
 
 

 
   

Deep Insight Section 
 

Atlas Genet Cytogenet Oncol Haematol. 2014; 18(4) 285 

Atlas of Genetics and Cytogenetics 
in Oncology and Haematology 

INIST-CNRS 
 

OPEN ACCESS JOURNAL 
 

DNA methylation in cancer 
Céline Moison, Anne-Laure Guieysse-Peugeot, Paola B Arimondo 

CNRS-Pierre Fabre, USR3388, Epigenetic Targeting of Cancer (ETaC), Toulouse, France, MNHN 
CNRS UMR7196, INSERM U565, Paris, France, Universite Pierre et Marie Curie, Paris, France 
(CM), MNHN CNRS UMR7196, INSERM U565, Paris, France (ALGP), CNRS-Pierre Fabre, 
USR3388, Epigenetic Targeting of Cancer (ETaC), Toulouse, France (PBA) 
 

Published in Atlas Database: November 2013 

Online updated version : http://AtlasGeneticsOncology.org/Deep/DNAMethylationID20127.html 
DOI: 10.4267/2042/53543 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. 
© 2014 Atlas of Genetics and Cytogenetics in Oncology and Haematology 
 

Abstract 
Deep insight on DNA methylation in cancer. 

 
Almost every cell in a human organism share the 
exact same DNA sequence, still it exist more than 
200 different cell types that have very distinct 
functions (e.g fibroblast, neuron, pancreatic cell...). 
Epigenetic mechanisms participate to instruct cells 
to acquire and maintain a specific identity. An 
operational definition of epigenetics is "an 
epigenetic trait is a stably heritable phenotype 
resulting from changes in a chromosome without 
alterations in the DNA sequence" (Berger et al., 
2009). In other words epigenetic modifications 
(marks) modulate gene expression mainly by 
changing the access to the genetic information. A 
major modification is DNA methylation, the first 
epigenetic mark to be identified, and the most 
studied (Baylin and Jones, 2011). DNA methylation 
is heritable, does not alter the DNA sequence and is 
the most stable mark. Its role is critical in normal 
development and defects in DNA methylation 
pattern is systematically observed in cancer cells. 

I- What is DNA methylation? 
DNA methylation is a chemical modification (a 
methyl group) of the DNA that does not alter the 
information coded by the DNA but it participates to 
the modulation of gene expression. In mammals 
DNA methylation occurs on position 5 of cytosine 
(C) mainly upstream of guanine (G) in the DNA 
double-helix, the so-called CpG dinucleotide. This  

reaction is catalysed by the DNA methyltransferase 
enzymes (DNMT ) that uses the S-adenosyl-L-
methionine (AdoMet) as methyl donor leading to 5-
methylcytosine (5-mC) (Figure 1). 
DNMTs are a well-conserved protein family 
including DNMT1 and DNMT3 that can be 
distinguish by their main function. DNMT1 (Bestor 
et al., 1988), which as a high preference for hemi-
methylated DNA, is in charge of the "maintenance" 
of DNA methylation pattern through cell divisions 
by copying the DNA methylation pattern on the 
newly synthesized strand.  
Accordingly, DNMT1 is the most expressed in 
somatic cells, particularly at the S phase (Robertson 
et al., 2000; Hermann et al., 2004) (Figure 2). 
DNMT3A and DNMT3B are involved in de novo 
DNA methylation that occurs essentially during 
embryonic development, right after implantation 
and also during the male and female gametogenesis 
(Kafri et al., 1992; Okano et al., 1999). DNMT3L is 
a non-catalytic co-factor for DNMT3A and B that 
enhance their activity.  
Beside DNA methylation, other DNA modification 
have been reported, 5-hydroxymethylcytosine 
(5hmC), 5-formylcytosine (5fC) and 5-
carboxylcytosine (5caC), and are currently widely 
studied in particular for their role in active DNA 
demethylation (Franchini et al., 2012; Fu and He, 
2012). 
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Figure 1. The DNA methyltransferase (DNMT) catalyses the methylation reaction.  
 

II- Where is DNA methylation 
located? 
In the human genome, CpGs dinucleotides are not 
randomly distributed but are regrouped in CpG 
islands. Actually, CpGs are under-represented in 
the genome (1% versus 4% expected) due to the 
chemical instability of the 5-mC that is 
spontaneously, but sporadically, converted into 
thymine (T) by deamination inducing a C to T 
transition (Schorderet and Gartler, 1992). However, 
some parts of the genome are enriched in CpGs and 
show dense DNA methylation:  
- Repeated sequences (LINE and SINE 
retrotransposons, satellite DNA at centromeres) that 
represent near half of the genome are the major site 
of DNA methylation (Yoder et al., 1997).  
- In human, around 65% of genes contain in their 
promoter (including first exons) CpG islands. 
These islands have been defined by regions of at 
least 200 base pairs, containing more than 55% of 

GC and a ratio between the observed CpGs 
observed and the expected CpGs higher than 0.65 
(Gardiner-Garden and Frommer, 1987; Bestor et 
al., 1988; Takai and Jones, 2002).  
Importantly, most of these CpG islands are not 
methylated in somatic cells.  
Those that harbour DNA methylation are related to 
tissue-specific and imprinting genes and have an 
important role in defining the identity of the cell. 

III- What is the role of DNA 
methylation? 
DNA methylation is essential for normal embryonic 
development. Mice Knock-Out for DNMT1, 3A 
and 3B lead to early embryos death (8.5 to 10.5 
dpc) or a few weeks after birth (Li et al., 1992; 
Okano et al., 1999).  
In human, the ICF syndrome (Immunodeficiency, 
Centromere instability, Facial anomalies) is a rare 
autosomal recessive disease caused by mutations in 
DNMT3B gene.  

 

Figure 2. Role of the DNMTs. DNMT1 is mainly involved in DNA methylation maintenance while DNMT3A and DNMT3B are de 
novo methyltransferases. The methyl group on the CpG site is indicated by a red lollipop. 
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Figure 3. Aberrant DNA methylation profile in cancer cells. In tumor cells, a global loss of DNA methylation at repeated 
sequences leading to global hypomethylation of the genome is observed together with DNA hypermethylation at specific sites, 
such as tumor suppressor genes promoters, inducing the silencing the corresponding gene. White lollipop: non-methylated CpG, 
red lollipop: methylated CpG. 

 
It is characterized by loss of centromeric 
methylation and genome instability (Hansen et al., 
1999). Indeed DNA methylation has a critical role 
in genome integrity by repressing transcription 
at repeated sequences, including highly mutagenic 
retrotransposon elements. 
When located in promoters, CpG island DNA 
hypermethylation is also associated with a 
repressed chromatin and thus transcription 
inhibition (Iguchi-Ariga and Schaffner, 1989; Watt 
and Molloy, 1988; Prendergast and Ziff, 1991; 
Clozel et al., 2013).  
Genes located downstream are silenced although 
their genomic sequence is intact. In differentiated 
cells, promote DNA methylation is a common 
way to shut down the expression of genes that are 
not implicated in the specific function of a liver 
cell, retina cell, neuron...  
DNA methylation is also involved in the 
establishment and maintenance of genomic 
imprinting  and, in female cells, X-chromosome 
inactivation. In all these cases, DNA methylation 
is a transcriptional repressor.  
In other contexts like in gene bodies, DNA 
methylation can play an opposite role and rather be 
associated with an active transcription (Ball et al., 
2009).  
Finally it can be also involved in splicing and in the 
silencing of alternative promoters. 

IV- DNA methylation & cancer  
It has been now established that aberrant DNA 
methylation plays a crucial role, together with 
genetic alterations, in tumorigenesis and tumor 
maintenance. 
1. Aberrant DNA methylation pattern in cancer 
cells 
In tumors, a global DNA hypomethylation is 
associated with a local DNA hypermethylation of 
specific loci (Figure 3). This seems very 
contradictory but theses two phenomena act at 

different sites of DNA methylation and participate 
both to cancer formation. 
2. Global DNA hypomethylation of the genome 
One of the first epigenetic alterations found in 
cancer cells was a global decrease in DNA 
methylation.  
Repeated sequences, which are highly methylated, 
are hypomethylated, triggering transcriptional re-
activation of parasitic DNA sequences that can 
randomly integrated into the genome contributing 
to the high genetic instability of cancer cells (Dante 
et al., 1992; Alves et al., 1996; Howard et al., 
2008).  
Moreover examples of loss of DNA methylation 
have been reported at gene promoters leading to 
their re-expression. This is the case of MAGE gene 
family that are normally repressed in all cell types 
at the exception of testicular cells (De Smet et al., 
1999). Oncogenes such as R-RAS, RHOB and ELK1 
have also been described as re-expressed in gastric 
cancers following demethylation of their promoters 
(Nishigaki et al., 2005). All these events participate 
to tumorigenesis at early steps of the disease. 
3. Localized DNA hypermethylation  
In the human genome, CpG islands are mainly 
located in gene promoters and are the targets of 
DNA hypermethylation in cancers. It is estimated 
that 5 to 10% of promoters are hypermethylated in 
cancer leading to the silencing of downstream genes 
(Bird, 2002). Mainly this process concerns tumor 
suppressor genes (TSG) thus favoring cancer 
development.  
The first TSG that was described to be silenced by 
hypermethylation was Retinoblastoma (Rb) (Greger 
et al., 1989), involved in the control of the cell 
cycle. Next a battery of hypermethylated genes 
were found to be involved in crucial processes such 
as DNA repair (BRCA1) (Esteller et al., 2000), cell 
proliferation (CDKN2A) (Merlo et al., 1995), cell 
adhesion (CDH1) (Graff et al., 1995), angiogenesis 
(VHL) (Herman et al., 1994) and other essential 
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functions. Interestingly, each cancer has a DNA 
methylation profile that can be used as signature to 
develop diagnostic biomarkers (Costello et al., 
2000; Esteller et al., 2001; Paz et al., 2003). The 
first commercial DNA methylation tests for 
diagnosis are based on the detection of Septin9 
hypermethylation in blood plasma for colon cancer 
(ColoVantage® test) and GSTPI hypermethylation 
in urine for prostate cancer (test by LabCorp). In 
addition, promoter DNA hypermethylation can be 
used to predict the response to treatment, such as 
MGMT hypermethylation in glioblastoma patients 
for temozolomide treatment (test by MDxHealth).  
Since loss of TSG expression by aberrant DNA 
methylation gives to tumor cells a strong 
proliferative advantage, DNA hypermethylation 
could be set up randomly and only DNA 
methylation profiles conferring a selective 
advantage would be maintained in the tumor (as for 
genetic mutations). However several observations 
pointed out that cancer DNA hypermethylation can 
be an instructive mechanism. DNA methylation is 
an early event of the tumor formation (Issa, 2004; 
Feinberg et al., 2006; Troyer et al., 2009). Short 
DNA sequences are found enriched at 
hypermethylated promoters suggesting a sequence-
specific targeting (Feltus et al., 2003; Feltus et al., 
2006; Keshet et al., 2006). Interestingly, entire 
chromosome regions can be subject to the same 
epigenetic repression (LRES: Long-Range 
Epigenetic Silencing) (Frigola et al., 2006; Coolen 
et al., 2010) or reactivation (LREA: Long-Range 
Epigenetic Activation) (Bert et al., 2013). 
Hypermethylation can cluster on chromosomes, 
which are delimitated by insulator proteins like 
CTCF (Witcher and Emerson, 2009); LINE and 
SINE retrotransposons sequences protect adjacent 
promoters from DNA methylation (Estécio et al., 
2010); polycomb target genes are predispose to 
hypermethylation (Ohm et al., 2007; Schlesinger et 
al., 2007; Widschwendter et al., 2007); and non-
coding RNAs can also direct specifically DNA 
hypermethylation by interacting with DNMT (Di 
Ruscio et al., 2013). It seems that many parameters 
(gene localisation, promoter sequence, transcription 
activity, developmental program...) are, all together, 
important to define if a promoter will be subjected 
to DNA methylation during tumorigenesis. 

V- Targeting DNA methylation in 
cancers 
The study of the cancer epigenome - the ensemble 
of epigenetic marks on the genome - is of great 
interest as it can help clinical diagnosis, prognostic 
and treatment strategies. Today several consortium 
are built to determine the human epigenomes in 
several contexts, such as the Human Epigenome 
Project (HEP, at http://www.epigenome.org/) that 
aims at measuring the DNA methylation profile in 

all major tissues or such as The Cancer Genome 
Atlas (TCGA at https://tcga-
data.nci.nih.gov/tcga/tcgaHome2.jsp) that 
determine the genetic and epigenetic profiles in 
cancers.  
Noteworthy, by altering DNA methylation cells 
modulate at once several biological processes and 
signaling cascades, making its targeting a 
therapeutic advantage (Azad et al., 2013). 

VI- Present and the future of DNA 
methylation cancer therapy 
In addition, contrary to genetic mutations, 
epimutations are reversible and thus offer 
interesting therapeutic perspectives.  
By targeting DNA methylation, cells are 
reprogrammed; reexpression of TSG can induce 
cell arrest, differentiation and death, but also 
sensitivity to apoptosis, immuno-response and drug 
treatment.  
An example is the reversal of the resistance to 
doxorubicine in diffuse large B-cell lymphoma 
(DLBL) by low-doses of DNMT inhibitors (Clozel 
et al., 2013). 
It exists two classes of DNMT inhibitors (DNMTi ): 
the nucleoside analogues that are incorporated into 
nucleic acids and form a covalent complex with the 
enzyme, and the non-nucleoside inhibitors that 
present different mechanisms of inhibition. 
1. DNMTi: Nucleoside analogues and anti-cancer 
therapy 
Nucleoside analogues are based on ribose or 
deoxyribose analogs of cytidine, in particular 5-aza-
cytidine (5aza) and 5-aza-2'deoxycytidine (5azadC) 
are used in clinics for the treatment of 
myeolodysplastic syndromes (MDS) and acute 
myeloid leukemia (AML) (FDA approval in 2004 
and 2006, respectively, for MDS, AML and CMML 
(chronic myelomonocytic leukemia) (Figure 4). 
In cells, these compounds are metabolized by 
kinases to convert them into nucleotides that are 
incorporated into RNA (5aza) or into DNA (5azadC 
and 5aza after conversion of the ribose in 
deoxyribose). Since these compounds need to be 
integrated into the DNA to be active, they are 
particularly efficient in highly proliferative cells 
like cancer ones.  
During the catalytic reaction, DNMTs binds 
covalently to position 6 of the cytosine ring and 
after transfer of the methyl group a β-elimination 
reaction frees the enzyme (Figure 4B). In the case 
of the aza-nucleoside the β-elimination cannot 
occur and the enzyme is trapped on the DNA 
forming a suicide complex (Figure 4C), and 
eventually it is degraded by the proteasome. 
Because of their mechanism of action, these 
compounds are not selective towards the different 
DNMTs and thereby induce a global decrease of 
DNA methylation.  
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Figure 4. A) Chemical structure of 5-aza-cytidine, 5-aza-2' deoxycytidine, prodrug SGI110. B) Catalytic reaction by DNMTs. C) 
Inhibition by 5azacytosine in DNA. 

 
In addition, 5aza (Vidaza) and 5azadC (Dacongen) 
are limited to hemotological cancer because of their 
chemical instability. 
Recently, a prodrug, a 5azadCpdG analog, SGI110 
(developed by Astex) (Chuang et al., 2010), is in 
clinical trials for haematological diseases, and solid 
cancers in combination; the results are encouraging. 
Indeed, very promising results have been obtained 
with the 5aza-nucleosides in combination with 
HDAC inhibitors (Juergens et al., 2011) and/or 
when used to restore chemosensitivity to anticancer 
treatments (Clozel et al., 2013; Vijayaraghavalu et 
al., 2013; Wrangle et al., 2013). Still, these 
molecules are non-specific toward the DNMTs, act 
on the whole genome, are chemically instable and 
have secondary effects in patients (renal toxicity, 
myelotoxicity), therefore there are continuous 
efforts aiming at finding non-nucleoside inhibitors. 
2. Non-nucleoside inhibitors for DNMT selectivity 
Non-nucleoside inhibitors share the common 
feature of not being incorporated in DNA. However 
they inhibit the catalytic reaction by different 

mechanisms of action: they can compete with the 
cofactor, the AdoMet, the DNA substrate or bind to 
allosteric sites. Today many are described, of 
different nature, but few are well characterized for 
their mechanism of action or their selectivity 
towards a specific DNMT (for review Fahy et al., 
2012; Gros et al., 2012). For example, SGI-1027 
belongs to a family of minor groove DNA binders 
developed by Denny and collaborators (Datta et al., 
2009) and has been shown to inhibit DNA 
methylation in enzymatic tests and in cancer cells. 
We developed two families of DNMT inhibitors: 
procainamide conjugates that are selective of DNA 
methyltransferases versus histone 
methyltransferases (Halby et al., 2012) and 
flavanoid derivatives that also inhibit DNA 
methylation in an in vivo model of zebrafish 
development (Ceccaldi et al., 2011). Since the small 
molecules identified so far showed less anti-cancer 
activities than nucleoside analogs and present 
limited therapeutic interest, we and others have 
developed high-throughput screening and drug 
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design strategies to discover new inhibitors 
(Ceccaldi et al., 2013; Kilgore et al., 2013; Weng et 
al., 2014). 
3. Perspectives in DNMTi 
The success of 5aza and 5azad as anti-cancer 
treatments alone and more recently in combination 
leads researchers to focus on new compounds with 
improved bioavaibility and specificity.  
Many efforts are also dedicated to better understand 
the mechanism of action in cancer cells of the 
azanucleoside and their long-term consequences. 
There is still an urgent need to find new small 
molecules specific to each DNMTs to better 
understand the role of each enzyme in 
tumorigenesis and cancer maintenance and to 
decrease the off-targets.  
These new drugs will benefit to cancer patients but 
not only since abnormal DNA methylation pattern 
is also involved in other pathologies such as 
autoimmune and neurological disorders. 
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