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Abstract

Thin-walled textile-reinforced composite parts possess excellent properties, including lightweight, high specific strength, 
internal torque and moment resistance which offer opportunities for applications in mass transit and ground transportation. In
particular the composite material is widely used in aerospace and aircraft structure. In order to estimate accurately the 
parameters of the constitutive law of woven fabric composite, it is recommended to canvass multi-scale modeling 
approaches: meso, micro and macro. In the present investigation, based on the experimental results established by carrying 
out observations by Scanning electron microscope (SEM), we developed a micro-scale FEM model of carbon-fiber 
reinforced thermoplastic using a commercial software ABAQUS. From the SEM cartography, one identified two types of 
representative volume elementary (RVE): periodic and random distribution of micro-fibers in the yarn. Referring to 
homogenization method and by applying the limits conditions to the RVE, we have extracted the coefficients of the rigidity 
matrix of the studied composites. In the last part of this work, we compare the results obtained by random and periodic RVE 
model of carbon/PPS and we compute the relative error assuming that random model gives the right value.

Introduction  

The determination of the mechanical performance of woven fabric composites materials is based on 
the study of the behavior of the texture and the composite under different solicitations. Currently, the 
multi scale modeling of composites (figure 1) is one of the most used methods and it was adapted by 
several researchers. In fact, using this approach, F. Costanzo and L. Gray [1] haves implanted a survey 
on periodicity and boundary conditions; P. Boisse [2] has raised the constructive equations of the 
mechanical behavior of the composites woven during the forming; Gilles Hivet [3] has elaborated a 
mathematical approach to identify the trajectory and the different sections of the yarn in texture, the 
profiles of the contacts’ curves and the contact’s sections according to the conic equations; L. Orgéas
[4] has studied in meso-scale, the permeability of the reinforcements woven of stratified composites 
by surveying the velocity in such composites; J. Wang [5] has studied the predictive mechanical 
behavior modeling in woven composite structure, by analyzing 3D finites elements ; P. Badel and P. 
Boisse [6,7] have determined fibers orientations, in reinforcements woven during and after 
composites’ formation. 

Figure1: Multi-scale modeling techniques in woven fabric composites

In order to identify the behavior of the studied composite using multi-scale approach, we have 
developed in this paper a simulation of the reinforcement’s woven fabric composite (figure 1). 

We have started by using an experimental characterization of the texture to prepare a geometrical
description of fibers’ diameters and distributions in the Polyphenylene sulfide (PPS) matrix. Then, we



identified two types of RVE (periodic and random one) in order to estimate the errors’ values in the 
results. Then, basing on the homogenization method and after applying the boundary conditions to the 
RVE, one has extracted the coefficients of the rigidity matrix and the parameters of the yarn
composites. Finely, we have identified the able RVE to characterize accurately the yarn of our woven 
fabric composite.   

I. Carbon-fiber reinforced thermoplastic materials

The composite texture is consists of a carbon fibers and a PPS matrix and the volumetric fraction of 
the fibers in the composites is  .The characteristics of the materials forming the composite are
summarized in the following table:

Material 

Filament 

diameter 

Volumetric 

(kg.m-3) 

Longitudinal

Elasticity

module E(Mpa)

Module of  

Shearing 

G (Mpa)

Poisson 

Coefficient 

Constrained of 

rupture 

(traction) MPa

Elongation to  

The rupture 

(%) 

thermal 

dilation 

coefficient  

°C-1

Carbon 
Fiber

6.24 1800 390 000 20 000 0.35 2500 0.6 0.08 10-5

PPS 1300 4000 65 100 5 10-5

Table 1: the characteristic of the materials forming the composite

The characterization of the texture of the composite has been carried out throw two main steps. In the
first one, we determine the texture’s character, the trajectory, and the sections of the yarns (Texture of 
the composite: satin 4x1 in three layers). Then, in a second step, we find out the micrographic 
arrangement of the fibers in a yarn (figure 3).

  

(a) (b)

Figure 2: (a) micrographic of three ply fabric specimens (meso-scale), (b) size and 
arrangement of the micro fibers in the yarn

The yarn is composed by thousands of small fibers whose diameter in the order of 6.24 µms (figure 2).
This value is established by calculating the average of 150 fibers’ diameter. The disorganized
arrangement of the fibers in the yarn presented in figure3 will produce a variation in the local 
properties influenced by the distance between these fibers. Then it is necessary to start by 
characterizing the fibers’ arrangement in order to determine the minimal size of the representative 
volume elementary (RVE) of the yarn. To do so, we can characterize the distribution of the fibers by 
analyzing the yarn’s picture and using the covariance concept adapted already by [8]:

                                                                                                      (2) 

The covariance is defined as the probability of adherence of two points” x “and “x+h” in the same 
phase d, and it can be valued by carrying out the Fourier’s transformed of the figure 2.  According to 
the works of [7] the periodicity of the microstructure is presented by the periodicity of the covariance. 

II. The micro scale modeling

1. The geometric model of RVE

The choice of the RVE which is a cubic shape was based on several researches works [10, 11, 12 and 
13]. This RVE it should have the smallest size which makes it representative of the yarn material. We
opted for this step of the simulation for two cubic cells shapes and we considered the fiber has a 



cylindrical form. The first cell (figure 3-a) is periodic and the second is random (figure 3-b). The 
volumetric fraction of the reinforcement is calculated by the report between the volume of the fibers 
and the total volume of the basic cell:

                                                                                                                (3)

Where: d is the diameter of the fiber, a is the side of the basis cell, and n: is the number of fibers 
by cell 

(a) (b)

Figure 3: The periodic representative elementary volume of the yarn, number of fiber N = 2 
fibers (a) and vf = 0.505. The random representative elementary volume of the yarn, number of 

fiber N= 14 fibers and vf = 0.475 (b)

2. The elastic constructive equations of the yarn’s homogenesation  

The elastic properties, are calculated by a periodic homogenization via a finite element method
developed using ABAQUS software. It will give us the opportunity to study the elastic behavior of the 
yarn and to calculate the elastic coefficients of the composite material. For 3D RVE (cubic shape), 
submitted to a volumetric load, its elastic behavior can be presented as follow:

                                                                                                                   (4) 

Where:  the strain tensor, is the stress tensor, and  the suppleness Matrix 

Then, the stress distribution in the elementary volume can be written as follow:  

                                                                                                                      (5)                                

Where  C -1

The mechanical behavior of the yarn is equivalent and it depends on the mechanical and geometric 
properties of the different constituent: the fiber geometry, behavior, and distribution in the matrix, the 
matrix behavior and the characteristic of the fiber-matrix interface. The process of homogenization
consists in assimilating a material characterized by an important heterogeneity by a homogeneous one. 
This process was applied to the RVE. 

The main step of the homogenization consists in the determination of the stress and displacement
fields within the RVE.   

The average of the microscopic stress of this RVE can be expressed as follow: 

                                                                                      (6) 

In the same way, the average of the microscopic strain is give by: 

                                                                                 (7)    

Where E is the macroscopic strain and is the macroscopic stress

From equation (6) and (7), one can write the Hooke criteria:

                             =                                                       (8)

The macroscopic stress ( = is a linear function of the macroscopic strain (

                                                                                      (9)    



Where Chom represents the macroscopic tensor obtained by the homogenization method. 

The calculation of the coefficients takes place while calculating the stress field that corresponds 
to an imposed macroscopic displacement. Supposing that the yarn represents a composite with 
orthotropic characteristic, the macroscopic elasticity relation is expressed as follow: 

For i =j=k=l the coefficients, have been determined by imposing a shear 
loading whose main directions correspond with the symmetry’s axes of the cell; that’s means: 

                       (10) 

For i =k and j=l    the  coefficients , have been determined by 
imposing to the basic cell a macroscopic displacement of type "simple shear" which can be expressed 
as follow: 

                                                   (11)

In the order to have a periodic applied displacement’s filed, it is necessary that every cell satisfies the 
following conditions [10]:  

1. T .n

2. The compatibility of the strain fields therefore the neighboring should not be separated or 
superposed.  

The periodicity of the passage from a cell to its neighbor is equivalent to pass a face from one face of 
the cell the cell to the opposite face. The c .n must be on the first opposite to 
that in the other face. The stress field is called periodic on the cell .n is anti-periodic 
on its contour.  

III. Homogenization of the yarn based on micro scale finite element model

1. The micro scale constructive finite elements models  

The adapted method consists in applying three simple traction loads following the three main axes (1, 
2 and 3) and three simple shear loads in the directions 2-3, 1-2 and 2-3 (figure 4). In order to applying
this method we should be imposed a displacements loading and putting a specific boundary conditions 
for each load, this method has been adapted by several authors [10, 14].  

Figure 4: The six different cases to be solved in order to calculate the homogenized elastic properties 
of the RVE.

The calculation of ij is approximated by the summation of all the volumetric elements of structure 
already calculated by elementariness integrations throw every finite element. Then we have the 
following equation: 

        (12) 



Where: Vk is the volume of the k th element ij is the composing ij of the microscopic 
constraint of the k th element.

2. Periodic representative elementary volume:

During the simulation, it is necessary to apply the loads as imposed displacements and to impose 
boundary conditions to the limits for every load. At first, we have supposed that the material is 
orthotropic. Then, the numeric simulation and the calculations by periodic homogenization gave the
rigidity matrix of the yarn:

                 

                      C =                                                                                     

The calculation of the inverse rigidity matrix, will give the values of the suppleness matrix , so we 
can determinate the material parameters. These parameters are summarized, in the following table:

The Young Modules (MPa) Poisson Coefficients Shear Modules (MPa)

E1 = 197570,919
E2 = 10061,284
E3 = 10060,343

23= 0,176
13 = 0,237
12 = 0,237

G23= 5820
G13= 5960
G12= 5960

Table 2: The periodic RVE elastic parameters

The yarn’s material is unidirectional and the results of the simulation of the periodic RVE using 
Von Mises constraint are provided in figure 9. 

The Von Mises constraint in the RVE structure is 

 = =                                                (13)

                                          

  

Figure 5: Results of simulation of the RVE, Von Mises constraint in the different loads (plan y z), 

3. Random representative elementary volume 

By one applying the same boundary conditions and the same loads on the random cell, we can 
determine the constants of the rigidity matrix C of the yarn and the suppleness matrix , and 
consequently we can determinate the material random parameters which are shown in the following 
table:

The Young Modules (MPa) Poisson Coefficients Shear Modules (MPa)

E1 = 183019,394
E2 = 11588,548
E3 = 9951,280

23= 0,093
13 = 0,222
12 = 0,243

G23=4498
G13= 5354
G12= 5369

Table 3: The random RVE elastic parameters

011 022 033

023 013
012

5960,64600000

05960,1490000

005820,813000

00010426,2651874,3032915,550

0001874,30310427,2652916,099

0002915,5502916,098198953,521



The results of the simulation of the random RVE using Von Mises constraint are provided in figure 11 

Figure 6: The results of simulation of the RVE, Von Mises constraint in the different loads (plan y z), 

 4. Comparisons between periodic and random model

The results gotten for the periodic and random model are reported in table 4. We can identify a
fluctuation in the Young modules and the Poisson coefficients among the two models: the relative 
error for E2 reaches 13% and, for the Poisson coefficients 12and 13 it is respectively 2, 47% and         
6.76% .These results converge with the 2D studies in simple traction following the (OY) axis achieved 
by D.Trias [13], where the Young module present a differentiation of 12% and 6% for the Poisson
coefficient.

Table 4: Computation of effective properties for the periodic and random model of the yarn

Our survey in 3D simulation will give some results more advanced than [13]. The difference between 
the random and the periodic RVE in Shear Modules G13 and G12 is roughly 11% and 29.39% for G23.

Concerning the Poisson coefficient 23 the relative error between the two models is around 89%.  

In the numerical results, for the periodic REV, we observe a like value of YOUNG modules E2 and E3 
(E2=10061, 284 MPa and E3=10060,343 MPa) and a regular behavior in the tow transverse directions.  
But for the random model, a small difference between the value of the two YOUNG modules 
(E2=11588, 548 MPa and E3=9951,280 MPa), this difference is generally due to the proposed 
arrangement of fibers and the irregular distances inter-fibers in the REV (see figure 3a-b). Also a 
variation of the value of E2 of 13% and the value of G23 of 29,39 % has been observed in the two 
cases random and periodic REV. This deference is due to the closeness between fibers in the random 
REV who will give a more resistance. 

The results of the distribution using Von Mises constraint in the matrix and the fibers (figure 5 and 6)
present a huge difference between the two types of RVE. Indeed, the random model gives a more real
response than the periodic model. 

5. Analytic results

In order to validate the numerical results presented in the previous section, a simplest theoretical 
approaches. These theoretical models are able to predict the composites parameters’. The Voigt model 
and the Reuss model are expressed by [16 and 17]:

Reuss model (transverse model):             

                                                                (14)

011 022 033

023 013 012

Variables
Young Module The share Modeling The poisons coefficients

E1 E2 E3 G23 G13 G12 23 13 12

Periodic RVE 197570,919 10061,284 10060,343 5820 5960 5960 0,176 0,237 0,237
Random RVE 183019,394 11588,548 9951,280 4498 5354 5369 0,093 0,222 0,243

Relative error (%) 7,95 13,18 1,096 29,39 11,32 11,01 89,25 6,76 2,47



The Voigt model (longitudinal model):         

                                                                        (15)

Shear Module and poisons coefficient are calculated by the mixtures law as follow:

                                                                        (16)

                                                                (17)

The analytical results bases in Reuss and Voigt approaches are: 

E1 = 197000 MPa ; E2 = E3 = 7918.718 0,175

Particularly, the analytic results prove the numerical prediction in periodic model of E1, poisons 
coefficient 23, but we observe a small variation of the values of E2, E3, 12 and 13, this difference is 
due to the no into account the morphology of the composite material in the used theoretical models.  

Conclusions: 

The micro scale modeling adopted in this work has permitted to extract the elastic features of the 
composite yarn and the simulation of the periodic and random RVE gave that the yarn material is 
unidirectional. According to the works of D.Trias [13] where two types of 2D representative models 
(random and periodic) were compared, we can conclude that the periodic models could be used in 
some cases when the observed error is considered like negligible and no assessment for the material’s
security. But this type of model cannot be adopted to calculate accurately the material properties. The 
uses of periodic models could cause misjudge estimation (crack in the matrix and initiation of the 
damages), contrarily to the random models which can provide useful information for reliability 
analysis not achieved with periodic models. We have confirmed the numerical simulation by classical 
analytic models (Reuss and Voigt) but it is recommended to develop an appropriate law for our 
composite yarn. The results gotten using the random RVE will be implanted shortly in the meso-scale 
modeling of our woven fabric composite. This study is promoter and it requires an advance model in 
damage and the rupture problems and to define the constitutive law of the yarn.    
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