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Computing an optimized trajectory between Earth

and an EML2 halo orbit

Bastien Le Bihan, Pierre Kokou, and Stéphanie Lizy-Destrez

ISAE Supaero, Toulouse, 31400, France

According to the Global Exploration Roadmap, which reflects the international effort
to define feasible and sustainable exploration pathways to the Moon, near-Earth asteroids
and Mars, the next step for manned space exploration is the Moon as second home in
the Solar System. In that perspective, the Earth-Moon Libration points (EML points)
have been a topic of great interest in recent years since EML1 and EML2 were suggested
as advantageous locations of space hubs in the Moon neighborhood. To materialize this
vision, detailed studies are needed to investigate transfers between Earth and the vicinity
of EML2 and the strategies to reduce associated maneuver costs. This work is framed
within the perspective of a future deep space habitat in halo orbit around EML2, and this
paper intends to provide quantitative results so as to select the best deployment scenario
of the station. The main purpose is to determine the best transfer trajectory between a
low-Earth orbit and a halo orbit around EML2 in terms of cost and duration. Two different
kinds of attractive transfer strategies have been identified. Station deployment and cargo
missions would use Weak Stability Boundary (WSB) trajectories whereas manned flights
would exploit a fly-by strategy as it shows an advantageous compromise between short trip
duration and efficiency.

I. Introduction

Since the Apollo program, mankind has not ventured further into space than the close vicinity of Earth.
We tried to increase our mastering of Low-Earth Orbits (LEO) and succeeded thanks to several space stations
such as Salyut, Skylab, Mir and the International Space Station (ISS). Today, even private spaceships can
access LEO and the ISS.

Space exploration and the presence of humans in space is now at a turning point of its history. Nowadays,
space agencies build partnerships and lead common studies, such as the International Space Exploration
Coordination Group (ISECG), to determine what the future of space exploration will be. They all agree
to say that the main objective of upcoming decades will be to send humans to Mars. But considering the
current resources, level of technology and political will, we are not capable of doing it yet. A step-by-step
development program of spatial activities is needed.

Several scenarios, such as those reported in the Global Exploration Roadmap of ISECG [1], are proposed.
Some suggest to go back to the Moon first, others to visit asteroids. But in either case, the deployment
of a deep-space habitat in the vicinity of an Earth-Moon Lagrangian (EML) point, whose nature will be
explained hereunder, has been pointed out as a key-point milestone to further development of future space
technologies.

A station in halo orbit around EML2 [2] has many advantages: it can serve as a gateway to other
promising destinations (Moon, asteroids, Mars...) in the solar system, being linked to them by low-cost
passageways. Set up on an appropriate EML2 halo orbit, the deep-space habitat can maintain continuous
line-of-sight communications between Earth and the far side of the Moon [3, 4]. The far side, which would be
easily available for the first time in manned flights history, has been suggested as an advantageous location
for a radio observatory, as it would be protected from interference with Earth. The absence of spatial debris
and of the terrestrial inhomogeneous gravitational field makes a cheaper station-keeping strategy possible.

Classical approaches to spacecraft trajectory design have been quite successful in the past years with
Hohmann transfers for the Apollo program but these missions were very costly in terms of propellant. The
fuel requirements of these transfers would make the deployment of a massive space station in deep space
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unfeasible. However, a new class of low-energy trajectories have been discovered and extensively investigated
in recent years. These trajectories take advantage of the natural complex dynamics arising from the presence
of a third body (or more bodies) to reduce transfer costs.

The aim of this paper is to identify, among these methods, optimized transfers for station deployment or
cargo missions and manned flights, linking a departure low-Earth orbit to the halo orbit of the station. The
selection of strategies will be based on two main criteria: the total fuel consumption required to perform the
transfer and the time of flight.

Section II introduces the theoretical bases of the dynamics required to carry out this study. It describes
the model commonly used to compute low-energy trajectories. Section III provides an overview of the
transfer strategies identified in the literature. Section IV develops the family of trajectories chosen for
manned missions whereas Section V analyses station deployment and cargo mission scenarios. Section VI
presents the conclusions and prospects that can be drawn from this research work.

II. Mathematical background

This section outlines the dynamic model used to study the motion of a spacecraft under the gravitational
effect of two massive bodies, within the framework of an Earth-Moon transfer. The mathematical model used
to represent the Earth-Moon or Sun-Earth dynamical environments, that is, the Circular Restricted Three-
Body Problem (CR3BP), is developed. This model is used to introduce the notions of libration points,
libration orbits and invariant manifolds. The CR3BP is commonly used to produce quick and efficient
quantitative results for transfers between Earth and libration orbits [4–6].

II.A. Circular Restricted Three-Body Problem

II.A.1. Model

The CR3BP describes the motion, under the gravitational attraction of two massive bodies m1 and m2 in
circular coplanar motion around their common center of mass, of a particle of negligible mass m3 (the third
body). The two main bodies are often called the primaries. For the purpose of this study, the CR3BP will
be used to describe both the Sun-Earth-Spacecraft and Earth-Moon-Spacecraft systems. The motion of the
third body is commonly defined in the rotating reference frame centered at the center of mass of the system
(see figure 1a). The units of the systems are normalized in the following way: the distance between the
primaries, the modulus of their angular velocity and the total mass are equal to 1. The position and velocity
of the third body x̄ = {x, y, z, ẋ, ẏ, ż} are then governed by the system of equations [7]:
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Here µ is the mass ratio of the primaries, Ū is the effective potential of the system, and r1 and r2 are equal
to the distance from the third body to the larger and smaller primaries, respectively (see Figure 1a).

System (1) admits an energy integral of motion [8], commonly used in the form of the Jacobi integral,
defined as:

C(x, y, z, ẋ, ẏ, ż) = −2Ū −
(

ẋ2 + ẏ2 + ż2
)

(2)

Moreover, system (1) is characterized by five equilibrium points, referred to as libration points and
denoted with Li, i = 1, . . . , 5. As shown in figure 1b, the points L1, L2, L3 lie on the line connecting the two
primaries and represent collinear configurations, while L4 and L5 correspond to equilateral configurations of
the masses.
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Figure 1: The Circular Restricted Three-Body Problem

II.A.2. Families of libration orbits

According to literature [7, 9, 10] four different kinds of orbits are known to exist around libration points.
They are usually defined as:

• Lyapunov orbits are planar periodic orbits in the orbital plane of the primaries (xy-plane). Exact
Lyapunov orbits only exist in the CR3BP.

• Lissajous orbits are three-dimensional quasi-periodic orbits with an in- and out-of-plane oscillation.

• Halo orbits are three-dimensional periodic orbits. Farquhar named them “halo orbits” after the shape
they take when seen from Earth [9]. Exact halo orbits can only be computed in the CR3BP.

• Quasi-halo orbits are quasi-periodic orbits around a halo orbit. They are intermediate between
Lissajous and halo orbits.

For the purpose of this study, focus will be set on halo orbits around EML2 since it has been previously
selected as the most promising location for a possible future deep space habitat [2]. Halo orbits were first
computed in the CR3BP and do not exist in a more general model that incorporates additional perturbations.
In such a model, differential correction procedures can be used to compute particular Lissajous orbits which
are very close to halo orbits for a limited time interval [11].

For a given libration point, halo orbits are divided into two families which are mirror images across the
xy-plane. When the maximum out-of-plane amplitude (Az) is in the +z direction, the halo orbit is a member
of the northern family (class I) and if the maximum excursion is in the −z direction, the halo orbit is a
member of the southern family (class II) [8]. Each member of a family corresponds to a specific Jacobi
constant level C. Therefore, halo orbits can be either defined by the couple (class, C) or (class, Az).

To compute a halo orbit, a differential correction scheme with a high order analytical approximation as
first guess is commonly deployed [12]. For this study, a third-order approximation developed by Richard-
son [13] has been used as first guess and a differential correction process has been implemented. Figure 2
shows an example of a southern halo orbit family around EML2.

II.A.3. Invariant manifold structure associated to libration orbits

For a given northern or southern halo orbit, characterized by its Jacobi constant Ch, one can define the
5-dimensional energy manifold M(Ch) by:

M(Ch) = {(x, y, z, ẋ, ẏ, ż) : C(x, y, z, ẋ, ẏ, ż) = Ch} (3)
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Figure 2: Example of a southern EML2 halo orbit family, pictured from four perspectives. The Az amplitude
ranges from 5000 to 30000 km.

M(Ch) is embedded in the 6-dimensional phase space x̄ = {x, y, z, ẋ, ẏ, ż}.
For a given orbit, the stable (resp. unstable) invariant manifold is defined as the subspace of the 6-

dimensional phase space consisting of all vectors whose future (resp. past) positions converge to the periodic
orbit. The corresponding trajectories in the vicinity of the halo orbit are often called asymptotic orbits since
they slowly converge to or diverge from the halo orbit. Invariant manifolds can be seen as 4-dimensional
spaces, topologically equivalent to S3 × R in the 5-dimensional energy manifold M(Ch). These structures
provide dynamical channels beneficial to the design of energy efficient spacecraft trajectories [8]. They
are often referred to as “tubes” since they exhibit tube-like shapes when projected onto the 3-dimensional
position space.

To compute the invariant manifolds, one can propagate the equations of motion (1). However, given
the asymptotic behavior of the motion at arrival or departure, manifolds are not generated directly from
a position on the orbit. Usually, a linear approximation of the manifold is calculated for any given point
on the orbit using tools from the theory of the dynamical stability of systems. Then, the starting point
of the trajectory is taken at a distance dM in the initial stable or unstable direction given by the linear
approximation (see Figure 3a for a visualization of dM ). For further details on the subject, see e.g. [8, 14].
Figure 3b shows an example of the projection onto the position space of the stable and unstable manifolds
of an EML2 southern halo orbit with an amplitude Az = 5000 km.

III. Transfer strategies

An extensive bibliographic research has been conducted in order to identify the possible transfer strategies
to link a Low-Earth Orbit (LEO) with a halo orbit around EML2. The framework of this study fits into
the context of manned spaceflights. The purpose of this paper is then to find the best trajectories according
to two main criteria, the total ∆V required to perform the maneuvers and the time of flight. Using the
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Figure 3: The generation of the stable and unstable manifolds. Their starting point is taken at a distance
dM in the initial stable or unstable direction given by a linear approximation calculated with tools from the
theory of the dynamical stability of systems [8].

elements from the previous section, several strategies can be developed so as to minimize the time of flight
or the ∆V , or to find an acceptable compromise between these two objectives.

In this section, we will first describe four different strategies and then address the question of return
trajectories. Consequently, a comparison between these methods will be made, to finally find the most
suitable strategy for the whole life of the station.

For all the methods presented hereunder, costs depend on the strategy itself but also on several other
parameters, including:

• Az, the maximum out-of-plane amplitude in the +z direction of the considered halo orbit, in kilome-
ters. In order to maintain a permanent line of sight with the Earth, this magnitude should be over
3100 km [3].

• hLEO , the altitude of the initial parking low-Earth orbit, in kilometers.

• dM , the distance between the point on the halo orbit and the actual starting point of the trajectory on
the linear approximation of the stable manifold, in kilometers (see Section II.A.3). Its value is usually
taken between 50 and 100 km to ensure that the linear approximation remains within the range of
validity [8].

III.A. Transfer strategies overview

The principles of the four strategies identified in the literature will now be presented, along with their average
time of flight and total required ∆V . The first three strategies fit into the Earth-Moon Three-Body Problem,
whereas the last one uses two patched Three-Body problems.

III.A.1. Direct transfer (DT)

The classical method to operate a transfer between two space bodies is a two-maneuver direct ballistic
transfer.

This type of transfer does not use at all the manifolds and their insertion properties, which makes it the
most fuel-consuming strategy. The ∆V of such a transfer is around 4000 m/s and requires two maneuvers,
one to leave the LEO and the other to slow down when reaching the halo orbit. This is, however, the shortest
transfer possible with a time of flight between 3 and 15 days.
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III.A.2. Indirect transfer (IT)

When it comes to reducing the ∆V , other strategies should be developed, such as indirect transfers using the
EML2 stable manifold. With these methods, the objective is to enter the manifold at an optimized point and
then follow it toward the halo orbit. The first of these methods consists in generating many entrance points
along the manifold in order to select the one which will lead to a minimum ∆V , without any assumption on
the position of these entrance points. In other words, the time of flight on the manifold is initially let free
to vary.

For each manifold entrance point, the boosts to leave the LEO and to enter the manifold will be different,
the main objective being to minimize their sum. Some authors have used this method, generating many
entrance points and choosing the best trajectories among their results [5]. With this strategy the total
needed ∆V from the LEO orbit to the halo orbit is around 3200-3300 m/s, but the time of flight increases,
between 50 and 150 days approximately.

Bernelli-Zazzera [15] developed an optimization process for this method with the time of flight on the
manifold as a decision variable, using genetic algorithm and sequential programming. Without any additional
gravitational assist from the Moon or the Sun, they computed several low-cost trajectories with a ∆V close
to 3200 m/s.

III.A.3. Lunar Fly-By transfer (LFB)

In this strategy, the entrance point in the manifold is chosen close to the Moon and is not a free parameter
anymore. In this type of transfer, the slingshot effect of the moon is used when the spacecraft enters the
manifold. Thus, the key parameters are the altitude of the Lunar fly-by and the angle relative to the Moon
with which the spacecraft reaches the manifold.

This strategy leads to a good compromise between the ∆V and the time of flight. Recent publications
give ∆V of 3300-3400 m/s approximately for a time of flight between 10 and 25 days [4, 6, 16].

III.A.4. Weak Stability Boundary transfer (WSB)

In Weak Stability Boundary strategies, the CR3BP is not enough anymore, and the model should be extended
to two patched Three-Body problems to account for the influence of the Sun. The Weak Stability Boundary
transfer uses a property of another manifold, the stable one from the Sun-Earth system. In this Sun-Earth
3-body problem, Earth is the smallest primary which makes this manifold come much closer to Earth than
the Earth-Moon manifolds. It is then much easier in terms of ∆V to reach this particular manifold and to
make use of its rich dynamics in order to reduce the cost. The principle of this strategy is to take profit of
the “twisting” properties of trajectories near the Sun-Earth manifold [8] to leave LEO with a first maneuver
and then enter the Earth-Moon stable manifold with or without a new maneuver.

This fourth strategy is definitely the cheapest, with values of ∆V around 3100-3200 m/s. Lasting
between 80 and 120 days, it is also one of the slowest possible transfers.

III.B. Return trajectories

To this point, only Earth-to-Moon trajectories have been discussed, and not the way back. The return
trajectories from the halo orbit to LEO can use exactly the same trajectories as described above, provided
the roles of unstable and stable manifolds are reversed. Instead of using the stable manifold to asymptotically
get to the halo orbit, the unstable manifold will be used.

Moreover, if only the Earth-Moon-spacecraft 3-body problem is considered, the theorem of image trajec-
tories [17] can be used. This theorem states that if a trajectory is feasible in the Earth-Moon system, its
image relatively to the plane containing the Earth-Moon axis and orthogonal to the plane of rotation of the
Moon around Earth is also feasible if flown in the opposite direction. More recent results [18] point out that
optimal Earth-Moon and Moon-Earth trajectories are mirror images of one another.

III.C. Strategies comparison

This study aims to identify and describes the best strategies for cargo and manned flights to halo orbit. In
this framework, some of the best results in term of fuel consumption and time of flight have been selected in
the literature for each method identified in the previous section. We now want to confront and rank them
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both for cargo and manned missions. First, the parameters used to identify and compare the trajectories
are presented and discussed along with a global comparison table. The maneuver cost of each quantitative
result is put into perspective with a theoretical minimum ∆Vmin based on energy considerations. Finally,
the most suitable strategy is selected both for cargo missions and manned spaceflights.

III.C.1. Comparison parameters and results

Table 1 summarizes the comparison of IT, LFB and WSB transfers to the EML2 halo orbits from several
references. The direct transfers (DT) are not discussed here, given their high maneuver cost. The parameters
presented in this table are:

• Az, the maximum out-of-plane amplitude in the +z direction of the considered orbit, in kilometers.

• hLEO, the altitude of the initial low-Earth orbit, in kilometers.

• TOF which stands for the Time Of Flight, in days.

• ∆Vtot, the total cost of the transfer, in meters per second.

• ∆VLEO, the cost of the Earth escape maneuver, in meters per second.

• ∆VMani, the cost of the insertion into the stable manifold of the halo orbit, in meters per second.

• The method used: Weak Stability Boundary transfers (WSB), Lunar Fly-By transfers (LFB) and
Indirect Transfer (IT).

• The model in which the calculations are led. Four main types of model are used: the Circular Restricted
Three-Body Problem (CR3BP), the patched CR3BP, the Bi-Circular Four-Body Problem (BCFBP),
and the JPL ephemeris model.

The comparative analysis of Table 1 is made difficult by the differences in terms of dynamical model,
low-Earth orbit altitude and halo orbit size. In particular, there is no overall agreement on a reference value
for low-Earth orbit altitude even though it has a paramount influence on the resulting ∆VLEO. Despite these
limitations, it is still possible to compare results which share the same order of magnitude for every design
parameter. Among the results, three comparable ones (in bold) were selected and considered the best results
for each strategy. For an indirect transfer and a WSB transfer the time of flight is quite long, and the ∆V
around 3150 m/s. On the contrary, the Lunar Fly-By transfer enables the spacecraft to be around EML2

in 16 days, but costs about 150 m/s more.

III.C.2. Comparison parameters and results

The difficulty of the comparative analysis of Table 1 calls for a shared reference, such as a common lower
limit to the ∆V for a transfer from the Earth to EML2 halo orbits. We can try to estimate the minimum
∆V necessary to carry out such a transfer with a single LEO maneuver in the CR3BP. The calculations of
this section are based on the work of [8, 21]. The initial velocity on the Earth orbit is denoted VLEO.

The general idea is to apply a boost ∆V parallel to the LEO velocity in order to maximize the variation
of the Jacobi constant in LEO named CLEO. This variation must be such that the new velocity Vnew =
VLEO + ∆V defines a new Jacobi constant Cnew which is less or equal to the Jacobi constant Ch on the
desired orbit. Hence, setting Cnew = Ch, the minimum theoretical cost is given by:

∆V min =
(

V 2

LEO − Ch + CLEO

)
1

2 − VLEO (4)

For a given halo orbit altitude, CLEO and VLEO can be easily derived, e.g. with a Two-Body Problem (2BP)
approximation. Then, for a given halo orbit defined by its Jacobi constant Ch, the minimum LEO maneuver
required to reach the halo orbit can be calculated. Obviously, some restrictions have to be made about the
validity of this study:

• Only one maneuver has been considered, which shades the comparison with multi-maneuver technique
such as Lunar Fly-By transfers.
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Table 1: Comparison of several types of transfers to the EML2 halo orbits.

Ref
Az hLEO TOF ∆Vtot ∆VLEO ∆VMani ∆Vsupp Method Model
(km) (km) (days) (m.s−1) (m.s−1) (m.s−1) (m.s−1)

[19] 8000 167 98 3161 3161 0 0 WSBb BCRFBP

[20] 53000 185 110 3196 3196 0 0 WSB JPL

[20] 53000 185 190 3200 3200 0 0 WSB CR3BPe

[20] 53000 185 110 3264 3264 0 0 WSB CR3BPe

[15] 1000 200 77 3119 − − 0 ITc CR3BP

[15] 8000 200 123 3156 − − 0 IT CR3BP

[15] 8000 200 43 3203 − − 0 IT CR3BP

[4] 6000 200 20a 3440 3060 380 0 LFBd CR3BP

[16] 2000 200 16 3311 3116 193.3 1.9 LFBf JPL

[16] 5000 200 16 3336 3118 197.8 20.6 LFB JPL

[16] 10000 200 16 3346 3115 189.7 40.8 LFB JPL

[16] 20000 200 12 3399 3113 179.6 105.7 LFB JPL

[16] 30000 200 14 3460 3116 186.2 157.6 LFB JPL

[5] 8000 360 120 3350 3150 200 0 IT CR3BP

[6] 5000 400 30 3298 3077 216 4 LFB CR3BP

[4] 6000 500 20a 3350 2980 370 0 LFB CR3BP

[4] 6000 2000 20a 3020 2670 350 0 LFB CR3BP

a Average time of flight. The real values lie between 18 and 23 days.
b WSB stands for Weak Stability Boundary.
c IT stands for Indirect Transfer.
d LFB stands for Lunar flyby
e The patched CR3BP is used: the behaviour of the spacecraft is either evaluated in the Sun-Earth system or the Earth-Moon
system.

f In this paper, the LFB transfers includes a preliminary boost ∆Vsupp on the halo orbit to bend the trajectory in the manifold.
See the corresponding article for more explanations.

• The relation between the LEO altitude and ∆V min has been implemented in the Earth-Moon CR3BP.
In strategies such as WSB transfers, the influence of the Sun naturally lowers the Jacobi constant.

• The initial velocity on the Earth orbit is evaluated in the 2BP approximation, therefore decreasing the
pertinence of the derived relation at high altitudes.

Despite these limitations, ∆V min as a function of the LEO altitude may be used as a first approximation of
a common lower limit for all the different approaches of Earth-EML2 transfers. Figure 4 gives an example of
the influence of the LEO altitude on ∆V min for two sizes of halo orbits: Az = 8000 km and 53 000 km. One
can see that the size of the halo orbit has little influence on ∆V min since the maximum variation between
the two curves plotted is about 0.3% for the range of altitudes considered, which means between 50 and
550 km. Thus, it is possible to plot several values of Table 1 for comparison, despite their diversity of Az
amplitude.

One can see that the lower limit shown on figure 4 is consistent with the literature. One should not
expect to find ∆V much lower than the aforementioned theoretical lower limit. Moreoever, the optimization
algorithm developed by Bernelli-Zazzera et al. [15] enable them to get very close to the ∆V min for the
considered altitude.

III.C.3. Optimized strategy for manned and cargo missions

We aim to select the most suitable strategy for cargo and manned missions to and from halo orbit. Manned
spaceflights between Earth and the station requirements are a short time of flight to rapidly access the
station and reduce the exposition to radiations in deep space. Figure 5 presents the overall fuel cost ∆Vtot
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Figure 4: ∆V min as a function of the LEO altitude. Several values from Table 1 (red circles) are plotted for
comparison. They are labelled with the convention <Name of the main author, year of publication>.

as a function of the time of flight for the different methods of Earth-EML2 transfers. One can see that the
flyby strategy allows 20-days transfers to EML2 with a reasonnable cost of 3300-3400 km/s. It has thus
been selected as the best compromise for this type of mission.

On the contrary, the main criterion of selection for unmanned flights is the cost reduction in terms of
propellant whereas longer trip durations can be accepted. Thus, the Weak Stability Boundary transfers are
used as a framework for cargo. Although the approach of Bernelli-Zazzera discussed in III.A.2 deserves to
be furtherly developed, it is no longer taken into account, given its uniqueness in the literature [15].

Section IV and V focus on these two choices, in the perspective of their respective type of mission.

IV. Manned transfers trajectories

As stated in the previous section, manned spaceflights between Earth and the station require both a short
time of flight and low propellant consumption. Fly-by strategy has been selected as the best compromise for
this type of mission. Following the work of [4, 6, 16] and [3], we investigate the influence of the parameters Az,
dM , φ on the cost of flyby transfers in terms of time of flight TOF and maneuvers ∆VMani and ∆VLEO, all
variables being defined in Subsection III.C. The goal is to find good trade-offs between the time of flight and
the overall fuel cost. Firstly, the strategy, the design parameters and the assumptions used to compute the
flyby trajectories are presented. In particular, in the framework of rendezvous with the station, a continuous
parametrization of its position is needed. The angular position θ is introduced for this purpose. Then,
the variation of the time of flight and amplitude of the maneuvers in relation to the design parameters are
studied, and some recommendations for manned spaceflight are presented. Finally, some constraints specific
to flyby trajectories are presented in the context of the design of spaceflights from the halo orbit to Earth.
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Figure 5: The overall fuel cost ∆Vtot as a function of the time of flight for several results in the literature.
Several values from Table 1 are plotted, along with examples of direct transfers taken from [6].

IV.A. Strategy and assumptions for the flyby transfers.

The strategy adopted in the present study is a two impulsive LEO-to-halo transfer with a first maneuver
∆VLEO to escape Earth and a second maneuver ∆VMani in the vicinity of the Moon to inject the spacecraft
in the stable manifold of the halo orbit. The arc connecting the low-Earth orbit and the manifold entrance
point is noted AEM , the trajectory arc between this point and the halo orbit entrance point is noted AMH .
The maneuvers and trajectory branches are schematized in Figure 6. Return trajectories are also considered,
with identical notations. In the following subsections, the design parameters of the two types of Earth-to-halo
transfers are listed and the numerical differential corrections process used to compute the desired transfers
is discussed.

IV.A.1. Parametrization of the position on the halo orbit

Most of the previous efforts on halo orbit transfers chose point numbering to specify the position of departure
and arrival on the orbit. However, a continuous parametrization of the position is a necessary step in the
broader context of rendezvous with the station. In order to build such a parametrization, the notion of
pseudo-center X̄pc of the orbit is here introduced and calculated as follows:

X̄pc =
1

2

(

X̄0 − X̄1

)

(5)

where X̄0 and X̄1 are the points of the halo orbit that satisfy y = 0 in the Earth-Moon reference frame.
These points are plotted in Figure 7, along with the position of the pseudo-center for a given nothern halo
orbit with Az = 5000 km.
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L2

Halo orbit

R

Earth

Moon

AEM

AMH

∆VMani∆VLEO

Figure 6: Definition of the maneuvers and arc trajectories in the case of an Earth-to-halo flyby transfer. The
trajectory is schematized in the xy-plane of the Earth-Moon reference frame R. A first maneuver ∆VLEO is
needed to escape Earth and a second maneuver ∆VMani in the vicinity of the Moon is required to inject the
spacecraft in the stable manifold of the halo orbit. The arc connecting the low-Earth orbit and the Manifold
entrance point is noted AEM , the trajectory arc between this point and the halo orbit entrance point is
noted AMH .

From the pseudo-center, the angle θ between the (X̄pc, X̄0) and (X̄pc, spacecraft) directions in the xy-
plane is used to parametrize the position of the spacecraft on the orbit. One has to notice that although
θ is defined in the xy-plane and not in the three dimensional problem, it uniquely defines the position of
the spacecraft. As shown in Figure 7, the angle θ is counted clockwise to follow the natural course of the
spacecraft on the orbit.

IV.A.2. Parametrization of the transfers

First of all, as stated in Section II, an EML2 halo orbit can be defined by its maximum out-of-plane amplitude
(Az), and its class (northern or southern orbit). Given the symmetry of the problem with respect to the class,
the entire study is led with the northern family, leaving the amplitude Az as the only defining parameter
of the halo orbit. In this study, values of Az between 4000 km and 30000 km are studied, although special
attention is given to low-Az halo orbits since they may yield more cost-efficient transfers [22].

Then, the transfers are separated in two branches AEM and AMH , connected at a specific point in the
vicinity of the Moon. The following parameters are used to identify the AMH arc:

• The angle θ which gives the position of the departure point on the halo orbit. It is taken in the range
[0◦, 360◦]. The set (Az, θ) gives a specific position on a given orbit.

• The distance dM between the point on the halo orbit and the actual starting point of the trajectory
on the linear approximation of the stable manifold. See Subsection II.A.3 and Figure 3a for more
details. In the context of numerical simulation, dM can be considered as a design parameter, despite
its non-physical nature [11]. It is taken in the range [1km, 100km] for which the linear approximation
is valid. The set (Az, θ, dM ) gives a specific trajectory to/from the halo orbit.

• The angle φ defined in Figure 8 which defines the connection point between AMH and AEM with
respect to the Moon. It is taken in the range [0◦, 90◦] for Earth-to-halo transfers, and in [−90◦, 0◦] for
halo-to-Earth trajectories. The set (Az, θ, dM , φ) entirely defines the AMH arc and the connection
point.

For the AEM arc, the major design parameter is the altitude hLEO of the initial low-Earth parking orbit
of the spacecraft. The great influence of the LEO altitude on the overall cost is well-known and expected
[4, 8, 20], therefore it is fixed to the common value of 200 km to cancel its influence on the results and on the
following discussion. The latitude of the parking orbit is let free to vary. Given these assumptions, the AEM

arc and the two maneuvers are built through a differential correction process briefly discussed hereafter.

IV.A.3. Differential correction process

For a given parameter set (Az, θ, dM , φ), the AMH is propagated backward in time from the halo orbit, on
the stable manifold. From the final point on AMH in the vicinity of the Moon, a tangential arrival at LEO
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Figure 7: Position of the pseudo-center (black star) from three perspectives in the Earth-Moon reference
frame for a given northern halo orbit with Az = 5000 km. The EML2 point (red cross) is also plotted,
along with X̄0 and X̄1, the intersection points between the halo orbit and the x-axis (blue dots). The angle
θ between the (X̄pc, X̄0) and (X̄pc, spacecraft) directions parametrizes the position of the spacecraft.

manifold
insertion point

Moon

φ

AEM

AMH

Figure 8: Definition of the angle φ in the case of an Earth-to-halo transfer. The angle φ positions the
connection point between AMH and AEM with respect to the Moon.

is targeted using a numerical differential correction scheme such as the one developped by Gordon [4]. In
this process, ∆VMani is iterated until a low-Earth orbit is reached. In this study, the tangency of ∆VMani is
not imposed to ensure a more extensive possible solutions space.

The velocity of the spacecraft on the AMH branch at the connection point between AEM and AMH

is denoted Vmani. The initial velocity variation value used to start the iterative process is denoted ∆Vi.
Figure 9 shows the different AEM as a function of the ∆Vi for specific AMH arcs, that is for (Az, dM , φ) =
(5000 km, 50 km, 45◦) and for various values of θ. Though the direction of the maneuver is let free to vary
in the differential correction process, the ∆Vi is chosen to be colinear to the velocity Vmani at the manifold
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entrance point and is given in percentage of this velocity. From Figure 9a, it is clear that different values of
∆Vi lead to various types of AEM solutions, each with specific values for ∆VLEO, ∆VMani, the time of flight
and the LEO latitude. In this way, even with all the design parameters (Az, θ, dM , φ) fixed, multiple flyby
trajectories can be computed, creating a family of solutions parametrized by ∆Vi. The transfer scenarios
presented in the following sections are the result of arbitrary choices inside these families of solutions: the
∆Vi that produces the smallest maneuvers is selected. However, ∆VMani as a function of ∆Vi in Figure 9b
shows complex behaviour with local minima and is highly dependant on the AMH arc, which complicates
the systematic selection of a good initial guess. Thus, for any given AMH arc, the AEM with the smallest
maneuvers is selected through a grid search or a rough genetic algorithm.

The halo-to-Earth transfers are built with a similar process with a forward propagation of the equations
of motion, with φ usually taken between −90◦ and 0◦.
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(a) Examples of families of orbits generated from specific
AMH arcs (in red) for various values of ∆Vi. In blue: θ =
95◦. In green: θ = 270◦
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Figure 9: Example of the influence of the initial velocity guess ∆Vi at manifold injection point on the
trajectory AEM and on the final maneuver ∆VMani. The results are shown for two specific AMH arcs,
defined by (Az, dM , φ) = (5000 km, 50 km, 45◦) and θ = 0, 95 and 270◦.

At the end of the differential correction process, the low-Earth orbit and the boost ∆VMani are obtained.
The ∆VLEO maneuver is then calculated to make the link between the transfer trajectory and the circular
LEO. The overall fuel cost is then given by the relationship ∆Vtot = ∆VMani +∆VLEO.

IV.B. Evolution of the maneuvers and the time of flight with the design parameters (Az, θ,
dM , φ).

In the view of optimizing the transfers, the influence of key parameters on the maneuvers, the time of flight
and the LEO latitude is discussed. Given the symmetry of the Earth-to-halo and halo-to-Earth transfers
discussed in Section III.B, only the Earth-to-halo trajectories are studied in this section. Moreover, given
that the variations of ∆VMani are clearly visible on the overall cost ∆Vtot [5], this section uses ∆Vtot as the
unique characteristic quantity of the fuel consumption. Finally, the non-physical parameter dM is fixed to
50 km.

IV.B.1. Evolution of fuel cost (∆Vtot)

In order to understand the influence of the design parameters on ∆Vtot, the following set of parameters
has been fixed: Az = 5000, 6000, . . . 30000 km, φ = 0, 10, . . . 90◦, and θ = 1, 2, . . . 360◦. Figure 10 shows
the resulting costs ∆Vtot as a function of θ, for Az = 5000 km. For this example, the region of the orbit
between θ = 102◦ and θ = 252◦ does not produce any viable trajectory because of a potential collision of the
corresponding manifold branch with the Moon. This region is denoted “no-go window” in this study. For
this Az value, and for any value of the parameter φ, one can see a significant drop of the cost in the vicinity
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of the no-go window, which corresponds to the closest lunar flybys. This correlation between the overall cost
and the distance to the Moon during the flyby is coherent with previous works [4, 16].
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Figure 10: The overall transfer cost ∆Vtot of lunar flyby trajectories as a function of the position on the
orbit θ for various values of φ. The out-of-plane amplitude Az is set to 5000 km. The no-go window is the
region of the orbit between θ = 102◦ and θ = 252◦ that does not produce any viable trajectory because of a
potential collision of the corresponding manifold branch with the Moon.

Moreover, one can see that, depending on the value of θ, the minimum cost may correspond to various
values of φ. In order to cancel the influence of φ, for each value of θ the mininum value of ∆Vtot is selected
in the field of variation of φ. The corresponding curves are plotted in Figure 11 for various values of Az
between 4000 and 25000 km. For small Az values, the minimum ∆Vtot still corresponds to the closest lunar
flybys, in the vicinity of the no-go window. However, it is the contrary for Az values greater than 10 000 km.
The overall cost for a flyby trajectory to a halo orbit of Az = 25000 km is always greater than 3.6 km/s,
whereas trajectories with a cost smaller than 3.35 km/s are possible if Az = 4000 km. This result illustrates
the pertinence of the flyby strategy for orbits with small out-of-plan extensions, and symmetrically shows
its irrelevance for greater Az values. In general, ∆Vtot is an increasing function of Az for almost all values
of the position θ. In the light of these conclusions, the discussion is restricted to Az ∈ [4000 km, 15000 km]
for the rest of the article.

For a given halo orbit, the best solution in terms of ∆Vtot has been selected in the restricted pool
φ = 0, 10, . . . 90◦, and θ = 1, 2, . . . 360◦. The overall cost ∆Vtot and the time of flight TOF of these
trajectories are shown in Figure 12 for various value of the maximum out-of-plane amplitude Az, along with
a plot of the best solution for Az = 4000 km. One can see that the minimum ∆Vtot is an increasing function
of Az, which is in favor of the minimization of the halo orbit size.

We want to have a closer look on the circumstances of the flyby in the vicinity of the Moon for small
Az values. To do so, we introduce the distance dMoon,inj which corresponds to the distance between the
manifold injection point and the surface of the Moon. The angle αHM of the lunar boost with respect to the
velocity at the manifold injection point is also introduced. The value αHM = 0◦ corresponds to a tangential
maneuver. The dMoon,inj and αHM values are then plotted for every mininum of ∆Vtot, regardless of the
value of φ. The results are shown in Figure 13a and 13b. The smallest maneuvers are found for the smallest
values of dMoon,inj and αHM , which corresponds to very close lunar flybys with a quasi-tangential ∆VMani
maneuver. This results is perfectly consistent with previous efforts [22]. However, one can see that neither a
small distance to the Moon nor a quasi-tangential maneuver guarantees a small cost, since the corresponding
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Figure 11: The minimum φ-independent overall cost ∆Vtot of lunar flyby trajectories as a function of the
position on the orbit θ for various values of the out-of-plane amplitude Az.

functions are far from being bijective. Thus, in the context of an optimization of the fuel cost, one has to keep
in mind that small values of dMoon,inj and αHM should be targeted but they do not guarantee an optimized
transfer. This is especially true for the dependance in αHM , which validates the choice not to impose the
tangency of the ∆VMani maneuver in the differential correction process, without any more information in
the search space.

In the context of an optimization of the fuel cost, we have seen so far that the best results tend to
be found for small values of Az and for close lunar flybys with tangential maneuver, which corresponds to
positions on the halo orbit close to the no-go window. In the following section, the time of flight TOF is
also considered in order to build the best trajectories both in terms of fuel cost and travel time.

IV.B.2. Relation between the fuel cost ∆Vtot and the time of flight TOF

In the view of manned spaceflight, this section focuses on the trade-off between the fuel and the time costs.
To do so, the overall time of flight (TOF ) is computed for the set of trajectories defined in the previous
section. Figure 14 shows the scatter diagram of (∆Vtot,TOF ) for Az = 5000 km and for various values
of φ. Regardless of the value of φ, the best trajectories (cyan circles) are situated in the lower left corner
of the figure, as both small ∆Vtot and time of flight are sought. These trajectories creates a Pareto front
in the (∆Vtot, TOF ) space that can be computed for any orbit with small out-of-plane amplitudes. The
corresponding results are presented in Figure 15 for various values of Az. In this figure, the trade-off between
the fuel cost and the time of flight is apparent. The fastest transfers (less than 19 days of travel for Az = 7000
km) are obtained thanks to the highest maneuvers (more than 3.7 km/s for Az = 7000 km) and conversely.
The shortest transfers are obtained for Az = 7000 km, the most fuel efficient for Az = 4000 km.

The derivative ∆Vtot with respect to the time of flight is notedDT∆Vtot. In the range [18.5 days, 20 days],
DT∆Vtot is highly negative, typically between −52 and −27 m/s/day. For a time of flight greater than 20
days, DT∆Vtot is less than 8 m/s/day. Thus, there is a twist in the trade-off situation around the 20-days
value: it is much more time consuming to reach the minimum ∆Vtot in the long-flight region than to save
fuel in the short-flight range. The best trade-offs correspond to a time of flight around 20 days and an overall
fuel cost around 3.45 km/s.
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Figure 12: The best solutions in terms of ∆Vtot has been selected in the restricted pool φ = 0, 10, . . . 90◦,
and θ = 1, 2, . . . 360◦. Left panel: the best solution in the XY-plane of the Earth-Moon reference frame for
Az = 4000 km. The AEM arc is in magenta, the AMH arc in red. Right panel: the overall cost ∆Vtot and
the time of flight TOF .

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

3.3

3.35

3.4

3.45

3.5

3.55

3.6

3.65

3.7

dMoon,inj (km)

∆
V
to
t
(k
m
/s
)

Az = 4000 km
Az = 7000 km
Az = 9000 km

(a) ∆Vtot as a function of dMoon,inj

0 5 10 15
3.3

3.35

3.4

3.45

3.5

3.55

3.6

3.65

3.7

αHM (◦)

∆
V
t
o
t
(k
m
/s
)

Az = 4000 km
Az = 7000 km
Az = 9000 km

(b) ∆Vtot as a function of αHM

Figure 13: Influence of the circumstances of the lunar flyby on the minimum φ-independent overall cost
∆Vtot for various values of the out-of-plane amplitude Az. Two parameters are considered: the distance
dMoon,inj which corresponds to the distance between the point of injection in the manifold and the surface
of the Moon and the angle αHM of the lunar boost with respect to the velocity at the manifold injection
point.

IV.B.3. Latitude of the low-Earth parking orbit

The latitude of the parking orbit is let free to vary in the differential correction process used to compute the
trajectories. However, the spacecraft is initially injected into near-Earth space at a latitude restrained by
the performances of its launcher and the situation of the spaceport. Thus, an additional maneuver may be
required to reach the parking orbit from the original orbit of insertion. To reduce the cost of this maneuver,
the latitude of insertion of the spacecraft needs to be close to the latitude of departure from Earth, which
constrains the latitude of the spaceport. This section aims to quantify the range of variation of the latitude
of the parking orbit to have an estimation of the most suitable spaceport. It is calculated at the position
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Figure 15: The φ-independant best trajectories in the (∆Vtot, TOF ) space, for various values of Az. One can
see that there is a twist in the trade-off situation around the 20-days value: it is much more time consuming
to reach the minimum ∆Vtot in the long-flight region than to save fuel in the short-flight range.

of the LEO boost and takes into account the obliquity of the Earth and the inclination of the Earth-Moon
plane with respect to the ecliptic. Similarly to Section IV.B.1, for each value of θ, the minimum of ∆Vtot
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and the corresponding Earth latitude are selected in the field of variation of φ. The results are shown in
Figure 16 for various values of the out-of-plane amplitude Az. The average latitude is 28◦ for every Az,
which roughly corresponds to an low-Earth orbit into the Earth-Moon plan. The deviation range around
this value is about [−2◦,+4◦] with a standard deviation of 1.4 for Az = 4000 km and [−2◦,+9◦] with a
standard deviation of 2.2 for Az = 15000 km. The latitude of the low-Earth orbit is then close to 28◦ for
every flyby trajectories of interest. This latitude has to be reached by the spacecraft from the insertion orbit
of its launcher. With its latitude of 28◦31′, the Kennedy Space Center would allow the insertion orbit to be
very close to the parking orbit, and thus can be considered as the most suitable spaceport for this type of
mission.
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Figure 16: The minimum φ-independent overall cost ∆Vtot as a function of the latitude of the low-Earth
parking orbit for various values of the out-of-plane amplitude Az.

IV.C. The no-go window of halo-to-Earth and Earth-to-halo transfers

For a given position of the spacecraft on the halo orbit defined by (Az, θ), the AMH computed with the
parameters (dM , φ) may collide with the Moon, therefore leading to an unrealistic trajectory. This type of
collision is usually obtained for a continuous range of position on the orbit, both for the stable and unstable
manifolds i.e. for both traveling directions. This range, noted [θ1, θ2] ⊂ [0, 360◦] defines the “no-go window”
of halo-to-Earth and Earth-to-halo transfers. This window imposes constraints on the mission design: for
Earth-to-halo transfers, the set of halo injection points at a given date may be restricted; for halo-to-Earth
transfers, flyby strategies may be impossible for certain positions and dates. This section aims to investigate
the structure of the no-go window and introduce its influence on mission design. Given the symmetry of the
Earth-to-halo and halo-to-Earth transfers, only halo-to-Earth trajectories are studied in this section. For
the purpose of this study, the temporal extent of the no-go window is denoted as Tnogo and is given as a
fraction of the orbital period T0.

IV.C.1. The influence of dM on the no-go window

As stated in Section IV.A.2, dM can be considered as a design parameter, despite its non-physical nature.
Given the asymptotic behavior of the motion in the vicinity of the halo orbit, manifolds are not propagated
directly from a position on the orbit: the starting point is taken at the distance dM in the initial stable or
unstable direction given by linear approximation. The motion of the spacecraft on the manifold and thus the
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position and amplitude of the no-go window are very sensitive to the dM value. Figure 17 shows the spatial
and temporal extent of the no-go window as a function of dM for Az = 4000 km and for the median value
φ = −45◦. One can see that the duration of the window is very variable for small values of dM , ranging
between 20 and 30 % of the orbital period for this example. Figure 17a shows that the no-go window is also
spatially variable and “moves” on the orbit along with dM . Complementary studies should be carried out
to characterize more precisely the influence of dM on the no-go window and the overall mission design. In
the meantime, dM has been fixed to an arbitrary value of 50 km to cancel out its effect.

(a) The spatial extent (in grey) of the no-go window as a
function of dM .
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(b) The temporal extent Tnogo of the no-go window as a
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Figure 17: The spatial and temporal extent of the no-go window as a function of dM for Az = 4000 km and
for the median value φ = −45◦. On the left panel, the spatial extent is represented by the values θ1 (in red)
and θ2 (in blue) which are taken in R instead of [0, 360◦] to ensure continuity. The continuous range for
which flyby transfers are impossible is in grey.

IV.C.2. Influence of the no-go window on return missions

For a given position on the orbit, a return flyby strategy from the station may be impossible to implement if it
interferes with the no-go window. We aim to quantify the delay induced by the presence of the no-go window
on the return strategy. For a given set of the parameters (Az, dM , φ), the fastest halo-to-Earth transfer has
been computed for θ = 1, 2, . . . 360◦ with the scheme described hereafter. For a given position θ0, the initial
transfer is the classical flyby transfer with θ0 taken as the departure point, with a time of flight Ttransfer,0.
For all the positions θi = 1, 2, . . . 360◦ the duration Torbit,i of the orbit arc between θ0 and θi is computed.
The time of flight of the classical flyby transfer with θi taken as the departure point, is denoted Ttransfer,i.
The fastest halo-to-Earth transfer at θ0 is then given by the minimum minθi (Torbit,i + Ttransfer,i) with the
departure point argminθi (Torbit,i + Ttransfer,i). The resulting return mission durations are presented in
Figure 18 for (Az, dM , φ) = (5000 km, 50 km, 45◦). As expected, the no-go window almost doubles the
maximum mission duration. Quantitatively, at the beginning of the window, 48 days are needed to go back
to Earth if a flyby return is decided. Thus, in the context of crew safety, other strategies than flyby have to
be implemented to meet the requirements of quick return from the station.

V. Station deployment and cargo missions trajectories

In this section, we will focus on another kind of trajectories. The setting-up of a habitable station on a
halo orbit would imply one or several deployment missions and regular cargo flights to resupply the astronauts
in food, water and other consumables. The main criterion of selection for these unmanned missions is the
cost reduction in terms of propellant whereas longer trip durations can be accepted. Consequently, a WSB
strategy is selected, which enables the most efficient trips.
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Figure 18: The fastest halo-to-Earth flyby strategy as a function of the current position θ for (Az, dM , φ)
= (5000 km, 50 km, 45◦). In deep blue: Torbit the time spent on the halo orbit before departure. In light
blue: Ttransfer the duration of the transfer to LEO.

V.A. Transfer strategy to EML2 halo orbit

In the WSB strategy, two CR3BP are patched, the Sun-Earth CR3BP and the Earth-Moon CR3BP. This
strategy consists in reaching a Sun-Earth low-energy trajectory with a first LEO maneuver, and then entering
the Earth-Moon stable manifold with or without a second maneuver.

The transfer is divided into two artificial phases. The first one leads the spacecraft from its departure LEO
to the entrance point of the Earth-Moon stable manifold whereas the second one consists in the asymptotic
drifting along the manifold to the final halo orbit. In order to benefit from the solar dynamical assistance,
the first stage is calculated in the Sun-Earth CR3BP, which means the influence of the Moon is not taken
into account. The initial low-Earth orbit is chosen to lie in the ecliptic, thus the first leg of the trajectory is
contained in the z = 0 plane. On the contrary, the second part of the trajectory is calculated in the Earth
Moon CR3BP so that the stable manifold is used to reach the halo orbit. Following the work of [19], two
Poincaré sections, namely PSE and PEM are generated to detect connections between the two legs of the
trajectory. They are defined in Figure 19, along with their associated angles φSE and φEM . The design of
the whole Earth-to-halo trajectory comes down to the selection of pairs of intersection points ySE ∈ PSE

and yEM ∈ PEM .

V.A.1. Conditions of feasibility for the Earth-to-halo connection

The necessary condition to identify feasible trajectories is the coincidence, at least in the configuration space,
of the points ySE and yEM . That first requires the two surfaces of section PSE and PEM to project on the
same line in the (x,y) plane. In terms of mutual positioning of the primaries, it means that the Earth-Moon
line must be tilted by the angle β = φSE−φEM with respect to the Sun-Earth line at the time the spacecraft
is on the section (see Figure 19). Moreover, since the Poincaré map PSE lives in the z = 0 plane, the search
of possible intersections is restricted to the two points in PEM with zero z-coordinate. Since the spatial
flow is never tangential to the z = 0 plane, and although it is possible to achieve satisfying intersections
in configuration space between PSE and PEM ∩ {z = 0}, a small out-of-plane component of the velocity
maneuver can never be avoided.
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Figure 19: Definition of the optimization parameters for the patched Three-body problem.

Candidate pairs of transfer points have to be selected by efficiently varying the following design parameters
in their range of definition (adapted from [19]):

• φLEO ∈ [0, 360◦] : the departure angle on LEO;

• ∆Vi ∈ [3150, 3250 m/s] : the first thrust needed to leave LEO;

• φSE ∈ [0, 180◦] : the angle between the x-axis and the Poincaré plane PST in the Sun-Earth system;

• φEM ∈ [0, 180◦] : the angle between the x-axis and the Poincaré plane PEM in the Earth-Moon system;

• Az ∈ [4000, 30000 km] : the out-of-plane amplitude of the halo orbit.

As in Section IV.A.2, departure LEO altitude hLEO of 200 km has been selected.
For any pair ySE = {xSE , ySE , zSE , ẋSE , ẏSE , żSE} and yEM = {xEM , yEM , zEM , ẋEM , ẏEM , żEM}, the

conditions for a successful connection are defined by:
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V.A.2. Search algorithm

Given the high number of parameters, the search algorithm has been divided in two steps. First, a couple
(Az,φEM ) is selected to define the manifold leg of the trajectory. The corresponding intersection points of
the halo manifold with both the Poincaré plane and the z = 0 plane are calculated. Then, for the Earth
leg, a rough search in the {φSE , φLEO,∆Vi} space showed that, on average, only one combination of these 3
parameters satisfy the previous conditions. Therefore, an optimization algorithm based on the three variables
{φSE , φLEO,∆Vi} is implemented.

This problem being highly nonlinear, a classical multi-objective genetic algorithm has been used to look
for parameters minimizing both the position gap and the velocity gap between the two legs of the trajectory.
A database of manifold entrance points has been built for three different Az by exploring the interval of φEM

from 10◦ to 170◦ with a step of 0.1◦. The genetic algorithm has then been run to access each of these points
starting from LEO. After the maximum number of iterations has been reached, only optimized trajectories
satisfying the conditions of successful connection have been kept.
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V.B. Results

The operational features of the calculated trajectories are shown in Figure 20. The cost of a trajectory is
measured by the total change of velocity ∆Vtot required along the entire trajectory, i.e. the sum of the initial
impulsion in LEO and the velocity gap at the intersection of the two legs.
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Figure 20: Performance of the WSB trajectories obtained by the genetic algorithm and satisfying the con-
ditions of successful connection: total ∆V required in function of time of flight.

We observe that most trajectories can be grouped together in what we will call the nominal family in
the rough range [3210, 3235] m/s ×[70, 120] days, corresponding to the data found in the literature (see
Table 1). One of them is traced in Figure 21. A few unexpected trajectories are found around a time of
flight of 35 days. An example of these second type trajectories is shown in Figure 22. The velocity change
at the intersection is significant in direction but the gap of speed satisfies the above conditions of successful
connection. Further studies should be carried out to check the relevance of such solutions. If their existence
were to be confirmed, they would represent very attractive transfer solutions given their short duration. As
for now, without any complementary validation, we decide to discard them.

The analysis of Figure 20 shows that the amplitude Az has a minor influence on the performance inside
the nominal family, whereas large Az reduce the cost of type 2 trajectories. However the influence of this
parameter is much less significant than the one of hLEO. Indeed, a similar optimization problem has been
set up for hLEO = 400 km and Az = 8000 km and gave the best ∆Vtot at 3163 m/s. All these transfers are
reproducible every lunar period of rotation, providing mission designers with an extensive pool of solutions
to reach the halo orbit. One may notice that the genetic algorithm finds twice as many satisfying trajectories
for Az = 8000 km as for the two other orbit amplitudes.

A deeper look at the obtained distribution of the design parameters points out that there exists a
preferential relation between φLEO and φSE , as shown in Figure 23. The trajectories can be divided into
two groups according to their starting zone. The main one regroups transfer legs shooting from around
φLEO = 330◦, i.e. the LEO opposite-to-the-Sun side (see Figure 24), in direction of the first Sun-Earth
Lagrangian point SEL1, and meeting the Poincaré map at an average φSE = 160◦. This group also contains
the type 2 fast trajectories identified earlier. The second solution consists in starting from around φLEO =
330◦ and in shooting toward SEL2. The relative importance of the first group suggests to preferentially try
to take advantage of the SEL1 dynamics.
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Figure 21: Earth-to-halo trajectory from nominal family, for a final orbit of Az = 8000 km. The time of
flight is about 102 days, the global ∆V is ∆Vtot = 3220 m/s, the velocity gap at the connection point is
∆Vgap = 4 m/s. In blue: Earth departure leg. In red: halo arrival leg.
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Figure 22: Earth-to-halo trajectory of type 2, for a final orbit of Az = 30000 km. The time of flight is about
29 days, the global ∆V is ∆Vtot = 3207 m/s, the velocity gap at the connection point is ∆Vgap = 28 m/s.
In blue: Earth departure leg. In red: halo arrival leg.
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If, beyond the domain of mission design, a better precision on the ∆V cost is needed, a decisive step
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would consist in computing more physical solutions in a 4-body problem that would take into account the
influence of the Sun and the Moon on both legs of the transfer, by using the previous trajectories obtained in
the CR3BP as first guesses. The addition of the Moon in the simulation of the departure leg would modify
its shape in the lunar vicinity, but literature [4, 14] has shown that the calculated order of magnitude for the
thrust needed and time of flight would remain close to the new values. It would also be interesting to see
if the type 2 fast trajectories still exist in such a more detailed model, or whether they are just an artifact
tied to the simple CR3BP.

VI. Conclusions and prospects

According to the ISECG roadmap, a research team at ISAE/SUPAERO is working on the mission analysis
of an inhabited space station, orbiting around EML2 on a halo orbit, so as to provide a safe outpost for
human exploration. The main goal of this study is to compute and analyze optimized transfers from a LEO
to the station orbit in the perspective of cargo missions and manned flights.

The bibliographic research pointed out many possible strategies in order to access a halo orbit around
EML2. We selected the most suitable among them, adapted to the requirements of each mission.

A deep space habitat would require frequent manned transfers between low-Earth orbit and the station.
This type of mission demands a trade-off between the propellant consumption and the time of flight. Flyby
strategies have been selected as the most suitable method for such a compromise. After an analysis of
the design parameters of flyby trajectories on the fuel and time cost, the best results tend to be found for
small values of the out-of-plane amplitude Az, for close lunar flybys, and for a tangential flyby maneuver.
Moreover, a trade-off zone has been identified which corresponds to a time of flight around 20 days and an
overall cost of 3.45 km/s. However, trajectories with cost as low as 3.34 km/s have been computed for small
Az values.

The setting up of the station would also imply deployment missions and regular cargo flights to resupply
the astronauts in consumables. The corresponding suitable trajectory would have very low cost in terms
of propellant but would tolerate a longer trip duration, which justifies the selection of WSB strategy. The
average performance of these trajectories is around 3.22 km/s with a time of flight of 100 days. The analysis
of the data has shown that there exist a great number of launch possibilities every period of lunar rotation
and that the dynamics of SEL1 seems the most effective to exploit. The transition to a more complete
4-body problem would increase the precision of the performance and solve the question of the actual reality
of the unexpected fast trajectories.

For future work, we will focus on other steps of the station deployment scenario. Based on the obtained
results for ∆V and time of flight, detailed analysis of the space rendezvous issue on the halo orbit will be
carried out. The study of elements prior to the transfer such as the launcher selection or the injection and
features of the parking LEO orbit would also be worthy of interest.
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