
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Arefi, A., Andervazh, M.R., Yavartalab, A., & Olamaei, J.
(2012)
Optimal distributed generation placement in radial distribution systems. In
12th International Conference on Probabilistic Methods Applied to Power
Systems (PMAPS 2012), 10 - 14 June 2012, Istanbul, Turkey.

This file was downloaded from: http://eprints.qut.edu.au/69025/

c© Copyright 2012 [please consult the author]

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/19891815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Arefi,_Ali.html
http://eprints.qut.edu.au/69025/


Optimal Distributed Generation Placement
 in Radial Distribution Systems

Ali Arefi, IEEE Member
Deptartment of Electric Power

Engineering, South Tehran
Branch, Islamic Azad University

a_arefi@azad.ac.ir

M.R. Andervazh
Deptartment of Electric Power

Engineering, South Tehran
Branch, Islamic Azad University

mr.andervazh@gmail.com

Akbar Yavartalab
TAVANIR Company

yavartalab@tavanir.org.ir

Javad Olamaei, IEEE Member
Deptartment of Electric Power

Engineering, South Tehran
Branch, Islamic Azad University

j_olamaei@azad.ac.ir

Abstract— Distributed generation (DG) resources are commonly
used in the electric systems to obtain minimum line losses, as one
of the benefits of DG, in radial distribution systems. Studies have
shown the importance of appropriate selection of location and
size of DGs. This paper proposes an analytical method for solving
optimal distributed generation placement (ODGP) problem to
minimize line losses in radial distribution systems using loss
sensitivity factor (LSF) based on bus-injection to branch-current
(BIBC) matrix. The proposed method is formulated and tested on
12 and 34 bus radial distribution systems. The classical grid
search algorithm based on successive load flows is employed to
validate the results. The main advantages of the proposed
method as compared with the other conventional methods are the
robustness and no need to calculate and invert large admittance
or Jacobian matrices. Therefore, the simulation time and the
amount of computer memory, required for processing data
especially for the large systems, decreases.

Keywords- Energy Loss Reduction (ELR); Grid Search
Algorithm; Power Loss Reduction (PLR); Loss Sensitivity Factor
(LSF); Optimal DG Placement (ODGP); Radial Distribution system
(RDS).

I. INTRODUCTION

A new identity known as “distributed generation” (DG)
appeared in the electric power systems after deregulation in the
electric power sector. Distributed generations generally refer to
small-scale electric power generators near to customers or are
connected to an electric distribution system.

Employing DGs in electric distribution systems have
several advantages such as Grid reinforcement, reducing power
losses and on-peak operating costs, improving voltage profiles
and load factors, relieved T&D congestion, deferring or
eliminating system upgrades. In addition, improving system
integrity, increasing overall energy efficiency and reducing fuel
costs, enhancing system reliability, reducing emissions of
pollutants and health care costs, and improving power quality
are some benefits of using DGs in distribution systems [1]-[5].

In order to achieve the mentioned goals, proper location
and size of distributed generation resources known as optimal
DG placement is of great importance to obtain their maximum
potential benefits. On the other hand, studies have shown side
effect of inappropriate selection of location and size of DG
(increasing in the losses) [6], [7]. Reducing the losses by the
proper selection of DGs has been an important subject of study
conducted by distribution engineers. Therefore, it is important

to find optimal location and size of DGs required to minimize
feeder losses.

Analytical approaches for optimal placement of DG with
unity power factor is to minimize the power loss of the system.
In a radial distribution network with uniformly distributed load,
a “2/3 rule” is used to place DG on the network. Based on this
rule, it is suggested a DG of approximately 2/3 capacity of
incoming generation is to be installed at approximately 2/3 of
the length of line [8].

As mentioned earlier, in order to minimize line losses of the
electric systems, determining the size and location of DGs to
be placed in the RDS is very important. There is the number of
studies to define the optimum size and location of DG. Some
mathematical approaches in this field are as: loss sensitivity
factors for determining the near optimal [4], optimal load flow
with second order algorithm method [9], genetic algorithm and
Hereford Ranch algorithm [10], Fuzzy-GA method [11], tabu
search approach [12], 2/3 rule [13], and an analytical approach
in radial as well as networked systems [14].

By investigating the approaches presented by the authors,
the solution techniques for loss minimization by optimal
placement of DG in the electric power system can be
categorized as Analytical, numerical programming, heuristics,
and artificial intelligence based methods [15]. It should be
noted that although the heuristic methods are intuitive, easy to
understand and simple to implement as compared with the
analytical and numerical programming methods, the results
presented by the heuristic algorithms are not guaranteed to be
optimal [15].

In this paper, a method is presented for ODGP in RDSs
based on the analytical method. In the proposed method, the
optimum size and location of DG will be defined to minimize
total power losses using loss sensitivity factor (LSF) based on
bus-injection to branch-current (BIBC) matrix, without the use
of impedance or Jacobian matrices for radial systems. In this
study, DG is capable of supplying both active and reactive
power.

The solution of ODGP problem for loss minimization based
on the proposed method is validated against the results
obtained based on the classical grid search algorithm, which is
implemented by successive load ow for two test RDS.

The proposed method is suitable for radial distribution
systems and is fast, accurate and easy to implement. since the
proposed method is an analytical method and exploits the
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topological characteristics of a distribution system, there is no
need for the Jacobian, bus admittance, Ybus, or the bus
impedance, Zbus, matrices. Therefore, It is more suitable for
RDSs of considerable sizes than the earlier analytical methods,.

The advantageous of the proposed method is its capability
in finding optimal solution with maximum computation time
reduction for solving the problem of ODGP because there is no
need to compute and invert any matrices, which get even more
increased in size as the size of the RDS becomes larger.
Therefore, the proposed method can achieve the advantages of
computation time reduction and accuracy improvement.

The paper is organized as follows: the proposed method
and problem formulation for solving the ODGP problem in
radial distribution system is presented in section II. Section III
gives the flowchart of the proposed method. The simulation
results obtained by applying the proposed method on 12 and
34-bus test RDSs are presented in section IV. Section V
presents some conclusions.

II. THE PROPOSED METHOD

In this section, a detailed problem formulation using an
analytical method based on equivalent bus current injection
technique, distribution load flow and LSF is presented. The
main constraint is to keep bus voltages within acceptable range
of 05.195.0 iV . The values are in per unit and Vi is the
voltage at bus i in the RDS.

A. Equivalent Bus Current Injection Formulation
In this section, the equivalent bus current injection for each

bus is presented based on complex active and reactive power
and voltage at each bus. Assuming the load as constant power
and the system in its three phase steady state operation mode
then the complex load Si and the equivalent bus current
injection at bus i can be expressed by (1) and (2) respectively:

iii jQPS i=1, 2,…, n     (1)

iiViSIi
  (2)

where Si, Pi, Qi are the equivalent complex, active and reactive

powers at bus I, respectively, and
iV and

i
are the voltage

magnitude and angle at bus i, respectively, and n is the total
number of buses in the system. Symbol * stands for the
complex conjugate operator.

By substituting (1) in (2), the corresponding equivalent
current injection at bus i is obtained as (3):
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where Re(.) and Im(.) stand for the real and imaginary part of a
complex quantity, respectively.

B. Branch Current Formulation
The power injections at each bus can be rewritten in respect

to the equivalent current injections using (2). In addition, the
branch currents can be formed as a function of the equivalent
current injections by using of Bus-injection to Branch-current
(BIBC) matrix. The elements of BIBC matrix are “0”s or “1”s
and its dimension is m×(n– 1) for a system with m branch and
an n bus. The relationship of bus current injections and branch
currents can be expressed in a compact matrix form as:

1)1()1( . nnnb IBIBCB    (4)

where nb and n are the number of branches and buses,
respectively, [I] is the equivalent bus current injection vector,
[B] is the branch current vector, and [BIBC] is the relationship
matrix between the branch currents and the bus current
injections.

In other words BIBC matrix is responsible for the
relationship between the branch currents and bus injection
currents. Since for distribution feeder with many laterals, it
may not be practical to build the matrix BIBC by hand, this
matrix should be calculated from the matrix A, node to branch
incidence matrix.

By using (4)  and the  set  of  equations  obtained by KCL at
each bus, the [BIBC] matrix for the 12-bus test system shown
in Fig. 2 (one of the test RDSs) is obtained as (5). This BIBC
matrix is an upper triangular matrix, which contains values of 0
and +1 only.

(5)
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where Bi, Ii are the branch and bus current at bus i,
respectively.

C. Power Loss Formulation
Total power loss is obtained by the sum of individual line

losses at each branch. The total power loss is written in terms
of the branch current injections as:
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where jB  and jR  are the branch current magnitude and
resistance of the jth branch, respectively, and nb is the number
of branches in RDS.

By substituting (3) and (4) in (6), the total power loss
expressed in (6) is rewritten in terms of bus current injections
in its extended matrix form after some mathematical
calculation as:
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D. ODGP Formulation Based on LSF
The derivative of the total power losses with respect to ith

bus injected reactive power gives the sensitivity factor that can
be expressed as:
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It should be noted that if the ith bus is not connected to the
jth branch, the elements of BIBC matrix is zero, that is, BIBC (j,
i   1)  = 0, and the derivative of the corresponding element is
equal to zero, Ploss / Qi = 0. So, the expression for the
sensitivity factor, (8), can be rewritten as:
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where idBIBC  matrix is constructed by a simple procedure
as follows:

Read BIBC matrix and the bus number of DG.

Set idBIBC = BIBC

Find the row with zero elements for the (i 1)th column of
dBIBCi matrix (zero_row = find(dBIBCi(:, i 1)=0)).

Set all non-zero elements of these rows to zero
(dBIBCi(zero_row,:) = zeros(length(zero_row),n 1)).

Substituting real and imaginary parts of the equivalent bus
current injections from (3) in (9) yields:
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By rearranging (10), derivative of the total power loss with
respect to ith bus injection reactive power is as:
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To achieve minimum power loss, (11) should be equal to
zero. That is:

Ploss / Qi = 0   (12)

By substituting (11) in (12), at the minimum total power
loss, the reactive power injection at bus i, Qi, is as follows:

nb

j

n

ikk kikiii

nb

j ij

i
i

IIkjdBIBCR

ijdBIBCR

V
Q

1 ,2

1

))Im(cos)Re((sin)1,(

)1,( (13)

Equation (13) can be expressed in matrix form as:
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where idIRe , idIIm  are obtained by equating ith elements of
the injection current vector to zero.

The optimal reactive power supplied by DG corresponding
to minimum power loss added at bus i can be calculated as:

ii loadiDG QQQ (15)

where
iloadQ is the reactive load at ith bus.

In order to minimize power losses, the derivative of the
total power losses with respect to ith bus injected active power
should be equal to zero, that is:

Ploss / Pi = 0 (16)

After performing similar mathematical approach, equivalent
active power injection at bus i corresponding to minimum
power loss can be obtained as:
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Therefore, the optimum active power of DG at bus i is as:

ii loadiDG PPP (18)

III. THE FLOWCHART OF THE PROPOSED METHOD

As depicted in Fig. 1, the proposed method to determine
ODGP in RDSs proposed in this paper is implemented step by
step as follows:

Step1. Input line and load data and system constraints
including voltage limits.



Step2. Run the distribution load flow (DLF) program for
the base case of RDS.

Step3.  Calculate  optimum  size  of  DG  for  each  bus  using
(15), (18), except the reference bus.

Step4. Calculate total system power losses after adding
optimal size DGs calculated in step 3 to each bus.

Step5. Select the bus resulting in minimum power loss.

Step6. The bus voltages after placement of optimal size DG
whose location is calculated in step 5 is within acceptable
limits? If yes, go to the next step, otherwise, neglect DG
from that bus and go to the step5 (examine the next optimal
DG calculated in step 3).

Step7. The size and location is the optimal case for DG
placement.

In the Step5, one or more number of buses can be selected
for installing DGs and in the next step, all voltages should be
checked.

Figure 1. Flowchart of the proposed method.

IV. TEST RESULTS
The proposed method is applied to 12 and 34-bus RDS

without and with lateral branches. The line and load data of
these two test systems are from [16] and [17], respectively.
Since the maximum power loss occurs at the peak load

condition, the optimal DG placement is performed with the
data at peak load to achieve minimum power loss. The classical
grid search algorithm is employed with MATPOWER by
adding  DG  to  each  bus,  changing  the  size  of  DG  from  0%  to
100% of the total system active and reactive load power with
the  step  size  of  0.01  MW  and  0.01  MVAr  for  the  active  and
reactive power supplied by DG for each case to validate the
results. The results obtained from the method are presented in
the following sections.

A. Test Results for 12-Bus RDS
The first test case for the proposed method is a 12-bus

single feeder RDS [16]. This system has no laterals. The single
phase diagram of this system is shown in Fig. 2. The rated line
voltage of this system is 11 kV.

Figure 2. The diagram of a 12-bus radial distribution test system.

The total active and reactive load of this test system is
0.4350 MW and 0.4050 MVAr respectively. Total power
losses of this system before DG installation is 0.0207 MW
equal to 4.76% of the total load power.

The size of optimal DG placed on each bus determined
based on the proposed method presented in this paper and the
classical grid search algorithm are depicted in Fig. 3 and Fig. 4,
respectively.

Figure 3. The optimal size of DG for each buses in 12-bus test RDS obtained
by the classical grid search algorithm method.

Figure 4. The optimal size of DG for each buses in 12-bus test RDS obtained
by the proposed method.



Total power losses for each bus, where the optimum DG
size is added, are presented in Fig. 5. As shown in Fig. 5,
minimum power loss equal to 3.7927 KW can be achieved
when optimal DG (0.3671MVA) is added to bus 8. In this case,
the maximum PLR equal to 17 KW and the maximum ELR is
148.9 MWh/year.

Figure 5. Total power losses after ODGP per each bus for 12-bus test RDS.

The comparison between the results obtained by the
proposed method and the classical grid search algorithm for
12-Bus RDS is shown in Table I.

TABLE I. COMPARISON BETWEEN THE RESULTS OF ODGP FOR 12-BUS RDS

Method Optimum
location

Optimum size CPU time
(s)MW MVAr

proposed Bus.no.8 0.2693 0.2495 0.025
Classical grid

search algorithm Bus.no.8 0.26 0.24 4

In addition, system voltage profile for the optimum case
when DG of the optimal size is added to the optimum location
at bus 8 is presented in Fig. 6. As shown in this figure, system
voltage profile is also improved.

Figure 6. Voltage profile of the 12-bus test system after ODGP at bus 8.

B. Test Results for 34-Bus RDS
The second test case for the proposed method is a 34-bus

RDS [17]. This system has a main feeder and four laterals (sub-
feeders).  The  single  line  diagram  of  this  system  is  shown  in
Fig. 7. The rated line voltage of this system is 11 kV.

Figure 7. The diagram of a 34-bus radial distribution test system.

The total active and reactive load of this test system is
4.6365 MW and 2.8735 MVAr, respectively. Total power
losses of this system before DG installation is 0.2217 MW
equal to 4.78% of total load power.

The size of optimal DG placed on each bus determined
based on the proposed method presented in this paper and the
classical grid search algorithm are depicted in Fig. 8 and Fig. 9,
respectively.

Figure 8. The optimal size of DG for each buses in 34-bus test RDS obtained
by the proposed method.

Figure 9. The optimal size of DG for each buses in 34-bus test RDS obtained
by the classical grid search algorithm method.

In addition, total power losses for each bus, where the
optimum DG size is added, are presented in Fig. 10. As shown
in Fig. 10, minimum power loss equal to 0.054126 MW can be
achieved when optimal DG (3.6163 MVA) is placed at the bus
20. In this case, the maximum PLR equal to 167.574 KW and
maximum ELR is 1468 MWh/year.



Figure 10. Total power losses after ODGP per each bus in 34-bus test RDS.

The comparison between the results obtained by the
proposed method and the classical grid search algorithm is
shown in Table II.

TABLE II. COMPARISON BETWEEN THE RESULTS OF ODGP FOR 34-BUS
RDS

Method Optimum
location

Optimum size CPU time
(s)MW MVAr

proposed Bus.no.20 3.0752 1.9028 0.035
Classical grid

search algorithm Bus.no.20 3.05 1.9 140

System  voltage  profile  for  the  optimum  case  when  DG  of
the optimal size is added to the best location at bus 20 is also
depicted in Fig. 11. As shown in this figure, system voltage
profile is also improved.

Figure 11. Voltage profile of the 34-bus test system after ODGP at bus 20.

V. CONCLUSION

Distributed generation resources are recently widely
installed in distribution systems to achieve loss reduction,
improving voltage profile and other operational benefits. The
achievement of such benefits depends highly on how and
where these resources are to be located in the power system.
In this paper, the distributed generation optimal placement and
sizing problem is formulated and solved through an analytical
method based on loss sensitivity factor and equivalent bus
current injection technique with the objective of minimum
electric power loss. The proposed optimal DG placement
method is tested on 12 and 34-bus RDSs. The classical grid
search algorithm based on successive load flows has been
employed to validate the results. Examining and comparing

the results obtained by the two approaches demonstrates the
effectiveness and speed of the proposed method. The future
works are the applying the proposed method for the DGs with
variable outputs and the variable loads (both three and single
phase).
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