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a b s t r a c t

In this paper, an analytical and numerical study to determine the species separation process in a binary
fluid mixture by decoupling the thermal gradient from the convective velocity was performed. The
configuration considered is a horizontal rectangular cavity of large aspect ratio, filled with a binary fluid.
A constant tangential velocity is applied to the upper horizontal wall. The two horizontal impermeable
walls are maintained at different and uniform temperatures T1 and T2 with DT ¼ T2 � T1. Species sepa-
ration is governed by two control parameters, the temperature difference and the velocity of the upper
plate Uex

!. The intensity of the thermodiffusion is controlled by the temperature gradient, while the
velocity Uex

! controls the convective flow. This problem depends on six dimensionless parameters,
namely, the separation ratio j, the Lewis number Le, the Prandlt number Pr, the aspect ratio of the cell A
and two control parameters: the thermal Rayleigh number, Ra and the Péclet number Pe. In this study,
the separation (mass fraction difference between the two ends of the cell) is obtained analytically as a
function of mass Péclet number (Pem ¼ PeLe) and mass Rayleigh number ðRam ¼ jRaLeÞ. The optimal
separation m ¼

ffiffiffiffiffiffi
42

p
=15z0:432 is obtained for Pem ¼

ffiffiffiffiffiffi
42

p
and Ram ¼ 540. The numerical results, ob-

tained using the full governing equations, are in good agreement with the analytical results based on a
parallel flow approximation.
1. Introduction

A temperature gradient applied to a binary fluid mixture in-
duces a mass fraction gradient: this phenomenon, called thermo-
diffusion, is also known as the LudwigeSoret effect or the Soret
effect. Under the gravity field, the coupling between convection
and thermodiffusion, called thermogravitational diffusion, may
lead to species separation. In 1938, Clusius and Dickel [1] success-
fully carried out the separation of gas mixtures in a vertical cavity
heated from the side, usually called a thermogravitational column
(TGC). They observed a significant separation of the components of
the gas, and suggested that the technique could be used for
component and isotope separation. In 1939, Furry et al. [2]
INPT, UPS, IMFT (Institut de
sseur, Allée Camille Soula, F-
developed a fundamental theory to interpret the experimental
process of isotope separation in a thermogravitational column (FJO
theory). However, in their study, the authors did not take into ac-
count the influence of the concentration gradient on the density
gradient, which is referred to as the “forgotten effect”. Afterwards,
manyworks were devoted to justifying and extending the results of
the FJO theory to the case of binary liquids.

Other studies were carried out to improve the experimental
devices and increase the separation. Lorenz and Emery [3] intro-
duced a porous medium in the TGC columns. Bou-Ali et al. [4]
observed that a binary fluid, with a negative Soret coefficient, in a
thermogravitational column, could remain stable if the Grashof
number was sufficiently high. The authors analyzed the stability of
the steady-state adverse density gradient obtained along the layer.
A three-dimensional numerical study of Soret-driven convection in
a cubic cell filled with a binary mixture of water (90%) and iso-
propanol (10%) was performed by Shevtsova et al. [5]. The in-
stabilities occurring in this binary fluid with negative Soret
coefficient for a cubic cell heated from above was analyzed [6].
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Nomenclature

A aspect ratio of the cavity
a thermal diffusivity, [m2s�1]
C dimensionless mass fraction ðC* � C*

0Þ=DC*

C0 initial mass fraction
D mass diffusion coefficient
DT thermodiffusion coefficient [m2s�1K�1]
g gravitational acceleration [ms�2]
H height of the enclosure [m]
L length of the enclosure [m]
m mass fraction gradient
Le Lewis number
P pressure [Pa]
Pe Péclet number
Pem mass Péclet number
Pr Prandtl number
Ra Rayleigh number
Ram mass Rayleigh number

S species separation (S ¼ mA)
ST Soret parameter, DT/D, [K�1]
t dimensionless time
T dimensionless temperature
T0 reference temperature
(u,v) dimensionless velocity components in (x, z) directions

Greek symbols
bc solutal expansion coefficient
bT thermal expansion coefficient [1/K]
l thermal conductivity [Wm�1K�1]
m dynamic viscosity [Pa s]
n kinematic viscosity of the mixture, [m2s�1]
r density of the mixture, [kgm�3]
j separation ratio

Superscript
* for dimensional variables
0 refers to a reference state

Fig. 1. Geometry of the physical problem.
In order to increase the separation, Platten et al. [7] used an
inclined cavity, heated from the top. Elhajjar et al. [8] suggested a
new method to obtain species separation in a binary fluid mixture.
They used a horizontal cavity heated from above and subjected to a
constant horizontal temperature gradient on the two horizontal
walls to improve the separation process depending on two control
parameters. They obtained significant separation (10%) with real-
istic values of the thickness (about 2 mm), while very low thick-
nesses (0.2 mm) were required in vertical cells to obtain separation
with the same order of magnitude. Charrier-Mojtabi et al. [9]
developed a linear stability analysis of the unicellular flow that
appears at the onset of convection in a horizontal porous cavity
saturated by a binary fluid and heated from below. The authors
showed that, if the separation ratio jwas positive and greater than
a particular value, jmono, it was possible to separate the species of
the binary fluid mixture between the two ends of the cell.

Elhajjar et al. [10] showed that the Rayleigh number leading to
the optimum separation in a horizontal cell was larger than the one
obtained in a vertical cell (TGC), which allowed separation to be
performed in a cell of greater thickness. The existence of multiple
solutions and the influence of the Soret effect on the convection in a
horizontal porous layer under crossed temperature and concen-
tration gradients were discussed by Bennacer et al. [11]. Zebib and
Bou-Ali [12] performed a linear stability analysis of a binary
mixture buoyant return flow in a tilted, differentially heated,
infinite layer using asymptotic long-wave analysis and pseudo-
spectral Chebyshev numerical solutions. Elhajjar et al. [13] stud-
ied the influence of vertical high-frequency and small-amplitude
vibrations on the stability of the unicellular flow in a shallow
horizontal porous layer saturated by a binary fluid and heated from
below. Alloui et al. [14] used the Darcy model with the Boussinesq
approximation to study natural convection in a porous medium
saturated by a binary fluid. It was found that both unicellular and
bicellular symmetrical circulations were possible for a centrally
located heated element. Elhajjar et al. [15] presented a theoretical
and numerical study of species separation in an inclined porous
cavity.

In this paper, a study of the species separation in a binary fluid
mixture is presented using a new geometrical configuration. The
binary fluid mixture is confined in a shallow horizontal rectangular
cavity heated either from above or from below. The two horizontal
impermeable walls are maintained at uniform temperatures T1 and
T2. The upper horizontal wall moves with a constant velocity Uex

!.
The paper is organized as follows. Section 2 provides the
mathematical formulation of the problem. We present the analyt-
ical solution obtained in Section 3. In Section 4 we present the
numerical method, in Section 5 we discuss the analytical results.
The velocity profile is analyzed in Section 6. We draw some con-
clusions in Section 7.

2. Mathematical formulation

2.1. Model and the basic equations

We consider a horizontal rectangular cavity of large aspect ratio
A¼ L/H (cf Fig.1), whereH is the height of the cavity along the z-axis
and L is the length along the x-axis. The cavity is filled with a binary
fluid mixture of density r* and dynamic viscosity m. The two walls
x*¼ 0 and x¼ L are adiabatic and impermeable. The two other walls
z*¼ 0 and z*¼H are kept at uniform temperatures, T1 for z*¼H and
T2 for z* ¼ 0, with T1 < T2 or T1 > T2. The binary mixture is assumed
to be Newtonian and satisfy the Boussinesq approximation. Thus,
the density of the fluid mixture, r*, is a function of the local tem-
perature, T*, and the local mass fraction, C*. We can use a linear law
to represent r*, which is completely reasonable for small temper-
ature and mass fraction differences:

r* ¼ r*0

h
1� bT

�
T* � T*0

�
� bC

�
C* � C*

0

�i
(1)

The thermal andmass expansion coefficients (bT, bC) are defined
as follows:

bT ¼ � 1
r0

 
vr*

vT*

!
C*

; bC ¼ � 1
r0

 
vr*

vC*

!
T*



The heat and the mass fraction flux in the binary mixture are
coupled due to the Soret effect and both contribute to the density
gradient. The buoyancy force r* g!; ð g! ¼ �gez

!Þ; is thus influenced
by the Soret effect. Under these conditions, the mathematical
model governing this problem, which includes the conservation
equations (mass, momentum, energy and chemical species), are
written respectively as follows:

V$V
!* ¼ 0 (2)

r*0

0
B@v V*
�!
vt*

þ V*
�!

$V V*
�!1CA ¼ �VP* þ r*0

h
1� bT

�
T* � T*0

�

� bC

�
C* � C*

0

�i
g!þ mV2 V*

�!
(3)

vT*

vt*
þ V*
�!

$VT* ¼ aV2T* (4)

vC*

vt*
þ V*
�!

$VC* ¼ V$
�
DVC* þ DTC

*
�
1� C*

�
VT*

�
(5)

where D and DT are respectively the mass diffusion and the ther-
modiffusion coefficients. Typically, in Soret-driven convection,
if the mass fraction is small, C*(1 � C*) can be replaced by
C*
0ð1� C*

0Þ, C*
0 being the mass fraction in the initial state and Eq. (5)

leads to:

vC*

vt*
þ V*
�!

$VC* ¼ DV2C* þ DTC
*
0

�
1� C*

0

�
V2T* (6)

2.2. Boundary conditions

The associated boundary conditions include a constant velocity
applied at the upper wall, no-slip conditions for the velocity at the
other rigid walls, distinct constant temperatures on the top and
bottom walls. Vertical walls are impermeable and thermally insu-
lated. Accordingly, the associated boundary conditions are defined as
follows:8<
: V*
�!�

x*; z* ¼ H
� ¼ Uex

!

V*
�!�

x*; z* ¼ 0
� ¼ V*

�!�
x* ¼ ð0; LÞ; z*� ¼ 0

(7)

�
T*
�
x*; z* ¼ H

� ¼ T1
T*
�
x*; z* ¼ 0

� ¼ T2
(8)

vC* x*; z*
� �
vz*

� C*
0 1� C*

0

� �
ST

vT* x*; z*
� �
vz*

¼ 0 for z* ¼ 0;H

c x*˛ 0; L½ � ð9Þ

vC*
�
x*; z*

�
vx*

¼ vT*
�
x*; z*

�
vx*

¼ 0 for x* ¼ 0 and x* ¼ L

c z*˛½0;H�
(10)

where the Soret coefficient, ST, is defined as: ST ¼ DT/D.

2.3. Dimensionless equations

The reference scales are: H for length, H2/a for time, r0a2/H2 for
pressure, and a/H for velocity. The dimensionless temperature and
mass fraction are given by:
T ¼
�
T* � T*0

�.
DT*; C ¼

�
C* � C*

0

�.
DC*
where DT* ¼ T2 � T1, DC* ¼ DT*C*
0ð1� C*

0ÞDT=D and

T*0 ¼ T1; C*
0 ¼ C0 (since C0 is the dimensionless mass fraction).

Using the dimensionless variables in Eqs. (2)e(5), we obtain the
dimensionless governing equations:

V$V
! ¼ 0 (11)

vV
!
vt

þ V
!
$VV

! ¼ �VP þ Ra Pr½T � jC� e!z þ PrV2 V
!

(12)

vT
vt

þ V
!
$VT ¼ V2T (13)

vC
vt

þ V
!
$VC ¼ 1

Le

�
V2C þ V2T

�
(14)

The problem considered depends on six dimensionless
parameters:

The Rayleigh number Ra ¼ gbTDTH
3/ya, the Prandtl number,

Pr ¼ y/a, the Lewis number, Le ¼ a/D, the Péclet number, Pe ¼ Pr Re,
where Re ¼ UL/y, (Reynolds number), the separation ratio,
j ¼ �bCDTC0(1 � C0)/bCD and the aspect ratio A ¼ L/H Ra > 0 if the
cell is heated from below, and Ra < 0 if the cell is heated from
above. Moreover, a positive separation ratio is considered, which
implies that, due to thermodiffusion, the denser component of the
mixture migrates toward the cold wall.

The associated dimensionless boundary conditions are:

V
!ðx; z ¼ 0Þ ¼ V

!ðx ¼ ð0;AÞ; zÞ ¼ 0 and

V
!ðx; z ¼ 1Þ ¼ Peex

!
; c x˛½0;A�

(15)

Tðx; z ¼ 0Þ ¼ 1 and Tðx; z ¼ 1Þ ¼ 0; c x˛½0;A� (16)

vCðx; zÞ
vz

þ vTðx; zÞ
vz

¼ 0 for z ¼ 0 and z ¼ 1; c x˛½0;A�
(17)

vCðx; zÞ
vx

¼ vTðx; zÞ
vx

¼ 0 for x ¼ 0 and x ¼ A; c z˛½0;1�
(18)

3. Analytical solution

In the case of a shallow cavity ðA[1Þ in order to solve the
problem analytically, the parallel flow approximation (Bennacer
et al. [11], Elhajjar et al. [15]) is considered. The streamlines are
assumed to be parallel to the horizontal walls except for the vicinity
of the vertical walls. In this case, the vertical component of velocity
can be neglected:

V
!ðx; zÞ ¼ uðzÞex!; c x˛�0;A½ (19)

This assumption implies steady-state and the inertia term
ðV!$VÞV! in Eq. (12) is equal to zero. The temperature and mass
fraction profiles are written as the sum of two terms: the first one
defining the linear longitudinal variation and the second one giving
the transverse distribution:

Tðx; zÞ ¼ bxþ f ðzÞ (20)

Cðx; zÞ ¼ mxþ gðzÞ (21)



where b andm are respectively the unknown constant temperature
gradient and mass fraction gradient in the x direction. b ¼ 0 due to
the constant temperatures imposed on the horizontal walls.

Once we eliminate the pressure in the NaviereStokes equation
(19)e(21), the following system of equations is obtained for the
steady state:

v3uðzÞ
vz3

� Ra
v

vx
ðT � jCÞ ¼ 0 (22)

V2T ¼ 0 (23)

m Le uðzÞ � v2C
vz2

¼ 0 (24)

Since the boundary conditions on the vertical walls are not
taken into account for the velocity, additional conditions are
needed to solve the system of Eqs. (22)e(24) which are:

- The mass flow rate through any cross section perpendicular to
the x-axis is equal to zero,

- The mass of the denser component is conserved across the
whole cell:

Z1
u dz ¼ 0 c x˛½0;A�
0Z1
0

ZA
0

C dz dx ¼ 0

(25)

Applying these conditions and the boundary conditions (15)e
(18), the velocity, temperature and mass fraction fields are given
by the following expressions:

u ¼
	
� 1
6
z3 þ 1

4
z2 � 1

12
z


Rajmþ

�
3z2 � 2z

�
Pe (26)

T ¼ 1� z (27)

C ¼ mx�
	

1
120

z5 � 1
48

z4 þ 1
72

z3 þ 1
1440



Rajm2Leþ z

� 1þmA
2

þ
	
1
4
z4 � 1

3
z3 þ 1

30



mLe Pe (28)

The velocity presents a cubic profile, which is required to allow
species separation between the two ends of the cell.
4. Numerical method

Unsteady numerical simulations were carried out in order to
corroborate the analytical results. For this purpose, the numerical
solutions of the full governing equations (11)e(14) with the asso-
ciated boundary conditions (15)e(18), were obtained using a finite
element method (Comsol Multiphysics). The initial conditions
considered were:

Tðx; z; t ¼ 0Þ ¼ ðT1 � T2Þ=2DT* ¼ 0:5;

Uðx; z; t ¼ 0Þ ¼ Pe and Cðx; z; t ¼ 0Þ ¼
�
C* � C0

�.
DC* ¼ 0:

The selected mesh should only be viewed as a compromise
between the convergence and solver memory requirements
(UMFPACK direct solver or PARDISO solver were used in our
simulations). A 4000-element quadratic mesh (69986 degrees of
freedom), which is more convenient for our rectangular cell
problem, was used. As the analytical solution is valid for large
aspect ratios, A � 10was used for all numerical simulations. The
computations performed for A ¼ 10 and A ¼ 20 led to the same
results.

5. Determination of the mass fraction gradient m along the x
axis

To determine the mass fraction gradient, m along the x axis, we
use the fact that the mass flow rate of the component of mass
fraction specie C through any vertical section is equal zero:

Z1
0

	
uC � 1

Le

	
vC
vx

þ vT
vx




dz ¼ 0; c x˛½0;A� (29)

The latter assumption leads to the following cubic equation
giving m as a function of the dimensionless parameters: Pe, Ra, Le
and j.

Le2Ra2j2

362;880
m3þLe2RajPe

3360
m2þ

	
1þLe2Pe2

105
�LeRaj

720



m�LePe

12
¼ 0

(30)

Eq. (30) depends only on the group of the two dimensionless
parameters: (PeLe) and ðjRaLeÞ. These two dimensionless param-
eters have the following form:

PeLe ¼ UH/D ¼ Pem where Pem is the corresponding mass Péclet
number, and jRa Le ¼ C0ð1� C0ÞSTgbCDTH3=yD. Considering the
mass fraction difference resulting from pure Soret separation, we
deduced that:

jRa Le ¼ gbCDH
3=yD ¼ Ram

where Ram is the mass Rayleigh number. Pem and Ram can either be
positive or negative depending respectively on the sign of U and j.
With this new formulation of dimensionless numbers Eq. (30) takes
the following form:

Ra2m
362;880

m3þRamPem
3360

m2þ
 
1þPe2m

105
�Ram
720

!
m�Pem

12
¼ 0 (31)

5.1. Determination of m for Pe ¼ 0

For Pe ¼ 0 (i.e. no velocity is applied at the upper wall), Eq. (31)
admits three real roots:

m ¼ 0 and m ¼ �6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�10;080þ 14RajLe

p
RajLe

(32)

For Ra � 720=RajLe; the two nonzero roots are real and
correspond to counter-clockwise unicellular convective flows.
Knobloch et al. [16], obtained an analytically similar result: Rauni ¼
720=RajLe when they analyzed the linear stability of the equilib-
rium double-diffusive solution in a binary fluid mixture Rauni cor-
responds to the critical Rayleigh number for the onset of
supercritical double-diffusive convection, characterized by a tran-
sition from the quiescent double-diffusive state to unicellular
double-diffusive convection in horizontal cell.

This result is obtained for j > juni ¼ 1=½ð34=131ÞLe� 1�. In
saturated porous cell Charrier et al. [9] obtained similar result:
Rauni ¼ 12=Lej and juni ¼ 1=½ð40Le=51Þ � 1�. For 0 < j < juni, the
onset of convection is associated with multi-cellular flow.



Eq. (30) indicates that the value of the mass fraction gradient m
depends only on the RajLe for Pe¼ 0. The optimal value of themass
fraction gradient is found to bem ¼

ffiffiffiffiffiffi
70

p
=20z0:418, which occurs

for Ra ¼ 1440=jLe. This optimal Rayleigh number is equal to
Ra ¼ 2Rauni. However, the unicellular flow can be unstable at
Ra ¼ 2Rauni, therefore, stability analysis is needed to determine the
range of Ra values, where unicellular flow can occur.

For j > juni species separation between the two ends of the cell
is only possible when the layer is heated from below (Ra > 0). In
fact, due to thermodiffusion, the denser particle moves toward the
cold wall, inducing a positive vertical mass fraction gradient and
leading to a unicellular flow. For j < 0, the separation is only
Pem;opt ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�207;900� 105Ram þ 70

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Ram � 3240Ram þ 18;662;400

pq
30

(34)

Fig. 2. Rayleigh number associated to the onset of monocellular flow and optimal
separation versus j, for Pe ¼ 0 and Le ¼ 100.
possible when the layer is heated from above (Ra < 0) In this case
the denser particle moves toward the hot wall, inducing a positive
vertical mass fraction gradient and leading to an unstable state.

Fig. 2 shows the critical and optimal Rayleigh number versus the
separation ratio for Le ¼ 100. The solid line represents the critical
Rayleigh number. The dashed line represents the optimal Rayleigh
number for which maximal separation is obtained. The hatched
zone of Fig. 2 represents the regions where separation is not
possible.

5.2. Analytical determination of m in general case (Pem s 0 and
Ram s 0)

The cubic equation (31) with real coefficients admits three roots
that depend on sign of the discriminant D. If D > 0, the three roots
are real and distinct and in the case of a negative discriminant, the
equation has one real root and two complex conjugate roots Finally,
for D ¼ 0, the equation has a multiple root and all its roots are real.
The discriminant D of Eq. (31) was obtained using Maple algebra
code. Its expression, function of Ram and Pem, is given as
D ¼ F(Ram,Pem) with F equal to:

F ¼ Ra2m
h
343Ra3m�

�
1764Pe2mþ740;880

�
Ra2m

�
�
12;852Pe4mþ6;985;440Pe2m�533;433;600

�
Ram

�17;280
�
Pe2mþ672

�
�
�
Pe2mþ105

�2i.
11;614;343;086;080;000

(33)

The sign of this discriminant is shown in Fig. 3:
It can be observed in Fig. 3 that the equation has a single real

root with two complex conjugate roots forD< 0which corresponds
to the highest values of Pem. Three distinct real roots were obtained
for D > 0 which corresponds to smaller values of Pem and higher or
moderate values of Ram. The multiple real root case was obtained
for D ¼ 0. It corresponds to the intersection of the plane D ¼ 0 with
the surface D ¼ F(Ram,Pem).

� Case with one real roots and two complex conjugates roots

For D < 0, Eq. (31) has one real root and two complex conjugate
roots defined as a function of Ram and Pem.
The representation of the surface defined implicitly byG (m, Pem,
Ram) ¼ 0 associated to Eq. (31), for Pem > 0 is shown in Fig. 4

It can be seen in Fig. 4 that, for the dimensionless parameter
range considered, the equation has only a single real root with two
complex conjugate roots or three real roots, two of which are
opposite.

The positive or negative optimum values can be obtained
respectively for Pem > 0 and Pem < 0. It can be observed, in Fig. 4,
that the maximum value of the mass fraction gradient is
mmaxz0:432. This maximum was obtained in the case with one
real solution and for Pem > 0. The optimum value of Pem is then
given by:
Thus, the maximum value of m which is a function of Ram can
then be calculated. The results are: m ¼ �O42=15y� 0:432 for
Pem ¼ �

ffiffiffiffiffiffi
42

p
; Ram ¼ 540.

For a cavity heated from below mmax ¼ O42=15 was obtained
for Pem ¼

ffiffiffiffiffiffi
42

p
and Ram ¼ 540. However, a stability analysis was

needed to determine the range of Ram values, where the unicellular
flow can occur. The value ofm can be seen as a function of the mass
Rayleigh number in Fig. 5 for the cases, Pem ¼ 0, Pem ¼ 6.5, and
Pem ¼ 10. The solid line represents the case where no velocity is
applied at the upper wall.

For Pem ¼ 0, the species separation is only possible for a cell
heated from below and when the Rayleigh number exceeds a
critical value Ram > Ramuni ðj > 0Þ.

A maximum separation is observed for an optimal value of
Rayleigh number, where optimal coupling between convection and
thermodiffusion time is achieved. When the mass Rayleigh number
is lower than its optimal value, the thermodiffusion is predominant.
In this case the separation, due mainly to thermodiffusion, is small.
Conversely, when Ram > Ramopt , the convection regime increases
and tends to reduce the species separation.

The dotted and dashed curves represent the case where a con-
stant velocity is applied at the upper wall (Pem ¼ 6.5, Pem ¼ 10). For
this case (Pem s 0) the separation is always possible whether the



Fig. 5. Mass concentration gradient versus mass Rayleigh number for Pem ¼ 0,
Pem ¼ 6.5 and Pem ¼ 10ðLe ¼ 100; j ¼ 0:1 for exampleÞ.

Fig. 3. 3D representation of the discriminant of Eq. (31).
layer is heated from above or from below. It can be explained by the
fact that the temperature gradient induces thermodiffusion be-
tween the cold and the hot wall, and the applied velocity leads to
species separation between the two ends of the horizontal cell.

For Pem ¼ 6.5 and Pem ¼ 10 the maximal value of m is respec-
tively m ¼ 0.432 obtained for Ram ¼ 537.5 and m ¼ 0.428 obtained
for Ram ¼ 100. For Pem ¼ 0 the maximum mass fraction gradient,
m ¼ 0.42, is obtained for Ram ¼ 1200 (heated from below).

A comparison of the specie separation variation (S ¼mA) versus
mass Péclet number Pem obtained, numerically and analytically, for
a cell heated from below, Ram ¼ 537:5; ðLe ¼ 100;j ¼ 0:1Þ is
presented in Fig. 6. The analytical solution is represented by solid
lines and the numerical values are represented with dots. The
analytical solution is in good agreement with the numerical results.
When the mass Péclet number is small or large (i.e. the applied
velocity is low or high), the ratio between the mass diffusion time
and the convective time does not allow maximal species
Fig. 4. 3D implicit surface associated to the Eq. (31).
separation. This maximal value is equal to: S ¼ 4.32, obtained for
Pem ¼ 6.5 and Ram ¼ 537.5 ðLe ¼ 100; j ¼ 0:1Þ (Table 1).

Fig. 7 gives an example of the variation of the mass fraction
gradient field for different values of mass Péclet number (Pem), with
Ram ¼ 537:5; ðLe ¼ 100; j ¼ 0:1; Pr ¼ 10Þ and A ¼ 10. The
black lines represent the iso-mass fractions, while the colors
represent the intensity of the mass fraction of the heaviest
component.

When Pem increases, i.e. the velocity of flow increases, the iso-
concentration curvature increases and the separation decreases.

In Fig. 8, a comparison of the specie separation, S, versus mass
Péclet number for Ram ¼ �400ðLe ¼ 100; j ¼ 0:1;
Pr ¼ 10Þ and A ¼ 10 is presented. It can be noted that the
analytical results agree with the numerical ones. The maximum
specie separation, S ¼ 4.16, is obtained for Pem ¼ 13.

The iso-mass fractions, and the mass fraction fields are pre-
sented on Fig. 9 for Pem ¼ 10, Pem ¼ 25 with
Ram ¼ �400ðLe ¼ 100; j ¼ 0:1; Pr ¼ 10Þ and A ¼ 10.

� Case of three real roots, two of them are opposite.

From Eq. (31) we deduced the condition to obtain three real
roots, two of which are opposite, by identifying its coefficients to
those of the following equation ðm�m1Þðm2 �m2

2Þ ¼ 0:
Fig. 6. Variation of separation (S) versus mass Péclet number (Pem), for Ram ¼ 537.5
ðLe ¼ 100; j ¼ 0:1; Pr ¼ 10Þ and A ¼ 10.



Table 1
Comparison between analytical and numerical results for
Ram ¼ 537:5ðLe ¼ 100; j ¼ 0:1Þ and Pr ¼ 10.

Pem SAna SNum

2 3.40 3.37
4 4.13 4.09
6.5 4.32 4.31
8 4.28 4.28
10 4.15 4.15
12 3.97 3.98
14 3.78 3.77
16 3.59 3.59
18 3.40 3.40
20 3.22 3.22
25 2.78 2.76
30 2.48 2.48
40 2.00 2.01
50 1.64 1.64

Fig. 8. Variation of separation (S) versus mass Péclet number (Pem), for Ram ¼ �400
ðLe ¼ 100; j ¼ 0:1; Pr ¼ 10Þ and A ¼ 10.
7Ram � 108Pe2m � 11;340 ¼ 0 (35)

Eq. (35) shows that the mass Rayleigh number is always posi-
tive. Using this condition we obtain the three real roots:

m1 ¼ �108Pem
Ram

¼ � 7Pem
Pe2m þ 105

(36)

m2;3 ¼ �6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�10;080

Ra2m
þ 14
Ram

� Pe2m
Ra2m

vuut ¼ �7
9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30

Pe2m þ 105

s
(37)

It can be deduced from Eqs. (36) and (37) that themaximal value
of the mass fraction gradient ism1max ¼ �

ffiffiffiffiffiffiffiffiffi
105

p
=30z� 0:342 and

the associated values are m2;3 ¼ �
ffiffiffi
7

p
=9y� 0:294 obtained for

Pem;opt ¼ �
ffiffiffiffiffiffiffiffiffi
105

p
and m2;3max ¼ �

ffiffiffiffiffiffi
14

p
=9z� 0:416, obtained for

Pem ¼ 0. These two valuesm2,3 max are located at the intersection of
the m-axis and the 3D implicit surface associated to Eq. (31) pre-
sented in Fig. 4.

The evolutions of the three real roots of Eq. (31) are plotted
versus mass Péclet number Pem in Fig. 10.

The two symmetrical curves represent the mass fraction
gradient,m, obtained using Eq. (37) while the dotted line shows the
mass fraction gradient, m1, obtained using Eq. (36). In this case, the
mass fraction gradient is equal to zero for Pem ¼ 0 independently of
the value of Ram.

For Pem ¼ 0 and Ram ¼ 1620, there are 3 real roots, two of which
are non-zero:
Fig. 7. Iso-mass fraction lines versus mass Péclet number (a) Pem ¼ 6.5; (b) Pem ¼ 12; (c) Pem
m2;3 ¼ �O14=9 which correspond to a clockwise and a counter-
clockwise unicellular convective flow. All three corresponding ve-
locity fields are represented in Fig. 11

As shown in Fig. 12, for Pem > 0, the two flows associated to the
two opposite roots m2,3 are completely different to the unicellular
free convective flow obtained for Pem ¼ 0. The flow induced by the
movement of the upper wall, increased by the natural convective
flow, rotating clockwise is associated to m3 ¼ �ð7=9Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30=ðPe2m þ 105Þ

q
and the flow presenting two counter-rotating

superposed cells corresponds to m2 ¼ ð7=9Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30=ðPe2m þ 105Þ

q
.

The third real root, m1 is also associated to a convective flow pre-
senting two counter-rotating superposed cells. The flow is obtained
when the convective roll is counter-clockwise. The corresponding
velocity profile is presented using dashed line in Fig. 12, for
Pem¼ 10, Le¼ 100. In this case, a large amount of the fluid located in
the upper part of the cavity moves in the direction opposite to the
upper wall movement leading to a negative value of m.

� Case of three real roots, two of them are equal.

By identifying the coefficients of the equation
ðm�m1Þðm�m2Þ2 ¼ 0 to those of the cubic Eq. (31), we deduced
¼ 25 with Ram ¼ 537.5 (heated from below) ðLe ¼ 100; j ¼ 0:1; Pr ¼ 10Þ and A ¼ 10.



Fig. 9. Iso-mass fraction lines versus mass Péclet number (a) Pem ¼ 10; (b) Pem ¼ 25, for Ram ¼ �400 (heated from above) ðLe ¼ 100; j ¼ 0:1; Pr ¼ 10Þ and A ¼ 10.

Fig. 10. Mass fraction gradient, m, versus mass Péclet number (case of three real roots
with two opposite).
the relation coupling Pem and Ram, leading to the case where two
negative roots are equal and the third one positive :

Pem
�
324Pe2m þ 126Ram þ 136;080

�
�

ffiffiffi
6

p �
6Pe2m þ 7Ram � 5040

�3
2 ¼ 0

(38)
Fig. 11. Velocity profile associated to concentration gradient, m1 ¼ 0(dotted line), and
m2;3 ¼ �ð

ffiffiffiffiffiffi
14

p
=9Þ for Ram ¼ 1620 and Pem ¼ 0.
The corresponding three real roots were obtained using condi-
tion (38):

m1 ¼ 4

	
� 9Pem þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36Pe2m þ 42Ram � 30;240

q 

Ram

(39)

m2;3 ¼ �2
18Pem þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36Pe2m þ 42Ram � 30;240

q
Ram

(40)

Solving the cubic Eq. (38) with respect to Ram, leads to one real
root and two conjugate complex roots, thus, Ram can be expressed
as a function of Pem:

Ram ¼ 720� 6
7
Pe2m þ 1

7

 
N þ Pe2m

N
þ Pem

!2

(41)

With:

N ¼
	
4Pe3m þ 3150Pem

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15Pe6m þ 25200Pe4m þ 9;922;500Pe2m

q 
1=3

(42)
Fig. 12. Velocity profile associated to concentration gradient, m1, m2 and m3 for Ram ¼
108ðPe2m þ 105Þ=7 and Pem ¼ 10 and Le ¼ 100.



Fig 13. Mass fraction gradient, m, versus mass Péclet number (case with three real
roots, two of which are equal and negative), for Le ¼ 230; j ¼ 0:2.

Fig. 14. Velocity profile for Ra ¼ 60; Le ¼ 100;j ¼ 0:1; Pe ¼ 0:06; and A ¼ 10.

Fig. 16. Velocity profile of for Ra ¼ 200; Le ¼ 100;j ¼ 0:1; Pe ¼ 0:05; and A ¼ 10.
We verified that m1 and m2,3 are only function of Pem, using
Eq. (41).

The evolutions of these three real roots are plotted versus mass
Péclet number in Fig 13:

The maximum separation is observed, in Fig 13, for an optimal
value of mass Péclet number, for which optimal coupling between
forced convection and thermodiffusion time is achieved. When the
value of Pem is lower than the optimal value, the thermodiffusion is
predominant. In this case the separation, due mainly to thermo-
diffusion, is small.

Conversely, when Pem > Pemopt, the convection regime increases
and tends to reduce the species separation.

5.3. Determination of m for the particular case Ram / 0

For Ram / 0 (corresponding to the case DT or H / 0), Eq. (31)
has a single root given by:
Fig. 15. Variation of the mass fraction field and streamlines
mðRam ¼ 0Þ ¼ 35
4

 
Pem

Pe2m þ 105

!
(43)

The maximal value of the mass fraction gradient is obtained for
Pem;opt ¼ �

ffiffiffiffiffiffiffiffiffi
105

p
and corresponds to: mmaxðRam ¼ 0; Pem ¼

Pem;optÞ ¼
ffiffiffiffiffiffiffiffiffi
105

p
=24y0:427.
6. Influence of velocity profile on the separation

The structure of the flow inside the cavity and the associated
velocity profile induced by the top wall driven at constant velocity
along the x axis depends on the direction of the convective rotating
vortex generated by free convection inside the horizontal cell.

The equation of the velocity profile obtained in Eq. (26) can be
also written in the form:

u ¼ 1
12

z
h�

� 2z2 þ 3z� 1
�
Rajmþ ð36z� 24ÞPe

i
(44)

We verify that the value of the discriminant of the quadratic
equation associated with the velocity is positive for all values of Ra,
Pe and j. Thus there are two distinct real roots. If these two roots
are in the interval �0;1½ the velocity is equal zero at two points
inside the cross section of the cell. We show that both roots are
located in the interval �0;1½ only when the value of X ¼ Pe=Rajm is
in the range of ]�0.042,0[. The velocity profile in the cavity for Ra ¼
60; j ¼ 0:1; Pe ¼ 0:06; m ¼ 0:4319 and A ¼ 10 leads to
X ¼ 0:0231;½�0:042;0�. It then follows that the velocity profile
has only one value of z˛�0;1½ for which the velocity equals zero. The
corresponding velocity profile is presented in Fig. 14. The analytical
solution is represented by solid line. The numerical values obtained
for cross-section x ¼ 5 are represented with dots. In Fig. 15, the
variation of the mass fraction field obtained numerically with same
values of (Pe;Ra; Le;j;A, m) is presented. The color indicates the
intensity of the mass fraction of the heaviest species. The lines
represent the associated stream function and the arrows indicate
the direction of the flow.
for Ra ¼ 60; Le ¼ 100;j ¼ 0:1; Pe ¼ 0:06 and A ¼ 10.



Fig. 17. Variation of the mass fraction field and streamlines for Ra ¼ 200; Le ¼ 100;j ¼ 0:1; Pe ¼ 0:05 and A ¼ 10.
For Ra ¼ 200;j ¼ 0:1; Pe ¼ 0:05; and A ¼ 10, leading to
m ¼ �0.1436, the value of X ¼ �0.0174 is in the range of ��0:042;0½
and the velocity is zero for two values of zðz1 ¼ 0:35; z2 ¼ 0:84
˛�0;1½. The corresponding velocity profile is shown in Fig. 16. The
analytical solution is represented by solid line and numerical values
obtained for cross-section x ¼ 5 are represented with dots. The
results between analytical and numerical values are in very good
agreement.

Fig. 17 illustrates the variation of the mass concentration field
obtained numerically with Pe ¼ 0.05, Ra ¼ 200, Le ¼ 100, j ¼ 0:1,
A ¼ 10. The colored scale represents the intensity of the mass
fraction of the heaviest component. The lines represent the asso-
ciated stream function and the arrows show the direction of the
flow.

In the latter case, associated to two convective cells, the corre-
sponding species stratification is different from the stratification
obtained in the single convective cell case. The mass concentration
gradient m decreases contrary to the case with a single convective
cell.

7. Conclusion

In this work, a new procedure leading to species separation in a
horizontal rectangular cavity filled with a binary fluid, heated from
above or from below, has been studied. A constant horizontal ve-
locity was applied to the upper horizontal wall. The two control
parameters of this procedure were the applied velocity on the
upper wall, which determines the intensity of the forced convective
flow, and the temperature difference between the two horizontal
plates, which controls the intensity of the thermodiffusion. In this
study the species separation was quantified by both analytical and
numerical methods. The influence of the thermal Rayleigh number
and the Péclet number for different values of separation ratio,
Prandlt and Lewis numbers on species separation was quantified
and discussed. It was proved that the mass concentration gradient
m is only function of two new dimensionless parameters, jRa Le ¼
Ram and PeLe ¼ Pem while the general problem depends on five
dimensionless parameters ðRa; Pe; Pr; Le;jÞ. The optimal species
separationwas obtained for a cell heated from belowor from above.
The cases with Pem ¼ 0 and Ram / 0 were also studied. The
analytical and numerical results obtained were in good agreement.
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