

To cite this version: Frances, Fabrice and Mifdaoui, Ahlem and Codogni,

Xavier and Fraboul, Christian An arbitrarily precise time synchronization

algorithm based on Ethernet Switch serialization. (2013) In: 25th Euromicro

Conference on Real-Time Systems (ECRTS13), 09 July 2013 - 12 July 2013

(Paris, France).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@inp-toulouse.fr

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/

Eprints ID: 10361

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/19892516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:staff-oatao@inp-toulouse.fr
http://oatao.univ-toulouse.fr/

An arbitrarily precise time synchronization algorithm

based on Ethernet Switch serialization

Fabrice Frances, Ahlem Mifdaoui,

ISAE/DMIA

University of Toulouse

Toulouse, France

{fabrice.frances | ahlem.mifdaoui}@isae.fr

Xavier Codogni, Christian Fraboul

ENSEEIHT/IRIT

University of Toulouse

Toulouse, France

{xavier.codogni | christian.fraboul}@enseeiht.fr

Abstract—It turns out that trying to play a worst-case
traversal time (WCTT) scenario on a real experimentation
platform is a Real-Time problem with extremely tight con-
straints. When two packets (with the same destination) arrive
to two different input ports of a network switch within a
time frame of only a few nanoseconds, the order of these
packets in the output port queue will reflect this small
nanoseconds arrival difference. Moreover, failing to emit
packets within this tiny time frame will exhibit a different
scenario than expected, potentially so radically different in
farther places of the network that the behavior of the whole
system seems affected by a butterfly effect. As we were
trying to achieve the most precise clock synchronization
we could with standard hardware, we have had the idea
to turn this butterfly effect to our benefit and develop an
arbitrarily precise time synchronization algorithm that only
requires a standard Ethernet switch connecting the two hosts
to synchronize and a third host on the network that will serve
as a synchronization helper.

Keywords-clock synchronization; Ethernet switch;

I. INTRODUCTION

When trying to exhibit Worst-Case Traversal Time

(WCTT) scenarios on a real network experimentation

platform, we were faced with the problem of playing

scenarios containing synchronized emission of frames in

several End-Systems that do not share a common clock:

most often, these worst case scenarios consist in simulta-

neous arrivals of frames in a switching network element,

for example Ethernet frames on an Avionics Full-Duplex

Ethernet Switch (AFDX).

Let’s consider the simplest example of two frames (A

and B) emitted by two different End-Systems, when these

frames arrive to their connecting Ethernet switch and

have the same destination. We assume tA and tB are the

arrival times of the last bit of these frames in an ideal

FCFS switch running in Store and Forward mode. Then

we can observe that when tB < tA < tB + SizeB/C
(where C is the capacity of the ouput port), then frame

B will be retransmitted first starting from time tB (plus

a small technological latency considered as 0 for this

demonstration), whereas frame A will have to wait until

tB + SizeB/C before starting to be retransmitted. From

a scheduling point of view, we can see that the same

scenario of trafic would be observed on the output port of

the switch, whatever the actual value of tA is in interval

]tB , tB+SizeB/C], i.e. retransmission of frame B starting

at tB , and retransmission of frame A starting at time

tB + SizeB/C (thus frame A will have to wait for the

end of retransmission of a part of frame B). However

from a latency point of view, the worst latency we can

observe is when tA is nearly equal to B (in this case we

get the expected result where frame A has to wait for

the full retransmission of B). So we can see that if we

want to play the worst-case latency scenario, we have to

be extremely precise and have tA very close to tB (but

not tA < tB otherwise frame A would arrive first and be

served without latency).

From this on, our quest was thus to find a way to

synchronize our network End-Systems as much as we

could. As we didn’t want to invest in specialized hardware

like GPS clocks and instead propose a solution easily

reproducible by any researcher, we tested the existing

clock synchronization algorithms. First, Network Time

Protocol [1]: the ntpd daemon is present in every Unix

distribution. However, NTP is targeted for 1 ms synchro-

nization at best, clearly not enough for our requirements.

So, we then tested the Distributed Clocks of the Preci-

sion Time Protocol [2][3], but again we couldn’t reach

a tight enough synchronization: as the 1588 Working

Group claims, microsecond precision shall be attainable

with PTP, but only with dedicated hardware. There exists

IEEE1588 Ethernet interfaces with integrated PTP, but

this is not the case of most standard Ethernet interfaces

found in PCs, where PTP has to be run in software.

So, the software implementations we tested were not

able to give a better than 10 µs synchronization. And

studying the algorithms used in PTP revealed that the

slave synchronization always rely on message exchanges

sent on an Ethernet network, without taking into account

the random latency effect of an eventual traffic arriving

simultaneously on a switch.

Finally, we noticed that even the Robust Absolute and

Difference Clock (RADclock) [4] has not taken benefit of

the synchronization hardware that is available for free in

every Ethernet network: the Switch.

II. THE FOUNDATION IDEA: ETHERNET SWITCH

SERIALIZATION

Whether the switch is in Store and Forward or in Cut-

Through mode, frames relayed to the same output port

have to be serialized (two frames cannot be emitted at

the same time). When two frames arrive in a perfectly

simultaneous timing on two input ports, this serialization

process is usually a side-effect of the behavior of a

centralized entity that takes the frames arrived in the input

ports and relay them to the appropriate output queue. Were

the relaying process be distributed among several entities

(one per input port), then frames would also be serialized

into the output port queue with a many-writer/single-

reader scheme.

Since we were trying to have several End-Systems emit

simultaneous frames and we had observed that a very

small variation on the emission time drastically affects

the order of serialized frames after the first switch, why

not interpret this sequencing order as a proof that one

frame arrived later? A general setup can now be given: all

what is needed to synchronize two End-Systems is to have

them connected to two input ports of an Ethernet switch

with a FCFS policy (this is the most common policy in

small and medium-sized switches), and an observer on a

third output port. The two End-Systems just need to try

to send a frame to the observer at the same time, and

the observer will tell them which one was first or second.

This is the only thing the observer is able to say, it is

binary information: this End-System’s frame arrived first

or second. For precise synchronization, it is useless to

extract quantitative timing information: if the two End-

Systems are nearly synchronized, the two frames will be

serialized and arrive in a burst, one after the other, with no

extra delay other than the standard InterFrame Gap (IFG)

of Ethernet.

Now, with such a binary information (the order of

frames is ”A, then B” or ”B, then A”), we will adjust

one of the End-Systems’ clocks by an increment of time,

and repeat the process, iteratively dividing the increment

of time by a modified dichotomy. This is the point of

the arbitrarily precise expression which sounds like an

hyperbole: of course an infinite precision would only make

sense with an ideal switch and ideal End-Systems able

to adjust frame emission times with an infinite precision.

But still, the algorithm proposed here has no limitation by

itself: the precision will only be limited by the actual End-

Systems and switch used, and precision can be arbitrarily

improved by using faster End-Systems and/or switches

when they become available.

III. INFORMAL DESCRIPTION OF THE PROTOCOL

The protocol is composed of only two types of mes-

sages: messages sent by the clients to the synchronization

helper host (the observer mentioned above will take the

role of a synchronization server in this protocol), and

messages sent by the synchronization server to the clients.

The synchronization clients will never exchange messages

together; communications take place only between a client

and the synchronization server (helper).

Messages sent by the clients contain a timestamp value,

denoted tclientn , and n which is a sequence number starting

from 0 (hence n identifies the messages sent by the

clients). Messages sent by the synchronization server to

a client host contain a tuple of four values (∆n, δn,

tservern+1 , n + 1), ∆n being interpreted as a request for

clock adjustment, δn a notification of the current precision,

and the last two values forming a request to emit a client

message numbered n+ 1 at time tservern+1 .

A. Initialization steps for a very rough synchronization

These first steps are required to initialize communica-

tion exchanges between the hosts to synchronize together

and the synchronization helper. They are also used to

reduce the large clock difference that might exist between

the two client hosts at startup.

1) Step 1: Start server process on observer host C, it

waits for two messages coming from client hosts A and

B.

2) Step 2: Start client processes on hosts A and B; they

send a client message to server C. The message contains

the local time on the client host, tclient0 . This is just to let

the synchronization server have a rough idea of what time

it currently is on the client hosts.

3) Step 3: On receipt of each of these first client

datagrams, the synchronization server calculates an ap-

proximated clock difference between the client and the

server: ∆client = tserverreceipt − tclient0

Please note that tclient0 is not the accurate time of packet

emission on the client. It is a timestamp written by the

client in the message sent to the server. This timestamp

is obtained by reading the current local clock prior to

building and sending the datagram.

Conversely, tserverreceipt is not the accurate time of packet

receipt on the server. It is the current time read on the

server after the message read call returns. The thread that

executes this blocking datagram read is resumed after a

non-predictable amount of time due to slice execution of

the currently active thread, followed by slice execution of

other more prioritized threads.

However, the approximation on ∆client is anticipated to

be lower than one second on non-overloaded hosts.

4) Step 4: The synchronization server C now plans

a roughly synchronized emission (from both clients) to

occur at time tserver0 = tservercurrent + c
c is a constant delay bigger than the error in the

approximated ∆client, e.g. two seconds.

Thus, synchronization server C sends a request to each

client, asking for a clock adjustment of ∆0 = −∆client so

that time on both clients becomes roughly equal to time on

server C. In the same request, it also asks for a message

emission at time tserver1 . When the client has adjusted its

clock as requested, this tserver1 time is interpreted as a

local client time, i.e. the client considers that tclient1 ≈
tserver1 .

B. The arbitrarily precise synchronization scheme

At the beginning of next step, a client has already

received a request to send a datagram to the server at time

tservern , with n being an iteration number (n is 1 when only

the initialization steps above have been executed).

The following step is repeated until the desired syn-

chronization precision is reached. The currently attained

precision is denoted δn and has been transmitted in the

last server message alongside with the request for clock

adjustment and the requested time for the next client

message emission. Thus the value of δ0 has been sent

to the clients in the last step of the initialization phase.

Chosing a good value for δ0 will have an impact on

the number of steps needed to attain a defined precision.

However, it is useless to select a very small value like

1 ms, because in this case there is a possibility that the

altered dichotomy has to do hundreds of 1 ms increments

in the same direction. In the other hand, starting with a

large value (like 1 second) only requires 20 steps to reach

the 1 µs precision.

1) Repeated step: Both clients actively wait for time

tclientn to happen (i.e. with an active loop) and then

immediately send the requested datagram to the server.

The two datagrams are received as Ethernet frames in the

switch that connects the clients, and since the destination

of the two datagrams is the same, the two Ethernet frames

are serialized for retransmission on the output port that

leads to the destination. The serialization process will be

further detailed in next section.

The synchronization server will thus receive the two

messages in one of the two possible orders (either the

message from A followed by the message from B, or

the message from B followed by the message from A).

The received order tells which client host has its clock

in advance compared to the other client host. So the

synchronization server prepares a new request for clock

adjustment: the client host whose message arrived first

will be requested a clock adjustment of δn+1, while the

other will be requested a clock adjustment of 0.

In the same message, the synchronization server also

ask both clients to plan their next message emission at

time tservern+1 = tservercurrent + c.
The last parameter of the message is the precision delta

that will be associated to the next iterated step. This

δn+1 is calculated with the following rule: if the order

of reception is the same as the one observed during the

previous nearly-synchronized emission, then δ stays the

same (i.e. δn+1 = δn) ; but if the order of reception is

reversed, then δ is divided by two. The rationale for this

altered dichotomy is discussed in next section.

IV. RATIONALE FOR THE PROTOCOL EFFICIENCY

The rationale behind the foundation idea is that the

latencies between each of the synchronizing client hosts

and the switch’s relaying entity are equal for both clients.

More precisely, the delay of interest comes from the

following sequence of events:

• a read of the client’s internal clock that determines

the end of the active wait loop,

• the write of the client synchronization message,

which is a system call that provides the protocol

datagram to the UDP/IP send stack, including the

final Ethernet driver, which in turn provides the

Ethernet frame to the hardware Ethernet card (or

interface),

Figure 1. Measurement of clock difference (in seconds) between two
non-synchronized hosts, over 3600 seconds (1 hour)

• the emission of the Ethernet frame,

• the propagation on the link that connects to the

switch, delaying the reception of the emitted signal

on the switch’s input port,

• the switch algorithm that senses the input ports for

incoming frames and decides at which point a frame

can be relayed to an output port’s queue (e.g. as soon

as the destination address has been received, in Cut-

Through mode).

The synchronization precision that our protocol will be

able to reach is directly affected by variations in any of

these points, so it is worthwhile explaining how jitter will

be controlled. Also, it must be noted that the sequence of

timely-controlled events has been reduced to a minimum:

in other real-time distributed algorithms, large latencies

with uncontrolled jitter exist in the network receiver stack

and in the delivery of a received message to an application

thread. Our solution fully removes these two sources of

latency.

A. Controlling latencies from the client host to the switch

First, we assume the two clients have the same hard-

ware/software combination: the same protocol client pro-

gram is run on the same hardware and operating system.

We will thus assume that the execution delay, between the

read of the client’s internal clock and the I/O command

sent to the hardware interface by the Ethernet driver, is

constant and identical on both clients. This assumption

does not seem unrealistic, even if execution of other pro-

cesses on a synchronizing client will introduce variations:

we will try to reduce these interactions by implementing

an active wait loop around the internal clock read, and no

system call between this read and the datagram write, in

order to reduce eventual thread switches. Of course, we

will guard against clock skew. Our measures have shown

very good consistency in stable conditions of temperature,

as can be seen on Figure 1, showing a constant clock drift.

Also, the execution time cannot be guaranteed to be

exactly the same though, because of possible different

content in the memory caches. However, the tight active

wait loop will also help in keeping these memory caches

filled with the desired content. Still, random hardware

interrupts (disks or other hardware sources) might happen

in the synchronizing clients: we will assume that these

random events will be quite infrequent and we will protect

against these events with the altered dichotomy algorithm.

Secondly, the length of the cables that connect the client

hosts to the switch will also be assumed the same, even if

this parameter has a smaller impact on the overall latency.

Finally, the TxC (Transmit Clock) of the Ethernet inter-

faces will be considered equal: any clock skew between

these TxC will be compensated by the receiving switch.

We could also argument that a significant difference in

the delay that separates the read of the client’s internal

clock and the arrival of the frame in the correspond-

ing switch’s input port is acceptable for our Real-Time

application (playing a worst case traffic scenario): the

same difference will exist when synchronously emitting

the scenario, so what is really important for us is how we

can have a fine control over the arrival of frames in the

switch.

In conclusion, the only remaining source of uncon-

trolled latency is the one present in the switch, before

detecting an arrival of a frame and handling that frame

(mainly relaying it to an output port). It is expected

that some switches will scan their input ports in a loop,

giving potential order inversion when frames arrive in a

small time window, but we prefer to consider this switch

behavior as a black box so that the protocol remains

generic.

B. The altered dichotomy algorithm

The altered dichotomy scheme has been designed to

account for transient variations, e.g. additional latency in

the client execution, due to some random event (disk inter-

rupt for example). Also, even if no network application is

executed at the same time as the synchronization protocol,

there are always a few packets sent by daemons from time

to time. In the emission protocol stack on the client host,

such packets could delay a client synchronization message,

affecting the order of arrival of the synchronized messages

on the switch (and thus on the synchronization server). In

such a case, the clock adjustment might take one erroneous

direction which will hopefully be compensated by two half

moves in the other direction (a normal dichotomy would

never compensate a wrong move). This is exemplified by

Figure 2, the upper part shows the case where the clock

adjustment is wrongly halved, and the lower part shows the

case where the clock adjustment should have been halved.

The previous adjustment is depicted in order to show the

last direction and amplitude of adjustment. In both cases,

the next two adjustments will compensate the erroneous

one.

V. CONCLUSION

This is a Work In Progress, the protocol is still in

development as we are still working on the best way to

trigger the emission of frames on the End-Systems so as to

make the most of current hardware/operating system. But

a number of ideas make this work promising, not only

for our needs of synchronizing a network platform that

Figure 2. Robustness of the altered dichotomy algorithm in case of a
wrong decision

aims to play worst case scenarios of traffic in Real Time,

but also for any other distributed real-time application as

soon as the nodes are connected with standard Ethernet

technology:

• the use of the natural serialization that takes place in

standard Ethernet switches, in order to provide binary

information on which client host is late or in advance,

• the reduction of the number and scope of uncon-

trolled sources of latencies: emission latency is con-

trolled and message delivery latency in the destina-

tion observer (synchronization helper) is not an issue.

Moreover, the observer does not need to be connected

to the same switch as the synchronizing clients:

once client messages have been serialized by the

first switch, they can cross any number of cascading

switches before reaching the observer. Conversely,

the observer could be integrated in the switch.

• the robustness to transient errors with an original al-

tered dichotomy that brings further confidence in the

capability of our algorithm to give the most precise

synchronization, with standard operating systems and

no extra hardware.

REFERENCES

[1] David Mills, Jim Martin, Jack Burbank, William Kasch,
Network Time Protocol Version 4: Protocol and Algorithms
Specification, RFC 5905, ISSN: 2070-1721

[2] Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems, PTP, IEEE
1588-2002 standard

[3] IEEE Standard for a Precision Clock Synchronization Proto-
col for Networked Measurement and Control Systems, PTP
v2, IEEE 1588-2008 standard

[4] Julien Ridoux and Darryl Veitch, Ten Microseconds Over
LAN, for Free (Extended), IEEE Transactions on Instrumen-
tation and Measurement (TIM) vol. 58(6), pp. 1841-1848,
June 2009

