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SUMMARY

1. A substantial portion of particulate organic matter (POM) is stored in the sediment of
rivers and streams. Leaf litter breakdown as an ecosystem process mediated by
microorganisms and invertebrates is well documented in surface waters. In contrast, this
process and especially the implication for invertebrates in subsurface environments
remain poorly studied.
2. In the hyporheic zone, sediment grain size distribution exerts a strong influence on
hydrodynamics and habitability for invertebrates. We expected that the influence of
shredders on organic matter breakdown in river sediments would be influenced strongly
by the physical structure of the interstitial habitat.
3. To test this hypothesis, the influence of gammarids (shredders commonly encountered
in the hyporheos) on degradation of buried leaf litter was measured in experimental
systems (slow filtration columns). We manipulated the structure of the sedimentary
habitat by addition of sand to a gravel-based sediment column to reproduce three
conditions of accessible pore volume. Ten gammarids were introduced in columns
together with litter bags containing alder leaves at a depth of 8 cm in sediment. Leaves
were collected after 28 days to determine leaf mass loss and associated microbial activity
(fungal biomass, bacterial abundance and glucosidase, xylosidase and aminopeptidase
activities).
4. As predicted, the consumption of buried leaf litter by shredders was strongly
influenced by the sediment structure. Effective porosity of 35% and 25% allowed the
access to buried leaf litter for gammarids, whereas a lower porosity (12%) did not. As a
consequence, leaf litter breakdown rates in columns with 35% and 25% effective
porosity were twice as high as in the 12% condition. Microbial activity was poorly
stimulated by gammarids, suggesting a low microbial contribution to leaf mass loss and a
direct effect of gammarids through feeding activity.
5. Our results show that breakdown of POM in subsurface waters depends on the
accessibility of food patches to shredders.
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Introduction

Particulate organic matter (POM), essentially terres-

trial derived leaves (Elosegi & Pozo, 2005), is the main

source of organic carbon and nutrients in most

forested headwater streams (Cummins, 1974; Webster

& Meyer, 1997). The maintenance of stream commu-

nity structure and function is dependent on this

allochtonous input (Wallace et al., 1997; Woodcock &

Huryn, 2005). In streams, leaf litter breakdown is

controlled by abiotic factors (abrasion, fragmentation

and leaching) and by the concerted action of a wide

variety of organisms. Fungi are the first organisms

involved in leaf breakdown (Webster & Benfield,

1986; Gessner, Chauvet & Dobson, 1999) but major

part of leaf mass loss is due to macroinvertebrates,

especially the shredder functional feeding group

(Smith & Lake, 1993; review in Graça, 2001).

During spates, large amounts of allochtonous POM

canbetrappedinthesediment(Rounick&Winterbourn,

1983; Marchant, 1988; Naegeli et al., 1995). For exam-

ple, annual storage of the coarse fraction of POM

(>1 mm) measured by Smock (1990) in the subsurface

sediment of a first-order stream in southeastern U.S.A.

was around sixfold higher than in surface sediment.

Moreover, 50% and 21% of autumnal allochtonous

leaf input were reported to be buried in sediment by

Herbst (1980) and Metzler & Smock (1990) respec-

tively. The hyporheic zone may act as a storage zone

and a decomposition zone for organic matter, but

assessments of POM decomposition rate in river

sediments are scarce. The few studies that have

described this process showed that POM decomposi-

tion was slower in sediments than in superficial water

(Herbst, 1980; Rounick & Winterbourn, 1983; Metzler

& Smock, 1990) and concluded that factors like

oxygen concentration, faunal composition and degree

of burial could account for this pattern (Boulton &

Foster, 1998; Naamane, Chergui & Pattee, 1999;

Tillman et al., 2003). Because of the large number of

factors potentially affecting POM processing in river

sediments, we developed an experimental approach

that allowed manipulation of sediment structure and

investigation of the influence of shredder activity on

organic matter processing.

A factorial experimental design was used, in which

occurrence of a leaf consumer and sediment proper-

ties were manipulated in microcosms. Sediment

structure (percentage of pore volume available for

shredder displacements in the sedimentary matrix)

was manipulated by varying the proportion of sand in

a gravel-based sediment. For each of three effective

porosity treatments, we assessed the influence of

gammarids on decomposition. Gammarids are a key

shredder group in surface waters (Lecerf et al., 2005;
Piscart et al., 2009) and also inhabit the hyporheic

zone (Dole-Olivier & Marmonier, 1992a,b). In micro-

cosms, the interactions between sediment properties

and gammarid occurrence in organic matter process-

ing were studied by determining (i) leaf litter break-

down; (ii) leaf litter respiration; (iii) nutrient and

dissolved organic carbon (DOC) release rates from

leaf litter; (iv) microbial (fungi and bacteria) abun-

dance, biomass and activity on leaves and (v) organic

carbon and nitrogen content of leaves. Because sed-

imentary condition appears to be a critical ecological

driver in the hyporheic zone (Valett, Fisher & Stanley,

1990; Strayer et al., 1997; Olsen & Townsend, 2003), it

is expected to have a major influence on POM

processing. We hypothesised that a decreased pore

size would reduce accessibility of trapped organic

matter to macroorganisms and the availability of

nutrient and oxygen for POM decomposers (bacteria

and fungi), resulting in reduced POM processing in

sediments.

Methods

Collection of sediments, leaves and fauna

Gravel and sand were collected from the Rhône River.

Gravel was sieved manually to select particle sizes

ranging from 2 to 4 mm and 7–10 mm. Before use in

experiments, gravel was cleaned with deionised water

and dried at 60 "C. Sand of 100–1000 lm grain size

was elutriated to eliminate POM.

We collected senescent leaves from alder (Alnus
glutinosa (L.) Gaertn.) from the riparian zone of the

Rhône River during abscission (November 2007).

Leaves were air-dried and stored in the laboratory.

Two weeks before introduction into the experimental

columns, leaves were conditioned in small-mesh bags

immersed in a nearby river (located on the campus of

the University Claude Bernard, Lyon, France) for

10 days, a time sufficient to allow microbial colonisa-

tion (Suberkropp & Chauvet, 1995). In the laboratory,

conditioned leaves were cut into 21.8 mm diameter

discs, avoiding central veins. Discs were then



air-dried for 4 days at ambient temperature and 21

sets of 30 randomly selected dry discs were weighed

before introduction to experimental columns.

We selected the common shredder group of gam-

marids (Willoughy & Sutcliffe, 1976; Herbst, 1982;

Griffith, Perry & Perry, 1994) to study faunal influ-

ences on leaf litter breakdown. Gammarids were

collected from a station on the Rhône River and were

kept for 2 weeks in the laboratory for acclimation to

experimental conditions (temperature and water

quality). Collected gammarids belonged to the species

Gammarus fossarum K. and Gammarus pulex L. with

relative abundances of about 70% and 30% respec-

tively. Previous experiments showed that these two

species produced similar leaf litter breakdown rates

(S. Navel, unpubl. data). We verified this result in the

present study (see below, Rates of leaf breakdown and

respiration of gammarids in surface water conditions).

Moreover, all gammarids used in sediment columns

were determined at the end of the experiment to

verify the comparable proportions of the two species

in experimental units.

Rates of leaf breakdown and respiration of gammarids
in surface water conditions

We measured individual leaf litter breakdown and

respiration rates of gammarids in surface water

conditions at 15 "C to compare with data obtained

in experimental columns. Feeding rates of gammarids

were assessed by measuring dry mass loss of three

discs of conditioned leaf litter (dry mass:

55.74 ± 3.50 mg) with one gammarid after 9 days, in

cylindrical microcosms (6.5 cm diameter, 100 mL

volume, n = 30) filled with 60 mL of river reconsti-

tuted water (see below). Gammarids and leaf litter

were then dried separately at 60 "C for 48 h and

weighed to determine feeding rate, corrected by the

dry mass loss obtained from control microcosms

without gammarids (n = 5), expressed in mg leaf

litter day)1 mg)1 dry gammarid.

Individual respiration rates of gammarids were

determined using a Micro-Respiration System (Uni-

sense, Aarhus, Denmark), according to Brodersen

et al. (2008). Gammarids were individually introduced

into micro-respiration chambers (4.5 mL) filled with

reconstituted river water which was continuously

stirred to prevent any vertical oxygen gradient in the

chambers. Oxygen uptake rates were determined

hourly from changes over time in concentration of O2

measured with micro-sensor inserted into respiration

chambers (records every 15 min during 3 h). After

measurement, each gammarid individual was dried at

60 "C (for 48 h) and weighed. Oxygen uptake rate was

expressed as lg of O2 h
)1 mg)1 dry gammarid.

After measurements, all gammarid specimens were

determined to verify the expected negligible effect of

species (G. fossarum versus G. pulex) on both feeding

and respiration rates.

Influence of shredders and sediment characteristics on
buried leaf litter

Experimental design. Experiments were carried out in

slow filtration columns (Mermillod-Blondin, Mauc-

laire & Montuelle, 2005) at constant temperature

(15 ± 0.5 "C) under a 12 h light ⁄12 h dark cycle. Each

column was 35 cm high and 10 cm in diameter.

Openings along each column at 1-cm intervals

allowed sampling of water at different depths and

times during the experiments.

To test the influence of physical habitat on organic

matter processing, the fraction of sand (100–1000 lm)

inserted in gravel-filled columns was manipulated to

control the volume of pores available for gammarid

occupation. As gammarids are not recognised as

active bioturbators, the porosity was considered to

be unchanged during the experiment. We tested three

effective porosities, namely 35% (P1), 25% (P2) and

12% (P3), calculated as the ratio of the volume of free

interstitial water (volume not filled by sediment nor

by water adsorbed on sand) to the total volume of the

sediment column. These effective porosities were in

the range of data obtained from gravel-bed rivers

(Gayraud & Philippe, 2003; Lautz & Siegel, 2006) and

the variable proportions of gravel and sand used in

our experiments mimicked the physical habitat het-

erogeneity occurring in gravel-dominated rivers

(Richards, Brasington & Hughes, 2002). For treatment

P1, each experimental column was filled exclusively

with 7–10 mm gravel (1750 g), allowing the occur-

rence of pores of area up to 15 mm2 (data obtained

from photographs of the sediment surface using

Osiris Software, Ligier et al., 1994). For the other

treatments we filled columns with five successive

additions of 7–10 mm gravel (300 g), 2–4 mm gravel

(40 g) and wet sand (50 and 100 g for P2 and P3,

respectively). During installation, a layer of 30 leaf



discs was introduced in all columns. These leaf discs

were inserted between two circular sieves (pore size:

3 mm) of the column diameter at a depth of 8 cm

below the sediment surface. About 10 cm of water

was left above the sediment surface. The sediment

part of each column was kept in the dark to suppress

photoautotrophic processes. For each effective poros-

ity treatment, we used six columns to assess litter

breakdown with (three columns) and without fauna

(three columns).

After installation of sediment and leaf discs, col-

umns were supplied from above with river reconsti-

tuted water (96 mg L)1 NaHCO3, 39.4 mg L)1

CaSO4Æ2H2O, 60 mg L)1 MgSO4Æ7H2O, 4 mg L)1 KCl,

19 mg L)1 Ca(NO3)2Æ4H2O and 1.6 mg L)1 (CH3CO2)2
CaÆH2O; pH = 7.5 (US EPA, 1991) using peristaltic

pumps. For each set of columns with a similar

porosity, infiltration flow rate was determined to

obtain a similar retention time of water across all

effective porosity treatments. Interstitial water veloc-

ity was fixed to 5.4 cm per hour in all columns, in

accordance with values reported in the hyporheic

zone of streams (Triska, Duff & Avanzino, 1993;

Morrice, Dahm & Valett, 2000) Supplied water was

aerated to maintain concentrations of dissolved oxy-

gen (O2) between 8.5 and 9.5 mg L)1 at the inlet of the

columns throughout the experiment.

After 1 week of water supply, 10 gammarids of

medium mass and size (mean ± SD: dry mass,

2.18 ± 0.14 mg; total body length, 7.92 ± 1.17 mm;

cephalic height, 1.66 ± 0.21 mm and cephalic width,

0.94 ± 0.12 mm) were selected and randomly as-

signed to three columns of each effective porosity

treatment. During the experiment, water was sampled

each week (days 0, 7, 14, 21 and 28 days after fauna

addition) at three depths (overlying water, 1 cm above

and 1 cm below the layer of leaf discs) to determine the

oxygen uptake (respiration) and nutrient release rates

from leaf litter under the different experimental condi-

tions. At the end of the experiment, fungal biomass,

total bacterial abundance, abundance of active eubac-

teria and enzymatic activities involved in carbon and

nitrogen cycles were measured on leaf discs. Leaf discs

were then dried and weighed to quantify mass loss

during the experiment and the final concentrations in

total nitrogen (TN) and organic carbon.

Water analyses. At days 0, 7, 14, 21 and 28, water

circulation in the sediment columns was shunted at

each depth to collect 50 mL of water. During sam-

pling, an oxygen micro-sensor probe fitted in a glass

tube (Unisense) was connected to the water derivation

to measure dissolved O2 without contact with atmo-

spheric oxygen. Determinations of N–NH4
+, N–NO3

)

(including NO2
)) and P-PO4

3) concentrations in water

were conducted using an automatic analyser (Easy-

chem Plus, Systea, Italia) based on standard colori-

metric methods (Grasshoff, Ehrhardt & Kremling,

1983), after filtration through 0.7 lm pore size What-

man GF ⁄F filters (Millipore, Billerica, MA, U.S.A.).

Water samples for DOC were filtered through 0.22 lm
pore size Whatman GSWP filters (Millipore), acidified

with three drops of HCl (35%) and stored at 4 "C.
DOC concentration was measured with a total carbon

analyser (multi N ⁄C 3100; Analytik Jena, Jena,

Germany) based on combustion at 850 "C after

removing dissolved inorganic C with HCl and CO2

stripping under O2 flow.

Fungal biomass. Fungal biomass was estimated using

ergosterol quantification (Gessner, Bärlocher &

Chauvet, 2003). For each column, five sampled discs

previously maintained at )20 "C were lyophilised for

12 h, weighed, and placed in closed glassware. Reflux

was realised by incubating discs in 5 mL KOH ⁄meth-

anol (8 g L)1) extraction solvent for 12 h at 4 "C. After

extraction, sterol hydrolysis by saponification reaction

was started by submerging glassware in a water bath

held at 80 "C for 30 min. Reaction was then stopped

by cooling (15 min at ambient temperature then

15 min at 4 "C, in the dark) and acidification

(pH < 3) with 1 mL HCl (0.65 MM). A sample of each

saponified extract (3 mL = half volume) was then

introduced in a Oasis HLB 3cc extracting column

(Waters corporation, Milford, MA, U.S.A.) which had

been previously conditioned. Conditioning of extract-

ing columns was based on an initial elution with

methanol (1 mL), an elution with methanol ⁄KOH–

methanol ⁄HCl 0.65 MM (1 mL), a washing with 5%

methanol (1 mL) and a final drying under low

vacuum (1 h, 0 to )5 bar). Sterols were released from

filters of extracting columns by eluting with succes-

sive addition of constant volume of isopropanol

(350 lL, 4·). Products were collected in a weighed

flask to determine mass and volume of isopropanol.

The ergosterol fraction was finally isolated and quan-

tified using HPLC system (HPLC 360 ⁄442, Kontron,
Eching, Germany) with an injection volume of 10 lL,



an eluant (100% methanol) flow rate of 1.4 mL min)1,

a detector wavelength set at 282 nm and column

temperature of 33 ± 1 "C. Peak area and concentration

of ergosterol in eluted isopropanol was calculated

with DIAMIREDIAMIRE software (JMBS Inc., Newark, DE,

U.S.A.) using known standards of ergosterol. Mass

of ergosterol in the initial sample was then calculated

according to the volume of isopropanol eluted from

the initial sample. Mycelial biomass was estimated

from ergosterol amounts using a 182 conversion factor

determined for aquatic hyphomycetes which are

known to dominate fungal assemblages on decom-

posing litter (Gessner & Chauvet, 1993). Results were

expressed in mg fungi g)1 dry mass of leaf litter.

Bacterial abundances. The DNA intercalating dye

DAPI (4¢,6-diamidino-2-phenylindole, 200 ng lL)1;

Sigma, Buchs, Switzerland) and a Cy3-probe (EUB

338, eubacteria, Amann, Glöckner & Neef, 1997) were

used on leaf discs to determine the total numbers of

bacteria stained with DAPI and the numbers of active

eubacteria (hybridised with EUB 338, Karner &

Fuhrman, 1997). During column dismantling (day

29), two leaf discs were immediately collected and

fixed in 4% paraformaldehyde in phosphate-buffered

saline (PBS) for 10 h. Fixed samples were subse-

quently washed twice in PBS and stored in ethanol

and PBS (50 : 50) at )20 "C. After storage (1 month),

0.5 g of fixed samples was homogenised in 4 mL of

0.1% pyrophosphate in PBS using a Sonicator XL 2020

(Misonix Inc., Farmingdale, NY, U.S.A.) with a 2-mm

diameter probe set at 100 W during two 1-min

periods. All homogenised samples were finally sup-

plemented with the detergent NP-40 (Sigma) to a final

concentration of 0.01%. Aliquots (10 lL) of homog-

enised samples were spotted onto gelatine-coated

slides and were hybridised with Cy3-labelled oligo-

nucleotide probe (EUB 338) and concomitantly

stained with DAPI. Hybridisations were performed

in 15 lL of hybridisation buffer (0.9 MM NaCl, 20 mMM

Tris ⁄HCl, 5 mMM EDTA, 0.01% sodium dodecyl sul-

phate; pH 7.2) in the presence of 30% formamide,

1 lL of DAPI and 1 lL of the probe (25 ng lL)1) at

37 "C for 2 h. After hybridisation, the slides were

washed in buffer at 48 "C for 20 min, rinsed with

distilled water and air-dried. Slides were mounted

with Citifluor solution (Citifluor Ltd, Leicester, U.K.)

and the preparations were examined at 1000· magni-

fication with a BH2-RFCA Olympus microscope fitted

for epifluorescence with a high-pressure mercury bulb

(50 W) and filter sets BP 405 (for DAPI) and BP 545

(for Cy3). Bacteria from the samples were analysed in

20 fields per sample with up to 30 cells per field.

Numbers of DAPI- and Cy3-bacteria were expressed

per g dry leaf litter.

Microbial enzymatic activities. We assessed activity of

cellulases and peptidases as key enzymes involved in

leaf conversion of polymeric compounds into smaller

molecules that can be assimilated by microorganisms

(Sinsabaugh, Carreiro & Alvarez, 2002). B-glucosidase
and xylosidase, and leucine aminopeptidase involved

in cellulose and amino-acids degradation, respectively,

were determined according to Romani et al. (2006).

Activities were analysed by fluorimetry using sub-

strate analogues [4-methyl-Umbelly-Feryl-b-DD-gluco-
sidase (750 lMM), 4-methyl-Umbelly-Feryl-xylosidase

(1000 lMM)and LL-leucine-4-methylCoumarinyl-7-amid-

eHCl (1000 lMM), respectively] for both predetermina-

tion of saturation curves and experimental

measurements. Analyses were performed within 24 h

of dismantling the columns. Litter discs were stored at

4 "C before analysis.

For each experimental column, three measurements

were performed for each exoenzyme. In parallel,

exoenzymatic activities of one formaldehyde-killed

control (three discs previously treated with a 39%

formaldehyde solution for 30 min) was analysed for

each enzymatic activity and pore volume treatment.

For each measurement, three sampled discs were put

in closed glassware with a constant volume of

substrate (2 mL). Incubation was performed at 20 "C
during 40 min. After incubation, sample flasks were

transferred into boiling water to stop reaction and

then centrifuged for 3 min at 5000 g. Constant vol-

umes of the supernatant (300 lL) and buffer (30 lL,
pH 10.4) were deposited on a storage-plate. Fluorim-

etry measurements were made using a microplate

reader (Safire microplate reader; Tecan, Männedorf,

Switzerland) with an excitation wavelength of 363 nm

and emission wavelength of 441 nm for MUF-glu and

MUF-xyl. Wavelengths were set at 343 nm (excitation)

and 436 nm (emission) for MCA-leu. Litter dry mass

was determined at the end of analyses to express

results as nmol of hydrolysed compound h)1 g)1 dry

leaf litter. For each sample, values were corrected by

the fluorimetric signal obtained with the formalde-

hyde-killed control.



C : N ratio. Leaf litter discs collected at the beginning

and the end of the experiment were dried (24 h at

60 "C) and powdered by a ball mill grinder (Mixer

Mill MM 200; Retsch, Haan, Germany). Total organic

carbon (TOC) was determined by high-temperature

combustion at 900 "C under O2 flow and subsequent

measurement of CO2 by infrared detectors (multi N ⁄C
3100; Analytik Jena, Jena, Germany). TN was analysed

using an elemental analyser (FlashEA; Thermo Fisher

Scientific, Waltham, MA, U.S.A.) set up for N analysis.

Data of TOC and TN were used to calculate C : N

molecular ratio for litter from each column.

Data treatment

Differences in dry mass loss, microbial characteristics

(fungal biomass, DAPI and EUB densities, enzymatic

activities) and C : N ratio were tested using two-way

ANOVAANOVA with effective porosity treatments (i.e. P1, P2

and P3) and fauna treatments (i.e. controls and

gammarids) as main effects. When significant differ-

ences were detected among treatments, we used the

contrasts method to determine which treatments

differed (Crawley, 2002).

Three-way repeated measures ANOVAANOVA (RM-

ANOVAANOVA) were used to test the influences of available

pore volume, fauna and depth on repeated measures

of water concentrations in O2, DOC, N–NO3
) (includ-

ing NO2
)), N–NH4

+ and P–PO4
3).

When variables (O2 and DOC) showed differences

between the top and bottom of leaf litter (significant

influence of depth), we calculated the process rates

occurring in the leaf litter for each column and each

day of measurement as follows:

PR ¼ ðDC # VÞ=Time

where PR is the process rate (O2 uptake and DOC

release rates) in the leaf litter (mg h)1), DC is the

difference in oxygen or DOC concentration (mg L)1)

between the top and the bottom of the leaf litter, V is

volume of water (L) contained in the column between

the top and the bottom of the leaf litter, Time is the

transit time of water (h) between the top and the

bottom of the leaf litter = 0.16 h for all treatments.

Two-way RM-ANOVAANOVAs were performed to test the

influence of available pore volume and fauna on these

process rates. Data expressed as ratio (leaf dry mass

loss) were firstly arcsine-transformed before statistical

analysis in order to fit the assumption of homosce-

dasticity. Statistical analyses were performed using RR

software (R Development Core Team, 2007), version

2.6.0. Significance for all statistical tests was accepted

at a < 0.05.

Results

Rates of leaf breakdown and respiration of gammarids
in surface water conditions

As G. pulex and G. fossarum did not show significant

differences for either leaf consumption (ANOVAANOVA1;

‘Species effect’: F(1,27) = 1.1229, P = 0.299) or oxygen

consumption (F(1,13) = 0.5809, P = 0.461) reported to

body mass, data obtained with the two species were

pooled in the following analyses. Both feeding rates

and oxygen consumption rates by gammarids showed

a significant and positive correlation with individual

dry mass (Pearson’s r = 0.867 and P < 10)9 for daily

leaf dry mass loss, Fig. 1a; Pearson’s r = 0.906 and

P < 10)5 for oxygen consumption rate, Fig. 1b). Based

on these relationships, a medium gammarid (i.e. dry

mass of c. 2.2 mg) was expected to consume 4.18 lg
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Fig. 1 (a) Daily feeding rate and (b) individual oxygen
consumption rate measured in free water at 15 "C in relation to
gammarid dry mass. The fitted lines were based on a linear
regression forced to 0.



oxygen h)1 and contribute to a leaf litter breakdown

rate of 0.51 mg day)1.

Influences of shredders and sediment characteristics on
buried leaf litter

Litter dry mass loss. Leaf litter degradation rates

measured at the end of the experiments (Fig. 2) were

clearly influenced by effective porosity and fauna

treatments (ANOVAANOVA; F(2,12) = 10.359, P = 0.002 and

F(1,12) = 28.089, P < 0.001, respectively). No significant

differences in leaf litter breakdown were measured

among effective porosity treatments in columns with-

out gammarids (controls) (analysis of contrasts;

P > 0.4 for all pairwise comparisons). The influence

of gammarids on leaf litter breakdown rate depended

on sediment characteristics (ANOVAANOVA; ‘effective poros-

ity’ · ‘fauna’ interaction effect: F(2,12) = 7.898,

P = 0.006). Leaf mass loss was approximately doubled

in presence of gammarids in columns with available

pore volume of 35% and 25% (analysis of contrasts;

|t12| = 4.890, P < 0.001 for P1; |t12| = 4.465,

P < 0.001 for P2) whereas no effect was observed in

the lowest pore volume (analysis of contrasts;

|t12| = 0.176, P = 0.863).

Water chemistry and biogeochemical processes. N–NH4
+

and P–PO4
3) concentrations remained low (<40 lg L)1

for both) at all depths throughout the experiment.

N–NO3
) (including NO2

)) concentrations were not

influenced by effective porosity (RM-ANOVAANOVA; F(2,36) =

0.829, P = 0.444), fauna (RM-ANOVAANOVA; F(1,36) = 1.079,

P = 0.306), nor depth (RM-ANOVAANOVA; F(2,36) = 2.093,

P = 0.138). In contrast, O2 and DOC concentrations

showed significant changes with depth (RM-ANOVAANOVA;

F(2,36) = 4952, P < 10)6 for O2 and F(2,36) = 27.417,

P < 10)6 for DOC). O2 concentrations decreased with

depth in columns whereas DOC concentrations

showed the opposite pattern (Fig. 3).

Effective porosity and fauna treatments had a

significant effect on oxygen consumption (Table 1,

RM-ANOVAANOVA; F(2,12) = 957.01, P < 0.001 and F(1,12) =

45.15, P < 0.001 respectively). Oxygen uptake in leaf

litter increased with increasing effective porosity and

the stimulating action by gammarids was increased in

columns with highest porosity (RM-ANOVAANOVA; F(2,12) =

14.90, P < 0.001 for ‘effective porosity’ · ‘fauna’ inter-

action effect). In contrast, there was no effect of

gammarids on DOC release rates (RM-ANOVAANOVA;

F(1,12) = 0.016, P = 0.903) while effective porosity had

a significant and positive influence on this process

(Table 1; RM-ANOVAANOVA; F(2,12) = 11.809, P < 0.002).

Characteristics of microbial assemblages. Mean esti-

mated fungal biomass (Fig. 4a) was 38.2 ±

7.7 mg g)1 dry leaf litter and was not significantly

influenced by effective porosity and fauna treatments

(ANOVAANOVA; F(2,12) = 1.427, P = 0.278 and F(1,12) = 1.056,

P = 0.324, respectively).

Bacterial abundances (Fig. 4b,c) significantly chan-

ged with effective porosity (ANOVAANOVA; F(2,12) = 7.077,

P = 0.009 for total bacteria and F(2,12) = 9.667,

P = 0.003 for active eubacteria). Total numbers of

bacteria were significantly higher on leaves incubated

in the lowest effective porosity P3 than in P2 (analysis

of contrasts; |t15| = 3.266, P = 0.005). On the oppo-

site, the numbers of active eubacteria increased with

the effective porosity (analyses of contrasts; P1 versus

P2: |t15| = 3.881, P < 0.002; P1 versus P3: |t15| =

2.238, P = 0.041). Whatever the effective porosity in

columns, the total number of bacteria and the number

of active eubacteria (hybridised with EUB 338)

developed on leaves increased in presence of

gammarids (ANOVAANOVA; F(1,12) = 6.440, P = 0.026 for total

bacteria and F(1,12) = 5.618, P = 0.035 for active

eubacteria).

Glucosidase activity significantly increased with

effective porosity (ANOVAANOVA; F(2,12) = 4.884, P = 0.028;

Fig. 5a). This influence of porosity was not observed

for xylosidase (ANOVAANOVA; F(2,12) = 3.573, P = 0.061;

Fig. 5b) and leucine aminopeptidase activities

(ANOVAANOVA; F(2,12) = 1.050, P = 0.380; Fig. 5c). When we

only considered data obtained from control columns,

no significant differences in enzymatic activities were
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Fig. 2 Loss of leaf dry mass buried at a depth of 8 cm in
sediment columns for three pore volume and two gammarid
treatments after 4 weeks of experiment (mean ± SD, n = 3).



measured among porosity treatments (Fig. 5, analyses

of contrasts, P > 0.1 for all pair-wise comparisons). No

significant influence of gammarids was detected on

enzymatic activities (ANOVAANOVA; F(1,12) = 2.739, P = 0.124

for glucosidase; F(1,12) = 0.260, P = 0.619 for xylosi-

dase; F(1,12) = 2.383, P = 0.149 for leucine aminopepti-

dase), apparently due to the high variability of the

measurements for xylosidase and leucine aminopep-

tidase. However, mean values tend to increase in

presence of gammarids in the higher effective porosity

treatments P1 and P2 (up to 39.2% for leucine

aminopeptidase in P1), whereas activities did not

change in the lowest porosity treatment P3 (3.3% for

leucine aminopeptidase).

C : N ratio. Total organic carbon and TN concentra-

tions in leaves collected at the end of the experiments

ranged from 45.9% to 50.1% and 3.19% to 3.68%,

respectively. C : N ratio of leaves varied between 15

and 17 and were not significantly influenced by
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Fig. 3 Depth profiles of dissolved O2, DOC, N–NO3
), N–NH4

+ and P–PO4
3) concentrations for three effective porosity and two

gammarid treatments after 3 weeks of experiment (mean ± SD, n = 3).

Table 1. Uptake of dissolved O2 and release rates of DOC calculated from concentrations measured above and below the leaf
litter buried at a depth of 8 cm in sediment columns for three effective porosity and two gammarid treatments during the course
of the experiment (mean ± SD, n = 3)

P1 (35%) P2 (28%) P3 (21%)

With
gammarids

Without
gammarids

With
gammarids

Without
gammarids

With
gammarids

Without
gammarids

O2 uptake (mg h)1) 1.48 ± 0.02 1.25 ± 0.03 1.26 ± 0.04 1.22 ± 0.03 0.58 ± 0.05 0.53 ± 0.01
DOC release (lg h)1) 596 ± 377 462 ± 157 330 ± 57.6 425 ± 20.2 46.4 ± 89.4 54.2 ± 60.8



effective porosity nor gammarid treatments (ANOVAANOVA;

F(2,12) = 2.812, P = 0.100 and F(1,12) = 1.665, P = 0.221

respectively).

Discussion

Sediment grain size and microbial breakdown

Our study showed no direct influence of porosity per
se on buried leaf litter breakdown. Without gammar-

ids, around 13–17% of initial dry mass of litter was

lost after 4 weeks due to fungal and bacterial activity

and mechanical processes (leaching, fragmentation

and abrasion by sand). The similar enzymatic (gluco-

sidase, xylosidase and leucine aminopeptidase) activ-

ities measured in control columns for the three

porosity treatments indicated that the tested sediment

grain size did not affect microbial activities on leaf

litter. Moreover, we observed low variation in phys-

ical and chemical conditions in the different experi-

mental treatments. By using experimental systems

with similar interstitial velocities, we reproduced

comparable chemical conditions for microbes in all

porosity treatments: comparable nutrient (N–NH4
+,

N–NO3
) and P–PO4

3)) concentrations were measured

in interstitial water around leaf litter and dissolved

oxygen concentrations were always higher than

6 mg L)1 just above leaf litter. Although associated

with a slight decrease in dissolved oxygen, the

reduction of effective porosity did not induce a shift

from aerobic to anaerobic conditions in the interstitial

habitat because no decrease in nitrate concentrations

(indicating a denitrification process) occurred with

depth in any porosity treatment. In such physical and

chemical conditions, the three sedimentary matrix

treatments did not differentially constrain microbial

activity on leaf litter. Field experiments have demon-

strated that leaf litter breakdown by microorganisms

was linked with the concentrations of oxygen

(Chauvet, 1988; Medeiros, Pascoal & Graça, 2009)

and nutrients (Young, Huryn & Townsend, 1994;

Suberkropp & Chauvet, 1995; Baldy et al., 2007) in

streams. In the hyporheic zone, influence of sediment

structure on organic matter processing would also be

expected to result from variations in available dis-

solved oxygen induced by surface water–groundwa-

ter exchanges (Franken, Storey & Williams, 2001;

Lefebvre, Marmonier & Pinay, 2004). Our experimen-

tal work supports these expectations because it

demonstrates that modification of the sediment struc-

ture when not associated with changes in availability

of electron acceptors (oxygen) and nutrients (nitrogen,

phosphorus) has little influence on microbial break-

down of leaf litter.

Influence of gammarids on buried leaf litter

Gammarids are key agents of leaf litter breakdown in

superficial waters (Willoughy & Sutcliffe, 1976;

Herbst, 1982; Hieber & Gessner, 2002). Marchant &

Hynes (1981) estimated annual feeding rates of leaf

litter by a Gammarus pseudolimnaeus Bousfield popu-

lation of 1547 kg ha)1 in the Credit River (Ontario,

Canada). Mathews (1967) estimated that G. pulex
could be responsible for consumption of up to 13%
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of total leaf litter in a British river. Leaf litter

breakdown has also been reported to be positively

correlated with gammarid density in streams of

several French regions (Dangles et al., 2004; Lecerf

et al., 2005; Piscart et al., 2009). Our experiment dem-

onstrated that gammarids also have a predominant

action on breakdown of leaf litter buried in stream

sediments. Their impact was, however, strongly

linked with the pore size of the sedimentary matrix.

Leaf litter breakdown increased by 100% with gam-

marids in columns with the highest effective poros-

ities (i.e. 25% and 35%) but remained unchanged (in

comparison to treatments without gammarids) in

columns with 12% effective porosity. These results

suggest that effective porosity determined the acces-

sibility of buried leaf litter to gammarids. In the more

porous treatment (35%), many pores (n > 20) were

>5 mm2 and could easily allow gammarids (frontal

surface of gammarids = 1.58 ± 0.39 mm2, calculated

as ‘cephalic width · cephalic height’) to access and

consume buried leaf litter. In contrast, the reduction of

effective porosity by sand addition in the less porous

treatment (12%) probably suppressed the occurrence

of pores and prevented access to leaf litter by

gammarids.

In columns with the highest porosities, the signif-

icant impact of gammarids on leaf litter breakdown

may be linked to direct feeding on leaves and ⁄or a

positive interaction between gammarids and the

microorganisms involved in organic matter process-

ing. Measurements in columns with the highest pore

volume (P1) indicated a stimulation by 19% of oxygen

uptake in leaf litter due to gammarids (corresponding

to an increase of c. 230 lg O2 h
)1). Such stimulation

could be only partially (18%) explained by the

respiration of the 10 individuals introduced in col-

umns (41.9 lg O2 h
)1). Thus, activities of gammarids

on leaf litter may have stimulated microbial respira-

tion associated with leaves. Similarly, we detected a

positive influence of gammarids on bacterial abun-

dances (total number of bacteria and number of active

bacteria) on leaves. Gammarids may enhance the

microbial compartment through several mechanisms

(Kinsey, Cooney & Simon, 2007) including: (i) increase

in availability of nutrients and DOC from excretion

and fragmentation of leaf litter (Joyce, Warren &

Wotton, 2007; Joyce & Wotton, 2008); (ii) increase in

nutrient availability in leaf litter due to locally

enhanced water flow and (iii) increase in the number

of active bacteria through gammarid feeding activity.

Gammarids may keep biofilms in a growing phase,

like earthworms in soils (Scheu et al., 2002) and

nematodes in sediment (Traunspurger, Bergtold &

Goedkoop, 1997). However, the measurements of

fungal biomass and microbial enzymatic activities

directly involved in organic matter degradation (glu-

cosidase, xylosidase and leucine aminopeptidase)

showed no or little impact of gammarids on the

microbial compartment. In our study, the gammarid-

microbe interaction seems too limited to induce a

twofold stimulation of leaf breakdown as mediated by

microorganisms. Therefore, the enhanced breakdown

was most probably linked to direct feeding of gam-

marids on the POM rather than to a complex inter-

action between microbial and invertebrate activities.

At the end of the experiment, observations of eaten
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leaf discs and substantial amounts of faecal pellets in

more porous treatments indicated breakdown due to

gammarid feeding activity. Leaf litter consumption by

gammarids in the most porous treatment was

0.227 mg leaf litter day)1 mg)1 dry gammarid. This

rate is similar to the mean leaf litter consumption

obtained for non-buried leaves (0.222 mg day)1 mg)1

dry gammarid, Fig. 1a). Such a similarity indicates

that leaf consumption by gammarids is not affected by

burial as long as pore size and water chemistry allow

access of gammarids to the leaves. Since the high

oxygen concentrations (>6 mg L)1) measured at the

top of leaf litter were not constraining for gammarids

(Metzler & Smock, 1990), pore size was the main

factor controlling the accessibility to leaf litter.

Our results are in accordance with field experi-

ments (Maridet, Wasson & Philippe, 1992; Maridet

et al., 1996; Strayer et al., 1997) indicating that pore

volume determines habitat suitability of the sediment

for invertebrates. Using a freeze-core sampling tech-

nique, Maridet et al. (1996) showed that the vertical

distribution of interstitial communities of inverte-

brates was affected by sediment porosity under 3%.

In our experiment, despite large pore volumes (>10%

of the interstitial habitat was not filled with gravel and

sand), a reduction of pore volumes (voids) from 25%

to 12% was enough to constrain the vertical distribu-

tion of medium-sized gammarids and the breakdown

of leaf litter buried in sediments. The discrepancy

between the results of Maridet et al. (1996) and the

present study suggests that the effect of sediment

structure of the interstitial habitat is directly related to

invertebrate size. It is therefore likely that the smallest

gammarid individuals (<1 mg dry mass) would have

access to buried leaf litter for an available pore

volume of 12% in our experiment (P3). Future studies

should consider different sizes of shredders (within

and among taxa) to better explain pore size effects on

leaf litter breakdown in river sediments.

Finally, this study demonstrates the main influence

of grain size features on shredder distribution and

associated leaf litter breakdown in the hyporheic

zone. Several studies (e.g. Stief & de Beer, 2002;

Nogaro et al., 2007, 2008; Bulling et al., 2008) have

demonstrated the key influence of interactions be-

tween sediment characteristics and invertebrate activ-

ities on ecological processes (organic matter

breakdown, nutrient fluxes). Similarly, it appears

from the present experiment that we cannot consider

the role of invertebrates in the hyporheic zone without

reference to the relationships between their functional

traits (feeding and bioturbation modes) and habitat

properties.

At the ecosystem level, the present study also

suggests that the maintenance of POM stocks in river

sediments over time would depend on sediment

characteristics that control the distribution of benthic

invertebrates in hyporheic zone. More precisely, we

expect a highly porous sedimentary matrix (with

more than 20% of effective porosity) associated with

high abundances of benthic invertebrates to favour

intense breakdown (potentially as high as in surface

environment) and fast reduction of buried OM stocks.

In contrast, sediment with low porosities would

prevent migration of benthic invertebrates, leading

to low breakdown rates and long-term storage of

buried OM stocks. Since the maintenance of stream

community structure and function is dependent on

the presence of leaf litter (Wallace et al., 1997;

Woodcock & Huryn, 2005), we hypothesise that

fauna–sediment interactions, through their potential

major implication on buried POM dynamics, play a

key role in whole-stream ecosystem functioning.
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