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Abstract. This study used automated data processing techniques to calculate a set of novel 

treatment plan accuracy metrics, and investigate their usefulness as predictors of quality 

assurance (QA) success and failure. A small sample of 151 beams from 23 prostate and cranial 

IMRT treatment plans were used in this study. These plans had been evaluated before 

treatment using measurements with a diode array system. The TADA software suite was 

adapted to allow automatic batch calculation of several proposed plan accuracy metrics, 

including mean field area, small-aperture, off-axis and closed-leaf factors. All of these results 

were compared to the gamma pass rates from the QA measurements and correlations were 

investigated. The mean field area factor provided a threshold field size (5 cm
2
, equivalent to a 

2.2 x 2.2 cm
2
 square field), below which all beams failed the QA tests. The small aperture 

score provided a useful predictor of plan failure, when averaged over all beams, despite being 

weakly correlated with gamma pass rates for individual beams. By contrast, the closed leaf and 

off-axis factors provided information about the geometric arrangement of the beam segments 

but were not useful for distinguishing between plans that passed and failed QA. This study has 

provided some simple tests for plan accuracy, which may help minimise time spent on QA 

assessments of treatments that are unlikely to pass. 

1. Introduction 

This study aimed to identify one or more intensity modulated radiotherapy (IMRT) treatment plan 

dosimetric accuracy metrics, calculable from treatment plan parameters, that could be used to identify 

plans that were likely to fail routine quality assurance (QA) tests. The use of such metrics to identify 

failing treatments at the plan completion stage could reduce the linac time required for IMRT QA 

testing and contribute to the continuous quality improvement of the treatment planning process. 

Existing IMRT complexity and deliverability metrics are based on the heterogeneity of the fluence 

map produced by each beam [1, 2, 3] or on the variations between MLC positions and beam segment 

aperture geometries [4, 5, 6]. Most of these metrics have been shown to successfully distinguish 

between IMRT treatment plans with different levels of complexity (for example, distinguishing 
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between prostate IMRT treatment plans and more-complex head and neck IMRT treatment plans), 

while showing no clear correlation with increasing dosimetric error for individual treatment sites [3, 6, 

7, 8]. 

This study therefore investigated a set of IMRT treatment plan accuracy metrics that were designed 

to be sensitive to the treatment plan parameters that are most likely to compromise accurate dose 

calculations; small field and small segment aperture sizes [9, 10], closed MLC leaves below open linac 

jaws [11], and small field segments delivered from off-axis positions [12, 13]. 

 

2. Method 

This study used the results of pre-treatment QA measurements made using a MapCheck2 diode array 

(Sun Nuclear Corporation, Melbourne, USA), for a small sample of 151 beams from 20 prostate and 3 

cranial IMRT treatments, planned and delivered using the BrainLab iPlan treatment planning system 

(with pencil-beam algorithm) and Brainlab m3 microMLC (Brainlab, Feldkirchen, Germany), with a 

Varian iX linac (Varian Medical Systems, Palo Alto, USA). The small sample size was determined by 

the infrequency of microMLC-based IMRT treatments, especially of cranial targets, over the 4 month 

testing period. 17 of the prostate plans and 2 of the cranial plans were defined as "passed" and 

approved for treatment, with either 90% of measurement points (above a threshold of 10% of the 

maximum dose) resulting in γ(2%, 2mm) < 1.0, or 95% of measurement points resulting in γ(3%, 

3mm) < 1.0, when compared with dose to the diode array calculated by the treatment planning system. 

The remaining plans, which did not meet these criteria, were defined as "failed". This gamma 

evaluation was performed using MapCheck software (Sun Nuclear Corporation, Melbourne, USA), 

using the Van Dyk percentage difference evaluation method [14], in absolute mode with no beam 

smoothing and with a 10% dose threshold. 

The treatment plans were exported from the planning system in DICOM format for analysis. 

Automatic batch calculation of a set of novel treatment accuracy metrics was achieved using the 

TADA (Treatment And Dose Assessor) code [15], an extension to the MCDTK software suite [16, 

17]. The TADA code was adapted to allow automatic batch calculation of metrics including:  

- Mean field area (MFA), the average open area of field segments in each beam  

- Mean aperture displacement (MAD), the average distance between the midway point between 

each pair of leaves and the central axis  

- Cross-axis score (CAS), the proportion of open leaf pairs where one leaf crossed the central axis 

- Closed leaf score (CLS), the proportion of leaf pairs that were closed, downstream of open jaws 

- Small aperture score (SAS), the proportion of open leaf pairs that were separated by less than a 

given threshold distance.  

These metrics were calculated separately for each individual beam and then combined in monitor unit 

weighted averages for each treatment plan. 

The treatment plan analysis results obtained using TADA were compared with the pass rates from 

the QA tests, in order to identify which, if any, of the metrics could be related to the MapCheck2 pass 

rate or the likelihood of QA failure. The relationship between beam accuracy metrics and individual 

gamma pass rates was analysed using Excel 2007 (Microsoft, Redmond, USA), with linear regression 

used for trend estimation and p-value calculation, using two-tailed T-tests. Two-tailed Welch's T-tests 

were also used to obtain p values expressing the statistical significance of observed differences 

between the mean values of the accuracy metrics for the prostate treatment beams that passed their QA 

tests, the prostate treatment beams that failed their QA tests, the cranial treatment beams that passed 

their QA tests and the cranial treatment beams that failed their QA tests. 

 

3. Results and Discussion 

Figures 1(a)-(d) show the results of evaluating the metrics relating to the mean area of the IMRT beam 

segment apertures and the displacement of those apertures across the linac’s central axis. The MFA 

results  shown in figure 1(a) are correlated with gamma pass rates (p ≈ 0.02) for both the prostate and 

the cranial treatment fields. Figure 1(a) also suggests that there is a threshold mean aperture size of 5 
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cm
2
 (equivalent to a 2.2 x 2.2 cm

2
 square) below which all beams fail their QA tests. Above this 

threshold, the MFA metric fails to distinguish between plans that pass and fail their QA tests, with 

17% of beams with mean field areas between 5 cm
2
 and 20 cm

2 
failing their QA tests. Results for the 

MAD, CAS and CLS metrics, shown in figures 1(b), (c) and (d), respectively, provide no useful 

relationships with gamma pass rates, although they provide information about the geometric 

arrangement of the IMRT beam segments. The results for MAD and CAS are qualitatively similar, 

since the number of segments per beam that are centred away from the central axis is correlated with 

the number of MLC leaves per beam that cross the central axis. The CLS results in figure 1(d) are 

inversely related to the MFA results in figure 1(a) for similar, geometric reasons. 

 

 

Figure 1. (a) Mean field area, (b) mean aperture displacement (c) cross-axis score and (d) closed 

leaf score, plotted against the proportion of measurement points in each field that passed a (2%, 

2mm) gamma comparison with the planned dose. Filled data points represent fields from plans 

that were defined as “passed”. Open data points represent fields from plans that were defined as 

“failed”. Black squares represent beams from prostate treatments and grey circles represent 

beams from cranial treatments. Linear trend lines are included as a visual guide only. 

 

 

Figure 2. (a) Small aperture scores for prostate treatment beams, calculated using a threshold 

value of 2 mm, (b) small aperture scores for prostate treatment beams, calculated using a 

threshold value of 10 mm, (c) small aperture scores for cranial treatment beams, calculated using 

a threshold value of 2 mm, and (d) small aperture scores for cranial treatment beams, calculated 

using a threshold value of 10 mm, plotted against the proportion of measurement points in each 
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field that passed a (2%, 2mm) gamma comparison with the planned dose. Filled data points 

represent fields from plans that were defined as “passed”. Open data points represent fields from 

plans that were defined as “failed”. Linear trend lines are included as a visual guide only. 

 

Figures 2(a) and (b) show the SAS values for the prostate IMRT treatment beams, respectively 

evaluated using thresholds of 2 mm and 10 mm to define the “small” aperture. Correlations between 

these metrics and the gamma pass rates for these individual beams are either weak (p ≈ 0.05 when 

using the 10 mm threshold) or insignificant (p ≈ 0.2 when using the 2 mm threshold), however it is 

apparent from figures 2(a) and (b) that when fewer than 18% of open MLC leaf pairs are open by less 

than 2 mm, or when fewer than 25% of open MLC leaf pairs are open by less than 10 mm, all beams 

pass their QA tests. When these small aperture scores are evaluated as monitor unit weighted averages 

over all beams in each treatment, the small aperture score (defined at 10 mm) has a useful threshold 

value at 0.32, above which all of the prostate plans that failed their QA tests, plus two of the plans that 

passed their QA tests, would be identified as likely to fail. All prostate plans with mean SAS values 

less than 0.32 passed their QA tests.  

Results shown in figures 2(c) and (d) suggest that the SAS is similarly able to distinguish between 

cranial treatment beams that passed and failed their QA tests, when the “small” aperture is defined as 

10 mm. Given that a small sample of beams from only one failing and two passing cranial treatments 

were available for use in this analysis, it is important that this result be confirmed by further study. 

Tables 1 and 2 summarise the suitability of the metrics defined in this study for predicting the 

likely QA outcomes of the IMRT treatment plans examined here. Table 1 lists the mean treatment plan 

accuracy metrics for the prostate and cranial plans that passed and failed their QA tests. Table 2 

provides an indication of the significance of differences between the calculated metrics for the 

different plan cohorts. 

 

 

Table 1. Summary of plan accuracy metrics (mean and one standard deviation) for 

prostate and cranial plans that passed and failed their QA tests. The small aperture 

thresholds used in the SAS calculations are indicated in parentheses.  

Metric Prostate - pass Prostate - fail Cranial - pass Cranial – fail 

MFA (cm
2
) 13 ± 2 12 ± 2 9 ± 2 3.0 ± 0.5 

MAD (cm) 20 ± 4 21 ± 4 16 ± 6 8 ± 2 

CAS 0.65 ± 0.09 0.68 ± 0.08 0.6 ± 0.1 0.7 ± 0.1 

CLS 0.10 ± 0.04 0.12 ± 0.05 0.22 ± 0.07 0.35 ± 0.07 

SAS (2mm) 0.17 ± 0.06 0.21 ± 0.03 0.25 ± 0.05 0.31 ± 0.08 

SAS (10mm) 0.26 ± 0.07 0.32 ± 0.05 0.42 ± 0.06 0.75 ± 0.08 

 

Table 2. Calculated p values (Welch’s T-test), for comparisons between metrics listed in 

Table 1, for prostate plans that passed (PP) and failed (PF) their QA tests and cranial 

plans that passed (CP) and failed (CF) their QA tests. Small p-values (< 0.001) suggest 

that the differences between the datasets are unlikely to have arisen by random 

fluctuations.  

PP vs PF CP vs CF PP vs CP PF vs CF 

0.02 < 0.001 < 0.001 < 0.001 

0.39 < 0.001 < 0.001 < 0.001 

0.21 0.52 0.43 0.81 

0.13 0.005 < 0.001 < 0.001 

< 0.001 0.14 < 0.001 0.03 

< 0.001 < 0.001 < 0.001 < 0.001 
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4. Conclusion 

This study evaluated a set of metrics designed to be sensitive to the treatment plan parameters that are 

most likely to compromise accurate dose calculations.  Based upon our small sample our results 

suggest that some of these metrics may be used to identify plans that are unlikely to pass routine pre-

treatment QA tests.The MFA factor provided a threshold field size (5 cm
2
), below which all beams 

failed their QA tests. The SAS provided a useful predictor of plan failure, when averaged over all 

beams, despite being weakly correlated with gamma pass rates for individual beams. By contrast, the 

MAD, CAS and CLS factors provided information about the geometric arrangement of the beam 

segments but were not useful for distinguishing between plans that passed and failed QA. This study 

has provided some simple tests for plan accuracy, which may help minimise time spent on QA 

assessments of treatments that are unlikely to pass. 
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