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a  b  s  t r a  c t

After 12  and  18 months of daily  wastewater  discharge  into  mangrove  plots in  Mayotte Island, SW Indian

Ocean, leaf pigment  content,  photosynthesis rate and growth of  Rhizophora  mucronata and  Ceriops  tagal

mangrove trees were  evaluated and compared  with  similar  individuals  from control plots.  Chlorophyll  and

carotenoid contents,  measured  using  an HPLC analyser,  were  significantly higher  in  leaves of mangrove

trees receiving  wastewater  discharges. Photosynthesis and  transpiration rates, analysed  using an LCi

portable system, increased  significantly  for mangrove  trees in impacted  plots. Measurements  of leaf areas,

young branch  length  and  propagule  length  showed significant  increases  in plots receiving  wastewater.

These results suggest a beneficial effect  of domestic  wastewater on  R. mucronata and C. tagal mangrove  tree

functioning. Analyses  and observations  on mangrove  ecosystems  as a whole  –  taking  into account  water

and sediment  compartments,  crab  populations  and nitrogen  and  phosphorus cycles –  are  nevertheless

necessary  for  evaluation of bioremediation  capacities  of mangrove  ecosystems.

1. Introduction

1.1. Mangroves and bioremediation

The  utilisation of mangrove swamps as  natural systems for
wastewater treatment has been proposed as  an efficient and low
cost  solution for tropical coastal areas. Characterised by a  high
primary production and biomass and established as often as not
on  nutrientpoor sediments, mangrove ecosystems are considered
able  to absorb nutrients in excess contained in sewage, without any
major structural or functional disturbance (Saenger, 2002).

Nedwell (1975) showed that the discharge of pretreated
wastewater into a mangrove swamp in Fiji could be a means of
reducing eutrophication in coastal waters, and therefore suggested
that mangroves might be used as the final stage in sewage treat
ment.  Clough et al. (1983) published one of the first review articles
dealing  with the impact of sewage on mangrove ecosystems. These
authors established that the capacity of mangroves to  remove
nutrients from sewage was largely determined by hydrodynamic
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factors in the short term and that the efficiency of the processes
was largely dependent on the sediment properties and biologi
cal  characteristics of the ecosystem in the longer term. Corredor
and Morell (1994) demonstrated that the excess nitrogen coming
from  a  sewage treatment plant in Puerto Rico could be absorbed by
the mangrove ecosystem through natural denitrification processes,
without  any damage.

In  an exploration of the different aspects of the role of man
grove swamps as sinks for wastewaterborne pollutants through
numerous experiments conducted in the Hong Kong and Shen
zen  area (South China), Tam and Wong (1995, 1996) successively
showed that mangrove soils are good traps to fix phosphorus and
certain heavy metals from wastewater; that no significant change
was  observed in the plant community structure or in leaf nutri
ent  content of a  mangrove site receiving wastewater discharges
for  1 year (Wong et al., 1995, 1997); and that litter production
and decomposition were not perturbed (Tam et al., 1998). The
addition  of wastewater to mangrove soils also seems to stimulate
the  growth of microbial populations, probably through nutrients
and carbon components present in wastewater (Tam, 1998). More
recently, these authors showed that a mangrove plant commu
nity growing in constructed microcosms receiving wastewater was
effective in removing organic matter, nitrogen and phosphorus
(Wu et al., 2008; Tam et al., 2009), Analysing a  natural mangrove
area in Thailand, Wickramasinghe et al. (2009) arrived to similar
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conclusions, demonstrating the efficiency of mangrove ecosystem
in  waste treatment, with an enhancement of mangrove growth and
abundance of invertebrate populations

1.2. Mangrove tree growth and nutrient enrichment

While the use of mangrove ecosystems for removing pollutants
from sewage discharges is becoming rather well documented, the
response of mangrove plants themselves in terms of growth should
be  analysed and controlled, and results in this domain are still con
tradictory. Henley (1978) reported that mangrove tree growth in
the Darwin area, Australia, was not affected when they received
sewage discharges, and Clough et al. (1983) concluded that nutrient
enrichment of a mangrove ecosystem through wastewater supply
did  not appear harmful and in some cases might have a  beneficial
effect on growth and productivity. Kelly (1995), investigating the
impact of sewage effluents on mangroves dominated by Avicennia

marina in Australia, found that the N  and P leaf concentrations were
higher at impacted sites, but no clear growthenhancing effects
were  noted at these same sites. From similar experiments con
cerning the two mangrove species Kandelia candel and Aegiceras

corniculatum, Wong et al. (1995) did not find any significant differ
ences  in plant growth after 1 year of sewage discharges, but noted
that  effects – positive or adverse –  on vegetation functioning could
become apparent only over a longer term. More recently, Lovelock
et  al. (2009) established that nutrient enrichment (N and P) could
increase  the mortality of mangroves in sites characterised by low
annual rainfall and high sediment salinity. These authors added
that  mortality rates were significant in landward scrub forests and
no tree deaths occurred in fringe forests. Lovelock et al. (2004) and
Martin et al. (2010) specified that N and P enrichment significantly
increased mangrove tree growth, but in certain salinity conditions
might alter the structure of mangrove forests.

1.3. Mangrove tree functioning and environmental stresses

Relationships between nutrient enrichment and metabolic pro
cesses in mangroves are still little documented. Peculiarly, data on
photosynthesis rate in  mangrove trees as a functional marker of
their health state are rare; such data are generally linked to hydro
logical and salinity parameters and take into account propagule
populations in greenhouse conditions (Ball and Farquhar, 1984;
Youssef and Saenger, 1998; Kao and Tsai, 1999; Kao et al., 2001;
Krauss  and Allen, 2003). Some studies considered the links between
mangrove structure (scrub vs. fringe mangrove), mangrove tree
height  and photosynthesis characteristics (Lin and Sternberg, 1992;
Lovelock et al., 2004), and Naidoo and Chirkoot (2004) established
in  a specific context that photosynthetic performance of A. marina

was  reduced when coal dust was deposited on the leaf surface of
the mangrove trees.

In  other studies, pigment content of mangrove leaves has been
analysed in relation to the light environment of the mangrove for
est canopy (Lovelock and Clough, 1992; Moorthy and Kathiresan,
1997).  Rajesh et al. (1998) established correlations between growth
rate, photosynthetic and pigment characteristics, and salinity levels
for Ceriops populations. MacFarlane and Burchett (2001) showed
that  photosynthetic pigment concentration decreased in A. marina

populations impacted by heavy metals, and MacFarlane (2002)
suggested that photosynthetic pigments could be  considered as
biological indicators of stress for mangrove trees.

1.4. Mayotte Island context and bioremediation project

The Mayotte Archipelago, West Indian Ocean, is currently expe
riencing environmental degradation linked to a very important

Fig.  1. (a)  The  study  site, aerial  photography  from  ultralight.  The two impacted

plots  are characterised  by a strong green  colour  (white  circles  mark  the upper limit

of plots). (b) Colour changes  in Ceriops  tagal  leaves  between  control and impacted

plots. (c)  Growth  differences  in  Ceriops tagal branches  between control and  impacted

plots. All  pictures: March  2009,  i.e. after  12  months  of daily wastewater  discharge.

increase of population and rapid economic development. Sewage
treatment is largely deficient in Mayotte and constitutes a major
problem for the local authorities. Only one sewage plant, built
in  2001 and recently renovated (2010), treats wastewater in
Mamoudzou, the main town of Mayotte; however, the majority of
effluent flows – directly or  after having crossed mangrove swamps
at  the ends of bays – into the vast coral reef lagoon surrounding the
island.

In  this context, experiments have been launched at Mala
mani, SW Mayotte, to evaluate the bioremediation capacities of a
mangrove swamp receiving, in controlled conditions, pretreated
domestic wastewater. Water bodies, sediment, vegetation and
fauna  (crab populations) of mangrove ecosystems have been taken
into  account and analysed (Herteman, 2010; Herteman et al.,
submitted for publication) and experiments are still in progress
at  the Malamani study site.

We now report investigations concerning mangrove vegetation
functioning after 12 and 18 months of daily wastewater discharge.
An  aerial survey of the study site clearly showed a  change in the
colour of the mangrove canopy, turning from light green to  strong
green, corresponding to mangrove plots receiving wastewater
(Fig. 1a). This change appeared 6  months after the first sewage
discharges in the mangroves and persisted 12 months later; the
change  in leaf colour clearly corresponds to the discharge. Obser
vations  in the field confirmed the colour change of the mangrove
leaves  and also showed obvious differences in branch length
between control and impacted plots (Fig. 1b and c). To analyse
such  changes in vegetation and evaluate the impact of wastewater,
photosynthetic pigment concentrations, photosynthesis rate and
growth of mangrove trees were followed in impacted and non
impacted mangrove plots, in two different facies, respectively,
dominated by Ceriops tagal (Perr.) C.B.  Robinson and Rhizophora

mucronata Lam.



Fig.  2. The  study  area  and the experimental  site. (a)  Mayotte  Island,  SW  Indian  Ocean.  (b) The study  site,  SW Mayotte  Island, between Malamani  village and the lagoon.

(c)  Experimental  setting:  decanter collecting  domestic wastewater  from Malamani;  pipe  network;  impacted  and control plots in Ceriops  tagal  and  Rhizophora  mucronata

mangrove  facies; piezometer  network  for  water analyses.

2. Materials and methods

2.1.  Study area

Mayotte Island is a dependent French overseas territory in the
Comoro Archipelago, located in the Mozambique Channel, SW
Indian Ocean (Fig. 2). The little volcanic island (376 km2)  is sur
rounded by an almost continuous barrier reef system enclosing one
of the largest lagoons in the world (1500 km2). Mangrove swamps
are  developed at the ends of bays on around 650 ha. The tide range
is  high for an oceanic island, reaching up to  4 m in spring tides.
Mayotte’s climate is maritime tropical, with a warm wet season
from November to April (mean seasonal rainfall and temperature:
1200  mm and 27.2 ◦C, respectively) and a cooler dry season from
May  to October (210 mm and 25.1 ◦C).

The study area is located in Chirongui Bay, southwest of Mayotte
(12◦55′S, 45◦09′E). A primary treatment unit sized for 400equiv.
inhabitants daily receives domestic wastewater from Malamani vil
lage. Wastewater is decanted and stored, and then carried through
a  pipe network to the mangrove area. Time delivery and discharge
volumes are automatically controlled by a SOFREL processing sys
tem. Wastewater is then delivered every second low tide onto
two  mangrove plots respectively dominated by C. tagal and R.

mucronata at the rate of 10 m3 per 24 h on each 45 m × 15 m plot.
A  third 45 m × 15 m plot connected to the pipe network automati
cally receives wastewater in excess, particularly in the rainy season
when  discharge volumes exceed 20 m3 per day (Fig. 2c).

Photosynthetic pigment concentration, photosynthesis rate and
growth of mangrove trees were analysed 12 and 18 months after
commencement of wastewater discharges in the two impacted

plots,  and in two equivalent control plots. The average composition
of  the wastewater is  given in Table 1, and the vegetation structure
of  the four plots is presented in Table 2.

2.2. Photosynthetic pigment analyses

Mature and healthy leaves of 12 random patches in each of the
four  plots were collected in January (wet season) and April (begin
ning  of dry season) 2009 and rapidly stored in a cold place (cooler
box  during transport, then −80 ◦C freezer in laboratory). Three disks
18  mm in diameter were cut from each leaf patch sample, crushed
with  50 mg Fontainebleau sand, rinsed with 20 ml methanol, and
then placed under ultrasound for 3 min. Mixtures were stored for
15  min at −20 ◦C, and then spindried (5 min in −1 ◦C centrifuge at
3500 rpm). Samples of the supernatent were taken (1 ml), filtered
through 0.2 mm syringe filters, and then analysed using HPLC.

2.3. Photosynthesis and transpiration rates

The net photosynthetic rate was measured on intact, mature
C.  tagal and R. mucronata leaves with a portable photosynthesis
system (ADC Bioscientific Ltd portable), equipped with a  6.25 cm2

leaf chamber. We measured 150 and 120 leaves, respectively, in
each C.  tagal and R. mucronata 45 m × 15 m plot. Three successive
measurements were made for each sampled leaf at intervals of
25 s.  All measurements were made between 10:00 and 13:00 h,
on sunny days and under the following conditions: photosyntheti
cally active radiance: 1000–2000 mmol m−2 s−1, relative humidity:
65  ± 5%, temperature: 30 ± 2 ◦C.



        

Table  1

Nutrient  composition  (mg  l−1)  of  domestic wastewater  after  pretreatment  in  decanter.  Analyses realised  on July  02, 2009,  SIEAM Laboratory  (Mayotte);  April  01  and October

10,  2009, ARVAM  Laboratory  (La  Réunion Island).

NO3 NO2 NO3 + NO2 NH4 PO4

July 02,  2009 1.40 0.17  1.57 –  8.40

April  01,  2009 1.09 0.01  1.10 1.18  5.61

October  10, 2009 0.01 0.02 0.03 1.95 12.55

2.4. Growth rate measurements

Leaf  measurements: In each control and impacted plot (C. tagal

and  R. mucronata stands), 90 mature and healthy leaves were ran
domly  collected, and their lengths and widths measured. Fresh and
dry weights were measured, and leaf areas were calculated using
ImageJ  software and leaf digitisation. Leaf area–weight relation
ships  were determined. Measurements were made in April and
October  2009.

Branch measurements: In each C.  tagal plot, 60 branches were
measured on 15 trees, i.e. four branches per tree, distributed in the
upper, middle and lower parts of the control and impacted plots.
In  the R. mucronata plots, 39 branches were measured on 13 trees,
i.e.  three branches per tree, distributed throughout the control and
impacted plots. Measurements were made in April and October
2009.

Propagule measurements: In each control and impacted plot (C.

tagal and R.  mucronata), 90 propagules were randomly collected
from  9 trees, i.e. 10  propagules per tree, distributed in the upper,
middle and lower parts of plots. Propagule length was measured in
October 2009.

2.5.  Statistical analyses

The  Shapiro test was conducted on each dataset (pigment con
centration, photosynthesis and transpiration rates, growth rate
measurements) and showed that data were normally distributed.
Mean values and standard deviation were calculated.

Oneway ANOVA (for p ≤ 0.05 and p  ≤ 0.01) was employed to
test  the significance of differences between control and impacted
plots, between dates and between species, for each dataset except
propagule lengths, which were analysed using Student’s ttest
(p  ≤ 0.05).

All analyses were performed using the PAST software, version
1.94b (Hammer et  al., 2001).

3. Results

3.1. Vegetation structure

Mangroves on the study site are developed over a length of
about 600 m with a classical zonation according to inundation and
salinity gradients, i.e. from landward to seaward: a degraded Her

itiera  littoralis Dryand. stand at the upper limit of tidal influence,
followed by a barren salt flat or “tanne” surrounded by old A. marina

(Forssk.) Vierh. trees, a dense and a low C. tagal stand progres
sively  mixed with R. mucronata individuals, a high and important
R.  mucronata stand including scattered patches of Bruguiera gym

norhiza  (L.) Lam., and finally on the lagoon side a welldeveloped
Sonneratia alba J.  Smith zone.

Experiments were conducted in two mangrove facies, chosen
for  their representativeness and their important development in
most mangrove stands in Mayotte, namely C. tagal and R. mucronata

facies. Structures are described in Table 2. The C. tagal facies were
largely dominated by the eponymous species, which represented
90%  of the specific composition, with 9% for R. mucronata and a
few individuals of A. marina in the upper part of the stand and rare
B.  gymnorhiza in the lower part. Total density is  very high with
69,500 ind ha−1 and 62,750 ind ha−1 for C.  tagal. C. tagal individu
als  are small trees with 2.2 ± 1.1 cm trunk diameter and 1.7 ± 0.9 m
in  height. The second facies is dominated by R. mucronata (79%)
with C. tagal individuals in the upper part (16%) and patches of
B.  gymnorhiza (5%). Total density is lower, with 7900 ind ha−1 and
6250 ind ha−1 for R. mucronata. The mean trunk diameter for dom
inant  individuals of R. mucronata is 16.1 ± 5.2 cm with a height of
7.1 ± 2.1 m.

It  is important to note that the vegetation structure was anal
ysed  successively in November 2006, before the first sewage
discharges, and in November 2008, 6 months after discharges
began. No significant difference was observed within the period.
We  also noted that the vegetation structure had not changed after
12  and 18 months of discharges when functional analyses were
made, in terms of density or mortality rates. Regeneration seems
to  be  enhanced in impacted plots and density of canopy as well.
Analyses are currently underway to quantify these processes.

3.2.  Photosynthetic pigment concentration

Table 3 and Fig. 3 show the results of analyses of chlorophyll a
and  b, carotene, and xanthophyll pigments extracted from C.  tagal

and R. mucronata leaves sampled in control and impacted plots
(January 2009, April 2009).

Pigment content appears to  be significantly higher in plots hav
ing  received wastewater than in control plots, for all pigment types,
for the two dates analysed and for both C. tagal and R. mucronata

stands, except for chlorophyll b, for which results are not significant
for  R. mucronata in  January 2009.

Pigment concentration increased around twofold between
C.  tagal control and impacted stands and for the two dates,
i.e.  from 1.47 to 2.88 mg g−1 dw (January 2009) and 1.23 to

Table  2

Structural  analyses  of  mangrove plots, before wastewater  discharge  (November 2006).

Facies  Species  Specific

dominance  (%)

Density

(n ha−1)

Dbh

(<10  cm)

Dbh

(>10 cm)

Height (m)

(Ø  <  10 cm)

Height  (m)

(Ø  >  10cm)

Basal  area

(m2 ha−1)

Dead ind.

(n  ha−1)

C. tagal  A. marina  0.7  500 5.8  – 2.8  –  2.8  250

B. gymn. 0.3  250  3.2  – 0.6  –  0.4  0

C.  tagal 90.0  62,750  2.2  – 1.7  –  31.1  3500

R.  mucr.  9.0 6000  4.8  11.1  2.7  3.5 18.2  250

R. B.  gymn. 5.0 350  3.9  21.7  2.2  5.8 0.29  50

mucr.  C.  tagal  16.0  1300 4.1  – 2.6  –  2.04  50

R. mucr. 79.0  6250 6.4  16.1  3.7  7.1 71.5  200



Table  3

Leaf  pigment  content  (mg g−1 dw)  of C. tagal  and R.  mucronata,  in  control and  impacted  plots January  and April  2009.

Ceriops  tagal Rhizophora  mucronata

January 2009 April  2009 January 2009  April 2009

Control Impacted Control  Impacted  Control  Impacted  Control Impacted

Chlor  a  1.47  ± 0.59  2.88  ± 0.76** 1.23  ±  0.41  3.28  ± 0.68**  2.08  ± 0.68  2.87  ±  0.68** 3.01 ± 0.67 4.01 ± 0.75

Chlor  b  0.43  ± 0.19 0.89  ± 0.26**  0.34  ± 0.12  1.03  ± 0.22* 0.60  ± 0.1  0.88  ±  0.23** 0.9 ± 0.21 1.31 ± 0.29

Chl a:b 3.46  ± 0.2  3.25  ± 0.15  3.64  ±  0.15  3.18  ± 0.14  3.46 ± 0.15 3.28  ±  0.15 3.33 ±  0.21 3.09 ± 0.18

bcarotene 0.43  ± 0.16 0.79  ± 0.18**  0.36  ± 0.12  0.87  ± 0.2** 0.58  ± 0.08  0.76  ±  0.2** 0.82 ± 0.20 1.04 ± 0.18

Xanth. 0.07  ± 0.02 0.13  ± 0.03** 0.06  ±  0.02 0.15  ± 0.03** 0.1  ± 0.01 0.14  ±  0.03** 0.14  ± 0.03 0.19  ± 0.03

Significant  differences  between  control and impacted  plots  with  *p ≤ 0.05  and  **p ≤  0.01.  n  =  12  for  each  modality.

3.28 mg g−1 dw (April 2009) for chlorophyll a. In comparison, the
increase in R. mucronata is significant but moderate, i.e. from 2.08
to  2.87 mg g−1 dw (January 2009) and from 3.01 to 4.01 mg g−1 dw
(April  2009) for chlorophyll a.

In C. tagal plots, we note that differences between the two con
trol  plots and between the two impacted plots are not significant
between January and April, for all pigments. For instance, changes
were from 1.47 to 1.23 (control plots) and 2.88 to 3.28 mg g−1 dw
(impacted plots) for chlorophyll a, 0.43 to 0.36 (control) and 0.79
to  0.87 (impacted) for bcarotene, and 0.07 to 0.06 (control) and
0.13  to 0.15 (impacted) for xanthophylls. Similar comparisons for
R.  mucronata, however, show significant increases between dates,
with 2.08–3.01 (control) and 2.87–4.01 (impacted) for chlorophyll
a,  0.58–0.82 (control) and 0.76–1.04 (impacted) for bcarotene, and
0.1–0.14 (control) and 0.14–0.19 (impacted) for xanthophylls.

3.3. Photosynthesis and transpiration rates

Table 4 and Fig. 4 summarise results for both parameters, for
measurements made in April 2009 (end of wet season) and October
2009  (end of dry season).

Photosynthesis rate appears significantly higher in plots
receiving wastewater than in  control plots, in April (6.14 vs.
9.86  mmol m−2 s−1) and October (5.82 vs. 9.53 mmol m−2 s−1)  for C.

tagal plots and in October 2009 only (8.68 vs. 10.66 mmol m−2 s−1)
for  R. mucronata plots.

Comparisons between species show that the photosynthe
sis rate is  significantly higher in R. mucronata than in C. tagal,
in  both control (12.52 vs. 6.14 mmol m−2 s−1 in April, 8.68 vs.
5.82 mmol m−2 s−1 in October, respectively) and impacted plots
(12.62 vs. 9.86 and 10.66 vs.  9.53) and for each of the dates consid
ered.  The photosynthetic rate also appears slightly but significantly
higher for both species at the end of the wet season (April) than at
the end of the dry season (October).

If we compare transpiration rates between control and
impacted plots, measurements indicate significant differences
for  both species in April with higher values in plots receiving
wastewater (3.95 vs. 2.47 mmol m−2 s−1 for C. tagal, and 4.1 vs.
3.53 mmol m−2 s−1 for R. mucronata, respectively), while the dif
ferences are not significantly different in October (3.64 vs. 3.65 for
C.  tagal and 3.27 vs. 3.64 for R. mucronata).

3.4. Growth rate measurements

Results  for leaf (length, width, weight, surface area), branch and
propagule (length) measurements after 12 and 18 months (April
2009  and October 2009) are presented in Table 5 and Fig. 5.

Except  for R. mucronata measurements in April, leaf length and
width  and consequently leaf area are significantly higher for sam
ples  collected in impacted plots for both species and dates, i.e. for
leaf  areas, respectively 15.9 (control plots) and 37.9 cm2 (impacted

Fig.  3.  Pigment  concentration in  Ceriops  tagal and  Rhizophora  mucronata  leaves,  collected  in  control and  impacted plots,  Malamani  study site,  January  and  April  2009. (a)

Chlorophyll  a. (b)  Chlorophyll  b.  (c) bCarotene.  (d) Xantophyll. Unit: mg g−1 dw.



Table  4

Photosynthesis  rate  (mmol  m−2 s−1) and  transpiration  rate  (mmol  m−2 s−1)  in leaves of  C. tagal  (n:  150) and R. mucronata  (n:  120), in  control  and impacted  plots, April and

October  2009 (mean  ± Sd).

Ceriops  tagal Rhizophora mucronata

April  2009  October  2009  April  2009 October 2009

Control Impacted Control  Impacted  Control  Impacted Control  Impacted

Photosynthesis  rate  6.14 ± 1.9  9.86  ± 1.52 5.82 ± 1.3  9.53  ± 1.35  12.5  ± 2.7  12.62 ± 2.39  8.68 ± 4.02  10.66  ±  2.98

Transpiration rate  2.47 ± 0.94  3.95  ± 0.82  3.65 ± 0.89  3.64  ± 0.89  3.53  ± 1.11  4.1 ± 1.18  3.64 ± 1.11  3.27  ± 0.75

plots) for C. tagal and 63.2 (control) and 89.5 (impacted) in October
for  R. mucronata.

The leaves of both species are slightly heavier (dry weight) for
both  species, and leaf areatoweight ratios are significantly higher
in  impacted conditions than in controlled ones.

Concerning branch length, all results are significant with impor
tant  increases, i.e. 4.68–13.38 cm for C. tagal and 16.04–20.06 cm for
R.  mucronata in October. No significant seasonal change appeared
in  branch length from April to October for either species or plot
conditions.

Finally,  the impact of wastewater supply in mangrove plots
significantly increased propagule length in both species, i.e.
16.4–32.1 cm for C. tagal and 32.1–39.1 cm for R. mucronata.

4. Discussion

4.1. Leaf pigment concentration in mangrove trees and

wastewater effects

In  natural conditions in Mayotte Island, we established that pig
ment  concentration was significantly higher in R. mucronata than in
C. tagal leaves, particularly for chlorophyll a, the trigger element of
photochemical processes. Chlorophyll a:b ratios, considered to be a
significant index of photosynthetic functioning, exhibit very stable
and similar values for both species and dates, corresponding to val

ues  given by Das et al. (2002) for R. apiculata and B. gymnorhiza, and
by Basak et al. (1996) for R. mucronata and C. decandra. As  noted by
these authors, carotenoid content is very low in the Rhizophoraceae

family, as  we observed in Mayotte Island in natural conditions.
The supply of wastewater to  mangrove plots enhances pigment

concentration in mangrove leaves, with clear increases for chloro
phylls,  bcarotene and xanthophylls in both species. While no data
were found in the literature directly concerning the relationships
between pigment concentration in mangrove leaves and wastewa
ter  supplies, many authors have considered pigment concentration
in  relation to environmental factors. Medina and Francisco (1997)
established that chlorophyll content appeared to  be higher in man
grove  leaves of riverine mangrove stands and lower in  leaves of
mangroves from dry sites, and added that N  and P leaf concen
trations and leaf areas varied in the same way between dry and
wet  sites. Authors interpreted such results as  interactions between
salinity and water stresses, in relation to nutrient supplies and
photosynthetic productivity. MacFarlane and Burchett (2001) and
MacFarlane (2002) showed links between leaf chlorophylls (a + b)
and carotenoid content of A. marina and heavy metal concentra
tion in mangrove sediment. Ye et al. (2003) examining the effects
of  waterlogging on growth and physiological characteristics of B.

gymnorhiza and Kandelia candel (Rhizophoraceae), showed that
chlorophyll and carotenoid concentrations increased when water
logging duration and intensity increased.

Fig.  4.  Photosynthesis  rate  and  transpiration  rate  measured  on  Ceriops  tagal and Rhizophora  mucronata  leaves, in control and impacted  plots,  Malamani study  site,  April and

October  2009.  Unit:  mmol m−2 s−1 .



Table  5

Shoot  length (cm),  internode number  and leaf  number per shoot  for  C.  tagal  and R.  mucronata,  in control  and  impacted plots,  April and  October  2009 (mean ±  Sd, n  =  60).

Ceriops  tagal Rhizophora  mucronata

April October April October

Control  Impacted  Control  Impacted  Control  Impacted  Control Impacted

Shoot length 4.68 ± 2.5  13.38  ± 4.26  5.01  ±  3.44 12.82  ±  1.5  16.04 ± 2.11  20.06  ± 2.63 9.16 ±  6.19 8.88 ± 6.02

Internodes number  1.3  ± 0.5 3.3  ± 0.9  2.1  ± 0.7  3.3  ± 0.9  3.7 ± 1.4  2.8  ±  0.5  17.3 ±  1.2  21.2 ± 2.0

Leaf number  per  shoot 8.6  ± 5.5 9.6  ± 7.3  –  5.2  ± 1.3  5.9 ± 1.5  5.3±  1.0  4.7  ± 1.7  4.2 ± 1.1

Wastewater supply to  impacted mangrove plots in Malamani
contributes both to  lower salinity level – fresh water is added to
the  ecosystem – and to increased N and P levels. The average com
position of sewage (Table 1) indicates the amount and the nature of
nitrogen and phosphorus compounds delivered daily to mangrove
plots.  Moreover, we established that wastewater delivered to man
groves  at low tide rapidly seeps into sediment and is progressively
absorbed by vegetation, and that N and P compounds are at least
partially  used by mangrove trees (Herteman, 2010; Herteman et al.,
submitted for publication). The change in the colour of the vege
tation  of impacted plots (Fig. 1) also reflects these processes and
corresponds to the increase in leaf pigment concentration. As pro
posed by the authors cited above, pigment concentration may thus
be considered a  marker of stress conditions for mangrove trees, or
a  marker of change in mangrove functioning, revealing pollution
with  heavy metals (MacFarlane and Burchett, 2001; MacFarlane,
2002)  or an excess of nutrient, as we demonstrated in our Mala
mani experiments. From a more general point of view, studies of
pigment content in  higher plants as biomarkers are rare, and essen
tially  concerned microalgae, where pigment content is directly
linked to biomass (Wilhelm et al., 1995). Brain and Cedergreen
(2009), in a recent review on biomarkers in aquatic plants, indi
cated  advantages for considering pigment content as a biomarker:
it  is an easytomeasure and robust parameter and, furthermore,
visual observation, as in  our Malamani experiments, may preclude

the  necessity of measuring pigment content. These authors added
that  chlorophylls and carotenoids were the primary lightcapturing
pigments in  higher plants, absorbing light energy for photosynthe
sis.  Nutrient status, with light intensity or temperature, is one of
the factors affecting the content of photosynthetic pigments. At
high nutrient availability, and particularly with excess N, pigment
content increases and enhances carbon fixation.

4.2. Photosynthetic processes

Pigment concentration is directly linked to photosynthetic
activity, and photosynthetic rates and pigment content, i.e. chloro
phyll  a:b ratio, have been found to  be correlated (Anderson et al.,
1988; Das et al., 2002).

Measurements of photosynthesis rate in control plots in Mala
mani  clearly indicate differences between species, with the highest
values  obtained in R. mucronata, where the highest pigment con
centrations were also found. Theuri et al. (1999) obtained similar
results  with higher values for R. mucronata than for C. tagal in man
grove stands in Kenya. Nevertheless, these authors globally found
lower  values in Kenyan mangroves than in Mayotte (around 1.5
and  1.2 mmol m−2 s−1 for R. mucronata and C.  tagal, respectively)
and important seasonal variation, with twofold values in the wet
season  (around 4.0 and 3.0 mmol m−2 s−1, respectively) while sea
sonal changes in Malamani were not significant. Transpiration rate

Fig.  5.  Changes  in leaf area  (a),  branch  length (b) and  propagule length (c)  of Ceriops  tagal and  Rhizophora  mucronata  in control and impacted  plots, Malamani  study  site,

April  and  October 2009.  Units:  cm2 and cm.



levels are also greater in Mayotte (2.45–3.65 mm m−2 s−1)  than in
Kenyan mangrove (0.78–0.94 mm m−2 s−1).

Clough et al. (1997) and Clough (1998) found high values
of  photosynthetic rates for  R. apiculata (average rate for the
whole canopy: 9.0 mmol m−2 s−1)  and different Rhizophoraceae
(6.13–12.9 mmol m−2 s−1), with higher values for Rhizophora spp.
and  lower values for C.  australis. These authors added that rates
of  photosynthesis may be substantially lower in mangrove stands
characterised by higher aridity and salinity conditions with values
around  4–5 mmol m−2 s−1.

In  the mangrove stands of Malamani, wastewater supplies
clearly contribute to increased photosynthetic rates in impacted
mangrove plots as they lead to an increase in pigment concen
trations. As we noticed above, wastewater contributes to lower
salinity rates, enriches the mangrove ecosystem in N and P nutri
ents,  and consequently enhances photosynthesis rate. Sobrado
(2000) and Li et al. (2008) indicated similar relationships between
salinity conditions and photosynthesis processes for different man
grove  trees including Rhizophoraceae, and Kao et al. (2001) showed
that  an increase in N  availability increased photosynthetic rates for
the  Rhizophoraceae K. candel. Li  et al. (2008) added that high levels
of  Na concentration in mangrove trees inhibited electron transport
in  photosynthetic processes and consequently led  to  a decrease in
photosynthetic efficiency.

4.3.  Mangrove growth rates and wastewater supplies

Increased mangrove growth rates (leaf dimensions and surface
areas, branch length) observed in impacted plots at the study site
are  a direct effect of enhancement in  photosynthesis rate and of
the increase in leaf pigment concentration. The supply of fresh
water  and nutrients (N and P), particularly through wastewater
discharges, is known to induce an increase in mangrove tree growth
(Clough et al., 1983) by acting as a fertiliser supply in the ecosys
tem  (Boto and Wellington, 1983). Onuf et al.  (1977) also observed
that  a Rhizophora mangrove stand naturally enriched with guano
from  a bird colony exhibited significant enhancement of growth.
Clough et al. (1983), analysing all these results, concluded that
“nutrient enrichment from fertilization or from sewage effluent
is  not likely to be deleterious to mangroves, and may be benefi
cial  where the nutrient status of the mangroves is low”. Lin and
Sternberg (1992), and more recently Lovelock and Feller (2003)
and  Lovelock et al. (2004), while analysing functional differences
between scrub and fringe mangroves, established that CO2 assimi
lation rate and photosynthetic efficiency seem to be lower in scrub
facies,  also characterised by high salinity levels. Conversely, fertil
isation  by N and P supplies may induce significant shoot growth in
dwarf mangrove stands.

Recent papers, however, have emphasised potential negative
consequences of excessive nutrient enrichment in mangroves. They
established, for instance, that excessive N supply might induce
changes in roottoshoot ratio (development of shoots at  the
expense of roots) and increase the vulnerability of mangrove stands
in highsaline environments (Martin et al., 2010), or even lead
to  the death of mangrove trees in high salinity and low rain
fall  conditions (Lovelock et al., 2009). In this last study, nutrient
enrichment seems to  have been through a single, massive sup
ply  annually or biannually, i.e. 300 g of urea or  phosphate into
holes  cored on either side of the tree stems. Notice that these
amounts correspond to the total amount of N provided to our
impacted plots in a whole year, but delivered daily every sec
ond  low tide to our experimental mangrove stands. The kinetics
of  absorption and assimilation of nutrients is  then certainly dif
ferent  in the two cases, and thus the consequences on mangrove

tree  metabolism will be different as  well. While no negative effect
on  mangrove vegetation appeared after 18 months of wastewater
supplies in the mangroves of Malamani, we will still require con
tinuing control experiments to assess the longterm efficiency of
bioremediation through mangrove ecosystem. In another domain,
PenhaLopes et al. (2010) indicated, from mesocosm experiments,
that sewage contamination caused disturbances to gastropod pop
ulations (Terebralia palustris) associated with mangrove trees. In
the  Malamani study site, preliminary results did not show any
change in crab populations impacted by wastewater (Herteman,
2010), but further experiments are planned to evaluate potential
effects over a  longer term.

5.  Conclusions

The present study showed that domestic wastewater discharges
induced important changes in mangrove vegetation. In particular,
the  wastewater:

• increased  leaf pigment content in C.  tagal and R. mucronata stands
impacted with 12–18 months of daily supplies;

• enhanced  significantly photosynthetic activity and transpiration
rate; and

• induced significant increase in leaf area and branch length of
impacted mangrove stands.

At the same time, no evident modification appeared in general
structure or functioning of mangrove vegetation.

If our results seem to demonstrate that pretreated domestic
wastewater may have beneficial effects on mangrove functioning,
a  survey of the literature nevertheless shows that N and P excess,
brought through domestic wastewater or  experimental supplies,
could  in certain conditions and over a  long term induce dysfunc
tioning in mangrove vegetation.

Further  experimentation and analyses are necessary before we
can  clearly define the possible role of mangrove ecosystems in
bioremediation of domestic wastewater.

Such experimentation is currently in progress in the Malamani
study  site, taking into account the different compartments of the
mangrove ecosystem and their interactions, i.e. salty and fresh
water  bodies, sediment, crab populations and the structure and
functioning of the mangrove vegetation. While the preliminary
results in this paper show that wastewater is  effectively absorbed
by  mangrove trees and induces enhancement of mangrove tree
functioning, global N and P balances must be  established for bet
ter  quantification. Another avenue of research, also in progress, is
to improve wastewater treatment in the primary treatment unit
before  its discharge into mangrove stands.
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