
  

 

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 11125 

To link to this article : doi:10.1016/j.scitotenv.2013.01.079 
URL : http://dx.doi.org/10.1016/j.scitotenv.2013.01.079 

To cite this version : Muñoz-Leoz, Borja and Garbisu, Carlos and 
Charcosset, Jean-Yves and Sanchez-Pérez, José-Miguel and 
Antigüedad, Iñaki and Ruiz-Romera, Estilita Non-target effects of three 
formulated pesticides on microbially-mediated processes in a clay-loam 
soil. (2013) Science of The Total Environment, vol. 449 . pp. 345-354. 
ISSN 0048-9697 

Any correspondance concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/19892846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Non-target effects of three formulated pesticides on microbially-mediated processes
in a clay-loam soil

Borja Muñoz-Leoz a, Carlos Garbisu b, Jean-Yves Charcosset c,d, José M. Sánchez-Pérez c,d,
Iñaki Antigüedad e, Estilita Ruiz-Romera a,⁎

a Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, E-48013 Bilbao, Spain
b NEIKER-Tecnalia, Soil Microbial Ecology Group, c/Berreaga 1, E-48160 Derio, Spain
c Université de Toulouse, INP, UPS, EcoLab (Laboratoire d'Ecologie Fonctionnelle et Environnement), ENSAT, Avenue de l'Agrobiopole, 31326 Castanet-Tolosan, France
d CNRS; EcoLab; 31326 Castanet-Tolosan, France
e Department of Geodynamics, University of the Basque Country, UPV/EHU, E-48940 Leioa, Spain

H I G H L I G H T S

► Degradation rate decreased with increasing pesticide concentration.

► The lowest dose of pesticides did not cause changes in soil microbial communities.

► Higher pesticide concentration did not consistently increase impact on microorganisms.

► Pesticides increased soil NO3
−, suggesting beneficial effect on the bacteria involved.
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An experiment was performed to study non-target effects of difenoconazole (fungicide), deltamethrin

(insecticide) and ethofumesate (herbicide) on microbial parameters in a clay-loam soil. Pesticides were

applied as commercial formulations to soil samples at different concentrations (5, 50 and 500 mg kg−1

DW soil) and then incubated under laboratory conditions for 3 months. Throughout the incubation period,

microbial parameters were determined at days 7, 30, 60 and 90. At 5 mg kg−1 DW soil, none of the three

pesticides caused significant changes in soil microbial parameters. In contrast, at 500 mg kg−1 DW soil,

pesticide application decreased overall soil microbial activity, negatively affecting the activity of soil enzymes.

Similarly, at 500 mg kg−1 DW soil, difenoconazole and ethofumesate, but not deltamethrin, caused a

pesticide-induced stress on soil microbial communities, as reflected by the respiratory quotient. Besides,

deltamethrin and ethofumesate at 50 and 500 mg kg−1 DW soil resulted in lower values of denitrification

potential. It was concluded that, although pesticide concentration had a somewhat inconsistent and erratic

effect on soil microbial parameters, pesticide application at 500 mg kg−1 DW soil did have an impact on

many of the microbial parameters studied here.

1. Introduction

As a result of the use and/or misuse of agricultural pesticides, pes-
ticide contamination is nowadays an environmental problem of great
concern. A considerable amount of the applied pesticides frequently

ends up in the soil, where it can undergo biological and physicochem-
ical transformations. Once in the soil, microbial degradation is the
main route of pesticide removal (Bending et al., 2006). Pesticide
application can result in harmful effects on non-target organisms,
including soil microorganisms, with adverse consequences for soil
quality (Johnsen et al., 2001; Niemi et al., 2009).

Microorganisms play a key role in many soil processes and the
delivery of essential soil ecosystem services (Jeffery et al., 2010).
Microbial parameters reflecting the biomass, activity and diversity of
soil microbial communities are useful indicators of the impact of
disturbances (including pesticide application) on soil quality (Epelde
et al., 2009; Garbisu et al., 2011). In particular, microbial parameters
that provide information on the soil nitrogen cycle have been reported
to be very sensitive to pesticide application (Ahtiainen et al., 2003).

Abbreviations: DW, dry weight; QR, respiratory quotient; Nmin, potentially mineral-

izable nitrogen; H′, Shannon's diversity; T-SQI, treated-soil quality index.

⁎ Corresponding author at: Department of Chemical and Environmental Engineering,

University of the Basque Country, UPV/EHU, Alameda Urquijo s/n, E-48013 Bilbao,

Spain. Tel.: +34 94 601 4109; fax: +34 94 601 4179.

E-mail addresses: borja.munoz@ehu.es (B. Muñoz-Leoz), cgarbisu@neiker.net

(C. Garbisu), jean-yves.charcosset@univ-tlse3.fr (J.-Y. Charcosset),

jose-miguel.sanchez-perez@univ-tlse3.fr (J.M. Sánchez-Pérez), estilita.ruiz@ehu.es

(E. Ruiz-Romera).

http://dx.doi.org/10.1016/j.scitotenv.2013.01.079



Depending on several factors (e.g., pesticide composition, soil
type, soil physicochemical and biological properties), pesticides
frequently have slow rates of degradation in the soil environment. In
consequence, repeated application of pesticides can ultimately lead
to their accumulation at concentrations detrimental to soil microor-
ganisms (Munier-Lamy and Borde, 2000; Rice et al., 2002).

In the present work, three scarcely studied pesticides were used:

(1) The fungicide difenoconazole (1-[2-[2-chloro-4-(4-chlorophe-
noxy)phenyl]-4-methyl-1,3-dioxolan-2-ylmethyl]-1H-1,2,4-
triazole): a systemic sterol demethylation inhibitor used against
Ascomycetes, Basidiomycetes and Deuteromycetes. Its recom-
mended field application rate is 75–125 g active ingredient(ai)
ha−1 (300–500 mL ha−1 of a 25% formulation).

(2) The insecticidedeltamethrin ((S)-cyano(3-phenoxyphenyl)methyl
(1R,3R)-3-(2,2-dibromoethenyl)-2,2-dimethylcyclopropane-
carboxylate): a disruptor of intracellular sodium channels used
against Homoptera, Lepidoptera, Diptera, and Coleoptera. Its
recommended field application rate is 7.5–17.5 g ai ha−1 (300–
700 mL ha−1 of a 2.5% formulation).

(3) The herbicide ethofumesate (2-ethoxy-2,3-dihydro-3,3-dimethyl-
5-benzofuranyl methanesulfonate): itsmechanism of action is the
inhibition of lipid biosynthesis. Ethofumesate is used against
some grasses (Gramineae) and Dicotyledones. Its recommended
field application rate is 750–1000 g ai ha−1 (1.5–2.0 L ha−1

of a 50% formulation).

In our study, commercial formulations of these pesticides were ap-
plied to soil samples, under laboratory conditions, at different concen-
trations (5, 50 and 500 mg ai kg−1 DW soil) in order to (i) determine
their dissipation kinetics and (ii) assess their impact on soil microbial
parameters. The recommended approach for assessing the effects of
pesticides on soil microbial communities includes the simultaneous
measurement of multiple ecological end-points (Zabaloy et al., 2008)
and, thus, throughout the 3-month experiment, several microbial pa-
rameterswith potential as bioindicators of soil qualitywere determined
at regular intervals: basal respiration, substrate-induced respiration,
potentially mineralizable nitrogen (Nmin), nitrification rate, diversity
of ammonium-oxidizing bacteria, denitrification potential and enzyme
activities (dehydrogenase, β-glucosidase, urease, arylsulfatase, alkaline
phosphatase). Finally, from the values of the enzyme activities, the
treated-soil quality index (T-SQI) proposed by Mijangos et al. (2010)
was calculated.

2. Materials and methods

2.1. Soil characterization

Soil (top 0–25 cm) was collected from an area belonging to the
unsaturated riparian zone of the Salburua wetland, located in the
Vulnerable Zone of the Quaternary Aquifer of Vitoria-Gasteiz (northern
Spain). This area was not subjected to pesticide application for the
last 15 years. In particular, soil analysis by GC–MS (see below) did not
reveal any of the three pesticides studied here.

Immediately after collection, soil samples were taken to the labora-
tory in dark plastic bags, homogenized, air-dried at 25 °C during 48 h,
sieved to b2 mm, and subjected to physicochemical characterization
according to Sparks et al. (1996). The soil is of a Chernozem calcic char-
acter (FAO) with a clay-loam texture (sand–clay–silt: 29.8–38.7–
31.5%), a pH of 8.3 (1:2.5 w/v in water), 17.0 g organic C kg−1 DW,
2.3 g total N kg−1 DW, a C/N ratio of 7.8 and an electrical conductivity
of 0.18 dS m−1.

2.2. Experimental design

The three pesticides studied here (difenoconazole, deltamethrin,
ethofumesate) are intensively used in the abovementioned Vulnerable

Zone, as they are included in the Code of Good Agricultural Practices
for sugar beet cultivation in this agricultural area. Although these pesti-
cides are normally applied on the plants themselves, soil applications
were here conducted for research purposes only, not in accordance
with agricultural practice.

Pesticides were applied as commercial formulations since adjuvants
and surfactants present in such formulations may affect both pesticide
degradation rates and their impact on soil microorganisms (Beigel
et al., 1999). Thus, our soil was subjected to the following commercial
formulations: Score® is an emulsifying concentrate containing 25% of
difenoconazole, Audace® is an emulsifying concentrate containing
2.5% of deltamethrin; and Kemitran® is a concentrated emulsion with
50% of ethofumesate.

A three-month mesocosm study was carried out as previously
described inMuñoz-Leoz et al. (2011). For each pesticide concentration
(5, 50 and 500 mg ai kg−1DWsoil), a set of four replicatedmesocosms
was prepared by transferring samples of 4 kg DW soil (homogenized,
air-dried, sieved soil from the 0–25 cm top layer; see above) to 10 L
plastic trays, resulting in a soil layer of approximately 10 cm depth.
Each soil sample was treated with the abovementioned commercial
formulations diluted in deionized water, at a rate of 5–50–
500 mg ai kg−1 DW soil and 60% water holding capacity (WHC).

Pesticide-treated soil samples were thoroughly mixed with a rotary
mixer (Philips handmixer, HR1570) to assure uniform pesticide distri-
bution. Trays were then covered with perforated polypropylene sheets
and incubated in the dark at 22±1 °C, in order tominimize evaporative
losses of water from soil and avoid photodegradation of pesticides.
Throughout the incubation period, water content was held constant
by the weekly addition of deionized water.

From eachmesocosm, samples of 250 g freshweight (FW) soil were
collected from the trays after 0, 7, 30, 60 and 90 days of incubation. Sub-
sequently, soil samples were sieved (b2 mm) and stored at 4 °C until
analysis.

2.3. Pesticide concentration

Soil samples for pesticide determination were randomly taken
from different locations within the tray and then mixed to get a com-
posite sample. The concentration of pesticide residues was quantified
through two successive extractions with acetonitrile (firstly) and
isopropanol (secondly), followed by GC–MS analysis as described in
Muñoz-Leoz et al. (2012). Pesticide recovery from soil samples was
>99%.

2.4. Soil microbial parameters

Throughout the incubationperiod, the impact of pesticide application
on soil quality was assessed using a variety of soil microbial indicators.
Soil microbial basal (RB) and substrate-induced (SIR) respiration were
determined following ISO 16072 Norm-2002 and ISO 17155 Norm-
2002, respectively. The respiratory quotient QR, or the ratio of basal
respiration to substrate-induced respiration (QR=RB/SIR) was also
calculated (Anderson and Domsch, 1985).

Urease activity was determined according to Kandeler and Gerber
(1988). Arylsulfatase,β-glucosidase, alkaline phosphatase and dehydro-
genase activities were determined according to Dick (1997) and Taylor
et al. (2002), as described in Epelde et al. (2008) and Rodríguez-Loinaz
et al. (2008).

Potentially mineralizable nitrogen (Nmin) was assessed following
Powers (1980). For nitrification rate, nitrate (N-NO3

−) and ammonium
(N-NH4

+) concentrations in soil were determined following Sparks et al.
(1996). Denitrification potential was determined according to a modi-
fied method of Šimek et al. (2002): 75 mg N-NO3

− kg−1 DW soil and
75 mg C-glucose kg−1 DW soil (in 10 mL of deionized water) were
added to 10 g DW soil placed in 120 mL serum bottles with a helium
atmosphere containing 10% v/v acetylene. After 24 h of incubation at



25 °C in a rotary shaker, N-N2O production was measured by gas chro-
matography (KNK 3000 HRGC) using a thermal conductivity detector
and a Porapak Q 80/100 3 m×1/8″ (Sugelabor) packed column. Opera-
tion conditions were as follows: column temperature, 25 °C; injection

temperature, 25 °C; detector temperature, 150 °C; andheliumas carrier
gas at a flow rate of 16 mL min−1.

Regarding microbial diversity parameters, in the soil, amoA gene
copies of Crenarchaeota (Archaea) can be up to 3000-fold more abun-
dant than bacterial amoA genes (Leininger et al., 2006). However, in our
unsaturated N-rich clay-loam soil, ammonium oxidation is expected to
be functionally dominated by bacteria rather thanArchaea, as previously
reported for N-rich grassland soils (Di et al., 2009; Jia and Conrad, 2009;
Schleper and Nicol, 2010). Therefore, we estimated diversity of
ammonium-oxidizing bacteria through PCR-DGGE analysis according
to Avrahami et al. (2003). DNA was extracted from soil samples
(0.25 g FW soil) using the PowerSoil DNA Isolation Kit (MO BIO Labora-
tories, California, USA) following manufacturer's instructions. Diversity
of ammonium-oxidizing bacteria was estimated using the Shannon's
diversity index (H′=−∑pilog2pi), where pi is the ratio between
specific band intensity and total intensity of all bands in a lane sam-
ple after subtracting the background of each lane.

2.5. Data analyses

Statistical analyses were performed using SPSS Software (SPSS 17,
SPSS Inc., 2010). Data on soil parameters were analyzed using a three-
way analysis of variance (ANOVA), with pesticide concentration, type
of pesticide and incubation time as factors. Differences between con-
trols and samples treatedwith different concentration of pesticides, at a
given incubation time, were compared using one-way ANOVA and
Fisher's PLSD post-hoc test. Values were considered to be significantly
different at Pb0.05. Pearson's correlations and principal component
analysis (PCA) were performed to establish relationships among soil
parameters, and regression equations were assessed to evaluate rela-
tionships between microbial parameters and pesticide concentration
at each incubation time. STATISTICA 6.0 Software (Statsoft Inc., 2004)
was used to fit experimental data on pesticide degradation to a bi-
exponential model.

From the values of the enzyme activities, the treated-soil quality
index (T-SQI) proposed by Mijangos et al. (2010) was calculated at
each incubation time:

T SQI ¼ 10 logmþ

Xn

i¼1

logni− logmð Þ−
Xn

i¼1

logni− lognj j

n

where m is the reference (mean value of enzyme activity in the con-
trol untreated “reference” soil at each incubation time, set to 100%)
and n is the measured values for each enzyme activity as percentages
of the reference. This index takes into account (i) the magnitude of
the increment of each enzyme activity, compared to the value for
that specific enzyme activity shown by the reference soil (100%;
first Σ of the numerator) and (ii) the maintenance of the evenness

Fig. 1. Pesticide (difenoconazole, deltamethrin, ethofumesate) concentration in soil

throughout the experiment. Pesticide concentration at a given incubation time is

expressed as % of initial pesticide concentration. Mean values (n=4)±S.D.

Table 1

Kinetic parameters of pesticide dissipation in soil for difenoconazole, deltamethrin and ethofumesate.

Pesticide Concentration (mg kg−1 DW) A k1 (d−1) B k2 (d−1) t1/2 (d) r2

Difenoconazole 5 2.6 0.0375 2.6 0.0008 84.9 0.983

50 39.8 0.0013 10.5 0.0643 362 0.995

500 263.1 −0.0035 245.2 0.0217 546 0.975

Deltamethrin 5 2.3 0.0783 2.7 0.0061 29.0 1.000

50 31.9 0.0031 18.0 0.0804 78.0 0.999

500 372.4 0.0002 127.6 0.4032 1381 1.000

Ethofumesate 5 1.9 0.0473 3.2 0.0116 28.5 0.994

50 39.7 0.0057 10.4 0.1331 81.2 0.997

500 304.8 0.0014 194.4 −0.0017a 5923 0.960

Pesticide dissipation in soil was described by a bi-exponential model [PC(t)=A⋅e(−k1⋅t)+B⋅e(−k2⋅t), where PC(t)=pesticide concentration at t time; A and B=constants; k1 and

k2=dissipation kinetic constants for the first and second component of the curve; t=time]. t1/2=half-life or time required for a 50% dissipation of initial pesticide concentration.
a Although mathematically speaking a negative value was obtained, it does not make sense from a kinetics point of view.



among the enzyme activities shown by the reference soil (second Σ of
the numerator).

3. Results and discussion

3.1. Pesticide concentration

The evolution of pesticide concentration in soil fittedmore accurately
to a bi-exponential kinetic model [PC(t)=A·e(−k1·t)+B·e(−k2·t),
where PC(t)=pesticide concentration at t time; A and B=constants;
k1 and k2=dissipation kinetic constants for the first and second compo-
nent of the curve; and t=time] than to classical first-order models
(Fig. 1). The biphasic pattern of degradation can be attributed to different
adsorption sites or increased sorption over time: at the beginning of the
experiment, microorganisms were able to use the pesticides as C source
for growth as a fraction of the added pesticides was still in the dissolved
phase and/orweakly adsorbed, to then become strongly adsorbed to clay

and organic matter, thus resulting in lower bioavailability and slower
degradation (Lee et al., 2004; Muñoz-Leoz et al., 2011). The additives
present in commercial formulations that increase solubility or dispersion
of the pesticides are also expected to modify their sorption. This might
explain the lack of relationship between pesticide persistence in soil
and their adsorption coefficients (Koc=1.02×107, 600 and 97.8 mL g−1

for deltamethrin, difenoconazole and ethofumesate, respectively)
(PPDB, 2012).

In soils treated with 5 mg pesticide kg−1 DW, by the end of the
incubation, pesticide concentration was reduced by 52, 69 and 89%
for difenoconazole, deltamethrin and ethofumesate, respectively, with
corresponding half-life values of 84.9, 29.0 and 28.5 days (Table 1).
On the other hand, higher values of half-life time were observed at
increasing pesticide concentrations. Regarding ethofumesate, no signif-
icant dissipation was observed at the highest concentration tested. Our
half-life values at 5 mg kg−1 DW are in accordance with those ob-
served by Muñoz-Leoz et al. (2012) for the same commercial formula-
tions and clay-loam soil. Our results also agree with those reported by
other authors for difenoconazole (Guo et al., 2010) and ethofumesate
(Siimes et al., 2006) when added as commercial formulations, and for
deltamethrin (Roberts, 1998) when applied as active ingredient.

As abovementioned, microbial degradation has been reported as the
main factor responsible for pesticide dissipation in soils (Bending et al.,
2006). In this respect, the three pesticides studiedhere have a lowvapor
pressure and are insensitive to hydrolysis at the pH value of our exper-
imental soil (PPDB, 2012). The capacity of soil microbial communities
to degrade pesticides has been found to be reduced by increasing
concentrations of fungicides (Chen and Edwards, 2001; Wang et al.,
2009) and herbicides like alachlor (Felsot and Dzantor, 1995), but
not deltamethrin (Muñoz-Leoz et al., 2009). The sudden lower
deltamethrin degradation found at 500 mg kg−1 DW from day 7
could be associated with non-biological causes. A concentration of
additives may have resulted in a drop of pesticide sorption into the

Table 2

Analysis of variance for soil microbial parameters as affected by type of pesticide (P),

pesticide concentration (C), incubation time (T) and corresponding interactions.

Non-significant values (P>0.05) were excluded.

Factor N-NO3
− N-NH4

+ Nmin DEN DEH QR T-SQI H′-AOB

P 0.020 b0.001 b0.001 b0.001 b0.001 b0.001 b0.001 0.001

C b0.001 b0.001 0.009 b0.001 b0.001 b0.001 b0.001 –

T b0.001 b0.001 b0.001 0.009 b0.001 0.007 b0.001 –

P×C b0.001 b0.001 b0.001 b0.001 b0.001 b0.001 b0.001 –

P×T b0.001 b0.001 b0.001 b0.001 b0.001 b0.001 0.023 –

C×T b0.001 b0.001 b0.001 b0.001 b0.001 b0.001 b0.001 –

P×C×T b0.001 b0.001 b0.001 b0.001 b0.001 b0.001 0.018 –

N-NO3
−, nitrate concentration; N-NH4

+, ammonium concentration; Nmin, potentially

mineralizable nitrogen; DEN, denitrification potential; DEH, dehydrogenase activity;

QR, respiratory quotient; T-SQI, treated-soil quality index; H′-AOB, Shannon's index

of ammonium-oxidizing bacteria diversity.

Table 3

Relationships between microbial parameters (P; for units, see figures) and pesticide concentration (C; in mg kg−1 DW soil) at each incubation time.

Parameter Day Difenoconazole Deltamethrin Ethofumesate

Regression r2 Regression r2 Regression r2

N-NO3
− 7 P=1.89·C+26.14 0.652 P=−8.66·C+45.03 0.933 P=3.60·C+20.34 0.941

30 P=6.87·C+7.65 0.891 P=15.82·C−20.95 0.830 P=13.71·C−16.58 0.993

60 P=12.77·C−1.96 0.907 P=29.97·C−51.93 0.833 P=19.33·C−24.95 0.999

90 P=12.57·C−5.19 0.985 P=27.33·C−44.83 0.900 P=20.55·C−27.92 1.000

N-NH4
+ 7 P=−0.28·C+9.60 0.379 P=8.32·C−11.47 0.930 P=3.34·C−2.99 0.773

30 P=−0.18·C+5.20 0.666 P=−0.38·C+5.27 0.451 P=−0.02·C+4.35 0.050

60 P=−0.06·C+3.91 0.239 P=−1.15·C+6.67 0.743 P=−0.039·C+3.99 0.078

90 P=0.04·C+3.32 0.301 P=−1.12·C+6.15 0.812 P=−0.107·C+3.82 0.660

Nmin 7 P=−1.80·C+37.38 0.793 P=8.88·C+20.47 0.892 P=−3.60·C+44.49 0.752

30 P=0.44·C+3.18 0.744 P=2.48·C−0.36 0.682 P=0.23·C+4.66 0.072

60 P=0.42·C+3.03 0.960 P=0.18·C+4.43 0.965 P=1.32·C+1.18 0.693

90 P=−1.64·C+11.35 0.913 P=−1.60·C+10.92 0.947 P=−1.14·C+10.97 0.970

DEN 7 P=11.26·C+14.09 0.774 P=−6.26·C+42.23 0.947 P=−3.19·C+33.90 0.513

30 P=18.96·C−15.16 0.707 P=−5.97·C+41.33 0.993 P=−8.23·C+48.98 0.944

60 P=11.32·C+5.05 0.808 P=−6.65·C+42.95 0.912 P=−6.45·C+45.30 0.913

90 P=9.73·C+10.16 0.917 P=−8.02·C+52.02 0.832 P=−3.47·C+39.43 0.532

DEH 7 P=−24.55·C+162.63 0.890 P=−26.01·C+191.96 0.342 P=−5.28·C+143.51 0.632

30 P=−6.71·C+46.09 0.962 P=−10.93·C+64.36 0.532 P=−0.15·C+39.18 0.001

60 P=−12.06·C+77.18 0.978 P=−12.72·C+77.41 0.894 P=−5.10·C+56.01 0.911

90 P=−8.13·C+60.29 0.658 P=−6.15·C+65.46 0.186 P=−18.46·C+95.29 0.984

QR 7 P=0.10·C+0.03 0.977 P=0.01·C+0.21 0.132 P=0.01·C+0.24 0.073

30 P=0.12·C−0.04 0.981 P=0.01·C+0.23 0.001 P=0.063·C+0.09 1.000

60 P=0.06·C+0.14 0.671 P=0.01·C+0.15 0.285 P=0.09·C−0.01 0.988

90 P=0.03·C+0.19 0.871 P=0.02·C+0.15 0.551 P=0.10·C−0.02 0.997

T-SQI 7 P=−12.81·C+130.69 0.822 P=−16.61·C+131.15 0.982 P=0.26·C+97.08 0.015

30 P=−19.54·C+143.17 0.790 P=−27.47·C+155.84 0.868 P=−7.38·C+112.67 0.992

60 P=−20.88·C+139.78 0.907 P=−25.03·C+140.33 0.864 P=−11.04·C+110.61 0.732

90 P=−16.82·C+137.24 0.913 P=−25.07·C+149.08 0.945 P=−15.17·C+128.51 0.971

H′-AOB 7 P=0.16·C+1.07 0.246 P=0.32·C+0.19 0.655 P=−0.03·C+1.60 0.047

30 P=−0.01·C+1.25 0.000 P=0.23·C+0.37 0.997 P=−0.19·C+2.44 0.703

60 P=0.14·C+1.13 0.172 P=−0.32·C+2.05 0.831 P=−0.36·C+2.64 0.996

90 P=0.16·C+0.72 0.544 P=0.12·C+0.59 0.134 P=−0.28·C+2.38 0.415



soil matrix, with a concomitant reduction in its bioavailability (Krogh et
al., 2003; Crouzet et al., 2010).

Finally, during the quantification of pesticide concentration by GC–
MS, degradation metabolites were not determined. In this respect,
deltamethrin degradation products, dibromovinyl chrysanthemic acid
and phenoxybenzoic acid, have been reported to be less toxic than
the active ingredient (Grant et al., 2002); on the other hand, no infor-
mation has been found regarding the toxicity of difenoconazole
(triazolylalanine and triazolylacetic acid) (Lucini et al., 2009) and
ethofumesate (2,3-dihydro-2-hydroxy-3,3-dimethyl-5-benzofuranyl
methanesulfonate) (Kawahigashi et al., 2002) degradation products
on soil microbial communities.

3.2. Pesticide impact on soil microbial parameters

The nature and concentration of pesticides are among the main
factors affecting the existence and extent of non-target effects (Chen
et al., 2001). In our study, the impact of pesticides on microbial param-
eters was dependent upon type of pesticide, pesticide concentration
and incubation time (Table 2). Significant interactions between these
three factors were found for dehydrogenase activity, QR, Nmin, N-NH4

+,
N-NO3

−, denitrification potential and T-SQI. However, diversity of
ammonium-oxidizing bacteria only showed dependence upon type of
pesticide.

Table 3 shows the relationships between microbial parameters
and pesticide concentration at each incubation time. All pesticides
showed a more adverse effect on dehydrogenase activity at higher
concentrations (Table 3). Higher values of QR were obtained at higher
difenoconazole and ethofumesate concentrations. By contrast, pesti-
cide concentration had an erratic effect on Nmin, N-NH4

+ and H′-

AOB. On the other hand, a direct relationship was observed between
pesticide concentration and N-NO3

− concentration. Finally, an inverse
relationship was found between pesticide concentration and values of
the T-SQI.

Dehydrogenase activity showed higher values at day 7 than at
days 30, 60 and 90 (Fig. 2A). In soils treated with 5 and 50 mg kg−1

DW, pesticides had no clear effect on dehydrogenase activity. At
500 mg kg−1 DW, significantly lower values of dehydrogenase activity
were found at all incubation times for both difenoconazole- and
deltamethrin-treated soils (on average, 53.6 and 52.4% lower, respec-
tively, compared to controls); similarly, 500 mg ethofumesate kg−1

DW soil resulted in significantly lower values of this enzyme activity
at days 60 and 90. Both stimulation and inhibition of dehydrogenase,
as a result of pesticide application, has been reported (Zabaloy et al.,
2008; Crouzet et al., 2010; Muñoz-Leoz et al., 2011). Dehydrogenase
activity is a good indicator of overallmicrobial activity in soil as it occurs
only in viable cells but not in stabilized soil complexes (Nannipieri et al.,
2002). Then, at 5 and 50 mg kg−1 DW, pesticides appear to have no
clear effect on overall soil microbial activity. However, at 500 mg kg−1

DW, overall microbial activity in soil at days 60 and 90 was negatively
affected by the three pesticides.

Regarding QR (Fig. 2B), at 5 mg pesticide kg−1 DW soil, no clear
differences were observed between pesticide-treated and control
soils. However, higher values of QR were generally found in samples
treated with 50 and 500 mg kg−1 of difenoconazole and ethofumesate
compared to untreated soils. In addition, in difenoconazole-treated
soils, higher QR values were observed at 500 versus 50 mg kg−1 DW
at days 7, 30 and 60; likewise, in ethofumesate-treated soils, higher QR

values were observed at 500 versus 50 mg kg−1 DW at days 60 and
90. The respiratory quotient is an ecophysiological index which can

Fig. 2. Effect of pesticides (difenoconazole, deltamethrin, ethofumesate) at 5, 50 and 500 mg kg−1 DW soil on (A) dehydrogenase activity and (B) the respiratory quotient (QR: ratio

of basal respiration to substrate-induced respiration). Mean values (n=4)±S.D. Different letters indicate statistically significant differences among treatments according to Fisher's

PLSD test at each incubation time.



reflect environmental stress in microbial communities (Anderson and
Domsch, 1985). Indeed, a higher respiratory activity related to the size
of microbial biomass (SIR is an indicator of active microbial biomass)
can reflect stressing conditions for microbial communities, forcing
them to use a higher amount of their energetic resources for mainte-
nance and survival, leading to a lower incorporation of organic C into
microbial biomass (Anderson and Domsch, 1985).

Nmin values (an indicator of biologically active soil N) were higher
at day 7 than at days 30, 60 and 90 (Fig. 3A). This might be due to the
fact that, during sample pre-treatment, soil homogenization and siev-
ing induce the release of easily available nutrients from the breaking
down of soil aggregates, resulting in a flush of N and C mineralization
(Franzluebbers, 1999), as reflected here by Nmin and dehydrogenase
activity values. Pesticide application at 5 mg kg−1 DW had no effect
on Nmin. By contrast, at day 7, the addition of 50 and 500 mg kg−1

DW led to significantly lower values of Nmin in difenoconazole-
and ethofumesate-treated soils, and significantly higher values in
deltamethrin-treated soils. It might be hypothesized that deltamethrin
and/or adjuvants present in its commercial formulation might act as
an available source of N- and C-compounds for N-mineralizingmicroor-
ganisms (Devare et al., 2007; Mijangos et al., 2009). Nonetheless, these
N-mineralizingmicroorganisms could, in someway, be damaged by the
presence of difenoconazole and ethofumesate, especially at high con-
centrations (Černohlávková et al., 2009). At the highest concentration,
significantly lower values of Nmin were observed at day 90 for all three
pesticides.

Nitrification and ammonification are closely related processes.
Importantly, the simultaneous measurement of NH4

+ and NO3
− con-

centration can be used as an indicator of disruption in soil N transfor-
mations (Černohlávková et al., 2009). Except for ethofumesate at
5 mg kg−1 DW, all soils treated with pesticides showed significantly
higher values of N-NH4

+ concentration at day 7, compared to

untreated controls (Fig. 3B). In deltamethrin-treated soils, at day 7,
significantly higher values of N-NH4

+ concentration were observed
at 500 versus 50 mg kg−1 DW. In deltamethrin-treated samples,
lower values of N-NH4

+ concentration were observed at 500 versus

50 mg kg−1 DW at days 60 and 90. On the other hand, difenoconazole
had a stimulatory effect on N-NO3

− concentration (Fig. 4A). Similarly, at
days 30, 60 and 90, values of N-NO3

− concentration in soils treated with
50 and 500 mg kg−1 DW of deltamethrin and ethofumesate were
higher than in controls. At these last three sampling times, values
of N-NO3

− concentration in pesticide-treated soils were higher at
500 versus 50 mg kg−1 DW. The higher values of N-NH4

+ observed at
day 7 in treated versus untreated soils could be interpreted as
pesticide-induced inhibition of nitrification, as generally reported for
pesticides (Černohlávková et al., 2009; Cycoń et al., 2010; Muñoz-Leoz
et al., 2011). However, as reflected by N-NO3

− values, nitrification
appears stimulated by the presence of pesticides, particularly at the
highest concentration. Alternatively, the higher N-NH4

+ values might
be due to pesticide-induced stimulation of ammonification, resulting
from the mineralization of organic compounds present in pesticide
formulations or in dead microbial biomass frommicroorganisms nega-
tively affected by pesticide application (Monkiedje et al., 2007). In any
case, other pyrethroid insecticides such as λ-cyhalothrin have been
found to stimulate both N mineralization and nitrification (Cycoń et
al., 2006; Devare et al., 2007).

Difenoconazole and ethofumesate increased the diversity of
ammonium-oxidizing bacteria (H′-AOB) (Fig. 5). Nitrifying bacteria
are very sensitive to pesticide application (Sáez et al., 2003). When
comparing our results with those obtained with other pesticides, the
herbicide atrazine at 10 mg kg−1 DWwas found to increase AOB pop-
ulation abundance; by contrast, at 100 and 1000 mg kg−1DW, atrazine
induced a marked decrease of such abundance (Chang et al., 2001).
Cycoń et al. (2006) observed that, at high concentrations, the insecticide

Fig. 3. Effect of pesticides (difenoconazole, deltamethrin, ethofumesate) at 5, 50 and 500 mg kg−1 DW soil on (A) potentially mineralizable nitrogen (Nmin) and (B) N-NH4
+

concentration. Mean values (n=4)±S.D. Different letters indicate statistically significant differences among treatments according to Fisher's PLSD test at each incubation time.



λ-cyhalothrin had negative effects on nitrifying bacteria, while the
application of the fungicide tebuconazole resulted in a stimulation of
nitrifying bacteria.

Deltamethrin and ethofumesate at 50 and 500 mg kg−1 DW
resulted in lower values of denitrification potential (Fig. 4B). On the
contrary, difenoconazole at 500 mg kg−1 DW increased denitrification
potential at all sampling times (however, at 5 and 50 mg kg−1 DW,
lower values were observed at the three last sampling times). Pesticide
impact on denitrification depends on many factors such as soil proper-
ties, incubation conditions, type of pesticide, specific adjuvants present
in commercial formulations, etc. Koc of pesticides conditions their
fixation to soil organic matter and, hence, their non-target effects on

microorganisms. However, here no correlation was found among Koc
of pesticides and their subsequent impact on denitrification potential.
On the other hand, solvents and other compounds present in commer-
cial formulations might act as alternative C sources for denitrifying
microorganisms, which could explain the high values of denitrification
potential observed in difenoconazole-treated soils at the highest con-
centration. In any case, most of published studies deal with pesticides
applied as active ingredients, thus not taking into consideration the
effects of the adjuvants and surfactants present in commercial formula-
tions. For example, both deltamethrin-induced stimulation and inhibi-
tion of denitrification has been reported by Widenfalk et al. (2004)
and Muñoz-Leoz et al. (2009), respectively. Yeomans and Bremner

Fig. 4. Effect of pesticides (difenoconazole, deltamethrin, ethofumesate) at 5, 50 and 500 mg kg−1 DW soil on soil (A) N-NO3
− concentration and (B) denitrification potential. Mean

values (n=4)±S.D. Different letters indicate statistically significant differences among treatments according to Fisher's PLSD test at each incubation time.

Fig. 5. Effect of pesticides (difenoconazole, deltamethrin, ethofumesate) at 5, 50 and 500 mg kg−1 DW soil on diversity of ammonium-oxidizing bacteria (as reflected by the values

of the H′ index from data of the amoA-DGGE analysis). Values of H′ in control untreated soil at each incubation time were used as reference samples (set to 100%). H′ values in these

control soils were: 0.971 (day 7), 1.190 (day 30), 1.059 (day 60) and 1.156 (day 90).



(1985a,b) observed that many pesticides did not negatively affect
denitrification, but even stimulated it. By contrast, Cycoń et al. (2006)
found denitrifying microorganisms to be sensitive to tebuconazole. Sáez
et al. (2003) observed that some herbicides, as well as organochlorinated
and organophosphorus insecticides, showed inhibitory effects on
Paracoccus denitrificans.

The T-SQI can integrate information from different enzyme activ-
ities into one unique measure of soil functioning. At 5 mg kg−1 DW,
pesticide application showed no clear significant effect on T-SQI
values (apart from deltamethrin and ethofumesate-treated samples
at day 60) (Table 4). By contrast, at 50 and 500 mg kg−1 DW, signif-
icantly lower values of this index were observed for many of the stud-
ied soil samples: as a general trend, it was found that the higher the
pesticide concentration, the lower the T-SQI value.

On the other hand, N-NH4
+, Nmin and dehydrogenase activity were

positively correlated among each other (Table 5). N-NO3
− was nega-

tively correlated with soil N-NH4
+, Nmin and dehydrogenase activity.

The T-SQI was negatively correlated with QR and N-NO3
− (these two

parameters were positively correlated) and positively with dehydro-
genase activity and Nmin.

According to the PCA (Fig. 6), three principal components (PC)
explained 82.6% of the total variance: PC1 (33.2% of total variance)
was positively correlated with dehydrogenase activity, Nmin, and
N-NH4

+, whereas PC2 (29.2% of total variance) was negatively corre-
lated with N-NO3

− and positively with T-SQI; PC3 (20.2% of total
variance) was characterized by a high positive Eigen-value (>0.75)
for denitrification potential and QR. For the PCA plot, PC1 was not con-
sidered as it did not show significant differences among treatments.

According to PC2 and PC3, soils treated with 5 mg kg−1 DW were
located together with untreated controls, independently of the pesti-
cide tested, towards the positive side of PC2; by contrast, soils treated
with 50 and, specially, 500 mg kg−1 DW migrated to the negative
side of PC2 (sample location was dependent upon pesticide type,
with deltamethrin-treated soils being observed towards the positive
side of PC3, while difenoconazole- and ethofumesate-treated soils
were found towards the negative side of PC3).

The physiological similarity between target and non-target organ-
isms can determine pesticide non-target effects. Not surprisingly,
fungicides have been reported to induce more non-target harmful
effects on soil microbial communities, compared to insecticides and
herbicides (Chen et al., 2001; Cycoń et al., 2006; Muñoz-Leoz et al.,
2011). However, deltamethrin and ethofumesate application also
resulted in changes in the soil microbial parameters characterized in
this study. We speculate that these changes could be related to non-
specific effects of the active ingredients themselves as well as of the
additives present in commercial formulations. Nonetheless, scarce
information has been published about the impact of surfactants and
adjuvants on soil microorganisms (Krogh et al., 2003; Katagi, 2008;
Pereira et al., 2009). Although they can be used as C- and N-sources
by soil microorganisms, some adjuvants such as alcohol ethoxylates
and alkylamine ethoxylates can be toxic to microeukaryotes at low
concentrations and to bacteria at high concentrations (Beigel et al.,
1999; Krogh et al., 2003; Crouzet et al., 2010).

Finally, the low degradation rates found here for the three pesticides
(especially, for difenoconazole) can ultimately lead to their progressive
accumulation in soil as a result of repeated application. In our study, at
5 mg kg−1 DW, non-target effects of pesticides on soil microbial com-
munities were limited and short-lived. As reported for other fungicides
(Chen et al., 2001; Černohlávková et al., 2009), difenoconazole caused
the most significant impact on soil microbial parameters (QR, N-NH4

+

and N-NO3
− concentration, denitrification potential), as its mechanism

of action can also affect a wide range of soil microorganisms (including
bacteria). However, at higher concentrations, non-target effects were
more pronounced. This fact highlights the importance of considering
increasing pesticide concentrations, due to low degradation rates and
repeated applications, when assessing the environmental impact and
potential non-target effects of pesticides on soil microbial communities
and, hence, soil quality.

4. Conclusions

Pesticide degradation rates were dependent upon concentration:
higher values of half-life time were observed at increasing pesticide
concentrations. At 5 mg kg−1 DWnone of the three pesticides caused

Table 4

Effect of difenoconazole, deltamethrin and ethofumesate on the treated-soil quality

index (T-SQI) at 7, 30, 60 and 90 days of incubation in the presence of 5, 50 and

500 mg pesticide kg−1 DW soil.

Time (days) Pesticide Pesticide concentration (mg kg−1)

5 50 500

7 Difenoconazole 101.6±1.7a 99.2±1.7a 76.0±4.8b

Deltamethrin 96.6±2.3a 89.3±5.8ab 63.4±5.0c

Ethofumesate 96.4±7.0a 100.3±1.4a 96.9±1.2a

30 Difenoconazole 98.3±7.3ab 96.2±3.4a 59.2±6.5c

Deltamethrin 94.7±7.1ab 85.8±5.0b 39.8±7.3d

Ethofumesate 97.5±2.7a 91.3±2.7ab 82.7±4.5b

60 Difenoconazole 94.2±7.4ab 84.9±4.2b 52.4±2.7c

Deltamethrin 84.5±6.5b 76.7±2.7b 34.5±7.5d

Ethofumesate 84.7±8.9b 85.2±5.2b 62.6±5.5e

90 Difenoconazole 100.6±5.5a 92.8±6.1ab 67.0±0.3c

Deltamethrin 95.4±3.1ab 80.9±3.9d 45.3±1.2e

Ethofumesate 96.6±6.7ab 86.0±6.5bd 66.3±2.8c

Mean values (n=4)±S.D. Different letters indicate statistically significant differences

between treated and control “reference” samples (T-SQI=100) at each incubation

time, according to Fisher's PLSD test.

Table 5

Correlations among soil microbial parameters. Marked correlations are significant at

0.05 (⁎) and 0.01 (⁎⁎) level of probability. Non-significant correlations (P>0.05)

were excluded.

N-NO3
− N-NH4

+ Nmin DEN DEH QR T-SQI H′-AOB

N-NO3
− 1

N-NH4
+ − .274⁎⁎ 1

Nmin – .718⁎⁎ 1

DEN – – – 1

DEH − .230⁎⁎ .426⁎⁎ .787⁎⁎ – 1

QR .482⁎⁎ – – .265⁎⁎ – 1

T-SQI − .683⁎⁎ – .158⁎ – .447⁎⁎ − .289⁎⁎ 1

H′-AOB – – – – – – – 1

N-NO3
−, nitrate concentration; N-NH4

+, ammonium concentration; Nmin, potentially

mineralizable nitrogen; DEN, denitrification potential; DEH, dehydrogenase activity;

QR, respiratory quotient; T-SQI, treated-soil quality index; H′-AOB, Shannon's index

of ammonium-oxidizing bacteria diversity.

Fig. 6. Principal component analysis based on correlations between soil microbial

properties and principal components (PC) 2 and 3, at the three pesticide concentrations

studied here (5, 50 and 500 mg kg−1 DW soil). DEN, denitrification potential;

DF: difenoconazole; DM: deltamethrin; ET: ethofumesate.



relevant changes in soil microbial communities. However, at higher
pesticide concentrations, adverse impacts on soil microbial communi-
ties were detected. In particular, at 500 mg kg−1 DW soil, pesticide
application decreased overall soil microbial activity, negatively affect-
ing the activity of soil enzymes (it was found that the higher the
pesticide concentration, the lower the T-SQI value). At high concen-
trations, difenoconazole and ethofumesate, but not deltamethrin,
caused a pesticide-induced stress on soil microbial communities, as
reflected by the respiratory quotient. At 500 mg kg−1 DW, lower
values of Nmin were observed at the end of the incubation. In turn,
deltamethrin and ethofumesate at 50 and 500 mg kg−1 DW resulted
in lower values of denitrification potential. It was concluded that,
although pesticide concentration had a somewhat inconsistent and
erratic effect on soil microbial parameters, pesticide application at
500 mg kg−1 DW soil did have an impact on many of the microbial
parameters studied here.
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