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ABSTRACT 

 

 

Evapotranspiration Modeling and Forecasting for Efficient  

 

Management of Irrigation Command Areas 

 

 

by 

 

 

Roula Bachour, Doctor of Philosophy 

Utah State University, 2013 

 

 

Major Professor: Dr. Wynn R. Walker 

Department: Civil and Environmental Engineering 

 

 It has become very crucial to manage water resources to meet the needs of the 

growing population. In irrigation command areas, and in order to build a better plan to 

manage service delivery from canals and reservoirs, it is important to build appropriate 

knowledge of water needs on a field basis. There is often a lag between the order and 

delivery of water to the field. Knowledge of the crop water requirement at the field level 

helps the decision maker to make the right choices leading to more efficient handling of 

the available water. The purpose of this study was to develop methodologies and tools 

that allow better management of irrigation water and water delivery systems, such as 

machine learning models that can be used as tools for decision support systems of water 

management. To achieve better modeling and prediction, wavelet decompositions were 

explored for their ability to give information about time and frequency changes in the 

data. Remote sensing approaches were also used for their ability to quantify water 

requirements at the spatial level. Therefore, this dissertation explored the use of the 
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above-mentioned data tools and techniques to address water management problems. The 

framework of this dissertation consisted of three components that provide tools to support 

irrigation system operational decisions. In general, the results for each of the methods 

developed were satisfactory, relevant, and encouraging. They provided significant 

potential for improving decision making for real-time applications in irrigation command 

areas and better management of the water resources. 

  (114 pages) 
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delivery of water to the field. Knowledge of the crop water requirement at the field level 

helps the decision maker to make the right choices leading to more efficient handling of 

the available water. The purpose of this study was to develop methodologies and tools 

that allow better management of irrigation water and water delivery systems, such as 

machine learning models that can be used as tools for decision support systems of water 

management. To achieve better modeling and prediction, wavelet decompositions were 

explored for their ability to give information about time and frequency changes in the 

data. Remote sensing approaches were also used for their ability to quantify water 

requirements at the spatial level. Therefore, this dissertation explored the use of the 
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above-mentioned data tools and techniques to address water management problems. The 

framework of this dissertation consisted of three components that provide tools to support 

irrigation system operational decisions. In general, the results for each of the methods 

developed were satisfactory, relevant, and encouraging. They provided significant 

potential for improving decision making for real-time applications in irrigation command 

areas and better management of the water resources. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 General Introduction 

 The steadily increasing world population will place a growing burden on global 

food security, especially in regions where water supplies may not be sufficient for both 

food production and potable water. Even more striking is the growing dependence on 

irrigated production to provide sufficient food supply. Competition for water, high 

pumping costs, complexities of water storage and delivery, and concerns for the 

environment are among the factors that drive an interest in improving the water use 

efficiency and the operation of large irrigation systems. For purposes of timely and 

efficient water application, agricultural managers have long relied on evapotranspiration 

(ET) measurements or estimations. Therefore, an accurate assessment of ET is 

prerequisite to improving water management practices. 

 ET is one of the main components of the hydrological cycle. It is a complex 

process driven mainly by weather parameters. The FAO Penman-Monteith (PM) model 

has become the generally accepted standard for calculating ET (Allen et al. 2006). Inputs 

required for the PM computations include several climatic variables such as air 

temperature, relative humidity, wind speed, and solar radiation that are not always 

available or reliable. In such cases, the equation developed by Hargreaves and Samani 

(1985) can be used with reasonable results, and it only requires measured daily air 

temperature data and computed extraterrestrial radiation. This equation, when calibrated 

for a specific area, is a useful tool for estimating ET with limited weather data. 
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 Accurate estimation of ET is very important, but the crucial element for 

management of irrigation systems remains in providing a reliable short-term forecast of 

ET. Data-driven models based on the machine learning approach have been widely used 

in hydrological modeling for forecasting purposes. Data-driven models have the 

capability to learn from previous experiences, and thus offer a potentially powerful tool 

in capturing the behavior of real systems by relating inputs and outputs. They are robust 

and are capable of making reasonable prediction using historical data (Gill et al. 2006; 

Kaheil et al. 2008). 

 ET is characterized by high non-linearity and non-stationarity (Hernandez et al. 

2011), which makes forecasting daily ET difficult. Recently, wavelet transform has 

become a useful technique for analyzing variations, periodicities and trends in 

hydrological time series (Labat et al. 2005). Wavelet transforms, which can produce a 

good local representation of a signal in both time and frequency domains, provides 

considerable information about the structure of the physical process to be modeled (Li et 

al. 1999). The wavelet transform can be combined with machine learning, the 

multivariate relevance vector machine (MVRVM), and the resulting hybrid models can 

provide a new alternative to the evapotranspiration estimation and forecasting problem, 

and provide accurate reliable forecasts. 

 Another critical element in agricultural water management is the capability to 

develop spatially distributed estimations of ET rates over large irrigated areas. Methods 

for quantifying ET based on meteorological point measurements are still unable to 

provide spatial ET at large scales, mostly because of the heterogeneity of the land surface 

and the dynamic nature of the heat transfer processes (Kaheil et al. 2008). In the recent 
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years, remote sensing has become a very useful tool for estimating ET at various 

temporal and spatial scales. Algorithms for mapping ET using energy balance approaches 

have demonstrated accuracy in determining the spatial distribution of actual ET 

(Bastiaanssen et al. 2008). For irrigation command area applications, medium spatial 

resolution images (<100 m) are available from satellites and are used in those algorithms.

 Nonetheless, the estimation is restricted to the day when the geospatial 

information is obtained, which can be up 16 days for a medium spatial resolution satellite 

like Landsat. Therefore, daily spatial ET is not available due to temporal resolution of 

satellites and/or gaps in image acquisition due to cloud cover. Also, without information 

of precise daily water crop demand, there is a continuous challenge for the 

implementation of better water distribution and management policies in the irrigation 

system. As an alternative, data from remote sensing ET algorithms could be used for 

developing machine learning models, such as relevance vector machines (RVM), that can 

predict daily ET on spatial level using information that can be available on daily basis. 

This is the general objective of this work and the information generated by the 

technology proposed herein should be beneficial to both farmers and operators of 

irrigation supply/distribution systems. 

 

1.2 Purpose and Objectives 

The purpose of this study is to develop methodologies and tools that promote 

better management of irrigation water and water delivery systems. The work reported 

here is directed towards forecasted crop water demands. Using machine learning tools in 

which time and frequency decompositions of the ET time series are applied to Landsat 
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data, results in models that provide real-time information for use in improved irrigation 

scheduling at the farm level and enhanced operations of canal deliveries. 

 The specific objectives of this research were to: 

 Assess the performance of the Hargreaves (HG) equation for estimating ET in the 

semiarid conditions at daily, weekly, and monthly timescales. 

 Develop an adjusted form of the HG equation calibrated to semiarid conditions in 

order to improve the estimation of daily, weekly, and monthly ET. And, to evaluate 

the performance of the adjusted HG equation if combined with additional weather 

variables. 

 Present a methodology to decompose ET time series in the frequency domain using 

wavelet analysis. 

 Develop data-driven modeling techniques coupled with the wavelet-based 

multiresolution analysis (MRA) to build a hybrid model that will generate short-term 

daily ET forecasts. And, to evaluate these hybrid models for accuracy and robustness. 

 Develop spatially distributed estimation of ET rates over large irrigated areas using 

remotely sensed data from Landsat satellite imagery and scientifically accepted 

algorithms for spatial estimation of ET on a field-by-field basis. And, to evaluate the 

efficiency of irrigation supply systems in the irrigation command area using spatial 

estimation of ET. 

 Develop a data-driven model to provide a spatial distribution of ET that can be 

applied even on the days when Landsat is not passing over the area. 
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1.3 Dissertation Organization 

The dissertation has three main components in paper format. In Chapter 2, an 

assessment of the performance of the Hargreaves (HG) equation for estimating 

evapotranspiration (ET) in the semiarid conditions of the Bekaa Valley of Lebanon at 

daily, weekly, and monthly timescales has already been published. This work included an 

adjusted form of the HG equation calibrated to the study area. 

Chapter 3 discusses a methodology combining a wavelet multiresolution analysis 

(MRA) with a statistical machine learning algorithm, the multivariate relevance vector 

machine (MVRVM), in order to develop a hybrid model that can forecast daily ET up to 

16 days ahead. The models are compared to MVRVM model and evaluated for accuracy 

and robustness. The addition of 10-days forecasted air temperature to the forecasting 

models is also investigated in this chapter. 

Chapter 4 discusses the application of the remote sensing algorithm METRIC 

(Mapping Evapotranspiration at High Resolution with Internalized Calibration) to map 

ET at spatial level with high resolution. It also covers the evaluation of the efficiency of 

water delivery and distribution systems. This chapter also presents the methodology to 

develop a relevance vector machine that can provide spatial distribution of ET, it presents 

the basic details of the RVM and the methodology used to develop the model. 

Chapter 5 provides a summary of this work, draws the major conclusions that 

follow, and presents recommendations for further research. 

 The structure of this dissertation is based on the multiple-paper format. As a 

result, some redundancies and repetition of parts of the material presented occur, 

especially the description of the study area and of the data-driven algorithm used. 
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CHAPTER 2 

 

ASSESSMENT OF REFERENCE EVAPOTRANSPIRATION BY THE  

HARGREAVES METHOD IN THE BEKAA VALLEY, LEBANON† 

 

 

Abstract 

 Evapotranspiration (ET) is an important component of the hydrologic cycle, 

especially for irrigated agriculture. Direct methods of estimating reference ET are 

difficult or require many weather variables that are not always available at all weather 

stations. The Hargreaves Equation (HG) requires only measured daily air temperature 

data and computed extraterrestrial radiation for ET estimates. Unless it is regionally 

calibrated, however, HG often tends to systematically overestimate or underestimate ET. 

This equation was evaluated under semiarid conditions in the Bekaa Valley of Lebanon 

using 18 years of complete daily climatic data from the Terbol weather station. HG 

results were compared to ET estimates obtained from the FAO56 Penman Monteith 

equation (PM), which was used as a standard. The original HG equation overestimated 

ET by 23, 17, and 12% for daily, weekly, and monthly ET as compared to PM. The 

results of a simple linear regression applied to obtain the calibrated HG coefficients for 

all three time steps showed that the calibrated equation improved the accuracy of the 

estimation to 3, 2, and 1% difference from ET computed by the PM method, with root 

mean square error (RMSE) of 0.48, 0.33, and 0.25 mm d-1 for daily, weekly, and monthly 

ET, respectively. Additional improvement in HG estimation accuracy was achieved by 

                                                           

† Reprinted from Journal of Irrigation and Drainage Engineering, ASCE, 10.1061/(ASCE)IR.1943-

4774.0000646 (Vol. 139, No. 11, November 1, 2013), Roula Bachour, Wynn R. Walker, Alfonso F. Torres-

Rua and Mac McKee, Assessment of Reference Evapotranspiration by the Hargreaves Method for the 

Bekaa Valley, Lebanon. Copyright (2013), with permission from ASCE 
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adding the wind speed using a backward variable selection method. This method resulted 

in only a slight improvement, reaching less than a 1% difference for all timescales and 

RMSE of 0.46, 0.31, and 0.22 mm d-1 for daily, weekly, and monthly ET, respectively. 

Thus, when only temperature data are available, the calibrated HG equation is 

recommended for use in the semiarid conditions of Lebanon, and when complete and 

reliable weather data exist, the use of the standard FAO56 PM equation is recommended. 

 

2.1 Introduction 

  Evapotranspiration (ET) is an important component of the hydrologic cycle of 

agricultural systems, particularly of irrigated agriculture. The steadily increasing world 

population will place a growing burden on global food security, especially in regions 

where water supplies may not be sufficient for both food production and potable water. 

Even more striking is the growing dependence on irrigated production, which results in 

higher, more dependable yields.  It is now reported that 19% of the global agricultural 

land is irrigated but is producing almost 40% of the total food supply (Food and 

Agriculture Organization [FAO] 2002). In the United States the irrigated fraction has 

now reached 18%, but this relatively small area generates 50% of the total value of U.S. 

cropland production (U.S. Department of Commerce [USDC] 1999). 

  One assessment indicates that only 10% of the needed increases in food 

production necessary to support projected population growth can come from expanded 

development in arable land (Schultz et al. 2005). At most, 13% will be contributed from 

new cropping systems and increased cropping intensity. The remaining must be met from 

yield increases and better water use efficiency (FAO 2003). Most studies conclude that 

much, if not most, of the water for expanded food production and urban requirements will 
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have to be met by non-technical means such as better and more efficient water 

management.  Thus, in the arid and semiarid regions where irrigation is needed to achieve 

high crop yields, an accurate assessment of ET is prerequisite to water management 

practices aimed at improving conservation and yields or mitigating water overutilization 

and environmental degradation (Hargreaves and Allen 2003). 

  The FAO Penman-Monteith (PM) model has become the generally accepted 

standard for calculating ET (Allen et al. 1998, 2006). Input required for the PM 

computations include several climatic variables such as air temperature, relative 

humidity, wind speed, and solar radiation that are not always available, especially in 

developing countries.  Where climatic data are limited, the equation developed by 

Hargreaves and Samani (1985) can be used with reasonable results (Allen et al. 1998). 

The Hargreaves Equation (HG) requires only measured daily air temperature data and 

computed extraterrestrial radiation (Droogers and Allen 2002). Hargreaves and Allen 

(2003) stated that the HG method produces best results for weekly or longer period 

estimates of ET because daily estimates are subject to errors caused by the influence of 

the temperature range, wind speed, and cloud cover. Samani (2004) suggested that the 

HG equation should not be overextended to different climatic conditions unless it has 

been calibrated to the specific area.  Calibration is usually accomplished by comparison 

with the PM method. 

  Several attempts to assess the performance of the HG equation have been made. 

In some cases, the results indicated a close alignment with results given by PM (Droogers 

and Allen 2002; Hargreaves and Allen 2003; Trajkovic and Kolakovic 2009; Tabari 

2010). A tendency to overestimate ET by the HG method was reported in inland areas 
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where temperature differences are high and wind speed is low, while underestimation 

was reported mainly in coastal areas (Droogers and Allen 2002; Vanderlinden et al. 2004; 

Gavilán et al. 2006; Jabloun and Sahli 2008; Martinez and Thepadia 2010; Azhar and 

Perera 2011; Mendicino and Senatore 2012; Tabari et al. 2013). However, it is possible to 

improve the accuracy of the HG equation either by adjusting the parameters to local 

conditions (Droogers and Allen 2002; Vanderlinden et al. 2004; Rahimi Khoob 2008; 

Zhai et al. 2010) or by adding other variables such as wind speed or elevation 

atmospheric pressure (Allen 1993, 1995; Jensen et al. 1997; Droogers and Allen 2002; 

Marinez-Cob and Tejero-Juste 2004; Fooladmand et al. 2008; Fooladmand 2011; 

Xystrakis and Matzarakis 2011; Ravazzani et al. 2012). Whenever complete reliable data 

are not available, the HG equation is used after local calibrations for a specific climate or 

region (Fooladmand et al. 2008; Martinez and Thepadia 2010). 

  In Lebanon, more than 70% of surface and groundwater is diverted for irrigated 

agriculture, making the accurate estimation of ET very important. The Bekaa Valley, 

with a semiarid climate, is the major agricultural region in Lebanon, and the evaluation of 

ET equations specific to this area is of major interest. Although few weather stations in 

the region have complete data for use in PM equation, many have air temperature and 

precipitation data. Therefore, the main objective of this paper is to develop an adjusted 

form of the HG equation that is calibrated to the Bekaa valley at daily, weekly, and 

monthly timescales. A second objective is to assess the performance of the adjusted HG 

equation while adding different weather variables in order to assess what additional 

weather data would improve the estimation of ET. 
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2.2 Methodology 

2.2.1 Site Description 

 The International Center for Agricultural Research in the Dry Areas (ICARDA) 

research center in Terbol, Lebanon operates a weather station near the center of the 

Bekaa Valley (Fig. 2.1) in which daily solar radiation, minimum and maximum 

temperatures, wind speed, precipitation, and relative humidity are recorded.  The weather 

station is located at 33°49’ N latitude, 35° 59’ E longitude and 890 m above sea level, in 

the middle of a 1.2 ha (110 x 110m) plot of well irrigated grass maintained at a height of 

10–15 cm. It is also surrounded by irrigated agricultural crops. The temperature and 

humidity sensors, and the anemometer are placed at 1.5 and 2 m above the soil surface, 

respectively. The quality and integrity of the weather data were assessed before being 

used in the study following the procedures described in Allen (1996). Data for the days 

for which one or more weather variable were not available were excluded from the 

analysis. The Bekaa Valley is characterized by a semiarid climate, with cold winters, dry 

summers, and favorable growing conditions; it has an average annual precipitation of 

500–600 mm. The average monthly weather data from 1993–2010 are presented in Table 

2.1, which shows January as the coldest month, with a mean temperature of 5.2°C, and 

August as the warmest month, with a mean temperature of 23°C. The average wind speed 

throughout the year is 1.9 m s-1, with 58.4 percent relative humidity, and 18.8 MJ m-2 d-1 

average annual solar radiation. 
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Fig. 2.1. Location of Terbol weather station in the Bekaa Valley, Lebanon 

 

Table 2.1. Monthly Averages of Weather Variables at Terbol Station During 1993–2010  

 Months 

Tmax 

(°C) 

Tmin 

(°C) 

Tmean 

(°C) 

RH 

(%) 

Rs 

(MJ/m2) 

U2 

(m/s) 

P 

(mm) 

January 11.5 -1.2 5.2 66.9 8.7 1.7 124 

February 12.7 -0.4 6.1 65.0 11.5 2.1 114 

March 16.6 1.3 8.9 60.0 16.5 2.2 71 

April 21.3 3.8 12.6 57.3 21.3 2.1 26 

May 27.3 6.8 17.0 53.4 26.6 1.9 5 

June 31.4 9.1 20.3 51.3 29.4 2.2 0 

July 33.8 11.5 22.7 52.2 28.9 2.4 0 

August 34.3 11.8 23.0 53.2 26.3 2.1 0 

September 31.1 9.8 20.4 55.7 21.8 2.0 2 

October 26.1 7.1 16.6 57.4 15.4 1.6 20 

November 18.7 2.6 10.6 61.7 10.9 1.5 61 

December 13.8 0.0 6.9 66.8 8.1 1.5 87 
Note: Tmax is the maximum air temperature (°C), Tmin is the minimum temperature (°C), Tmean is the mean 

monthly temperature (°C), RH is the average relative humidity (%), Rs is the solar radiation (MJ/m2), U2 is 

the wind speed at 2m (m/s), and P is the monthly precipitation (mm) 
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2.2.2 Estimating Reference Evapotranspiration 

2.2.2.1 FAO-56 Penman-Monteith 

  Daily values of reference crop ET were made from the Terbol weather data for the 

period 1993–2010 using the following PM equation as suggested by Allen et al. (1998): 

)34.01(

)(
273

900
)(408.0

_
2

2

U

eeU
T

GR

PMET
asn












 (2.1) 

In Eq. (2.1), ET_PM = reference evapotranspiration (mm d-1); Δ = slope vapor pressure 

curve (kPa °C-1); Rn = net radiation at the crop surface (MJ m-2 d-1); G = soil heat flux 

density [MJ m-2 d-1]; γ = psychrometric constant (kPa °C-1); T = mean daily air 

temperature at 2 m height (°C); U2 = wind speed at 2 m height (m s-1); es = saturation 

vapor pressure (kPa); ea = actual vapor pressure (kPa); es - ea = saturation vapor pressure 

deficit (kPa); and it is assumed that Eq. (1) is applied to a hypothetical crop with a height 

of 0.12 m, having a surface resistance of 70 s m-1 and an albedo α = 0.23. Soil heat flux 

was ignored for daily and weekly time steps, while for longer time steps it was calculated 

according to Allen et al. (1998). The computations of all required data for calculating ET 

were accomplished using the method given in Chapter 3 of FAO paper 56 (Allen et al. 

1998). 

 

2.2.2.2 Hargreaves Method 

  The ET was also estimated using the HG equation according to Hargreaves and 

Samani (1985): 

  minmax)8.17(0023.0_ TTTRHGET a              (2.2) 

with,  
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where: ET_HG = reference evapotranspiration (mm d-1); Ra = extraterrestrial radiation 

(mm d-1) [Eq. (2.3)]; T, Tmax and Tmin = mean, maximum and minimum temperature (°C), 

respectively; dr = inverse relative distance Earth-Sun [Eq. (2.4)]; ωs = sunset angle 

(radians) [Eq. (2.5)]; φ = latitude (radians); δ = solar declination (radians) [Eq. (2.6)]; and 

J = the day of the year. 

 

2.2.2.3 Calibrated Hargreaves Equation 

 To acquire an improved estimate of ET with limited weather data, the parameters 

of the HG equation can be calibrated to fit the local conditions. A simple linear regression 

was applied to fit the two empirical constants of the HG equation to ET values calculated 

using the PM method. The equation was calibrated by finding new values for the HG 

empirical constants that minimize the root mean square error (RMSE) between the ET 

values determined using the PM method and those obtained from this modified HG 

equation (HGmod). This was done for ET estimations at daily, weekly, and monthly 

timescales. 

 The significance of all available weather parameters was also tested to determine 

if the modified HG equation could be further improved. This was done using a backward 

variable selection method where all the weather parameters are included in the model as 
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variables. These variables are used as potential predictors, and then the least significant 

variable with the highest P-value is dropped. This step is repeated successively until all of 

the remaining variables are statistically significant at the α = 0.05 level. 

 

2.2.3 Evaluation Procedures 

 All comparisons between the different forms of the equations were performed by 

simple linear regression y = bo + b1x, where y is the dependent variable, ET_PM, x is the 

independent variable (ET by the different HG forms), bo is the intercept, and b1 is the 

slope. The coefficient of determination, R2, and the RMSE were used for evaluating the 

different equations. These were computed as: 
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where, yi = estimated ET by the PM method for day i (mm d-1); xi = estimated ET by the 

different types of the HG equation for day i (mm d-1); x̄ and ȳ = average of xi and yi; and n 

= total number of observations. 

 

2.3 Results and Discussion 

2.3.1 Evaluation of the Hargreaves Method 

 The original HG method [Eq. (2.2)] was compared to PM [Eq. (2.1)] for daily, 

weekly and monthly ET estimates. The HG method showed an overestimation of ET for 
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all time steps, as shown in Fig. 2.2. For daily ET, the overestimation is about 23% (Fig. 

2.2[a]), which agrees with the findings of Vanderlinden et al. (2004), Jabloun and Sahli 

(2008), Martinez and Thepadia (2010), Tabari et al. (2013), and others who reported 

overestimation by the HG method in interior areas. Therefore, the HG method is not 

suggested for use in the semiarid conditions of the Bekaa Valley without being modified 

to fit the local conditions. The deviation from the results of the PM equation is reduced 

with longer time steps.  The differences between the HG and PM results were 17% for 

weekly and 12% for monthly ET estimates (Fig. 2.2[b and c]), which confirms the 

recommendation made by Hargreaves and Allen (2003) to use the HG method for long 

time steps due to the fact that the daily fluctuation of temperature, ΔT, and other weather 

variables can change ET estimation significantly. 

 

Fig. 2.2. Comparison of ET_PM with original HG for (a) daily; (b) weekly; (c) monthly 

time steps for 16 years 

 

2.3.2 Local Calibration 

 The simplest modification to the Hargreaves equation is to calibrate the 

equation by finding values for the two constant parameters that minimize the RMSE 

between ET values determined using the PM method as recommended by Allen (1993), 

Droogers and Allen (2002), Hargreaves and Allen (2003), and Jabloun and Sahli (2008). 
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A linear regression was applied to the entire data set (n = 6,223) in order to get new 

coefficients for the HG equation. The resulting modified HG (HGmod1) equation forms are 

as follows: 

For daily estimates:    minmax1mod )8.15(0019.0 TTTRHG a

d     (2.9) 

For weekly estimates:  minmax1mod )5.16(0020.0 TTTRHG a

w   (2.10) 

For monthly estimates: minmax1mod )4.18(0020.0 TTTRHG a

m   (2.11) 

  Several studies have addressed the accuracy of the HG equation and have 

produced similar coefficient changes: Allen (1993) changed the coefficients to 0.0030 

and 20 for Davis, California, while Droogers and Allen (2002) found 0.0025 and 16.8 to 

be good calibrating coefficients for the International Water Management Institute (IWMI) 

Climate Atlas monthly data grids. Gavilán et al. (2006) reported the coefficients 0.0021 

and 0.0027 for the Andalusia (Spain) regional calibration. Martinez-Cob and Tejero-Juste 

(2004) recommended using the coefficient 0.0020 for non-windy locations instead of 

0.0023, as originally proposed by Hargreaves and Samani (1985). ET results calculated 

by the modified HG equations were again compared to ET estimates by the PM method 

and are plotted in Fig. 2.3. An improvement in ET estimation is obvious in Fig. 2.3, 

which shows the relationship between modified HG and PM for daily, weekly, and 

monthly ET. Table 2.2 lists the statistics of the comparisons between the PM method and 

the different forms of the HG equation reported here. The agreement between PM and 

original HG increased from daily to weekly time steps, reaching a close correlation (R2 = 

0.98) and very low RMSE for monthly time steps (0.29 mm d-1). The original HG 

equation was overestimating ET by 23, 17 and 12% for daily, weekly, and monthly ET, 

respectively. When the HG equation coefficients were modified [Eqs. (2.9),(2.10) and 
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(2.11)], the improvement in the estimates was significant. ET estimated by the modified 

HG equation (HGmod1) was on average 2.6% lower than PM for daily estimation, with a 

RMSE of 0.48 mm d-1, while for weekly averages it was 2.2% less, with a RMSE of 0.33 

mm d-1. Finally, for monthly ET, HGmod1 was 1.3% less than PM, with a RMSE of 0.25 

mm d-1. These results show the importance of adjusting empirical equations.  

 

 

Fig. 3. Comparison of ET_PM with modified HG (HGmod1)for (a) daily; (b) weekly; (c) 

monthly time steps for 16 years 

 

  After modifying the HG equation coefficients, and in order to determine whether 

a better estimation of daily and weekly ET could be achieved, a backward variable 

selection method was applied that identifies the important weather variables to be added 

to the modified equations for a more accurate ET estimate. All weather variables were 

 

Table 2.2. Comparison of ET Estimated by FAO-PM Equation and the Different Forms 

of HG Equations for Three Timescales 

Equation 

Form 

Daily Weekly Monthly 

Fit 
RMSE    

(mm d-1) 
R2 Fit 

RMSE     

(mm d-1) 
R2 Fit 

RMSE    

(mm d-1) 
R2 

ET_HG 1.232 x ETPM 0.600 0.930 1.166 x ETPM 0.387 0.969 1.117x ETPM 0.295 0.982 

HGmod1 0.974 x ETPM 0.481 0.930 0.978 x ETPM 0.333 0.968 0.987 x ETPM 0.253 0.983 

HGmod2 1.009x ETPM 0.462 0.937 1.009 x ETPM 0.312 0.972 1.014 x ETPM 0.221 0.987 

Note: RMSE is the root mean square error; R
2
 is the coefficient of determination 
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included in the model, and then the least significant variable was dropped. This step was  

repeated successively until all of the remaining variables were statistically significant at α 

= 0.05. For ET estimation using the adjusted HG method, wind speed was selected by the 

model as the significant variable for all time steps. This selection agrees with the 

recommendations of Martinez-Cob and Tejero-Juste (2004) for semiarid regions, 

although Ravazzani et al. (2012) noted the importance of adding altitude to the calibrated 

HG equation. Since the wind speed variable was shown to be of more importance to the 

model, it was added to the modified HG equation forms, and the following equations 

(HGmod2) were evaluated: 

Daily: UTTTRHG a

d 0765.0)8.15(0019.0 minmax2mod        (2.12) 

Weekly: UTTTRHG a

w 0704.0)5.16(0020.0 minmax2mod   (2.13) 

Monthly: UTTTRHG a

m 0608.0)4.18(0020.0 minmax2mod   (2.14) 

  Eqs. (2.12), (2.13) and (2.14) were used to estimate ET, and the results were 

compared to the standard ET_PM as plotted in Fig. 2.4. The estimation showed slight 

improvement over the results given by HGmod1 when compared to the PM method, with a 

1% overestimation on average for all time steps. The new form, HGmod2, produced ET 

estimates 0.9% higher on average than ET_PM for both daily and weekly ET, and 1.4% 

higher for monthly ET values. Adding the wind speed (U) variable to the modified HG 

equation further improved the estimation compared to PM as presented in Table 2.2, 

showing performance similar to that cited by Droogers and Allen (2002), who added 

relative humidity to the equation when reliable data are available, or Ravazzani et al. 

(2012), who added altitude to get a better estimation by the HG method in different 

regions. The addition of the wind variable showed to be valuable for more accurate ET 



20 

estimation, but HGmod2 should be used only when reliable wind speed data is available. 

However, when complete weather data are available, the standard FAO56 PM remains 

the most reliable method for ET estimates as reported by Allen (1993), Hargreaves and 

Allen (2003), and other researchers who have attempted to modify HG for different 

regions. Hence, this study suggests the use of the modified HG (HGmod1) form for daily, 

weekly, and monthly estimates in the Bekaa Valley when complete and reliable weather 

data are limited; otherwise, the standard FAO56 PM method is recommended. 

 

 

Fig. 2.4. Comparison of ET_PM with wind-modified HG (HGmod2) for (a) daily; (b) 

weekly; (c) monthly time steps for 16 years 

 

 

  It is important to note that in this study, lysimeter data were not available to 

evaluate the results, and it was assumed that the FAO56 PM can be used as the sole 

standard for obtaining ET estimates, as suggested by Allen et al. (1998). However, the 

semiarid conditions in the Bekaa Valley of Lebanon differ from the conditions under 

which the PM equation was developed, where the ET estimates represent water use under 

well-watered conditions. Also, this study used data from only one weather station to 

develop the suggested equations that are generalized for the whole region. ET estimations 

using data from a set of recently installed regional agrometeorological stations that was 
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recently installed could be a subject for further research and validation of the suggested 

calibrations. 

 

2.4 Conclusions 

 The comparisons of daily, weekly, and monthly estimates of ET showed that the 

original HG method overestimated ET compared to the PM method in the Bekaa Valley 

of Lebanon by 23, 17, and 12%, respectively. The original HG equation was modified, 

and better estimates were achieved when the coefficients of the HG equation were 

calibrated as suggested by Hargreaves and Allen (2003). The regional calibration of the 

original HG equation (HGmod1) produced better results in this regard;  daily, weekly and 

monthly ET differed, respectively, by 3, 2, and 1% from the PM method. This suggests 

that when only air temperature data are available, the calibrated HG equation should be 

used. When adding wind speed to the original HG equation, the estimation improved to 

reach an average difference of 1% from PM for all time steps, showing the importance of 

the wind speed variable in ET estimation for the Bekaa Valley. When reliable and 

complete weather records are available, the PM method remains the most reliable method 

to calculate reference evapotranspiration for daily estimates. However, the proposed 

calibrations of HG can be a feasible approach to be used for ET estimation in the Bekaa 

Valley when data on weather parameters are limited. 
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CHAPTER 3 

WAVELET-MULTIVARIATE RELEVANCE VECTOR MACHINE 

HYBRID MODEL FOR FORECASTING DAILY 

EVAPOTRANSPIRATION‡ 

  

Abstract 

 Evapotranspiration (ET) is one of the main components of the hydrological cycle. 

It is a complex process driven mainly by weather parameters, and as such, is 

characterized by high non-linearity and non-stationarity. This paper introduces a 

methodology that combines wavelet multiresolution analysis (MRA) with a machine 

learning algorithm, the multivariate relevance vector machine (MVRVM), in order to 

predict 16 days of future daily reference ET quantities. This methodology lays the ground 

for forecasting the spatial distribution of ET using Landsat satellite imagery, hence the 

choice of 16 days, which corresponds with the Landsat overpass cycle. An accurate 

prediction of daily ET is needed to improve the management of irrigation schedules as 

well as the operations of water supply facilities like canals and reservoirs. In this paper, 

various wavelet decompositions have been performed and combined with the MVRVM 

to develop the hybrid models to predict reference ET over a 16-day period. These models 

were compared to a MVRVM model, and models accuracy and robustness were 

evaluated. The addition of 10 days of forecasted air temperature as additional inputs to 

the forecasting models has also been investigated in this paper. The results of the 

wavelet-MVRVM hybrid modeling methodology presented in this study show that a  
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reliable forecast of ET up to 16 days ahead is possible. 

 

3.1 Introduction 

 Evapotranspiration (ET) is a complex process affected by several environmental 

factors and driven mainly by weather parameters. Numerous analytical methods have 

been proposed to estimate ET on the basis of measured weather parameters. The Food 

and Agricultural Organization of the United Nations (FAO) Penman-Monteith model has 

become a generally accepted standard for calculating ET (Allen et al. 1998, 2006). The 

relationship between ET and its driving factors is complicated and not easily modeled 

(Partal 2009; Torres et al. 2011). The non-stationarity nature of ET time series leads to 

difficulties in forecasting future values (Pandey et al. 2009; Hernandez et al. 2011). 

 Time series analysis techniques have been widely used for modeling and 

predicting different hydrological parameters including ET (Mariño et al. 1993; Cigizoglu 

2003; Gorantiwar et al. 2011). Several researchers have found that the seasonal 

autoregressive integrated moving average (SARIMA) model provides good forecasts of 

monthly and weekly ET (Trajkovic 1998; Landeras et al. 2009). However, difficulties 

related to these techniques has motivated researchers to look for other modeling 

approaches including the use of data-driven tools or statistical learning machines, such as 

artificial neural networks (ANN), multiple regression methods, support vector machines 

(SVM), and relevance vector machines (RVM). For instance, Landeras et al. (2009) 

showed that ANN's have good performance for weekly ET forecasts. Trajkovic et al. 

(2003) developed radial basis ANN's for predicting ET using limited weather data. Kisi 

(2007) estimated daily ET using ANN methods and compared ANN test results to those 

of the Penman, Hargreaves and Turc empirical models. Although, ANN's have been used 
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extensively as a useful tool for prediction, they have difficulty dealing with non-

stationary data (Cannas et al. 2006; Partal 2009). RVM's were used extensively by many 

researchers for modeling and forecasting hydrological parameters. Unfortunately, these 

models are limited to one step ahead of forecasting, i.e. single output. When predictions 

are to be made for multiple steps in time, multiple outputs, the Multivariate Relevance 

Vector Machine (MVRVM) reported by Thayananthan et al. (2008) has proven more 

effective (Ticlavilca et al. 2011; Ticlavilca and McKee 2011; Torres et al. 2011). 

 In addition to its ability to predict multiple outputs, the MVRVM is a Bayesian 

regression tool that has the same properties of the conventional RVM: high prediction 

accuracy, robustness, and estimation of uncertainty in the predictions. The MVRVM is an 

extension of the RVM algorithm developed by Tipping and Faul (2003) to produce 

multivariate outputs when given a set of inputs. Therefore, developing a model with all 

these properties provides a good forecasting tool to produce multiple predictions that are 

difficult or not practical to obtain from traditional modeling approaches. Thus, the 

MVRVM algorithm was used in this study to forecast daily ET values for multiple future 

time steps. 

 In the last decade, wavelet transformation has become a useful technique for 

analyzing variations, periodicities and trends in time series (Labat et al. 2005; Chou and 

Wang 2002; Küçük et al. 2009). Wavelet transforms, which can produce a good local 

representation of a signal in both time and frequency domains, provide considerable 

information about the structure of the physical process to be modeled (Li et al. 1999). 

Recently, there has been an increased interest in the use of wavelet analyses in a wide 

range of fields related to water resources. Labat (2005) reviewed the most recent wavelet 
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applications in the field of earth sciences and illustrated new wavelet analysis methods in 

the field of hydrology. Most of these studies demonstrated that the application of 

wavelets leads to several improvements in the analysis of global hydrological signal 

fluctuations and of their mutual time varying relationships. 

 Wavelets provide a formal method to break down a complex time series into 

simpler units to facilitate accurate prediction (Ahmad et al. 2005; Cobaner 2013). 

Wavelet transform analysis appears to be a more effective technique than the Fourier 

transform for studying non-stationary time series and is preferred to a windowed Fourier 

transform (Labat et al. 2005; Partal and Cigizoglu 2008). However, there have been very 

few applications of wavelet transform techniques to evapotranspiration modeling 

(Cobaner 2013; Kisi 2011). 

 Researchers have developed hybrid models that combine wavelet transforms with 

time series models and artificial intelligence algorithms. In such approaches, a wavelet 

transform is used first to decompose the time series into varying scales of temporal 

resolution. Then, a time series model or a regression model is applied. The results of such 

hybrid models show significant advantages over traditional time series analysis and 

prediction. For example, Kisi (2011) modeled daily ET using a wavelet regression model 

and resulted in better results than empirical models. Partal (2009) modeled ET using 

wavelet decomposition and neural networks showing improvement of ET modeling with 

the hybrid models. Wang and Luo (2007) combined the wavelet transformation and 

neural network techniques and were able to develop a wavelet-neural network hybrid 

model to forecast one day ahead of ET. Since the evapotranspiration process is 

characterized by high non-linearity and non-stationarity (Hernandez et al. 2011), hybrid 
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wavelet models provide a new alternative to the evapotranspiration estimation and 

forecasting problem. 

 None of the aforementioned studies have attempted to forecast ET multiple 

several days ahead using the wavelet hybrid models. This type of forecasts are very 

important for irrigation management, especially when they can be extrapolated spatially. 

The spatial distribution of ET is usually done using remote sensing algorithms and, for 

example, Landsat satellite imagery. The latter data set is only once available every 16 

days over a specific area for a specific Landsat satellite. Hence, forecasting ET up to 16 

days ahead could be beneficial to manage irrigation schedules at the farm level as well 

and operations of canal delivery and distribution systems. Therefore, the objective of this 

study was to develop a wavelet-MVRVM model to forecast daily ET simultaneously, up 

to 16 days ahead. Wavelet-based decompositions were performed and combined with the 

MVRVM. The performance and accuracy of these hybrid models are then compared to 

the performance of a MVRVM model. 

 The remainder of the paper describes the data used in this study (Section 3.2.1), 

the wavelet multiresolution analysis (MRA) is presented in Section 3.2.2, then a 

description of the MVRVM learning model in Section 3.2.3. Section 3.3 summarizes the 

selected wavelet-MVRVM hybrid models, and their forecasting results along with a 

discussion of these results. Finally the conclusions that can be drawn and future work are 

shown in Section 3.4. 
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3.2 Methodology 

3.2.1 Data Collection and Description 

 The weather data for this study were taken from the meteorological station located  

in Delta, Utah. This station is a part of the Community Environmental Monitoring 

Program (CEMP) network of 29 monitoring stations located in the Western states. It is 

operated and monitored by the Desert Research Institute (DRI) of the Nevada System of 

Higher Education. The station is located at 39°21′11′′N latitude, 112°34′42′′W longitude 

and 1415 m above sea level. It records daily solar radiation, minimum and maximum 

temperatures, wind speed, precipitation and relative humidity. Records over the full 

period of January 2002 until June 2012 were used in this study. These data were available 

on the CEMP website (CEMP 2012). 

 Delta is characterized by a semiarid to arid climate, with an average annual 

precipitation of 200 mm. The average monthly weather data from 2002 until 2012 

showed the coldest month to be January, with a minimum temperature of -7.5°C, and the 

hottest month July, with 34.3°C as average maximum temperature. The average wind 

speed throughout the year was 1.14 m s-1, with 148 W m-2 average solar radiation per 

day. 

 The daily values of reference crop evapotranspiration (ET) used in this study were 

calculated from the Delta weather data using FAO 56 Penman-Monteith (PM) equation as 

suggested by Allen et al. (1998): 
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where, ET = reference evapotranspiration (mm d-1); Δ = slope vapor pressure curve (kPa 

°C-1); Rn is the net radiation at the crop surface (MJ m-2 d-1); G = soil heat flux density 

(MJ m-2 d-1); γ is the psychrometric constant (kPa °C-1); T = mean daily air temperature at 

2 m height (°C); U2 = wind speed at 2 m height (m s-1); es = saturation vapor pressure 

(kPa); ea = actual vapor pressure (kPa); (es-ea) = saturation vapor pressure deficit (kPa). It 

is assumed that Eq. (3.1) is applied to a hypothetical crop with a height of 0.12 m, having 

a surface resistance of 70 s m-1 and an albedo α = 0.23. Soil heat flux was ignored as 

suggested by Allen et al. (1998) for daily time steps. The computations of all required 

data for calculating ET were done using the method given in Chapter 3 of FAO paper 56 

(Allen et al. 1998). 

 The data sample consisted of 11 years (2002–2012) of daily ET records. The first 

seven years (2002–2008) were used for training, two years (2009–2010) for calibration, 

and the remaining data have been used for testing (2011–2012). Only the growing season 

data (April 1 till October 31) were considered in this study. 

 

3.2.2 Wavelet Multiresolution Analysis 

 Wavelet multiresolution analysis was used in this paper to study the ET 

characteristics in time and frequency domains. One of the advantages of wavelet-based 

techniques is the ability to deal with non-stationary data. It is an alternative to windowed 

Fourier transform that requires selection of a window where data are stationary and 

assumes that time series variability pattern stays the same over time, which is not the case 

with ET series analyzed in this paper. 
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 There are two main types of discrete wavelet transforms: orthogonal, usually 

referred to as discrete wavelet transform (DWT) and non-orthogonal, also known as 

maximal overlap discrete wavelet transform (MODWT) (see Torrence and Compo 1998).  

DWT decomposes the original signal into components at dyadic frequencies. It uses the 

so-called mother and father wavelets to capture the detailed and smooth parts of a signal. 

Mother wavelets are used to extract the high-frequency components of the signal, father 

wavelets - the low-frequency components. The signal is then represented by its features, 

which are referred to as wavelet and scaling coefficients (Mallat 1989; Daubechies 1992). 

However, the DWT suffers from a lack of translation invariance. This means that 

circularly shifting a time series will not necessarily shift its DWT coefficients in a similar 

manner (Daubechies 1992; Lau and Weng 1995). So, the results of such decomposition 

depend on the starting point of the series. This transform is also limited to the series of a 

2j length, where j = 1, 2, 3 … This problem is solved by means of a highly redundant 

non-orthogonal transform called maximal overlap discrete wavelet transform (MODWT) 

also known as non-decimated DWT. For this transform, an input time series of any length 

N results in the same number of wavelet and scaling coefficients at each resolution level. 

Therefore, the features of wavelet coefficients in the wavelet multiresolution analysis 

(MRA) are aligned with the original time series (Percival and Walden 2000). 

 In this study, a MODWT-based MRA was used to preprocess ET series and 

produce the approximately independent components. The latter were used for ET 

modeling. For MRA decomposition based on MODWT the wavelet filter selection is not 

critical (see Percival and Walden 2000). Therefore, the filter that produces least artifacts 
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at the beginning and the end of the series was used, i.e. Haar filter. Let ET(t) denote the 

daily evapotranspiration computed using the PM equation. We can write it as: 

  
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where, Dj(t) = Dj(1),…, Dj(N) are vectors of length N, also known as jth level detail, and 

SJ(t) = SJ(1),…, SJ(N) is the smooth (or approximation) at level J. The decomposition in 

Eq. (3.2) is known as wavelet MRA.  The details, Dj(t), correspond to the component at 

time of approximately 2j days, and capture a part of the record that corresponds to the 

frequencies in the range from 2−(j+1) to 2−j cycles per day. This range corresponds to 

physical scales between 2j and 2j+1 days. The smooth, SJ(t), captures the low frequency 

variations of the time series that correspond to time of approximately 2J days, or to 

averages over intervals of 2J+1 days. For further details see Percival and Walden (2000). 

 

3.2.3 Multivariate Relevance Vector Machine 

 A multivariate relevance vector machine (MVRVM) model was used in this study 

to model and forecast ET. The MVRVM is an extension of the Relevance Vector 

Machine (RVM) developed by Thayananthan et al. (2008) for multiple outputs of the 

machine learning model, which in this case are the ET forecasts for multiple days ahead. 

Tipping (2001) introduced the Relevance Vector Machine (RVM), as a general sparse 

Bayesian modeling approach for classification and regression. In RVM regression model, 

the weight of each input is governed by a set of hyperparameters that describe the 

posterior distribution of these weights. They are estimated iteratively during the machine 

learning training step. The value of most of the hyperparameters approaches infinity, and 

the corresponding weights become zero. The remaining non-zero weights are called the 
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relevance vectors. RVMs have good generalization performance and produce a sparsity 

representation of the nonlinear processes involved (Thayananthan et al. 2008). 

 For developing a MVRVM, a training data set, as input-target vector pairs 

 N

nnn yx
1

,


 is needed, where N  is the number of observations, BRx  is an input vector, 

and MRy is the multiple output vector . The model "learns" the dependence between 

input and output target with the purpose of making accurate predictions of the target 

vector y  for previously unseen values of x : 
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 Here, T

Nxxfxxfx )],(),...,,(,1[)( 1  is a set of 1N  vectors of basis functions 

f, W  is the PM   matrix of weights of these basis functions ( 1 NP ), and  is the 

noise vector assumed to be Gaussian with zero-mean and diagonal covariance matrix 

),...,( 22

1 MdiagD  . The kernel basis functions, f, considered in this paper were the 
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where r is the kernel width parameter. These types of kernels have been used by many 

authors in hydrology applications (Kaheil et al. 2008; Ticlavilca et al. 2011; Torres-Rua 

et al. 2011). 

 Let T

Mmy ],...,,...,[ 1   and T

Mm wwwW ],...,,...,[ 1 . The multivariate Gaussian 

likelihood distribution for the target vector y can be written as: 
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where, )](),...,(,1[ 1 nxx   is the design matrix. 
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 In order to avoid over-fitting in the maximum likelihood estimation of W and 2 , 

Tipping (2001) proposed adding a Gaussian prior term for the weights of each basis 

function. The prior distribution over the weights is shown in Eq. (3.5): 
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where, ),...,( 22

1

 PdiagA   with each k  being an independent hyperparameter that 

determines the relevance of the associated basis function. This provides the sparsity of 

the model (Tipping  and Faul 2003). mkw  is the element in thm  row and thk  column of 

the weight matrix W. 

 The posterior distribution of the model parameters is then given by the 

combination of the likelihood and prior distributions within Bayes' rule: 
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 The posterior distribution of the weights is Gaussian ),( mm    with mean 

m

T

mmm   2  and covariance 12 )(   T

mm A  . 

 Given the posterior of the weights, an optimal set of hyperparameters optA  can be 

obtained by maximizing the data likelihood in Eq. (3.6) (Tipping and Faul 2003; 

Thayananthan et al. 2008). The data likelihood is marginalized as: 
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where, T

m AIC m  12 . And the optimal set of hyperparameters P

k
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m
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m

opt

1

2 }{)(    are obtained using a bottom-up basis function selection 

approach described by Tipping and Faul (2003). During this optimization process, many 

elements of α go to infinity setting the corresponding posterior probability of the weight 

to zero. The few non-zero weights correspond to the so-called "relevance vectors" (RV) 

that are the sparse core of the RVM model (Tipping and Faul 2003). The optimal 

parameters are then used to obtain the optimal weight matrix with optimal covariance 

opt  and mean opt . The mathematical formulation, likelihood maximization, and 

optimization procedure of the RVM and MVRVM are discussed in detail in Tipping 

(2001), Tipping and Faul (2003), and Thayananthan et al. (2008). 

 Given a new input *x , the predictive distribution for the corresponding target *y  

can be computed as (Tipping 2001): 
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2    is the 

predictive variance. This predictive variance is the sum of variances of two terms: the 

noise in the data and the uncertainty in the prediction of the weight parameters (Tipping 

2004). The standard deviation *  of the predictive distribution was used to estimate the 

95% Bayesian confidence interval as: *96.1*  y

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3.2.4 Performance Estimation Criteria 

 In this paper, the accuracy of the models has been estimated and model robustness 

is evaluated using a bootstrap approach. The accuracy was estimated using the root mean 

square error, RMSE, the coefficient of determination, R2, and the Nash-Sutcliffe 

efficiency coefficient, E. The RMSE was calculated as shown in Eq. (3.10): 

   
























N

yy

RMSE

N

t

tt

1

2)ˆ(

      (3.10) 

The coefficient of determination, R2, is computed as: 
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where, ŷt = predicted ET for day t (mm d-1); yt = calculated using PM equation for day t 

(mm d-1); y  = mean of the observed ET; ŷ  = mean of the estimated ET; and N = total 

number of observations. 

 The Nash-Sutcliffe efficiency, E, is a normalized statistic that determines a 

relative magnitude of the residual variance, “noise,” compared to the measured data 

variance, “information” (Nash and Sutcliffe 1970). It is recommended by the ASCE 

(1993) and Legates and McCabe (1999) as a measure of model performance. It indicates 

how well the plot of observed versus simulated data fits the 1:1 line and was computed as 

shown in Eq. (3.12): 
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 It must be noted that an efficiency value of 1 (E = 1) corresponds to a perfect 

match between modeled ET and observed data. An efficiency of 0 (E = 0) indicates that 

the model predictions are as accurate as the mean of the observed data. An efficiency less 

than zero (E < 0) occurs when the observed mean is a better predictor than the model, 

which indicates unacceptable performance. 

 In order to select the forecasting model, the main goal was to select the adequate 

number of inputs, or days to the past, the kernel width and the kernel type. The optimal 

values of these parameters were selected by trial and error procedure to obtain the best 

RMSE and E values. 

 The bootstrap method (Efron and Tibshirani 1993) was used in this study to 

guarantee good generalization ability and robustness of the machine learning model. The 

bootstrap data set was created by randomly sampling with replacement from the training 

data set. In the bootstrap estimation, the selection process was repeated 1,000 times to 

yield 1,000 bootstrap training data sets, which were treated as independent sets. For each 

of the bootstrap sets, the MVRVM was retrained and its performance was evaluated by 

calculating E for the two years of unseen testing data set. It is important to note that the 

kernel type, kernel width, and numbers of days of past time series data used as input to 

the MVRVM stayed the same, but the hyperparameters changed with each bootstrap 

sample. The bootstrap method provides implicit information on the uncertainty of the 

estimator (E) evaluated in the model A more detailed description of the results in detailed 

in Section 3.3.4. 
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3.3 Results and Discussion 

 A classical time series modeling approach, the seasonal autoregressive integrated 

moving average (SARIMA) model was first used to forecast ET. But the results were 

converging the forecast to the mean value of the ET time series. The Nash-Sutcliffe 

coefficient of efficiency values for SARIMA models were negative indicating that the 

observed mean is a better predictor than the model, which is considered as unacceptable 

performance in hydrological modeling (Legates and McCabe 1999). This is due to the 

“backward looking” nature of the model (Meyler et al. 1998). Using high resolution daily 

data was also another limitation for the SARIMA model, since the season is 365 days 

which did not allow the model to converge making it not applicable for real time 

modeling and forecasting. The results of the SARIMA models are not shown in this 

paper. In this results and discussion section we only present the results of the wavelet-

based MRA and the MVRVM models. 

 

3.3.1 Wavelet Decomposition Selection 

 The properties of the ET time series, both physical and statistical, were examined 

in time and frequency domains. Table 3.1 showed the power spectrum results of the 

maximum overlap discrete wavelet transform (MODWT). From this table, it was obvious 

that the major changes in ET were the seasonal and annual components (Levels d7 

through s8), while the short-term variations had the lowest percentage of ET changes. 

Based on the power spectrum in the wavelet domain, a wavelet multiresolution analysis 

(MRA) was performed on the ET time series. Two wavelet decomposition designs were 

considered to aid ET forecasting. In Design 1, three levels of MRA decomposition were 

used to isolate the short-term changes of ET. This design focused on the short-term 
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frequencies (up to 16 days). The records were then decomposed into four components, 

where the details capture high frequency changes of ET: 

  )()()()()( 3321)1( tStDtDtDtET      (3.13) 

where, the MRA decomposition was performed for J = 3 levels, using MODWT, Haar 

filter, and the reflection boundary rule (see Fig. 3.1). In this model, the highest level of 

the detail captured the ET changes on scale of 8 to 16 days. 

 The second design of the wavelet-MRA analysis was based on the basic energy 

balance equation that defines ET: 

  ET(t)= Rn(t) + H(t) + G(t)                                                                    (3.14) 

where, G(t) = daily heat transfer from/to the ground; H(t) = daily heat transfer to the 

atmosphere; and Rn(t) = net daily solar radiation. The energy balance concept was used to 

Table 3.1. Wavelet MODWT-Based Power Distribution by Level 

Level ET % Physical scale in days (months, years) 

d1 4.70 2 - 4  

d2 4.41 4 - 8 

d3 3.28 8 - 16 

d4 2.44 16 - 32 

d5 2.92 32 - 64 

d6 6.89 64 - 128 

d7 21.06 128 - 256 (4.3 m - 8.5 m) 

d8 42.38 256 - 512 (8.5 m - 17.06 m) 

s8 11.84 256 - 512 (8.5 m - 17.06 m) 
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Fig. 3.1. Design 1 of Wavelet-MRA decomposition 

  

 extract meaningful components for building the forecasting model. Here, G(t) 

corresponds to a long-term component that capture the variations of the low frequency 

scales, H(t) contains the short-term variations, which capture the high frequency changes 

in ET, and Rn (t) corresponds to the mid-frequency variations. Based on this, Design 2 

used a wavelet-based MRA performed for J = 8 levels to breaks down the ET time series 

into three meaningful components, and was defined as: 

  )()()()()2( tAtStDtET        (3.15) 

where, 321 DDDD  , 7654 DDDDS  , 88 SDA  . Here, D, S, and A are 

referred to as the daily (short-term variations), seasonal, and annual (long-term 

variations) components as shown in Fig. 3.2. The daily component, D, captured ET 

variability from two to 16 days, which accounted for 12.39% of total variability. The 

seasonal component, S, captured changes in ET on the scale from 16 days to 8.5 months, 

which amounted about 33.31% of total variability . The annual component, A, captured 
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the changes of ET on a scale of 8.5 to 17.06 months which contributed 54.22% of the 

total variability. 

 

3.3.2 Forecasting Model Selection 

 Two hybrid models, each consisting of a multivariate relevance vector machine 

(MVRVM) and a wavelet model developed from one of the wavelet decomposition 

designs were developed. Five different forecasting models were evaluated (the inputs for 

each model are specified below): 

 Model 1 (M1): ET time series were used as an input for the MVRVM, which 

served as control a model for comparison, 

 Model 2 (M2): Each wavelet decomposition component of Design 1 defined in 

Eq. (3.13) was used separately as input. A MVRVM was built for each 

decomposition, the outputs were then added to get an estimated ET, 

 Model 3 (M3): All the wavelet decompositions of Design 1 were used 

simultaneously as a multivariate input for the MVRVM to model and forecast ET, 

 Model 4 (M4): A separate MVRVM model was built for each wavelet MRA 

component of Design 2 defined in Eq. (3.15). The resulting outputs were then 

added to get forecasted ET, 

 Model 5 (M5): All the wavelet components of Design 2 were used at once as a 

multivariate input for the MVRVM to get ET as output. 
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Fig. 3.2. Design 2 of Wavelet MRA decomposition 

 

 For the MVRVM application, 7 years of daily ET were used for training the 

machine. In this phase, several combinations of kernel type, kernel width, and number of 

inputs (or days in the past of the time series) were analyzed to get the optimal MVRVM 

parameters. The performance of the model, E and RMSE, for the different combinations 

was evaluated based on a 2-year calibration phase. The model that gave the highest E and 

lowest RMSE for this calibration phase was selected, and then applied to 2-year unseen 

testing data. 

 The optimal kernel width, kernel type, and number of inputs (days to the past) of 

each model were presented in Table 3.2. This table also showed the performance (E, R2, 

and RMSE) of each model for the 2-year unseen testing data set. These statistics were the 

average values for the forecasted 16 days of ET for this testing phase. From the statistics 

presented in Table 3.2, it is obvious that all wavelet-MVRVM hybrid models 

outperformed the MVRVM model M1. M2 showed the best performance measured by E, 
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R2 and RMSE (E=0.604, R2=0.619 and RMSE=0.766 mm d-1). The second best model was 

M5 with E=0.602, R2=0.616 and RMSE=0.767mm d-1 with no significant difference from 

M2. However, it should be noted that M5 required only 9 days of the past records in 

order to forecast ET, while this number increased to 56 for M2. Requiring fewer number 

of inputs is an advantage of M5 over M2. Hence, less computational time is needed 

which is beneficial for real-time applications of the model, as well as when dealing with 

incomplete data. The overall performance of these hybrid models showed their ability to 

forecast daily ET for 16 days simultaneously. This is crucial for reliable irrigation 

systems management. 

 Next, a detailed analysis of the best two models, M2 and M5, was presented. 

Table 3.3 included the statistics for M2 and M5 for all the 16 forecasted days. It indicated 

that in some cases, e.g. M2, E was higher when forecasting 16 days ahead (0.644) as 

compared to forecasting 7 days ahead (0.581). One would expect the efficiency to decline 

as we increased the forecasting horizon. This was not the case here due to the selection of 

the hyperparameters by the model that minimizes the average of E over all the outputs. 

Another reason is that the MVRVM forecasting is not iterative as it is in the time series 

regression models. The prediction errors do not accumulate. 

Table 3.2. Models Inputs and Average Statistics of the Testing Data Set for the 16 Days 

of Forecasted ET 

Model Input variables  
Maximum 

days to past  
Kernel type 

Kernel 

width 

Statistic 

E R2 
RMSE    

(mm d-1) 

M1 ET 50 Gauss 10 0.561 0.580 0.805 

M2 D1, D2, D3, S3 56 Laplace/ Cauchy 14 0.604 0.619 0.766 

M3 All Ds together 60 Cauchy 20 0.595 0.604 0.774 

M4 D, S, A 70 Gauss/ Laplace 34 0.586 0.608 0.872 

M5 All DSA together 9 Laplace 17 0.602 0.616 0.767 
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 Figs. 3.3 and 3.4 showed the plots of the results of the best two hybrid models, 

M2 and M5, respectively. Four days (1, 6, 11, and 16 days ahead) were selected to 

display the results. The left panels in these figures provided a graph of the observed ET 

time series calculated by PM equation and predicted ET by the hybrid models, and the 

95% confidence bounds for the two years of testing data set (2011–2012). The shaded 

areas in the left panels of these figures represented a 95% confidence interval of the 

forecasting models. M2 gave wider confidence interval bounds, hence the error over the 

prediction in M5 was smaller. This was due to the design of the wavelet MRA 

decompositions. M2 was decomposed using Design 1 (described in Section 3.3.1) which 

focused on the short- time variations. It focused on detailed modeling of the noisiest  

Table 3.3. Statistics of the Selected Models (M1, M2, and M5) for All the Forecasted 

Days 
 

Days 

ahead 

Model 

M1 M2 M5 

E R2 
RMSE 

(mm) 
E R2 

RMSE 

(mm) 
E R2 

RMSE 

(mm) 

1 0.595 0.604 0.750 0.651 0.615 0.738 0.652 0.654 0.697 

2 0.542 0.553 0.798 0.592 0.599 0.759 0.594 0.598 0.752 

3 0.527 0.542 0.814 0.582 0.599 0.767 0.602 0.608 0.748 

4 0.542 0.554 0.807 0.578 0.603 0.772 0.601 0.610 0.753 

5 0.552 0.565 0.804 0.584 0.615 0.771 0.601 0.609 0.758 

6 0.548 0.561 0.811 0.581 0.610 0.779 0.593 0.603 0.769 

7 0.546 0.561 0.815 0.581 0.606 0.782 0.584 0.596 0.780 

8 0.536 0.557 0.822 0.582 0.606 0.777 0.581 0.595 0.785 

9 0.537 0.563 0.818 0.588 0.610 0.767 0.580 0.597 0.784 

10 0.554 0.578 0.810 0.596 0.615 0.767 0.592 0.609 0.774 

11 0.554 0.582 0.815 0.603 0.619 0.767 0.591 0.610 0.780 

12 0.558 0.587 0.819 0.610 0.624 0.768 0.593 0.612 0.785 

13 0.577 0.602 0.809 0.625 0.636 0.762 0.609 0.627 0.777 

14 0.594 0.615 0.799 0.635 0.644 0.760 0.616 0.635 0.776 

15 0.605 0.625 0.793 0.639 0.648 0.759 0.620 0.640 0.777 

16 0.613 0.633 0.791 0.644 0.653 0.760 0.625 0.646 0.777 

Average 0.561 0.580 0.805 0.604 0.619 0.766 0.602 0.616 0.767 
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12.39% of ET variability. The rest 87.61% of ET changes were modeled all together. On 

the other hand, M5 was decomposed using Design 2 in which the annual and seasonal 

components (D and S) were better forecasted due to the cyclic trends they present. M5 

seemed to capture the variation in the ET time series better than M2. In the right panels of 

these figures, predicted ET was plotted against observed ET. These plots showed that the 

models underestimated ET values when observed ET was greater than about 6 mm d-1. 

The underestimation was more pronounced when forecasting for more than one day 

ahead. This tendency has also been reported by Cobaner (2013) who used wavelet 

regression techniques for estimating ET. Since the MVRVM models used are regression 

models, they tend to underestimate larger values and overestimate low values. This was 

clear in those graphs, as the model was trying to regress towards the mean. 

 Another comparison between the best selected hybrid models (M2 and M5) was 

done to compare their forecasts for the two years of unseen data with the historical 

average of the ET time series in the area of study. The historical average was calculated 

for nine years of the available daily data, and had about 28% error rate compared to the 

observed data, with less than 10% error rate for the wavelet hybrid models M2 and M5 

(Table 3.4). Which demonstrated the advantage of those hybrid models over traditional 

application for forecasting daily ET.    
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Fig. 3.3. Left: Predicted ET vs. observed ET time series for two-years of unseen testing 

data for Model 2 for selected days. Right: Plots of predicted ET vs. observed ET for the 

same time period 

 

 

Table 3.4. Statistical Results of M2, M5, and 9-Years Average as Compared to the 

Observed Data for the Two Years of Test Dataset 
 

Model 
Coefficient of 

efficiency, CE 

RMSE 

(mm/day) 

Error 

rate % 

M2 0.604 0.766 9.81 

M5 0.602 0.767 9.83 

9-yrs Avg 0.408 1.362 28.21 
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Fig. 3.4. Left: Predicted ET vs. observed ET time series for two-years of unseen testing 

data for Model 5 for selected days. Right: Plots of predicted ET vs. observed ET for the 

same time period 

 

   

3.3.4 Model Robustness 

 Bootstrapping was performed to check for over-fitting and model generalization 

capability of the best two wavelet-MVRVM hybrid models, M2 and M5, and for M1 for 

comparison. Fig. 3.5 showed a boxplot of the results for 1000 bootstraps samples for 

which the Nash-Sutcliffe coefficient of efficiency, E, was computed (see Section 3.2.4 for 

details). No assumptions were made about the distribution of the data. Repeated samples 
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were drawn from the population with replacement. Since this type of samples are good 

approximation of the population, the bootstrap method provides a good approximation of 

the sampling distribution of the statistic E. For displaying purposes, only the results for 

four days (1, 6, 11, and 16 days ahead) were presented. On each box, the central mark 

was the median, the edges of the box were the 25th and 75th percentiles, the whiskers 

extended to the most extreme data points not considered outliers, and outliers were 

plotted individually. M5 showed a higher E for all the selected days, with no significant 

difference from M1 and M2. From these boxplots, it was noticed that the wavelet-

MVRVM hybrid models M2 and M5 did not lose the robustness while improving the 

accuracy of the forecasts. The boxplots confirmed that the models were robust and can be 

used as ET forecasting models for real-time applications. The real-time application of ET 

forecasting models allows farmers to estimate the water demand for their fields and place 

the water orders. It will also allow the canal and reservoir operators to release the 

required amount of water needed for the command area. 

 

3.3.5 Forecasting ET Using 10-days of Forecasted Temperature 

 In an attempt to improve the forecasting potential of the ET models, the 

possibility that additional variables serve as additional model inputs was considered. The 

National Oceanic and Atmospheric Administration (NOAA) provides daily forecast of 

minimum and maximum temperatures (Tmin and Tmax) up to 10 days ahead. In order to 

determine whether or not adding these data to the hybrid models that performed best (i.e. 

M2 and M5) would significantly improve the forecasts, the M2 and M5 analyses were 

repeated using additional temperature inputs . 

 



50 

 

Fig. 3.5. Boxplots for the results of bootstrapping analysis (1000 times) for models M1, 

M2 and M5 for selected days 

 

 Table 3.5 showed the results for the modified models M1*, M2*, and M5*. It is 

clear from this table that adding the forecasted Tmin and Tmax improved the performance 

of the models, especially for forecasting the first 10 days for which the predicted 

temperature data were available. On average, the modified wavelet-MVRVM hybrid 

models M2* and M5*, respectively, outperformed again the MVRVM (M1*) model by 

17.4% and 10.6% for E. Fig. 3.6 showed the scatter plots of the three modified models: 

M1*, M2*, and M5*. M2* showed improvement with underestimation of high ET values. 

The MVRVM uses Gaussian distribution which is not designed for capturing extremes. 
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Hence, the tendency to underestimate higher values of ET and overestimate lower values. 

The introduction of wavelet decomposition helps overcoming this problem. M2* also 

showed that the forecasts were more clustered around the 1:1 line. This highlights the 

possible improvement of such hybrid models by adding information about the forecasted 

future temperatures. 

Table 3.5. Statistics of the Models for the 16 Days with the Additional 10-Days 

Forecasted Tmin and Tmax as Input 

Days 

ahead 

Model 

M1* M2* M5* 

E R2 
RMSE 

(mm) 
E R2 

RMSE 

(mm) 
E R2 

RMSE 

(mm) 

1 0.694 0.703 0.652 0.729 0.771 0.759 0.752 0.772 0.588 

2 0.658 0.666 0.690 0.722 0.737 0.716 0.722 0.752 0.622 

3 0.630 0.644 0.721 0.729 0.732 0.705 0.711 0.751 0.637 

4 0.615 0.637 0.740 0.731 0.733 0.720 0.717 0.756 0.634 

5 0.613 0.636 0.747 0.728 0.733 0.720 0.715 0.757 0.641 

6 0.606 0.619 0.757 0.727 0.736 0.725 0.705 0.751 0.654 

7 0.594 0.606 0.771 0.726 0.739 0.729 0.683 0.738 0.681 

8 0.589 0.606 0.774 0.722 0.739 0.731 0.683 0.745 0.683 

9 0.581 0.603 0.779 0.724 0.740 0.717 0.653 0.724 0.712 

10 0.611 0.628 0.756 0.715 0.731 0.697 0.643 0.706 0.724 

11 0.580 0.587 0.791 0.685 0.700 0.718 0.619 0.672 0.753 

12 0.527 0.533 0.848 0.640 0.655 0.745 0.574 0.629 0.803 

13 0.537 0.541 0.846 0.628 0.641 0.756 0.568 0.628 0.817 

14 0.543 0.548 0.847 0.632 0.644 0.757 0.572 0.635 0.819 

15 0.547 0.553 0.848 0.643 0.655 0.751 0.583 0.643 0.814 

16 0.547 0.552 0.856 0.642 0.656 0.759 0.577 0.638 0.825 

Average 0.592 0.604 0.776 0.695 0.709 0.732 0.655 0.706 0.713 
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Fig. 3.6. Scatter plots of forecasted ET using modified models: M1* (a), M2* (b) and 

M5*(c) compared to measured ET 

 

3.4 Conclusions and Future Work 

 In practice, predicting daily ET is difficult because it is characterized by high non-

linearity and non-stationarity. Therefore, models that use components at different 

temporal resolutions provide a new alternative to ET forecasting problems. The potential 

of wavelet-MVRVM hybrid modeling for forecasting daily ET up to 16 days in advance 

was investigated in this paper. The study introduced the methodology of decomposing an 

ET time series using wavelet multiresolution analysis methods, and combining the 

wavelet decompositions with a MVRVM to develop an ET forecasting model. The 
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resulting models predicted daily ET up to 16 days ahead with good accuracy. Model that 

combined a wavelet daily, seasonal and annual multiresolution analysis components with 

MVRVM, performed the best in this study. It is recommended as a forecasting model for 

ET in the study area. The results showed that the wavelet-MVRVM hybrid models 

performed better than the MVRVM. The bootstrapping analysis showed robustness in 

forecasting of the wavelet-MVRVM hybrid models. 

 Inclusion of 10-days of forecasted minimum and maximum air temperatures as 

additional inputs  to the models improved the performance for the first 10 days for which 

the weather forecast was available. Further research might be of interest to explore the 

potential of adding other weather variables, and their forecasts to the input vector. 

 The methodology presented in this study lays the grounds for further 

investigations and studies that could lead to forecast ET at the spatial level using remote 

sensing algorithms and the Landsat imagery. 
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CHAPTER 4 

SPATIAL DISTRIBUTION OF EVAPOTRANSPIRATION USING 

REMOTE SENSING AND RELEVANCE VECTOR MACHINE†† 

 

Abstract  

 With the development of surface energy balance analyses, remote sensing has 

become a spatially explicit and quantitative methodology for understanding of 

evapotranspiration (ET) - a critical requirement for planning and managing water 

resources. An algorithm titles "Mapping Evapotranspiration at high Resolution with 

Internalized Calibration (METRIC)" was used in this study to calculate actual ET from 

Landsat 5 Thematic Mapper images at 30 m spatial resolution. The analysis was applied 

to the Canal B service area of Delta Canal Company in Central Utah using data from the 

growing seasons of 2009–2011. The resulting ET maps were used to evaluate the 

irrigation efficiency of the system. The efficiency ranged from 65% to 78% throughout 

the growing season. A machine learning algorithm, the relevance vector machine (RVM) 

was then used to model ET spatially. The RVM was trained with a set of inputs of 

vegetation indices, land use, soil texture and weather data in order to model the ET using 

METRIC results as output. The developed RVM model provided accurate estimation of 

spatial ET based on a Nash-Sutcliffe coefficient (E) of 0.84 and a root mean squared error 

(RMSE) of 0.5 mm d-1. This model lays the ground for the estimation of ET at spatial 

scale for the days when a Landsat image is not available. And could be used for 

                                                           

†† Co-authored by Wynn R. Walker, Mac McKee, Andres M. Ticlavilca, and Inga Maslova 
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forecasting daily spatial ET, if the vegetation indices model inputs are extrapolated in 

time, and the reference ET forecasted accurately. 

 

4.1 Introduction 

 The world population is expected to be near 8 billion by 2025. Some researchers 

estimate that, to meet future food demand, at least another 2,000 km3 of water will be 

needed. Irrigated lands are a main sources of food and energy for populations around the 

globe, providing about 40% of the world's food from around 17% of the cultivated area 

(Thenkabail et al. 2009). These lands will be shaped increasingly by the effects of 

competition for water from other sectors, notably urban and rural domestic water supply 

and industrial needs. In order to cope with these changes, better water management 

practices and improved estimation of irrigation water demand are crucial. 

 Evapotranspiration (ET) being a main component of the hydrologic cycle, it must 

be estimated with the greatest precision possible. Direct measurement of actual ET is 

difficult and at the best, mostly provides point values at the weather station location. A 

spatially explicit and quantitative understanding of ET is critical for planning and 

managing water resources. The estimation of ET rates over large irrigated areas can 

provide beneficial information to farmers and to the operators of irrigation 

supply/distribution systems.  

 Methods for quantifying ET based on meteorological point measurements are still 

unable to provide spatial ET at large scales, mostly because of the heterogeneity of the 

land surface and the dynamic nature of the heat transfer processes (Kaheil et al. 2008). 

 The first attempts to determine spatial distributions of ET on a regional scale 

relied on geostatistical and interpolation procedures using data available from 
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meteorological stations (Mauser and Schädlich 1998). The complex spatial heterogeneity 

of the meteorological factors could not be considered in these conventional techniques. 

Therefore, they may result in inaccurate estimations over large areas. An alternative ET 

estimation approach is to combine remote sensing observations along with 

meteorological data to provide the spatial distribution of ET. 

 Remote sensing is known as a very useful tool for estimating ET at various 

temporal and spatial scales. It offers substantial potential in bridging the gap between 

point and larger-scale measurement of ET. In recent years, this approach has been 

demonstrated for determining the spatial distribution of ET at the particular time the 

remote sensor passed over (Anderson et al. 2007; Bastiaanssen et al. 2008; Allen et al. 

2011). Mapping ET at a large spatial scale has been proven to be very useful for 

irrigation management practices. For instance, it has been used to monitor water rights 

(Allen et al. 2005), manage agricultural water management (Gowda et al. 2008; Anderson 

et al. 2012), as well as evaluating irrigation and distribution systems efficiency (Folhes et 

al. 2009). 

 Application of remote sensing algorithms solving the energy balance using high 

resolution satellite imagery has proven useful for establishing estimates of actual ET for 

large populations of fields and water users (Bastiaanssen et al. 1998; Tasumi et al. 2005; 

Neale et al. 2012). The use of a surface energy balance to determine ET has strong 

advantages, mainly that the specific vegetation type does not need to be known. And the 

energy balance approach can detect reduced ET caused by water shortage, salinity, or 

frost that may not correlate with vegetation amount. In addition, thermally based energy 

balance methods can detect evaporation from bare soil. 
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 One of the widely used algorithms to map ET using satellite imagery is METRIC 

(Mapping Evapotranspiration at high Resolution with Internalized Calibration). It was 

developed by Allen et al. (2003) as an extended modification of SEBAL (Surface Energy 

Balance Algorithm for Land). This later was developed by Bastiaanssen (1995), and is a 

widely accepted algorithm that has been applied over many regions of the world. 

METRIC algorithm was used in this study to retrieve ET images using Landsat imagery 

to achieve high ET product resolution (30 m) that is useful for monitoring water 

consumption at field scales. Spatial ET estimates at field level or, in other words, the crop 

water demand can provide information about the efficiency of the irrigation and 

conveyance systems. 

 Nonetheless, the estimation has historically been restricted to the day when the 

geospatial information was obtained, corresponding to the 16-day over-pass day of the 

Landsat. So, daily spatial ET has not been available due to temporal resolution of 

satellites and/or gaps in image acquisition due to cloud cover. And without information of 

precise future daily water crop demand there is a continuous challenge for the 

implementation of better water distribution and management policies in the irrigation 

system. 

 In the recent decade, new tools have become available to perform analyses that exploit 

the statistical characteristics of the data. These models are known as statistical data-driven tools 

or machine learning, which have been used to estimate relationship among complex 

multidimensional non-linear variables. These machine learning models use the statistical 

properties of inputs and outputs of the process being studied to define relationships among them. 

 The Relevance Vector Machine (RVM) is one of such machine learning models. 

The RVM is a Bayesian regression algorithm developed by Tipping and Faul (2003) and 
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has been used in hydrology and other fields. It is a sparse model with high prediction 

accuracy, and robustness. For the purposes of this study, an RVM has been used to 

develop a model for estimating ET at the spatial level. The RVM was trained with a set of 

inputs to predict the ET from the METRIC output. These inputs were chosen in a way 

that they can be estimated or forecasted on daily basis whenever a Landsat image is not 

available. 

 The objectives of this paper were: 1) to apply the METRIC algorithm to get the 

actual ET spatially for the Canal B irrigation command area of Delta Canal Company in 

Central Utah; 2) to evaluate the efficiency of the irrigation supply system in the command 

area; and 3) to develop an RVM model that provides a spatial distribution of ET that can 

be applied even on the days when Landsat is not passing over the area. 

 

4.2 Models Background 

4.2.1 METRIC Algorithm 

 The METRIC algorithm is a satellite image processing model that estimates 

spatially distributed values of actual evapotranspiration ET as the residual of the energy 

balance (Allen et al. 2007): 

  LE =Rn  − G − H       (4.1) 

where LE = heat flux density (W m-2); Rn = incoming radiation flux density (W m-2); G = 

soil heat flux density (W m-2); and H = sensible heat flux density (W m-2). 

 The net incoming radiation flux, Rn, is calculated by solving the radiation balance 

as described by Allen et al. (2007). Soil heat flux, G, is the rate of heat conducted into 

soil and vegetation, and is estimated in METRIC from H, Rn, the surface temperature, Ts, 

and the Normalized Difference Vegetation Index, NDVI. 
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 Sensible heat flux, H, is the convective heat loss from the surface to the air 

created by a near surface temperature gradients. It is estimated in METRIC using a one-

dimensional, blended aerodynamic, temperature gradient based method: 

    
ah

p

r

dTc
H


       (4.2) 

where, ρ = air density (kg m-3); cp = air specific heat (J kg-1 K-1); dT = temperature 

difference between two heights (near the surface and a height about 2 m) in a near surface 

blended layer  (K); and rah = aerodynamic resistance to heat transport (s m-1) between the 

two heights. dT is a linear function of Ts developed by using temperature values for the 

cold and the hot pixels, which provides internal and automatic calibration. In METRIC, 

cold and hot pixels should be located within 50 Km of the weather station. The cold 

pixels should represent a well-watered and fully vegetated areas of the image, 

representing a maximum or near maximum evaporative flux; and the hot pixel should be 

located in a dry and bare agricultural field where the evaporative flux is almost 0. 

 A special feature of METRIC is that its auto-calibration is made using ground-

based reference ET as an index of evaporative behavior of well-irrigated full cover 

agricultural pixels, providing agreement with traditional methods for ET. Therefore, the 

METRIC approach assumes that ET for the entire area of interest varies in proportion to 

change in reference ET at the weather station. The main advantage of METRIC is the 

need for minimum ground data. 

 A practical limitation of METRIC is that the endpoint conditions used to calculate 

dT in Eq. (4.2), are selected from each image. This generally requires subjective user 

intervention by trained modelers to select the appropriate endpoint pixels. In this paper, 
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the selection of these so-called "hot" and "cold" pixels was done following the 

recommendations of Allen et al. (2013). 

 

4.2.2 Relevance Vector Machine 

 Tipping (2001) introduced the Relevance Vector Machine (RVM), as a general 

sparse Bayesian modeling approach for classification and regression. In RVM regression 

models, the weight of each input is governed by a set of hyperparameters that describe 

posterior distribution of the weights, and are estimated iteratively during the machine 

learning training step. Most of those hyperparameters approach infinity setting the 

corresponding weights to zero. The remaining non-zero weights are called the relevance 

vectors. RVM's have good generalization performance with sparsity in the representation. 

 For developing an RVM, a training data set, as input-target vector pairs  N

iii yx
1

,


 

is needed, where, N  is the number of observations. The model learns the dependence 

between inputs and output target with the purpose of making accurate predictions of y  

for previously unseen values of x : 

   εxΦy w    (4.3) 

where, w  is a vector of weight parameters, T

Nxxfxxfx )],(),...,,(,1[)( 1  is a design 

matrix of 1N  vectors of basis functions f , ε is the error usually assumed to be zero-

mean Gaussian with variance 
2 . The kernel basis functions, f, considered in this paper 

were the Gaussian kernel function ( )exp(),(
22

ii xxrxxf  
, Laplace kernel function 

( ))(exp(),( 2/122

ii xxrxxf  
 and Cauchy kernel )1/(1),(

22

ii xxrxxf  
, where 

r is the kernel width parameter. These types of kernels have been used by many authors 

in hydrology applications (Kaheil et al. 2008; Ticlavilca et al. 2011; Torres et al. 2011). 
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 Then, a Gaussian likelihood distribution for the target vector can be written as: 
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 In order to avoid over-fitting in the estimation of the maximum likelihood of 

w and 2 , Tipping (2001) proposed adding a "prior term" to constrain the selection of 

parameters by defining an explicit zero-mean Gaussian prior probability distribution over 

them as shown in Eq. (4.5): 
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where, M is the number of independent hyperparameters T

M ),...,( 1   . Each   is 

associated independently with every weight to moderate the strength of the prior and 

provide the sparsity of the model (Tipping 2001). The posterior distribution of the model 

parameters, which is given by the combination of the likelihood and prior distributions 

within Bayes' rule: 
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 The posterior distribution is Gaussian ),( wN  with covariance 

12 )(   TA  and mean yT 2 ; where, A  is defined as ),...,( 1 Mdiag  . 

 The optimal set of hyperparameters 
opt is obtained using a bottom-up basis 

function selection approach described by Tipping and Faul (2003). The marginal 

likelihood is then given by its logarithm )(L : 

 dwwpwypypL )(),(log)],(log[)( 22  



   
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  = y]Ct|C|π[N T 1log2log
2

1       (4.7) 

where, TAIC  12 . The optimal parameters are used to obtain the optimal weight 

matrix with optimal covariance opt  and mean opt . 

 Given a new input *x , the predictive distribution for the corresponding target *y  

can be computed as (Tipping 2001) : 

  )dw),(σp(w|y,α))p(y*|w,(σ)=),(σp(y*|y,α optoptoptoptopt 222

   (4.8) 

 => )σ*,N(y*|)),(σp(y*|y,α optopt 22 *)(     (4.9) 

where, *  is the predictive mean, )(* *xT  ; and T

M ])(,...,)[(*)( 2*2*

1

2    is the 

predictive variance. This predictive variance is the sum of variances of two terms: the 

noise on the data and the uncertainty in the prediction of the weight parameters (Tipping 

2004). The mathematical formulation, likelihood maximization, and optimization 

procedure of the RVM are discussed in detail in Tipping (2001), and Tipping and Faul 

(2003). 

 

4.3 Methodology 

4.3.1 Study Area 

 The Canal B irrigation command area of the Delta Canal Company lies in the 

Lower Sevier River Basin of Central Utah as shown in Fig. 4.1 was the study area for this 

research. This Sevier River Basin has seen significant canal lining and on-farm laser 

leveling for improved irrigation and delivery efficiencies. Canal automation was 

introduced in 1994 and resulted in substantial reduction in losses shortening of the 
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response time between farmer demands and system deliveries (Walker and Stringam 

2000). 

 The study area consists of 10,425 irrigated hectares system and was organized to 

provide water from the upstream reservoir to an individual farm within 12 hours of an 

order by the irrigator. The weather data for this study were taken from the meteorological 

station located near the study area in Delta. This station is a part of the Community 

Environmental Monitoring Program (CEMP) network of 29 monitoring stations located 

in the Western states. It is operated and monitored by the Desert Research Institute (DRI) 

of the Nevada System of Higher Education. The station is located at 39°21′11′′N latitude, 

112°34′42′′W longitude and 1,415 m above sea level, and it records hourly solar 

radiation, minimum and maximum temperatures, wind speed, precipitation and relative 

humidity. These data are available on the CEMP website (CEMP 2012).  

 The weather data for 2009–2011 period were used to calculate the reference 

evapotranspiration using the FAO 56 Penman-Monteith (PM) equation (Allen et al. 

1998), for the dates corresponding to the Landsat scenes used in this study. 

 

4.3.2 Satellite Data 

 The satellite images used in this study were from Landsat 5 Thematic Mapper 

(TM), which has a 16-day revisit time. Landsat 5 TM data were processed by the Level 1 

Product Generation System at the United States Geological Survey (USGS) Center for 

Earth Resources Observation and Science (EROS). Fourteen cloud-free images, listed in 

Table 4.1, were acquired for a period of 3 years (2009–2011) covering crops growth 

stages for the study area in Delta, UT. The TM sensor onboard of Landsat 5 has six bands 

with 30 m spatial resolution in the shortwave, near infrared, and mid-infrared portions of 
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Fig. 4.1. Location of Canal B irrigation area in the Lower Sevier River Basin 

 

the electromagnetic spectrum, while another band, the thermal band, has a spatial 

resolution of 120 m. 

Table 4.1. Landsat Satellite Images Used for ET Estimation 

Year DOY Satellite Path/Row Date 

2009 

149 Landsat 5 TM 38/33 29-May-09 

197 Landsat 5 TM 38/33 16-Jul-09 

213 Landsat 5 TM 38/33 1-Aug-09 

229 Landsat 5 TM 38/33 17-Aug-09 

261 Landsat 5 TM 38/33 18-Sep-09 

2010 

104 Landsat 5 TM 38/33 14-Apr-10 

136 Landsat 5 TM 38/33 16-May-10 

168 Landsat 5 TM 38/33 17-Jun-10 

200 Landsat 5 TM 38/33 19-Jul-10 

264 Landsat 5 TM 38/33 21-Sep-10 

2011 

107 Landsat 5 TM 38/33 17-Apr-11 

203 Landsat 5 TM 38/33 22-Jul-11 

251 Landsat 5 TM 38/33 8-Sep-11 

267 Landsat 5 TM 38/33 24-Sep-11 
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4.3.3 Image Processing 

 The acquired images from Landsat 5 downloaded as L1G data from USGS are not 

atmospherically corrected. Atmospheric corrections were made to these images to 

convert the radiance measurements at the top of the atmosphere to the surface-level 

reflectance. Surface emissivity, albedo, surface temperature and all the required inputs for 

METRIC were calculated using the procedures from Allen et al. (2012). Reflectance data 

in the visible and near-infrared were used to calculate two vegetation indices, the soil 

adjusted vegetation index, SAVI, and the normalized difference vegetation index, NDVI. 

The leaf area index, LAI, maps were also produced. All of these indices maps were used 

as inputs for the METRIC model. The following equations were used for the vegetation 

indices: 

  )/()1)(( ReRe LRRLRRSAVI dNIRdNIR     (4.10) 

  )/()( ReRe dNIRdNIR RRRRNDVI       (4.11) 

where, RNIR, RRed, = apparent reflectance values in the near-infrared (0.78-0.90 µm) and 

red (0.63-0.69 μm) wavebands respectively; L = calibration factor (Huete 1988). 

 The LAI is the ratio of the total area of all leaves on a plant to the ground area 

represented by the plant and ranges from 0 to 6. LAI is dimensionless (m2 m-2) and is an 

indicator of biomass and canopy resistance to vapor flux. It is computed using the 

following empirical equation from Allen et al. (2012) :

 
817.0;6

817.0;*11 3





SAVIforLAI

SAVIforSAVILAI
    (4.12) 
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 All the image processing and mapping was done using ERDAS Imagine software. 

These resulting images, along with the weather data for the study area served as inputs 

for the energy balance model (METRIC) to derive actual ET maps at 30 m resolution. 

 

4.3.4 Model Selection 

A relevance vector machine (RVM) was developed using, information about land 

use, NDVI, LAI, crop classification and reference ET calculated from the weather station 

data in the study area as inputs. Urban areas, roads and all non-agricultural lands were 

excluded from the set of input using the land use map provided by the National Land 

Cover Database (NLCD 2006). A supervised crop classification was done in ERDAS 

Imagine for each of the three years of the study period using NDVI information. Three 

main crops were identified: alfalfa, corn, and small grains (barley, wheat). Fallow 

vegetation was also detected during the crop classification. 

Each of the fourteen images consisted of about 120,000 pixels at 30 m spatial 

resolution. Information from each pixel (NDVI, LAI, crop class, reference ET) were 

treated as an independent set of inputs for the RVM model. The output of the model was 

the ET for each corresponding pixel as estimated by METRIC. The inputs and outputs for 

the RVM model are illustrated in the flow diagram (Fig. 4.2). In order to train the model, 

a simple random sample of 25,000 pixels from all the processed images was extracted. 

This number was chosen to balance computational time and model performance. All the 

remaining pixels were kept aside as test data to validate the performance of the machine. 

Simple random sampling has the advantage over other designs like stratified random 

sampling and systematic sampling, because it is easy to apply and provides satisfactory 
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results in evaluating the accuracy assessment of remotely sensed data (Congalton 1991; 

Kalkhan 2011). 

 

Fig. 4.2. Flow diagram of the RVM model inputs and outputs used in this study 

 

4.3.5 Model Performance 

 For the purpose of testing the degree of association between the calculated and 

estimated ET, performance evaluation measures were used. To measure the magnitude of 

error, the root mean squared error, RMSE, was calculated [Eq. (4.13)]. Large values of 

RMSE mean that the difference between the actual measurements and the modeled values 

is large; hence, the model is not performing well. The RMSE has the same units as the 

data and therefore is easy to interpret. 
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 The coefficient of determination, R2, was also used to evaluate to check the 

correlation between modeled and calculated ET [Eq.( 4.14)]. It is a statistic that provides 

a measure of how well observed outcomes are replicated by the model, as the proportion 

of total variation of outcomes explained by the model. 

  

 



 
















N

i

N

i

ii

N

i

ii

yyyy

yyyy

R

1 1

22

2

12

)ˆˆ()(

)ˆˆ)((

     (4.14) 

 The Nash-Sutcliffe efficiency, E, is a normalized statistic that determines the 

relative magnitude of the residual variance “noise” compared to the measured data 

variance “information” (Nash and Sutcliffe 1970). It is recommended by the ASCE 

(1993) and Legates and McCabe (1999) as a measure of model performance in 

hydrological modeling. It indicates how well the plot of observed versus simulated data 

fits the 1:1 line and is computed as shown in Eq. (4.15). It must be noted that an 

efficiency of 1 (E = 1) corresponds to a perfect match of modeled ET to the calculated 

data. An efficiency of 0 (E = 0) indicates that the model prediction is as accurate as the 

mean of the observed data, whereas an efficiency less than zero (E < 0) occurs when the 

observed mean is a better predictor than the model which indicates unacceptable 

performance.  
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 The index of agreement, IA, was also used to check model performance [Eq. 

(4.16)]. The IA is calculated by comparing an observed group variance with an expected 

random variance. It ranges from zero (inferior model) to one (excellent model) (see 

Legates and McCabe 1999). 
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where, yi = ET estimated for each pixel using METRIC (mm d-1); ŷi = ET estimated by 

the RVM model (mm d-1); y = average of yi; ŷ  = average of ŷi ; and N = total number of 

observations or pixels. 

 

4.4 Results and Discussion 

4.4.1 Spatial Distribution of ET by METRIC 

 METRIC was applied for all selected images from 2009 to 2011, and an actual 

daily ET map was produced for each of the Landsat scene listed in the Methods section. 

Each image was processed individually. Following the recommendations of Allen et al. 

(2013), a filter was applied to select several potential "hot" and "cold" pixels. Out of 

these potential pixels, one "hot" and one "cold" pixel were then manually selected to 

calibrate the model. The process was repeated until satisfactory results were obtained. An 

image for each month during the growing season was selected to show the change in ET 

across the irrigation season. The resulting daily ET maps at 30 m spatial resolution are 

presented in Fig. 4.3. 

 The values ranged between 0 and 8 mm, with patterns of ET linked to vegetation 

type. Lower values of ET (<2mm) corresponded to bare soils or fallow vegetation that 
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were mainly in the North-West side of the map, which is the farthest area from the canal 

diversion, and were not irrigated during the season. It is noticed that in May 16 image the 

fallow vegetation area was giving some values of ET, which represents the evaporation 

from the bare soil due to a rain event of 24 mm that preceded the day of acquiring the 

image. July was the month with higher ET mainly due to the full growth of the corn. The 

results indicated the potential of using METRIC as a tool for estimating irrigation water 

demand in order to support water management in this irrigation scheme, as applied by 

many researchers in many regions in the world (Allen et al. 2007; Folhes et al. 2009; 

Irmak et al. 2011; Singh et al. 2012). It is important to note the limitation of applying 

METRIC is that it is only applicable when a remotely sensed image is available for the 

area. 

 
Fig.4.3. Spatial distribution of daily ET from METRIC for selected days over the     

Canal B area 
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4.4.2 System Efficiency 

 Mapping ET at spatial scale using METRIC was used to evaluate the irrigation 

system efficiency in the Canal B area. As mentioned earlier, the area of study is known to 

have advanced laser leveling performed on the lands. This gives the lands a low gradient 

for better irrigation application efficiency, i.e. very little tail water is generated. But the 

efficiency of the supply and distribution system needs to be evaluated for better 

management. The efficiency of the system was calculated as result of dividing the actual 

ET from METRIC for the area irrigated by Canal B for a specific day, by the canal 

diversions. The actual ET for the fallow areas were excluded from the calculations, since 

these fields were not irrigated. For each month during the irrigation season, one day was 

chosen to evaluate the system efficiency as shown in Table 4.2. The efficiency varied 

from 65% in June to 78% in July. Lower values are expected early in the season when the 

crop requirements are low, the root zone is shallow and the soil has higher intake rate. 

Therefore, low efficiency in the systems occurred in May (67.6%) and June (64.9%) 

when the irrigation of summer barley and corn starts. Better performance in the system 

was achieved in July, at the maximum crop water requirement and full vegetation cover. 

It is also noticed that the efficiency dropped again in September (65.1%). During this 

month, the farmers plough the lands again and plant the winter crops for the next season, 

 

Table 4.2. Canal B Diversions and System Efficiency 

Date 
Canal B Diversions 

(m3 d-1) 

ET_METRIC         

(m3 d-1) 

System 

Efficiency (%) 

May 16 248,196 167,741 67.6 

Jun 17 314,440 204,106 64.9 

July 19 317,192 247,842 78.1 

August 1 284,726 202,559 71.1 

Sept 18 190,594 124,068 65.1 
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which increases the intake rate of the soil, and the surface irrigation becomes less 

efficient. 

 

4.4.3 RVM Model Results 

 METRIC has proven to be a reliable model to estimate spatial ET and was used 

widely for different management practices. However, the limitation of METRIC and 

other remotely sensed algorithms is their applicability only when a remotely sensed 

image is available, which is limited at the required high spatial resolution (French et al. 

2012). Hence, an RVM model was developed in this study as an alternative model that 

can estimate spatial ET. The purpose of the RVM model was to model actual spatial ET 

as calculated by METRIC. Vegetation index (NDVI), reference ET, and LAI and the crop 

class were used as the RVM inputs. The RVM was trained and performance was tested 

based on selection of optimal kernel width and kernel type. The kernel types and width 

were discussed previously in Section 4.2.2. The highest E and least RMSE were obtained 

for a "Cauchy" kernel with a kernel width r = 0.2205. The  performance criteria results 

for training and test data for the RVM model were shown in Table 4.3. The RVM 

demonstrated good performance with a training RMSE of 0.49 mm d-1, R2 of 0.84, E of 

0.85 and IA of 0.95 in the training phase which indicated that observed data and modeled 

values were close. When tested on unseen data set or pixels, the model kept good 

performance with an RMSE = 0.5 mm d-1, E = 0.84, IA = 0.81 and R2 = 0.82 for the test 

data set. Fig. 4.4 shows a scatter plot of ET estimated by the RVM model and the ET 

calculated by METRIC. The points in the scatter plot all gathered around the 1:1 line 

indicating the ability of the model to predict ET. Some over or underestimation was also 

noticed for some pixels, which was explained by further analysis of the residuals.  
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Table 4.3. Performance Criteria Results for RVM Model in the Training and Testing 

Phase 

Phase Statistic RVM 

Training RMSE (mm) 0.49 

 E 0.85 

 IA 

R2 

0.82 

0.84 

Test RMSE (mm) 0.50 

 E 0.84 

 IA 

R2 

0.81 

0.82 

  

 

Fig.4.4. Modeled vs. calculated spatial ET for the study area for the unseen data 

 

 In order to display the RVM model performance over a growing season, an image 

was selected from each month of the growing season. The RVM was applied to those 

images after removing the pixels used in the training phase, and the results are 

summarized in Table 4.4. This table shows the total daily ET for the study area as 

calculated by METRIC and as modeled by the RVM model. The total residual errors 

ranged from -2,232 m3 d-1 to 8,026 m3 d-1, with a maximum overestimation of 3.4% in the 

month of June. 
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Table 4.4. Comparison Between ET from METRIC and ET from RVM Model for 

Selected Days 

Date 
ET (m3 d-1) Error 

METRIC RVM  m3 day-1 % 

May 16 190,721  188,715  -2,006 -1.1 

Jun 17 233,476  241,502  8,026 3.4 

July 19 281,213  281,418  206 0.1 

August 1 240,941  238,709  -2,232 -0.9 

Sept 18 147,929  146,841  -1,088 -0.7 

  

 Further analysis of the residuals was conducted. Fig. 4.5 showed the maps of the 

residual errors over study area. Fig 4.6 illustrated the histogram of the residuals. These 

figures showed most of the errors falling within 0.6mm d-1 of the ET calculated by 

METRIC. Some overestimation (red color) was noticed in the areas away from the 

delivery canal (North-West) that mainly corresponds to fallow vegetation that are not 

usually irrigated. These areas had very low ET and the model seemed to overestimate 

those values. 

 
Fig. 4.5. Residual error maps for the study area for selected days 
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Fig. 4.6. Histogram of residual errors for the selected days 

 

 When developing the RVM model, one of the images was randomly selected and 

excluded from the training set. This image, from which no pixels were chosen to train the 

RVM, was used to test the practicability of the model. The overall Nash-Sutcliffe 

coefficient, E, was 0.83, IA = 0.77, R2 = 0.79 and the RMSE=0.67 mm d-1, indicating 

good model performance. The total volume of water requirement estimated by METRIC 

for that day (May 29, 2009) was 192,961m3 d-1, while the RVM model estimated was 

206, 933 m3 d-1 giving an over estimation of 7.2% for the overall area. Fig. 4.7 showed a 

close relation between ET map modeled by the RVM model and ET map calculated by 

METRIC. The RVM, being a regression model, tends to overestimate the low ET areas 

that corresponds usually to the fallow vegetation or bare soils. 

 The accuracy of the RVM modeling for images not included in the model 

training, makes it reliable for predicting ET at spatial scale using the input for the days 

when a Landsat image is not available. For that purpose, NDVI and LAI can be 
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extrapolated in time using widely used temporal profile equations (Fischer 1994), and the 

reference ET could be forecasted accurately using machine learning techniques as 

presented in (Torres et al. 2011; Bachour et al. unpublished).  The RVM model could be 

tested with real-time data without using a Landsat image to provide the model inputs. The 

output of this model could be utilized for development of decision-support systems that 

should be available to farmers and managers of reservoir releases and canal diversions. 

 
Fig. 4.7. ET_METRIC vs. ET_RVM for a test image  

 

4.5 Conclusions 

 This study showed the application of METRIC algorithm in the Canal B irrigation 

command area of the Lower Sevier River Basin, UT. It provided the spatially distributed 

daily ET at high spatial resolution (30 m) over large irrigated areas using Landsat images 

and weather data. This is a very useful tool to monitor crop growth, and crop water 

demands and applications. The spatial distribution of ET helped evaluating the efficiency 

of the supply and distribution system, which can be used for better management of the 

canal diversions and irrigation applications on a field-by-field basis. Another important 
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element presented in this study, was the capability to produce spatially distributed 

estimations of ET using a data driven RVM model. The developed model used 

information about NDVI, LAI, crops classification and reference ET, and provided 

accurate estimation of spatial ET compared to METRIC. 

 This model lays the ground for the estimation of ET at spatial scale for the days 

when a Landsat image is not available or when there is cloud coverage. Such gaps in 

remote sensing information could reach a month or more when using Landsat. This 

methodology can be used for forecasting daily spatial ET, if the vegetation indices model 

inputs are extrapolated in time, and the reference ET forecasted accurately. 
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CHAPTER 5 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

Chapters 2 to 4 presented the body of the work and the main scientific results of 

the dissertation. In this chapter, a summary of the work is presented, important 

conclusions, and recommendations for future research are presented. 

 

5.1 Summary and Conclusions 

Efficient water management is becoming very critical in meeting the needs of the 

growing population. An effective water management approach requires that water users 

become involved in the decision-making and management process. In the management of 

irrigation command areas, and in order to build a better plan to manage service delivery 

from canals and reservoirs, it is important to build an appropriate knowledge base about 

water needs at the level of an individual field. There is often a lag between the order of 

water by a farmer and delivery of water to the field. Knowledge about the crop water 

requirement at the field level helps the system operator to make the right choices leading 

to more efficient handling of the available water. 

With these goals in mind, this dissertation attempted to develop procedures which 

give information to farmers and irrigators about the crop water requirements of their 

fields. This information could help in the overall improvement of water management 

practices, both on-farm and system wide. 

The methods used in this dissertation were directed toward designing machine 

learning models which can be used as tools for decision support systems for water 

management. They adapt to time-varying behavior and incrementally learn changes as 
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they come across more data in near real time. To achieve better modeling and prediction, 

wavelet decompositions were explored for their ability to give information about time 

and frequency changes in the data. Remote sensing approaches were also used for their 

ability to quantify water requirements at the spatial level. Therefore, this dissertation 

explored the use of the above-mentioned data, tools, and techniques to address water 

management problems. The framework of this dissertation consisted of three components 

that attempted to provide tools to support irrigation system operational decisions. 

 In Chapter 2, the Hargreaves (HG) equation to calculate ET was evaluated under 

semiarid conditions in the Bekaa Valley of Lebanon using 16 years of complete daily 

climatic data from the Terbol weather station. HG results were compared to ET estimates 

obtained from the FAO56 Penman Monteith equation (PM), which was used as a 

standard. A modification of the HG equation was then developed to achieve better 

accuracy of ET estimation using only temperature data. A slight additional improvement 

in HG estimation accuracy was attained by adding the wind speed variable. Therefore, it 

was recommended to use the calibrated HG equation when only temperature data are 

available, otherwise when complete and reliable weather data exist, the use of the 

standard PM equation is recommended. 

 Chapter 3 introduced a methodology to combine wavelet multiresolution analysis 

(MRA) with a multivariate relevance vector machine (MVRVM) to predict 16 

consecutive days of daily ET. In this Chapter, different wavelet decompositions were 

performed and combined with the MVRVM to develop the hybrid prediction models. 

These performed better than MVRVM model with higher accuracy and robustness. This 

is a valuable element for improving the efficiency of irrigation water delivery systems. It 
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also helps decision-makers and operators to manage irrigation water delivery systems. 

Accurate forecast of daily ET is beneficial in estimating future crop water demands and 

responding with appropriate operational decisions for canal delivery/distribution systems. 

These forecasting models lay the ground for forecasting the spatial distribution of ET 

using remote sensing. 

 Chapter 4, Mapping Evapotranspiration at high Resolution with Internalized 

Calibration (METRIC) algorithm, was used in this study to calculate actual ET from 

Landsat 5 Thematic Mapper images at 30m spatial resolution in the Canal B irrigation 

command area of the Delta Canal Company in Central Utah for the 2009-2011 growing 

seasons. These ET maps were used to evaluate the efficiency of the irrigation supply 

system in the Canal B area. The efficiency ranged from 65% to 78% throughout the 

growing season. The second issue addressed in this Chapter was the ability to produce 

spatially distributed ET using data-driven modeling which can then be used when satellite 

imagery is not available. For this purpose, a machine learning algorithm, a relevance 

vector machine (RVM), was built and trained with a set of inputs of vegetation indices, 

land use, soil texture and weather data in order to predict the ET from METRIC as 

output. The resulting RVM model provided accurate estimation of spatial ET compared 

to METRIC. 

 

5.2 Recommendations for Future Work 

 This dissertation was an effort to advance the use of wavelets, machine learning 

and remote sensing tools and their application in water resources management. In 

general, the results for each of the methods developed were satisfactory, relevant and 

encouraging. They provide significant potential for improving decision making for real-
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time applications in river basin management, and can be extended to other fields and 

applications in water resource management. 

 Keeping in mind the concepts developed in this research and the results 

demonstrated, we recommend future research that will provide better strategies for 

improved irrigation water management, in particular, and water resources management in 

general. 

 The calibration procedure for the ET equation for semiarid conditions draws 

attention toward the use of this equation to estimate crop water requirements in similar 

conditions. Also, depending on data availability, it can be tested whether this calibration 

method can provide a good estimate at hourly time steps. This will be useful for purposes 

of applying remote sensing algorithms to calculate the spatial distribution of ET areas 

where complete reliable weather data are not available, such as the case of Lebanon. 

 The wavelet-MVRVM models presented in this study provided a reliable forecast 

of ET for 16 consecutive days ahead. The RVM model demonstrates a strong ability to 

distribute ET to the spatial level. This lays the grounds for further investigations that 

could lead to spatial forecasts of ET, given that the vegetation indices model inputs can 

be extrapolated in time, and the reference ET can be forecasted accurately. The spatial 

forecasting of ET will help decision-makers and water system managers to establish 

appropriate strategies in the operation of irrigation systems. Such spatial forecasts, if 

applied on a real-time basis, solve the problem of irrigation requirements estimation on 

large scales. 

 Including 10-days of forecasted minimum and maximum air temperatures as 

inputs to the wavelet-MVRVM models improved slightly the performance of these 
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models, especially for the first 10 days for which the weather forecast is available. This 

encourages the exploration of adding other weather variables in future research. 

 Remote sensing data is becoming more available. This provides more frequent 

information at different spatial resolutions. For example, the MODIS satellite provides 

daily images at 250m to 1km spatial resolution. Downscaling methods could be 

combined with the suggested methodologies to improve the spatial forecasting of ET. 

 Recently, the Landsat 8 satellite became operational at a 16-day revisit cycle. It 

operates in alternation with Landsat 7, which together allows users to acquire 30 m 

resolution images every 8 days. The hybrid modeling approach could be applied to 

provide more accurate 8-day ET forecasts. 

 All these tools should become operational and applied in real-time. They, or the 

data they produce, should be easily available for end-users (farmers and canal operators). 

A test phase for these tools should be done first. This will allow feedback from the end-

users to the modeler to adapt the models in a comprehensible manner for them. It also 

allows refining of the models to adjust for real-time working conditions. It can also 

provide enough time for the farmers and operators to trust and adapt to the new sources 

of information. 
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