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Abstract 
 

We investigate the long-wave instability of a thin liquid film sheared by a concurrent gas flow. The film flows down an 

inclined plane and is driven by a constant shear stress and a pressure gradient. The height of the film is small compared to the 

wavelength, which justifies a long-wave approach. We adopt this procedure to approximate the Saint-Venant (or shallow 

water) equations. A linear stability analysis is thus developed and the limit between stable and unstable conditions is analyzed 

in terms of a critical Reynolds number. It comes out that the constant shear stress, applied at the free surface of the film, tends 

to stabilize the liquid layer to long waves. This is true when the mass flow of the film is kept unaltered. On the other side, the 

role of the pressure gradient is the same as the longitudinal component of gravity, which is known to be a destabilizing factor 

for the liquid film. 

 
Introduction 
 
Instabilities of thin liquid films have been studied for many 

years, since the pioneering works of Kapitzas. When a film 

flows down an inclined plane a wide range of wave 

evolution can appear at the free surface. The development of 

long waves manifests itself with the inception of linear 

structures and the transition to non-linear waves, such as 

solitons and periodic waves. When a gas flows above the 

film, its dynamics involves more phenomena, and a strong 

influence between the two phases rises at the interface.  

Both natural phenomena and industrial applications are 

related with the film dynamics. Particularly, in the domains 

of aeronautics and space, there exists many typical 

configurations, such as: water ingestion in aircraft engines, 

primary atomization in fuel combustion, and de-icing of 

aircraft systems. In order to model the latter, for example, it 

is necessary considering that the flow around a wing profile 

manifests strong pressure gradient at the leading edge and 

relevant shear stresses all along the profile. Therefore, a 

deep comprehension of the physics of long-wave 

instabilities of thin liquid layers is still required.  

When the height of waves at the interface remains smaller 

than their wavelength, an asymptotic approach based on 

long wave approximation results to be more suitable to 

model the film dynamics, due to its low-dimensional 

construction. This procedure was firstly proposed by 

Benney [Benney]. Furthermore, the use of Saint-Venant 

equations, integral form of the full Navier-Stokes, has 

certain benefits, especially for low Reynolds numbers 

[Tseluiko and  Kalliadasis].  

Shkadov firstly proposed a model of Saint-Venant equations 

where all the variables are enslaved to the film thickness 

and average velocity [Shkadov]. The limitation of his model 

is the lack of consistency, because the disagreement of the 

dispersion relation with the Orr-Sommerfeld theory. Later, 

Ruyer-Quil and Manneville have improved Shkadov's 

model, expanding the velocity field by using polynomial 

functions [Ruyer-Quil and Manneville 1/2]. In this way, 

they were able to ensure the consistency of their 

Saint-Venant equations, that is, the linearized model 

provides the right dispersion relation and the correct critical 

Reynolds number , above which the liquid film is 

unstable.  

Subsequently, Boutounet et al. have proposed a frame to 

obtain several models at given order accurate [Boutounet et 

al.].  

However, in order to develop such first-order models, it is 

necessary to calculate the whole velocity field, that could be 

very tricky. Luchini and Charru have thus presented a way 

to avoid the calculation of the first-order velocity field 

[Luchini and Charru 1/2]. Their development is based on the 

use of the energy equation rather than the momentum 

equation, in order to get the proper reductions to prevent the 

hard calculation of the velocity correction.  

All these already cited Saint-Venant models are consistent 

and expressed in a non-conservative form.  

In this paper we present a consistent system of Saint-Venant 

equations, combined with a Benney-like asymptotic 

development, which satisfies two more properties, namely it 

is expressed in a conservative form and the concerning 

numerical flux does not depend on the possible bottom 

velocity. The former is relevant in numerical developments, 

i.e., a conservative numerical flux provides benefits for 

finite volume method. The latter, instead, is significant 

when computing industrial calculations involving rotating 

components, such as turbines and fans. In these 

configurations, the bottom velocity, represented by the blade 

speed, reaches very high values; if it is contained into the 

numerical flux, besides in the source terms, this velocity can 

be greatly high compared to the other terms of the 

expression.  
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Secondly, a linear stability analysis is developed for a thin 

liquid film falling on an inclined plane, with a constant 

shearing applied at the free surface.  

The instability of such a liquid layer has been developed by 

Miles [Miles 1960] and Benjamin [Benjamin 1959], then 

improved by Smith and Davis [Smith and Davis 1982). 

Later, Smith gave a critical condition for the instability of 

such a film [Smith 1990]. In his configuration the film 

thickness is supposed to be fixed.  

Hereby, we provide a critical Reynolds number depending 

on a prescribed shear stress, when the mass flow of the film 

is kept unchanged. Our result is different from the cited one, 

in a way that the effect of the shear stress is to stabilize the 

film to large wavelength disturbances. 
Furthermore, the effect of the pressure gradient in the 

stability condition of the liquid layer has been analyzed. Its 

role is the same as the longitudinal component of gravity, 

thus destabilizes the film interface. 

 
Nomenclature 
 

g Gravity field (ms
-1

) 

p Pressure (Nm
-2

) 

  

Greek letters 
β Inclination angle of the plane (rad) 

µ Dynamic viscosity (kg m
-1 

s
-1

) 

 

Subscripts 

0 Equilibrium state 

c Critical number 

Imaginary part 

 

 

The governing equations 
 

For a 2D incompressible flow, such as a thin liquid film 

flowing down an inclined plane and sheared by a concurrent 

gas flow (Figure 1), Navier-Stokes equations reduce to 

2

2

0

1
sin

1
cos

x y

t x y x

t x y y

u v

u uu vu p g u

v uv vv p g v

 (1) 

where  and  are the streamwise ( ) and cross-stream 

( ) velocity components,  the pressure, g the gravity, 

the angle of the inclined plane and  the 

kinematic viscosity. These equations must be completed 

with boundary conditions at the wall and at the free surface 

of the film, where  and  respectively. The 

no-slip condition reads 

 
0 0| 0 ,      | 0u v  (2) 

At the free surface, boundary conditions state the continuity 

of y-velocity and the balance of tangential and normal stress 

components. The first of such conditions sets the free 

surface a material line, and reads 

 | |  .t h x hh u h v  (3) 

With reference to Figure 1, the two other conditions yield 

 
( )· ( , )n

ep x tnT  (4) 

 
( )· ( , )n x tt T  (5) 

where  is the normal  stress vector, with  

stress tensor,  the gas pressure and  shear stress of the 

gas at the free surface.  

By the development of conditions (4), (5) one gets for 

normal and tangential stresses respectively  

 

2

2

2
( | | ) | |

1

| 0

( )

                       

x y h x h x h x y h

x

h e

h u v u h v
h

p p

 (6) 

 

2

2

1
2 ( | | ) (1 )( | | )

1

( , ) 0

( )

                          

x y h x h x y h x h

x

h v u h u v
h

x t

(7) 

 

 

 
 

 

Figure 1: Inclined plane and boundary conditions. 

 

 

Hence, the equations (1) with boundary conditions (2), (3) 

and (6), (7) describe the whole film dynamics. Let now 

consider the following dimensionless parameters, 

 

 
/

/ /

 .e
e

x y
x y

L h

u v
u v

U Uh L

t
t

L U U h

pp
p p

gL gL

 (8) 

   
The system (1) thus becomes 
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2

0

1
tan

cos

1 1
                        

1
1

cos

1 1

( )

( )

                ( )

x y

x
t x y

xx yy

y

t x y

xx yy

v

p
u uu vu

Fr Fr

u u
Re

p
v uv vv

Fr

v v

u

Re

 (9) 

 

with appropriate boundary conditions at the wall and the 

free surface, namely  

 
0 0| 0 | 0u v  (10) 

and 

2 2 2

2 2

2

2 2

2 2

| |

2 ( | | ) | |

          ( | )(1 ) 0
cos

1
2 ( | | )

1

1 1
          (1 ) | | 0

( )

(

( ))

t h x h

x y h x h y h x x h

h e x

x y h x h

x

x y h x h

h u h v

h u v v h u

Re
p p h

Fr

h v u
h

h u v

 (11) 

 

Two dimensionless numbers appear in the equations above, 

the Reynolds and Froude numbers, defined as 

 

2

cos

Uh U
Re Fr

gh
 (12) 

 

On the other hand,  defines the ratio . 

By integrating over the film thickness and then by imposing 

that , which corresponds with considering a 

long-wave assumption, one can obtain the Saint-Venant (or 

shallow water) equations, namely 

 

2

0

0

( ) 0

( ) ( ) tan

1
         ( | | )

cos

( )

t x

h

t x x

ex y h y

Uh

h h
Uh u y dy h

Fr Fr

h
p u u

Fr Re

h

 (13) 

 
where  is the dimensionless average film velocity. Note 

that the y-momentum equation has been already replaced 

into the equations (13). These are expressed in terms of the 

unknowns  and film thickness and flow rate 

respectively, except for the momentum transport and wall 

shear stress terms. In order to enslave all the terms of the 

equation to  and  only, two closure models are required. 

This consists in assuming a proper shape for the velocity 

profile. 
 
The base state 
 

A trivial solution of system (9-11), in line with the wavyless 

solution of Nusselt, is based on the assumption that the film 

thickness is steady and constant, in a way that both the 

derivatives with respect to  and  are zero. By 

developing the calculations, the equilibrium velocity and 

pressure profiles read 

0 sin (2 )
cos 2

( )ex

Re y
u p h y y

Fr
 (14) 

 
0p ep  (15) 

 

The average velocity, instead, is given by 
2

0 sin
cos 3 2

( )ex

Re h h
U p

Fr
 (16) 

 
Thin liquid film modelling 
 
Following Benney's development [Benney], let expand the 

velocity and pressure fields as 

 

(0) (1)

(0) (1)

(0) (1)

u u u

v v v

p p p

 (17) 

where the zeroth-order development coincides with the base 

state solution. According to the dimensionless pressure (8), 

the basic state consists in a constant pressure inside the liquid 

layer. The classic hydrostatic behavior results just shifted to 

the next order. The first-order variables can be found by 

substitution and then development of (17) into (9-11). Once 

the quantities (17)  are known until the first order, the 

closure models for the momentum transport and wall shear 

stress terms can be obtained. 

The former is enslaved to the zero order velocity only and is 

given by 

 
22 (0) 2

0 0
( ( )) ( )

h h

u y dy u dy hU hF  (18) 

The latter, instead, requires also the first order velocity 

development (included into the flow rate ), such as 

 

(0)
(1) ( )

2 2
3 3

2 2

c

w w w

q q

h h
 (19) 

Let now define the quantity 

 sin
cos

( )ex

Re
p

Fr
 (20) 

which takes into account both the gravity and pressure 

gradient effects. From the expressions (18) and (19), the 

unknowns ,  are thus calculated, and the system 

(13) can be finally closed. Particularly,  turns to be 

 
2 5 2 3 41 1 1

45 12 12
h h hF  (21) 

whereas the first order correction of the wall shear stress 

leads to 
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( ) 3( )

15

c

w x

Re
h h h  (22) 

Apart from the shear stress and the pressure gradient, that 

were not considered by Ruyer-Quil and Manneville 

[Ruyer-Quil and Manneville 1/2] and by Luchini and Charru 

[Luchini and Charru 1/2] in their analysis, this correction 

term corresponds to their. The consistency of the model 

above is thus ensured. Note that the use of Benney's 

development already guarantees the consistency of the 

Saint-Venant equations. Finally, by replacing (21), (22) into 

(13), the Saint-Venant equations read 

2 2 5 4 2 3

2

h Uh 0

        

2 1 1
( )

225 1

 

5 12

1 1 3
3

2 2

(

) ( )

t x

t

x

Uh hU h h h

h U
h

Fr Re Re h
 (23) 

Unlike the previously cited works, this system of consistent 

shallow water equations is expressed in conservative form. 

This turns to have certain advantages when using a finite 

volume method. Furthermore, if we introduce a bottom 

velocity in the analysis, the numerical flux of equations (23) 

remains unaltered. The bottom velocity will appear as a 

source term only. When solving industrial calculations with 

rotating components, typical of an aerospace environment, 

this properties results to be greatly relevant for numerical 

stability. 

 

 
 

Figure 2: Critical Reynolds number versus 

. . 

 

 
Linear stability analysis 
 
Let analyze the linear stability associated to the system of 

shallow water equations defined previously. Let thus 

calculate the dispersion relation and then the conditions 

setting a stable or unstable liquid layer. 
We admit plane wave solutions, such that both film 

thickness and flow rate can be written in the form 

 
0

0

ˆexp[ ( )] ,

ˆ exp[ ( )]

h h h i kx t

q q q i kx t
 (24) 

where the subscript  refers to the base equilibrium 

solution defined before, and  and  are the 

wavenumbers and the angular velocity respectively. We 

admit real wavenumbers  and complex , so that the 

angular velocity , where  is the complex wave 

velocity, can be written as 

 
r i r ii kc ikc  (25) 

The sign of the amplification or damping rate  defines 

the conditions for a stable or unstable film. When  is 

negative the solution is stable to large wavelengths, whereas 

 represents the transition and thus defines the 

neutral-stability curve. Inversely, when  is positive the 

film is unstable to large wavelength disturbances. 

Let replace the wavy solutions (24) into the quasi-linear 

form of the SW equations (23). The mass conservation 

equation yields 

 ˆ ˆh kq  (26) 

On the other hand, the momentum equation produces two 

contributions: one is the non-exponential part, which gives 

the equilibrium flow rate, and the other is the exponential 

term. The former reads 

 

3
20

0 0

1

3 2

h
q h  (27) 

The second contribution, instead, is given by 

 

2
2 40 0

02

0 0

3 2 2

0 0 0

0

2 3

0 0

2ˆ ˆˆ ˆ2
45

4 1 1ˆ ˆ ˆ
15 4

3 6ˆ ˆˆ

q q
qi qik hik h ikh

h h

h ikh h ikh h ikh
Fr

q
h q h

Re Reh Re h

 (28) 

The system of equations (26) and (28) allows to find the 

dispersion relation, which governs the relationship between 

 and , and subsequently the neutral-stability curve. Let 

replace the equation (26) into (28). With the help of (27), 

the dispersion relation reads 

 

2

2

0 02

0

0

2 4 3 20
0 0

3 2

3

3

1 1
0

15 15

( )

( )

( )

i

h ik h ik
Reh

k
Re h

h
h h ik

Fr

 (29) 

Note that the assumptions of  and  equal to unity 

permits to semplify the calculations, without loss of 

generality. By an asymptotic expansion of  in powers of 

the wavenumber  (thus, in the limit , which 

corresponds to large wavelengths), the solution of (29) can 

be written as (we express here the wave velocity ) 

2 22 2 1
( )

3 5 5
( )Re

c i k O k
Fr

(30) 

Note that the wave velocity is complex. As stated before, the 

real part represents the propagation velocity, and the 

imaginary part the growth rate.  
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Different cases have been studied. When only gravity acts 

on the liquid layer, such as a falling film along an inclined 

plane, the wave velocity reduces to 
2

2

2

2

2 1
tan (tan )

3 5

                                                            ( )

( )Re Re Re
c i k

Fr Fr Fr

O k

 (31) 

and the result coincides with the analysis of Benjamin 

[Benjamin 1957] and Yih [Yih 1963]. In this configuration 

 (since  from the equilibrium relationship 

(27)), and the waves move three times faster than the film. 

On the other hand,  imposes the stability condition, 

which can be expressed in terms of either a critical 

Reynolds number or a critical Froude number. In details, 

 
5 5

cot  ,
6 18

cr crRe Fr  (32) 

If , or , the film is stable to large 

wavelength disturbances. It is manifest that a horizontal film 

is always stable, whereas a vertical film is always unstable.  

When a constant shear stress supports the film, such as the 

case of a falling film sheared by a concurrent gas flow, the 

wave velocity changes both in the real and imaginary part. 

Now we obtain . Hence, the propagation 

velocity of the waves, related to the film velocity, decreases 

in respect to the falling film configuration, and this happens 

because the shear stress increases the film velocity more than 

the wave speed. The stability condition now reads 

5 / 6cot 5 /18
 ,      

1 / 6 (1 / 2)(1 / 6)
cr crRe Fr  (33)

Therefore, the value of , as for , increases when a 

constant shearing is applied in the direction of the film flow. 

Its effect is thus to stabilize the film to large wavelength 

disturbances. 

Let rewrite now the expression of  using the equilibrium 

velocity. It yields 

 

2

0 0 0 0

0

0

/
tan

3 2

1
                    

1
tan

3 2

( )U h h h
g

h

h
g

 (34)

For any , the value of  is thus confined in the range 

. This makes the critical Reynolds number lying in the 

range , as sketched in Figure 2. 

Therefore, although increases, it is limited up to 

.  

The expression of  as function of the dimensionless 

shear stress  depends on the definition of the Reynolds 

number. In our analysis it depends on the average velocity of 

the liquid layer. Apart from the reference velocity, the results 

of Smith [Smith 1990] differs from this one in the definition 

of the Reynolds number. In his work, it does not depend on 

the shear stress. Hence, his results shows a destabilizing 

effect of , but when the film thickness is kept unchanged in 

the experience. 

Another way to quantify the effect of the shear stress over the 

free surface of the film is to redefine the dimensionless 

setting of  and introduce a dimensionless film thickness , 

as follows 

 
0

/ ( tan )

h
h

g
 (35) 

By expressing both the Reynolds number and its critical 

value in terms of , a stability condition for the thickness of 

the film can be found, which reads 

 

2 2 2
2

3

5 3 (tan )
( 1) cot

6

1 5
                cot

6

cr cr

g
h h

M

 (36) 

When including also the pressure gradient, it turns useful to 

express  in terms of fictitious angle  and Froude 

number , namely 

 tan
Re

Fr å
 (37) 

This idea is supported by the fact that the pressure gradient 

modifies only the longitudinal component of gravity force, 

keeping unchanged the normal component instead. As 

sketched in Figure 3, this involves a modification of the 

angle of the inclined plane and the gravity norm. 

Therefore, keeping  fixed, the wave velocity  reads 

 

2
2

2

2               

2
tan (tan )

3 5

2 1
ta n  (

5
   )

(

)

Re Re Re
c i

Fr Fr

Re
k O k

Fr Fr

å å

å å

(38) 

In this way, we can easily compare this case to the 

configuration of falling films. The analysis of  provides 

the relationship 

 
( ) 5 / 6cot

1 / 6
crRe  (39) 

If the pressure gradient is negative (gas flowing concurrent 

to the film), the fictitious angle  results being greater than 

. Hence, 

 
( ) ( )

cr crRe Re  (40) 

One can thus summarize that a negative  tends to 

destabilize the film, because the tangential component of 

gravity increases. 
 
 
 

 
Figure 3: Scheme of fictitious  when adding  

to the longitudinal gravity component. 
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Conclusions 
 

Combined with a numerical flux not depending on the 

possible bottom velocity, the conservative form of 

Saint-Venant equations expressed above turns to be very 

useful in many numerical experiences. Among the others, 

this model results to be the only consistent one to possess 

these two properties. 

The results of the linear stability analysis for a liquid film 

sheared by a constant shear stress show that the effect of this 

stress consists in increasing the critical Reynolds number. 

By its definition, it is manifest that the presence of the shear 

stress stabilizes the film to large wavelength disturbances. 

This is not in agreement with the work of Smith. The 

difference comes out from the definition of the Reynolds 

number. In his work, it is defined as function of film 

thickness only. In our work, the Reynolds number depends 

on the average longitudinal velocity, which contains also the 

shear stress. In conclusion, his experience is obtained as the 

film thickness is kept fixed, whereas in our is the mass flow 

to be unchanged. This result is very important for academic 

experiments and numerical calculation, as also for industrial 

applications. Since the evident difficulties to express a 

unique stability condition for this experience, a critical 

condition of stability based on dimensionless thickness  

has been developed.  

The second main conclusion consists in the critical 

condition for stability when the film is driven by a pressure 

gradient too. The modification of the longitudinal 

component of gravity consists in a fictitious alteration of the 

inclination angle  and the gravity norm . The 

expression of the critical Reynold number does not change 

its form, but the angle. Geometrical considerations drive to 

the conclusion that the  decreases compared to the 

case without pressure gradient. Its role is thus to destabilize 

the film, in contrast with the shear stress. 
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