample IXY . For

example, let bγX(j) = (TX − j)−1
PTX−j

s=1 (Xs −X)(Xs+j −X) for j = 1, . . . , J(TX) and let

clrv(X) = J(TX)X
j=−J(TX)

k

µ
j

J(TX)

¶bγX(j), (6)

where k(.) is a weight function with support [−1, 1] and J(TX) is a bandwidth parameter satisfying

J(TX) → ∞ and J(TX)/TX → 0. See Andrews (1991) for methods and results on how to choose

J(TX), and Xiao and Linton (2002) and Phillips (2004) for alternative strategies.

We now turn to the properties of the studentized tests τ/bσ and τXY /bω, where bω, bσ are consistent
estimates of ω, σ. Under local alternatives of the form µX = µY + λ/

√
T , we have

τXYbω =⇒ N
¡
πXY , 1

¢
and

τbσ =⇒ N (π, 1) ,

where

π =
λ

σ
and πXY =

λ

ω
lim

TX ,TY→∞

s
TXY (TX + TY )

TXTY
.

Clearly, when TXY /min{TX , TY } → 0 the common sample test has no power against these alter-

natives and τ is preferable. However, the ranking could go the other way. Suppose that TX =

T Y = TXY in which case T = TX/2 = TY /2 = TXY , so that πXY = λ/ω. We then have

σ2 ' (1/2)P∞
j=−∞ γX(j)+(1/2)

P∞
j=−∞ γY (j)−(1/2)

P∞
j=−∞ γXY (j), and it is possible that ω

2 ≤ σ2,

at least when
P∞

j=−∞ γXY (j) > 0. For example suppose that
P∞

j=−∞ γX(j) =
P∞

j=−∞ γY (j) = ϑ andP∞
j=−∞ γXY (j) = ρϑ, then ω2 − σ2 = ϑ(2− 3ρ)/2, which can be negative for ρ > 2/3.2
In conclusion, we have found that although X is always more efficient than X

XY
, the ranking of

τXY , τ as test statistics could go either way - it depends on the relative sample sizes and on their

mutual dependence. We discuss further below the issue of efficiency and local power.

2The extreme case of i.i.d. data with perfect mutual correlation makes the intuition clear - in that case τXY is

constant, while τ will have randomness due to the unmatched samples.
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3.2 Subsampling

In the second class of testing problems it is not possible to obtain pivotality by studentizing the

statistic, and inference is usually based on some sort of resampling scheme. We concentrate on the

subsampling method because it has certain advantages in example 2, see LMW for more discussion.

The problem here is that just subsampling through the data as usual gives you missing data or

confines you only to IXY , which would not adequately reflect the sampling error of τ or δ.

We propose a simple modification of the subsampling procedure suitable for the full dataset

and show that it works in our example 2. Rewrite δ = g(IX , IXY , IY ) for some function g. Define

subsample sizes bX , bXY , and bY with bj → ∞ and bj/T j → 0 for j = X, Y,XY. Then define

subsamples IX,i,bX from IX with

IX,i,bX = {Xi, . . . , Xi+bX−1} for i = 1, . . . , TX − bX + 1,

likewise define subsamples IY,i,b
Y
from IY

IY,i,b
Y

= {YTX+TXY +i, . . . , YTX+TXY +i+bY −1} for i = 1, . . . , T Y − bY + 1,

and define subsamples IXY,i,bXY
from IXY

IXY,i,bXY

= {(XTX+i, YTX+i) . . . , (XTX+i+bXY −1, YTX+i+bXY −1)} for i = 1, . . . , TXY − bXY + 1.

Then define the subsample statistic δT,b,i = g(IX,i,bX , IXY,i,bXY
, IY,i,b

Y
) and likewise τT,b,i, specifically

δT,b,i = max
1≤z ≤L(T )

√
b

⎛⎝ 1

bX + bXY

⎡⎣i+bX−1X
s=i

1(Xs ≤ z ) +
TX+i+bXY −1X

s=TX+i

1(Xs ≤ z )

⎤⎦
− 1

bY + bXY

⎡⎣TX+i+bXY −1X
s=TX+i

1(Ys ≤ z ) +
TX+TXY +i+bY −1X
s=TX+TXY +i

1(Ys ≤ z )

⎤⎦⎞⎠ .

Here, b(T ) is chosen to satisfy (asymptotically)

TY
TX + TY

=
b

bX + bXY
,

TX
TX + TY

=
b

bY + bXY
,

TXY

TX + TY
=

bbXY

(bX + bXY )(bY + bXY )
. (7)

For example, when TX = TY = 2T
XY and bX = bY = bXY we can take b = bX .

We approximate the sampling distribution of δ (or τ ) using the distribution of the values of δT,b,i
(or τT,b,i) computed over the different subsamples. That is, we approximate the sampling distribution

GT of δ by bGT,b(w) =
1

N

NX
i=1

1 (δT,b,i ≤ w) , (8)
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where N(T ) = min{TX − bX + 1, T Y − bY + 1, TXY − bXY + 1} is the number of different feasible
subsamples.3 Let gT,b(1− α) denote the (1− α)-th sample quantile of bGT,b(·), i.e.,

gT,b(1− α) = inf{w : bGT,b(w) ≥ 1− α}.

We call it the subsample critical value of significance level α. Thus, we reject the null hypothesis at

the significance level α if τ > gT,b(1− α).

Although this algorithm does not seem to replicate precisely the temporal ordering [for example,

the sample IX,i,bX is separated temporally from IXY,i,bXY
] this does not matter for the first order

asymptotics because of the asymptotic independence argument.

Theorem 2. Suppose that (Xt, Yt) is jointly stationary and alpha mixing random sequence, and

suppose that under the null hypothesis (2) δ converges in distribution to the random variable ∆F

whose (1− α)-th quantile is denoted by g(1− α). Then, under the null hypothesis (2),

gT,b(1− α)
p→
(

g(1− α) if supz{FX(z)− FY (z)} = 0
−∞ if supz{FX(z)− FY (z)} < 0.

4 Efficient Estimation and Testing

It is well known that the sample mean is an efficient estimate of a population mean in both the

i.i.d. case, Bickel, Klaassen, Ritov, and Wellner (1993, pp 67-68), and in some time series cases,

Grenander (1954). Indeed, this is a case where “OLS=GLS”. We show that this no longer holds

in the unbalanced case and one can obtain a more efficient estimator than the sample mean. This

result carries over to estimation of other quantities like distribution functions. See Bickel, Ritov, and

Wellner (1991) for a more general problem of this type in the i.i.d. case. The more efficient estimator

translates into a more powerful test. In this section we assume that TX , T Y , and TXY are of similar

magnitude to avoid degeneracy.

Define the vector of sample moments

m =

"
1

TX

X
t∈IX

Xt,
1

TXY

X
t∈IXY

Xt,
1

TXY

X
t∈IXY

Yt,
1

T Y

X
t∈IY

Yt

#>
= [m1,m2,m3,m4]

>.

The vector m contains unbiased estimators of the parameter vector θ = (µX , µY )
>. We consider

estimators that minimize the minimum distance criterion (m−Aθ)>Ψ(m−Aθ), where A is the 4×2
matrix of zeros and ones that takes (µX , µY )

> into (µX , µX , µY , µY )
>, while Ψ is a symmetric positive

definite weighting matrix. The resulting estimator has closed form bθ = ¡A>ΨA¢−1A>Ψm, i.e., it is

3A more general approach can be based on δT,b,i,i0,i00 = f(IX,i,b
X

, IXY,i0,bXY , IY,i
00,bY ) and then taking the empirical

distribution across all consistent {i, i0, i00}.
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a linear combination of the elements of m.4 This estimator has asymptotic variance proportional to¡
A>ΨA

¢−1
A>ΨVΨA

¡
A>ΨA

¢−1
, where V is the asymptotic variance of m :

V =

⎡⎢⎢⎢⎢⎣
1
TX

P∞
j=−∞ γX(j) 0 0 0

0 1
TXY

P∞
j=−∞ γX(j)

1
TXY

P∞
j=−∞ γXY (j) 0

0 1
TXY

P∞
j=−∞ γXY (j)

1
TXY

P∞
j=−∞ γY (j) 0

0 0 0 1
TY

P∞
j=−∞ γY (j)

⎤⎥⎥⎥⎥⎦ .

The optimal choice of Ψ is proportional to V −1, in which case bθ has asymptotic variance proportional
to
¡
A>V −1A

¢−1
. The full sample mean θ = (X, Y )> is also a linear combination ofm, θ = Sm, where

S is the 2×4 matrix with first row S1 = T−1X (TX , TXY , 0, 0) and second row S2 = T−1Y (0, 0, TXY , T Y ).

Likewise the subsample mean θ
XY

= (X
XY

, Y
XY
)> = SXYm, where SXY is the 2×4matrix with first

row SXY
1 = (0, 1, 0, 0) and second row SXY

2 = (0, 0, 1, 0). It is easy to show that SV S> ≥ ¡A>V −1A¢−1
and SXY V (SXY )> ≥ ¡A>V −1A¢−1 in the matrix partial order so that bθ is more efficient than both
θ and θ

XY
. Suppose that TX = T Y = TXY and that

P∞
j=−∞ γX(j) =

P∞
j=−∞ γY (j) = ϑ andP∞

j=−∞ γXY (j) = ρϑ. Then:

var(bθ) ' ϑ

T

"
4−2ρ2
4−ρ2

2ρ
4−ρ2

2ρ
4−ρ2

4−2ρ2
4−ρ2

#
; var(θ) ' ϑ

T

"
1 ρ

2
ρ
2
1

#
; var(θ

XY
) ' ϑ

T

"
2 2ρ

2ρ 2

#
.

For all ρ, var(θ)−var(bθ) is positive definite, strictly so for ρ 6= 0. For all ρ, var(θXY
)−var(bθ) is positive

definite, strictly so for ρ 6= 1. We conjecture that bθ is semiparametrically efficient for estimation of
θ. A feasible version of bθ, which shares its limiting distribution, can be obtained from estimates of

V, which can be obtained from the estimates of lrv(X), lrv(Y ), and lrcov(X, Y ) defined like in (6).

We now turn to the testing problem. Define τE =
√
T (1,−1)bθ and let cσE be a consistent estimate

of σE, which can be obtained from the estimates of V as already discussed. It follows that under

local alternatives µX = µY + λ/
√
T,

τEcσE =⇒ N (πE, 1) ,

where πE = λ/σE. Furthermore, |πE| ≥ max{|π|, |πXY |} so that τE/cσE is the most powerful test in
this class. Consider the special case that TX = T Y = TXY ,

P∞
j=−∞ γX(j) =

P∞
j=−∞ γY (j) = ϑ and

4Suppose that TX = TY = TXY and that
P∞

j=−∞ γX(j) =
P∞

j=−∞ γY (j) = ϑ and
P∞

j=−∞ γXY (j) = ρϑ. The

estimator has the natural form:

bθ = 1

4− ρ2

"
(2− ρ2)m1 + 2m2 + ρ(m4 −m3)

ρ(m1 −m2) + 2m3 + (2− ρ2)m4

#
.
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P∞
j=−∞ γXY (j) = ρϑ. We have

π2E =
λ2

ϑ

2− ρ

2− 2ρ ≥ max{(π
XY )2, π2} = λ2

ϑ
max{ 1

2− 2ρ,
2

2− ρ
}.

For the range ρ ∈ [−1, 0.5], π2E/π2 is quite modest, it lies in [1, 1 · 12], but as ρ → 1, π2E/π
2 → ∞.

On the other hand π2E/(π
XY )2 = 2− ρ ∈ [1, 3].5

We briefly report the results of a simulation study that investigates τE, τ , τXY in the case where

Xt = X∗
t + λ/

√
T with X∗

t = φX∗
t−1 + εt, Yt = φYt−1 + ηt, where (εt, ηt) are jointly standard normal

with correlation ρ. In this case,
P∞

j=−∞ γX(j) =
P∞

j=−∞ γY (j) = (1 − φ)−2 and
P∞

j=−∞ γXY (j) =

(1 − φ)−2ρ. We take TX = T Y = TXY = 60 corresponding to 5 years of monthly data and φ = 0.5

throughout, while varying ρ ∈ {−0.9, 0, 0.5, 0.9}. The power curves for the 0.05 level two sided tests
are shown in Figure 1 calculated from 100,000 replications.

Figure 1.

5In this case we can write

τE =
√
T

1

2− ρ
[(1− ρ)(m1 −m4) + (m2 −m3)] ,

which gives a nice interpretation - as ρ increases more weight is put on the common sample difference.
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Throughout, the test based on τE has the higher power curve, but who comes second changes

according to the design: the common sample test does very poorly when ρ = −0.9, while the full
sample test does very poorly when ρ = 0.9, as predicted by the theory. We acknowledge that the

feasible version of τE can suffer from small sample effects that might diminish its edge, and we intend

to investigate this in future work.

Finally, this estimation/testing strategy can also be applied to the c.d.f.’s in example 2. Specifi-

cally, define for each z the vector of sample moments

mz =

"
1

TX

X
t∈IX

1(Xt ≤ z),
1

TXY

X
t∈IXY

1(Xt ≤ z),
1

TXY

X
t∈IXY

1(Yt ≤ z),
1

T Y

X
t∈IY

1(Yt ≤ z)

#>
,

and define estimates bFE
X (z) and bFE

Y (z) by the above minimum distance strategy. Then define δE =√
T max1≤z ≤L(T ){ bFE

X (z )− bFE
Y (z )}. By construction bFE

X (z) and bFE
Y (z) are more efficient than bFX(z)

and bFY (z), and it may be possible to show that tests based on δ
E are more powerful than those based

on δ. The same subsampling algorithm described in section 3.2 could be used to set critical values.

5 Concluding Remarks

We have shown how to modify inference procedures in the case of unbalanced data. In particular,

we showed how to conduct valid inference for the ‘natural’ full sample test statistics τ , δ in our two

examples. We also showed that these may not be the most powerful tests, and indeed there are

situations where using only the common sample may be superior. We proposed more efficient tests

that use all the data and require estimates of long run variances to do the optimal weighting.

6 Appendix

Proof of Theorem 1. By standard arguments

var(X) ' 1

TX

∞X
j=−∞

γX(j) and var(Y ) '
1

TY

∞X
j=−∞

γY (j).
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It remains to calculate cov(X, Y ). For notational brevity write xt = Xt−E(Xt) and yt = Yt−E(Yt).

Then

cov(X, Y ) =
1

TXTY
E

⎡⎣⎛⎝ TXX
t=1

xt +
TX+TXYX
t=TX+1

xt

⎞⎠⎛⎝ TX+TYX
t=TX+TXY +1

yt +
TX+TXYX
t=TX+1

yt

⎞⎠⎤⎦
=

1

TXTY
E

⎡⎣TX+TXYX
t=TX+1

xt

TX+TYX
t=TX+TXY +1

yt

⎤⎦+ 1

TXTY
E

⎡⎣ TXX
t=1

xt

TX+TYX
t=TX+TXY +1

yt

⎤⎦
+

1

TXTY
E

⎡⎣TX+TXYX
t=TX+1

xt

TX+TXYX
t=TX+1

yt

⎤⎦+ 1

TXTY
E

⎡⎣ TXX
t=1

xt

TX+TXYX
t=TX+1

yt

⎤⎦
= I + II + III + IV.

We have

III =
TXY

TXTY

X
|j|≤TXY

µ
1− |j|

TXY

¶
γXY (j) '

TXY

TXTY

∞X
j=−∞

γXY (j) = O(T−1)

by dominated convergence. Define the integer sets

Iu = {t : s− t = u; s = TX + TXY + 1, . . . , TX + TY ; t = 1, . . . , T
X},

I 0u = {t : s− t = u; s = TX + TXY + 1, . . . , TX + TY ; t = TX + 1, . . . TX + TXY }, u ≥ 1,

and let nu (n0u) denote the cardinality of Iu (I
0
u), noting that nu, n

0
u ≤ u for all u. Then,

II =
1

TXTY

TXX
t=1

TX+TYX
s=TX+TXY +1

γXY (s− t) =
1

TXTY

TX+TY −1X
u=TXY +1

nuγXY (u)

≤ 1

TXTY

∞X
u=TXY +1

u|γXY (u)| = o(T−2),

because
P∞

u=1 u|γXY (u)| <∞. Also,

I =
1

TXTY

TX+TXYX
t=TX+1

TX+TYX
s=TX+TXY +1

γXY (s− t) =
1

TXTY

TY −1X
u=1

n0uγXY (u) = O(T−2),

by the same reasoning. Likewise IV = O(T−2).

Proof of Theorem 2. The proof is based on showing that

U(·) =
√
b

⎛⎝ 1

bX + bXY

⎡⎣i+bX−1X
s=i

1(Xs ≤ ·) +
TX+i+bXY −1X

s=TX+i

1(Xs ≤ ·)
⎤⎦

− 1

bY + bXY

⎡⎣TX+i+bXY −1X
s=TX+i

1(Ys ≤ ·) +
TX+TXY +i+bY −1X
s=TX+TXY +i

1(Ys ≤ ·)
⎤⎦⎞⎠
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satisfies a functional central limit theorem with limit WF (·). The main step is to show that U(z)
has asymptotically the same variance as

√
T{ bFX(z) − bFY (z)}, and this follows using the proof of

Theorem 1, i.e.,

var(U(z)) ' b

bX + bXY

∞X
j=−∞

γFX(z)(j) +
b

bY + bXY

∞X
j=−∞

γFY (z)(j)

−2 bbXY

(bX + bXY )(bY + bXY )

∞X
j=−∞

γFXY (z,z)
(j),

where γFX(z)(j) = cov(1(Xt ≤ z), 1(Xt−j ≤ z)), γFY (z)(j) = cov(1(Yt ≤ z), 1(Yt−j ≤ z)), and

γFXY (z,z)
(j) = cov(1(Xt ≤ z)1(Yt ≤ z), 1(Xt−j ≤ z)1(Yt−j ≤ z)). The two variances coincide when

(7) holds.
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