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LPV techniques for the control of an airborne

micro-launcher

J. Bordeneuve-Guibé, D. Alazard ∗

J. Desmariaux †

Abstract

This paper addresses the robust control of a micro-launcher. The general framework of
this work is a R&D project of the French space agency (CNES) focused on new launch-
ers. The objective was to evaluate the potentialities of Linear Parameter Varying (LPV)
techniques for the specific problem of launchers control. As a realistic test case, the micro-
launcher preliminary research program, supported by the CNES Launcher Directorate, has
been considered.

First a Linear Fractional Transformation (LFT) based model of the launcher has been
established and validated. Then two strategies have been chosen to design a robust controller
of the angle of attack: a complete LPV controller has first been developed; then a controller
based on an LFT representation of a classical lead phase controller has been considered.
Realistic simulations have been conducted to compare both strategies with a more traditional
interpolated lead phase controller. Finally, the simulation results exhibit very promising
results, allowing a total respect of the performance specifications.
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1 Introduction

The development of new micro-satellites is a challenging problem by many aspects, especially
because many types of launchers can be considered: In particular, a special attention is actually
given to the solution consisting in launching payloads using light conventional fighter aircrafts.
At a given altitude, the airborne micro-launcher is dropped from the aircraft and then initiates
its flight until it reaches its orbit. This flight phase is crucial because the micro-launcher has to
be controlled in incidence despite highly varying conditions (evolution of mass, velocity, dynamic
pressure, etc.) and disturbances (wind shears). Moreover uncertainties on dropping conditions
and mission objectives could lead to apply a closed-loop guidance control law in atmospheric
phase, and the control loop would then have to cover a wide flight envelope by comparison
with classical launchers. Considering this particular context, it is obvious that conventional
controllers are not well suited to guaranty desired stability margins and performance levels
along the whole trajectory. In particular, the controller parameters have to be made variable
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Figure 1: Reference frames and variables of interest

and adaptable to flight conditions. A practical approach consists in tuning and scheduling
various LTI (Linear Time Invariant) controllers designed in various flight conditions. But linear
parameters varying (LPV) techniques are now mature enough to offer both theoretical and
applied solutions. Concerning aerospace systems, LPV system modeling has been extensively
studied [1], and efficient frameworks are now available [2]. More recent developments [3] address
the direct design of a LPV controller from a Linear Fractional Representation (LFR) of the
parameter dependant model. Moreover, dedicated Matlab toolboxes ([4], [5]) now offer an
efficient design and simulation framework for complex systems.

First a complete linear model has been established between the input command (thruster’s
deflection) and the output angles (incidence, pitch). This model comes from the linearization of
the rigid body launcher at the maximum dynamic pressure that represents the worst case along
the flight trajectory. Then a classical lead phase discrete-time controller has been tuned to cope
with the desired performance specifications (stability margins, damping factor and bandwidth).
The next step has consisted in developing an appropriate LFT model: it has been shown that
considering only Mach number and dynamic pressure, a convenient LFT model could be val-
idated along the whole trajectory. Designing a control law using a direct LPV approach has
resulted in a tough task, exhibiting encouraging simulation results. Then an alternative control
law based on a LPV representation of the classical lead phase controller has been established.
Simulations have been performed in a realistic context, i.e. taking into account the nonlinear
and non-stationary characteristics of the micro-launcher.

2 LINEAR MODEL OF THE LAUNCHER

In order to develop a model of the micro-launcher, the variables of interest (Fig. 1) are the
angle of attack (α), the pitch angle (θ), the thruster deflection (β). The terrestrial reference
frame is denoted (XC , YC , ZC) while the frame attached to the launcher is (XL, YL, ZL). V
and VR vectors denote the velocity with respect to the ground and the air respectively; thus W ,
the difference between V and VR is the wind vector. Lift (L) and drag (D) forces apply at the
center of lift (F ). G is the center of gravity and PC is the total thrust force applying at T .

The model has been established under several classical assumptions concerning the launcher
geometry, the airflow, the nature of the fluid and so on. Moreover, as wind is supposed to remain
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small with respect to both absolute (V ) and relative (VR) velocities, the angle of attack (AoA)
equation is:

α = θ +
ŻC −W

VR

(1)

2.1 COMPLETE MODEL

The non linear equations describing the launcher motion are the following:

mZ̈C = −PC sin(β + θ)− qSrefCnαα cos θ + qSrefCxmin sin θ (2)

Jθ̈ = Jq̇ = −PC |TG| sin β + qSrefCnααGR + qSrefLrefCmαα (3)

Considering these equations at the equilibrium leads to:
The linearization of the motion equations around an equilibrium state (α0, θ0, β0) has been

performed considering that the aerodynamic coefficients (lift, pitch and drag respectively) are
formulated as follows:

Cn = Cnα(α− α0) (4)

Cm = Cm0 + Cmα(α− α0) (5)

Ca = Cxmin +Kxα(α− α0)
2 (6)

thus leading to the equilibrium state equations:

−PC sin(β0 + θ0)− qSref [Cn0α0 cos θ0 − Cxmin sin θ0] = 0 (7)

−PC |TG| sin β0 + qSrefCnαα0GR+ qSrefLrefCmαα0 = 0 (8)

Moreover, as the launcher is symmetric, α0 = Cm0 = 0. Finally, the resulting state space
representation is given by:




θ̇

θ̈

Z̈C


 =




0 1 0

A6 0 A6

V

a1 0 a2







θ

θ̇

ŻC


+




0 0

−A6

V
K1

−a2 a3




[
W

β

]
(9)

The output vector is then chosen as follows:

Y =




α

θ

θ̇

ŻC



=




1 0 1

V

1 0 0

0 1 0

0 0 1







θ

θ̇

ŻC


+




− 1

V
0

0 0

0 0

0 0




[
W

β

]
(10)

where

a1 =
1

m
[−Pc cos(θ0 + β0) + qSrefCnαα0 sin θ0 + qSrefCxmin cos θ0] (11)

a2 = − 1

mVR
[qSrefCnα cos θ0] (12)

a3 = −PC

m
cos(θ0 + β0) (13)

K1 = −PC

J
|TG| cos β0 (14)

A6 = −qSref

J

[
CmαLref + CnαGR

]
(15)
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m and J are the launcher mass and inertia, Sref is the reference surface, |TG| is the modulus

of
−→
TG and GR is the component of

−→
GR along XC (R being the reference point where the

aerodynamic coefficients are considered).
As a matter of validation, the last two parameters of the linear model A6 and K1 have been

computed for several Mach conditions (Fig. 2) and compared to identified values from flight
data (Fig. 3)

Figure 2: Computed values of A6 and K1

Figure 3: Identified values of A6 and K1

2.2 REDUCED MODEL

A modal analysis of the above linear model (9) makes clear that there is an unstable mode
related to the lateral drift of the launcher (ŻC). As this mode is easily stabilizable by the
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guidance loop, it can be ignored at first, thus leading to a simplified or reduced model:

[
θ̇

θ̈

]
=

[
0 1

A6 0

][
θ

θ̇

]
+

[
0 0

−A6

V
K1

] [
W

β

]
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θ

θ̇


 =




1 0

1 0

0 1




[
θ

θ̇

]
+




− 1

V
0

0 0

0 0




[
W

β

] (16)

3 CONVENTIONAL CONTROL OF THE ANGLE OF AT-

TACK

The desired performances, for every flight scenario, can be summarized as follows:

• gain margin at high frequency: 5dB

• gain margin at low frequency: 2dB

• phase margin: 25deg

• minimal damping ratio: 0.5

• closed loop bandwidth equal to the natural frequency of the launcher (
√
A6 s

−2 from the
linear model)

The operating point considered along the trajectory to derive the linear model has been
chosen where the dynamic pressure is maximum, which corresponds to the most critical situation
in terms of stability margins. The linear controller is then tuned for this particular point with
respect to the above specifications, and finally applied to the whole trajectory. The controller
is basically a PD type controller with a feedforward gain h applying on the reference signal αc

to ensure a unity gain:
β = Kp(hαc − α)−Kvα̇ (17)

If we consider that the angle of attack α is not measured (only the pitch angle θ is measured),
that the lateral deviation ŻC is available from the guidance loop, the control law (17) can be
modified, also adding an integral term and a pseudo derivative, thus becoming:

β = (Kp +
Ki

s
)

[
hαc − (θ +

ŻC

V
)

]
−Kv

s

1 + τs
θ (18)

Even if it has resulted quite easy to tune this controller for the chosen operating point, a more
realistic simulation of the control scheme (18), including the servo dynamic and the global time
delay (Fig. 4) has exhibited poor performances for several operating points along the trajectory.
In particular, we noted a badly dominant mode and a too weak phase margin. Thus the main
controller parameters (Kp, Kv, h and τ the time constant of the pseudo derivative) have been
tuned over several operating points and then interpolated.

Simulation results are presented on Fig. 5, showing good behavior either for reference track-
ing or disturbance rejection. The simulation is limited to the first 3 seconds as the unstable
mode (lateral deviation) is not controlled yet.
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Figure 4: Control of the angle of attack

Figure 5: Step responses from αc (left) and wind W (right). Top to bottom : α, θ, θ̇, ŻC .

4 Linear Fractional representation of the microlauncher

4.1 Position of the problem

The key principle of the Linear Fractional Representation (LFR) is to describe a Linear Param-
eter Varying (LPV) system using the well known M −∆ interconnection (Fig. 6). where

• M =

[
M11 M12

M21 M22

]
is the LFR model

• ∆ =




δ1In1 0 · · ·
0 δ2In2 · · ·
...

...
. . .


 is the uncertainty block where every varying parameter δi is

repeated ni times.

The input-output relation is then given by:

y = [M22 +M21∆(I−M11∆)−1M12]u (19)
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Figure 6: M −∆ representation

A6 K1 a1 a2 a3 V LFR model

size of Mach block 3× 3 3× 3 7× 7 5× 5 3× 3 1× 1 22× 22

size of Pdyn block 2× 2 2× 2 3× 3 2× 2 2× 2 1× 1 12× 12

Table 1: Dimensions of the uncertainty blocks from the first approach

The LFT is thus entirely defined by M , the orders ni, and the bounds of every varying
parameter δi (usually normalized).
The starting point is the choice of the physical parameters that should be used to characterize
the different trajectories. An exhaustive work led to the conclusion that both Mach number
(Mach) and dynamic pressure (Pdyn) were the more appropriate parameters, allowing to cover
the different flight trajectories. Thus the LFR Control Toolbox has been exploited to generate an
LFR model of the microlauncher. More specifically, we used the grid2lfr function that allows
to find the coefficients of a rational expression defined in term of Mach, 1/Mach, Pdyn and
1/Pdyn with user defined orders: Concretely, it performs a least squares based interpolation of
a varying parameters matrix for several points of the Mach-Pdyn plane.

4.2 First approach

For this first approach, every parameter present in the linear model (9) is considered separately:
6 LFR objects are created (for A6, K1, a1, a2, a3 and V ) and then assembled using the linearized
equations of (9).
As an illustration, the LFR of two parameter (A6 andK1) are plotted in the (Mach, Pdyn) plane
for several trajectories (Figs. 7 and 8): despite relative low orders, the LFR approximations
remain close to the real values, especially for A6.

Once the 6 LFR have been computed, the overall LFR model has been built using the state
equations governing the linear dynamics (9), resulting in a block diagram scheme given in Fig.
9. It has to be noticed that every parameter is only used once in such a scheme, and that the
resulting LFR object is characterized by an uncertainty block ∆ where Mach is repeated 22
times and Pdyn 12 times (Table 1).

Finally, the LFR model has been validated comparing LTI models computed for several
operating conditions and the corresponding LTI models obtained from the above LFR object.
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Figure 7: A6 parameter (blue) and its LFR approximation (red); Normalized values.

Figure 8: K1 parameter (blue) and its LFR approximation (red); Normalized values.

4.3 Second approach

Instead of considering each single parameter as previously, one can consider a parameter matrix
M formed from the linear model (9):

M =




A6 A6/V K1

a1 a2 a3
1 1/V 0


 (20)

Indeed, the scheme presented in Fig. 9 can also be represented by the new block diagram given
in Fig. 10.
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Figure 9: Construction of the LFR model (every LFR gain is used once)
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W
βα

θ̇

θ

+

−

I3

s

θ̇

θ̈

Z̈C

θ̇

θ

ŻC

Figure 10: Construction of the LFR model from the LFR matrix M .

Even if this method is globally less accurate in terms of approximation, its main advantage
lies in the size of the generated ∆ block: Mach and Pdyn are repeated 12 times, which is a
better solution than the one generated by the first approach.

5 LPV synthesis based Controller design

In [6] and [7] a general H∞ design based on the acceleration sensitivity function was proposed
to control mechanical systems taking into account specifications on disturbances rejection per-
formance and dynamic decoupling between degrees of freedom (d.o.f.). This particular H∞

standard problem is also called the SOTAS (Second-Order Template on Acceleration Sensitivity
function) problem.

The algorithm that is used to solve this robust LPV control design problem is in fact an
algorithm of robust synthesis. Thus it allows the synthesis of linear controller maximizing the
worst performance index obtained over the whole uncertainty domain, which can be represented
by finding K in the interconnection of Fig. 11. Indeed, we are here looking for a LPV controller
maximizing the robust performance of an uncertain LPV standard-form. In fact, the robust LPV
control design problem can be rewritten as a robust control design problem of a static controller.
Control design is performed with a robust control algorithm proposed by [8]. This method uses
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an iterative resolution of a Linear Matrix Inequalities (LMI) problem as an heuristic to address
a Bilinear Matrix Inequality (BMI) derived from the Kalman-Yakubovic-Popov (KYP) lemma.
It allows simultaneous robust and fixed-order synthesis of both a feedback controller and a
feedforward controller under LTI and LTV uncertainties.
Then the starting point of the above mentioned method consists in finding a stabilizing initial
controller K0. In our case, we chose K0 = 0.5 1+0.2s

1+0.01s
, i.e. a simple lead phase controller.

Figure 11: Standard form for robust control design

The application of such a technique to our problem is detailed in Fig. 12, where both servo
dynamics and propagation delays have been included. Only the reduced model of the launcher
(16) has been considered. The synthesis has been performed in the continuous time domain.
Then the resulting LPV controller has been discretized. Parameters ω and ξ specify the required
bandwidth and damping ratio for the dominant closed loop modes.

K1

A6

1

s
1

s
+

+
−

w1

u = β y = θServo Dynamics

s2+2ξωs+ω2

s2
z1

z2

Figure 12: LPV control design formulation

As an illustration of the obtained solution, The controller Bode diagram is reported on
Fig. 13 while the open loop Black chart is reported on Fig. 14. The Bode charts exhibit
homogeneous characteristics, whatever the flight point that is considered, and always close to
the initial controller. Moreover, Fig. 14 shows that stability is ensured, even if the stability
margins slightly decrease (as expected) when considering the discretized controller.
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Figure 13: Bode plot of the LPV controller for several flight points (initial controller K0 in cyan)

6 LFT representation of the conventional controller

In section 3 the conventional control law (18) gains (Kp, Kv, h) have been tuned for several flight
points and then interpolated. Here we consider another solution that consists in finding a LFT
for every gain as functions of Mach and Pdyn parameters. To build the LFT of each controller
gain, we considered the interpolated values every second along the trajectory. As previously, we
used the LFR Toolbox and more specifically the function grid2lfr. We can note that although
the specified orders for the 3 LFT remain small, the resulting LFT exhibit high dimensions. For
instance, for the resulting Kp LFT, the ∆ block dimension is 8: Mach and Pdyn are repeated
5 times and 3 times respectively.

Figures 15, 16 and 17 depict the evolution of the 3 gains in the Mach-Pyn plane, comparing
the LFT model and the interpolated values. It appears that for both Kp and Kv there are
significative differences, but not for h. Anyway, as a matter of validation, the evaluation of Kp

and Kv at t = 25s for instance lead to the following results:

• Kp = −0.3887 from the LFT model and Kp = −0.4045 from the interpolation

• Kv = −0.0800 from the LFT model and Kv = −0.0788 from the interpolation

which is acceptable.

7 Simulation results

7.1 Structure of the simulation environment

In order to compare the 3 control laws developed earlier, the simulation of the microlauncher
has been improved to reach a high level of fidelity. The overall simulation scheme is given on
Fig. 18. Its main characteristics are the following:

• non stationary simulation of the microlauncher: it is realized via continuous computations
of the linear model (9).
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Figure 14: Open loop Black plot (continuous in green, discretized in blue)

• stabilization of the lateral deviation: the Żc mode is simply stabilized with a roughly tuned
PID controller.

• disturbance rejection type: only the wind input is considered (Żcref set to zero). Wind
shears are simulated in a realistic way from real data.

Moreover, as the angle of attack α is not measured, it is replaced by its approximate (or esti-
mated) value (6):

α̂ = θ +
ŻC

VR

(21)

7.2 Comparison of the control laws

As a reminder, the 3 control laws developed during this work are:

• Conventional control law (18), referred as L1. Taking into account that the integral term
is set to zero, that this control law is sampled (sampling period Ts), and that the gains
are interpolated, its expression becomes:

β(t) = Kp(t)

[
h(t)αc − (θ +

ŻC

V
)

]
−Kv(t)

z − 1

Tsz
θ (22)

• LFT conventional control law, referred as L2: As explained in section 6, the same control
law (22) is considered, but replacing the gains Kp(t), Kv(t) and h(t) by their corresponding
LFT representations.

• LFT controller, referred as L3: the frequency behavior of this controller, designed in
section 5, is given on Fig. 13 and Fig. 14.

The 3 control laws implementation are finally detailed on figures 19, 20 and 21, and the corre-
sponding simulation results are presented on figures 22, 23 and 24.

From these results, some particular points can be underlined:
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Figure 15: LFT representation of Kp versus normalized Mach and Pdyn

Figure 16: LFT representation of Kv versus normalized Mach and Pdyn
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Figure 17: LFT representation of h versus normalized Mach and Pdyn

+
−

θ

Servo DynamicsPID
α̂

Żc

α
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βŻcref

Żc controller
α controller Microlauncher

model

Figure 18: Overall control scheme

+
−

β

z−1

Tsz

Kp(t)

Kv(t)

h(t) +
−

αc

α̂

θ

Figure 19: Implementation of L1 control law

• The initial oscillations of the actuator (L1 and L2 control laws) are due to a badly tuned
guidance controller (PID for ŻC). In fact this PID has been tuned at an operating point
situated at the half trajectory (around 20s), thus not adapted to the initial trajectory.

• The divergence of the L1 control law is more problematic. It corresponds to the end of
the trajectory, characterized by a highly decreasing thrust thus leading to highly varying
gains. This phenomenon causes an instability for L1, but not for L2 because the LFTs of

14



+
−

β

z−1

Tsz

+
−

αc

α̂

θ

h LFT Kp LFT

Kv LFT

∆ ∆

∆

Figure 20: Implementation of L2 control law
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−

β
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α̂
LFT controller
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Figure 21: Implementation of L3 control law

Figure 22: Evolution of α and β in response to wind disturbances: control law L1

the 3 gains did not take into account the ending gains.

• The L3 control law exhibits a better behavior at the origin of the trajectory, while remain-
ing stable along the whole trajectory.

Moreover, frequency and step responses have been simulated for every control law and consid-
ering many operating points along the trajectory. It clearly appears that the desired stability

15



Figure 23: Evolution of α and β in response to wind disturbances: control law L2

Figure 24: Evolution of α and β in response to wind disturbances: control law L3

margins are obtained (2dB and 5dB gain margins, 25deg phase margin). Anyway, the L2 control
law exhibit slightly better results in terms of stability margins, but L3 seems more robust with
respect to step responses.

8 Conclusion

In this work, the problem of controlling the angle of attack of a micro-launcher has been ad-
dressed. It has been shown that the choice of the Mach number and the dynamic pressure led to
a reasonably complex and representative LPV model of the launcher. However, this choice is not
unique and others parameters could be considered. The controller design has been performed
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using two competitive methods that gave satisfactory simulation results. As expected, the main
limitation lies in the size of the uncertainty block ∆, but the proposed solution allows to reach
a good balance between computational complexity and performances satisfaction.
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