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Geometric PCA of Images∗

J. Bigot†, R. Gouet‡, and A. López§

Abstract. We describe a method for analyzing the principal modes of geometric variability of images. For this
purpose, we propose a general framework based on the use of deformation operators for modeling the
geometric variability of images around a reference mean pattern. In this setting, we describe a simple
algorithm for estimating the geometric variability of a set of images. Some numerical experiments
on real data are proposed for highlighting the benefits of this approach. The consistency of this
procedure is also analyzed in statistical deformable models.

Key words. geometric variability, principal component analysis, mean pattern estimation, Fréchet mean, image
registration, deformable models, consistent estimation

AMS subject classifications. Primary, 62H25; Secondary, 62H35

1. Introduction. In many applications observations are in the form of a set of n gray-
level images y1, . . . , yn (e.g., in geophysics, in biomedical imaging, or in signal processing
for neurosciences), which can be considered as square-integrable functions on a domain Ω,
a convex subset of Rd. Such data are generally two- or three-dimensional images. In many
situations the observed images share the same structure. This may lead to the assumption
that these observations are random elements, which vary around the same mean pattern.
Estimating such a mean pattern and characterizing the modes of individual variations around
this common shape are of fundamental interest. Principal component analysis (PCA) is a
widely used method for estimating the variations in intensity of images around the usual
Euclidean mean ȳn = 1

n

∑n
i=1 yi. However, such data typically exhibit not only a classical

source of photometric variability (a pixel intensity changes from one image to another) but also
a (less standard) geometric source of variability which cannot be recovered by standard PCA.

The goal of this paper is to provide a general framework for analyzing the geometric
variability of images through the use of deformation operators that can be parametrized by
elements in a Hilbert space. This setting leads to a simple algorithm for estimating the main
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‡Departamento de Ingenieŕıa Matemática, Center for Mathematical Modeling (CNRS UMI 2807), Universidad
de Chile, Santiago 8370459, Chile (rgouet@dim.uchile.cl). This author’s research was supported by projects PFB-
03-CMM and Fondecyt 1120408.

§Center for Mathematical Modeling (CNRS UMI 2807), Universidad de Chile, Santiago 8370459, Chile (lopezalfa@
gmail.com).

http://www.siam.org/journals/siims/6-4/86455.html
mailto:jeremie.bigot@isae.fr
mailto:rgouet@dim.uchile.cl
mailto:lopezalfa@gmail.com
mailto:lopezalfa@gmail.com


J. BIGOT, R. GOUET, AND A. LÓPEZ

modes of geometric variability of images, and we prove the consistency of this approach in
statistical deformable models.

1.1. PCA in a Hilbert space. First, let us introduce some tools and notation for per-
forming standard PCA in a Hilbert space that will be used throughout the paper. Let H be
a separable Hilbert space endowed with inner product 〈·, ·〉 and associated norm ‖ · ‖. Let Z
be an H-valued random variable. If E‖Z‖ < +∞, then Z has expectation EZ ∈ H, which
happens to be the unique element satisfying 〈EZ, h〉 = E〈Z, h〉 for all h ∈ H. If E‖Z‖2 < +∞,
then the (population) covariance operator K : H → H corresponding to Z is given by

Kh = E〈Z − EZ, h〉(Z − EZ) for h ∈ H.
Moreover, the operator K is self-adjoint, positive semidefinite, and trace class. Hence, K is
compact, with nonnegative (population) eigenvalues (γλ)λ∈Λ and orthonormal (population)
eigenvectors (φλ)λ∈Λ and such that

Kh =
∑
λ∈Λ

γλ〈h, uλ〉uλ,

where Λ = {1, . . . ,dim(H)} if dim(H) < ∞ or Λ = N otherwise. If we assume that the
eigenvalues are arranged in decreasing order γ1 ≥ γ2 ≥ · · · ≥ 0, the λth mode of variation
of the random variable Z is defined as the function EZ + ρ

√
γλuλ, for λ ∈ Λ, where ρ is a

real playing the role of a weight parameter (typically one takes ρ between −3 and 3, since the
interval [−3, 3] corresponds to the practical range of a standard normal variable). Thus, the
PCA of Z is obtained by diagonalizing the covariance operator K.

Now, let z1, . . . , zn ∈ H and K̂n : H → H, their (empirical) covariance operator defined as

K̂nh =
1

n

n∑
i=1

〈zi − z̄n, h〉(zi − z̄n) for h ∈ H,

where z̄n = 1
n

∑n
i=1 zi. As K̂n is also self-adjoint, positive semidefinite, and compact, it admits

the decomposition

K̂nh =
∑
λ∈Λ

γ̂λ〈h, ûλ〉ûλ,

where γ̂1 ≥ γ̂2 ≥ · · · ≥ 0 are the (empirical) eigenvalues, and (ûλ)λ∈Λ is the set of (empirical)
orthonormal eigenvectors of K̂n. Now, the λth (empirical) mode of variation of the data
z1, . . . , zn is defined as z̄n + ρ

√
γ̂λûλ for λ ∈ Λ. Thus, empirical PCA of the data z1, . . . , zn is

obtained by diagonalizing the operator K̂n.
If H is finite-dimensional, diagonalizing K̂n corresponds to empirical PCA for vectors in a

finite-dimensional Euclidean space. If H = L2(Ω) =
{
f : Ω → R, ‖f‖22 :=

∫
Ω |f(x)|2dx <∞},

diagonalizing K̂n is usually referred to as the method of functional PCA in nonparametric
statistics (see, e.g., [28] for an introduction to functional data analysis), and various authors
(see, e.g., [18, 31] and references therein) have studied the consistency of empirical PCA in
Hilbert spaces.

Empirical PCA, with H = L2(Ω), applied to a set of n images y1, . . . , yn is a method
for computing the principal directions of photometric variability of the yi’s around the usual
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Euclidean mean ȳn. However, in many situations, images also exhibit a large geometric
variability; see the example of images of handwritten digits displayed in Figure 1. In such
cases, the standard Euclidean mean ȳn is not a satisfying estimator of the typical shape of
each individual image (see Figure 1(a)), and standard PCA does not meaningfully reflect the
modes of variability of the data; see Figure 1(b), (c). In particular, the second empirical modes
of variation are no longer a single digit but rather the superposition of two digits in different
orientations.

(a) ȳn (b) ȳn − 2
√
γ̂1û1 (c) ȳn − 2

√
γ̂2û2

Figure 1. Digit 5. First two rows: a sample of 8 images out of n = 30 taken from the Mnist data base [26].
Last row: standard Euclidean mean, first and second empirical modes of variation.

It is well known that the usual Euclidean mean ȳn is the minimizer of the sum-of-squares
Euclidean distances to each of the data points, namely,

ȳn = arg min
f∈L2(Ω)

1

n

n∑
m=1

‖f − ym‖22.

The idea underlying PCA is that the Hilbert space L2(Ω), equipped with the standard inner
product, is well suited to model natural images. However, the set of such objects (such as
those in Figure 1) typically cannot be considered as a linear subspace of L2(Ω). Therefore,
the Euclidean distance ‖f1 − f2‖2 is generally not well suited, since it is not adapted to the
geometry of the set to which the images f1 and f2 truly belong. Actually one can see that the
images in Figure 1 have mainly a geometric variability in space, which is much more important
than the photometric variability.

1.2. A brief overview of PCA-like methods for analyzing geometric variability. A stan-
dard approach for analyzing geometric variability is to use registration. This well-known
approach consists in computing geometric transforms of a set of images y1, . . . , yn, so that
they can be compared. Then the main idea for estimating the geometric variability of such
data is to apply classical PCA to the resulting transformation parameters after registration
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and not to the images themselves. This approach is at the core of several methods for esti-
mating the geometrical variability of images that we choose to call geometric PCA methods
in what follows.

In [29], a linear and finite-dimensional space of nonrigid transformations is considered as
the admissible space of deformations onto which standard PCA is carried out. This is the
so-called statistical deformation model that is inspired by Cootes active shape models. An
important limitation of this approach is the lack of invertibility of the deformations in such
models. In several cases, the invertibility is a desirable property from the point of view of
physical (for instance, when analyzing geometric variability of a determined organ) and math-
ematical modeling. Within the context of linear space of deformations, the noninvertibility
issue had been addressed by enforcing the positiveness of the Jacobian determinant [22, 30].
However, such methods are unsuited for further statistical analysis, as statistical procedures
on resulting transformation parameters (such as the empirical Euclidean mean) do not lead
to invertible transforms. Moreover, the inverse transforms do not belong to the initial space
of transformations.

More recently, diffeomorphisms have been used to model geometric transformations be-
tween images in the context of Grenander’s pattern theory [5, 24, 4]. In this framework, the
set of admissible diffeomorphic transformations is considered as a Riemannian manifold, and
thus first- and second-order statistical analysis on manifolds [20, 27] can be applied to per-
form statistical analysis of diffeomorphic deformations [3, 15, 23, 36]. Such diffeomorphisms
are constructed as solution of an ordinary differential equation (ODE) governed by a time-
dependent vector field belonging to a linear space; see, e.g., [5]. In this way, it is possible to
build sets of diffeomorphisms that have mathematical properties very similar to Lie groups.
This approach, which leads to the representation of the geometric variability of images through
the use of standard PCA on the elements in the “Lie algebra” of vector fields, is discussed in
detail in [32, 33, 37]. In particular, the optimal diffeomorphism after the registration of two
images can be fully characterized by the initial point in time (or, equivalently, by the initial
momentum) of the associated time-dependent vector field. This key property, called momen-
tum conservation, allows one to carry out PCA on the Hilbert space of initial momentums;
see, e.g., [36].

A particular subclass of diffeomorphic deformations is the set of diffeomorphisms gen-
erated by an ODE governed by stationary vector fields. In this way, diffeomorphisms are
directly characterized by vector fields belonging to a Hilbert space, and thus a standard sta-
tistical analysis such as PCA can be carried out on the vector fields computed after image
registration. Compared to the case of diffeomorphisms generated by nonstationary vector
fields, the resulting deformations do not have the same desirable properties in terms of group
structure. Nevertheless, the natural parametrization of these deformations by a linear space
makes them well suited for the purpose of geometric PCA. Moreover, the computational
cost of the registration step when using stationary vector fields is considerably smaller, while
keeping comparable accuracy according to the experimental results reported in [4, 24]. The
properties of diffeomorphisms generated by stationary vector fields also allow simple and fast
computations of the diffeomorphism associated with a vector field and vice versa. Hence, PCA
methods for manifolds can be implemented to analyze geometric variability of diffeomorphic
deformations generated by stationary vector fields; see [3, 15, 23].
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1.3. Main contributions and organization of this paper. In section 2, we propose an-
alyzing geometric PCA methods using a general framework where the spatial deformation
operators (to represent geometric variability) are invertible and can be parametrized by ele-
ments of a Hilbert space. For estimating geometric variability, as is done in geometric PCA
methods, we use a preliminary registration step. Then we apply classical PCA on Hilbert
spaces to the resulting parameters representing the deformations after registration. The main
contributions of this paper are then the following ones. First, for the application considered
in this paper and for algorithmic purposes, we use diffeomorphic deformations parametrized
by stationary vector fields that are expanded into a finite-dimensional basis of a linear space
of functions. We show that such deformations are well suited for the analysis of handwritten
digits. In this setting, an important and new contribution is to provide an automatic method
for choosing the regularization parameter that represents the usual balance between the regu-
larity of the spatial deformations and the quality of image alignment. Second, in section 3, we
consider the problem of building geometric PCA methods that are consistent. To the best of
our knowledge, this issue has not been studied very much in the literature on geometric PCA.
We discuss the appropriate asymptotic setting for such an analysis, and we prove the consis-
tency of our approach in statistical deformable models. We conclude the paper in section 4
by a short discussion. All proofs are gathered in two appendices at the end of the paper.

2. Geometric PCA. For convenience, we prefer to present the ideas of geometric PCA
under the assumption that the images are observed on a continuous domain Ω. In practice,
such data are obviously observed on a discrete set of time points or pixels. However, assuming
that the data are random elements of L2(Ω) is more convenient for dealing with the statistical
aspects of an inferential procedure, as it avoids the treatment of the bias introduced by any
discretization of the domain Ω. We refer the reader to section 3 for a detailed discussion on
this point.

2.1. Grenander’s pattern theory of deformable templates. Following the ideas of Grenan-
der’s pattern theory (see [21] for a recent overview), one may consider that the data y1, . . . , yn
are obtained through the deformation of the same reference image. In this setting, images are
treated as points in L2(Ω) and the geometric variations of the images are modeled by the ac-
tion of Lie groups on the domain Ω. Recently, there has been a growing interest in Lie groups
of transformations for modeling the geometric variability of images (see, e.g., [5, 32, 33, 37]
and references therein), and applications are numerous in particular in biomedical imaging;
see, e.g., [20, 25].

Grenander’s pattern theory leads to the construction of non-Euclidean distances between
images. In this paper, we propose modeling geometric variability through the use of deforma-
tion operators (acting on Ω) that are parametrized by a separable Hilbert space V, with inner
product 〈·, ·〉. We also assume that Ω is equipped with a metric denoted by dΩ.

Definition 2.1. Let V be a Hilbert space. A deformation operator parametrized by V is a
mapping ϕ : V×Ω → Ω such that, for any v ∈ V, the function x 
→ ϕ(v, x) is a homeomorphism
on Ω. Moreover, ϕ(0, ·) is the identity on Ω and, for any v ∈ V, there exists v∗ ∈ V such that
ϕ−1(v, ·) = ϕ(v∗, ·).

In this paper, we will study as illustrative examples of deformation operators the cases
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of translations, rigid deformations, and nonrigid deformations generated by stationary vector
fields.

Translations. Let Ω = [0, 1)d for some integer d ≥ 1 and V = R
d. Also, let

(2.1) ϕ(v, x) = (mod(x1 + v1, 1), . . . ,mod(xd + vd, 1)) ,

with

ϕ−1(v, x) = (mod(x1 − v1, 1), . . . ,mod(xd − vd, 1)) ,

for all v = (v1, . . . , vd) ∈ R
d and x = (x1, . . . , xd) ∈ Ω, where mod(a, 1) denotes the modulo

operation between a real a and 1. Clearly, ϕ(0, ·) is the identity in Ω and v∗ = −v. Moreover,
it can be shown (see section 3.3) that ϕ(v, ·) is an homeomorphism.

Rigid deformations of 2D images. Let Ω = R
2 and V = R× R

2. Also, let

ϕ(v, x) = Rαx+ b,

with

ϕ−1(v, x) = R−α(x− b),

for all v = (α, b) ∈ R×R
2 and x ∈ R

2, where Rα is the rotation matrix of angle α and b ∈ R
2

defines a translation. Observe that ϕ((0, 0), ·) is the identity in Ω and v∗ = (−α,−R−αb).
Clearly, ϕ(v, ·) is an homeomorphism.

Diffeomorphic deformations generated by stationary vector fields. Let Ω = [0, 1]d for some
integer d ≥ 1, and let V be a separable Hilbert space of smooth vector fields such that V is
continuously embedded in the set of functions v : Ω → R

d which are continuously differentiable
and such that v and its derivatives vanish at the boundary of Ω. For x ∈ Ω and v ∈ V, define
ϕ(v, x) as the solution at time t = 1 of the ODE

(2.2)
dφt
dt

= v(φt),

with initial condition φ0 = x ∈ Ω. It is well known (see, e.g., [37]) that, for any v ∈ V, the
function x 
→ ϕ(v, x) is a C1 diffeomorphism on Ω. The inverse of x 
→ ϕ(v, x) is given by
x 
→ ϕ(−v, x), and thus v∗ = −v. Hence, ϕ(v, ·) satisfies the conditions in Definition 2.1.

2.2. Registration. Registration is a widely used method in image processing that consists
of geometric transforms of a set of images y1, . . . , yn ∈ L2(Ω), so that they can be compared.
This method can be described as an optimization problem which amounts to minimizing a
dissimilarity functional between images.

Definition 2.2 (dissimilarity functional). Let ϕ be a deformation operator, as described in
Definition 2.1, and let v = (v1, . . . , vn) ∈ V := Vn and y = (y1, . . . , yn), with yi ∈ L2(Ω), i =
1, . . . , n.

(i) The template dissimilarity functional corresponding to v, y, and f ∈ L2(Ω) is defined
as

(2.3) M t(v,y, f) :=
1

n

n∑
i=1

∫
Ω

(
yi(ϕ(vi, x)) − f(x)

)2
dx.
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(ii) The groupwise dissimilarity functional corresponding to v and y is defined as

(2.4) Mg(v,y) :=
1

n

n∑
i=1

∫
Ω

⎛
⎝yi(ϕ(vi, x))− 1

n

n∑
j=1

yj(ϕ(vj , x))

⎞
⎠

2

dx.

Template registration of the images y1, . . . , yn onto some known template f ∈ L2(Ω) is
defined as the problem of minimizing the criterion given by the dissimilarity functional (2.3),
with respect to v in

Vμ := {v = (v1, . . . , vn), vi ∈ Vμ} ,
where Vμ := {v ∈ V : ‖v‖ ≤ μ} for some regularization parameter μ ≥ 0. Note that imposing
the constraint ‖vi‖ ≤ μ allows one to explicitly control the norm of the vector vi which is
generally proportional to the distance between the deformation ϕ(vi, ·) and the identity. The
choice of μ is obviously of primary importance. A data-based procedure for its calibration is
thus discussed in detail in section 2.3.4.

On the other hand, groupwise registration of y1, . . . , yn is defined as the problem of mini-
mizing the functional (2.4) with respect to v in U ⊆ Vμ. Two possible choices for U , defined
in terms of linear constraints on v, are

(2.5) U0 :=

{
v ∈ Vμ,

n∑
m=1

vm = 0

}
and U1 :=

{
v ∈ Vμ, v1 = 0

}
.

Choosing U = U0 amounts to imposing that the deformation parameters (v1, . . . , vn) used to
align the data have an empirical mean equal to zero, while taking U = U1 corresponds to
choosing y1 as a reference template onto which y2, . . . , yn will be aligned.

Geometric PCA applied to a set of images y = (y1, . . . , yn) is the following two-step
procedure. In the first step, one applies either a template or a groupwise registration, which
leads to the computation of

(2.6) v̂ = v̂μ ∈ arg min
v∈Vμ

M t(v,y, f) or v̂ = v̂μ ∈ arg min
v∈U

Mg(v,y).

In the second step, standard PCA is carried out on v̂ = (v̂1, . . . , v̂n), based on the following
covariance operator:

(2.7) K̂nv =
1

n

n∑
i=1

〈v̂i − vn, v〉(v̂i − vn) for v ∈ V,

with vn = 1
n

∑n
i=1 v̂i. This operator admits the decomposition

(2.8) K̂nv =
∑
λ∈Λ

κ̂λ〈v, φ̂λ〉φ̂λ,

where κ̂1 ≥ κ̂2 ≥ · · · ≥ 0 and (φ̂λ)λ∈Λ are the eigenvalues and orthonormal eigenvectors of
K̂n. We now state the definition of geometric PCA of a set of images.
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Definition 2.3 (geometric PCA). Let ϕ be a deformation operator parametrized by V, as
described in Definition 2.1. Let (κ̂λ, φ̂λ)λ∈Λ be the eigenvalues and orthonormal eigenvectors
of the operator K̂n in (2.7). For λ ∈ Λ, the λth empirical mode of geometric variation of the
data y1, . . . , yn is the homeomorphism ψ̂λ : Ω → Ω defined by

(2.9) ψ̂λ(x) = ϕ−1(vn +
√
κ̂λφ̂λ, x), x ∈ Ω.

We also denote ψ̂λ,ρ(x) = ϕ−1(vn + ρ
√
κ̂λφ̂λ, x), where ρ ∈ R is a weighting value.

After the registration step, we obtain a set of deformed images y1◦ϕ(v̂1, ·), . . . , yn◦ϕ(v̂n, ·),
each of them aligned either with respect to f in the case of template registration or with
respect to f̂ := 1

n

∑n
j=1 yj(ϕ(v̂j , x)) in the case of groupwise registration. Hence, in the case

of template registration, f ◦ ψ̂λ can be used to visualize the λth mode of geometric variation
of the data. Similarly, in the case of groupwise registration, one uses f̂ ◦ ψ̂λ. Note that f̂ can
be interpreted as a mean pattern image. Moreover, the computation of f̂ is closely related to
the notion of Fréchet mean of images, recently studied in [7], from a statistical point of view.

2.3. Numerical implementation and application of geometric PCA to handwritten dig-
its data. In this section we explain in detail the implementation of geometric PCA, in the case
of groupwise registration, using the class of diffeomorphic deformations described in section
2.1. The method is applied to a set of n = 30 images, defined on the domain Ω = [0, 1]2, taken
from the Mnist data base of handwritten digits [26].

2.3.1. Specification of the Hilbert space of parameter V. We choose V as the vector
space of functions from Ω to R

2, generated by a B-spline basis of functions, because they have
good properties for approximating continuous functions and implementing efficient computa-
tions [34, 35]. Let {bk : Ω → R, k = 1, . . . , p} denote a set of bidimensional tensor product
B-splines, with knots defined on a regular grid of Ω, and p some integer whose choice has to
be discussed. We define V as the space of vector fields of the form v =

∑p
k=1 ṽkbk, where

ṽk = (ṽ
(1)
k , ṽ

(2)
k ) ∈ R

2, k = 1, . . . , p. We denote by v(1), v(2) : Ω → R the coordinates of v ∈ V,
i.e., v(x) = (v(1)(x), v(2)(x)) for x ∈ Ω. Note that the dimension of V is 2p and that a basis is
given by

(2.10) {(b1, 0), . . . , (bp, 0), (0, b1), . . . , (0, bp)}.

We endow V with the inner product

〈u, v〉 := 〈u(1), v(1)〉L + 〈u(2), v(2)〉L, u, v ∈ V,

where 〈u(1), v(1)〉L :=
∫
Ω Lu

(1)(x)Lv(1)(x)dx, 〈u(2), v(2)〉L :=
∫
Ω Lu

(2)(x)Lv(2)(x)dx, and L is a
differential operator. As suggested in [5] we take L = γI+αΔ, where I is the identity operator,
Δ is the Laplacian operator, and γ, α are positive scalars. By using the basic properties of
differentiation and integration of B-splines [34], we derive an explicit formula for computing
the inner product in V that can be implemented using convolution filters. By an adequate
design of the B-spline grid, we ensure that the values of v and its derivatives are zero at the
boundary of Ω.
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2.3.2. Minimization of the dissimilarity functional Mg. In the case of groupwise regis-
tration, we minimize the dissimilarity functional (2.4) over the set U0 defined in (2.5). Thanks
to the above choice for V, the minimization of the criterion (2.4) has to be performed over
a subset of R2p. In order to take into account the constraint ‖vi‖ ≤ μ, 1 ≤ i ≤ n, we use a
logarithmic barrier approach to obtain an approximate solution. Then, for the minimization,
we use a gradient descent algorithm, with an adaptive step. Such an algorithm requires the
computation of the deformation operator ϕ : V × Ω → Ω and its gradient with respect to the

coefficients ṽk = (ṽ
(1)
k , ṽ

(2)
k ) that parametrize the vector field v. In the case of diffeomorphic

deformation operators, ϕ(v, x) corresponds to the solution at time t = 1 of the ODE (2.2).
We solve the ODE using a forward Euler integration scheme. For a comparison of different
methods for solving such an ODE, we refer the reader to [16]. It can be shown (see Lemma

2.1 in [5]) that the gradient of ϕ with respect to the ṽk = (ṽ
(1)
k , ṽ

(2)
k )’s has a closed-form

expression, and thus it can be explicitly computed to derive a gradient descent algorithm.

2.3.3. Spectral decomposition of the empirical covariance operator. Let v̂1, . . . , v̂n be
the vector fields in V obtained after the registration step described above. Recall that the
empirical covariance operator of the v̂i’s is defined as K̂nv = 1

n

∑n
i=1〈v̂i−vn, v〉(v̂i−vn), v ∈ V.

In what follows, we describe how to perform the spectral decomposition of K̂n.

Let ṽi = (ṽ
(1)
i , ṽ

(2)
i ) with ṽ

(1)
i = (ṽ

(1)
i,1 , . . . , ṽ

(1)
i,p ) and ṽ

(2)
i = (ṽ

(2)
i,1 , . . . , ṽ

(2)
i,p ) being the coef-

ficients of v̂i with respect to the base (2.10), i.e., v̂i =
∑p

k=1(ṽ
(1)
i,k , ṽ

(2)
i,k )bk. We identify the

Hilbert space V with R
2p endowed by the inner product

(2.11) 〈ũ, ṽ〉 := ũΣũt, ũ, ṽ ∈ R
2p,

where Σ is a 2p × 2p matrix with entries Σj,k = Σj+p,k+p := 〈bj , bk〉L for j, k = 1, . . . , p and

Σj,k := 0 in the other cases. Hence, the operator K̂n can be identified with a 2p × 2p matrix
K̃n, given by

K̃n :=
1

n
ṽṽtΣ,

where ṽ is the 2p×nmatrix whose ith column equals ṽti− 1
n

∑n
j=1 ṽ

t
j. The matrix Σ is symmetric

and hence admits a diagonalization Σ = PΛP with a Λ diagonal matrix and P tP = PP t = I.
The idea now is to reduce the problem to a standard diagonalization of the symmetric matrix
M := 1

nΛ
1
2P tṽṽtPΛ

1
2 ; namely, we find the decomposition M = WDW t with a D diagonal

matrix and W tW = WW t = I. We obtain the following spectral decomposition of K̃n with
respect to the inner product (2.11):

K̃n = UDU tΣ,

where U := P tW . Remark that the columns of U are orthonormal vectors in R
2p with

respect to the inner product (2.11). Indeed, it holds that U tΣU = I. Finally, we define κ̂λ
as the λth elements of the diagonal matrix D, and we let φ̂λ :=

∑p
k=1(Uk,λ, Uk+p,λ)bk for

λ = {1, . . . , 2p}. It can be checked that (φ̂λ)
2p
λ=1 are orthonormal vectors of V, and we thus

obtain that K̂nv =
∑2p

λ=1 κ̂λ〈v, φ̂λ〉Lφ̂λ. If we assume that κ̂1 ≥ · · · ≥ κ̂2p, then

ψ̂λ,ρ = ϕ−1(vn + ρ
√
κ̂λφ̂λ, ·)

is the λth empirical mode of geometric variation according to Definition 2.3.
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2.3.4. Choice of the regularization parameter µ and application of geometric PCA to
handwritten digit data. We now describe the application of geometric PCA to handwritten
digits, taken from the Mnist data base [26], based on the numerical framework we have
described so far. We also discuss the problem of automatically selecting the regularization
parameter μ, and we finally illustrate the benefits of geometric PCA over standard PCA.

For the B-spline base of V, we choose a B-spline degree equal to 3, as it provides a good
trade-off between smoothness and the size of the support. The number of B-spline knots is
p = 81 arranged in a 9 × 9 regular grid. Such a value of p provides a fine B-spline grid with
respect to an image size of 28 × 28. For defining the differential operator L, we take γ = 100
and α = 1. Note that γ � α in order to compensate for the scaling factor associated with the
interknot spacing.

For each available digit (from 0 to 9) we determine the regularization parameter μ ex-
perimentally, by trying to obtain a good balance between the regularity of the vector fields
and the matching of the images during the preliminary registration step. Our approach is
inspired by the classical L-curve method in inverse problems. More precisely, for each digit,
we took n = 30 images and we carried out registration on each of these image sets. In this
database, for each digit, one observes a large source of geometrical variability that can be
modeled by diffeomorphic deformations. We proceed by groupwise registration, as there are
no reference images available. For each digit and for a given μ > 0, we define r(μ) as the
relative percentage value between

– the dissimilarityMg(v̂μ,y) of the images after registration with regularization param-
eter μ (see (2.6))

and
– the dissimilarity Mg(v̂0,y) of the images before registration (i.e., with regularization

parameter μ = 0),
that is,

r(μ) = 100 ∗ M
g(v̂μ,y)

Mg(v̂0,y)
.

We define also the finite difference derivative Δhr(μ) = −(r(μ+ h) − r(μ))/h for h > 0. For
h = 2 and for all digits, we observed that the curves μ → r(μ) (with μ = 0, 0 + h, . . . , 30)
have an approximate convex shape and that the curves μ→ Δhr(μ), with μ = 0, 0+h, . . . , 28,
have a decreasing trend to 0. We display the curves μ → r(μ) in Figure 2 for digits 0 and
1. It is reasonable to say that taking μ such that Δhr(μ) is large corresponds to a situation
of underfitting, whereas the case such that Δhr(μ− h) is small corresponds to a situation of
overfitting.

Hence, an automatic choice for the regularization parameter is to take

μ∗ = max{0, 0 + h, . . . , 28 : Δr(μ) > t},
where 0 ≤ t ≤ 100/h is a threshold value. One thus has the following interpretation: for μ
larger than the selected value μ∗ the rate of decrease of r(μ) is less than t%. By setting t = 2,
we have obtained μ∗ = 12, 16, 14, 14, 18, 18, 12, 12, 10, 10 for digits 0, 1, . . . , 9, respectively. We
observed that r(μ∗) ranges from 0.1 to 0.3 among all digits; that is, the dissimilarity between
the images after registration using the regularization parameter μ∗ corresponds to 10%–30%
of the dissimilarity between the images before registration.
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Figure 2. Choice of the regularization parameter μ∗ for digits 0 and 1 through the analysis of the curves
μ→ r(μ) (figure on left-hand side) and μ→ Δr(μ) (figure on right-hand side) with threshold t = 2%.

For each digit, we carried out geometric PCA with a preliminary registration step as
described in the previous paragraph and with regularization parameter μ∗. To illustrate the
advantages of our procedure, we have also carried out standard PCA of each digit, which
amounts to analyzing the photometric variability of the data. Thus, we have computed

ȳn + ρ
√
γ̂λûλ,

the λth standard empirical mode of photometric variation of the data as described in section
1.1. In Figure 3, we show the geometric modes of variations by displaying the images

f̂ ◦ ψ̂λ,ρ, where f̂(x) =
1

n

n∑
j=1

yj(ϕ(v̂j , x)),

with λ = 1, 2 and ρ = 2,−2. Results using standard PCA are also displayed in Figure 3. We
observe that geometric PCA better reflects the main modes of variability of the digits. To
the contrary, standard PCA fails in several cases in representing geometric variability of some
digits, and it sometimes results in a blurring of the images. Also, it can be seen that f̂ is a
much better mean pattern of the data than the Euclidean mean ȳn.

We also use the learned Fréchet mean f̂ and the learned empirical eigenvalues (κ̂λ)λ∈Λ and
eigenvectors (φ̂λ)λ∈Λ to produce simulated images consisting of a random warp of the Fréchet
mean. More precisely, we generate a new image Y ∈ L2(Ω) from the model

(2.12) Y (x) = f̂(ϕ−1(V, x)), x ∈ Ω,

where V = v̄n +
∑q

λ=1 ρλ
√
κ̂λφ̂λ, q ≤ 2p, and ρλ, λ = 1, . . . , q, are independent standard

normal random variables. Observe that E(V ) = v̄n and that the covariance operator K̃n of
V is the projection of K̂n onto the space generated by φ1, . . . , φq. In Figure 4, we display,
for each digit, five independent random images obtained from (2.12) with q = 8. For such
a choice of q we have that the ratio between the trace of K̃n and the trace of K̂n, that is,∑2p

λ=1 κ̂λ/
∑q

λ=1 κ̂λ, ranges from 0.75 to 0.9 among digits 0, . . . , 9.
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Figure 3. Visualization of standard PCA (block of five images in the left-hand side) and geometric PCA
(block of five images in the right-hand side) for digits 0 to 9. For each digit, from left to right, the images
correspond to ȳ, ȳn − 2

√
γ̂1û1, ȳn +2

√
γ̂1û1, ȳn − 2

√
γ̂2û2, and ȳn +2

√
γ̂2û2 and then to f̂ , f̂ ◦ ψ̂1,−2, f̂ ◦ ψ̂1,2,

f̂ ◦ ψ̂2,−2, and f̂ ◦ ψ̂2,2. We observe, in several cases, that standard PCA results do not recover the shape of
the digits well and that they produce a blurring of the images. In contrast, geometric PCA results recover the
geometric features of the digits.

Figure 4. Simulated images for each digit 0, . . . , 9 from model (2.12) based on the learning of the Fréchet
mean f̂ and the eigenvalues/eigenvectors of the empirical covariance operator K̂n.
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3. Consistency of geometric PCA in statistical deformable models. In the last decades,
in the framework of Grenander’s pattern theory, there has been a growing interest in the use of
first-order statistics for the computation of a mean pattern from a set of images [1, 2, 7, 10, 9]
and in the construction of consistent procedures. However, there is not so much work in the
statistical literature on the consistency of second-order statistics for the analysis of geometric
variability of images. In particular, the convergence of such procedures in simple statistical
models has generally not been established.

We study the consistency of geometric PCA in the context of the following statistical
deformable model:

(3.1) Yi(x) = f∗(ϕ−1(Vi, x)) + εWi(x), x ∈ Ω, i = 1, . . . , n,

where
• f∗ is an unknown mean pattern belonging to L2(Ω),
• ϕ is a deformation operator associated with a Hilbert space V (in the sense of Definition

2.1), equipped with inner product 〈·, ·〉 and induced norm ‖ · ‖,
• V1, . . . , Vn are independent copies of V , a zero-mean, square-integrable, V-valued ran-

dom variable (i.e., EV = 0 and E‖V ‖2 <∞),
• there exists μ > 0 (regularization parameter) such that P(V ∈ Vμ) = 1,
• ε > 0 is a noise level parameter,
• W1, . . . ,Wn are independent copies of a zero mean Gaussian process W ∈ L2(Ω) such

that E‖W‖22 = 1, and
• (V1, . . . , Vn) and (W1, . . . ,Wn) are mutually independent.

Additionally, we assume that the eigenvalues κ1 ≥ κ2 ≥ · · · ≥ 0 of the population covari-
ance operator K, defined as

(3.2) Kv = E〈V, v〉V, v ∈ V,
have algebraic multiplicity 1, i.e., κ1 > κ2 > · · · ≥ 0. This implies that the λth eigengap,
defined as δλ := minλ′∈Λ\{λ} |κλ − κλ′ |, is strictly positive for any λ ∈ Λ.

Observe that the function f∗ in (3.1) models the common shape of the Yi’s. The Wi’s
represent the individual variations in intensity of the data around the mean pattern f∗ and
thus correspond to a classical source of variability that could be analyzed by standard PCA.
To the contrary, the random elements ϕ−1(Vi, ·) model deformations of the domain Ω and
thus correspond to a source of geometric variability in the data.

Model (3.1) is somewhat ideal, since images are never observed in a continuous domain but
rather on a discrete set of pixels. A detailed discussion on this issue can be found in [1, 2], where
it is proposed to deform a template model and not the observed discrete images themselves
for the purpose of template estimation. However, to study the asymptotic properties of a
statistical procedure, it is simpler to assume that the data are random elements of L2(Ω) to
avoid the treatment of the bias introduced by any discretization scheme.

Definition 3.1 (population geometric modes of variations). Let K be the population covari-
ance operator, defined in (3.2), with (population) eigenvalues κ1 > κ2 > · · · ≥ 0 and (popu-
lation) orthonormal eigenvectors φ1, φ2, . . . . For λ ∈ Λ, the λth population mode of geometric
variation of the random variable V is the homeomorphism ψλ : Ω → Ω defined by

ψλ(x) = ϕ−1(
√
κλφλ, x), x ∈ Ω.
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In this paper we say that geometric PCA is a consistent procedure if, for data Y =
(Y1, . . . , Yn) following model (3.1) and for all λ ∈ Λ, the λth empirical mode of geometric
variation ψ̂λ (see (2.9)) tends to the λth population mode of geometric variation ψλ, as
n → +∞ and ε → 0, in a sense to be made precise later on. In this context, the empirical
modes of geometric variation are obtained from the eigenvalues κ̂λ and the eigenvectors φ̂λ of
the empirical covariance operator

(3.3) K̂nv =
1

n

n∑
i=1

〈V̂i − V n, v〉(V̂i − V n) for v ∈ V,

where (V̂1, . . . , V̂n) belongs to argminv∈Vμ M
t(v,Y , f∗) or argminv∈U Mg(v,Y ). Conse-

quently, from now on, empirical eigenvalues, eigenvectors, and modes of geometric variations
will be considered as random elements.

Remark 3.1. Observe that, for template registration, where v̂ ∈ argminv∈Vμ M
t(v,y, f∗),

each coordinate v̂i depends only on vi. This fact implies that V̂1, . . . , V̂n are independent and
identically distributed (i.i.d.). However, this is not the case for groupwise registration, where
v̂i may depend on all the vi’s.

The asymptotic n→ +∞ is rather natural, and it corresponds to the setting of a growing
number of images. On the other hand, the setting ε → 0 corresponds to the analysis of the
influence of the additive term εWi in model (3.1). In the statistical literature (see, e.g., [17]),
it has been shown that the setting ε → 0 in a white noise model such as (3.1) corresponds
to the setting where a number N ∼ ε−2 of pixels would tend to infinity in a related model
of images sampled on a discrete grid of size N . Therefore, one may interpret ε → 0 as the
asymptotic setting where one observes images with a growing number N ∼ ε−2 of pixels.

The main result of this section is that geometric PCA is consistent only in the double
asymptotic setting n → +∞ and ε → 0. This result illustrates the fact that the photometric
perturbations εWi, i = 1, . . . , n, in model (3.1) have to be sufficiently small in order to recover
the geometric modes of variation. One may argue that the main interest for practical purposes
is the asymptotic setting where n → +∞ and ε is fixed. However, recent results show that,
in the setting where ε is fixed, it is not possible to recover the random variables Vi encoding
the deformations in model (3.1) by any statistical procedure; see, e.g., [7, 8]. In the double
asymptotic setting n → +∞ and ε → 0, a detailed analysis of the problem of recovering
the template f∗ in model (3.1) has been carried out in [11]. In particular, some answers are
given in [11] on the relative rate between n and ε that is needed to guarantee a consistent
estimation of f∗ via the use of the Fréchet mean. However, it is out of the scope of this paper
to discuss such issues for the problem of consistent estimation of the main modes of geometric
variations.

Definition 3.2. A deformation operator ϕ (see Definition 2.1) is said to be μ-regular if there
exists μ > 0 such that

(i)

(3.4)

∫
Ω
f2(ϕ−1(v, x))dx ≤ Aμ

∫
Ω
f2(x)dx

for all f ∈ L2(Ω), v ∈ Vμ and some constant Aμ > 0 and
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(ii) the mapping v → ϕ(v, ·) from Vμ to C(Ω,Ω) is continuous,

where C(Ω,Ω) is the space of continuous functions from Ω to Ω, endowed with the metric
dC(ψ, φ) := supx∈Ω dΩ(ψ(x), φ(x)).

Note that if ϕ(v, ·) is sufficiently smooth such that the determinant of its Jacobian matrix
is bounded, that is, |det(J(ϕ(v, x))| ≤ Aμ for all v ∈ Vμ and x ∈ Ω, then (3.4) follows from a
change of variables.

Finally, before stating our consistency results, we define convergence in probability in
the double asymptotic setting n → ∞, ε → 0. Let Xn,ε,Xn,Xε,X, n = 1, 2, . . . , ε > 0,
be random variables with values on a metric space (S, d). The notation plimεXn,ε = Xn

stands for d(Xn,ε,Xn) → 0 in probability as ε → 0; plimnXn,ε = Xε denotes d(Xn,ε,Xε) → 0
in probability as n → ∞. Finally, plimn,εXn,ε = X is equivalent to plimn plimεXn,ε =
plimε plimnXn,ε = X. In this paper, all equalities and inequalities involving random variables
are understood in the almost sure sense. We require the following definition in our main

results: for u, v ∈ V, sin(u, v) :=
√

1− 〈u/‖u‖, v/‖v‖〉2.

3.1. Case of template registration.

Theorem 3.3. Let Y = (Y1, . . . , Yn) be i.i.d. observations of model (3.1) with deformation
operator ϕ and regularization parameter μ. Let κ̂λ and φ̂λ, λ ∈ Λ, be the empirical eigenvalues
and eigenvectors corresponding to template registration of Y , with f = f∗. Suppose that ϕ is
μ-regular and the mapping ϕ∗ : Vμ → L2(Ω), defined by ϕ∗(v) := f∗ ◦ ϕ−1(v, ·) for v ∈ Vμ,
is injective and its inverse ϕ∗−1 : ϕ∗(Vμ) → Vμ is continuous. Then plimn,ε κ̂λ = κλ and

plimn,ε sin
2(φ̂λ, φλ) = 0 for all λ ∈ Λ.

The injectivity condition of ϕ∗ in the previous theorem implies that if there were no
additive noise in model (3.1), then the registration of the observations Y onto the template f∗

would lead exactly to the nonobserved deformation parameters V1, . . . , Vn. In other words, if
ε = 0 in (3.1), then the template dissimilarity functional M t(v,Y , f∗) (see (2.3)) has a unique
minimizer over Vμ given by v = (V1, . . . , Vn). The condition of continuity of ϕ∗−1 ensures that
the registration problem with noise level ε will converge to the registration problem with no
noise as ε→ 0. In section 3.3, we analyze the case where ϕ is the translator operator defined
in section 2.1 and we provide some conditions on f∗ and ϕ ensuring that the hypotheses of
Theorem 3.3 are satisfied. In the case where ϕ is the diffeomorphic deformation operator
defined in section 2.1, it is necessary to impose much stronger assumptions on the template
f∗ and the space of vector fields V to ensure that ϕ∗ : Vμ → ϕ∗(Vμ) has a continuous inverse.
In the concluding section, section 4, we further discuss this issue.

Remark 3.2. Observe that, under the hypotheses of Theorem 3.3, the λth empirical mode of
geometric variation ψ̂λ converges the population mode of geometric variation ψλ in probability,
when n → +∞ and ε → 0, as elements of (C(Ω,Ω), dC). Indeed, this result follows from the
continuity of the mapping v → ϕ(v, ·), which is guaranteed by the μ-regularity of ϕ.

We show below how a stronger regularity assumption on ϕ allows one to obtain rates of
convergence for κ̂λ and φ̂λ via a concentration inequality that depends explicitly on n and ε.

Theorem 3.4. Under the hypotheses of Theorem 3.3 and if ϕ∗−1 is uniformly Lipschitz (in
the sense that ‖u − v‖2 ≤ L(f∗, μ)‖ϕ∗(u) − ϕ∗(v)‖22 for every u, v ∈ Vμ and some constant
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L(f∗, μ) > 0 depending only on f∗ and μ), then

P

(
|κ̂λ − κλ|2 > C(f∗, μ)max(h(u, n, ε) +

√
h(u, n, ε); g(u, n))

)
≤ exp(−u)

for any u > 0, where C(f∗, μ) > 0 is a constant depending only on f∗ and μ, h(u, n, ε) =

ε2
(
1 + 2u

n + 2
√

u
n

)
, and g(u, n) = (un +

√
u2

n2 + u
n)

2.

Now, take u∗ > 0 such that

C(f∗, μ)max(h(u∗, n, ε) +
√
h(u∗, n, ε); g(u∗, n)) < (δλ/2)

2;

then, for any 0 < u ≤ u∗,

P

(
sin2(φ̂λ, φλ) > (2/δλ)

2C(f∗, μ)max(h(u, n, ε) +
√
h(u, n, ε); g(u, n))

)
≤ 2 exp(−u).

3.2. Case of groupwise registration. In order to prove consistency for groupwise regis-
tration, we require model (3.1) to satisfy the set of identifiability assumptions, shown below.
For u,v ∈ V = Vn, let

(3.5) Dg(u,v) := Mg(u, (f∗1 , . . . , f
∗
n)) =

1

n

n∑
i=1

∫
Ω

⎛
⎝f∗i (ϕ(ui, x))− 1

n

n∑
j=1

f∗j (ϕ(uj , x))

⎞
⎠

2

dx,

where f∗i (x) := f∗(ϕ−1(vi, x)), x ∈ Ω, i = 1, . . . , n. Observe that Dg(u,V ) = Mg(u,Y )
when Y = (Y1, . . . , Yn) follows model (3.1) with ε = 0.

Definition 3.5 (g-identifiability). Model (3.1) is said to be g-identifiable if
(i) there exists a measurable function u∗ : Vμ → U such that for every η > 0 there

exists a constant C > 0 not depending on n, with Dg(u,v)−Dg(u∗,v) > C, for every u ∈ U
satisfying d̄2(u∗,u) > η, and

(ii) plimn d̄
2(u∗(V ),V ) = 0,

where d̄2(u,v) := 1
n

∑n
i=1 ‖ui − vi‖2 for u,v ∈ V.

Observe that condition (i) above implies that, for every v ∈ Vμ, D
g(u,v) has a unique

measurable minimizer u∗(v) on U .
Theorem 3.6. Let Y = (Y1, . . . , Yn) be i.i.d. observations of model (3.1) with deformation

operator ϕ and regularization parameter μ. Let κ̂λ and φ̂λ, λ ∈ Λ, be the empirical eigenvalues
and eigenvectors corresponding to groupwise registration of Y . Suppose that ϕ is μ-regular
and that (3.1) is g-identifiable. Then plimn,ε κ̂λ = κλ and plimn,ε sin

2(φ̂λ, φλ) = 0 for all
λ ∈ Λ.

Remark 3.3. Observe that, as in the case of template registration, it can be shown that,
under the hypotheses of Theorem 3.6, ψ̂λ converges to ψλ in probability as n → +∞ and
ε→ 0.

3.3. Translation operators. We study the applicability of Theorems 3.3, 3.4, and 3.6 to
translation operator ϕ given by (2.1). In this case, Ω = [0, 1)d, for some integer d ≥ 1, is
equipped with the distance dΩ(x, y) :=

∑d
k=1min{|xk−yk|, 1−|xk−yk|} for x = (x1, . . . , xd) ∈

Ω. Also, let V = R
d be equipped with the usual Euclidean inner product.
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Now, let us show that ϕ is a deformation operator in the sense of Definition 2.1. It holds
that ϕ(0, ·) is the identity in Ω and ϕ−1(v, ·) = ϕ(−v, ·). Last, from (i) in Lemma C.1, it
follows that the mapping ϕ(v, ·) is continuous for all v ∈ V. Moreover, we prove that ϕ is
μ-regular for all μ > 0: for (i) in Definition 3.2, take f ∈ L2(Ω) and consider its periodic
extension fper to R

d. Then (3.4) is a consequence of f(ϕ(v, x)) = fper(x+ v), which holds for
all v ∈ R

d, x ∈ Ω. Finally, condition (ii) in Definition 3.2 follows from (ii) in Lemma C.1.

We impose further conditions on model (3.1) implying that ϕ∗−1, defined in Theorem 3.3,
is Lipschitz. Let θk, k = 1, . . . , d, be the low frequency Fourier coefficients of the template f∗,
that is,

(3.6) θk :=

∫
Ω
f∗(x)e−i2πxkdx �= 0 for all 1 ≤ k ≤ d.

Lemma 3.7. Suppose that f∗ is such that θk �= 0 for all 1 ≤ k ≤ d, and let μ < 1/2; then
ϕ∗ is injective and ϕ∗−1 is uniformly Lipschitz.

Hence, if θk �= 0 for all 1 ≤ k ≤ d and μ < 1/2, the hypotheses of Theorems 3.3 and
3.4 are verified. Thus geometric PCA is consistent, in the case of template registration, with
translation operators. Observe that the hypotheses of Lemma 3.7 imply that translation
invariant templates f∗ are excluded.

We now turn our attention to groupwise registration. We have to impose further conditions
on model (3.1) ensuring g-identifiability, so that Theorem 3.6 applies. The set of deformation
parameters U ⊂ Vμ over which Mg(v,y) will be minimized is U = U0, given in (2.5). We
have the following.

Proposition 3.8. Suppose that θk �= 0 for all 1 ≤ k ≤ d, and that P(V ∈ [−ρ, ρ]d) = 1 with
ρ = min(μ2 ,

μ√
d
) and 0 < μ < 1

12 . Then

(3.7) Dg(u,v)−Dg(u∗(v),v) ≥ C(f∗, μ)d̄2(u,u∗(v)) for all u ∈ U ,

where u∗(v) :=
(
v1 − 1

n

∑n
i=1 vi, . . . , vn − 1

n

∑n
i=1 vn

)
and C(f∗, μ) > 0 is a constant depend-

ing only on f∗ and μ.

Remark that in Proposition 3.8, Dg(u∗(v),v) = 0. This shows that Dg(u,v) is bounded
below by a quadratic functional.

We are now ready to prove g-identifiability under the hypotheses of the previous propo-
sition. Observe that (i) in Definition 3.5 follows at once from (3.7). For (ii) note that
d̄2(u∗(V ),V ) = ‖ 1

n

∑n
i=1 Vi‖. Hence, given that EV = 0, from Bernstein’s inequality for

bounded random variables in a Hilbert space (see, e.g., [14, Theorem 2.6]) we conclude that,
for any η > 0,

P (d(u∗(V ),V ) > η) ≤ 2 exp

(
− nη2

2E‖V ‖2 + μ
3η

)
.

Therefore d̄2(u∗(V ),V ) converges in probability to 0 as n→ +∞.

Finally, having checked the g-identifiability of the model, we conclude that the geometric
PCA is consistent, in the case of groupwise registration, with translation operators.
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4. Conclusion and discussion. The contribution of this paper is twofold. First, the use
of deformation operators (as introduced in this paper) provides a general framework for mod-
eling and analyzing geometric variability of images. As a particular case, it allows the use of
diffeomorphic deformations parametrized by stationary vector fields. In the case of diffeomor-
phisms computed with nonstationary vector fields as in [5], the link with our framework is not
straightforward. Indeed, in this setting, there are two possibilities for defining the deformation
operators. One can parametrize them either by the Hilbert space of time-dependent vector
fields or by the Hilbert space of initial velocities. Both cases are rather complex from the an-
alytical and the computational points of view, and treating them is beyond the scope of this
paper. In contrast, due to its analytical and numerical tractability, we have preferred to focus
on diffeomorphic deformation operators parametrized by stationary vector fields belonging to
a finite-dimensional Hilbert space.

The second contribution of this paper is the study of the consistency of geometric PCA
methods in statistical deformable models, which, to the best of our knowledge, has not been
investigated so far. One can remark that our consistency results rely on strong assumptions
on the template f∗ and the deformation operator ϕ. For the case of translations, we have
provided (see section 3.3) verifiable conditions to satisfy such assumptions. A similar analysis,
in the case of diffeomorphic deformations, is much more complex. For the case of template
registration, one of our main assumptions is that the mapping ϕ∗ : Vμ → L2(Ω), defined by
ϕ∗(v) := f∗ ◦ϕ−1(v, ·) for v ∈ Vμ, is injective. Such a condition together with some regularity
conditions on ϕ ensures that if Y = (Y1, . . . , Yn) is sampled from model (3.1) with noise
level ε = 0, then the registration problem minv∈Vμ M

t(v,Y , f∗) has a unique solution given
by the nonobserved deformation parameters V = (V1, . . . , Vn), where M t is the template
dissimilarity functional defined in (2.3). In particular, in the case where ϕ is a diffeomorphic
deformation operator, this injectivity condition necessarily requires the template f∗ to not
be constant in any open region of Ω, which is a quite restrictive assumption that does not
hold in applications. One possibility for removing this injectivity condition could be to try to
estimate the deformation parameters of minimal norm among those that left the template f∗

unchanged, that is,

(4.1) ‖Vi‖ = min{‖v‖ : v ∈ V, ϕ∗(v) = ϕ∗(Vi)} a.s.

for all i = 1, . . . , n. However, such an approach makes the analysis on the consistency of
our procedure much more difficult. Nevertheless, we hope that the methods presented in
this paper will stimulate further investigation into the development of consistent statistical
procedures for the analysis of geometric variability.

Appendix A. Preliminary technical results. In this appendix, we give a deviation in
probability of supv∈Vμ

|Dg(v)−Mg(v,Y )| under appropriate assumptions on the deformation
operators and the additive noise in model (3.1), where Mg(v,Y ) and Dg(v) are defined in
(2.4) and (3.5), respectively.

Lemma A.1. Consider model (3.1) with μ-regular deformation operator ϕ. Let

(A.1) Q(v) =
ε2

n

n∑
i=1

∫
Ω
W 2

i (ϕ(vi, x))dx, v ∈ Vμ.
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Then, for any s > 0,

P

(
sup
v∈Vμ

Q(v) ≥ Aμh(s, n, ε)

)
≤ exp(−s),

where Aμ is given in Definition 3.2(i) and h(s, n, ε) = ε2
(
1 + 2 s

n + 2
√

s
n

)
.

Proof. From Definition 3.2(i), we have, for v ∈ Vμ,

(A.2) Q(v) ≤ Aμ
ε2

n

n∑
i=1

∫
Ω
W 2

i (x)dx.

Let g ∈ L2(Ω), and let KW g(x) =
∫
Ω k(x, y)g(y)dy be the covariance operator of the random

process W , where k(x, y) = EW (x)W (y) for x, y ∈ Ω. Then there exist orthonormal eigen-
functions (φλ)λ∈Λ in L2(Ω) and positive eigenvalues (wλ)λ∈Λ, such that KWφλ = wλφλ, with
w1 ≥ w2 ≥ · · · ≥ 0 and Λ = {1, 2, . . .}. For any 1 ≤ i ≤ n, the Gaussian process Wi can thus
be decomposed as

Wi =
∑
λ∈Λ

w
1/2
λ ξi,λφλ,

where ξi,λ = w
−1/2
λ 〈Wi, φλ〉2 is a Gaussian variable with zero mean and variance 1, such that

Eξi,λξi,λ′ = 0 for λ �= λ′. Therefore, ‖Wi‖22 =
∑+∞

λ=1 wλξ
2
i,λ, where ξi,k, i = 1 . . . , n, k ≥ 1,

are i.i.d. standard Gaussian random variables. We have, from the assumptions on W , that
E‖Wi‖22 =

∑+∞
λ=1wλ = 1 < +∞, and one can thus consider the following centered random

variable:

Z =

n∑
i=1

+∞∑
λ=1

wλ(ξ
2
i,λ − 1).

Let 0 < t < (2w1)
−1. Since the generating function of a χ2 random variable, with one degree

of freedom, is E(esξ
2
i,λ) = (1− 2s)−1/2 for s > 0, it follows that

(A.3) log
(
E
(
etZ
))

= −n
+∞∑
λ=1

(
twλ +

1

2
log(1− 2twλ)

)
.

Then, using the inequality −s − 1
2 log(1 − 2s) ≤ s2

1−2s , which holds for all 0 < s < 1
2 , from

(A.3) we obtain

log
(
E
(
etZ
)) ≤ n

+∞∑
λ=1

t2w2
λ

1− 2twλ
≤ t2n

1− 2tw1

(
+∞∑
λ=1

wλ

)2

=
t2n

1− 2tw1
<∞.

Arguing, e.g., as in [12], the above inequality implies that, for any s > 0,

(A.4) P
(
Z > 2w1s+ 2

√
ns
) ≤ exp(−s).

By (A.2), it follows that

sup
v∈Vμ

Q(v) ≤ Aμ
ε2

n

n∑
i=1

∫
Ω
W 2

i (x)dx = Aμ
ε2

n

n∑
i=1

+∞∑
λ=1

wλξ
2
i,λ = Aμ

ε2

n
(Z + n).
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Hence, it follows from (A.4) that

P

(
sup
v∈Vμ

Q(v) > Aμ
ε2

n

(
n+ 2w1s+ 2

√
ns
)) ≤ exp(−s)

for any s > 0. The conclusion follows noting that w1 ≤ E‖W‖22 = 1.

Lemma A.2. Consider model (3.1) with μ-regular deformation operator ϕ. Let

(A.5) Dt(v) :=
1

n

n∑
i=1

∫
Ω
(f∗i (ϕ(vi, x)) − f∗(x))2 dx, v ∈ V ,

with f∗i (x) := f∗(ϕ−1(Vi, x)), x ∈ Ω, i = 1, . . . , n. Then

P

(
sup
v∈Vμ

|Dt(v)−M t(v,Y , f∗)| > C
(
h(s, n, ε) +

√
h(s, n, ε)

))
≤ exp(−s), s > 0,

where M t is defined in (2.3), C > 0 is a constant depending only on f∗ and μ, and h(s, n, ε)
is defined in Lemma A.1.

Proof. For v ∈ V = Vn, let

R(v) = 2ε
1

n

n∑
i=1

∫
Ω
(f∗i (ϕ(vi, x))− f∗(x))W ∗

i (ϕ(vi, x))dx.

For any v ∈ Vμ, we have the decomposition

(A.6) M t(v,Y , f∗) = Dt(v) +Q(v) +R(v),

where Q is defined in (A.1).

By applying the Cauchy–Schwarz inequality in L2(Ω) and in R
n we obtain R(v) ≤

2
√
Dt(v)

√
Q(v). Also, the μ-regularity of ϕ implies Dt(v) ≤ 4A2

μ‖f∗‖22, and therefore

R(v) ≤ 4Aμ‖f∗‖2
√
Q(v). Now, using the decomposition (A.6), one obtains

sup
v∈Vμ

|Dt(v)−M t(v,Y , f∗)| ≤ max (1, 4Aμ‖f∗‖2)
(

sup
v∈Vμ

Q(v) + sup
v∈Vμ

√
Q(v)

)

and the result follows from Lemma A.1.

Lemma A.3. Consider model (3.1) with μ-regular deformation operator ϕ. Then

P

(
sup
v∈Vμ

|Dg(v,V )−Mg(v,Y )| > C
(
h(s, n, ε) +

√
h(s, n, ε)

))
≤ exp(−s), s > 0,

where Mg and Dg are defined in (2.4) and (3.5), respectively, C > 0 is a constant, depending
only on f∗ and μ, and h(s, n, ε) is defined in Lemma A.1.
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Proof. Let

Qg(v) =
ε2

n

n∑
i=1

∫
Ω

⎛
⎝Wi(ϕ(vi, x))− 1

n

n∑
j=1

Wj(ϕ(vj , x))

⎞
⎠

2

dx, v ∈ V ,

and

R(v) = 2ε
1

n

n∑
i=1

∫
Ω

⎛
⎝ 1

n

n∑
j=1

f∗j (ϕ(vj , x)) − f∗i (ϕ(vi, x))

⎞
⎠

×
⎛
⎝ 1

n

n∑
j=1

W ∗
j (ϕ(vj , x))−W ∗

i (ϕ(vi, x))

⎞
⎠ dx, v ∈ V .

Then, for any v ∈ Vμ, we have the decomposition

(A.7) Mg(v,Y ) = Dg(v) +Qg(v) +R(v).

From the Cauchy–Schwarz inequality in L2(Ω) and in R
n, we have R(v) ≤ 2

√
Dg(v)

√
Qg(v).

Also, from the μ-regularity of ϕ, we obtainDg(v) ≤ 1
n

∑n
i=1

∫
Ω

(
f∗i (ϕ

−1(vi, x))
)2
dx ≤ A2

μ‖f∗‖22.
So R(v) ≤ 2Aμ‖f∗‖2

√
Qg(v). Now, using the decomposition (A.7), one obtains

sup
v∈Vμ

|Dg(v)−Mg(v,Y )| ≤ max (1, 2Aμ‖f∗‖2)
(

sup
v∈Vμ

Qg(v) + sup
v∈Vμ

√
Qg(v)

)

and the result follows from the fact that Qg ≤ Q (see (A.1)) and Lemma A.1.
Remark A.1. Observe that Lemmas A.2 and A.3 imply

(A.8) plim
ε

sup
v∈Vμ

|Dt(v)−M t(v,Y , f∗)| = plim
ε

sup
v∈Vμ

|Dg(v,V )−Mg(v,Y )| = 0

and

(A.9) plim
n,ε

sup
v∈Vμ

|Dt(v)−M t(v,Y , f∗)| = plim
n,ε

sup
v∈Vμ

|Dg(v,V )−Mg(v,Y )| = 0.

The proofs of Theorems 3.3, 3.4, and 3.6 rely on the following two propositions that
establish the consistency of the registration procedures described in section 2.2.

Proposition A.4. Let V̂ ∈ argminv∈Vμ M
t(v,Y , f∗) be the parameters obtained from tem-

plate registration of Y on f∗. Then,
(i) under the hypotheses of Theorem 3.3, plimn,ε d̄

2(V̂ ,V ) = 0, and
(ii) under the hypotheses of Theorem 3.4,

P

(
d̄2(V̂ ,V ) > C

(
h(s, n, ε) +

√
h(s, n, ε)

))
≤ exp(−s), s > 0,

where C > 0 is a constant, depending only on f∗ and μ, and h(s, n, ε) is defined in Lemma
A.1.
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Proof. Observe that Dt(V ) = 0 and so

(A.10) Dt(v) = Dt(v)−Dt(V ) ≤ 2 sup
v∈Vμ

|M t(v,Y , f∗)−Dt(v)|, v ∈ Vμ,

where Dt and M t are defined in (A.5) and (2.3), respectively. On the other hand, from
Definition 3.2(i),

1

n

n∑
i=1

‖ϕ∗(Vi)− ϕ∗(vi)‖22 ≤ AμD
t(v), v ∈ Vμ.

Hence,

(A.11)
1

n

n∑
i=1

‖ϕ∗(Vi)− ϕ∗(V̂i)‖22 ≤ 2Aμ sup
v∈Vμ

|M t(v,Y , f∗)−Dt(v)|.

We proceed now to prove part (i). From (A.11) and (A.8) we have plimε ‖ϕ∗(Vi)−ϕ∗(V̂i)‖22 =
0, that is, plimε ϕ

∗(V̂i) = ϕ∗(Vi) for i = 1, . . . , n. From the continuity of ϕ∗−1 we have
plimε V̂i = Vi for i = 1, . . . , n; therefore,

plim
n

plim
ε

1

n

n∑
i=1

‖Vi − V̂i‖2 = 0.

Now, the fact that ‖V1− V̂1‖2 is bounded by 2μ and tends to 0 in probability as ε→ 0 implies
that E‖V1 − V̂1‖2 → 0 as ε → 0. Noting that (Vi − V̂i)i≥1 are i.i.d. (see Remark 3.1), we
conclude from the weak law of large number that

plim
ε

plim
n

1

n

n∑
i=1

‖Vi − V̂i‖2 = 0,

thus proving part (i).

For (ii), note that inequality (A.11) and the fact that ϕ∗−1 is uniformly Lipschitz, with
constant L(f∗, μ) > 0, imply that

d̄2(u,v) ≤ 2AμL(f
∗, μ) sup

v∈V
|M t(v,Y , f∗)−Dt(v)|,

and the result follows from Lemma A.2.

Proposition A.5. Let V̂ ∈ argminv∈U Mg(v,Y ) be the parameters obtained from groupwise
registration of Y . Then, under the hypotheses of Theorem 3.6, plimn,ε d̄

2(V̂ ,V ) = 0.

Proof. Let u∗(V ) be the unique minimizer of Dg(u,V ) on U , which exists because the
model is g-identifiable. Since (by definition) V̂ ∈ arg minv∈UMg(v,Y ), one obtains that

Dg(V̂ ,V )−Dg(u∗,V ) ≤ 2 sup
u∈U

|Mg(u,Y )−Dg(u,V )|

≤ 2 sup
u∈Vμ

|Mg(u,Y )−Dg(u,V )|.
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Therefore, from (A.9) and the g-identifiability of the model, we have plimn,ε d̄
2(V̂ ,u∗) = 0.

Also, the g-identifiability implies that plimn,ε d̄
2(u∗,V ) = 0. Finally, the conclusion follows

from the inequality d̄2(V̂ ,V ) ≤ 2d̄2(V̂ ,u∗) + 2d̄2(u∗,V ).
In what follows, ‖‖HS denotes the Hilbert–Schmidt norm of operators on a Hilbert space

H. Recall that, given an orthonormal basis {ej}j≥1 of H, the Hilbert–Schmidt norm of an
operator K is defined as ‖K‖2HS =

∑
j,k〈K(ej), ek〉2.

Lemma A.6. Let H be a separable Hilbert space with inner product 〈·, ·〉 and induced norm
‖ · ‖. Let {ui}ni=1, {vi}ni=1 in Br = {h ∈ H : ‖h‖ ≤ r} for some r > 0. Define the covariance
operators Ku,Kv : H → H by Ku(h) =

1
n

∑n
i=1〈ui − ū, h〉(ui − ū) and Kv(h) =

1
n

∑n
i=1〈vi −

v̄, h〉(vi − v̄), where ū = 1
n

∑n
i=1 ui and v̄ = 1

n

∑n
i=1 vi. Then

‖Kv −Ku‖2HS ≤ (6r)2
1

n

n∑
i=1

‖vi − ui‖2.

Proof. Let us define εi = vi − ui, so that we can write vi = ui + εi. Let h ∈ H, and write

Kv(h) =
1

n

n∑
i=1

〈ui − ū+ εi − ε̄, h〉(ui − ū+ εi − ε̄) = Ku + L+ L∗ + S,

where L∗ denotes the adjoint the operator of L = 1
n

∑n
i=1〈ui−ū, h〉(εi−ε̄) and S = 1

n

∑n
i=1〈εi−

ε̄, h〉(εi − ε̄). Then, after some simple calculations, we get

‖L‖2HS =
∑
j≥1

∑
k≥1

(
1

n

n∑
i=1

〈ui − ū, ej〉〈εi − ε̄, ek〉
)2

≤ 1

n2

n∑
i=1

n∑
i′=1

‖ui−ū‖‖ui′−ū‖‖εi−ε̄‖‖εi′−ε̄‖.

Hence, since ui ∈ Br, i = 1, . . . , n, one has

‖L‖2HS ≤
(
1

n

n∑
i=1

‖ui − ū‖‖εi − ε̄‖
)2

≤ (2r)2

(
1

n

n∑
i=1

‖εi − ε̄‖
)2

≤ (2r)2
1

n

n∑
i=1

‖εi‖2.

Similarly, since ‖εi‖ ≤ ‖ui‖+ ‖vi‖ ≤ 2r,

‖S‖2HS ≤
(
1

n

n∑
i=1

‖εi − ε̄‖2
)2

≤
(
1

n

n∑
i=1

‖εi‖2
)2

≤ (2r)2
1

n

n∑
i=1

‖εi‖2.

Finally, ‖Kv−Ku‖HS ≤ 2‖L‖HS+‖S‖HS ≤ 6r
(∑n

i=1 ‖εi‖2
) 1

2 , which completes the proof.
The following theorem follows from the theory developed in [6, 19].
Theorem A.7. Let H be a separable Hilbert space endowed with inner product 〈·, ·〉H . Let

A, Â : H → H be self-adjoint Hilbert–Schmidt operators on H with eigenvalue/eigenvector
pairs (κλ, φλ)λ≥1 and (κ̂λ, φ̂λ)λ≥1, respectively. Then

(A.12) sup
λ≥1

|κλ − κ̂λ| ≤ ‖A− Â‖HS .

Moreover, if δ̂λ = minλ′∈Λ\{λ} |κλ − κ̂λ′ | > 0, then

(A.13) sin(φλ, φ̂λ) ≤ δ̂−1
λ ‖A− Â‖HS .
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Appendix B. Proofs of main results.

B.1. Proof of Theorem 3.3.
Proof. Let K̃n be the sample covariance operator V1, . . . , Vn, that is, K̃nv = 1

n

∑n
i=1〈Vi −

V̄n, v〉(Vi − V̄n), with V̄n = 1
n

∑n
i=1 Vi. Note that

(B.1) ‖K̂n −K‖2HS ≤ 2‖K̂n − K̃n‖2HS + 2‖K̃n −K‖2HS .

The first term in the right-hand side of inequality (B.1) can be controlled by using Lemma
A.6 and noting that ‖Vi‖, ‖V̂i‖ ≤ μ, i = 1, . . . , n, that is,

(B.2) ‖K̂n − K̃n‖2HS ≤ (6μ)2
1

n

n∑
i=1

‖V̂i − Vi‖2.

Let us now bound the second term in the right-hand side of (B.1). To do so, remark that
‖V ‖, ‖Vi‖ ≤ μ, i = 1, . . . , n, and, thanks to a Bernstein inequality for Hilbert–Schmidt oper-
ators (see, e.g., [13, Chapter 3]), it follows that

(B.3) P

(
‖K̃n −K‖HS > η

)
≤ 2 exp

(
− nη2

C̃(μ)(1 + η)

)
, η > 0,

for some constant C̃(μ) > 0 depending only on μ. Hence, we can combine (B.1), (B.2), and

(B.3) with Proposition A.4(i) to obtain that for any η > 0, limn,ε P(‖K̂n −K‖2HS > η) = 0,
that is,

(B.4) plim
n,ε

K̂n = K.

Now, from (A.12) and (B.4) we obtain plimn,ε κ̂λ = κλ, λ ∈ Λ. For λ ∈ Λ define the λth
empirical eigengap as

δ̂λ = min
λ′∈Λ\{λ}

|κλ − κ̂λ′ |.

From (A.12), it holds that δλ ≤ δ̂λ+maxλ′ |κλ′ − κ̂λ′ | ≤ δ̂λ+‖K̂n −K‖HS. By (B.4), it follows
that

(B.5) lim
n,ε

P

(
δ̂λ >

δλ
2

)
= 1.

Recalling that, from the specification of model (3.1), we have δλ > 0, hence inequality (A.13)
implies

P

(
sin(φ̂λ, φλ) > η

)
≤ P

(
‖K̂n −K‖HS/δ̂λ > η

)
= P

(
‖K̂n −K‖HS/δ̂λ > η, δ̂λ > δ/2

)
+ P

(
‖K̂n −K‖HS/δ̂λ > η, δ̂λ ≤ δ/2

)
≤ P

(
‖K̂n −K‖HS > (δλη)/2

)
+ P

(
δ̂λ ≤ δ/2

)
.

From the above inequality, combined with (B.4) and (B.5), we obtain plimn,ε sin
2(φ̂λ, φλ) =

0.
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B.2. Proof of Theorem 3.4.
Proof. Combining (B.1), (B.2), and (B.3) with Proposition A.4(ii), we obtain

P

(
‖K̂n −K‖2HS > Cmax(h(s, n, ε) +

√
h(s, n, ε); g(s, n))

)
≤ 2 exp(−s), s > 0,

where C > 0 is a constant depending only on f∗ and μ and g(s, n) = ( sn +
√

s2

n2 + s
n)

2. Hence,

from (A.12) we obtain

P

(
|κ̂λ − κλ|2 > Cmax(h(s, n, ε) +

√
h(s, n, ε); g(s, n))

)
≤ 2 exp(−s), s > 0.

Now, take s∗ > 0 such that Cmax(h(s∗, n, ε)+
√
h(s∗, n, ε); g(s∗, n)) < (δλ/2)

2. Then, thanks
to (B.5) and (A.13), we obtain, for any 0 < s ≤ s∗,

1− 2 exp(−s) ≤ P

(
‖K̂n −K‖2HS < Cmax(h(s, n, ε) +

√
h(s, n, ε); g(s, n))

)
= P

(
‖K̂n −K‖2HS < Cmax(h(s, n, ε) +

√
h(s, n, ε); g(s, n)), δ̂λ > δλ/2

)
≤ P

(
(1/δ̂λ)

2‖K̂n −K‖2HS < (2/δλ)
2Cmax(h(s, n, ε) +

√
h(s, n, ε); g(s, n))

)
≤ P

(
sin2(φ̂λ, φλ) < (2/δλ)

2Cmax(h(s, n, ε) +
√
h(s, n, ε); g(s, n))

)
.

B.3. Proof of Theorem 3.6.
Proof. We proceed similarly as in the proof of Theorem 3.3. In the case of groupwise

registration, inequalities (B.1), (B.2), and (B.3) are still valid and can be combined with
Proposition A.5 to obtain plimn,ε K̂n = K. The rest of proof is identical to that of Theorem
3.3.

Appendix C. Technical results for translation operators.
Lemma C.1. Let ϕ be defined by (2.1); then

(i) dΩ(ϕ(v, x), ϕ(v, y)) = dΩ(x, y) for all x, y ∈ Ω and v ∈ V, and
(ii) dC(ϕ(u, ·), ϕ(v, ·)) ≤

∑d
k=1 |uk − vk| for all x ∈ Ω and u, v ∈ V.

Proof. Remark that, for any a ∈ R, there exists a unique k(a) ∈ Z such that mod(a, 1) =
a+ k(a). Then

mod(a, 1) −mod(b, 1) = a− b+ k(a) − k(b).

Take a, b ∈ R such that |a − b| < 1, and assume that a ≥ b. Since a − b ∈ [0, 1) and
mod(a, 1) −mod(b, 1) ∈ [−1, 1], we obtain that

k(a)− k(b) =

{
0 if mod(a, 1) ≥ mod(b, 1),

−1 if mod(a, 1) < mod(b, 1).

Then

|mod(a, 1)−mod(b, 1)| =
{
a− b if mod(a, 1) ≥ mod(b, 1),

1− (a− b) if mod(a, 1) < mod(b, 1).
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We conclude that, for a ≥ b,

(C.1) min{|mod(a, 1) −mod(b, 1)|, 1 − |mod(a, 1)−mod(b, 1)|} = min{|b− a|, 1 − |b− a|}.

Because of the symmetry in the expression above, we conclude that (C.1) is valid for any
a, b ∈ R such that |a− b| < 1.

For the sake of simplicity, let us prove the lemma in the one-dimensional case (i.e., d = 1),
where dΩ(x, y) := min{|x − y|, 1 − |x − y|}. Take x, y ∈ Ω and u, v ∈ V. Part (i) is directly
implied by (C.1), taking a := x+ v and b := y+ v. For part (ii), note that dΩ ≤ 1

2 , and hence
dΩ(ϕ(u, x), ϕ(v, x)|) ≤ |u−v| if |u−v| ≥ 1. On the other hand, if |u−v| < 1, we can use (C.1)
with a := x + v and b := x + u to obtain dΩ(ϕ(u, x), ϕ(v, x)|) ≤ dΩ(u, v) ≤ |u − v|. Finally,
we obtain dC(ϕ(u, ·), ϕ(v, ·)) ≤ |u− v|.

In order to prove Lemma 3.7 and Proposition 3.8 , denote by e�(x) = ei2π
∑d

k=1 �kxk for
x = (x1, . . . , xd) ∈ Ω = [0, 1]d and � = (�1, . . . , �d) ∈ Z

d the Fourier basis of L2([0, 1]d). Let
θ� =

∫
Ω f(x)e�(x)dx, � ∈ Z

d, be the Fourier coefficients of f∗. For 1 ≤ k ≤ d, denote by

�(k) = (�
(k)
1 , . . . , �

(k)
d ) the vector of Zd such that �

(k)
k′ = 0 for k′ �= k and �

(k)
k = 1. Remark that,

with this notation, θk = θ�(k) , where θk is defined in (3.6).

C.1. Proof of Lemma 3.7.

Proof. Recall that ϕ∗(v) := f∗ ◦ ϕ−1(v, ·), v ∈ Vμ. For u, v ∈ [−ρ, ρ]d with 0 < ρ < 1/2,
we have

‖f∗(ϕ−1(u, x)) − f∗(ϕ−1(v, x))‖22 ≥
d∑

k=1

|θ�(k)e−i2πuk − θ�(k)e
−i2πvk |2

=
d∑

k=1

|θ�(k) |2|e−i2πuk − e−i2πvk |2.(C.2)

Then, by the mean value theorem, we have |e−i2πuk − e−i2πvk |2 = | cos(2πuk)− cos(2πvk)|2 +
| sin(2πuk)− sin(2πvk)|2 ≥ (2π)2 cos2(ρ)|uk − vk|2 for any 0 ≤ uk, vk ≤ ρ. Hence,

‖f∗(ϕ−1(u, x))− f∗(ϕ−1(v, x))‖22 ≥ (2π)2 cos2(ρ) min
0≤k≤d

|θ�(k) |2
d∑

k=1

|uk − vk|2.

C.2. Proof of Proposition 3.8.

Proof. Remark that Dg, defined in (3.5), has the following expression in the Fourier
domain:

(C.3) Dg(u,V ) =
1

n

n∑
m=1

⎛
⎝∑

�∈Zd

∣∣∣∣∣∣
1

n

n∑
j=1

θ�e
−i2π〈�,Vj−uj〉 − θ�e

−i2π〈�,Vm−um〉

∣∣∣∣∣∣
2⎞
⎠ , u ∈ V .
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For u ∈ U0 we have

Dg(u,V ) ≥ 1

n

n∑
m=1

⎛
⎝ d∑

k=1

|θ�(k) |2
∣∣∣∣∣∣
1

n

n∑
j=1

e
−i2π

(
V

(k)
j −u

(k)
j

)
− e

−i2π
(
V

(k)
m −u

(k)
m

)
∣∣∣∣∣∣
2⎞
⎠

≥
d∑

k=1

|θ�(k) |2
⎛
⎝1−

∣∣∣∣∣ 1n
n∑

m=1

e
i2π

(
u
(k)
m −V

(k)
m

)∣∣∣∣∣
2
⎞
⎠ .(C.4)

Further, remark that∣∣∣∣∣ 1n
n∑

m=1

e
i2π

(
u
(k)
m −V

(k)
m

)∣∣∣∣∣
2

=
1

n
+

2

n2

n−1∑
m=1

n∑
m′=m+1

cos
(
2π
((
u(k)m − V (k)

m

)
−
(
u
(k)
m′ − V

(k)
m′

)))
.

Let 0 ≤ α < 1/4. Using a second-order Taylor expansion and the mean value theorem, one
has that cos(2πu) ≤ 1−C(α)|u|2 for any real u such that |u| ≤ α, with C(α) = 2π2 cos(2πα).

Under the hypotheses of the proposition, one has that |(u(k)m −V (k)
m )−(u

(k)
m′ −V (k)

m′ )| ≤ 2(μ+ρ) <
1/4. Therefore, for α = 2(μ + ρ), it follows that∣∣∣∣∣ 1n

n∑
m=1

e
i2π

(
u
(k)
m −V

(k)
m

)∣∣∣∣∣
2

≤ 1

n
+

2

n2

n−1∑
m=1

n∑
m′=m+1

1− C(α)
∣∣∣(u(k)m − V (k)

m

)
−
(
u
(k)
m′ − V

(k)
m′

)∣∣∣2

≤ 1− 2

n2

n−1∑
m=1

n∑
m′=m+1

C(α)
∣∣∣(u(k)m − V (k)

m

)
−
(
u
(k)
m′ − V

(k)
m′

)∣∣∣2 .
Hence, using the lower bound (C.4), it follows that, for u ∈ U0,

(C.5) Dg(u,V ) ≥ 2C(α)
1

n2

n−1∑
m=1

n∑
m′=m+1

(
d∑

k=1

|θ�(k) |2
∣∣∣(u(k)m − V (k)

m

)
−
(
u
(k)
m′ − V

(k)
m′

)∣∣∣2
)
.

The following identity is obtained from elementary algebraic manipulations and the fact that

u ∈ U0 (
∑n

m=1 u
(k)
m = 0):

1

n

n−1∑
m=1

n∑
m′=m+1

∣∣∣(u(k)m − V (k)
m

)
−
(
u
(k)
m′ − V

(k)
m′

)∣∣∣2 = n∑
m=1

∣∣∣u(k)m − (V (k)
m − V̄ (k)

n )
∣∣∣2 ,

where V̄
(k)
n = 1

n

∑n
m=1 V

(k)
m . Inserting the above equality in (C.5), we finally obtain

(C.6) Dg(u,V ) ≥ C0(f
∗, μ)

1

n

n∑
m=1

d∑
k=1

∣∣∣u(k)m − Ṽ (k)
m

∣∣∣2 ,
with C0(f

∗, μ) = 2C(α)min1≤k≤d{|θ�(k) |2} and Ṽ
(k)
m = V

(k)
m − V̄ (k)

n . Thanks to the assumption
θ�(k) �= 0 for all 1 ≤ k ≤ d, it follows that C0(f

∗, μ) > 0. The inequality μ ≥ 2ρ implies that

|Ṽ (k)
m | = |V (k)

m − V̄
(k)
n | ≤ 2ρ ≤ μ for any 1 ≤ k ≤ d and all 1 ≤ m ≤ n; therefore, u ∈ U0.

Then, using inequality (C.6) and Dg(u∗,V ) = 0, the proof is completed.
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