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a b s t r a c t

The Underground Research Laboratory at Bure (CMHM), operated by ANDRA, the French National Radio-
active Waste Management Agency, was developed for studying the disposal of radioactive waste in a
deep clayey geologic repository. It comprises a network of underground galleries in a 130 m thick layer
of Callovo-Oxfordian clay rock (depths 400–600 m). This work focuses on hydraulic homogenization (per-
meability upscaling) of the Excavation Damaged Zone (EDZ) around a cylindrical drift, taking into
account: (1) the permeability of the intact porous rock matrix; (2) the geometric structure of micro-fis-
sures and small fractures synthesized as a statistical set of planar discs; (3) the curved shapes of large
‘chevron’ fractures induced by excavation (periodically distributed).
The method used for hydraulic homogenization (upscaling) of the 3D porous and fractured rock is

based on a ‘frozen gradient’ superposition of individual fluxes pertaining to each fracture/matrix block,
or ‘unit block’. Each unit block comprises a prismatic block of permeable matrix (intact rock) obeying
Darcy’s law, crossed by a single piece of planar fracture obeying either Darcy or Poiseuille law. Polygonal
as well as disc shaped fractures are accommodated. The result of upscaling is a tensorial Darcy law, with
macro-permeability Kij(x) distributed over a grid of upscaling sub-domains, or ‘voxels’. Alternatively,
Kij(x) can be calculated point-wise using a moving window, e.g., for obtaining permeability profiles along
‘numerical’ boreholes. Because the permeable matrix is taken into account, the upscaling procedure can
be implemented sequentially, as we do here: first, we embed the statistical fissures in the matrix, and
secondly, we embed the large curved chevron fractures.
The results of hydraulic upscaling are expressed first in terms of ‘equivalent’ macro-permeability ten-

sors, Kij(x, y, z) distributed around the drift. The statistically isotropic fissures are considered, first, with-
out chevron fractures. There are 10,000 randomly isotropic fissures distributed over a 20 m stretch of
drift. The resulting spatially distributed Kij tensor is nearly isotropic (as expected). At the scale of the
whole EDZ, the global KFISSURES is roughly 5000 times larger than permeability KM. The detailed distribu-
tion of the equivalent KFISSURES(x, y, z) defined on a grid of voxels is radially inhomogeneous, like the sta-
tistics of the disc fissures. In addition, a moving window procedure is used to compute detailed radial
profiles of KFISSURES versus distance (r) to drift wall, and the results compare favorably with in situ perme-
ability profiles (numerical vs. experimental boreholes at Bure’s GMR drift).
Finally, including the large curved chevron fractures in addition to the random fissures, the resulting

Kij(x, y, z) appears strongly anisotropic locally. Its principal directions are spatially variable, and they tend
to be aligned with the tangent planes of the chevron fracture surfaces. The global equivalent Kij of the
whole EDZ is also obtained: it is only weakly anisotropic, much less so than the local Kij’s. However,
because of the radially divergent structure of the ‘chevrons’ (although not quite cylindrical in geometry),
it is recognized that the global Kij due to chevrons lacks physical meaning as a tensor. Considering only
the magnitude, it is found that the permeability due to ‘chevrons’ (KCHEVRONS) is about 4 orders of mag-
nitude larger than that due to statistical fissures (KFISSURES), assuming a hydraulic aperture
aCHEVRON = 100 lm. By a simple argument, KCHEVRONS would be only one order of magnitude larger than
KFISSURES with the choice aCHEVRON = 10 lm instead of 100 lm. This significant sensitivity is due to several
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factors: the large extent of chevron fractures, the assumption of constant hydraulic aperture, and the
cubic law behavior based on the assumption of Poiseuille flow.
The equivalent macro-permeabilities obtained in this work can be used for large scale flow modeling

using any simulation code that accommodates Darcy’s law with a full, spatially variable permeability ten-
sor Kij(x).

1. Introduction

The Underground Research Laboratory at Bure (CMHM – Centre
de Meuse/Haute Marne, France) is operated by ANDRA, the French
National Radioactive Waste Management Agency. The purpose of
the laboratory is to study the disposal of radioactive waste in a
deep clayey geologic repository. The laboratory comprises a net-
work of underground galleries through a 130 m layer of Callovo-
Oxfordian ‘‘argilite’’, or clay rock, about 155 million years old,
and located between 400 m and 600 m depth.

In this context, the present work focuses on the hydraulic
homogenization (upscaling) of the Excavation Damaged Zone
(EDZ) around a cylindrical excavation (gallery), taking into account
the specific geometric structure of two sets of dicontinuities: (i) the
‘fissures’ comprising in fact microfissures as well as minor frac-
tures (submetric) and (ii) the much larger curved shear fractures
organized in a ‘chevrons’ pattern. The latter are induced by (ahead
of) the excavation front, and have an extension of several meters.
In addition, the permeability of the intact porous rock is also di-
rectly taken into account.

In summary, the ‘damaged’ heterogeneous medium is made up
of three sets of conductors: (i) microfissures and moderate size
fractures (submetric); (ii) large curved ‘chevron’ fractures (several
meters); and (iii) intact porous matrix (undisturbed clay rock).

Two different geometric models are used for structuring the
two sets of discontinuities in 3D space: (i) the ‘fissures’ are repre-
sented as a statistically isotropic set of planar discs; and (i) the ‘chev-
ron’ fractures are represented as a periodic set of curved parametric

surfaces.
The results of hydraulic upscaling (to be explained further be-

low) are expressed mainly in terms of ‘equivalent’ macro-perme-

ability tensors. The macro-permeabilities obtained in this work
will be compared against in situ data, namely, permeability profiles
along boreholes.

2. Geometric and statistical modeling of the ‘EDZ’ in 3D

In this paper, we consider a 3D stretch of a cylindrical excava-
tion (gallery or drift), with the following geometry: (i) section
length L = 20 m; (ii) drift diameter DDRIFT = 4 m; (iii) thickness of
the annular EDZ around the drift: E = 4 m. The chosen domain of
investigation is a 3D rectangular box of size 20 m � 13 m � 13 m,
which encloses the drift and its ‘EDZ’.

The transverse scales for the drift and EDZ correspond roughly
to the experimental drifts excavated at Bure and the observed
EDZ. For convenience, the drift length was shortened from about
100 m to ‘only’ 20 m. This does not affect the 3D hydraulic upscal-
ing study conducted in this paper, given the statistical homogene-
ity of the EDZ along the drift axis.

The goal of this section is to present a geometrical and statisti-
cal model of the 3D structure of the clay rock in the Excavation
Damaged Zone (EDZ), on which the rest of the paper is based.

2.1. Statistical network of fissures (random plane discs)

The ‘fissures’ (microfissures and small fractures) are modeled as
statistical set of planar discs, with randomly isotropic orientations,

and radially decreasing density, diameters and apertures away
from the drift wall : a visualization is shown in Fig. 1.

The main hypotheses for the statistical set of discrete fissures
were:

� The fissures are plane discs with statistically isotropic
orientations in 3D euclidian space.

� Their planar size is a random variable (random radius R or
random diameter D).

� Their thickness or ‘aperture’ is a random variable (random
aperture ‘a’).

� Their euclidian positions (X, Y, Z) are random: they follow a
modified Poisson-type process such that the volumetric density
of fissures (q03) is radially inhomogeneous (decreasing). . .

The volumetric density q03(r) expresses the number of discrete
‘objects’ per m3 of euclidian space, as explained in Appendix A. This
appendix provides a ‘‘geometric probability’’ analysis of radial inho-
mogeneity, and particularly, of the relation between volumetric
density q03(r) and the Probability Density Function (PDF) of fissure
centers positions (X, Y, Z).

Given our choices, as will be seen, q03(r) decreases quite fast
with radial distance ‘r’ from the drift wall, and so does the mean
fissure radius R and the mean aperture ‘a’. These are maximal at
the drift wall. For example:

� the maximum aperture of fissures (at the drift wall) is:
aMAX = 5.0 E ÿ 5 m (50 lm);

Fig. 1. Front view of the set of 10,000 planar disc fissures on the transverse vertical
plane at the drift entrance (3D view with hidden parts). As can be seen, density and
diameters decrease radially (so do the apertures, although they are not visible in
this view).



� the maximum size of fissures (at the drift wall) is:
RMAX = 0.40 m (diameter 80 cm).

On the other hand, for simplicity, fissures orientations are as-
sumed isotropic at any distance ‘r’ from the drift wall: in other
words, orientations are isotropic and statistically homogeneous
in space. Appendix B (Tables B.1–B.3) provide details on the chosen
statistical distributions of fissure parameters, and in particular,
their inhomogeneous radial distribution.

Finally, it should be emphasized that the selected parameters
are not arbitrary. They were determined by trial and error. They
lead to a fairly good fit between theoretical (upscaled) and actual
(measured) permeabilities K(r) along radial boreholes at the Bure
URL site (Section 5).

2.2. Deterministic set of curved fractures (‘chevrons’)

The extensive shear fractures observed in the EDZ at Bure are
distributedmore or less periodically according to a 3D ‘herringbone’
or ‘chevron’ pattern (for convenience, the fractures themselves will
be named ‘chevrons fractures’). Accordingly, we have chosen to rep-
resent the chevron fractures deterministically, as a set of surfaces
periodically distributed along the axis of the gallery. Furthermore,
it was decided that each individual fracture should be represented
mathematically by a curved parametric surface, analogous as much
as possible to the fracture shapes observed in the Bure drifts. In-
deed, the observed ‘chevrons fractures’ at the Bure URL appear to
have fairly complex curved shapes in 3D (Armand, 2007).

With this in mind, our primary objective was to take into ac-
count the geometric complexity as much as possible, via a para-

metric surface possessing most of the curvatures and cusps
observed in the actual galleries at Bure. This was investigated for
a typical case (the GMR drfit at Bure) without necessarily trying
to address all the effects of particular conditions, such as the direc-
tion of the drift (parallel to major or minor horizontal principal
stress), or the location within the drift (near or far from the exca-
vation front), etc.

Theparametric surfacemodel retainedhere is a ‘‘generalized ellip-
tic conoïd’’, developed by us as an extension of other known conoïdal
surfaces, such as the elliptic conoïd of Isawi (it.wikipedia.org/wiki/

Conoide_ellittico). The latter is itself derived from the classical conoï-
dal surface of Wallis, known for centuries. Wallis’ conoïd is also
known as ‘‘conical wedge’’, ‘‘conocuneus’’, and ‘‘arrière-voussure de

Saint-Antoine’’ in architecture. It has the same shape as the pinched
end of a toothpaste tube. Several other types of conoïds were ex-
plored: for instance, Plücker’s conoïd of order 2 has the shape of a
pancake pinched at its center (not quite suitable for our purpose).
Another interesting surface which came close (but not quite) to
the shape of a chevron fracture was the Guimard surface, which
can be observed as the glass roof located at the entrance of the
‘‘Abbesses’’ metro station near Montmartre in Paris.

Finally, as a result of these investigations, our ‘best’ model so far
is the ‘‘generalized elliptic conoïd’’. It has the following parametric
equation:
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where ‘n’ is a real number between 0 and 1 (we selected here the
value n = 0.1). The parameters finally selected to represent typical
chevron fractures at the Bure site are:

a = 2.75, b = 0.4, c = 4, d = 4, e = 1.5, f = 2, g = 3,
d1 = 0.5, d2 = 1.75, e1 = 2, e2 = 8, f1 = 1.25, f2 = 1.5, n = 0.1

In particular, these parameter values ‘optimize’ the representation
of chevron fractures in Bure’s GMR gallery, which is oriented paral-
lel to the minor horizontal principal stress (rh).

Fig. 2 shows a 3D perspective view of the chosen mathematical
surface, representing a single ‘chevron’ fracture positioned around
a cylindrical gallery.

Fig. 3 below shows a comparison between:

� The conoïdal mathematical surface (defined above), and
� In situ observations (fracture traces in the GMZ gallery at Bure).

It can be seen from Fig. 3 that the selected mathematical surface
(generalized elliptic conoïd), resembles the curved shapes of actual
chevron fractures based on observed traces projected on vertical
and horizontal planes.

Finally, by superimposing the clay rock matrix + planar disc fis-
sures + chevron fractures, we obtain the complete structure of the
EDZ, as show for instance in Figs. 4a and 4b. Note: the intact clay
rock matrix is not visible in any of these 3D views – only the dis-
crete fissures and fractures are visualized. Nevertheless, matrix
porosity and matrix permeability are fully taken into account in
the hydraulic upscaling procedure (matrix permeability is not
neglected).

3. Hydraulic upscaling and macro-permeability tensor for a

fissured/fractured porous medium (superposition method)

We present in this section the method adopted for homogeniz-
ing or ‘upscaling’ flow in the 3D disturbed clay rock of the EDZ,
comprising a porous matrix (intact clay), a set fissures (planar disc
shaped microfissures and small fractures), and a set of fractures
(large nonplanar ‘‘chevron’’ fractures).

3.1. Introduction and overview on upscaling by superposition

3.1.1. Overview on the superposition method

Briefly, the hydraulic upscaling method used here consists in
superposing local fluxes based on a ‘‘frozen gradient’’

Fig. 2. 3D view of a ‘chevron’ fracture surface obtained with a complex elliptic
‘conoïd’. Note: synthetic traces were compared with observed traces (Bure/GMR
drift).



approximation. It will thus be named here ‘‘flux superposition ap-
proach’’ and/or ‘‘frozen gradient approach’’. This superposition ap-
proach is not exact as a whole, except in some special cases. In
general, it tends to overestimate the permeability tensor Kij

(Appendix C discusses this point and briefly analyzes the theoret-
ical nature, properties and range of validity of the approach).

In the case of a fracture network, this method obtains the equiv-
alent permeability by summing the fluxes of all fractures, assum-
ing each fracture flux to be produced by the same constant
(frozen) mean pressure gradient. The result is a tensorial

anisotropic version of Darcy’s law with macro-permeability Kij.
This approach was initially proposed by Snow (1969) and Kiraly
(1969) for various hydrogeologic situations, and was later devel-
oped by Oda (1986) and Ababou (1991). The latter author presents
an extensive review on fracture flow, and develops the equivalent
permeability tensor Kij (superposition approach) for discrete net-
works comprising several statistical sets of fractures. In addition,
a similar approach was developed for coupled Thermo-Hydro-
Mechanics in elastic fractured rocks (Oda (1986), Ababou et al.
(1994b), Stietel et al. (1996)).

Fig. 3. Morphology of the curved surfaces of large shear fractures (‘chevrons’). Above. Various 3D perspective views of the «generalized elliptic conoïd», the approximate
surface model retained for describing the curved surfaces of ‘chevrons’ fractures at the Bure clay rock site (ANDRA’s URL: Centre de Meuse/Haute Marne). Below. Comparison
with the traces of chevron fractures observed at Bure in the GMR gallery (aligned with the minor horizontal principal stress rh): the schematic show the traces projected on
the axial vertical plane, axial horizontal plane, and transverse plane, respectively. [Internal reference: ANDRA-Synthèse Geoter (2007, Appendix C) and ANDRA Document
‘DRP0GTR060003’].

Fig. 4a. A 3D front view of the synthetic drift (20 m stretch) with its surrounding clay rock (EDZ), showing (i) the statistical set of plane disc fissures and (ii) the periodic set of
large curved fractures (‘chevron’ pattern). Only one half of the drift is shown, ‘behind’ the central axial vertical plane. All chevron fractures can be seen (they are slightly
translucent). Many of the random discs are hidden by the drift. Traces of both chevron and disc fissures are visible on the cylindrical drift surface.



However, in all the above-quoted works, the permeability of the
porous matrix between fractures was neglected (which is not our
assumption here). The advantage of taking into accountmatrix per-

meability is manyfold. First, it opens up the possibility of studying
the case of a fractured medium with a micro-damaged porous ma-
trix without having to represent explicitly the damaged micro-
structure. Secondly, it allows us to implement more flexible
variants such as iterative or sequential upscaling: specifically here,
the statistically isotropic fissures are upscaled first, and only then,
the large curved chevron fractures.

The extension of the superposition approach to the case of
nonnegligible rock matrix permeability is not trivial. Indeed,
accounting for rockmatrix permeability renders the upscalingmore
complex because it is nownecessary, in the superposition approach,
to sum over prismatic ‘‘unit blocks’’ (rather than planar fractures).
Furthermore, one must first define, for each unit block, the effective
influenceof thepermeabilityof thematrix surroundingeachpieceof
plane fracture.

The extension to permeable fractured media was first presented
in Cañamón (2006) and Cañamón et al. (2007). In fact, the method
implemented in the sequel of this paper is itself an extensionof these
works. It involves the following features (items (c)–(e) are new):

(a) The geometry of the medium is fully 3D.
(b) The case of a porous rock matrix with nonzero permeability

is treated (rather than the case of a ‘pure’ discrete conductor
network, as explained above).

(c) The set of statistical ‘conductors’, the planar disc fissures, is
statistically inhomogeneous in 3D space (it is inhomoge-
neous along radial directions from the central axis of the
drift).

(d) The discrete ‘conductors’ include not only the statistical set
of planar fissures, but also, another set of large nonplanar
features (chevron fractures modeled as curved surfaces).

(e) The 3D hydraulic conductivity is upscaled on various types
of ‘supports’, such as: local cubic voxels distributed in 3D
space around the drift; elongated windows distributed in
2D transverse space; and mobile spherical windows along
radial directions (numerical boreholes).

Finally, concerning upscaling methods other than superposi-
tion, see Renard (1997), Renard and de Marsily (1997), Bailly
et al. (2009), and references therein. Interestingly, our matrix/

fracture superposition method has connections with the so-called
self-consistent method, whose first step is basically a superposition.
However, the rest of the self-consistent procedure is different. The
important feature of the superposition method in the present work
is that it involves nothing else than a weighted sum of matrix/frac-
ture properties, which can be implemented in two possible ways:

� as a probabilistic integral or a mathematical expectation over
ensemble space (Oda, 1986);

� as a discrete and deterministic sum of distributed properties
over 3D space (as we do here).

3.1.2. Overview on upscaling coefficients (macro-permeability Kij)

Let us now briefly describe the type of results to be obtained by
the superposition approach (to be presented in the next sections of
this paper).

The flux superposition method is a ‘‘linearized’’ method for
upscaling Darcy/Poiseuille type flow. Therefore, it leads to a linear
Darcy-type macroscale law relating the macroscale flux to the mac-
roscale hydraulic gradient, via a tensorial anisotropicmacro-perme-
ability Kij. The macro-permeability can be calculated explicitly at
any point in space (x, y, z) or for any upscaling block (i, j, k), without
need for numerical flow simulations. There is much flexibility con-
cerning the scale, size and dimensionality of the upscaling blocks.

In summary, the result obtained is an upscaled equivalent Darcy
law, with tensorial macro-permeability Kij(xIJK) defined on a grid of
upscaling blocks or ‘voxels’ (xIJK). Alternatively, the tensor Kij(x) can
also be produced ‘‘pointwise’’ in continuous space (x) using a mov-
ing window for upscaling. Indeed, this procedure will be used in
this work to obtain ‘‘numerical’’ borehole profiles K(r) radially with
respect to the center of the gallery.

In all cases, the macroscale Kij tensor contains relevant informa-
tionabout the local properties of the rock, suchas the frictionparam-
eters (matrix permeability) and the geometry and density of the
discrete set of conductors (apertures, density, specific areas). Of
course, Kij may also depend (mildly) on the shape of the upscaling
window used: cubic, spherical, etc.

The specific implementation of the upscaling method for the 3D
fissured/fractured ‘EDZ’ is now explained in more detail below.

3.2. Implementation steps of hydraulic upscaling for the case of the

fissured/fractured ‘EDZ’ around a cylindrical drift

3.2.1. First step: equivalent permeability of unit blocks (upscaling

single fracture/matrix blocks)

The hydraulic upscaling method is implemented for a fully 3D
matrix/fracture composite, based on a ‘frozen gradient’ superposi-
tion of ‘local’ flux vectors. But these local flux vectors must first be
computed for each single fracture/matrix block, or ‘‘unit block’’.
The aim of this sub-section is to propose an ‘‘exact’’ equivalent per-
meability tensor for each unit block (the term ‘‘exact will be
discussed at the end of this sub-section).

A ‘unit block’ comprises a single piece of plane fracture obeying
either Darcy or Poiseuille law, surrounded by a permeable porous
matrix (the intact rock) governed by Darcy’s law. Planar disc frac-
tures as well as polygonal fractures imbedded in a permeable por-
ous matrix can be accommodated, all this in 3D space.

Specifically, a ‘‘unit block’’ is formed by a polygonal piece of
fracture (with straight or curved edges) plus 2 polygonal prismatic
volumes of matrix on either side of it (‘upper’ and ‘lower’ half-
matrix blocks). These two prismatic volumes have the same thick-
ness b/2, and the total thickness of the block is therefore ‘‘b’’
(neglecting fracture aperture ‘‘a’’, but only here, just for simplicity).
The thicknesses ‘‘b’’ of the different blocks located in a given
upscaling sub-domain are the same. A unique choice of parameter

Fig. 4b. A 3D perspective view of the synthetic drift (20 m stretch) with its
surrounding clay rock (EDZ), showing the statistical set of plane disc fissures and
the periodic set of large curved ‘chevron’ fractures.



‘‘b’’ preserves the total volume and volume fractions of fractures
and matrix. These conservation principles lead to:

b ¼ 2
X

m

rm

,

;

where rm is the specific area of fracture ‘‘m’’ within the sub-domain
at hand.

See Cañamón (2006) and Cañamón et al. (2007) for more de-
tails. This matrix/fracture procedure generalizes previous ap-
proaches developed for the special case of impervious matrix by
Oda (1986); Ababou (1991); Ababou et al. (1994a,b).

Now, the first step of the method is to calculate exactly the
equivalent permeability of each ‘‘unit block’’, i.e., each piece of frac-
ture with its surrounding matrix. This first step is done under con-
ditions of piecewise constant hydraulic gradient condition on the
boundaries of the unit block, such that the resulting equivalent
permeability tensor is obtained exactly analytically (as explained
in Cañamón (2006) and Cañamón et al. (2007)).

Fig. 5 depicts a simplified parallelepipedic version of the unit
block, in the local frame of the fracture plane. The thickness of the
surrounding matrix is calculated based on statistical densities
(mean spacing or inverse specific area). More general prismatic
blocks can be accommodated as well. Note: block shapes depend
on the geometry of fractures (polygons, discs) but also on the geom-
etry of upscaling windows (cubic voxels, spherical windows. . .).

The local permeabilities inside each medium (fracture, matrix)
are tensorial quantities defined as follows in the local reference
frame (e1, e2, e3) of the unit matrix/fracture block:
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where KM is matrix permeability (Darcy), K ll
F is ‘‘fracture permeabil-

ity’’ parallel to the fracture plane (either Darcy or Poiseuille), and K?
F

is ‘‘fracture permeability’’ perpendicular to fracture plane (K?
F ¼ K ll

F

for a Darcy fracture, K?
F ¼ 1 for a Poiseuille fracture). Without

going into details, the final result for the exact equivalent perme-
ability of the unit block X1 is:

K�
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with :
KA ¼ ð1ÿ /FÞKM þ /FK
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F

KH ¼ 1ÿ/F
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þ /F
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F

� �ÿ1 ð3Þ

where /F is the volumetric fraction of the single fracture (per vol-
ume of the ‘unit block’).

Finally, using the unit vector (n) normal to the fracture plane,
we can express the equivalent permeability tensor of each ma-
trix/fracture unit block, in the global reference frame:

K ij
MF

� �

X1

¼ ðdij ÿ ninjÞ � KA þ ninjKH ð4aÞ

and the equivalent Darcy law at the scale of a unit block X1 can be
expressed as:

ðqiÞX1
¼ K ij

MF

� �

X1

ðJjÞX1
ðEinstein’s implicit summation on repeated indicesÞ

ð4bÞ

where qX1 is the flux density vector (m/s) and JX1 the hydraulic gra-
dient (ÿgradH).

In closing, we consider briefly two issues: what about the case
of non-isotropic matrix permeability? and in what sense is the re-
sult obtained above an exact equivalent Kij?

� The permeable matrix ‘‘M’’ was assumed isotropic in the above
equations. Although it is possible to extend the exact unit block
upscaling (Eq. (4)) to the case of anisotropic matrix, we will not
do so here, for reasons explained later in the application section
(cf. Section 4.1).

� For a given heterogeneous block,without any other specification,
there is nounique equivalent permeability tensor, as observedby
Pouya and Fouché (2009). But we are being more specific here.
The above results (Eqs. (2)-(4)) demonstrate that there a unique
equivalent permeability tensor Kij for the unit fracture/matrix
block, under a particular type of boundary conditions (piecewise
linear hydraulic heads along the boundary of the sample). More-
over, the same tensor Kij can also be obtained equivalently under
piecewise constant flux boundary conditions.

3.2.2. Second step: flux superposition (frozen gradient approximation)

As explained earlier, we now apply the flux superposition ap-
proach to the set of all ‘unit blocks’, assuming a ‘‘frozen’’ macroscale
gradient (the macroscale is the scale of the upscaling domain, cubic
voxel or spherical window). While the unit block upscaling done in
the first step was in a sense ‘‘exact’’, the flux superposition method
implemented in this second step is only approximate, and it usually
leads to an overestimation of the final permeability tensor Kij, as ex-
plained in Appendix C.

The equivalent permeability Kij of the domain X is obtained by
summing the individual fluxes of all unit blocks (the single frac-
ture/matrix blocks), using the previously obtained equivalent block
permeability tensor, and applying the same fixed mean pressure
gradient to all unit blocks (constant frozen gradient approxima-
tion). The total flux vector (m3/s) is obtained by volumetric sum-
mation over the whole upscaling domain X as follows:

ðQÞX ¼
X

k

ðQÞkX with ðQÞkX ¼
R

CE
ð�qÞkXds
2

¼ Ak
OUT � ð�qÞ

k
X ð5Þ

where ðQÞkX is the flux vector associated with fracture/matrix block
(k). Flux ðQÞkX is computed from the flux density vector ð�qÞkX and
from the sectional area Ak

OUT. The area depends on the shape and ori-
entation of the unit block Xk (or its intersection with the upscaling
domain: Xk \X), and on the direction of local flux vector (qk). It is
of the form (cf. Cañamón (2006) for details):

ðAk
OUTÞi ¼

X

s¼Nk

s¼1

Ak
s � ðniÞks ; ðniÞks ¼ maxððnÞks � qi;0Þ ð6Þ

where

Nk is the number of faces of the prismatic block number ‘‘k’’
(taking into account only the part of the unit block that inter-
sects the upscaling domain, that is: Xk \X);

ΩM

ΩM

ΓΙ

e1

e3 ΓΕ

ΩF

Fig. 5. Schematic of a ‘unit block’ X1. A unit block is a single fracture/matrix block
made up of a piece of fracture plane XF surrounded on each side by the porous
matrix XM.



ðniÞks is the ith component of the unit normal vector coming out
of face Ak

s , where ‘‘s’’ is the face index;

and

Index ‘‘i’’ (i = 1, 2, 3) indicates Euclidian direction (cartesian axes
x1, x2, x3);
Index ‘‘k’’ indicates the unit block number (and the single piece
of fracture in it);
Index ‘‘s’’ (s = 1, 2, 3, 4, 5, 6 or more) indicates the sth face of the
prismatic unit block.

3.2.2.1. Remark on geometric calculations. The prismatic ‘‘unit block’’
is a 6-facedparallelepiped rectangle if the fracture is rectangular and
contained within the upscaling domain. Disc fractures are approxi-
mated by octogonal fractures, leading to octogonal prismatic blocks.
But block shapes become more complex for those intersecting the
upscaling domain boundary. Geometric approximations have been
tested to simplify and accelerate such calculations. For instance,
when upscaling domains are cubic voxels, it was demonstrated that
each cubic domainmay be approximated as a sphere without much
loss of precision in the geometric superposition calculations.

Now, inserting Eq. (6) into Eq. (5), and using the equivalent
Darcy law of Eq. (4) for each unit block Xk, we find that the total
flux vector obeys a macroscale Darcy law of the form:

Q i

� �

X
¼ ðK ijÞeqðXÞMF Jj ði ¼ 1;2;3Þ ð7aÞ

with an equivalent macroscale permeability Kij, of the form:

ðK ijÞeqðXÞMF ¼
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where

‘‘Nf’’ is the total number of fractures located in the upscaling
domain X;
‘‘k’’ refers to both fracture (k) and unit block (k), also namedXk;
nk
i is the ith component of the unit vector normal to fracture k;

ðniÞks is again the ith component of the unit normal vector com-
ing out of face Ak

s ;
hsi is the cosine angle between normal vector nk

s and the unit
vector ui of axis xi;
uk

F is the volumetric fraction of single fracture (k) with respect
to vol(Xk).

3.2.2.2. Remark on the nature of the resulting Kij. Provided simplifi-
cation of the sectional area term inside the sum (Eq. (7b)), the
equivalent permeability Kij becomes a true tensor independent
from the direction of the macroscale hydraulic gradient. The rela-
tion flux/gradient relation (Eq. (7a)) becomes then linear. The
resulting macroscale permeability Kij is then a second rank sym-
metric tensor. For more details, see for instance Cañamón (2006)
and Cañamón et al. (2007).

The entire procedure is implemented in a Matlab program,
which visualizes the geometric structure of the EDZ as well as
the resulting 3 � 3 Kij tensors as ellipsoïds. A qualitative validation
test of the program involving a single large planar fracture is
shown in Fig. 6.

Fig. 6 presents a simple test, with a single fracture crossing a
low permeability rock matrix. This test was carried out on a 3D cu-
bic domain, but the geometry of the problem is planar (whence the
2D views). The domain is partitioned into cubic voxels used as

homogenization sub-domains. Clearly, some voxels remain ‘‘in-
tact’’, i.e., not crossed by the fracture. In the plane view of Fig. 6a,
note that four pixels out of nine pixels remain ‘‘intact’’; on the con-
trary, the central pixel is entirely crossed by the fracture.

Note that the ellipsoïds represent the information obtained by
diagonalizing the 3 � 3 Kij matrix in each voxel. Thus, each ellip-
soid represents the equivalent tensorial permeability Kij for the gi-
ven voxel (they are shown only in plane view, in Fig. 6b). The three
diameters of the ellipsoïds are proportional to the three principal
permeabilities (eigenvalues), and they are aligned with the three
principal axes of permeability (eigenvectors).

In the plane view of Fig. 6b, the central pixel is the most influ-
enced by the fracture (strongest anisotropy ratio). The small spheres
represent the small isotropic permeability of the intact rockmatrix:
they are located in the four outer pixels not crossed by the fracture.

3.2.3. The special case of nonplanar ‘‘chevron’’ fractures: discretization

into triangular plane patches

The superposition method was designed initially for systems of
planar fractures. However, in the present case, we are also dealing
with large ‘chevron’ shear fractures represented by curved sur-
faces. The question arises: how to take these curved ‘conductors’
into account?

In order to continue taking advantage of the simplicity of the
superposition approach, we chose to convert each parametric sur-
face into a set of planar ‘patches’. The idea is that the previous
superposition method can then be applied without much modifica-
tion to the set of planar patches.

Preliminary tests have shown that triangular patches are prefer-
able to quadrilateral patches, because the resulting quadrangles
are nonplanar (while the triangular patches are planar, as re-
quired). Therefore, the unit blocks (single fracture/matrix blocks)
representing the chevron fractures and their surrounding matrix
are triangular prisms. The unit blocks corresponding to these trian-
gular patches can finally be added to the set of all unit blocks per-
taining to the different types of conductors, i.e., planar fissures, or
else, curved chevron fractures.1

The discretization of the curved chevron fractures into triangu-
lar plane patches was performed using Matlab functions related to
the vizualisation of surfaces in 3D (surf and surf2patch). An exam-
ple is shown in Fig. 7. Note that this procedure would not have
been as easy to implement without a parametric representation
of chevron fracture surfaces.

3.2.3.1. Remarks on triangular patches. In Fig. 7, the normal to each
triangle is not displayed at the center of the triangle, but rather, at
some point used as the local origin, located on one of the edges of
the triangle. Indeed, the faceted triangular approximation of the
curved chevron surface was performed using the Matlab surf2patch

function, which defines a local coordinate system (X, Y) with a local
origin (0, 0) such that each triangle is partitioned by the Y-axis into
two ‘‘right angle’’ triangles. The local Z-axis is normal to the local
(X, Y) plane of the triangle.

Also, it may be interesting to note why quadrangular patches
were not considered: their four vertices will not be coplanar in
general, contrary to the case of triangular simplexes, which are
necessarily planar in 3D space (indeed, three vertices are always
co-planar).

3.2.4. Sequential upscaling procedures

It has been noted that the above superposition approach com-
prises intermediate steps, such as the calculation of exact unit

1 In fact, as will be seen just below, we have finally chosen to treat the fissures/
fractures upscaling problem sequentially: first the planar disc fissures, then the large
curved chevron fractures.
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block permeability tensors. The method is therefore sequential in
the following sense:

� Sequential upscaling: Kij(UnitBlocks)? Kij(UpscalingDomain)

In addition, as will be seen, other sequential procedures are
used for application to the specific problem of the fissured + frac-
tured Excavation Damaged Zone around a cylindrical drift:

� Sequential upscaling: Kij(3D)? Kij(2D)? Kij(global)
� Sequential upscaling: upscaling results (macro-permeability

tensors)
Hydraulic upscaling was carried out on the 20 m � 13 m � 13 m

domain, comprising the 20 m long stretch of annular ‘EDZ’, using a
partition of upscaling cells (voxels) of size Dx =Dy =Dz = 0.50 m
(cubic voxels), leading to a total of 40 � 26 � 26 = 27,040 upscaling
voxels (including the unused voxels located inside the drift).

Note. The upscaling domains (voxels) may contain several or
many fractures, and they should not be confused with the ‘‘unit
blocks’’ of the superposition method. The unit blocks are prismatic
polygonal blocks made up of a single piece of fracture plus the sur-
rounding matrix (unlike the voxels, unit blocks are positioned and
oriented in space like the fractures to which they are closely
associated).

The chosen size (0.5 m)3 of the upscaling blocks (voxels) was
chosen based on a combination of criteria. First, voxel size was
chosen on the same order as chevron spacing (in fact it is exactly
the same: 0.5 m) so that, after performing 3D upscaling, each chev-
ron fracture can still be ‘‘seen’’ in terms of the 3D Kij distribution.
Secondly, we had to account for the strongly inhomogeneous den-
sity of fissures: smaller voxels would yield noisy distributions of
Kij, and coarser voxels would completely hide the radial inhomoge-
neity of the EDZ in terms of Kij.

The statistical fissures, and the periodic set of curved ‘‘chevron’’
fractures, were treated separately in order to assess their relative
influence. In what follows, we consider first the statistical set of
disc fissures, then the nonplanar ‘‘chevron’’ fractures. A sequential
upscaling procedure is used to obtain the macro-permeability of
the complete system (‘matrix + fissures + chevrons’) – as explained
in the previous section.

4.1. EDZ macro-permeability Kij: matrix/fissures system. We consider
here the set of 10,000 random ‘fissures’ embedded in the intact por-
ous matrix. The hydraulic conductivity of the intact matrix is as-
sumed to be isotropic and equal to:

KM ¼ 0:5Eÿ 12 m=s:

-0.5 -0.1667 0.1667 0.5
-0.5

-0.1667

0.1667

0.5

X (m)

Z
 (

m
)

Fig. 6. Test of permeability upscaling by the superposition method. (a) Left: «fractured» medium containing a single large planar fracture. (b) Right: upscaled permeability Kij

obtained by the superposition method. The geometry of this test is ‘‘2D’’ due to plane symmetry, but the obtained Kij is still a 3 � 3 s rank tensor. The Kij tensors are
represented by ellipsoïds. The diameters lengths and orientations represent the principal permeabilities ðK�

iiÞ and the principal axes (Xi⁄) of the Kij tensor.

Fig. 7. Approximation of the parametric surface of a ‘chevron fracture’ into
triangular plane patches, showing the patches (greyscale triangle), the nodes
(yellow symbols) and the normals (green sticks). The discretization of the surface
and the geometric information on patches were obtained using Matlab (and in
particular the function ‘surf2patch’).



Let us first discuss the question of the assumed isotropy of the
‘‘matrix’’. Initially, it was planned to account for matrix anisotropy,
or ‘‘microscale’’ anisotropy. However, in retrospect, we finally
decided to implement upscaling with matrix isotropy for several
reasons:

� Laboratory measurements of permeability K in the undis-
turbed Callovo-Oxfordian Argilite at Bure indicate that K is
only moderately anisotropic at the ‘‘microscopic’’ scale of
lab samples (e.g. 1–10 cm scale): horizontal K is at most 10
times the vertical K (e.g. 5 � 10ÿ13 m/s and 5 � 10ÿ14 m/s
respectively); for a precise reference, see p. 202 in ANDRA’s
(2005) ‘‘Dossier Argile’’.

� It will be seen in the next section that the upscaled perme-
ability obtained with chevron fractures (matrix + fis-

sures + chevrons) is strongly anisotropic at the local scale of
0.5 m voxels (mesoscale). Therefore, the moderate anisot-
ropy of the matrix is not crucial in terms of practical results.

� Furthermore, a theoretical motivation leads us to avoid putt-
ing anisotropy in the ‘‘matrix’’ (this is perhaps more subtle,
and debatable). It is motivated by the requirement that the
whole upscaling approach should be consistent in terms of
scales. In the so-called ‘‘intact’’ matrix, microstructures exist
due to tectonic history and stress anisotropy. But, in our
upscaling approach, we consider up to 10,000 statistical fis-
sures: that is approximately 1000 fissures in-between 2
chevron fractures. These random objects range from moder-
ate size fractures to micro-fissures (very small diameters and
apertures). Thus, rather than using a locally anisotropic
‘‘matrix’’, a more consistent approach could be to better rep-
resent the anisotropic statistical geometry of the micro-tex-
ture, with the aim of better reproducing (via upscaling) the
anisotropy observed at the scale of small lab samples.

Now, given the assumed matrix permeability above, the results
presented in this section concern the spatial distribution of the up-
scaled permeability tensor (Kij) obtained for the matrix + fissures

system by the superposition method (the next section will con-
sider the chevron fractures). These matrix + fissures results are
shown in the following Figs. 8–10:

� Fig. 8 shows a front transverse view of the macro-permeabil-
ity tensor Kij at the entrance of the gallery, where Kij was
obtained by upscaling over a 3D grid of cubic ‘voxels’ of size
0.5 m. Since Kij is a 3 � 3 tensor, it is represented as ellipsoïds.

� Fig. 9 shows another view of the same macro-permeability
tensor Kij, upscaled over a 3D grid of cubic ‘voxels’ of size
0.5 m: this time the spatial distribution of Kij is shown in
3D by looking at a longitudinal vertical mid-section cut of
the gallery.

� Fig. 10 shows the transverse distribution of the upscaled
‘‘2D’’ permeability tensor, obtained from the previous 3D
distribution Kij(x, y, z) with a second upscaling, namely, by
averaging Kij(x, y, z) along the axial direction of the drift
(length Lx = 20 m). The resulting macro-Kij(y, z) corresponds
to a window size 0.5 m � 0.5 m � 20 m.

To obtain these results, the superposition method was applied
sequentially from higher to lower dimensional results. The detailed
spatial distribution of Kij was first obtained in 3D space, over a grid
of homogenization voxels (xIJK). The permeability was then further
upscaled along the axis of the gallery to obtain a 2D transverse dis-
tribution of Kij, and then it was upscaled again by averaging in the
remaining directions to obtain a global Kij tensor for the whole
‘EDZ’. This procedure can be viewed as sequential upscaling across

dimensions:
� upscaling is first performed over cubic blocks to obtain the

block-scale Kij’s in 3D;
� then, based on the previous result, upscaling is performed

again over elongated parallelepipeds having the length of
the entire drift, to obtain a 2D transverse distribution of Kij’s;

� finally, using previous results, upscaling is conducted over
the whole annular ‘EDZ’ region to obtain a global value of Kij.

As can be seen in the figures, the block-scaled 3D and 2D equiv-
alent KFISSURES have a radially inhomogeneous distribution in space,
similar to the inhomogeneous statistics of the fissures. At the glo-
bal scale of the EDZ, the equivalent permeability tensor for the
matrix + fissures is:

ðKÞEDZfissures � 2:8� 10ÿ9
dijðm=sÞ where ði; jÞ ¼ 1;2;3: ð8Þ

Fig. 8. Upper left: Transverse view of permeability ellipsoïds in the first transverse plane i = 1 (x � 0) across the EDZ. The square mesh represents upscaling windows (cubic
voxels of side 0.5 m); in this transformed ln K view, aspect ratios and anisotropy ratios are not conserved: ellipsoïd diameters are proportional to ln K�

ii . Upper right: zoom of
the same transverse view (near the gallery wall), but without the ln K transform: here, aspect ratios and anisotropy ratios are conserved, because ellipsoïd diameters are
proportional to K�

ii .



The resulting tensor is nearly isotropic, as expected, due to the
isotropic orientations of the statistical set of planar disc fissures.
The magnitude of the equivalent permeability due to fissures
(KFISSURES) is roughly 5000 times larger than the intact matrix per-
meability (KM).

4.2. EDZ macro-permeability Kij: matrix + fissures + chevrons.

Finally, the entire system comprising the matrix + fissures + chev-

ron fractures was upscaled sequentially as follows:
� matrix + fissures? Kij (matrix + fissures) from previous step
� homogenized Kij(matrix/fissures) + chevrons? Kij

In addition, a sequential procedure was also used, as before, to
obain the ‘‘2D transverse’’ distribution of Kij from the ‘‘3D up-
scaled’’ Kij:

� upscaling over a 3D grid of ‘voxels’? Kij(xIJK, yIJK,
zIJK)? averaging axially? Kij(yJK,zJK)

The resulting spatial distributions of the equivalent macro-per-
meability Kij (3 � 3) in 3D and in 2D are displayed in Figs. 11–13(a
and b).

A remarkable feature is the way the tensorial block-scale
permeabilities Kij(x, y, z) are distributed in space. It is clear that
the equivalent Kij, due to the large chevrons fractures, are highly

Fig. 9. Longitudinal view of permeability ellipsoïds in the central vertical plane (y � 0, slice j = 13). The log-transform ln K is used here, so aspect ratios and permeability
anisotropy ratios are not conserved (i.e., diameters are proportional to ln K�

ii rather than K�
ii).

Fig. 10. Transverse distribution of upscaled ‘‘2D’’ permeability tensor : perspective view of 3 � 3 permeability ellipsoïds, with log-transform (ln). This planar distribution
Kij(y, z) (i, j = 1, 2, 3) was obtained by averaging or upscaling the 3D macro-Kij(x, y, z) through the axial direction of the drift (length Lx = 20 m). The upscaling window size of
the resulting Kij is 0.5 m � 0.5 m � 20 m. Left: aspect ratios and permeability anisotropy ratios are conserved (ellipsoïds principal diameters are proportional to K�

ii). Right:
another view using log-transform (ln K); here, ellipsoïd diameters are proportional to lnðK�

iiÞ, so that permeability aspect ratios are not preserved here (contrary to the left
view).



anisotropic, with spatially variable principal directions, locally
aligned with the tangent plane to the fracture surface (as can be
seen from all Figs. 11–13). The effects of individual chevron frac-
tures are clearly visible in the detailed 3D block-scale Kij, because
the block size was chosen just equal to the interspacing of the peri-
odic set of chevron fractures.

The ‘global Kij’ permeability of the system at the scale of the en-
tire EDZ was computed tentatively: the resulting global tensor is
weakly anisotropic (ratio Kzz/Kxx � 3/8), much less so than the local
block scale Kij’s. Its magnitude was evaluated using a spherical
norm to be roughly about K(global) � 5.0E ÿ 5m/s. However,
admittedly, the EDZ global permeability Kij due to chevrons...lacks
physical meaning, especially as a tensorial quantity, given the radi-
ally inhomogeneous distribution of voxel-scale Kij’s. This radial
inhomogeneity is itself due clearly to the diverging geometry of
chevron fractures around the drift.

Let us focus solely on the magnitude of the ‘global’ Kij. Recall
that, in this work, the chevron fractures were assumed to have a
constant hydraulic aperture a = 100 lm = 1.0 E ÿ 4 m. In reality,
however, it is expected that aperture decreases with radial dis-
tance from the drift wall. Furthermore, it is well known that per-
meability tensors are very sensitive to aperture ‘a’, owing to the
so-called ‘‘cubic law’’. This can be made clear for the case of a par-
allel set of infinite planar fractures; the equivalent permeability
along any direction in the plane of the parallel fractures is (Ababou,
1991, 2008):

K ¼ ðg=12mÞða3=kÞ ðm=sÞ ð9Þ

where k is fracture inter-spacing and m is water’s kinematic viscosity
(m2/s). Thus, decreasing aperture ‘a’ by a factor 10 (say a = 10 lm
instead of 100 lm) will decrease the equivalent permeability due
to chevron fractures by a factor 1000 (say K = 5.0E ÿ 8 m/s instead
of K = 5.0E ÿ 5 m/s). This example makes it clear that the equivalent
permeability induced by the periodic set of (large) chevron frac-
tures alone, is very sensitive to their assumed hydraulic aperture.
The permeability due to ‘chevrons’, with assumed hydraulic

aperture 100 lm, is about 4 orders of magnitude larger than that
due to statistical fissures – but becomes only 1 order of magnitude
larger with a hydraulic aperture of a = 10 lm instead of 100 lm.
Clearly, this is due to several factors, geometric as well as hydraulic:
the large extent of chevron fractures; the constant aperture
assumption; and the cubic law behavior (assuming Poiseuille flow
in the fractures).

5. Upscaling along boreholes: comparisons with in situ data

A different averaging procedure was used to compare the up-
scaled permeabilities with observed permeability profiles from
in situ borehole tests.

For this purpose, the superposition method was applied tomov-

ing windows along a given line of points, rather than to a fixed par-
tition of cells.

As an example, let us consider again here the matrix + fissures

system (which comprises both planar microfissures and also, par-
ticularly near the drift wall, somewhat larger planar fractures of
submetric size).

After upscaling the permeability along moving spherical win-
dows, we obtained synthetic permeability profiles K(r) along so-
called ‘numerical boreholes’. These are compared to actual borehole
permeability profiles in Fig. 14a, as explained in the figure caption.

The ‘‘fit’’ in Fig. 14a appears quite good, considering the many
uncertainties in the system. This encouraging result confirms the
choice of statistical properties, and in particular, the chosen de-
crease of mean density, aperture and diameter with radial distance
from the drift wall (see earlier, Section 2.1). In fact, this set of geo-
metric properties can be viewed as the solution of an inverse prob-
lem, solved here by trial and error. It is probably nonunique,
although we hope our result is a relatively robust sub-optimum.
Here are a few more details.

� The ‘‘adjusted’’ parameters were the statistics of the diame-
ters and the decreasing density of fissures. The best results
were obtained with a volumetric density of fissures
q � 1/r3/2 where ‘‘r’’ is the distance from the drift wall. By
geometric probability arguments, the corresponding PDF of
radial positions of the random fissures must decrease like

Fig. 11. Perspective view of ‘3D’ matrix + fissures + chevrons macro-permeability
tensors Kij (3 � 3) distributed on a 3D grid of voxels over a 3.5 m stretch of the drift
(EDZ). NB: in this view, the principal diameters of the ellipsoïds are proportional to
principal permeabilities (aspect ratios preserved).

Fig. 12. Plane view of ‘2D’ matrix + fissures + chevrons macro-permeability tensors
Kij (3 � 3) distributed on a 2D grid of pixels, obtained by upscaling 3D permeability
tensors axially along the 20 m long drift. NB: principal diameters are proportional to
principal permeabilities (aspect ratios are preserved).



f � 1/r1/2. On the other hand, assuming a constant radial PDF
(f � fo) corresponds to a volumetric density that decreases as
q � 1/r. From our trial and error tests, we found that the q
� 1/r decrease was too slow to reproduce correctly the per-
meability borehole profiles, compared to q � 1/r3/2 which
gave better results (see Appendix A).

We used a fairly large mobile window, a sphere of diameter
0.75 m. Indeed, smaller window diameters induced oscillations
not observed in the actual borehole measurements.

� Admittedly, if the 3D domain of influence of the borehole
permeability measurements were exactly known, it should
be used as the moving window. But it is quite difficult to
obtain a reliable and stable evaluation of the domain of influ-
ence of measurement in the presence of fissures and frac-
tures. According to our results, the cylindrical borehole test
interval greatly underestimates the true domain of influence
of the measurement. Therefore, we used instead a ‘‘neutral’’
spherical window, and we chose for its diameter the value
that produced the best numerical profiles compared to
experimental profiles.

The large ‘‘chevron’’ fractures were not taken into account in the
numerical boreholes of Fig. 14a. Given their 3D curved shapes and
their interspacing (supposedly 0.5 m axially), the chevron fractures
may intersect radial boreholes at various distances. These dis-
tances can be theoretically calculated from our surface model.
However, geometric uncertainties exist due to the fact that the ac-
tual shapes of ‘‘chevrons’’ are less regular than the proposed para-

metric surfaces. And there are other uncertainties due to their
unknown aperture distribution. Indeed, chevron aperture was as-
sumed constant in this work, but an alternative hypothesis is that
aperture decreases away from the drift wall. As a consequence,
individual chevron fractures may or may not have a visible effect
on measured K(r) profiles in situ.

For all these reasons, numerical borehole tests were developed
separately to investigate the effects of chevron fractures (at most
three of them) intersecting a radial horizontal borehole at various
distances.

One of these tests is shown in Fig. 14b. It includes the statistical
fissures as well as three large chevron-type fractures. In fact, a
comparison is made ‘‘with or without’’ chevrons, using the same
spherical window size in both cases (diameter 0.75 m). With
‘‘chevrons’’, a local maximum of K(r) is observed at distances
0.75–1.25 m from the drift wall; the permeability profile is nonmo-
notonous, and permeability can be up to 2 orders of magnitude
higher with the ‘‘chevrons’’ than without ‘‘chevrons’’ (locally). Be-
yond 2 m from the drift wall, however, the chevrons have no effect
on K(r).

These comparisons (Fig. 14b) are based on numerical borehole
calculations; they could not have been deduced directly from
in situ measurements.

6. Conclusions and outlook

In this work, we have developed:

Fig. 13. (a and b). Result of ‘2D’ hydraulic upscaling for the complete system (matrix + fissures + chevron fractures). Above (a): plane view of equivalent permeability
ellipsoïds Kij (3 � 3) distributed on a transverse 2D grid of ‘pixels’; in this view, a logarithmic scale is used for the principal diameters of the ellipsoïds (they are not
proportional to principal permeabilities, and permeability aspect ratios are not preserved graphically). Right (b): another plane view of the same equivalent permeability
ellipsoïds Kij (3 � 3) distributed on a transverse 2D grid of ‘pixels’; in this view, the logarithmic scale is not used (the principal diameters are proportional to principal
permeabilities, and aspect ratios are preserved).



� a morphological model of fissured + fractured rock (EDZ)
around a cylindrical drift, using concepts from differential
geometry (chevron fractures) and ‘‘geometric probability’’
(statistical set of 10,000 plane disc fissures with radially
inhomogeneous properties in 3D);

� a set of sequential procedures for hydraulic upscaling of the
fissured and fractured EDZ, based on a (suitably generalized)
flux superposition approach.

These methods are applied to the Bure clay rock site (specifi-
cally, the GMR drift is used as a template for this study). As a result,
we have obtained the macro-permeability of the EDZ in the form of
spatially distributed 3 � 3 Kij tensors over various supports and
grids:

� ‘3D’ Kij over a grid of voxels,
� ‘2D’ Kij over a transverse grid of pixels,
� ‘1D’ linear profiles Kij(r) along radial ‘boreholes’ (the scalar

norm K(r) was analyzed),
� ‘0D’ or ‘global’ Kij value for the entire EDZ (this global value is

meaningful only for the subset of isotropic fissures, not for
the chevrons fractures, as pointed out earlier).

The results obtained indicate that. . .:
� As can be seen in the figures, the 3D and 2D equivalent

KFISSURES have a radially inhomogeneous distribution in
space, similar to the inhomogeneous statistics of the fissures.

� The magnitude of the equivalent permeability due to fissures
(KFISSURES) is roughly 5000 times larger than the intact matrix
permeability (KM).

� The tensorial permeabilities Kij(x, y, z) calculated at voxel-
scale for the fissures + chevrons system have a remarkable
distribution. They are highly anisotropic. Their principal
directions are clearly aligned locally with the tangent plane
of chevron fractures (as can be seen from Figs. 11–13). The
effects of individual chevron fractures are clearly visible in
the 3D distribution of voxel-scale Kij’s, because voxel size
was chosen equal to chevron spacing.

� A global permeability Kij for the fissures + chevrons system
was obtained from the voxel-based Kij distribution (over
the whole EDZ). This global Kij appears only weakly aniso-
tropic. However, admittedly, it lacks physical meaning –
especially as a tensorial quantity – because of the radially
inhomogeneous distribution of the voxel-scale tensors Kij’s.
The latter is clearly due to the diverging geometric structure
of the chevron fractures around the drift.

� Nevertheless, it is useful to consider the norm K of the global
tensor Kij (for the whole EDZ). It is found that the permeabil-
ity due to ‘chevrons’ is about 4 orders of magnitude larger
than that due to statistical fissures – if the hydraulic aper-
ture of chevrons is 100 lm. But by a simple argument, it

Fig. 14a. Radial profiles of permeability K(r) measured in the GMR tunnel at Bure (from Fig. 12 of Armand, 2007), and comparison with 2 homogenized permeability profiles
K(r) (the superimposed black dashed curves – – – –). The latter were computed for the matrix + fissures system (with 10,000 random fissures) using a moving window along
the borehole line (‘numerical borehole’). The ‘‘upper’’ dashed line gives K(r) along a horizontal borehole (in the left wall of the tunnel), and the ‘‘lower’’ dashed line gives K(r)
along a vertical borehole (at the roof of the tunnel). The mobile window is a sphere of diameter 0.75 m. The resulting Kij(r) is a 3 � 3 anisotropic tensor, although only its norm
K(r) is plotted here (Frobenius norm: geometric mean of the three principal components).
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Fig. 14b. Comparison of two numerical K(r) profiles along a horizontal radial
borehole with/without three large chevron-type fractures intersecting it (this
sensitivity test is actually performed with three large disc shaped fractures
mimicking three chevron fractures intersecting the borehole). The dashed black
curve is the profile ‘‘without chevrons’’, and the solid blue curve is ‘‘with chevrons’’.
The plotted quantity K(r) is the Frobenius norm of Kij. The medium comprises the
permeable rock matrix, the statistical system of 10,000 fissures as described in the
text, and the three large fractures emulating the chevrons (their aperture is
100 lm; their spacing is 0.5 m along the drift axis; they form an angle 45°/drift axis,
and their extent is 1 m away from the drift wall). Both K(r) profiles were computed
using the same spherical window of diameter 0.75 m.



would become only 1 order of magnitude larger if the
hydraulic aperture of chevrons were taken 10 lm instead
of 100 lm. This sensitivity is due to several factors, geomet-
ric as well as hydraulic: large extent of chevron fractures;
constant aperture assumption; and cubic law behavior due
to the assumption of Poiseuille flow in fractures.

The upscaled permeabilities Kij obtained in this work can be
used for large scale flow simulations in any simulation code that
accepts Darcy’s law with a spatially variable, full permeability ten-
sor Kij(x). Furthermore, the piecewise constant block-by-block
evaluations of equivalent tensors Kij(x(iX, iY, iZ)) can be replaced
by more continuous distributions of Kij(x) obtained by the ‘moving
window’ procedure as examplified in the study of the last section
on numerical vs. experimental boreholes.

In the near future, we plan to implement or study the following
features.

� Evaluate other useful alternative definitions for the full Kij

tensor, taking into account more directly the specific annular
structure of the fissured/fractured EDZ at Bure. Indeed, while
the heterogeneous structure of the EDZ is not exactly cylin-
drical, it may still be useful to define radial and tangential
upscaled permeabilities; these should be defined properly
from directional versions of Darcy’s law, and the relation
between cylindrical and cartesian upscaling should be clari-
fied as well.

� Extend the numerical borehole concept, and investigate
more systematically the inverse problem aimed at identify-
ing optimal geometrical characteristics and hydraulic aper-
tures for the different sets of fissures and fractures;

� Study the equivalent behavior of the EDZ for other hydrody-
namic phenomena such as unsaturated flow and more gen-
erally two-phase flow;

� Extend the homogenization method to hydro-mechanical
processes in the EDZ: this leads to spatially distributed mac-
roscale 4th rank tensorial stiffnesses and Biot coupling coef-
ficients.

In closing, let usbrieflydiscuss some issues related to thehydrau-
lic behavior of the ‘EDZ’ under partially saturated/unsaturated
conditions, currently under study based on Darcy–Buckingham’s
law with pressure-dependent permeability:

� In the presence of fissures and other heterogeneities, unsat-
urated rock can behave in a complex way, due to the inter-
action between nonlinearity and spatial variability of
coefficients (permeability and moisture content).

� For example, damaged zones or fissured zones can act either
as capillary barriers or as conductors, depending on the state
of water pressure or moisture content.

� At macro-scales, moisture-dependent or pressure-depen-
dent anisotropy can arise, and therefore, the equivalent per-
meability becomes a nonlinearly anisotropic function of
pressure.

To study these phenomena, the present results on the equiva-
lent saturated permeability tensor will be useful, although a some-
what different approach will also be needed in order to capture the
equivalent nonlinear anisotropic behavior of the relative perme-
ability–pressure curve.
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Appendix A. Probability analysis of discrete fissures in cylindrical

geometry: calculation of volumetric density q(r) and other radially

inhomogeneous statistics

The purpose of this Appendix A is to establish a relation be-
tween the Probability Density Function (PDF) of the euclidian posi-
tions (x, y, z) and the radial positions (r) of the centers of planar
disc fissures, where (x) is parallel to the axis of the cylindrical drift,
and r =

p
(y2 + z2). The euclidian volumetric density of fissures

q03(r) or q(r) versus radial distance is thus obtained. Indeed, one
needs to be able to specify or to ‘‘control’’ analytically q(r).2 The
relations obtained in this appendix helped guide our choice for the
statistically inhomogeneous distributions of fissure centers, diame-
ters and apertures in the annular EDZ – all radially decreasing away
from the drift (cf. related Appendix B).

The specification of q(r) comprises two steps:
� Step 1. Inhomogeneous radial positions: obtaining PDF fR(r)

by transforming a uniform variable U

To generate multiple replicates of random radial positions (R),
we transform the replicates of a uniformly distributed random var-
iable (U). Here, we choose a relation of the form R = a + b � U2,
where U is a uniformly distributed random variable on [0, 1]. It is
‘‘easier’’ to generate U with a well chosen congruential random
number generator, than to generate R directly. In the case at hand,
we can even deduce analytically the PDF of radial positions fR(r),
and we find fR(r) � 1/

p
r (see below).

� Step 2. Inhomogeneous euclidian positions: relating euclid-
ian PDF fX(x) to radial PDF fR(r).

Once the radial PDF fR(r) is given, it remains to be seen how the
euclidian PDF fX(x) is related to fR(r). The euclidian PDF fX(x) is the
PDF of euclidian positions (x, y, z) of fissure centers. For example,
we know that fX(x) must be uniform in (x, y, z) space if we want
the volumetric density q(r) to be uniform, homogeneous, constant
in space. In other words: fX(x) uniform) q(r) constant.

A.1. Specification of the radial PDF fR(r) by transforming uniformly

random positions. In the main text of this paper, we have generated
a synthetic system of 10,000 random fissures in the annular EDZ
region around a cylindrical drift. This was done by generating the
radial transverse positions r =

p
(y2 + z2) of fissure centers using

the following transform (see Table A.1):

rðiÞ ¼ RTUNNEL þ ðREDZ ÿ RTUNNELÞ � ðUðiÞÞ2

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy2 þ z2Þ
q

ðA11Þ

where ‘U’ is a random variable, uniformly distributed in the [0, 1]
interval. To deduce the PDF dénotée fR(r) of radial positions ‘r’, we
use the classical technique of derived distributions (cf. Papoulis
and Pillai, 2002), whence the result:

fRðrÞ ¼
1

2ðREDZÿRTUNNELÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rÿRTUNNEL
REDZÿRTUNNEL

q if r 2 ½RTUNNEL;REDZ�

0 else

�

�

�

�

�

�

ðA12Þ

2 Note. The volumetric density of fissures q03(r) used in this appendix, also denoted
‘q(r)’, represents the mean number of fractures per unit volume of space. It should not
be confused with the radial linear density qR(r) (not used here). On the other hand, the
radial PDF fR(r) is defined in this Appendix.



This PDF diverges when r? RTUNNEL , however, the corresponding
Cumulated Distribution Function (CDF) F(r) = Proba(R 6 r) does
not diverge. Indeed, integrating the PDF, we obtain:

FRðrÞ ¼
0 if r 6 RTUNNEL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rÿRTUNNEL
REDZÿRTUNNEL

q

if r 2 RTUNNEL;REDZ½ �
1 if r P REDZ

�

�

�

�

�

�

�

�

ðA13Þ

In particular, we can use this probability law to find the median ra-
dial distance of the random fissures r(50%) such that F = 0.50. That is,
r(50%) is such that 50% of the fissures are located at a distance RTUN-

NEL 6 r 6 r(50%). We find here:

Rð50%Þ ¼ RT þ ðREDZ ÿ RTÞ=4 ¼ 2 mþ ð6 mÿ 2 mÞ=4
¼ 3 m; . . . ðA14Þ

which corresponds in fact to:

dð50%Þ ¼ 1 m; ðA15Þ

in terms of radial distance ‘d’ relative to the drift wall. So, in our
model, 50% of the fissures are located within the first meter from
the drift wall (inner annular region of the EDZ).

A.2. Obtaining and controlling the euclidian PDF fXYZ(x, y, z) given the

radial PDF fR(r). As noted earlier, given knowledge of the radial PDF
fR(r), one should be able to deduce the PDF fX(x) of fissures posi-
tions in euclidian space (x, y, z), from which one should obtain
the inhomogeneous volumetric density of fissures q(x, y, z) or q(r).

Briefly, we have obtained the following result based on geomet-
ric probability calculations conducted in cylindrical coordinates (r,
h, x), with the following definitions:

� Define a cylindrical annular region:
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ z2
p

2 ½RMIN;RMAX�; h 2 ½0;2p�; x 2 ½0; L� ðA16Þ

� Define a surface element dR located at radial distance ‘r’:
dR ¼ rdhdx

� Define a volume element dX located at radial distance ‘r’:
dX ¼ rdr dhdx

The case of a constant volumetric density q0 is obtained by
imposing:

dFðr; h; xÞ � Prfðx; y; zÞ 2 dXg ¼ constant� dX ðA17Þ

where the «constant» is precisely q0. It is then easily deduced that,
to obtain this constant density requires a nonuniform joint PDF of
cylindrical positions (r, h, x). Calculations show that this PDF depends
only on ‘r’, and more precisely, it is found to be exactly as follows:

fR;H;Xðr; h; xÞ ¼ fRðrÞ ¼
1
2p

� 1
L
� 2r

R2
MAX ÿ R2

MIN

� � si RMIN 6 r

6 RMAX; et f RðrÞ ¼ 0 sinon: ðA18Þ

In conclusion:

� To obtain a constant volumetric density q0, the random fis-
sures must be distributed according to a non-uniform radial
PDF fR(r), increasing radially as shown just above.

� Conversely, to obtain a non-homogeneous volumetric den-
sity, radially decreasing (q(r);), one must specify a radial
PDF fR(r) that grows with ‘r’ slower than linearly.

below summarizes more precisely the results that were obtained
for some specific cases, and in particular, the case selected for
the inhomogenously fissured EDZ in this paper.

Appendix B. Statistical parameters and algorithms for the generation

of the radially inhomogeneous random set of 10,000 planar disc

fissures in 3D

B.1. Random generation of radial positions of fissure centers. First, the
random radial positions of fissures centers are generated by the
following algorithm (see Table B.1).

As explained in the previous Appendix A, this leads to a decreas-
ing radial PDF and also to a decreasing volumetric density q as a
function of the distance from the drift wall. The relation between
the PDF of radial positions and the density q is also explained in
Appendix A.

B.2. Random generation of fissure sizes (radii). Secondly, we have
parametrized the distribution of the radii R of planar disc fissures
in such a way that ‘R’ decreases significantly with distance away
from the drift wall, on average (see Table B.2).

B.3. Random generation of fissure apertures. Finally, we have param-
etrized the statistical distribution of fissure apertures ‘a’, in such a
way that the aperture decreases significantly with distance away
from the drift wall (see Table B.3).

Appendix C. Theoretical properties and validity of the flux

superposition approach

The objective of this appendix is to present a brief discussion
about the theoretical nature, the properties, and the range of valid-
ity of the ‘‘flux superposition’’ approach used in this work (also
dubbed ‘‘frozen gradient’’ approach).

First, it should be made clear that the flux superposition method
usually leads to an overestimation of the equivalent permeability
Kij. However in some cases, it is known to coïncide with the exact
equivalent permeability. Here are two examples, both without ma-
trix permeability: (i) set of parallel fractures; (ii) cartesian network
of infinite size fractures considered over an infinite domain under
appropriate ‘‘far field’’ boundary conditions.

Let us now examine more precisely the theoretical nature and
validity of the flux superposition method.

� Let the symbol ‘‘RQ’’ be used for ‘‘superposition’’ of fluxes
under a condition of frozen gradient (this is the upscaling
method used in this paper);

� Let ‘‘RG’’ be used for what we call the dual method (‘‘dual’’ in
the sense of Fadili and Ababou, 2004), where hydraulic gra-
dients are summed while the global flux is frozen (this
superposition is ‘‘dual’’ with respect to the version used in
this paper).

Table A.1

Volumetric density q(r) and radial PDF of fissure centers positions f(r)0 .

q(r) (volumetric
density)

fR(r) (radial
PDF)

Homogenous density (Poissonian
positions in 3D)

q(r) = q0

(constant)
fR(r) / r

1/r density(constant radial PDF) q(r) / 1/r fR(r) = f0
1/r3/2 densitya (1/r radial PDF)a qðrÞ / 1=r3=2a fRðrÞ / 1=

ffiffiffi

r
p a

a The last case (last line of this table) corresponds to the chosen prop-
erties for the set of 10,000 fissures in the present work.



Then, it is conjectured that the equivalent permeability tensors
are ordered as follows:

ðKÞRG 6 ðKÞEXACT 6 ðKÞRQ ðA19Þ

These inequalities should be understood in the same sense as pos-
itiveness for a matrix: thus A 6 B if matrix B–A is semi-definite po-
sitive, or nonnegative. (In passing, this should provide a clearer
definition of the notion of ‘‘overestimation’’ for a tensorial
permeability).

Some inequality terms similar to those of Eq. (A19) have been
demonstrated by different authors for various cases depending
on geometry, heterogeneity, dimensionality. For instance, Pouya
and Fouché (2009) showed for 3D fracture networks that the direc-
tional permeability obtained under boundary conditions of linearly
distributed pressure, is always greater than the permeability ob-
tained under fixed flux boundary conditions. This is analogous
(although not identical), to the ‘‘RQ’’ and ‘‘RG’’ superposition
methods, respectively.

However, it is not the purpose of this paper to develop further
the theoretical underpinnings of inequality (Eq. (A19)), which can
be viewed here, rather, as a robust conjecture. Suffice it to stress
here why, and in what manner, the ‘‘RQ’’ method overestimates
the true equivalent Kij.

First, the type of permeability averaging implied by the present
(‘‘RQ’’) method is analogous to a weighted arithmetic mean, which
tends to favor the more conducting objects over the less conduct-
ing ones. Secondly, all fractures are counted regardless of fracture
connectivity (percolation effects), and this also leads to overesti-
mating Kij if the network is not fully percolating. Indeed, empirical
results on synthetic 2D fracture networks with impervious matrix
seem to confirm the idea that K(‘‘RQ’’) is an upper bound for the
equivalent permeability tensor (Oda and Hatsuyama, 1985; Oda,
1986; Ababou et al., 1994b).

For the same reasons, the permeability obtained by the present
‘‘RQ’’ approach is quite directly related to fracture density (in fact,
it is proportional to density if the matrix is impervious and all frac-
tures have same aperture and length). But in the same case, the
true equivalent permeability will not necessarily be proportional

to fracture density, depending on connectivity (see for instance
Bogdanov et al., 2003).

However, to temper this, one should also note that the discrep-
ancy between K(exact) and K(RQ) becomes less important as ma-
trix permeability KM increases. In the sequential upscaling
procedure advocated in this paper, the ‘matrix’ is initially defined
as the poorly permeable intact rock, but at the second stage, the
‘matrix’ represents the equivalent fissured continuum (a medium
that is much more permeable than the original intact rock).

Finally, in the context of this paper (radioactive waste isolation),
the important thing is that the equivalent permeability tensor Kij

obtained by the flux superposition method ‘‘RQ’’ is never underes-
timated. Thus, it is a ‘‘conservative’’ estimate from the point of
view of waste isolation.
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