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Flow-induced vibrations of a rotating cylinder

Rémi Bourguet† and David Lo Jacono
Institut de Mécanique des Fluides de Toulouse, CNRS, UPS and Université de Toulouse,

31400 Toulouse, France

The flow-induced vibrations of a circular cylinder, free to oscillate in the cross-flow
direction and subjected to a forced rotation about its axis, are analysed by means of
two- and three-dimensional numerical simulations. The impact of the symmetry
breaking caused by the forced rotation on the vortex-induced vibration (VIV)
mechanisms is investigated for a Reynolds number equal to 100, based on the
cylinder diameter and inflow velocity. The cylinder is found to oscillate freely up to
a rotation rate (ratio between the cylinder surface and inflow velocities) close to 4.
Under forced rotation, the vibration amplitude exhibits a bell-shaped evolution as
a function of the reduced velocity (inverse of the oscillator natural frequency) and
reaches 1.9 diameters, i.e. three times the maximum amplitude in the non-rotating case.
The free vibrations of the rotating cylinder occur under a condition of wake–body
synchronization similar to the lock-in condition driving non-rotating cylinder VIV.
The largest vibration amplitudes are associated with a novel asymmetric wake pattern
composed of a triplet of vortices and a single vortex shed per cycle, the T+S pattern.
In the low-frequency vibration regime, the flow exhibits another new topology, the
U pattern, characterized by a transverse undulation of the spanwise vorticity layers
without vortex detachment; consequently, free oscillations of the rotating cylinder may
also develop in the absence of vortex shedding. The symmetry breaking due to the
rotation is shown to directly impact the selection of the higher harmonics appearing
in the fluid force spectra. The rotation also influences the mechanism of phasing
between the force and the structural response.

Key words: flow–structure interactions, vortex streets, wakes

1. Introduction
Flow-induced vibrations (FIV) of flexible or flexibly mounted bodies with bluff

cross-section are encountered in a great variety of physical systems, from the
oscillations of plants in wind to the vibrations of risers and mooring lines immersed
in ocean currents. Such vibrations cause increased fatigue damage and sometimes
failure of the structures. Their modelling, prediction and the elaboration of vibration
reduction techniques require a detailed understanding of the underlying fluid–structure
interaction mechanisms. The impact of FIV in several civil, wind, offshore and nuclear
engineering applications has motivated a number of studies, as collected in Blevins
(1990), Naudascher & Rockwell (1994) and Païdoussis, Price & de Langre (2010).
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FIGURE 1. (a) Maximum amplitude of vibration for a flexibly mounted non-rotating
cylinder (α = 0) as a function of the reduced velocity. (b) The r.m.s. value of the
cross-flow force coefficient fluctuation for a rigidly mounted rotating cylinder as a function
of the rotation rate.

Vortex formation downstream of a bluff structure induces unsteady forces on the
body, which can result in structural vibrations. Vortex-induced vibrations (VIV) are
a type of FIV that have been extensively investigated through the canonical problem
of a rigid circular cylinder forced or free to oscillate within a cross-flow (Bishop &
Hassan 1964; Bearman 1984, 2011; Williamson & Roshko 1988; Mittal & Tezduyar
1992; Hover, Techet & Triantafyllou 1998; Carberry, Sheridan & Rockwell 2001; Jeon
& Gharib 2001; Sarpkaya 2004; Williamson & Govardhan 2004; Klamo, Leonard &
Roshko 2006; Lucor & Triantafyllou 2008; Dahl et al. 2010; Navrose & Mittal 2013).
The axial symmetry of a circular cylinder allows VIV to be examined independently
of other types of FIV, such as galloping, which is associated with aerodynamically
unstable cross-sections (Païdoussis et al. 2010). The typical cross-flow response of an
elastically mounted circular cylinder is illustrated in figure 1(a), where the maximum
amplitude of vibration, normalized by the cylinder diameter, is plotted as a function
of the reduced velocity, defined as the inverse of the oscillator natural frequency
non-dimensionalized by the inflow velocity and the cylinder diameter. Self-excited
vibrations appear over a well-defined range of reduced velocities. In this range, the
frequency of vortex formation and the frequency of body oscillation coincide; this
condition of wake–body synchronization is referred to as lock-in. Under lock-in,
the vortex shedding frequency can depart substantially from the Strouhal frequency,
i.e. the shedding frequency downstream of a stationary cylinder; also, the vibration
frequency can shift considerably away from the natural frequency, owing to changes in
the value of the effective added mass (Williamson & Govardhan 2004). The maximum
amplitude of VIV responses is generally of the order of one cylinder diameter; it is,
however, influenced by structural properties (e.g. mass-damping parameter) and by the
Reynolds number (Re) (Bearman 2011), and it can reach two diameters at Re≈ 105

(Raghavan & Bernitsas 2011). In the above-mentioned study and in the present work,
the Reynolds number is based on the cylinder diameter and oncoming flow velocity.

VIV can still occur when the symmetry of the body is broken, for instance by
considering a square cross-section (Bearman et al. 1987; Zhao, Cheng & Zhou
2013). Under broken symmetry, flexibly mounted bodies may also be subjected to
the phenomenon of galloping, which is an aerodynamic instability characterized by
low-frequency oscillations that increase in amplitude unboundedly with the reduced



velocity (Païdoussis et al. 2010). Galloping is driven by the instantaneous angle
of attack between the body and the flow, which results in an asymmetric pressure
distribution. It does not involve a mechanism of lock-in between the oscillation
and vortex formation as opposed to VIV and can thus often be predicted through
quasi-steady theory. However, depending on the structure properties, VIV and
galloping regions may sometimes overlap (Bearman et al. 1987; Corless & Parkinson
1988); the interaction between these two types of FIV leads to intermediate vibration
regimes with larger-amplitude responses (Nemes et al. 2012).

In the present study, symmetry breaking is introduced through body actuation,
by applying a forced rotation to the flexibly mounted circular cylinder. Such
configurations may occur in practical applications, as for instance in offshore
engineering where drilling risers without casing may be exposed to ocean currents.
The possible enhancement of the cylinder free oscillations by the forced rotation
may also have implications in the domain of flow energy harvesting. Since the early
work of Prandtl (1926), the case of a rigidly mounted circular cylinder subjected to
forced rotation within a cross-flow has been the object of many studies, partly due
to its potential applications to wake control (e.g. Modi 1997). Different flow regimes
have been identified depending on the rotation rate α, defined as the ratio between
the cylinder surface velocity and the oncoming flow velocity. Over a wide range of
Reynolds numbers, previous experimental and numerical work has shown that the
alternate vortex shedding associated with the von Kármán instability vanishes above
a rotation rate α ≈ 2 (Coutanceau & Ménard 1985; Badr et al. 1990; Chew, Cheng
& Luo 1995; Kang, Choi & Lee 1999; Stojković, Breuer & Durst 2002; Mittal &
Kumar 2003; Pralits, Brandt & Giannetti 2010). A secondary region of unsteady
wake where one-sided vortices form at much lower frequency has been reported over
a small range of rotation rates, for α > 4 (Mittal & Kumar 2003; Stojković et al.
2003; Pralits et al. 2010). The imposed rotation alters the flow three-dimensional
transition. Through direct numerical simulation and stability analysis, El Akoury et al.
(2008) and Rao et al. (2013b) have shown that the rotation increases the critical
Reynolds number of the secondary instability associated with the spanwise undulation
of the von Kármán vortices. The three-dimensional transition scenario involves wake
modes similar to those identified in the non-rotating cylinder case (i.e. modes A
and B (Williamson 1988)) but also new steady and unsteady modes, depending on
the rotation rate and Reynolds number (Rao et al. 2013b). Over a range of high
rotation rates, Mittal (2004) and Meena et al. (2011) presented evidence that the
three-dimensional transition may occur through flow patterns comparable to those
observed due to centrifugal instabilities in flows between two concentric rotating
cylinders. They showed that such three-dimensional patterns appear in both steady
and unsteady flow regimes. On the basis of linear stability analyses, Pralits, Giannetti
& Brandt (2013) and Rao et al. (2013a) recently emphasized that the imposed rotation
may cause three-dimensional transition down to Re≈ 30; at Re= 100, they reported
a critical rotation rate close to 3.7.

The passage from unsteady to steady flow at α ≈ 2 is accompanied by the
suppression of the fluid force fluctuations, as illustrated in figure 1(b), where the
root mean square (r.m.s.) value of the cross-flow force coefficient fluctuation exerted
on a rigidly mounted rotating cylinder is plotted as a function of the rotation rate.
The question arises whether the structural vibrations will be cancelled by the rotation
in this range of α once the cylinder is free to oscillate.

The problem of a flexibly mounted circular cylinder with imposed rotation in a
cross-current has received much less attention than the rigidly mounted body case.



Through experiments and numerical simulations, Stansby & Rainey (2001) examined
the case of a rotating circular cylinder free to vibrate in both the in-line and cross-flow
directions, in the Reynolds number range 200–4700. For α ∈ [2, 5] and depending
on the reduced velocity, they reported large oscillations of the cylinder, with peak
amplitudes higher than 10 diameters. These low-frequency galloping-like responses
occur without lock-in; instead, vortex formation leads to high-frequency oscillations
of the force coefficients that are superimposed on the low-frequency oscillations
associated with the cylinder responses. Yogeswaran & Mittal (2011) confirmed these
observations at α = 4.5 and Re = 200, and provided flow visualizations emphasizing
the absence of synchronization between the cylinder large-amplitude low-frequency
oscillations and the vortex formation. Previous work has focused on two-degree-of-
freedom oscillators, which have been shown to be prone to galloping responses when
the cylinder is subjected to forced rotation. Hence, the behaviour of the system is
under question when the rotating cylinder is free to oscillate only in the cross-flow
direction. In addition, previous studies did not analyse the effect of the rotation in the
regime where wake and body oscillations are synchronized; the influence of forced
rotation on VIV phenomenon remains to be elucidated. The possible consequences,
on the cylinder responses, of the flow three-dimensional transition at high rotation
rates also need to be clarified. These aspects are addressed in the present work.

The impact of symmetry breaking, through imposed rotation of the cylinder, on the
fluid–structure interaction mechanisms previously examined in the non-rotating case is
investigated in this study by means of a joint analysis of the body responses, wake
patterns and fluid forces. A flexibly mounted circular cylinder, free to oscillate in
the cross-flow direction, is considered over a wide range of reduced velocities and
rotation rates. The range of rotation rates includes the transition region where vortex
shedding is suppressed by the rotation in the rigidly mounted body case. The Reynolds
number is chosen equal to 100, which ensures a two-dimensional flow over most of
the parameter space, except in the range of high rotation rates. The parametric study is
based on two- and three-dimensional numerical simulations of the flow past a flexibly
mounted body.

The paper is organized as follows. The physical fluid–structure model and the
numerical method are presented in § 2. The cylinder responses are quantified in § 3.
The flow patterns encountered in the wake of the flexibly mounted rotating cylinder
are described in § 4. The fluid forces are analysed in § 5. The three-dimensional
transition in the flow is examined in § 6. Finally, the main findings of the present
work are summarized in § 7.

2. Formulation and numerical method
The physical configuration and its modelling are described in § 2.1. The numerical

method employed and its validation are presented in § 2.2.

2.1. Fluid–structure system
A sketch of the physical configuration is presented in figure 2. The elastically mounted
rigid cylinder has a circular cross-section; it is immersed in a cross-flow that is parallel
to the x axis and normal to the cylinder axis (z axis). The Reynolds number based on
the oncoming flow velocity (U) and cylinder diameter (D), Re= ρf UD/µ, where ρf
and µ denote the fluid density and viscosity, is set equal to 100. The flow is assumed
to be incompressible. At Re= 100, the flow remains two-dimensional over most of the
parameter space investigated; therefore, the two-dimensional Navier–Stokes equations
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FIGURE 2. Sketch of the physical configuration.

are generally employed to predict the flow dynamics. In order to study the flow
three-dimensional transition at high rotation rates, the three-dimensional Navier–Stokes
equations are also considered at selected points of the parameter space. In the three-
dimensional case, an aspect ratio of L/D= 10, where L is the cylinder length in the
spanwise direction (z axis), is selected as a reasonable balance between the wavelength
of the flow three-dimensional pattern (of the order of (1–2)D) and the numerical cost.

The cylinder is fixed in the in-line direction (x axis) and free to oscillate in the
cross-flow direction (y axis). The structure/fluid mass ratio, m= ρc/ρf D2, where ρc is
the body mass per unit length, is set to a value of 10. The structural stiffness and
damping ratio are designated by k and ξ . In the following, all the physical variables
are non-dimensionalized by the cylinder diameter and the oncoming flow velocity.
The non-dimensional cylinder displacement, velocity and acceleration are denoted by
ζ , ζ̇ and ζ̈ , respectively. The sectional in-line and cross-flow force coefficients are
defined as Cx = 2Fx/ρf DU2 and Cy = 2Fy/ρf DU2, where Fx and Fy are the in-line
and cross-flow dimensional sectional fluid forces. The body dynamics is governed
by a forced second-order oscillator equation, which can be expressed as follows, in
non-dimensional formulation:

ζ̈ + 4πξ

U?
ζ̇ +

(
2π

U?

)2

ζ = Cy

2m
. (2.1)

Here U? denotes the reduced velocity, U? = 1/fn, where fn is the non-dimensional
natural frequency in vacuum, fn =D/2πU

√
k/ρc. The structural damping is set equal

to zero (ξ =0) to allow maximum-amplitude oscillations. In the three-dimensional flow
case, the span-averaged fluid force coefficient is considered in (2.1).

The cylinder is subjected to a forced, anticlockwise, steady rotation about its axis.
The imposed rotation is controlled by the rotation rate α =ΩD/2U, where Ω is the
angular velocity of the cylinder.

The present parametric study focuses on α and U?. Previous work concerning rigidly
mounted rotating cylinders has shown that the critical value of the rotation rate for



suppression of the vortex shedding at Re= 100 is α≈ 1.8 (Kang et al. 1999; Stojković
et al. 2003). A range of rotation rates including this transition is considered, namely
α ∈ {0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 3.75, 4.0}. The reduced velocity is varied from
4 to 34 with a step equal to 0.5.

2.2. Numerical simulation method
The coupled fluid–structure system is solved by the parallelized code Nektar, which
is based on the spectral/hp element method (Karniadakis & Sherwin 1999). The
version of the code employs a Jacobi–Galerkin formulation in the (x, y) plane and
a Fourier expansion in the spanwise (z) direction (for three-dimensional simulations).
A boundary-fitted coordinate formulation is used to take into account the cylinder
displacement. Details concerning the numerical method, including the time integration
schemes, and its implementation have been reported in Newman & Karniadakis (1997)
and Evangelinos & Karniadakis (1999) for similar configurations.

A non-dimensional time step ranging from 0.001 to 0.005 is selected, depending on
the rotation rate. As noted by Mittal & Kumar (2003), the size of the computational
domain may substantially impact the simulation results, especially at high rotation
rates. To avoid any spurious blockage effects due to domain size, a large rectangular
domain is considered in the present simulations: 350D downstream; and 250D in front,
above and below the cylinder. A no-slip condition is applied on the cylinder surface.
The free-stream value is assigned for the velocity at the upstream boundary. At the
downstream boundary, a Neumann-type boundary condition is used. Flow periodicity
conditions are employed on the upper and lower boundaries, as well as on the side
(spanwise) boundaries in the three-dimensional case. A two-dimensional grid of 3975
spectral elements is used in the (x, y) plane. The evolutions of the time-averaged
force coefficients as functions of the spectral element polynomial order, for a rigidly
mounted cylinder at α = 4 (the largest rotation rate considered in this paper) and for
a flexibly mounted cylinder at (α, U?) = (3.75, 13) (i.e. in the region of maximum
vibration amplitude, as shown in § 3), are plotted in figure 3. In the former case, the
rotation cancels the vortex shedding and the flow is steady, thus Cx=Cx and Cy=Cy,
where the over-bar denotes time-averaged values. It can be observed that an increase
from order four to five has no significant influence on the results; hence, a polynomial
order equal to four is selected. For the three-dimensional simulations, 64 complex
Fourier modes (i.e. 128 planes) are employed in the spanwise direction.

The simulation approach is validated by comparison with previous results reported
in the literature concerning a stationary cylinder (table 1), a flexibly mounted non-
rotating cylinder (table 2) and a rigidly mounted rotating cylinder (figure 4). In the
three cases, the present results are in good agreement with previous work, which
ensures the validity of the parametric study reported in this paper.

All the simulations are initialized with the established periodic flow past a stationary
cylinder at Re= 100; then the forced rotation is started and the cylinder is released.
The analysis is based on time series of more than 40 oscillation cycles (or vortex
shedding cycles in the absence of vibrations), collected after the initial transient dies
out. Convergence of each simulation is established by monitoring the time-averaged
and r.m.s. values of the fluid force coefficients and body displacement.

3. Structural responses
The responses of the flexibly mounted cylinder subjected to forced rotation are

quantified in this section. For periodic oscillations and forces, as those typically
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FIGURE 3. Time-averaged (a,c) in-line and (b,d) cross-flow force coefficients as functions
of the polynomial order, for (a,b) a rigidly mounted rotating cylinder at α= 4 and (c,d) a
flexibly mounted rotating cylinder at (α,U?)= (3.75, 13) at Re= 100.

Study St Cx (Cy)max

Braza, Chassaing & Ha Minh (1986) 0.16 1.28 0.29
Stansby & Slaouti (1993) 0.166 1.32 0.35
Kang et al. (1999) 0.165 1.32 0.32
Zhou, So & Lam (1999) 0.162 1.48 0.31
Kim, Kim & Choi (2001) 0.165 1.33 0.32
Shiels, Leonard & Roshko (2001) 0.167 1.33 0.30
Stojković et al. (2002) 0.165 1.34 0.33
Shen, Chan & Lin (2009) 0.166 1.38 0.33
Present 0.164 1.32 0.32

TABLE 1. Strouhal number, time-averaged in-line force coefficient and maximum cross-
flow force coefficient for a stationary cylinder (i.e. rigidly mounted and non-rotating), at
Re= 100, from previous work and the current paper.

observed in this work, the time-averaged displacement of the cylinder can be
expressed as ζ =U?2Cy/8π2m by considering the time-averaged form of the structure
dynamics (2.1). As shown in figure 4(b), where the time-averaged cross-flow force
coefficient is plotted as a function of the rotation rate in the rigidly mounted cylinder
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Stojkovi ć et al. (2002, 2003)
Kang et al. (1999)

0

–10

–15

–20

–25

–5

0.40 0.40

FIGURE 4. Time-averaged (a) in-line and (b) cross-flow force coefficients for a rigidly
mounted rotating cylinder as functions of the rotation rate, at Re= 100. In panel (b) the
dotted line indicates the cross-flow force coefficient in the potential flow case.

Study (ζ )max f Cx (Cy)max

Shiels et al. (2001) 0.58 0.196 2.22 0.77
Shen et al. (2009) 0.57 0.190 2.15 0.83
Present 0.57 0.188 2.08 0.88

TABLE 2. Maximum amplitude of vibration, vibration frequency, time-averaged in-line
force coefficient and maximum cross-flow force coefficient for a flexibly mounted
non-rotating (α= 0) cylinder at Re= 100, for m= 1.25, ξ = 0 and U?= 4.46, from previous
work and the current paper.

case, the magnitude of Cy increases with α (Magnus effect (Prandtl 1926)); the
negative sign is due to the anticlockwise rotation. As also noted in previous studies
(e.g. Mittal & Kumar 2003), Cy differs substantially from the prediction through
potential flow theory (Cy=−2πα; dotted line), and exceeds the limit of 4π proposed
by Prandtl (1926). A similar trend of Cy versus α is noted in the flexibly mounted
cylinder case, as shown in § 5. As a consequence, for a given reduced velocity, a
global decrease of ζ is expected as α increases. This behaviour is verified in figure 5,
where the time-averaged displacement of the body is plotted as a function of the
reduced velocity, for each rotation rate. The actual responses of the flexibly mounted
cylinder follow the trends obtained by considering the above time-averaged form
of the dynamics equation and the mean force coefficients issued from the rigidly
mounted body case (dashed lines). Some differences can be noted, as for instance for
α = 3.75 around U? = 14; this highlights the alteration of the time-averaged forces
under body vibrations, which is discussed in § 5.

The maximum amplitude of the cylinder oscillation about its time-averaged position
(ζ̃ ) is plotted as a function of the rotation rate and reduced velocity in figure 6(a,b).
The cylinder exhibits large-amplitude vibrations over a wide zone of the parameter
space. As a general trend, it appears that the response peak amplitude and the width
of the U? range where large-amplitude oscillations occur first increase with α and
then drop abruptly. For a better visualization of the vibration region in the (α, U?)
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FIGURE 5. Time-averaged displacement as a function of the reduced velocity. For each
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domain, the area where oscillations larger than 0.05D are observed is represented by
the hatched zone in figure 6(c). Vibrations are noted for α < 1.8, in a region where
the flow past a rigidly mounted cylinder is unsteady, but also for α > 1.8, where the
rotation suppresses the vortex formation in the rigidly mounted body case (e.g. Kang
et al. 1999; Stojković et al. 2002). No vibration is observed for α = 4.

As shown in figure 7(a), where the maximum amplitude of oscillation is plotted as
a function of U?, the cylinder may reach vibration amplitudes close to 1.9D under
forced rotation, i.e. more than three times larger than the peak amplitude in the
non-rotating case. A drift of the peak amplitude towards higher values of U? can
be noted as α increases, for α 6 3; the trend reverses for larger values of α. The
present vibrations exhibit lower amplitudes than the galloping-like responses reported
by Stansby & Rainey (2001) and Yogeswaran & Mittal (2011) for a rotating cylinder
free to oscillate in both the in-line and cross-flow directions. The amplitude of
galloping vibrations increases continuously with U?. Instead, the response amplitudes
of the present rotating cylinder exhibit bell-shaped evolutions as functions of the
reduced velocity, which resemble the typical VIV behaviour of the non-rotating case
(α = 0). This suggests that, like VIV, the vibrations of the present rotating cylinder
may occur under a wake–body synchronization mechanism, as opposed to galloping
vibrations, which do not involve such synchronization. This aspect is clarified in the
following sections.

The oscillations of the rotating cylinder are generally periodic and exhibit a strong
sinusoidal nature. The spectral amplitudes of the higher harmonics that may appear in
the response always remain below 5 % of the first harmonic amplitude. The vibration
frequency normalized by the natural frequency in vacuum (f ? = f /fn, with f the non-
dimensional vibration frequency) is plotted as a function of the reduced velocity in
figure 7(b). The overall evolution of the response frequency in the rotating cylinder
cases is comparable to the VIV behaviour observed at α = 0. In the range of low
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FIGURE 6. (a,b) Maximum amplitude of vibration as a function of the rotation rate
and reduced velocity. (c) Region of vibration (hatched area) in the rotation rate–reduced
velocity domain. The limit of the vibration region is indicated by the plain black line.
In panel (c), the dashed line represents the limit between the steady and unsteady flow
regimes, outside the vibration region.

reduced velocities, the vibration frequency bends downwards to follow approximately
the normalized vortex shedding frequency observed in the stationary cylinder case
(dashed line; Strouhal number in the range 0.163–0.165 in the rotating cases, thus
close to the non-rotating case value). At higher values of U?, the response frequency
remains relatively constant, but generally differs from the natural frequency (f ? 6= 1).
The initial bending towards the Strouhal frequency, observed at low values of U?, also
appears for rotation rates associated with a suppression of the vortex shedding in the
rigidly mounted cylinder case. A global decrease of the vibration frequency can be
noted as α increases; this phenomenon will be connected to the variability of the
effective added mass in § 5.
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The flow patterns occurring in the wake of the freely vibrating rotating cylinder are
examined in the next section.

4. Wake patterns
The vortex shedding patterns encountered downstream of a non-rotating cylinder

subjected to forced or free vibrations have been identified and classified in previous
studies (Williamson & Roshko 1988; Brika & Laneville 1993; Govardhan &
Williamson 2000; Carberry, Sheridan & Rockwell 2005). These works have shown
that the flow patterns may differ substantially from the alternate shedding observed in
the stationary cylinder case. Similarly, the impact of forced rotation on the wake of a
rigidly mounted cylinder has been extensively analysed (Badr et al. 1990; Stojković
et al. 2002; Mittal & Kumar 2003; Pralits et al. 2010). The question that arises is
whether similar patterns will appear in the flow when the cylinder is subjected to
free vibrations under forced rotation. This question is addressed in this section, and
particular attention is paid to the possible occurrence of new wake patterns.
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A map of the different wake patterns in the (α,U?) domain is presented in figure 8.
The map is based on two-dimensional flow simulation results. The three-dimensional
transition that occurs at high rotation rates (α > 3.5) is investigated in § 6. A
number of additional simulations have been performed to locate the limits of the
regions associated with each wake pattern. However, it should be mentioned that the
limits indicated in figure 8 are approximate, since pattern switching and hysteresis
phenomena may appear in the transition zones (Khalak & Williamson 1999; Prasanth
& Mittal 2008). The different wake patterns are illustrated in figures 9–11 by
instantaneous isocontours of spanwise vorticity, for selected values of the pair (α,U?),
which are designated by black dots in figure 8. In these figures, the cross-flow
trajectory of the body centre is indicated by the black segments.

The limit of the vibration region identified in § 3 is denoted by a plain black line in
figure 8. Outside the vibration region, the wake patterns are those reported in previous
studies concerning rigidly mounted rotating cylinders. At low rotation rates, for α <
1.8, the wake exhibits the 2S pattern, which is characterized by two counter-rotating
vortices shed per cycle, as in the stationary cylinder case (figure 9a). As also noted
in previous studies (e.g. Mittal & Kumar 2003), the rotation induces an asymmetry
in the strength of the positive and negative vortices, and an upward deviation of the
wake. For α> 1.8, the wake is composed of two layers of vorticity of opposite signs
and deflected upwards (figure 9b,c); the flow is steady. At sufficiently high rotation
rates, the negative-vorticity tongue wraps around the cylinder and a switch of the two
layers of vorticity can be noted in the wake, i.e. the positive-vorticity layer is now
located above the negative-vorticity layer (figure 9c). In this case, the wake resembles
to some extent a jet-like wake. The inversion of the vorticity layers can be related to
the change observed in the sign of the in-line force (i.e. drag) at α≈ 3.7, as shown in
figure 4(a). The two steady wake patterns are referred to as D+ and D−, in reference
to the positive or negative value of the drag. The switch from positive to negative
drag is chosen to define the limit between the D+ and D− pattern regions.
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FIGURE 9. (Colour online) Instantaneous isocontours of vorticity: (a) 2S pattern, (α,U?)=
(0.5,4), ωz=±0.4; (b) D+ pattern, (α,U?)= (2.5,4), ωz=±0.2; (c) D− pattern, (α,U?)=
(3.75, 4), ωz = ±0.2. Positive and negative vorticity values are plotted in pale grey and
dark grey (yellow and blue online), respectively. Part of the computational domain is
shown.

The evolution of the structural response amplitude as a function of the reduced
velocity, presented in § 3 (figure 7a), suggested that the vibrations of the rotating
cylinder were synchronized with wake oscillations. As shown in § 5 by spectral
analysis, this hypothesis is verified: within the vibration region identified in the
(α, U?) domain, the cylinder response frequency coincides with the predominant
frequency of the wake, i.e. the lock-in condition is established.

Within the vibration region, all the wake patterns encountered thus occur under
wake–body synchronization. The area of lower rotation rates is characterized by the 2S
pattern (figure 10a) and variations of the 2S pattern (figure 10b,c). In the range of low
reduced velocities, the vortices tend to coalesce in the wake (figure 10b); this pattern,
also observed in a similar range of U? in previous studies concerning free vibrations
of a non-rotating cylinder (e.g. Singh & Mittal 2005), is referred to as C(2S). In the
range of high reduced velocities, the two counter-rotating vortices shed during each
cycle regroup and form pairs, which resemble the P pattern reported by Williamson
& Roshko (1988) for forced vibrations of large amplitude. At higher rotation rates, the
region of intermediate reduced velocities is dominated by a mixed pattern composed of
a pair (P) of vortices coupled to a single (S) vortex (figure 11a). This pattern, referred
to as P+ S, has previously been observed in the wake of non-rotating cylinders under
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FIGURE 10. (Colour online) Instantaneous isocontours of vorticity: (a) 2S pattern,
(α, U?) = (1, 6.5), ωz = ±0.4; (b) C(2S) pattern, (α, U?) = (1, 5.5), ωz = ±0.4; (c) P
pattern, (α, U?)= (1.5, 10), ωz =±0.3. Positive and negative vorticity values are plotted
in pale grey and dark grey (yellow and blue online), respectively. Part of the computational
domain is shown. The trajectory of the cylinder centre is indicated by the black segment.

forced and free oscillations (Blackburn & Henderson 1999; Singh & Mittal 2005). In
the range of intermediate reduced velocities and for α > 2.5 approximately, a fourth
vortical structure appears during each shedding cycle, as shown in figure 11(b). This
type of shedding clearly differs from the 2P pattern where two vortex pairs of similar
topology are shed per cycle; as an extension of the P+ S pattern, this pattern may be
referred to as T+S, by regrouping the three vortices into a triplet (T), as indicated in
figure 11(b). Shedding of two vortex triplets (2T) has been observed for a non-rotating
cylinder subjected to both in-line and cross-flow VIV (e.g. Dahl et al. 2007). To the
authors’ knowledge, the existence of the present T + S pattern has not previously
been reported. The last zone of the vibration region, principally associated with high
reduced velocities, is dominated by another novel type of wake pattern, which was not
documented in the literature on cylinder VIV: the wake is composed of two undulating
vorticity layers, without shedding of vortical structures (figure 11c). Because of its
undulatory nature, this pattern is referred to as U.

Previous studies concerning oscillating non-rotating cylinders have highlighted the
influence of the oscillation amplitude and frequency on wake pattern selection (e.g.
Williamson & Roshko 1988). In order to examine how the flow topology relates to
the vibration characteristics in the present rotating cylinder case, the pattern selected
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FIGURE 11. (Colour online) Instantaneous isocontours of vorticity: (a) P + S pattern,
(α,U?)= (2.5, 11), ωz =±0.2; (b) T+ S pattern, (α,U?)= (3.5, 13), ωz =±0.15; (c) U
pattern, (α,U?)= (3, 25), ωz =±0.1. Positive and negative vorticity values are plotted in
pale grey and dark grey (yellow and blue online), respectively. Part of the computational
domain is shown. The trajectory of the cylinder centre is indicated by the black segment.

for each pair (α, U?) is indicated in figure 12 in the response amplitude–frequency
domain. Except in a small area in the low-frequency zone (f ≈ 0.05) where the U
and T+S patterns overlap, each wake pattern appears to be associated with a specific
region of the (ζ̃max, f ) domain. The 2S pattern and its variations (C(2S) and P) are
mainly related to structural responses of moderate amplitudes and high to moderate
frequencies. Similarities may be noted with the map of wake patterns obtained through
forced vibration experiments by Williamson & Roshko (1988), in the non-rotating
cylinder case: the transition from 2S to C(2S) patterns as the vibration frequency
increases, as well as the occurrence of the P+ S pattern for ζ̃max > 0.8 approximately,
are in agreement with this previous work. Owing to the imposed rotation, significant
differences exist, as for instance the occurrence of the P pattern in the region of
low-amplitude responses. The P + S and T + S patterns are associated with large-
amplitude vibrations at moderate to low frequencies; the T + S pattern dominates
the region of maximum-amplitude vibrations. It can be observed that the U pattern,
which dominates the low-frequency zone, appears over a wide range of oscillation
amplitudes.

As mentioned above, the vibrations of the rotating cylinder develop under the
lock-in condition, which is the key mechanism of VIV. However, the self-sustained
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FIGURE 12. Wake pattern as a function of the vibration maximum amplitude and
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oscillations occurring in the region of the U pattern, and thus excited by the flow in
the absence of vortex shedding, cannot be rigorously called vortex-induced vibrations.
Therefore, the more general terminology flow-induced vibrations under wake–body
synchronization is preferred to designate the responses of the rotating cylinder. This
terminology also allows one to distinguish the present fluid–structure interaction
phenomenon from galloping, which does not involve the lock-in condition.

The next section focuses on the forces exerted by the flow on the flexibly mounted
rotating cylinder.

5. Fluid forces
In order to further investigate the interaction mechanisms, a detailed analysis of

the fluid forces is reported in this section. An overview of the typical features of
the fluid forces and energy transfer is presented in § 5.1. Systematic statistical and
spectral analyses are performed in § 5.2 with an emphasis on the occurrence of
higher harmonics in the force spectra. The phasing mechanisms between force and
displacement are addressed in § 5.3. The effective added mass induced by the fluid
is examined in § 5.4.

5.1. Temporal evolutions in selected configurations
Three configurations associated with three points in the (α,U?) domain are considered
at first to highlight some properties of the fluid forces. Focus is placed on the
cross-flow force, since it is the component that drives the cylinder response. A global
analysis encompassing the entire parameter space and including the in-line force
component is reported in the following subsections. The selected configurations cover
a wide range of body oscillation amplitudes and frequencies; they correspond to
the 2S (figure 13), T + S (figure 14) and U (figure 15) wake patterns identified in
§ 4. For each case, time series of the fluctuations of the cross-flow force coefficient
(C̃y) and of the pressure (C̃p

y ) and viscous (C̃v
y) parts of this force coefficient (figures
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FIGURE 13. (Colour online) (a–c) Temporal evolution of the cross-flow force coefficient
fluctuation (dashed line; left axis) and cylinder displacement fluctuation (solid line; right
axis) for (α, U?) = (1, 6.5) – 2S pattern: (a) total, (b) pressure and (c) viscous. The
instantaneous power due to the corresponding force component is also shown (dash-dotted
line; left axis). (d–g) Instantaneous isocontours of vorticity at the times indicated by
vertical dotted lines in panels (a–c). Positive and negative vorticity values are plotted in
pale grey and dark grey (yellow and blue online), respectively, in the range ωz=±2.5. Part
of the computational domain is shown. The trajectory of the cylinder centre is indicated
by the black segment.
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FIGURE 14. (Colour online) Same as figure 13, but now for (α,U?)= (3.5, 13) – T+ S
pattern. In panels (d–g), the isocontours of vorticity are in the range ωz =±1.

13–15, panels (a–c), respectively; left axis) are plotted over one period of the cylinder
oscillation. The fluctuation of the cylinder displacement is also plotted in these figures
(right axis). In figures 13–15, panels (d–g), visualizations of the near-wake region
through isocontours of vorticity are presented at four time instants indicated by black
dotted lines in panels (a–c).

In the three cases, it can be observed that the unsteady wake pattern and the
cylinder oscillation are synchronized, i.e. the lock-in condition is established. The
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FIGURE 15. (Colour online) Same as figure 13, but now for (α,U?)= (3, 25) – U pattern.
In panels (d–g), the isocontours of vorticity are in the range ωz =±1.

magnitudes of the cross-flow force and its pressure and viscous parts exhibit strong
variations from one configuration to another. However, some features persist for the
three cases. In all cases, the body displacement is close to sinusoidal, which is not
the case for the force coefficient; this is related to the occurrence of large higher
harmonics, as will be discussed in § 5.2. As expected in the presence of forced
rotation, which causes an asymmetry of the flow, the symmetry of C̃y over each
half-cycle of oscillation is broken. The asymmetry is mainly due to the pressure



part of the force, whereas the viscous part remains relatively symmetrical. A joint
monitoring of the time series and flow snapshots allows one to relate some events
in the evolution of C̃p

y to the wake unsteadiness. For instance, the formation of
a negative-vorticity vortex in figure 13(e) coincides with a positive peak of C̃p

y
(figure 13b), i.e. the vortex seems to ‘pull’ the cylinder upwards. Conversely, the
formation of a positive-vorticity vortex in figure 13(d,g) seems to ‘pull’ the cylinder
downwards and may be connected with a negative peak of C̃p

y . However, it should
be recalled that vortex shedding is not required to observe fluctuations in the fluid
force and associated structural vibrations, as illustrated in figure 15 (U wake pattern).
Among the three selected configurations, differences may be noted in the phasing
between the body response and the fluid force, as for instance for C̃p

y (figures 13b
and 14b). The force–displacement phasing mechanisms are addressed in § 5.3.

The instantaneous energy transfer between the flow and the structure is quantified by
means of the fluid force coefficient in phase with the cylinder velocity. As previously
mentioned, the time-averaged component of the cross-flow force induced by the
rotation (Magnus effect) causes a deflection of the cylinder time-averaged position
(figure 5). Here, attention is paid to the body oscillations about their time-averaged
position and thus to the energy transfer associated with the fluctuations of the force
and its pressure and viscous parts. The corresponding coefficients are defined as
follows:

Cyv =
√

2C̃yζ̇√
ζ̇ 2

, Cp
yv =
√

2C̃p
y ζ̇√
ζ̇ 2

, Cv
yv =
√

2C̃v
y ζ̇√
ζ̇ 2

. (5.1)

Positive values of these coefficients indicate that the flow excites the structural
vibrations; negative values indicate that the vibrations are damped by the flow.
Time series of Cyv, Cp

yv and Cv
yv are plotted in figures 13–15(a–c) (left axis). For

self-sustained periodic oscillations, such as those generally observed in the present
work, the time-averaged net energy transfer is zero (Cyv = 0). Some observations,
which are verified over the entire vibration region, can be made on the basis of the
selected time series. The viscous part of the force principally damps the cylinder
oscillations (C

v
yv < 0), except in short time intervals where Cv

yv may become slightly
positive, as shown in figure 13(b). The excitation of the body by the flow is mainly
driven by the pressure part of the force (C

p
yv > 0). Across the vibration region,

the shape of the energy transfer over one cycle of oscillation exhibits substantial
variations, which relate to the force frequency content and phasing; these aspects are
investigated in the following subsections.

5.2. Statistics and spectral analysis
The time-averaged in-line and cross-flow force coefficients are plotted as functions
of the reduced velocity in figure 16. For each rotation rate, the values of Cx and
Cy in the rigidly mounted cylinder case are indicated by dashed lines. At a given
reduced velocity, the time-averaged force coefficients globally decrease as α increases.
The decrease of Cy results in an increasing downward deviation of the cylinder time-
averaged position, as reported in § 3. Significant modulations of Cx and Cy are noted
when the cylinder vibrates.

In the in-line direction, the body oscillations are accompanied by an amplification
of Cx (figure 16a), as also noted in previous studies concerning non-rotating
cylinders (Khalak & Williamson 1999; Carberry et al. 2005; Bourguet, Karniadakis &
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FIGURE 16. Time-averaged (a) in-line and (b) cross-flow force coefficients as functions of
the reduced velocity. The dashed line indicates, for each rotation rate, the time-averaged
force coefficient in the rigidly mounted cylinder case.

Triantafyllou 2011b). Regardless of the value of the rotation rate, Cx appears to follow
a similar trend within the vibration region: for each α, the largest amplification occurs
at the lowest reduced velocity, and then Cx decreases regularly across the vibration
window. This trend was previously observed for non-rotating cylinders (e.g. Khalak &
Williamson 1999) and the present results show that it persists in the rotating cylinder
case. In addition, this behaviour seems to be independent of the wake pattern, as it
is observed across the entire vibration region.

In the cross-flow direction, both positive and negative deviations of Cy from
the rigidly mounted body value may occur when the rotating cylinder oscillates
(figure 16b). Comparison with the map of the wake patterns (figure 8) suggests a
possible link between the sign of the deviation and the type of flow topology. To
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clarify this aspect, the deviation of Cy is plotted in figure 17 as a function of the
maximum vibration amplitude for all the points located within the vibration region,
and the corresponding wake pattern is indicated by a symbol. As a general trend, it
appears that the 2S pattern and its variations (P and C(2S)) are principally associated
with negative deviations of Cy, whereas the other patterns (P+ S, T+ S and U) are
mainly related to positive deviations. A second trend can be identified: in the range
of positive deviations, the deviation magnitude appears to increase globally with the
amplitude of vibration; such behaviour is not observed for negative deviations.

Previous work has shown that the amplitudes of fluctuation of the fluid forces
applied on a non-rotating cylinder tend to increase with the amplitude of vibration
(Bishop & Hassan 1964; Khalak & Williamson 1999). A comparable trend is observed
in the rotating cylinder case, as illustrated in figure 18, where the r.m.s. value of
the in-line force coefficient fluctuation (C̃x) is plotted as a function of the maximum
vibration amplitude. Some modulations are, however, noted, since the largest r.m.s.
value of C̃x for a given rotation rate does not necessarily coincide with the largest
vibration amplitude. Similar observations can be made for the cross-flow force
coefficient.

The r.m.s. values of the fluctuations of the cross-flow force coefficient and of its
pressure and viscous parts are plotted as functions of the reduced velocity in figure 19,
for all the studied rotation rates at which free vibrations develop, i.e. α 6 3.75. For
each α, large variations of the r.m.s. values are noted within the vibration region. The
r.m.s. value of C̃y exhibits a peak near the low-U? limit of the vibration window and
then decreases until the high-U? limit of the vibration window; such behaviour was
previously identified in the non-rotating cylinder case (Khalak & Williamson 1999;
Govardhan & Williamson 2000) and the imposed rotation has no significant impact
on the overall trend. The pressure part closely follows the evolution of the total force,
while the viscous part presents a smoother behaviour and generally lower r.m.s. values.



1.0 1.81.61.41.20.80.60.40.2 0.20

1

2

3

4

5

6

7

8

9

FIGURE 18. The r.m.s. value of the in-line force coefficient fluctuation as a function of
the maximum amplitude of vibration.

The phasing of the cross-flow force and its pressure and viscous parts with the body
displacement is examined in § 5.3.

A spectral analysis is performed in the following in order to shed light on some
fluid–structure interaction mechanisms and to emphasize the impact of the imposed
rotation on the force frequency content. In figures 20 and 21, the power spectral
densities (PSDs) of the in-line and cross-flow force coefficients are plotted, for each
rotation rate, as functions of the reduced velocity. The PSDs are normalized by the
magnitude of the largest peak. At each reduced velocity, the predominant frequency of
the wake is indicated by a triangle; this frequency is based on the PSD of time series
of the cross-flow component of the flow velocity at a point located 10D downstream
of the cylinder. The vortex shedding frequency in the rigidly mounted cylinder case is
denoted by a dashed line (α < 1.8). Within the vibration region, the body oscillation
frequency is indicated by a circle.

The cylinder vibration frequency and the wake frequency generally coincide. The
synchronization between the cylinder oscillation and the flow unsteadiness was
illustrated in selected configurations in figures 13–15. The spectral analysis confirms
that the flow-induced vibrations of the rotating cylinder occur under the lock-in
condition, like VIV. However, as previously mentioned, the excitation of the rotating
cylinder by the unsteady flow does not necessarily involve vortex shedding; indeed,
large-amplitude oscillations are also noted when the wake exhibits the U pattern.
The present flow-induced vibrations under wake–body synchronization differ from the
galloping responses reported by Stansby & Rainey (2001) and Yogeswaran & Mittal
(2011) for a rotating cylinder free to oscillate in both the in-line and cross-flow
directions, since the galloping vibrations are not synchronized with the wake.

Within the vibration region, the fluid forces only peak at the vibration frequency or
at frequencies corresponding to higher harmonics of the vibration frequency; therefore,
the fluid forces are synchronized with the structural response. This contrasts with the
above-mentioned galloping responses, where a high-frequency fluctuation of the forces,
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FIGURE 19. (Colour online) The r.m.s. values of the total (C̃y), pressure (C̃p
y ) and viscous
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y) cross-flow force coefficient fluctuations as functions of the reduced velocity for

(a) α= 0, (b) α= 0.5, (c) α= 1, (d) α= 1.5, (e) α= 2, (f ) α= 2.5, (g) α= 3, (h) α= 3.5
and (i) α = 3.75.

due to vortex shedding, is superimposed onto the low-frequency component caused by
body oscillation. The observed decreasing trend of the force frequencies within the
vibration region thus corresponds to the decrease of the vibration frequency, which
is driven by the decrease of the natural frequency as U? increases. It is recalled that
U? = 1/fn and that the vibration frequency differs but remains relatively close to fn
(figure 7b).

In the absence of rotation, the anti-symmetric nature of the vortex shedding pattern
results in a ratio of 2 between the fundamental frequencies of the in-line and cross-
flow forces. As previously noted in the rigidly mounted cylinder case (Mittal & Kumar
2003), the symmetry breaking induced by the imposed rotation results in a switch to
a frequency ratio of 1, i.e. the fundamental frequencies of Cx and Cy are the same.
This phenomenon is also observed in the present case, outside the vibration region, as
shown in figures 20 and 21. A slight second harmonic contribution may persist in the
Cx spectrum for α > 0 (figure 20b) but it tends to vanish as α increases. The impact
of the imposed rotation on the force spectra within the vibration region is addressed
in this subsection.
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FIGURE 20. (Colour online) PSD of the in-line force coefficient (Cx) as a function of the
reduced velocity for (a) α= 0, (b) α= 0.5, (c) α= 1, (d) α= 1.5, (e) α= 2, (f ) α= 2.5,
(g) α= 3, (h) α= 3.5 and (i) α= 3.75. For each reduced velocity, the PSD is normalized
by the magnitude of the largest peak. The greyscale levels range from 0 (white) to 1
(black). The cylinder vibration frequency is indicated by a circle and the predominant
frequency of the wake by a triangle. In panels (a–d) (α < 1.8), the dashed line denotes
the vortex shedding frequency in the rigidly mounted cylinder case.

A striking feature of the force spectral content is the presence of large higher
harmonics in the cross-flow direction. For instance, substantial contributions of the
third harmonic can be noted in the Cy spectrum at α = 0 (figure 21a), while both
the second and third harmonics exhibit significant peaks at α = 1.5 (figure 21d). In
the non-rotating case, previous studies concerning flexible and flexibly mounted rigid
cylinders have emphasized the existence of such higher harmonics and particularly
the possible occurrence of a large third harmonic component in the cross-flow force
spectrum (Jauvtis & Williamson 2004; Dahl et al. 2007; Vandiver, Jaiswal & Jhingran
2009; Dahl et al. 2010). Modarres-Sadeghi et al. (2010) have highlighted the influence
of the force higher harmonics on the fatigue life of long marine risers. Wang, So
& Chan (2003) and Wu, Ge & Hong (2012) proposed a simple model to relate the
occurrence of the force higher harmonics to the body displacement, for a non-rotating
cylinder subjected to a sinusoidal motion. Here, this model is extended to take into
account the symmetry breaking caused by the imposed rotation.
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FIGURE 21. (Colour online) Same as figure 20 for the cross-flow force coefficient (Cy)
at the same values of α.

Assuming a periodic structural response of fundamental frequency f, the cylinder
displacement can be expanded as

ζ =
∞∑

n=0

ζn sin(2πnft+ φn), (5.2)

where ζn and φn denote the spectral amplitude and phase lag associated with the nth
harmonic. Owing to the vibration, the instantaneous velocity vector of the cylinder
is not aligned with the x axis. The angle between the x axis and the axis parallel
to the instantaneous velocity vector is θ = arctan(−ζ̇ ). The force coefficient parallel
to the instantaneous velocity vector is referred to as Cd and the perpendicular force
coefficient as Cl. The force coefficients in the stationary frame can be expressed as
follows:

Cx=Cd cos(θ)−Cl sin(θ), (5.3a)
Cy=Cd sin(θ)+Cl cos(θ). (5.3b)

To simplify the analysis, θ is assumed to be small, which leads to

Cx=Cd +Clζ̇ , (5.4a)
Cy=−Cdζ̇ +Cl. (5.4b)



The force coefficients expressed in the frame aligned with the instantaneous velocity
vector are assumed to have a form analogous to the rigidly mounted cylinder case in
the unsteady flow regime:

Cd=Cd +Cd1 sin(2πft+ φd1)+Cd2 sin(4πft+ φd2), (5.5a)
Cl=Cl +Cl1 sin(2πft+ φl1). (5.5b)

Here Cd and Cl are the time-averaged values of Cd and Cl; Cd1, Cl1 and Cd2 are the
first and second harmonic amplitudes; and φd1, φl1 and φd2 are the associated phase
lags. The first harmonic of Cd and the time-averaged value of Cl are introduced to
take into account the symmetry breaking caused by the rotation; in the absence of
rotation, Cl = Cd1 = 0. The in-line and cross-flow force coefficients can be expressed
as follows:

Cx=Cd +πf
∞∑

n=1

nζn{2Cl cos(2πnft+ φn)+Cl1 sin[2π(n+ 1)ft+ φl1 + φn]

−Cl1 sin[2π(n− 1)ft− φl1 + φn]}, (5.6)

Cy=Cl −πf
∞∑

n=1

nζn{2Cd cos(2πnft+ φn)+Cd1 sin[2π(n+ 1)ft+ φd1 + φn]

−Cd1 sin[2π(n− 1)ft− φd1 + φn] +Cd2 sin[2π(n+ 2)ft+ φd2 + φn]
−Cd2 sin[2π(n− 2)ft− φd2 + φn]}. (5.7)

Therefore, several higher harmonic components may arise in the Cx and Cy spectra,
depending among other things on the spectral content of the structural response. As
previously mentioned, the cylinder oscillations remain close to sinusoidal. In the case
of pure sinusoidal vibrations, i.e. ζn = 0 for n > 1, the force coefficients become
(without loss of generality φ1 is set equal to 0◦):

Cx=Cd +πf ζ1Cl1 sin(φl1)+Cd1 sin(2πft+ φd1)+ 2πf ζ1Cl cos(2πft)
+Cd2 sin(4πft+ φd2)+πf ζ1Cl1 sin(4πft+ φl1), (5.8)

Cy=Cl −πf ζ1Cd1 sin(φd1)+Cl1 sin(2πft+ φl1)− 2πf ζ1Cd cos(2πft)
−πf ζ1Cd2 sin(2πft+ φd2)−πf ζ1Cd1 sin(4πft+ φd1)

−πf ζ1Cd2 sin(6πft+ φd2). (5.9)

In the absence of rotation (Cl = Cd1 = 0), the above simple model indicates that,
owing to the body oscillation, a third harmonic contribution may appear in the Cy
spectrum, while the Cx spectrum is dominated by a single frequency equal to twice
the cross-flow fundamental frequency. Under forced rotation (Cl 6= 0 and Cd1 6= 0), the
model suggests that both second and third harmonic contributions may arise in the
Cy spectrum. The magnitude of the second harmonic of the in-line force in the rigidly
mounted cylinder case (Cd2) decreases as α increases: therefore, the contribution of the
third harmonic in the Cy spectrum is expected to decrease as α increases. Owing to the
large magnitude of the time-averaged cross-flow force in the rigidly mounted cylinder
case (Cl), the first harmonic is expected to dominate the Cx spectrum, especially at
high rotation rates. The trends predicted by the model are confirmed by the simulation
results presented in figures 20 and 21. It is recalled that the above model, which is an
extension of the model proposed by Wang et al. (2003), relies on several assumptions.



It is used in the present study only to illustrate the possible effect of the combined
oscillation and rotation of the cylinder on the force frequency content.

The principal results of the spectral analysis can be summarized as follows.
The flow-induced vibrations of the rotating cylinder occur under wake–body
synchronization and, within the vibration region, the fluid forces are synchronized
with the wake–body oscillation. The symmetry breaking caused by the rotation
results in a switch of the ratio between the in-line and cross-flow force fundamental
frequencies, from 2 for α = 0 to 1 for α > 0. Both within and outside the vibration
region, the in-line force spectrum is dominated by the first harmonic contribution.
In the absence of vibration, the cross-flow force spectrum presents a single first
harmonic component. In contrast, large higher harmonic components appear in the
cross-flow force spectrum when the cylinder vibrates: for α = 0, as also noted in
previous works, a significant third harmonic contribution may be observed; for α > 0,
both second and third harmonic components arise and the third harmonic contribution
decreases with increasing rotation rate.

For a given rotation rate, the contributions of each harmonic component to the
overall cross-flow force significantly vary across the vibration region. In particular, the
first harmonic contribution seems to vanish for some values of the reduced velocity,
for instance near (α,U?)= (1, 7) or (2, 12), as shown in figure 21. This phenomenon
is related to the mechanism of phasing between the force and the body displacement,
as discussed in the following subsection.

5.3. Phasing between force and displacement
The phasing between the fluid forcing and the body response has been thoroughly
studied in the literature related to cylinder VIV (Bearman 1984; Khalak & Williamson
1999; Carberry et al. 2001; Williamson & Govardhan 2004; Leontini et al. 2006;
Dahl et al. 2010). The force–displacement phasing of the freely vibrating cylinder
under forced rotation is investigated in this subsection. To present the typical
phasing mechanism, periodic structural response and cross-flow force coefficient
of fundamental frequency f are considered. The structural response is defined as in
(5.2) and the force coefficient is expanded in a similar way as

Cy =
∞∑

n=0

Cyn sin(2πnft+ φyn), (5.10)

where Cyn and φyn designate the spectral amplitude and phase lag associated with the
nth harmonic. Since the body oscillation is generally close to sinusoidal, particular
attention is paid to the phasing between the first harmonic components of the
displacement and the force. Without loss of generality, φ1 is selected equal to 0◦, so
that the phase difference between the first harmonics is equal to φy1. If ζ and Cy
verify the dynamics equation (2.1), in which the structural damping is set to zero
(ξ = 0), then (for f 6= fn)

φy1 = 0◦ or 180◦ (5.11)

and
4π2f 2

n (1− f ?2)ζ1 = Cy1

2m
cos(φy1), (5.12)

where, as previously defined, f ? = f /fn. As a result, the system may exhibit two
possible phasing states: (i) the first harmonics of the force and displacement are
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FIGURE 22. (Colour online) Phase differences between the total (Cy), pressure (Cp
y ) and

viscous (Cv
y) cross-flow force coefficients and the cylinder displacement as functions of the

reduced velocity for (a) α= 0, (b) α= 0.5, (c) α= 1, (d) α= 1.5, (e) α= 2, (f ) α= 2.5,
(g) α = 3, (h) α = 3.5 and (i) α = 3.75.

in phase (φy1 = 0◦) and the vibration frequency is lower than the natural frequency
in vacuum (f ? < 1); (ii) the first harmonics of the force and displacement are in
antiphase (φy1= 180◦) and the vibration frequency is larger than the natural frequency
in vacuum (f ? > 1). A phase jump occurs when the vibration frequency passes
through the value of the natural frequency; for f ? = 1, the contribution of the first
harmonic of the force (Cy1) vanishes since Cy1 cos(φy1) = Cy1 sin(φy1) = 0. Previous
work concerning VIV of non-rotating cylinders has emphasized the existence of the
two above phasing states, over the lock-in range. It should be mentioned that (5.11)
and (5.12) hold in both the non-rotating and rotating cylinder cases.

In order to clarify the impact of the cylinder rotation on the force–displacement
phasing mechanism, the phase difference between the first harmonics of ζ and Cy(φy1)

is plotted as a function of the reduced velocity in figure 22, for each rotation rate
(squares). For α 6 2, both phasing states (φy1 = 0◦ and 180◦) are observed within
the vibration window, whereas the force and displacement remain in phase at higher
rotation rates, regardless of the value of U?. Comparison with the evolution of the
vibration frequency (figure 7b) confirms that the phase jump coincides rigorously



with f ? = 1, i.e. the cylinder vibrates at the natural frequency. As reported in § 3,
the vibration frequency exhibits a global decrease as the rotation rate increases; this
explains why the phase jump tends to drift towards higher values of the reduced
velocity as α increases. For α > 2.5 cases, the vibration frequency is always lower
than the natural frequency: in these cases, no phase jump occurs and only the type (i)
phasing state is observed.

As expected on the basis of the above analysis, low magnitudes of the first harmonic
component can be noted near the phase jumps in figure 21. In these regions, the
contributions of the higher harmonic components become predominant, as for instance
near U? = 7 at α = 1.

As also noted in previous studies concerning non-rotating cylinders (e.g. Govardhan
& Williamson 2000), the phase jump does not coincide with a switch of the wake
pattern. In order to shed some light on the physical nature of the phase discontinuity,
the phase differences between the first harmonic of ζ and the first harmonics of the
pressure (Cp

y ) and viscous (Cv
y) parts of Cy are also plotted in figure 22 as circles and

triangles, respectively. Contrary to the total cross-flow force, the phase differences
associated with Cp

y and Cv
y, referred to as φp

y1 and φv
y1, respectively, vary continuously

as functions of U?. Hence, the phase jump of Cy is not due to a jump in the phase
of its pressure or viscous parts; instead, it results from the combination of two
force components whose phases vary smoothly across the vibration window. The
phase difference associated with the viscous part remains in a narrow range of phase
difference angles, between 30 and 90◦ approximately; a slight overall increase may
be noted as a function of α, while for each rotation rate, φv

y1 tends to increase with
U?. The phase difference associated with the pressure part exhibits larger variations,
especially in the range of low reduced velocities. As indicated in § 5.1, some events
in the evolution of the pressure part of Cy can be connected to the formation of
vortices in the wake. Therefore, it is expected that the phasing of vortex formation
will influence the phasing of Cp

y . However, it can be observed that φp
y1 may still vary

in the absence of vortex shedding, as for instance for U? > 22 at α = 3.5, where the
wake is characterized by the U pattern.

The fact that no phase jump of the cross-flow force occurs at high rotation rate
was related to the global decrease of the vibration frequency as α increases. In the
following, this trend of the structural response frequency is investigated in light of the
variability of the effective added mass.

5.4. Effective added mass
Previous studies concerning cylinder VIV have shown that the effective added mass
coefficient induced by the fluid force in phase with the body acceleration may
substantially depart from the potential flow value of 1 (Sarpkaya 1979; Vikestad,
Vandiver & Larsen 2000; Dahl et al. 2010; Bourguet, Karniadakis & Triantafyllou
2011a). The effective added mass coefficient can be defined as follows:

Cm =− 2
π

Cyζ̈

ζ̈ 2
. (5.13)

For periodic displacement (5.2) and force coefficient (5.10), an effective added mass
coefficient, involving the response first harmonic component only, may be defined by
removing all the higher harmonic contributions in (5.13) (Dahl et al. 2010):

C1
m =

Cy1 cos(φy1)

2π3f 2ζ1
. (5.14)
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In the case of sinusoidal responses, C1
m is equal to Cm. The coefficient C1

m is
significant as it relates directly to the vibration frequency as follows (Williamson &
Govardhan 2004):

f ? =
√

m
m+ 1

4πC1
m

. (5.15)

For each rotation rate, C1
m is plotted as a function of the reduced velocity in

figure 23. The values of Cm are also presented, for comparison purposes (dots; red
online).

Slight differences may be noted between Cm and C1
m, especially at high rotation

rates, due to the occurrence of small higher harmonic components in the response.
However, as previously mentioned, the higher harmonic contributions are limited
and the response remains close to sinusoidal in all cases, which explains the global
similarity between Cm and C1

m evolutions. The effective added mass coefficient
generally differs from 1. The decreasing trend observed as a function of the reduced
velocity in the non-rotating cylinder case was also reported in previous studies (e.g.
Dahl et al. 2010). The global increase of the effective added mass coefficient as
α increases is associated with the previously mentioned decrease of the vibration
frequency. For α > 2.5 cases, the vibration frequency remains lower than the natural
frequency (figure 7b) and the cross-flow force phase jump vanishes (figure 22). This
phenomenon is related to the strictly positive value of the effective added mass over
the entire vibration window.

So far, the analysis of the coupled fluid–structure system has been carried out on the
basis of two-dimensional simulations of the flow. The three-dimensional transition in
the flow at high rotation rates and its possible influence on the interaction mechanisms
are investigated in the next section.



6. Three-dimensional transition
Previous studies concerning rigidly mounted rotating cylinders have shown that

rotation substantially alters the flow three-dimensional transition scenario compared
to the non-rotating case (Mittal 2004; El Akoury et al. 2008; Meena et al. 2011; Rao
et al. 2013b). At Re= 100, the recent linear stability analyses reported by Pralits et al.
(2013) and Rao et al. (2013a) predict that the flow should become three-dimensional
for α ≈ 3.7. The occurrence of the three-dimensional transition under the effect
of forced rotation is examined in the following on the basis of three-dimensional
direct numerical simulation results. The objective here is not to provide an extensive
analysis of the transition mechanisms; instead, this section aims at clarifying the
potential impact of the three-dimensional transition on the fluid–structure interaction
phenomena previously described under the two-dimensional flow assumption. The
case of a rigidly mounted cylinder is considered as a first step in § 6.1 in order to
identify the region of transition and quantify its influence on the fluid forces. The
flexibly mounted cylinder case is addressed in § 6.2.

6.1. Rigidly mounted cylinder
The flow past a rigidly mounted cylinder subjected to forced rotation is visualized
in figure 24 by means of instantaneous isosurfaces of the spanwise and streamwise
vorticity components, for three values of the rotation rate, α ∈ {3.5, 3.75, 4.0}. The
flow is steady in this range of rotation rates, as also noted in the two-dimensional
simulations. The present three-dimensional simulations show that the flow remains
two-dimensional at α= 3.5. In contrast, an undulation of the spanwise vorticity layers
is observed at α=3.75 and tends to amplify at α=4.0; this undulation is accompanied
by the development of elongated vortical structures in the streamwise direction. As a
result, the flow past a rigidly mounted rotating cylinder at Re = 100 becomes three-
dimensional at a critical rotation rate located between 3.5 and 3.75; this observation is
in agreement with the predictions based on linear stability analyses (Pralits et al. 2013;
Rao et al. 2013a). The three-dimensional flow pattern is comparable to those reported
by Mittal (2004) and Meena et al. (2011) at Re=200. The spanwise wavelength of the
three-dimensional pattern is approximately equal to 1.7D; the above-mentioned linear
stability analyses predict a similar wavelength.

In order to quantify the impact of the three-dimensional transition on the fluid
forces, the evolutions of Cx and Cy are plotted along the cylinder span in figure 25,
for α=3.75 and α=4.0. It is recalled that the flow, though three-dimensional, remains
steady for both rotation rates, thus Cx = Cx and Cy = Cy. Spanwise fluctuations of
the force coefficients can be noted in both directions, with an amplification of the
fluctuations as α increases; this amplification correlates to the previously mentioned
increasing spanwise undulation of the flow. The span-averaged values of the force
coefficients are indicated in figure 25 by dashed lines while the values issued from
two-dimensional simulations are denoted by dash-dotted lines. In the range of rotation
rates considered in the present work (α 6 4.0), it appears that the three-dimensional
transition in the flow has only a very limited influence on the span-averaged fluid
forces.

Two steady flow patterns, the D+ and D− patterns, have been identified outside of
the vibration region, on the basis of two-dimensional simulations in § 4. The present
three-dimensional simulations allow one to refine the description of these patterns. The
limit between the D+ and D− flow patterns was defined based on a change in the
sign of the in-line force. As can be noted in figure 25(a), the passage from positive
to negative values of span-averaged Cx occurs in the range α ∈ [3.5, 3.75] (as in



x

y

z
x

y

z

x

y

z

 

x

y

z

  

x

y

z

x

y

z

(a () b)

(c () d)

(e () f )
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the two-dimensional case), which is also the range associated with the onset of the
three-dimensional transition. As a result, the D+ pattern is essentially two-dimensional,
whereas the D− pattern is characterized by an undulation of the flow along the span,
in addition to the inversion of the spanwise vorticity layers reported in § 4 and also
visible in figure 24(c,e).

The three-dimensional transition occurs in a range of rotation rates that corresponds
to the upper limit of the vibration region determined in § 3, on the basis of
two-dimensional simulations. This is also the area where the largest vibration
amplitudes have been observed. As a consequence, the effect of the three-dimensional
transition on the behaviour of the coupled fluid–structure system needs to be clarified
in order to ensure the validity of the previous analysis in this region of the parameter
space.

6.2. Flexibly mounted cylinder
To assess the impact of the three-dimensional transition in the flexibly mounted
cylinder case, two points have been selected in the parameter space, in the range of
rotation rates where the transition occurs for a rigidly mounted cylinder.
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The first point, (α,U?)= (3.75, 13), is located within the vibration region identified
in § 3, in the area of maximum amplitudes of oscillation (figure 7a). A visualization
of the flow through instantaneous isosurfaces of spanwise vorticity issued from the
three-dimensional simulation is presented in figure 26. Contrary to the rigidly mounted
cylinder case at the same rotation rate (figure 24c), it appears that the flow is strictly
two-dimensional. The behaviour of the fluid–structure system, including the vibration
amplitude and frequency, the wake pattern and the fluid forces, is identical to that
issued from the two-dimensional simulation. Previous studies concerning non-rotating
cylinders have shown that the onset of three-dimensionality may be delayed when the
cylinder oscillates transversely (e.g. Berger 1967; Leontini, Thompson & Hourigan
2007); a similar phenomenon is observed in the present case of a rotating cylinder.
Owing to the large amplitudes of the cylinder oscillations in the upper part of the
vibration region, a comparable delay of the three-dimensional transition is likely to
occur across the entire vibration window.

The second point, (α,U?)= (4, 14), is chosen outside the vibration region defined
on the basis of two-dimensional simulations. In this case, as also noted from the two-
dimensional results in § 3, no vibration of the cylinder develops and the flow remains
steady. The flow pattern is identical to that observed in the rigidly mounted cylinder
case (figure 24e,f ). Compared to the two-dimensional case, the equilibrium position of
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FIGURE 26. (Colour online) Instantaneous isosurfaces of spanwise vorticity (ωz = ±0.2)
for (α,U?)= (3.75, 13). Part of the computational domain is shown.

the cylinder is slightly displaced upwards due to the modification of the span-averaged
value of Cy, equal to −16.98 in the three-dimensional case versus −17.01 under the
two-dimensional flow assumption.

Therefore, the three-dimensional simulation results reported in this section
corroborate the previous two-dimensional analysis.

7. Conclusions
The transverse flow-induced vibrations of a circular cylinder subjected to forced

rotation have been investigated by means of numerical simulations, at a Reynolds
number equal to 100. The impact of the symmetry breaking due to the imposed
rotation on the phenomenon of vortex-induced vibrations, previously studied in the
absence of rotation, has been analysed over a wide range of reduced velocities and
rotation rates. The analysis was essentially based on two-dimensional simulations.
Three-dimensional simulations were performed in selected points of the parameter
space in order to confirm the two-dimensional results and examine the potential
influence of the flow three-dimensional transition, which occurs at high rotation rates,
for α ∈ [3.5, 3.75], when the cylinder is rigidly mounted. The principal findings of
this work can be summarized as follows.

Large-amplitude vibrations through wake–body synchronization. The cylinder is
found to exhibit free oscillations from α = 0 up to a rotation rate close to 4.
As a result, vibrations occur for α < 1.8 but also for α > 1.8, i.e. in a range of
rotation rates where the rotation cancels the vortex shedding in the rigidly mounted
cylinder case. Under forced rotation, the vibrations may reach amplitudes close to
1.9 cylinder diameters, thus three times larger than the maximum vibration amplitude
observed for a non-rotating cylinder. For all rotation rates, the bell-shaped evolution
of the vibration amplitude as a function of the reduced velocity is comparable to
that noted for non-rotating cylinder VIV, although the vibration window may widen
substantially. Over the entire vibration region identified in the (α,U?) parameter space,
the structural response and the wake unsteadiness appear to be synchronized. The
free vibrations of the rotating cylinder thus occur under a condition of wake–body
synchronization similar to the lock-in condition driving non-rotating cylinder VIV.



This behaviour contrasts with the galloping-like responses, which do not involve the
lock-in condition and exhibit amplitudes that increase unboundedly with U?.

Novel wake patterns under forced rotation. Several flow patterns including novel
wake topologies have been observed across the parameter space. In the absence of
vibration, the 2S pattern dominates for α < 1.8, while steady patterns characterized
by elongated layers of spanwise vorticity occur at higher rotation rates. Two steady
patterns have been identified: the D+ pattern (for α < 3.7 approximately), where the
negative-vorticity layer is located above the positive one, which results in a positive
in-line force; and the D− pattern (for α > 3.7 approximately), which is characterized
by an inversion of the vorticity layers and Cx < 0. Owing to the three-dimensional
transition, the vorticity layers of the D− pattern exhibit a spanwise undulation of
wavelength approximately equal to 1.7 cylinder diameters. Within the vibration
region, the 2S pattern and its variations (C(2S) and P) dominate the low-rotation-rate
area, which corresponds to structural responses of moderate amplitudes and high to
moderate frequencies. Three wake patterns occur in the high-rotation-rate zone of
the vibration region. The P + S pattern and a novel asymmetric pattern composed
of a triplet of vortices and a single vortex shed per cycle, referred to as T + S,
are associated with large-amplitude vibrations at moderate to low frequencies. The
T+ S pattern dominates the region of maximum-amplitude vibrations, which includes
the range of high rotation rates where the flow three-dimensional transition occurs
in the rigidly mounted cylinder case. Three-dimensional simulation results in this
region indicate that the flow around the vibrating cylinder remains two-dimensional.
In the low-frequency range, the flow exhibits a transverse undulation of the
spanwise vorticity layers, without vortex shedding. This new wake topology is
referred to as the U pattern. Therefore, it is found that free oscillations of the
rotating cylinder may occur in the absence of vortex detachment. Consequently, the
terminology flow-induced vibrations under wake–body synchronization is preferred to
‘vortex-induced vibrations’ in order to designate the present structural responses.

Impact of rotation on force frequency content and phasing mechanism. Large
modulations of the fluid forces, including a substantial amplification of Cx, are noted
when the cylinder vibrates. The type of wake pattern is found to relate to the deviation
of Cy from the value observed in the rigidly mounted case due to the Magnus effect:
the 2S, C(2S) and P patterns are associated with negative deviations, while positive
deviations are observed under the P + S, T + S and U patterns. As also noted in
previous works, in the absence of rotation, the transverse oscillation of the cylinder
results in a large third harmonic component in the cross-flow force, while the
in-line force is dominated by a single frequency equal to twice the cross-flow
fundamental frequency. The symmetry breaking caused by the rotation directly
impacts the frequency content of the fluid forces: the ratio between the in-line and
cross-flow force fundamental frequencies switches from 2 to 1, the in-line force
spectrum is dominated by the first harmonic component, while both second and third
harmonic contributions arise in the cross-flow force spectrum. The imposed rotation
also influences the phasing between the cross-flow force and the structural response:
the 180◦ phase jump occurring when the vibration frequency crosses the oscillator
natural frequency tends to drift towards higher reduced velocities as α increases and
disappears at high rotation rates. This phenomenon is associated with an alteration
of the vibration frequency, which is found to globally decrease when the rotation
rate increases, in relation with the strong variability of the effective added mass
coefficient.
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