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A numerical simulation of the interaction between
two real pressurized water reactor containment sprays
is performed with a new model implemented into the
Eulerian computational fluid dynamics (CFD) code NEP-
TUNE_CFD. The water droplet polydispersion in size
has been treated with a sectional approach. The influ-

I. INTRODUCTION

Spray systems are emergency devices designed for
preserving the containment integrity in case of a severe
accident in a pressurized water reactor (PWR). These
systems are used to prevent overpressure, to cool the
containment atmosphere, to remove fission products from
the containment atmosphere, and to enhance the gas mix-
ing in case of the presence of hydrogen in the reactor
containment. The efficiency of these sprays can depend
partially on the evolution of the droplet size distribution
in the containment, due to gravity and drag forces; heat
and mass transfers with the surrounding gas; and droplet
collisions. Spray systems in nuclear power plants are
composed of more than 500 interacting water droplet
sprays with droplet diameters ranging from 100 to
1000 um. They are used under pressure (2 to 3 bars) at
temperatures between 20°C and 60°C and under a gas-
eous mixture composed of steam, hydrogen, and air.

Droplet interactions are generally neglected in safety
codes because of the lack of accurate industrial modeling

*E-mail: jeanne.malet@irsn.fr

ence of collisions between droplets is taken into ac-
count with a statistical approach based on the various
outcomes of binary collision. Experiments were per-
formed in a new facility, and data obtained are com-
pared with this two-fluid simulation. The results show
good agreement.

of such sophisticated physics. However, studying droplet
interactions in the field of spray systems in nuclear re-
actor containment is clearly justified since more than 500
spray nozzles that are either oriented downward or in-
clined are used in a PWR, resulting in an overlap of the
spray envelopes.'

Few experiments exist in the field of interacting
sprays,>~* and they are performed on sprays that do not
have the same ranges of parameters (droplet sizes and
velocities, as well as distance between sprays) as the
ones used in a PWR. A specific experimental facility,
presented in this paper, has thus been built in order to
study the configuration of two PWR interacting sprays.

Considering computational fluid dynamics (CFD)
studies on spray interactions, one can find different ap-
proaches in the literature.’> Since our work uses a code
having a Eulerian approach for droplet transport, the La-
grangian approach for polydispersed flow and collisions
is not considered here. For the Eulerian droplet approach,
two main groups of methods describe the polydispersion
of particles: the sectional method®® and the method of
moments.”>' PWR sprays are characterized by high rel-
ative velocities between droplets. The sectional method



is the most appropriate method to take into account the
various trajectories of droplets depending on their diam-
eter. Therefore, the sectional method is used here.

In the literature a collision kernel has already been
introduced into polydispersed flows of droplets. In the
past studies, as soon as the droplets collide, only two
issues have been considered: bouncing or coalescence.
However, the literature has shown that binary droplet
collision can have a wider range of issues, such as sep-
aration into three droplets or splashing into tiny drops.' =14
Preliminary estimations have shown that the splashing
regime could occur for droplets of two interacting PWR
sprays.!# Thus, we propose here to implement a complete
“collision issue” on the basis of the modeling of binary
collision.'?

The objective of this work is thus to present our
model for droplet collision numerical simulations and to
compare the results with the data obtained on experi-
ments specifically developed for this study, based on two
interacting real PWR sprays.

Il. PWR CONTAINMENT SPRAY SYSTEMS

The French PWR containments (Fig. 1) have gen-
erally two series of nozzles placed in circular rows.
More precisely, for the 900-MW(electric) PWR, there
are exactly four rings of nozzles having the characteris-
tics presented in Table I. A schematic view of these
spray rings and the associated spray envelopes are given
in Fig. 1. The nozzle type used in many PWRs, in par-
ticular, French 900-MW(electric) PWRs, is the so-
called SPRACO 1713A, distributed by Lechler under

TABLE 1

Characteristics of Spray Rings for the French
900-MW(electric) PWR

Approximated

Distance

Between

Height | Diameter | Number Nozzles
(m) (m) of Nozzles (m)
First ring 54.8 10.0 66 0.5
Second ring | 54.2 14.8 68 0.7
Third ring 52.3 22.5 186 0.4
Fourth ring | 51.0 27.0 186 0.4

reference 373.084.17.BN (Fig. 1). This nozzle is gener-
ally used with water at a relative pressure of 350 kPa,
producing a flow rate of ~1 €/s. The outlet orifice
diameter is 9.5 mm. The temperature of the injected
water during a hypothetical nuclear reactor accident is
either from 20°C or 60°C to 100°C, depending on the
kind of process (the 60°C to 100°C process is the so-
called recirculation mode).

11l. EXPERIMENTAL MEASUREMENT OF PWR
CONTAINMENT SPRAY CHARACTERISTICS

I1L.A. CALIST Facility

Experiments have been carried out at the French In-
stitut de Radioprotection et Stireté Nucléaire (IRSN), on

S—>
AA

~35m

~60m

~40m

Slice view of spray envelopes .

Fig. 1. Spray rings and envelopes in a French PWR (not at scale) and spray nozzle SPRACO 1713A (Lechler 373.084.17.BN).
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Fig. 2. CALIST water-spray experimental facility.

the CALIST (Characterization and Application of Large
and Industrial Spray Transfer) facility sketched in Fig. 2.
In a room of 7- X 6- X 3.5-m3 dimensions, the setup is
composed of a water-supplying hydraulic circuit and, for
these experiments, two interacting spray nozzles with a
flow rate of 1 €/s at a relative pressure of 350 kPa for
each nozzle and separated by 42 cm. The water spray,
with a temperature of ~15°C to 20°C, is collected in a
5-m? pool. The axial position of the spray nozzle may be
changed using a monitored carriage.

The measurement of the spray characteristics re-
quires a technique such as light diffraction, shadow-
graphy, or phase Doppler interferometry (PDI). The latter
is chosen since it provides local high-resolution informa-
tion about the spray drops. Indeed, PDI measures the size
and the velocity of drops passing through an optically
defined probe volume.'>

PDI can measure only droplets of spherical shape. In
order to determine where atomization is achieved—and,
so, when droplets are spherical—visualization is per-
formed with a Phantom high-speed camera used with a
resolution of 800 X 600 pixels at a frequency of 4796 Hz,
with an exposure time of 10 us (Ref. 16). The spray is
illuminated from the back in order to obtain consistent
and machine-readable images. The high-speed visualiza-
tion shows that the distance from the nozzle exit at which
most of the liquid is atomized into droplets is ~20 cm.
Therefore, it can be anticipated that at such a distance,
PDI measurements of droplets are reliable. Measure-
ments have been performed at 20, 40, 60, and 80 cm from
the nozzle exit.

The uncertainty of the measurement radial positions
is due to the spray specific oscillations at the considered

pressure supply of this spray nozzle. These oscillations
were clearly attributed to the spray and not to any system,
such as the water pump. They are estimated to be ~1 cm.

The uncertainty of the droplet variables is calculated
from three uncertainties: (a) the uncertainty based on
measurement repeatability (measurements are generally
repeated at least three times); (b) the uncertainty based
on the angular position (measurements performed at four
angular positions, in a spray that has been found to be
axisymmetric'®); and (c) the uncertainty based on the
already mentioned spray oscillations (the uncertainty of
the measurement position introduces an uncertainty of
the droplet variable measurement: This uncertainty is
thus calculated by estimating the variation of the variable
over the radial position).

An example of the good repeatability of the tests is
presented in Fig. 3.

I1l.B. Characteristics of Droplets 20 cm from the Nozzle

Measurements performed 20 cm from the nozzles
are used as inlet conditions of the numerical simulations.
At this distance, because of the hollow cone created by
these nozzles, most of the droplets are concentrated in an
annular area located between 8 and 15 cm from the noz-
zle axis, with a maximum of presence at 11 cm, as can be
seen in Fig. 4a, where the local water concentration is
normalized by its maximum value. The geometric mean
diameter D, Sauter mean diameter Ds,, and mean ve-
locities are displayed in Fig. 4b as functions of the dis-
tance from the nozzle axis. D, varies between ~240 and
330 wm. D3, varies between 360 and 520 uwm. This im-
plies dispersion in size. The axial velocity v, is maximum
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Fig. 3. Repeatability study on droplet size measurements.

close to the nozzle axis: It is 20 m/s at 8 cm and then
decreases radially to 13 m/s at 15 cm. The radial velocity
v,-is maximal far from the nozzle axis and equal to 7.7 m/s.
The orthoradial velocity vy is very low and varies be-
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tween 0.17 and 0.34 m/s. This means that the swirl
created by the nozzle internal geometry is attenuated
very quickly in the first centimeters when atomization
occurs.

Figure 5 shows the local spray size and axial velocity
distributions (normalized by their maximal values). One
can see that the shape of the size distribution does not
depend on the distance from the nozzle axis. The size
distribution can be approximated with a lognormal law
as presented by Ref. 16.

IV. MODELING OF DROPLET POLYDISPERSION
AND COLLISIONS

Numerical simulations have been performed using
the NEPTUNE_CFD code.!” The solver belongs to the
well-known class of pressure-based methods. It is able
to simulate multicomponent multiphase flows by solv-
ing a set of three balance equations for each field (fluid
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Fig. 4. Mean characteristics of the spray 20 cm from the nozzle outlet (error bars are given for a 67% interval of confidence).
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Fig. 5. Experimental size and axial velocity distributions 20 cm from the nozzle, presented for different distances from the nozzle

axis.



component and/or phase). These fields can represent
many kinds of multiphase flows: distinct physical com-
ponents (e.g., gas, liquid, and solid particles); thermo-
dynamic phases of the same component (e.g., liquid
water and its vapor); distinct physical components, some
of which split into different groups (e.g., water and
several groups of different-diameter bubbles); and dif-
ferent forms of the same physical components (e.g., a
continuous liquid field, a dispersed liquid field, a con-
tinuous vapor field, and a dispersed vapor field). The
solver is implemented in the NEPTUNE software envi-
ronment, which is based on a finite volume discretiza-
tion, together with a collocated arrangement for all
variables. The data structure is totally face based, which
allows the use of arbitrarily shaped cells (tetrahedra,
hexahedra, prisms, pyramids, etc.) including no conform-
ing meshes. The main interest of the numerical method
is the so-called “volume fraction—pressure—energy cycle,”
which ensures mass and energy conservation and al-
lows strong interface source-term coupling. In the sim-
ulations described later, gas turbulence is associated with
the k — & model, whereas dispersed phase turbulence is
modeled with the Q2-Q12 model.'® For the latter, for
each droplet class, the turbulent kinetic energy equation
is based on the same turbulent kinetic energy equation
as the one used for the gas phase, with a contribution
coming from all forces due to the presence of all other
droplet classes. Closure laws are also derived from the
correlation between gas and droplet fluctuations, lead-
ing to a transport equation of this variable based on the
Ref. 19 approach, modified by Ref. 18. In this transport
equation, the turbulent dynamic viscosity between the
gas and the droplets depends on a droplet gas entrain-
ment characteristic time, derived by Ref. 20, and sim-
plified by Ref. 21. In this paper, focus is given on the
collision model, which is described in this section.

IV.A. Modeling of Droplet Polydispersion

Reference 6 develops a method to model particle poly-
dispersion in size in Eulerian simulations. The idea is to
consider the dispersed phase as a set of continuous “fluid”
media: each fluid corresponding to a statistical average
between two fixed droplet sizes, namely, a section. The
spray is then described by a set of conservation equations
for each fluid. In our case, both interacting sprays will be
considered as independent fluids, and for each spray or
fluid, size distributions are divided into sections of
fixed diameter. Sections are chosen as fixed in size, and
they exchange mass and momentum in order to model
evaporation /condensation or collision phenomena.

IV.B. Mass Balance Equations

The several-fluids model consists of a mass balance
equation, where k represents each section and i is the
coordinate:

d d -
. (ak pk) + — (ak Pr Uk i) — ch()/llsmn + chond/evap ,
ot 0x; ’

1

(1)
where
t = time

void fraction of section k, its
averaged density, and its ve-
locity along the coordinate i,
respectively

g, pi, Up i =

[cottision cond/evap — mags transfer per unit volume
and unit time due to collisions
and condensation /evaporation,
respectively.

It is assumed that no evaporation or condensation occurs
in this case: [}cond/evar = (),

[eettision consists of a source term I/ and a sink
term [

collision _ ycoll+ coll—
I = ol 4 el (2)

It can be written that

coll+ _
Fk - 2 Fm,n—)k >

m,n

’ 3)
= _2 Iﬂk.men 4

coll—
1_‘k

where I, ,_x is the mass transfer from section m to k
after a collision between droplets of class m and droplets
of class n.
IV.C. Momentum Balance Equations

The momentum balance equation is given by

d 0
—(« U, )+ — (« U, .U,
at( k Pk k,,) axA( kP Yk, i k,/)

7

= —a,Vp + ay py g + V[ay (7, + 7))]

+ 2 rm,n—>k(Um,n—>k,i - Uk,i) > 4)
mn
where
p = pressure
g = gravity
7,7 = molecular and turbulent stress tensors

(Reynolds stress tensor)

U,.n—i.i = velocity of section k along coordinate i
resulting from the collision between drop-
lets of class m and droplets of class n.



IV.D. Mass Transfer Terms due to Collision

[eellision can be derived from two terms: [°™ as a
positive term (creation of droplets of class k) and a neg-
ative term [;2°"'~ (sink of droplets of class k) due to col-
lisions. The positive term can be expressed as

choll+ — E @, pmfm’”[collma"prObm,n(Wes)] , (5)

m,n
where
We, = symmetric Weber number of the collision

fm.n = collision frequency between droplets of
class m and n, described in Sec. III.F

prob™" = matrix of probabilities to obtain a given
collision issue regime at the related Weber
number described in Sec. lII.G

Coll™" = go-called outcome collision matrix of
each regime, described in more detail in
Ref. 22.

The negative term [}7°"~ is described in the same way as
the production term, but the outcome collision matrix is
different.??

IV.E. Momentum Transfer Term due to Collision

The momentum transfer term due to collision is ob-
tained on the same basis as for mass transfer:

Fk([]l* - Uk,i) = z ampmfm,n(Um,nﬁk,i - Uk,i)
[Coll™"™ prob™"(We,)] . (6)

The U, velocity is the resulting velocity from the colli-
sion issue.

IV.F. Collision Frequency Equation

The collision frequency f,, , between droplets from
sections m and n is derived from Ref. 23 as follows:

d,+d,\°
fm,n:g(’)nnﬂ- 2 nnnmlUm_Un|

1 eXp(—z)}
X || —+1]erf(\z) + ———
[( 2z ) Ve N7z
U B Ol A .

withz = —

4 g2+ - Walqe, 6,

where

d,,d, = diameter of sections m and n, respectively
n,,, n, = number concentration of sections m and n,

respectively

= droplet kinetic energy at sections m and n,
respectively

G

Emrn

= fluid-droplet velocity correlation coeffi-
cient of droplets of sections m and n,
respectively

go = radial distribution function introduced by

Ref. 24:
D , —0.64y,,,

m— | — p=m,n
8o 0.64

2 d

3( dyd, \ 2,2,

withy, =1+~ ®)
2\d,+d,) 3 o
p=m,n

IV.G. Modeling of Collision Issues

Five binary collision outcome regimes can be pointed
out: bouncing, coalescence, reflexive separation, stretch-
ing separation, and splashing.'* Looking at the collision
pictures,? one may possibly determine the final daughter
diameter and velocity as a function of the initial “parent”
diameters, using mass and momentum conservation. These
values are summarized in Table II. For the splashing
regime, a value of 20 droplets has been estimated, but
this should be considered as a first approximation. All
these collision issues can be represented by functions
depending on the Weber number and the impact param-
eter of the collision, described hereinafter.

Reference 13 proposes simple formulas expressing
the boundaries of collision outcome fields as a function
of the symmetric Weber number expressed by

p d]li* +di|a)?

We = — . 9
120 42+ d? ®)

In our calculations, the expressions of Ref. 13 for colli-
sion are used.

The critical impact parameter 17°°°“! at which the
transition between reflexive separation and coalescence
occurs is given by

0.45
[refeed = 028 [1— —— We (10)
e

The critical impact parameter 157¢°* for the transition
between coalescence and stretching separation is ex-
pressed by

YWeZ,, + 8We,,,We — We,,,,
4We

I stre-coal _

with We,., = 0.53 . (11)

stre



TABLE II

Daughter Droplet Diameters of Two Parents’ Droplets After a Binary Collision for Different Regimes

Number of Formed Final Droplet Final Droplet
Observations of Binary Droplets in the Diameter in the Velocity in the
Collision Outcome Collision Issues Calculation Calculation Calculation
Bouncing No change Two d,, and d,, l7m and 17”
377 377
Coalescence Creation of one droplet One 3\[51;' +d> dp U, + d, U,
di+d}
Stretching separation Satellite droplets are neglected. Two d,, and d, l7m and f],l
377 377
Reflexive separation Three droplets are created. Three sldatdy dn Uy +d, U,
Vo3 dp + d;
. d3 +d? .
Splashing Twenty droplets are created. Twenty dp =3 ——= Uk
20

The critical impact parameter 174" between reflexion
and stretching is given by

: 1—k
Icref—stre — (12)
1 + Rreﬂstre

with k a viscous dissipation coefficient, found experi-
mentally in Ref. 13 to be equal to 0.9 and with dimen-
sionless number R,/ that is found to be 0.28 according
to experimental results.'? Equations (10), (11), and (12)
for the critical impact parameter, which describe the tran-
sition curves between collision regimes, are described in
more detail in Ref. 13. They are valid under ambient gas
conditions for droplet sizes between 200 and 400 wm,
with velocities up to 10 m-s~!. Where the transition to
bouncing is concerned, the calculations performed here
are based on the Ref. 12 model, described by Eq. (13):

A1+ A2) (4D, — 12)

We
x(1—17%)

coal/boun =

2 3 3
with @, = —+1) . (13)

3 7 (goz.
G
QDC

where y is the fraction of volume interaction and A is the
diameter ratio. The parameter ¢, has to be obtained ex-
perimentally. Reference 21 performs binary water drop-
let collision experiments on the bouncing regime and
finds the value for ¢, should be 0.3.

Concerning the fifth collision regime, the splashing
regime (collision of two drops leads to the splashing into
tiny droplets) is assumed to occur when the symmetrical
Weber number is >20, based on experimental observa-
tions,?® which have to be confirmed by further experi-

ments. The model proposed here for splashing is a first
approximation basic threshold model.

When these collision outcome equations are used,
the probability prob™"(We;) to obtain a given collision
issue regime p at the related Weber number is obtained
from the probability of the impact parameter, which fol-
lows a sinusoidal law described in detail in Ref. 22. This
sinusoidal law results from the study of particle colli-
sions whose trajectories are not correlated.

V. NUMERICAL SIMULATIONS OF SPRAYS

Before performing the simulations on two interact-
ing PWR sprays, we validate simplified cases.

V.A. Validation of Polydispersity and Collision Models
on a Simple Case

Reference 10 performs direct numerical simulations
(DNSs) of particle clouds in homogeneous isotropic tur-
bulence, without gravity. Simulations are conducted with
an initially lognormal distributed droplet phase, in a cu-
bical domain with 1283 grid regular points for a cube
physical length of 0.128 m and with periodical boundary
conditions. An overview of the physical properties is
given in Table III.

Figure 6 shows the size distribution evolution at
different times, normalized on the initial distribution.
One can notice that results from the sectional method
described previously, used with nine sections in the
NEPTUNE_CFD code, are quite similar to the DNS
results. As a consequence, the sectional method and the
polydispersity modeling are validated in the case of
homogeneous isotropic turbulence. Further elementary
simulations should be performed to validate the drift
part of the collision frequency ! since this is the main



TABLE III

Properties of Fluid and Initially Lognormal Distributed Droplet Phase*

Fluid Density Fluid Kinematic Viscosity Fluid Kinetic Energy, ¢/,
1.17 kg/m?3 1.47 X 1075 m?/s 0.0015 m?/s?
Droplet Void Lognormal Mean Lognormal Standard Droplet
Fraction Diameter Deviation Density Daropter! Aiia
4.388 X 107* 260 pwm 0.12 226.3 kg/m? 0.890
*Reference 10.
Time: 0 sec Time: 0.67 sec
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Fig. 6. Droplet size distribution evolution in time, comparison of DNS (Ref. 10) and present sectional method.

phenomenon responsible for the collision in the top of
the reactor containment.

V.B. Numerical Simulation of Two PWR
Interacting Sprays

Interacting sprays, characterized in the CALIST fa-
cility, are simulated inside a parallelepiped mesh of
800000 hexahedra regular cells, representing a domain

of 1.20 X 0.80 X 2 m. All boundaries are considered as
free outputs, except the top face, which contains the input
and walls around, with no friction, and where velocity
can only be tangential. Since the spray produced by these
nozzles is a hollow cone extending 20 cm from the noz-
zle, the input domain is modeled by two annular rings of
18-cm internal diameter and 26-cm external diameter.
Droplets are injected from this annular ring with the size
distribution presented in Fig. 4. In Fig. 4, one can see that



the axial velocity decreases from 20 to 15 m/s with the
distance to the nozzle axis.

In these simulations, we assumed that the injection
velocity is independent of the position. We chose a value
of 18.6 m/s, that is, the velocity 11 cm from the nozzle
axis, where the volumetric fraction is maximal. Estimat-
ing the value of one single radial velocity for the simu-
lation is more difficult. Indeed, this value is very important
since it is the main component of the relative velocity of
the droplets when the spray interacts and thus can modify
the value of the Weber number and the collision effi-
ciency. A value of 7.7 m/s was chosen according to the
results presented in Fig. 3. The orthoradial velocity was
neglected because of its low value. Each spray size dis-
tribution was separated into nine sections (Fig. 7), whose
void fractions were adjusted from the assumed droplet
size distribution in order to obtain a mass flow rate of
1 kg/s, as measured on the real PWR nozzle for a relative
pressure of 3.5 bars.

The experimental and numerical local size distribu-
tions obtained are compared in Fig. 8 for different posi-
tions along the symmetrical axis. Code-experiment
comparison leads to very encouraging results. The same
overall size distribution is obtained in the experiment and
in the calculations.

It is clear that the droplet size decreases since the
mean geometric diameter is ~300 um before spray in-
teraction and ~200 wm after spray interaction (Fig. 8).
This decrease can have two origins. First, it can be
due to collisions at high Weber number that occur
when sprays interact: In the interaction area, the colli-
sion frequency reaches a maximum of ~10!'! collisions-
m~3.s71 and the Weber number is very high, so that
collisions could lead to breakup.?® This size decrease is
also due to the entrainment of the smallest droplets in
the direction of the symmetrical axis.’® The smallest
droplets are drifted away in the air flow, whereas the
biggest droplets, having more inertia, are not altered in
the spray interacting area.

Section Diameter (um) Flowrate (kg/s) E
1 55 1.22 105 2
2 166 6.28 103 z
3 277 3.18 102 g
4 388 7.31 102 3
5 500 1.17 101 ;
6 611 1.56 101 3
7 722 1.86 101 3
8 833 2.07 10 $
9 944 2.22 10

1,00

0,80

0,60

0,40

At this stage, it is difficult to explain the main phe-
nomenon occurring because initial conditions and bound-
ary conditions play a significant role. Calculations
presented here have been performed with constant radial
and axial velocity profiles. The difference between cal-
culations using one single mean velocity compared to
calculations using a real velocity profile has been re-
cently investigated with one single spray simulation, as
described in Ref. 27, indicating that further calculations
of the interacting sprays using the exact experimental
velocity profiles could be performed in the future to im-
prove the numerical results.

Thus, for the sake of caution, it is preferred to test
many parameters to evaluate their influence. Future work
will thus be performed on the impact of the radial ve-
locity at the inlet since it is involved in many critical
parameters like the Weber number and the collision fre-
quency. The sensitivity to the mesh or the choice of
intervals of the size distribution are also issues for fu-
ture work.

VI. CONCLUSION

A numerical simulation of the interaction between
two PWR containment sprays has been performed
with a new model of polydispersion and collision of
droplets implemented into the Eulerian CFD code
NEPTUNE_CFD. The droplet size and velocity distri-
butions at a distance of 20 cm below the spray nozzle
outlet have been precisely measured and used as input
data in the calculations. The water droplet polydisper-
sion in size has been treated with a sectional approach.
The influence of collisions between droplets is taken
into account with a statistical approach based on the
various outcomes of binary collisions.

An elementary validation of one part of the colli-
sion model is performed, and our results are in good
agreement with the DNS calculations. A two-fluid
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Fig. 7. Sections used for the numerical simulation, associated with the experimental size distribution to the location 20 cm from

the nozzle.
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multidimensional simulation, based on two interacting
real PWR spray nozzles, is compared to the results ob-
tained in the CALIST facility and shows good agree-
ment. These first results allow us to continue sensitivity
studies in order to evaluate the most important phenom-
ena involved in the droplet characteristics’ evolution
(condensation, evaporation, entrainment, and collision).
For this purpose, more elementary simulations are how-
ever still needed. The impact of boundary conditions of
the droplet characteristics has to be evaluated, as well
as the validation of the gas entrainment by one single
PWR spray assuming the simplified boundary condi-
tions generally used in nuclear reactor simulations (one
single droplet size and initial velocity characterize the
spray).

For these purposes, an experiment to characterize
the gas entrainment by a single PWR spray has been
performed in the CALIST facility. These results allowed
evaluation of the ability of codes to simulate the gas
entrainment produced by a PWR spray and were pro-
posed for benchmarking activities within the European
Network of Excellence SARNET-2 (Ref. 28). Knowl-
edge of these characteristics could be important to eval-

uate the efficiency of these spray systems in terms of
depressurization, hydrogen mixing, and radioactive aero-
sol scavenging for applications concerning nuclear reac-
tor accidents.

REFERENCES

1. C. RABE, J. MALET, and F. FEUILLEBOIS, “On the
Influence of Droplet Coalescence in Spray Systems for Con-
tainment Safety,” Proc. 13th Int. Topl. Mtg. Nuclear Reactor
Thermal Hydraulics (NURETH-13), Kanazawa City, Japan, Sep-
tember 27—October 2, 2009.

2. M. ARAI and M. SAITO, “Atomization Characteristics of
Jet-to-Jet and Spray-to-Spray Impingement Systems,” Afom.
Sprays, 9, 399 (1999).

3. T. CHIBA et al., “Inter-Spray Impingement of Two Diesel
Sprays,” Proc. Int. Conf. Liquid Atomization and Spray Sys-
tems (ICLASS), Pasadena, California, July 16-20, 2000.

4. G. H. KO and H. S. RYOU, “Droplet Collision Processes
in an Inter-Spray Impingement System,” J. Aerosol Sci., 36,
1300 (2005).



5. A.A. MOSTAFA and H. C. MONGIA, “On the Modelling
of Turbulent Evaporating Sprays: Eulerian Versus Lagrangian
Approaches,” Int. J. Heat Mass Transfer, 30, 2583 (1987).

6. J. B. GREENBERG, I. SILVERMAN, and Y. TAMBOUR,
“On the Origin of Spray Sectional Conservation Equations,”
Combustion Flame, 93, 90 (1993).

7. F. LAURENT, M. MASSOT, and P. VILLEDIEU, “Euler-
ian Multi-Fluid Modeling for the Numerical Simulation of Co-
alescence in Polydisperse Dense Liquid Sprays,” J. Comput.
Phys., 194, 505 (2004).

8. P. VILLEDIEU and J. HYLKEMA, “Une méthode partic-
ulaire aléatoire reposant sur une équation cinétique pour la
simulation numérique des sprays denses de gouttelettes lig-

uides,” Comptes Rendus de I’Académie des Sciences de Paris,
325, Série I, 323 (1997).

9. R. O. FOX, F. LAURENT, and M. MASSOT, “Numerical
Simulation of Spray Coalescence in an Eulerian Framework:
Direct Quadrature Method of Moments and Multi-Fluid
Method,” J. Comput. Phys., 227, 3058 (2008).

10. D. WUNSCH, “Theoretical and Numerical Study of Col-
lision and Coalescence—Statistical Modeling Approaches in
Gas-Droplet Turbulent Flows,” PhD Thesis, University of Tou-
louse (2010).

11. N. ASHGRIZ and J. Y. POO, “Coalescence and Separation
in Binary Collisions of Liquid Drops,” J. Fluids Mech., 221,
183 (1990).

12. J. P. ESTRADE, “Experimental Investigation of Dynamic
Binary Collision of Ethanol Droplets—A Model for Droplet
Coalescence and Bouncing,” Int. J. Heat Fluid Flow, 20, 486
(1999).

13. C.RABE, J. MALET, and F. FEUILLEBOIS, “Experimen-
tal Investigation of Water Droplet Binary Collisions and De-
scription of Outcomes with a Symmetric Weber Number,” Phys.
Fluids, 22, 047101 (2010).

14. N. ROTH et al., “Droplet Collision Outcomes at HighWe-
ber Number,” Proc. 21st Conf. Institute for Liquid Atomization
and Spray Systems (ILASS), Mugla, Turkey, September 10—12,
2007.

15. W. D. BACHALO and M. J. HOUSER, “Phase Doppler
Spray Analyzer for Simultaneous Measurements of Drop Size
and Velocity Distributions,” Opt. Eng., 23, 583 (1984).

16. A. FOISSAC et al., “Droplet Size and Velocity Measure-
ments at the Outlet of a Hollow-Cone Spray Nozzle,” Atom.
Sprays, 21, 893 (2011).

17. S. MIMOUNI et al., “Modelling of Sprays in Containment
Applications with a CMFD Code,” Nucl. Eng. Des., 240, 9,
2260 (2010).

18. O. SIMONIN, “Combustion and Turbulence in Two-Phase
Flows,” von Karman Institute for Fluid Dynamics, Lecture
Series, 1996-2002 (1996).

19. L. I. ZAICHIK, O. SIMONIN, and V. M. ALIPCHEN-
KOV, “Two Statistical Models for Predicting Collision Rates
of Inertial Particles in Homogeneous Isotropic Turbulence,”
Phys. Fluids, 15, 2995 (2003).

20. O. SIMONIN, “Prediction of the Dispersed Phase Turbu-
lence in Particle-Laden Jets,” Proc. 4th Int. Symp. Gas-Solid
Flows, ASME FED, Vol. 121, p. 197, ASME Fluids Engineer-
ing Division (1991).

21. J. POZORSKI and J. P. MINIER, “Probability Density
Function Modelling of Dispersed Two-Phase Turbulent Flows,”
Phys. Rev. E, 59, 855 (1999).

22. A.FOISSAC, “Modélisation des interactions entre gouttes

en environnement hostile,” PhD Thesis, University of Paris VI
(2011).

23. F. PIGEONNEAU and F. FEUILLEBOIS, “Collision and
Size Evolution of Drops in Homogeneous Isotropic Turbu-
lence,” J. Aerosol Sci., 49, S1279 (1998).

24. G.PATINO-PALACIOS and O. SIMONIN, “General Der-
ivation of Eulerian-Eulerian Equations for Multiphase Flows,”
Institut de Mécanique des Fluides Toulouse (2003).

25. A.FOISSAC etal., “Binary Water Droplet Collision Study
in Presence of Solid Aerosols in Air,” Proc. 7th Int. Conf.
Multiphase Flow (ICMF), Tampa, Florida, May 30-June 4,
2010.

26. G. E. COSSALL “An Integral Model for Gas Entrainment
into Full Cone Sprays,” J. Fluids Mech., 439, 353 (2001).

27. J. MALET et al., “Numerical Study on the Influence of
Simplified Spray Boundary Conditions for the Characterisa-
tion of Large Industrial Safety Spray Systems Used in Nuclear
Reactors,” Proc. Int. Conf. Atomication and Spray Systems
(ICLASS 2012), Heidelberg, Germany, September 2—6, 2012.

28. J. MALET et al., “Gas Entrainment by One Single French
PWR Spray, SARNET-2 Spray Benchmark,” Proc. 15th Int.
Topl. Mtg. Nuclear Reactor Thermalhydraulics (NURETH-
15), Pisa, Italy, May 12-16, 2013 (submitted for publication).



