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a b s t r a c t

After closure of a waste disposal cell in a repository for radioactive waste, resaturation is likely to cause

the release of soluble species contained in cement and bituminous matrices, such as ionic species (ni-

trates, sulfates, calcium and alkaline ions, etc.), organic matter (mainly organic acids), or gases (from steel

containers and reinforced concrete structures as well as from radiolysis within the waste packages).

However, in the presence of nitrates in the near-field of waste, the waste cell can initiate oxidative

conditions leading to enhanced mobility of redox-sensitive radionuclides (RN). In biotic conditions and in

the presence of organic matter and/or hydrogen as electron donors, nitrates may be microbiologically

reduced, allowing a return to reducing conditions that promote the safety of storage. Our work aims to

analyze the possible microbial reactivity of nitrates at the bitumen e concrete interface in conditions as

close as possible to radioactive waste storage conditions in order (i) to evaluate the nitrate reaction

kinetics; (ii) to identify the by-products (NO2
�, NH4þ, N2, N2O, etc.); and (iii) to discriminate between the

roles of planktonic bacteria and those adhering as a biofilm structure in the denitrifying activity.

Leaching experiments on solid matrices (bitumen and cement pastes) were first implemented to

define the physicochemical conditions that microorganisms are likely to meet at the bitumen-concrete

interface, e.g. highly alkaline pH conditions (10 < pH < 11) imposed by the cement matrix. The

screening of a range of anaerobic denitrifying bacterial strains led us to select Halomonas desiderata as a

model bacterium capable of catalyzing the reaction of nitrate reduction in these particular conditions of

pH.

The denitrifying activity of H. desiderata was quantified in a batch bioreactor in the presence of solid

matrices and/or leachate from bitumen and cement matrices. Denitrification was relatively fast in the

presence of cement matrix (<100 h) and 2e3 times slower in the presence of bituminous matrix (pH

9.7). The maximal rate of denitrification was approximately 0.063 mM h�1 and some traces of nitrite

were detected for a few hours (<2%). Overall, the presence of solid cement promoted the kinetics of

denitrification. The inspection of the solid surfaces at the end of the experiment revealed the presence of

a biofilm of H. desiderata on the cement paste surface. These attached bacteria showed a comparable

denitrifying activity to planktonic bacterial culture. However, no colonization of bitumen was observed

either by SEM or by epifluorescence microscopy.

1. Introduction

The intermediate level, long-lived waste (MAVL) considered in

this publication was a mixture of inorganic salts embedded in a

bituminous matrix. The waste was the result of waste separation,

for which the first step of the recycling procedure, known as PUREX

(PlutoniumeUranium Extraction), is the dissolution of the fuel rods

in a hot nitric acid medium followed by selective solvent extraction

(Nikitenko et al., 2010). A variety of oxyanions are added during

waste effluent treatment, in particular sulfate and nitrate in acid or

salt form for the co-precipitation of radionuclides. To give some

examples: addition of Ti(SO4)2 or Ba(NO3)2 triggers precipitation of
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titanium (Ti(OH)4) or barium (BaSO4) respectively, the former along

with Sb, the latter with Sr; addition of CoSO4 induces precipitation

of cobalt (CoS) together with Ru. Bituminization is used to stabilize

the waste in metal packages which are grouped within steel-

reinforced concrete overpacks. These are transferred to concrete-

lined tunnels, called the waste cells, of a repository.

We focused our research on the transition zone between the

bitumen and the concrete over-pack (Fig. 1), initially ignoring the

presence of the steel of the primary waste container. After waste-

cell closure, resaturation leads to the release of chemical species

from the waste, especially soluble salts, including hydroxides, ni-

trates, organic matter (organic acids, phenols, etc.), gas and radio-

nuclides (Van Loon and Kopajtic, 1990; Van Loon and Hummel,

1995; Libert and Walczak, 2000; Walczak et al., 2001).

The presence of nitrates in the vicinity of waste packages may

result in oxidizing conditions favorable to the mobility of a series of

radionuclides such as Se, U, Tc, Pu, Np. (Albrecht et al., 2012).

However, because of the presence of reducing substances in the cell

(zero-valent Fe, H2, organic matter), different redox reactions could

lead to nitrate reduction and thus re-establish reducing conditions

favourable to storage safety. Reduction of nitrate (NO3
�) may occur

from surface catalysis provided by the different types of steels

present in the cell, and/or from biological catalysis through deni-

trifying bacterial activity, and may lead to the formation of nitrite

(NO2
�), gaseous nitrogen (N2) and/or ammonium (NH4

þ), depending

on the type of reaction (Devlin et al., 2000; Truche and Berger,

2010; Libert et al., 2011; Alquier et al., 2012; Libert et al., 2012;

Truche et al., 2013). The length and impact of this oxidizing tran-

sition phase depends mainly on the kinetics of the biotic reactions,

which are especially influenced by the harsh conditions imposed by

the alkalinity of the concrete environment. Microorganisms known

as extremophiles are likely to be able to grow in physicochemical

conditions comparable to those in the waste cell, because of their

particular metabolisms (Sarethy et al., 2011; Sorokin et al., 2012).

The objective of our work was (i) to have a clear idea of the

environmental conditions in terms of pH, (bio)availability of elec-

tron donors and acceptors, and salt concentrations found at the

bitumen-concrete interface within the repository, (ii) by analyzing

the literature on extremophilic microbes, to identify a model bac-

terial strain that would have the properties required to grow under

these conditions, (iii) to assess the behavior of the selected model

strain in a simplified system, i.e. a synthetic medium reproducing

the conditions of pH, concentrations of donors and acceptors of

electrons, ion concentrations., and (iv) to validate the hypothesis

that this model bacterial strain can actually catalyze denitrification

under conditions as close as possible to those found at the bitumen-

cement interface, i.e. in a solution containing solid matrices of

bitumen and concrete. Bacterial growth, both in suspension as

planktonic cells and directly on solid matrices as bacterial biofilms,

was explored.

2. Materials and methods

2.1. Bacterial strain, culture medium, and solid matrices

2.1.1. Alkalophilic bacterial model

Halomonas desiderata DSM 9502 was obtained from the strain

collection of DSMZ (Deutsche Sammlung von Mikroorganismen

und Zellkulturen GmbH, Germany).

2.1.2. Culture medium

The culture medium of H. desiderata DSM 9502 was prepared

from solutions 1 and 2 as described in Table 2. These solutions were

sterilized separately by autoclaving (121 !C e 20 min) and then

mixed at room temperature (z20e25! C) under aseptic atmo-

sphere. The pH was adjusted to 9.0e11.0 at 30! C.

2.1.3. Concrete matrix

CEM V/A 42.5 (S-V) N CE PM-ES-CP1 cement pastes (Airvault

Calcia factory) were made with a water/cement ratio of 0.40. They

were cast in cylindrical plastic moulds 50 mm high and 27 mm in

diameter without demoulding oil and were vibrated to evacuate air

voids. The specimens were taken out of their moulds 24 h after

pouring and stored in water at 20 !C for 28 days. They were then

subjected to the leaching tests described below. In parallel, some

control specimens were kept in water at 20 !C. The external ex-

change surface of a concrete sample had an area of approximately

38 cm2.

2.1.4. Bitumen matrix

Asalt 35-50 bitumen was packaged in a metal pot, sealed and

kept in the freezer. Fragments were shaped manually at room

temperature. The average exchange surface area of fragments was

between 0.5 and 1.5 cm2.

Fig. 1. Schematic representation of the physicochemical conditions at the concretee

bitumen interface in the disposal cells.

Table 1

Composition of the culture medium for the growth of Halomonas desiderata DSM 9502.

Eluent (1 mL/min) Precolumn Chromatographic column Suppressor

Anions KOH (1 "10�3 mol/L) Elution

gradient: 10% mobile phase

to 60% mobile phase in 25 min.

NG1 (4 " 50 mm, Dionex)

þ IonPac AG11-HC

(4 " 50 mm, Dionex)

IonPac AS11-HC

(4 " 250 mm, Dionex)

ASRS 300 (4 mm, Dionex) þ

CRD 200 (4 mm, Dionex)

Cations Methylsulfonic

acid (30 10�3 mol/L) Isocratic (30 min)

NG1, (4 " 50 mm, Dionex)

þ IonPac CG16 (4 " 50 mm, Dionex)

IonPac CS16

(4 " 250 mm, Dionex)

Suppressor CSRS 300

(4 mm, Dionex)



2.2. Leaching experiments

2.2.1. Reactor

The reactor, filled with 1 L demineralized water, notably

comprised an outlet for solution sampling during leaching cycles, a

gas inlet with check valve for N2 bubbling to impose anaerobic

conditions inside the reactor (conditions that would prevail inside

the cell), a gastight tap for a pH probe and a hermetically closed lid

fitted with a gas vent. The pH probe was connected to a data

acquisition system (Consort, D230 Data Acquisition System,

v1.1.13). The solution in the reactor was continuously agitated using

a magnetic barrel. The cement solid matrix was suspended in the

solution by a PTFE thread. The solid/liquid volume ratio was about

3%. The experimental device was kept in an air-conditioned room

during the whole experiment.

2.2.2. Method

Leaching solutions were renewed daily for 5 days. During the

first day of exposure, 4 solution samples (20e25 mL each) were

collected. The solid/liquid ratio was not modified much. On days 2e

5, only one daily liquid sample was taken from the reactor, just

before the solution was renewed. Concentrations of Ca2þ, Kþ, ace-

tate, nitrate, and nitrite were measured on each liquid sample.

2.3. Measurement of bacterial denitrifying activity

2.3.1. Batch bioreactors

Glass bioreactors containing 1 L of culture medium were kept

hermetically sealed with plastic plugs and metal caps. The bio-

reactors were inoculated with 1 mL of H. desiderata preculture

(active growing culture, optical density of 0.3 at 600 nm). An

anaerobic atmosphere was created by degassing the culture me-

dium with N2 for 10e15 min. The bioreactors were then incubated

at 30 !C with shaking (150 rpm). Samples were taken regularly

using sterile needles and syringes for analytical monitoring: 1 mL

was collected for immediate measurement of optical density at

600 nm and 2 mL was collected, filtered to 0.2 mm in Eppendorf

tubes, and then stored in a freezer at �18 !C for analyses of ionic

species.

2.3.2. Experiments in bacterial growth medium

As previously described by Berendes et al. (1996), the optimum

pH for the growth of Hd is 9.7. A first experiment therefore culti-

vated Hd at pH 9.7 in a minimal synthetic medium (Table 2) con-

taining acetic acid and nitrates used as sole sources of electron

donors and acceptors respectively. Acetate was provided at a con-

centration of 350 mg/L (6 mM) and nitrates were added in excess

compared to acetate (based on the stoichiometric Equation (1) of

the denitrification reaction) (620 mg/L, 10 mM). Hd growth was

measured using optical density at 600 nm and the concentrations

of acetate, nitrate and nitrite were monitored regularly over time.

2.3.3. Experiments in presence of solid matrices

Experiments were carried out in a liquid medium containing

75% distilled water and 25% mineral culture medium for deni-

trifying bacteria in the presence of acetate (300 mg/L or 5.5 mM)

and nitrate (500 mg/L or 8.6 mM). The cement matrix was intro-

duced into the reactor in the form of coarsely crushed fragments of

CEM V pastes (15 g of solid per 100 mL of liquid medium). The

bitumen was introduced in the form of solid granules (about 5 g of

solid per 100 mL of the liquid medium). The pH at the start of the

experiments was 9.6 in the presence of bitumen alone, 10.5 in the

presence of cement paste and 9.6 in the presence of both cement

and bitumen. The pH was not adjusted or buffered. Only release

phenomena or reactions could lead to a pH change.

2.4. Chemical analysis (Ca2þ, Kþ, acetate, oxalate nitrate, nitrite)

Concentrations of anions (acetate, oxalate, nitrate and nitrite)

and of cations (calcium and potassium) were measured by High

Performance Ion Chromatography coupled to a conductimetric

detector fitted with a chemical suppressor (Dionex ICS-2000 and

ICS-3000). The analytical conditions are summarized in Table 1.

Liquid samples were filtered at 0.2 mm (Minisart PES, Fisher

Scientific) to remove suspended solid matter.

2.5. SEM analysis

Solid samples (i.e. cement and bitumen matrices) were post-

treated before SEM observation following a specific method

developed for the observation of biological samples. In a first step,

the samples were fixed by immersion in a solution of 2% glutaral-

dehyde in 0.4 M phosphate buffer for 1 h. Then they were washed

twice with the same buffer supplemented with 0.4 M sucrose.

Finally, the samples were gradually dehydrated in acetone-water

solutions before finishing with a solution of pure HMDS until to-

tal evaporation. The SEM observation was performed on a “low

vacuum” scanning electron microscope JEOL JSM 6380L (60 Pa,

15 kV) equipped with an EDX detector (RONTEC Xflash 3001).

3. Specification of physicochemical conditions at the

bitumen-cement interface

Uncertainties remain regarding the release of organic and

inorganic matter by bitumenesalt mixtures. Experimental studies

have shown that the degradation of bitumen causes the release of

Table 2

Conditions for chemical analysis by High Performance Ionic Chromatography (HPIC).

Solution 1 Solution 2

Acetate 0.35 g Na2CO3 5.40 g

MgCl2, 6H2O 0.20 g NaHCO3 4.20 g

KH2PO4 1.00 g Water 100 mL

KNO3 0.62 g

Water 900 mL

Fig. 2. Experimental set-up of the leaching experiment described in (Bertron et al.,

2013) for determining evolution of ions concentrations and pH into leachates

solutions.



organic substances (naphthalene, alcohols, linear carboxylic acids,

aromatics and glycols) and salts (NaNO3, Na2SO4, etc.) (Kagawa

et al., 2000; Walczak, 2000; Nakayama et al., 2003; Marien et al.,

2008). On the basis of this literature data, bitumen release was

simulated by aqueous solutions made of acetate and nitrates. Ac-

etatewas considered (i) since it is easily assimilated by bacteria and

(ii) because of its low interactionwith cement phase (Bertron et al.,

2005a, 2005b, 2007; Larreur-Cayol et al., 2011).

Experiments on the leaching of concrete solid matrices were

then conducted as described by Bertron et al. (2013) using a model

aqueous solution theoretically simulating a bitumen leachate

(0.50 mM acetate/0.33 mM nitrates). Several successive batches

corresponding to 24 h of contact between a solid matrix of cement

and the model solution were used. Changes in the pH and the

concentrations of cations and anions (acetate, nitrate, nitrite, OH-,

Kþ, Ca 2þ, NH4þ) were followed.

The variations of pH were similar over the five 24 h-cycles: from

the initial value of 4.0, pH increased rapidly during the first 6 h of

leaching, to about 9.5, then slowed down and reached 10.6 after

24 h (Fig. 2). Alkaline conditions were thus very rapidly imposed in

the leaching medium. The increase in pH was very probably due to

the release of hydroxide ions by the cement pastematrix because of

dissolution of the cementitious phase.

Concentrations of Kþ and Ca2þ varied in the same way. During

the first leaching cycle, variations followed those of pH and con-

centrations reached [Ca2þ]z 0.25mmol/L and [Kþ]z 0.15mmol/L.

On leaching days 2e5, concentrations at the end of each cycle

decreased progressively to reach [Ca2þ] z 0.25 mmol/L and

[Kþ] z 0.09 mmol/L at the end of the 5th leaching cycle. These

variations are typical of the leaching of a cementitious matrix.

Concentrations of nitrates were stable with to time (data not

presented) and were equivalent to the initial quantity (32.3 mM).

Neither nitrites (NO2-) nor ammonium (NH4þ), produced by abiotic

reduction of nitrates under anoxic conditions, were detected. The

concentration of acetate was almost constant, at the initial value of

0.50 mM.

4. H. desiderata: an alkalophilic nitrate reducing bacterium

Microbial denitrification, in the particular context of the

disposal of radioactive waste as defined in Fig. 1, has so far been a

matter of mere speculation. No denitrifying microorganism has yet

been isolated from samples in situ. But, theoretically, many micro-

organisms are known to produce such denitrification under con-

ditions of high pH (in the range of pH 9e11). The first step was

therefore to identify a model microorganism capable of (i) growing

in alkaline conditions, (ii) using nitrate as electron acceptor and

catalyzing its reduction to the step of nitrogen gas, and (iii)

oxidizing simple organic substrates (electron donors) such as car-

boxylic acids with short aliphatic chains (acetate, butyrate, oxalate,

etc.).

A literature review of the denitrifying microbial species high-

lighted 6 bacterial strains capable of working in the conditions

defined (Table 3). The majority of denitrifying strains identified

operate in a pH range between 6 and 10. Only 2 are known to

reduce nitrate at more alkaline pH (up to 11): Halomonas campisalis

DSM 15413 and H. desiderata DSM 9502. The first one, H. campisalis,

is obligatory halophilic, i.e. it can develop only in salty (NaCl) en-

vironments, which is outside our field of study. Our choice of model

strain thus turned to H. desiderata DSM 9502.

According to Berendes et al. (1996), H. desiderata DSM 9502 is a

rod shaped cell 0.4e0.6 mm wide " 1.0e2.6 mm long, which is

Gram-negative and motile by peritrichous flagella. Growth occurs

under aerobic conditions but may be facultatively anaerobic in the

presence of nitrate. It is obligately alkaliphilic (optimum pH 9.7)

and possibly halotolerant (growth occurring between 0 and 18%

NaCl). Growth is possible in the temperature range 10e45 !C.

5. Denitrifying activity of H. desiderata (Hd) DSM 9502 in

alkaline model media

The growth kinetics of Hd and its heterotrophic denitrifying

activity were first evaluated in a synthetic growth medium

approaching the environmental conditions already actually

Table 3

Excerpt of the inventory of the literature on alkaliphilic heterotrophic bacteria capable of reducing nitrate.

Strains References Isolated from Nitrate

reduction

pH and temperature Aérobic/anaérobic Other information

Virgibacillus (Bacillus)

halodenitrificans

DSM 10037

Denariaz et al., 1989 Marine solar

saltern

Incomplete:

production

of gas (N2O)

5.8 < pH < 9.6 pHopt ¼ 7.4 Facultatively

anaerobic

no inhibition at

high nitrate

concentration

(65 g/l)

Pseudomonas

stutzeri DSM 5190

Van Niel et al., 1952 Soil, mud,

standing water

Complete (N2) pHoptw7 pHmax. 9 Topt w 35 !C Facultatively

anaerobic

Halomonas

denitrificans DSM 18045

Kim et al., 2007 Seawater Complete (N2) 7 < pH < 10 pHopt ¼ 8

to 9 5 !C < T < 50 !C Topt 25e35
!C

/ Halotolerant

8e10% NaCl

Halomonas

alcaliphila DSM 16354

Romano et al., 2006 Salty pool (Italy) Incomplete (NO2
- ) 7.5 < pH < 10 pHopt ¼ 9 5 !C

< T < 50 !C Topt 37
!C

Anaerobic Halotolerant

10% NaCl

Halomonas

campisalis DSM 15413

Mormile et al., 1999

Peyton et al., 2001

Salty soil Complete (N2) 6 < pH < 12 pHopt ¼ 9.5

4 !C < T < 50 !C Topt 30
!C

Facultatively

anaerobic

Halotolerant

Halomonas

desiderata DSM 9502

Berendes et al., 1996 Municipal water

treatment plant

Complete (N2) 9 < pHopt < 11 Topt 30
!C Facultatively

anaerobic

Halotolerant

Fig. 3. Evolution of concentrations of Kþ, Ca2þ and OH- in 0.50 mM acetate/0.32 mM

nitrates leaching solution determined by HPIC analysis. The solution was renewed

daily. Solid area/liquid volume z 50 cm2/L. Concentration of OH� was calculated from

the pH values.



evaluated at the interface of bituminous and cement matrices.

Acetate was used as the electron donor for Hd at various ratios from

limiting to excess. Then, the influence of pHwas investigated on the

ability of Hd both to multiply (biomass growth) and to reduce ni-

trate (kinetics of denitrification).

5.1. Bacterial growth and denitrification kinetics at optimal pH (pH

9.7)

Fig. 4A shows that the growth of Hd in the presence of acetate

and nitrate started after a lag phase of about 48 h. This latency was

the time required for the bacterial cells to adapt to new environ-

mental constraints, particularly by switching their metabolism

from oxygen respiration (aerobic pathway) to nitrate respiration

(anaerobic pathway) here. Hd has a respiratory metabolism, and

oxygen is the terminal electron acceptor. However, this strain can

use nitrate as an alternative electron acceptor and can carry out

oxygen-repressible denitrification. Denitrification may appear only

under (semi) anaerobic conditions, i.e. an oxygen-free environment

as can occur in the waste cell after closure.

During the first 48 h, the concentrations of acetate and nitrate

did not evolve significantly (Fig. 4B) but traces of nitrite did indicate

nitrate reduction, thus some microbial activity. The presence of

nitrite was temporary, with a maximum of 1.3% of the initial con-

centration of nitrate (8 mg/L or 0.14 mM). As no surface catalysis

was expected in our system, the transitory presence of nitrite

indicated enzymatic conversion of nitrate to nitrite via nitrate

reductase (Nar), synthesized constitutively in Hd or induced by the

presence of nitrates (Zhao et al., 2012). Nitrite cannot accumulate

when nitrite reduction kinetics becomes faster that nitrate reduc-

tion kinetics, as seemed to be the case when bacterial growth

started to become measurable (time > 50 h).

During the exponential growth phase, observed from 70 to

120 h (Fig. 4A), the generation time or “doubling time” (g), i.e. the

average time required for the bacterial cells of the culture to double

in number, was 0.36 h. During this time, the consumption profiles

of the acetate and nitrate were quite similar. Consumption rates

were respectively 3.13 and 3.65 mg/L/h (corresponding to 0.058

and 0.063 mM/L/h) for acetate and nitrate, i.e. an acetate/nitrate

molar ratio of 0.90.

Considering only the stoichiometric reaction of acetate oxida-

tion and denitrification (complete nitrate reduction leading to the

formation of N2 gas):

5CH3COO
�
þ 8NO3

�
þ 13 Hþ / 4N2 þ 10CO2 þ 14H2O (1)

The theoretical acetate/nitrate molar ratio in this case is only

0.63, which would lead to the denitrification of 496 mg/L of

nitrate (8.55 mM) as nitrogen gas in the presence of 300 mg/L of

acetate (5.17 mM). However, during the exponential growth

phase of bacteria, cell multiplication must be taken into account:

the bacteria have basic nutritional needs (C, H, O, N mainly S and

P in defined quantities). Carbon is the main constituent of

particular cellular material and represents 50% of the dry weight

of a cell (empirical formula of biomass represented by C5H7O2N).

Acetate is the sole carbon source in the culture medium, so a

significant fraction should be used for cell growth and mainte-

nance. Taking biomass production into account, the complete

denitrification reaction forming nitrogen gas is as follows

(Mateju et al., 1992):

0.82CH3COOH þ NO3 / 0.07C5H7O2N þ HCO3

þ 0.47N2 þ 0.30CO2 þ 0.90H2O (2)

The acetate/nitrate ratio determined experimentally (0.90) was

then quite close to the theoretical ratio (0.82) when bacterial growth

of Hd was considered and confirmed the idea that almost all the ni-

trate was converted to the step of nitrogen gas, without any nitrite

accumulation. Control experiment performed in the absence of ni-

trate in the medium under anaerobic conditions did not lead to any

bacterial growth, proving that no trace of oxygen was used as an

electron acceptor byHalomonas cells. Also, nonitrate reductioneither

to nitrogen gas or to ammoniumwas verifiedwhenH. desideratawas

not inoculated. Obviously, the ammonium concentration (measured

with a colorimetric kit) was negligible throughout the reaction time

(<0.5 mg/L) with or without bacterial the presence of bacterial cells.

In conclusion, denitrification by microbial respiration of nitrogen

oxides catalyzed by the Hd strain was the only possible and feasible

means of nitrate reduction under the conditions of this study.

Here, at a pH of 9.7, 200 h were required to reduce about

300 mg/L of nitrate. In comparison, at a pH close to neutral, a

denitrifying strain such as Pseudomonas stutzeri is capable of

reducing the same amount of nitrate in only 10 h (Van Niel et al.,

1952; Alquier et al., 2012).

5.2. Influence of the pH

The pH at the interface between the solid matrices of bitumen

and concretewas evaluated as beingmore than pH 10.6 - previously

determined in experiments on leaching/release from solid matrices

of CEM V cement paste (Bertron et al., 2013). To come as close as

possible to the real conditions of the disposal facility, the bacterial

growth of Hd, and consequently its denitrifying activity, were

studied for 3 different pH values around 10.6: pH 9, pH 10 and pH

11.

Fig. 4. Bacterial growth of Halomonas desiderata (A) and analytical monitoring of species in solution during the bacterial denitrification reaction (B) in the presence of acetate

(350 mg/L) and an excess of nitrate (620 mg/L) at pH 9.7. Note, an OD of 0.15 at 600 nm corresponds to an average of 5.5 " 107 cells/mL and a quantity of biomass equivalent to

230 mg of bacteria per liter (given here in dry weight).



The growth of the Hd strain started after a lag phase that

depended on the pH (Fig. 5A). The more alkaline the pH was, the

longer was the latency period (24 h at pH 9e72 h at pH 11). Simi-

larly, the kinetics of the microbial growth was strongly influenced

by the pH. The more alkaline the pH was, the slower was the

growth kinetics of Hd. There was a factor of almost 2 between the

growth kinetics of Hd at pH 9 and at pH 10 (to be exact, the dif-

ference was 44%). Although it was inhibited at pH 11, the growth of

Hd seemed possible in such extreme conditions of low pH as a small

increase in OD at 600 nmwas observed over the 200 h of the study.

Fig. 5. Influence of pH on bacterial growth of Halomonas desiderata (A) and on the evolution of the acetate (B) and nitrate (C) concentrations during the bacterial denitrification

reaction.



Also, low consumptions of substrates (both acetate and nitrate)

evaluated at 2.5 mg/L/h for acetate and 3.6 mg/L/h for nitrate (or

0.046 mM/L/h and 0.062 mM/L/h), could be observed at pH 11

(Fig. 5B and C).

Comparable research related to the effect of pH on denitrifica-

tion has focused on denitrification rates in soils. Several studies

have established that denitrification rates tend to decrease at low

soil pH values (Muller et al., 1980; Parkin et al., 1985; Simek et al.,

Fig. 6. Evolution of acetate (A), nitrates (B) and nitrite (C) concentrations during the bacterial growth of H. desiderata in the presence of solid matrices of bitumen and/or cement.



2002). In contrast, the kinetics of heterotrophic bacterial denitrifi-

cation slows markedly at alkaline pH. Increasing the pH directly

affects the bacterial growth and enzymatic activities (Campos and

Flotats, 2003), including denitrifying enzymes. Nitrite reduction

rates are then inhibited by the presence of nitrate, which stimulates

nitrite accumulation during the denitrification process.

6. Denitrifying activity of H. desiderata DSM 9502 in the

presence of both bitumen and concrete solid matrices

The growth of the alkalophilic denitrifying strain (Hd) and its

kinetics of denitrificationwere investigated in the presence of solid

matrices of both cement and bitumen, which are usually present in

the storage facilities. The influence of solid matrices in the reaction

medium was tested, first individually (cement or bitumen added

alone), then simultaneously (combination of two types of solid

matrices).

6.1. Denitrification kinetics

Adding the solid matrix of concrete into the reaction medium

rapidly induced the appearance of inorganic suspended materials.

It was consequently not possible to follow the growth of bacteria

using optical density in the samples where the medium was in

contact with solid concrete. Measurements of denitrification ki-

netics (and associated mechanisms) were based primarily on

changes in the concentrations of acetate and nitrate. However, the

precipitates observed in the presence of cementitious matrix did

not affect the assay methods used.

In the presence of cementitious matrix alone and in the pres-

ence of both bituminous and cement matrices, the oxidation of the

acetate and the reduction of the nitrate took place simultaneously

and these two substrates were completely consumed in less than

100 h (Fig. 6A and B). The reaction rates of denitrification were

about 7.7 mg/L/h (0.13 mM/h), i.e. twice as fast as in the classical

experiment in mineral culture medium at pH 9.7 (Fig. 5C). The

corresponding rate of acetate oxidationwas 4.6 mg/L/h (0.085 mM/

h), giving an acetate/nitrate molar ratio of 0.6. This molar ratio

corresponded to complete nitrate reduction leading to the forma-

tion of N2 gas without any bacterial growth. But nitrite accumula-

tion in the range of 15% of its initial concentration was also

highlighted in the presence of concrete (Fig. 6C). The reduction

reaction of nitrate to nitrite involves only two electrons and

therefore the corresponding acetate/nitrate molar ratio is only 0.25

in this case. It is suspected that the apparent molar ratio of 0.6 is

actually a mix of the complete denitrification to nitrogen gas (N2)

coupled with bacterial growth and microbial reduction of nitrate to

the step of nitrite caused by the high alkalization of the bacterial

cells’ environment.

CH3COO
�
þ 4NO3

�
þ 5H2O þ 8Hþ / 2CO2 þ 4NO2

�
þ 7H3O

þ (3)

The presence of solid cement matrix has a positive effect on the

kinetics of denitrification. Unfortunately, we were unable to

determine whether faster kinetics were explained by a higher mi-

crobial growth rate or by a stimulation of the enzymatic deni-

trifying activity. As expected, the pH changed during the reaction: it

increased from 10.5 to 12.3 at the end of the experiment in the

medium containing only cement matrix, and from 9.6 to 12.5 for

the solution containing the two solids, because of the release of

hydroxide by the cementitious matrix over time (see Fig. 3).

However, we had seen previously that, with only the mineral cul-

ture medium, both the growth of Hd in the classical form of a cell

suspension, and the denitrifying activity were inhibited starting

from pH 11. However, the sole presence of the solid matrix of

cement completely changed the behaviour of Hd in a range of pH as

alkaline as 10 < pH < 12. Several hypotheses can be advanced to

explain how Hd is able to maintain its denitrifying activity in an

environment with progressively increasing alkalinity:

- The cement matrix releases minerals essential to the growth of

Hd, such as vitamins and metallic elements. Growth rates are

much faster in this case and the impact on the kinetics of

denitrification is justified by the significantly greater amount of

biomass.

- The cement matrix is a support conducive to the proliferation of

Hd with a “biofilm” phenotype. This means the bacterial cells in

contact with the solid matrix organize themselves to create a

three-dimensional architecture in which the biological micro-

environment is regulated and can differ markedly from the

planktonic phase (Costerton et al., 1994). Bacterial cells inside

the biofilm consequently have distinct physiological re-

quirements and so distinct properties (or activities).

In the absence of cement matrix to buffer alkaline pH, the pH of

the medium in the presence of only the bituminous matrix tends to

become less alkaline (final pH close to 8.5 after 400 min). As a

result, the denitrification kinetics are significantly slowed: values of

about 0.95 mg nitrate/L/H were found instead of the 3.65 mg/L/h

classically observed at the optimal pH of 9.7.

6.2. Observation of the surface of solid matrices

In the bioreactors, the visual aspect of the bitumen surface did

not seem to change with time, and was still black, opaque, and

Fig. 7. Solid cement matrix exposed for 400 h in a culture model of alkalophilic bacteria and denitrifying: Halomonas desiderata (Hd). (A) Macroscopic observation of bacterial

deposition, (B) and (C) low vacuum SEM observation of the surface of cement paste colonized by Hd.



glassy after 400 h of contact with the bacterial cell suspension. In

contrast, a white deposit was clearly visible on the surface of the

concrete matrix (Fig. 7A). Bituminous and cementitious matrices

exposed to bacterial cultures of Hd for 400 h were carefully

observed by SEM in order to search for possible bacterial deposits

(or real biofilms) at the micro-scale. The SEM observation of

matrices of bitumen confirmed that they were completely free of

bacteria, probably because the bitumen surface is hydrophobic and

acidic and because it is slightly soft at room temperature. As ex-

pected, SEM observations confirmed the presence of bacteria on the

surface of concrete samples (Fig. 7B and C). Several bacterial carpets

were observed. They were not very thick e up to 10 mm, which

corresponds to a stack of 7 or 8 bacteria. Complementary obser-

vations by epifluorescence microscopy after staining the concrete

surface with specific fluorescent markers of bacterial nucleic acids

also confirmed that these observed deposits were of biological

origin (data not presented).

Additional experiments directly using the matrices of colonized

concrete as a source of microorganisms to inoculate bioreactors

clearly showed that the adherent cells were alive and that the

denitrifying activity itself was also very active. It was difficult to

make precise measurements of the amount of biomass actually

present on the matrices and to determine the specific activity of he

attached denitrifying microorganisms. Additional tests based on

measurements of ATP should allow us to obtain a more precise idea

of the residual microbial activity of the fixed biomass. The available

data on bacterial colonization and biofilm formation on concrete

are limited because it was long believed that the high alkalinity of

concrete (pH > 12) completely inhibited colonization of the con-

crete surface by bacteria. However, by considering that the

carbonation of concrete is accompanied by a decrease in surface pH

(pH z 9.5), several types of microorganisms have now been

identified from the surface of cementitious materials, especially

microorganisms implicated in the bioalteration of concretes, such

as sulfur-oxidizing bacteria, whose metabolism leads to the for-

mation of acids (Roux et al., 2007; Jensen et al., 2011). More

generally, it has been known since the early 2010s that the concrete

biofilms can hold very different phylogenetic community struc-

tures, such as archaea, fungi, and several bacterial groups (Proto-

eobacteria and Bacteroidetes are among the most dominant

bacterial groups), which are also found in most environmental

biofilms (Iker et al., 2010). However, nothing is yet known of the

physiology of these organisms when they are attached to the sur-

face of concrete.

7. Conclusion

The release of hydroxide ions by the cementitious matrix

quickly changes the pH of a solution containing small amounts of

acetate (0.5 mM) to highly alkaline values (pH z 10.6). No signif-

icant reactions (adsorption, complexing, reduction.) have been

found between the cementmatrix and the nitrates on the one hand,

and acetate on the other. H. desiderata DSM 9502 was able to grow

in such extreme pH conditions using acetate as the electron donor

and nitrate as electron acceptor. Its optimal pH was between 9.0

and 10.0 in mineral growth liquid medium, but its denitrifying

activity was also possible at higher pH, especially in presence of

concrete.H. desiderata has the ability to grow not only in planktonic

form (i.e. in suspension) in the liquid phase but also as a biofilm on

the surface of the concrete, where the local pH would be much

higher than pH 10.0. The denitrifying activity was still active inside

the biofilms of H. desiderata on concrete. H. desiderata was not, a

priori, able to colonize the surface of the solid bitumen, probably

because the local pH was more acidic and the surface was highly

hydrophobic.
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