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On the deformation of gas bubbles in liquids
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We consider the deformation of gas bubbles rising in different liquids over a wide

range of Morton numbers, from O(10−11) to O(1), and bubble diameters. We have

collected data from the literature and performed new experiments for relatively large

Morton numbers. A simple expression is proposed to describe the evolution of the

bubble deformation, which is consistent with the analytical solution of Moore [“The

rise of a gas bubble in a viscous liquid,” J. Fluid Mech. 6, 113 (1959)]. It appears that

deformation can be predicted correctly by considering the Morton and Weber num-

bers. The variation of the bubble interfacial area is also analyzed; this quantity is very

important for the case of bubbly flow modeling but has not been measured directly

to date.

I. INTRODUCTION

In air water systems millimetric bubbles are known to deform.1 The deformation changes

the bubble hydrodynamics and characteristic trajectories of rising bubbles; these issues have been

recently studied in detail by Ellingsen and Risso,2 Sanada et al.,3 Mougin and Magnaudet,4 Zenit and

Magnaudet,5 and Yang and Prosperetti.6 The effect of deformation on the drag coefficient has also

been considered (Moore,7 Maxworthy et al.,8 Tomiyama et al.,9 and Legendre10). As a consequence

of hydrodynamic modifications, bubble deformation also impacts the interfacial heat or mass transfer

(Lochiel and Calderbank,11 Favelukis and Ly,12 and Figueroa and Legendre13). The modeling of

bubble deformation is of great importance in bubbly flows since the deformation results in a bigger

interfacial area for the mass, momentum, and energy transfer between the phases. For practical

applications, it is thus necessary to use a relevant model to characterize bubble deformation.

In this investigation, we have collected data from the numerous sources in the specialized

literature; we have also conducted experiments for a particular range of Morton numbers for which

no detailed, or reliable, information could be found. We propose a simple expression to predict the

bubble deformation. We also propose this expression to be used for the calculation of the interfacial

surface area of air bubbles in liquids.

This note is organized as follows. Section II presents the problem considered. The experimental

device is described in Sec. III. Section IV considers bubble deformation in air water system and

the effect of bubble contamination is discussed. Section V presents the effect of increasing the fluid

viscosity; a simple model able to describe bubble deformation for a wide range of Morton numbers

is proposed in Sec. VI. Finally, results are used to discuss the evolution of the interfacial area in

Sec. VII.

II. STATEMENT OF THE PROBLEM

Let us consider a gas bubble of constant volume V rising at its terminal velocity U in a liquid

at rest under the action of gravity g. The viscosity and density of the liquid are denoted by ρ and

µ, respectively. σ is the interfacial surface tension and d = (6V/π )1/3 is the spherically equivalent

diameter. The bubble deformation is first characterized by considering the aspect ratio of a bubble,



TABLE I. Physical properties of the water-glycerin (W-G) solutions used in this study.

Fluid Density Viscosity Surface tension

water-glycerin ratio (v/v) (kg/m3) (mPa s) (mN/m) Morton number

Water (reference) 1000 1.0 72.5 2.5 × 10−11

25/75 W-G 1191 19.9 65.7 4.6 × 10−6

11/89 W-G 1225 80.0 62.7 1.3 × 10−3

8/92 W-G 1242 173.5 62.6 2.9 × 10−2

4/96 W-G 1258 457.8 58.8 1.7 × 100

χ = a/b, where a and b are the lengths in the perpendicular and parallel directions (with respect to

the bubble velocity direction), respectively. Since bubbles are flattened due to their motion, we have

χ ≥ 1. In Sec. VII, the deformation is characterized by considering the normalized bubble surface

fα = S/πd2 using the surface of the sphere of same volume. fα thus expresses the relative increase of

interface due to the deformation.

In this note we consider gas bubbles in liquids; hence, the bubble density and viscosity have

a negligible effect on bubble dynamics and deformation. Considering the variables involved in

the problem (namely, d, ρ, σ , µ, and g), by simple dimensional analysis, we can show that the

bubble aspect ratio χ and the normalized bubble interface fα depend only on two independent

dimensionless numbers. Several can be formed, but the most commonly found in this subject are:

the bubble Reynolds number Re = ρUd/µ, the Weber number W e = ρU 2d/σ , the Eötvös number

Eo = ρgd2/σ , and the Morton number Mo = µ4g/σ 3ρ, to name a few.

III. EXPERIMENTAL ARRANGEMENT

Although there is a vast experimental database in the literature, we identified a wide range of

Morton numbers for which no detailed information, for the particular case of significant bubble

deformation, could be found. Hence, we conducted some simple experiments considering four

different water-glycerin mixtures corresponding to Mo = 1.24, Mo = 3.0 × 10−2, Mo = 1.4 × 10−4,

and Mo = 1.6 × 10−6. The physical properties of these liquids are shown in Table I. The viscosity of

the liquids was measured with a rheometer (TA Instruments AR1000N) with a cone-plate geometry

(60 mm, 2◦, a gap of 65 µm). The surface tension measurements were performed with a DuNouy

ring (diameter of 19.4 mm, KSV Sigma 70). The density was measured with a pycnometer (Simax,

50 ml).

The bubbles were released in a cylindrical glass tube with a diameter D of 9 cm; a detailed

description of the device to release the bubbles can be found in Soto et al.14 The ratio d/D was

less than 0.08 for all the experiments. The motion of the bubbles was captured using a high speed

camera (MotionScope PCI 8000s, 500 frames/s). The resolution of the images was in the order of

15 pixels/mm, and varied only slightly for the different experiments. The camera was placed around

90d above the base of the tube where the bubbles were released to ensure that the bubbles had

reached their terminal properties; the measurement region was about 30d below the liquid surface.

Some typical bubble shapes are shown in Fig. 1. We can observe that the deformation is

significantly affected by the value of the Morton number. The shape evolves from spherical, to

ellipsoidal and to spherical cap as both the Morton number and the bubble size increase.

A. Digital image analysis

The shape and position of the bubbles were determined by digital image analysis (DIA), using the

Image Processing Toolbox of MATLAB. The terminal velocity was calculated from the displacement

of the geometric center of bubble in time. The bubble aspect ratio, χ , was determined from the direct

measurement of a and b. Figure 2 shows a typical image of a bubble and its corresponding image



FIG. 1. The image shows the bubble shape for different sizes and fluids. The rows show experiments for the same fluid

(same Morton number): first row, Mo = 1.7 (images 1–4); second row, Mo = 2.9 × 10−2 (images 5–8); third row,

Mo = 1.3 × 10−3 (images 9–12); and fourth row, Mo = 4.6 × 10 − 6 (images 13–15). Each column shows bubbles of

approximately the same size: first column, d ≈ 1.5 mm; second column, d ≈ 3.9 mm; third column, d ≈ 5.9 mm; and fourth

column, d ≈ 9.0 mm. All images are shown at the same scale. The size of each frame is ∼14 × 8 mm2. All liquids are

water-glycerin mixtures. The properties are listed on Table I.

analysis. These measurements, via DIA, are now relatively standard for which an uncertainty of 1%

is expected.

On the other hand, despite its importance in modeling, a measurement of the bubble interfacial

area has not been attempted from DIA. Clearly, for large deformation, the bubbles deviate signifi-

cantly from a spheroidal shape; hence, in this investigation, we measure the bubble surface area and

report its variation for a wide range of parameters.

The surface area, S, is calculated using Pappus first theorem.15 A similar procedure, but consid-

ering the second theorem, was used by Soto et al.14 to measure the volume of bubbles with highly

deformed axisymmetric shapes. The first theorem of Pappus states that the surface of revolution

generated by rotating a curve C about an axis of rotation is equal to the product of the arc length,

a

b

FIG. 2. Typical image of a bubble. The × shows the geometrical center of the bubble. The vertical dashed-dotted line shows

the axis of symmetry. The dotted (green online) line shows the detected edge of the bubble. The continuous (red online) line

shows the curve C of length s, which is used to calculate the surface of the bubble, S. The ⋄ shows x which is the centroid of

C. For the case shown, d = 8.3 mm for Mo = 1.3× 10−3.



s, and the distance traveled by its geometric centroid, x: S = 2πsx. It is relatively easy to determine

C, s, and x from DIA. We used a standard edge detection algorithm to find the edge of the bubble

image; from the geometric center of the bubble, the position of the vertical axis is determined. The

edge is cut into two parts (left and right). From either part, the curve C is obtained. Since the edge

detection algorithm finds the “inner” bubble boundary (based on the maximum value of pixel inten-

sity gradient), the position and length of C have to be corrected. This is done by radially growing

the curve by one pixel. We verified the accuracy of this correction by measuring the surface area

of a reference sphere of known diameter. Once C is known, x and s are easily calculated. Figure 2

shows these quantities for a typical image. This procedure was applied to all of our experiments to

determine S and fα . We also obtained measurements for a few data points from Huang,16 Sunol and

Gonzalez-Cinca,17 and Zenit and Magnaudet.5 Since the measurement of the surface area is more

sensitive to pixel-resolution error, the uncertainty of the measurement increases to ∼6%.

B. Parameter range

The model proposed in this paper is based on the new experiments performed for this study

and on many experimental measurements reported in the literature using different liquids. The

corresponding range of parameters covered here is reported in the phase diagram (Mo, Eo) shown

in Fig. 3. The Morton number is varied from O(10−11) to O(1) and the Eotvos number ranges from

O(10−2) to O(102). For those ranges, the Weber number and Reynolds number are in the ranges

O(10−4) up to O(10) and O(10−2) to O(103), respectively.

Following Rastello et al.,18 we found that all data can be correlated considering Re, W e, and Mo.

Figure 4 shows all the experimental data shown in Fig. 3 written in terms of these three dimensionless

numbers. The data are closely fit to the expression18

Re = 2.05 W e2/3 Mo−1/5. (1)

Clearly, a very good correlation is found for all data. This relation is useful. Below, we propose

a relation for the bubble deformation for which only the W e and Mo numbers need to be known.
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in Fig. 3. The solid line shows the correlation in Eq. (1).

The Morton number is defined in terms of the gravitational acceleration g, which limits its use

to bubbles ascending as a result of buoyancy. Although, in principle, the gravitational acceleration

could be replaced by the relevant acceleration in another context (either reduced or enhanced gravity),

expression (1) permits us to reformulate our model in terms of W e and Re only.

IV. AIR BUBBLE IN WATER

A large number of experimental investigations of the motion of air bubbles in water have been

conducted.1 In Aybers and Tapucu,19 experimental measurements for the deformation of air bubbles

in water are reported for a large range of bubble diameters (d ∈ [0.83; 7.11] mm). For this diameter

range the observed shapes were spherical (d ≤ 0.83 mm), ellipsoid without (0.83 ≤ d ≤ 2.0) and with

(2.0 ≤ d ≤ 4.2) surface oscillation and distorted shape leading to spherical cap (d ≥ 4.2). In these

experiments the effect of surface-active impurities was clearly demonstrated: the bubble terminal

velocity was smaller than the theoretical predictions for clean bubbles.

Since water is very sensitive to impurities, Duineveld20 performed experiments in an ultra-clean

environment and with high purity water for d ∈ [0.66; 2] mm. He compared the bubble terminal

velocity and deformation with the analytical solution of Moore7 based on the potential flow solution,

i.e., valid in the limit of large bubble Reynolds number. For such conditions the deformation is

controlled by liquid inertia induced by the slip motion. If the distortion is small, Moore21 showed

that the bubble is an oblate spheroid and that the aspect ratio is given by

χ = 1 +
9

64
W e. (2)

In the opposite limit of very viscous flows (i.e., high Morton numbers and low Reynolds

numbers), Taylor and Acrivos22 showed that, for small inertial effects, the deformation was

χ = 1 + 5
32

W e. Note that 9/64 ∼ 0.141 and 5/32 ∼ 0.156; hence, it is difficult to experimen-

tally observe the difference between these two behaviors since the O(W e) correction is observed for

W e ≤ O(1) corresponding to small deformation (less than 15% according to relation (2)).



If the dynamic pressure and the surface tension pressure are balanced exactly at the stagnation

points and at the intersection of the bubble surface and the horizontal plane of symmetry, the

deformation can be shown to be21

W e =
4

χ4/3

(χ3 + χ − 2)

(χ2 − 1)3
[χ2sec−1χ − (χ2 − 1)1/2]2. (3)

Duineveld20 observed smaller deformation than that predicted by relation (3) so he proposed

the following relation in order to fit his data:

χ =

√

a1

W e0 − W e
, (4)

with W e0 ≃ 4.412 and a1 ≃ −4.39. This relation has a limited range of application since the

deformation diverges as W e → W e0.

Loth23 collected data from many sources in the literature to provide a new description of the

aspect ratio based on the Weber and Reynolds numbers. From data for pure bubble systems over a

range of Reynolds numbers from 0.2 to 5000, the author proposes the following fit:

1

χ
= 1 − (1 − Emin) tanh [cE W e] , (5)

where Emin = 0.25 + 0.55exp [−0.09Re] and cE = 0.165 + 0.55exp [−0.3Re]. Note that this relation

is nearly independent of the Reynolds number for Re > 20.

The experimental results of Aybers and Tapucu19 and Duineveld20 are shown in Fig. 5(a) which

also reports more recent experiments performed using high speed camera which allow a more

accurate determination of the bubble shape and terminal velocity for air bubbles in tap water2, 24 and

ultra filtered water.16, 25 We also observe in this figure that the bubble deformation for all the reported

experiments show the same evolution for d ≤ 1.5 mm. For larger diameters, a different behavior is

observed which could be attributed to the purity of the water. Figure 5(b) indicates that this deviation

corresponds to the maximum of the terminal velocity. For d ≥ 1.5 mm the terminal velocity for all

the experiments reported reveals the same evolution predicted by the Moore21 solution. The main

reason is the decrease of bubble terminal velocity, which has been shown to be the result of interface

contamination. The liquid inertia involved in bubble deformation is thus decreased and bubbles are

less deformed.
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FIG. 5. Air water system. (a) Bubble aspect ratio χ and (b) terminal bubble velocity U as a function of bubble equivalent

diameter d, respectively. N, tap water;24 ¨, ultra filtered water;25 ⋆ ultra filtered water;29 ◦, ultra purified water;20 and ¤,

filtered water.19 The dashed line (− − −) shows the fit χ = 1 + 0.16d2. The solid and dotted lines show the predictions of

the model proposed by Moore,21 considering physical properties at 20 ◦C and 25 ◦C, respectively.
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FIG. 6. Water and other low viscosity liquids. Bubble aspect ratio χ as a function of (a) Weber number W e and (b) Eotvos

number, Eo. N, tap water;24 ¨, ultra clean water;25 ⋆, ultra filtered water;29 ◦, ultra purified water;20 ¤, filtered water;19

+, (Mo = 2.3 × 10−9) ethanol;17 and ⊳, (Mo = 1.8 × 10−10) silicon oil.5 The thick continuous (—) and dashed (−− −) lines

show the predictions from expressions (2) and (6), respectively. The dotted (. . . ), dashed-dotted (− . −), and thin continuous

lines show the correlations proposed by Duineveld,20 Loth,23 and Raymond and Rosant,26 respectively.

Figures 6(a) and 6(b) show the deformation as function the Weber and Eotvos numbers, respec-

tively. It is clear from these plots that the relevant dimensionless number to be used to describe the

deformation is the Weber number. Indeed, when deformation is reported versus the Weber number

all the data collapse on the same curve (Fig. 6(a)); on the other hand, considering the Eotvos number

the data are greatly scattered.

It is also very interesting to note that (i) clean and contaminated bubbles also follow the same

evolution and (ii) the experiments of Aybers and Tapucu19 corresponding to various bubble shapes

including spherical cap also follow the same trend. The deformation evolution also appears not to be

significantly affected by the nature of the trajectory. Ellingsen and Risso2 and Riboux et al.24 have

shown that the velocity remains aligned with the small axis when the bubble experiences a helical

trajectory.

As shown in Fig. 6, the following simple relation closely describes the bubble deformation for

water for χ up to 3:

χ =
1

1 − 9
64

W e
. (6)

In the limit of small deformation (i.e., small W e) this relation is in accordance with expression (2),

which is valid up to W e ≈ 2. Relation (5) is also shown in the figure, for the limit of large Reynolds

numbers. This relation closely predicts the deformation up to χ ≈ 2.5. Raymond and Rosant26

proposed a relation, which is very similar to Eq. (6) but based on larger Morton number experiments.

The agreement with this expression is also good for small deformation. However, for both cases, for

W e > 2, the predicted deformation is below the experimental data shown in Fig. 6. The source of

this difference with the deformation measured in water systems is discussed in Sec. V considering

larger Morton number.

V. EFFECT OF MORTON NUMBER

Let us now consider the bubble deformation for more viscous fluids in order to cover a

wider range of Morton numbers (see Fig. 3). We first observed that the evolution of the defor-

mation with the Weber number was not affected significantly by the change in Morton number for

Mo ≤ 2 × 10−9. Indeed, as shown in Fig. 6(a), the evolution of the aspect ratio for the silicon oil
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FIG. 7. Effect of Weber and Morton numbers on bubble deformation. ◦, Ultra purified water;20 ¤, filtered water;19

⋄ (Mo = 9.9 × 10−6) and △ (Mo = 1.6 × 10−8) silicon oils;5 and ¨ (Mo = 1.3 × 10−3), ¥ (Mo = 2.9 × 10−2),

• (Mo = 1.7), water-glycerin mixtures (this study). The solid lines show the prediction of Eq. (7), considering Eq. (8), for

the corresponding Morton numbers of each experiment.

(Mo = 1.8 × 10−10) and for ethanol (Mo = 2.3 × 10−9) are very close to that observed for water.

The evolution as a function of the Eotvos number, shown in Fig. 6(b), confirms that the correct

dimensionless number for these liquids is the Weber number.

Figure 7 shows the effect of larger Morton numbers on the deformation. For comparison,

the results of Aybers and Tapucu19 and Duineveld20 (which correspond to an air-water system)

are used to show the water-like evolution observed up to Morton number Mo ≈ 2 × 10−9.

The bubble deformation obtained in the present study for a water-glycerol mixture (Mo = 1.68,

Mo = 2.9 × 10−2, Mo = 1.3 × 10−3) and by Zenit and Magnaudet5 for two silicon oils (Mo = 1.6

× 10−8 and Mo = 9.9 × 10−6) are also shown in Fig. 7. The deformation is observed to decrease

monotonically with the Morton number.

A detailed inspection of the data, by considering the evolution of 1 − 1/χ , reveals that the

following simple expression closely predicts the bubble aspect ratio for all the fluids considered

here:

χ =
1

1 − 9
64

W e(1 + K (Mo)W e)−1
, (7)

where K(Mo) is a function of the Morton number only. In order to recover relation (6), valid for

water and other low viscosity liquids, which is consistent with the analytical solution of Moore21

for small deformation, the condition limMo → 0K(Mo) = 0 must be satisfied. Our data suggest that

K(Mo) evolves approximately as Mo1/10. This dependence can be closely fitted by the following

simple expression:

K (Mo) = 0.2 Mo1/10. (8)

The prediction of expression (7), considering also Eq. (8), is compared with the experimental

measurements in Fig. 7. An excellent agreement is observed. Additionally, we compared our results

with the recent experimental measurements of Rastello et al.18 leading also to a very close agreement



(not shown in Fig. 7 for clarity). We also observed a very good agreement with the predictions of

Loth’s correlation23 for larger Morton number than those reported in Fig. 6. For Mo > 10−3 we

found some differences with the data reported by Raymond and Rosant.26 Both our experiments and

model, result in smaller bubble deformation for a given value of W e, particularly for W e > 2.5. It

is not easy to assess what is the cause of these discrepancies. In general, we think that differences

between data sets may arise from the deformation measurement. The validity of our results rests in

the good agreement with the results reported by Loth23 and Rastello et al.,18 for such Mo values.

In this paper, we show two regimes for the bubble deformation. For Morton number smaller

than 10−9 we observe a water-like behavior nearly independent on the Morton number and in good

agreement with recent different sources5, 17, 20, 24 as well as with classic data.19, 20 In most cases,

the degree of cleanliness of the bubble surface is not controlled but all these experiments show

deformation in agreement with the model proposed in this study whatever the surface contamination

level. When the Morton number increases, we observe less deformation than the water-like behavior

as clearly shown in Fig. 7 in agreement with the recent experiments of Rastello et al.18 as well as

with the empirical model of Loth.23 As discussed above, neither surface contamination nor bubble

trajectory is expected to produce less deformation. Therefore, other physical mechanisms must

be analyzed to further understand this behavior. It can be argued that the viscous boundary layer

developing at the bubble surface can be responsible for the reduced deformation for a given Weber

number when increasing the Morton number. As shown by Kang and Leal,27 the bubble Reynolds

number has a significant effect on the pressure distribution at a spherical bubble surface. Same effect

is, of course, expected for deformed bubble, most likely resulting in less deformation for a given

Weber number. We plan to further pursue this argument via numerical simulations in a future study.

VI. BUBBLE SURFACE AREA

A direct application of the results presented in this paper is their use to describe the interfacial

area αI. This quantity is often used in the Eulerian two-fluid models to account for the interfacial

momentum, energy and mass exchange between the phases. In mono-dispersed bubbly flows, the

interfacial area is a function of the gas void fraction αG, the volume V and the surface S of the

bubbles:

αI = αG

S

V
.

As shown above, the bubble shape and, therefore, the interfacial area change significantly with both

the Morton number and the Weber number. This parameter can vary significantly, even within the

same flow, in a complex system. To our knowledge, experimental measurements of this parameter

have not been reported to date; only a few numerical studies exists26, 28 but their results have not

been verified experimentally.

For a spherical bubble, αI = 6αG/deq. When the bubble deforms, according to Figueroa and

Legendre,13 we can express the interfacial area as

αI = αG

6

d
fα(χ ), (9)

where fα is a measure of the relative increase of the interfacial area with the deformation.

For a spheroidal bubble of aspect ratio χ , an expression for fα can be readily obtained:21

fα(χ ) =

[

χ2/3

2
+

1

4χ1/3
√

χ2 − 1
Ln

(

χ +
√

χ2 − 1

χ −
√

χ2 − 1

)]

. (10)

From digital image analysis, described in Sec. III, a measurement of the surface area, S, of

a given bubble can be obtained. Despite its importance, surprisingly, a direct measurement of the

surface area of bubbles has not been reported to date. We can directly calculate fα for a wide range

of deformations.

Figure 8 shows the measured value of fα for all the experiments conducted in this study. For the

largest deformation considered here (χ ≈ 3) the increase of the interfacial area is significant since it
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and Magnaudet5 for silicon oils: ⋄ (Mo = 9.9 × 10−6), ▽ (Mo = 6.2 × 10−7), and △ (Mo = 1.6 × 10−8). The solid and

dashed lines show the predictions of Eqs. (10) and (11), respectively.

can reach 20% for χ = 3. The measurements are contrasted with the prediction from expression (10).

Clearly, the agreement is good, for the whole range of Morton numbers and deformations but the

expression overestimates the increase of the surface area for most values of χ . The following fit,

fα = 1 + 0.07(χ − 1)7/4, (11)

is shown in the figure. It is simple and closely fits the evolution of the surface increase for the

range of Morton number considered in this study. Nevertheless, despite the wide range of defor-

mations, the interfacial area can be approximated by assuming an ellipsoidal shape. Finally, using

relations (9) and (10) or (11) coupled with (7), it is possible to have a good description of the inter-

facial area for a wide range of fluid properties and deformation. An explicit dependence with W e

and Re can also be obtained considering Eq. (1).

In the figure, the simulation results from Raymond and Rosant26 and Lai et al.28 are also shown.

The results of Lai et al.28 show an increasing value of the normalized bubble surface as the aspect

ratio increases, in accordance with the experimental measurements; however, their computed results

are below the rest of the data. Such underestimation of the bubble surface may result from the

particular simulation technique used in their study. The results of Raymond and Rosant26 show a

very different trend: they report that the bubble surface decreases with aspect ratio. These results are,

most likely, flawed. For a spherical bubble (χ = 1) the surface is minimized; hence, as deformation

increases, the surface of the bubble should increase.

VII. CONCLUDING REMARKS

The bubble deformation has been analyzed for different gas-liquid systems. For the air-water

case, the relevant parameter to describe the deformation is the Weber number. By considering only

this number, the bubble deformation can be described universally for all bubble shapes, contamination



levels and path trajectories. A water-like behavior is observed for low viscosity fluids for Morton

numbers of up to Mo of O(10−9). For more viscous liquids the deformation for a given Weber

number decreases with the Morton number. The relation obtained for small Morton numbers was

extended for more viscous liquids, considering a simple correction to account for variations on both

Weber and Morton numbers. This study indicates that the bubble deformation can be fully described

by only knowing W e and Mo. This result is, in fact, consistent with what is expected from a simple

dimensional analysis of the system.

The evolution of the bubble surface area has also been briefly discussed. A simple model has

been proposed to describe the evolution of the interfacial area for moderately deformed bubbles.

With such a model it is possible to have a dynamic representation of the bubble deformation.

Thus in regions where the Weber number is reduced because of a smaller slip velocity (for ex-

ample in recirculation zone in a downcomer), the interfacial area should decrease. The simple

relation proposed here is of interest for practical applications and for CFD tools where bubble

deformation has to be characterized since it directly affects the surface of exchange in many flow

configurations.
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