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Abstract 

Fatty acids are long-chain carboxylic acids that readily produce [M - H]- ions upon negative 

ion electrospray ionization (ESI) and cationic complexes with alkali, alkaline earth and 

transition metals in positive ion ESI. In contrast, only one anionic monomeric fatty acid-

metal ion complex has been reported in the literature, namely [M - 2H + FeIICl]-. In this 

manuscript, we present two methods to form anionic unsaturated fatty acid-sodium ion 

complexes, i.e., [M - 2H + Na]-. We find that these ions may be generated efficiently by two 

distinct methods: (i) Negative ion ESI of a methanolic solution containing the fatty acid and 

sodium fluoride forming an [M - H + NaF]- ion. Subsequent collision-induced dissociation 

(CID) results in the desired [M - 2H + Na]- ion via the neutral loss of HF. (ii) Direct 

formation of the [M - 2H + Na]- ion by negative ion ESI of a methanolic solution containing 

the fatty acid and sodium hydroxide or bicarbonate. In addition to deprotonation of the 

carboxylic acid moiety, formation of [M - 2H + Na]- ions requires the removal of a proton 

from the fatty acid acyl chain. We propose that this deprotonation occurs at the bis-allylic 

position(s) of polyunsaturated fatty acids resulting in the formation of a resonance-stabilized 

carbanion. This proposal is supported by ab initio calculations which reveal that removal of a 

proton from the bis-allylic position, followed by neutral loss of HX (where X = F- and -OH), 

is the lowest energy dissociation pathway.  
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Introduction 

Fatty acids are an important structural component for the majority of lipid classes [1]. Within 

phospholipids, the hydrophobic fatty acid acyl chains are crucial in forming biological 

membranes where they may establish specific interactions with membrane proteins [2, 3].  

Furthermore, free polyunsaturated fatty acids, such as arachidonic acid and docosahexaenoic 

acid, may be converted to oxygenated derivatives known as eicosanoids and docosanoids 

which exert potent biological effects [4, 5]. 

 

Routine analysis of fatty acids typically involves performing gas chromatography-mass 

spectrometry (GC-MS) on fatty acid methyl esters using electron ionization (EI) [6]; 

however, it is also possible to directly ionize underivatized fatty acids by EI to form radical 

cations ([M]•+) [7]. Conversely, when underivatized fatty acids are ionized by either fast-atom 

bombardment (FAB) or electrospray ionization (ESI), even-electron ions are formed in both 

negative and positive ion modes. In negative ion FAB and ESI, fatty acids form abundant [M-

H]- ions via the deprotonation of the carboxylic acid functional group [8, 9]. In positive ion 

mode, abundant fatty acid-metal ion complexes may be generated by cation attachment 

during ionization in the presence of a metal salt.  

 

A broad range of cationic fatty acid-metal ion complexes have been formed by both FAB and 

ESI including alkali [10-13], alkaline earth [14, 15] and transition [16, 17] metal ion 

complexes. Cationic fatty acid-alkali metal ion complexes were first studied by Adams and 

Gross using FAB. Both [M + Cat]+ and [M - H + 2Cat]+ ions, where Cat = Li+, Na+, K+, Rb+ 

and Cs+, were observed when the FAB matrix was saturated with either an alkali metal iodide 

or hydroxide [10]. Of these ions, [M - H + 2Li]+ ions have proven particularly useful in 

determining double bond position by both low and high-energy collision-induced dissociation 
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(CID) after formation by ESI or matrix-assisted laser desorption ionization (MALDI) [11, 12, 

18]. Using ESI, [M - H + 2Li]+ ions have been formed from solutions containing the fatty 

acid and either lithium acetate or hydroxide [11, 12]. Alternatively, Trimpin et al. 

demonstrated that [M - H + 2Li]+ ions can be formed efficiently using solvent-free MALDI 

with LiCl and 7,7,8,8-tetracyanoquinodimethane as the matrix [18]. 

 

An analogy between the mass spectrometric analysis of fatty acids and small peptides may be 

made. While small peptides are commonly ionized as [M + H]+ ions due to the presence of 

basic functional groups [19], peptides also possess a carboxylic acid functional group at the 

C-terminus and may therefore be ionized in negative ion mode as [M - H]- ions [20]. 

Furthermore, cationic peptide-metal ion complexes have been studied in detail as a possible 

means to provide complementary information for peptide sequencing [21]. Unlike fatty acids, 

however, anionic peptide-metal ion complexes have also been investigated with alkali [22, 

23], alkaline earth [24-27] and transition metals [28-30].  

 

To the authors’ knowledge, only one report of an anionic monomeric fatty acid-metal ion 

complex exists in the literature. In this report, Budimir and co-workers acquired a post-source 

decay spectrum for a ferric cationized saturated fatty acid heterodimer, [(M - H) + (M’ - H) + 

FeIICl]-, and observed [M - 2H + FeIICl]- ions for both fatty acids [31]. In this manuscript we 

present two methods for the formation of anionic unsaturated fatty acid-sodium ion 

complexes ([M - 2H + Na]-), rationale for their formation and a discussion of their structure. 

Subjecting [M - 2H + Na]- ions to CID results in extensive fragmentation of the fatty acid 

acyl chain. A comprehensive examination of the dissociation behaviors of these ions will be 

discussed in a future publication.  
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Materials and Methods 

Materials and sample preparation 

Fatty acid standards were purchased from Cayman Chemical (Ann Arbor, MI, USA) via the 

Australian distributor Sapphire Bioscience (Waterloo, NSW, Australia) and include 

octadecanoic acid (18:0), 9Z-octadecenoic acid (18:1), 9Z,12Z-octadecadienoic acid (18:2), 

8Z,11Z,14Z-eicosatrienoic acid (20:3), 5Z,8Z,11Z,14Z-eicosatetraenoic acid (20:4), 

5Z,8Z,11Z,14Z,17Z-eicosapentaenoic acid (20:5) and 4Z,7Z,10Z,13Z,16Z,19Z-

docosahexaenoic acid (22:6). LC-MS grade methanol (B&J Brand, Honeywell) was used for 

sample preparation and HPLC instrument operation. Deionized water was obtained from a 

Milli-Q Plus filtration system (Millipore, Billerica, MA, USA). Sodium fluoride, sodium 

chloride, sodium acetate trihydrate and sodium bicarbonate were purchased from Sigma-

Aldrich (St Louis, MO, USA) and sodium hydroxide was obtained from APS Chemicals 

(Seven Hills, NSW, Australia). Nitrogen for operation of the mass spectrometer was sourced 

using a Domnick Hunter LCMS30-1-E nitrogen generator (Parker Hannifin Ltd., England). 

 

Sodium salt (1 mM NaX; where X = F-, Cl- and OAc-) stock solutions were prepared using 

deionized water. For CID experiments of fatty acid [M - H + NaX]- ions, fatty acid solutions 

were made to a concentration of 1 ng/µL (approx. 3-4 µM) with 100 µM NaX in 

methanol/water/acetonitrile ( 89:10:1 by volume). For experiments on the direct formation of 

fatty acid [M - 2H + Na]- ions during ESI, solutions of 1 ng/µL 22:6 with 200 µM NaOH and 

NaHCO3 in methanol/water/acetonitrile (79:20:1 by volume) were prepared. In the control 

experiment (Figure 3c), a solution of 1 ng/µL 22:6 in methanol/water/acetonitrile (79:20:1 by 

volume) was prepared without the addition of a sodium salt. To test for the formation of 

methoxide during ESI, solutions of methanol/water (4:1 v/v), methanol/water (4:1 v/v) with 

200 µM NaOH and methanol/water (4:1 v/v) with 200 µM NaHCO3 were prepared. 
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Mass spectrometry 

For [M - H + NaX]- ion CID experiments, an Agilent 1200 Series HPLC instrument 

(Waldbronn, Germany) was connected to an LTQ XL linear ion-trap mass spectrometer 

(Thermo Fisher Scientific, San Jose, USA) fitted with an IonMax electrospray ionization 

source. The 1200 Series HPLC instrument was used without a column installed and had the 

following components: micro degasser (G1379B); binary pump SL (G1312B); and high-

performance autosampler SL (G1367C). Analysis was automated using the Xcalibur software 

(Thermo Fisher Scientific, San Jose, USA) and was performed as follows: 100 µL of fatty 

acid-sodium salt solutions were injected using the autosampler while a flow rate of 10 

µL/min was maintained by pumping methanol through the B channel. The mass spectrometer 

was operated in the negative ion mode with the following settings: source voltage -3.2 kV; 

tube lens -75 V; capillary voltage -13 V; capillary temperature 320˚C; sheath gas 0 (arbitrary 

units); and auxiliary gas 20 (arbitrary units). “CID energy bracketing” was employed 

whereby CID spectra were acquired using integral normalized collision energies from 20 to 

25% with an isolation width of 1 Th. In the event that a normalized collision energy of 25% 

did not provide adequate fragmentation of the precursor ion (precursor ion relative abundance 

> 50%), the process was repeated with normalized collision energies of 26 to 31%. For CID 

spectra (or data derived therefrom) presented within this paper, collision energies providing 

precursor ion relative abundances of between 1 and 28% were selected in post-processing. 

Prior to acquiring CID spectra, ESI mass spectra were also acquired for all fatty acid-sodium 

salt solutions analyzed. To acquire a CID spectrum for the [M - 2H + Na]- ion of 22:6 in an 

MS3 experiment, the [M - H+NaF]- ion was fragmented (collision energy of 25%) and the [M 

- 2H + Na]- ion at m/z 349 was subsequently fragmented using a collision energy of 24%. 
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For experiments on the direct formation of [M - 2H + Na]- ions, ESI mass spectra were 

recorded while solutions were directly infused at a flow rate of 3 µL/min. ESI-MS parameters 

utilized were: source voltage -2.5 kV; tube lens -75 V; capillary voltage -28.5 V; capillary 

temperature 320˚C; sheath gas 35 (arbitrary units); auxiliary gas 36 (arbitrary units); and 

sheath gas 10 (arbitrary units). A CID spectrum for the [M - H + Na]- ion of 22:6, produced 

from the methanolic solution containing sodium hydroxide, was acquired using a collision 

energy of 24%. To test for the formation of methoxide, ESI mass spectra were acquired from 

m/z 15 to 70 over a 1 min time period while solutions were directly infused at a flow rate of 5 

µL/min. Instrument settings used were: source voltage -2.7 kV; tube lens -42.5 V; capillary 

voltage -44 V; capillary temperature 275˚C; sheath gas 11 (arbitrary units); auxiliary gas 0 

(arbitrary units); and sheath gas 1 (arbitrary units). 

 

Computational chemistry 

All calculations were undertaken using the density functional theory M06-2X method [32] 

and the 6-31+G(d) basis set within the GAUSSIAN09 suite of programs [33]. All stationary 

points calculated in this manuscript were characterized as minima (no imaginary 

frequencies). Calculated energies include unscaled zero-point energies at the same level. 

Complete geometries and calculated energies are available in Supplementary Material.  

 

Results and Discussion 

Formation of [M - 2H + Na]- ions by CID of fatty acid-sodium fluoride complexes 

The negative ion ESI mass spectrum of a methanolic solution of 3 µM 20:3 with 100 µM 

sodium fluoride is shown in Figure 1(a). In this spectrum, an abundant ion at m/z 305 is 

observed and is the deprotonated ion, [M - H]-, of 20:3. In addition, a less abundant ion at m/z 

347 is also observed and is assigned as the fatty acid-sodium fluoride complex, [M - H + 
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NaF]-, resulting from the addition of NaF to the electrospray solvent. A CID spectrum of the 

[M - H + NaF]- ion was acquired and displays two major product ions at m/z 305 and 327 

(Figure 1b). The peak at m/z 305 corresponds to the [M - H]- ion of 20:3 (as observed in 

Figure 1a) and is formed by neutral loss of NaF from the [M - H + NaF]- precursor ion. 

Conversely, the base peak at m/z 327 represents a neutral loss of 20 Da corresponding to the 

loss of HF. Intriguingly, this implies that deprotonation of the fatty acyl chain occurs to form 

a [M - 2H + Na]- ion at m/z 327. 

 

The CID spectra for the [M - H + NaF]- ions of the fully saturated 18:0 and polyunsaturated 

22:6 fatty acids are shown in Figures 2(a) and (b). For 18:0, the base peak at m/z 283 

corresponds to the [M - H]- ion and the [M - 2H + Na]- ion expected at m/z 305 is of 

exceedingly low abundance (Figure 2a). For 22:6, the opposite is observed, where the [M - 

2H + Na]- ion at m/z 349 is the base peak and the [M - H]- ion at m/z 327 is of low abundance 

(Figure 2b). A CID spectrum acquired in the MS3 mode for the [M - 2H + Na]- ion of 22:6 is 

provided in Figure 2(c). This CID spectrum displays richer fragmentation chemistry than 

observed from CID of the conventional [M - H]- ion of 22:6, which predominately loses 

carbon dioxide when subjected to CID [34]. Product ions arising from cleavages along the 

acyl chain are observed in the CID spectrum for the [M - 2H + Na]- ion of 22:6; these include 

ions of m/z 121, 135, 161, 175, 187, 201, 215, 227, 241 and 279. In addition, consecutive 

neutral losses of 2 Da, corresponding to H2, are also observed with product ions at m/z 347, 

345, 343 and 341. (Figure 2c). The majority of these product ions arising from H2 neutral 

losses and acyl chain cleavages are also observed at low abundance in the CID spectrum for 

the [M - H + NaF]- ion of 22:6 (Figure 2b), suggesting that these ions arise from secondary 

fragmentation of the [M - 2H + Na]- product ion at m/z 349. Moreover, an m/z 283 product 
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ion is also observed in Figure 2(b) and likely arises from secondary fragmentation of the [M - 

H]- product ion at m/z 327 [34].  

 

A product ion at m/z 183 is observed with a relative abundance of 32% in the CID spectrum 

for the [M - H + NaF]- ion of 18:0 (Figure 2a). This is unexpected and cannot be rationalized 

as secondary fragmentation of 18:0 as saturated carboxylate anions eliminate water upon CID 

[35]. It was hypothesized that the m/z 183 product ion originates from an isobaric 

contaminant. During our experiments, contaminant ions were commonly observed at m/z 311, 

325 and 339; where the m/z 325 contaminant ion is isobaric with the [M - H + NaF]- ion of 

18:0. CID was performed on m/z 325 contaminant ion and an abundant product ion was 

observed at m/z 183 (Figure S1(a), Supplementary Material), thereby supporting the initial 

hypothesis. This fragmentation is consistent with C12 linear alkylbenzene sulfonates where 

the m/z 183 product ion has the proposed structure of 4-vinylbenzenesulfonate [36]. This 

structural assignment of the m/z 325 contaminant ion is also supported by high-resolution MS 

on a Bruker micrOTOF-Q which revealed an elemental composition of C18H29O3S (measured 

m/z 325.1843; expected m/z 325.18374). MS3 CID spectra were also acquired for the m/z 183 

product ions from the m/z 325 contaminant ion and [M - H + NaF]- ion of 18:0 (see Figure 

S1(b and c), Supplementary Material). These MS3 CID spectra are essentially identical with 

abundant m/z 119 product ions observed in both cases. The m/z 119 ions represent neutral 

losses of 64 Da, corresponding to the loss of SO2, which is characteristic of aromatic 

sulfonate anions [37]. These data therefore provide conclusive evidence that the m/z 183 ion 

originates from isobaric C12 linear alkylbenzene sulfonates and not from the 18:0 [M - H + 

NaF]- precursor ion. 
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The possibility that fluoride at m/z 19 is also a CID product for the [M - H + NaF]- ions of 

18:0, 20:3 and 22:6 was considered. The fluoride anion is below the low-mass cutoff of the 

ion-trap mass spectrometer used in these experiments and therefore cannot be observed in 

Figures 1(b), 2(a) and 2(b), even if it were a CID product ion. However, a substantial 

decrease in total ion current was not observed with the onset of [M - H + NaF]- ion 

fragmentation (data not shown), thus suggesting fluoride formation is not a major 

dissociation channel. Nevertheless, the possibility that fluoride is formed in low abundances 

cannot be excluded.  

 

Effect of degree of unsaturation on [M - 2H + Na]- ion formation 

To investigate the effect of degree of unsaturation, CID was also performed on the [M - H + 

NaF]- ions of 18:1, 18:2, 20:4 and 20:5 (Table 1). For these fatty acid-sodium fluoride 

complexes, the [M - H]- and [M - 2H + Na]- ions were the main CID products (Equations 1-

2), with only minor secondary fragmentation or competing primary pathways observed 

(Table 1).  

 

[M - H + NaF]-  →  [M - H]- + NaF   (1) 

   → [M - 2H + Na]- + HF   (2) 

 

Abundances for the [M - 2H + Na]- product ion (normalized to total product ion abundance) 

and [M - 2H + Na]-/[M - H]- branching ratios were calculated for fatty acid-sodium fluoride 

complexes of 18:0, 18:1, 18:2, 20:3, 20:4, 20:5 and 22:6 (Table 2). A general trend of 

increasing [M - 2H + Na]- ion abundance and [M - 2H + Na]-/[M - H]- branching ratio is 

observed with increasing degrees of unsaturation. The [M - 2H + Na]- ion abundances and [M 

- 2H+ Na]-/[M - H]- branching ratios are very low for the saturated 18:0 and monounsaturated 
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18:1 (abundances of 0.031% and 0.064%, respectively; [M - 2H + Na]-/[M - H]- branching 

ratios of 4.7x10-4 and 6.4x10-4, respectively). Significantly, however, a marked increase in the 

[M - 2H + Na]- ion abundance and [M - 2H + Na]-/[M - H]- branching ratio is observed for 

18:2 (39.7% and 6.7x10-1, respectively). The trend of increasing [M - 2H + Na]- ion 

abundance and [M - 2H + Na]-/[M - H]- branching ratio continues to 22:6 (87.5% and 46.4, 

respectively).  

 

Mechanism for the formation of [M - 2H + Na]- ions 

The polyunsaturated fatty acids studied here are all methylene interrupted and thus contain at 

least one bis-allylic position. The ca. 620 fold increase in [M - 2H + Na]- product ion 

abundance and ca. 1000 fold increase in [M - 2H + Na]-/[M - H]- branching ratio when going 

from 18:1 (two mono-allylic positions) to 18:2 (two mono-allylic positions and one bis-allylic 

position) strongly suggests that at least one bis-allylic position is required for the facile 

formation of an abundant [M - 2H + Na]- ion. Therefore, we propose a mechanism whereby 

proton transfer from a bis-allylic position to the fluoride anion occurs resulting in the neutral 

loss of HF and formation of a resonance-stabilized carbanion (Scheme 1). For fatty acids with 

three or more double bonds, multiple bis-allylic positions are available for deprotonation. For 

example, deprotonation may occur at either C10 or C13 for 20:3 (Scheme 1). This suggests 

the possibility of two isomeric [M - 2H + Na]- ions for 20:3 differing in the location of the 

resonance-stabilized carbanion. Of interest, ions of analogous structure to that proposed in 

Scheme 1 for the fatty acid [M - 2H + Na]- ion have also been produced by CID of 

dicarboxylic acid [M - 2H + Li]- ions, where decarboxylation results in the formation of a 

carbanion [38]. It should be noted, however, that Scheme 1 does not rationalize the 

observation of [M - 2H + Na]- ions for the saturated 18:0 and monounsaturated 18:1 fatty 

acids which lack a bis-allylic position. For these fatty acids, deprotonation has to occur 



12 
 

elsewhere on the fatty acyl chain, such as the α-carbon at C2 or allylic positions of 18:1 at C8 

and C11. Although, the very low abundance of the [M - 2H + Na]- ions for 18:0 and 18:1 

suggests that deprotonation at the α-carbon or allylic positions is unfavorable. 

 

Effect of anion type 

From the mechanism proposed in Scheme 1, it would be expected that the gas-phase basicity 

of the adducting anion would affect the branching between the [M - 2H + Na]- and [M - H]- 

fragmentation channels, i.e., the gas-phase basicity should regulate the proton transfer 

reaction. To test the effect of anion basicity on the formation of fatty acid [M - 2H + Na]- 

ions, CID was performed on [M - H + NaX]- ions of 20:3; where X = F-, Cl- and OAc-. In 

addition, CID was also performed on the sodium-bound homodimer of 20:3 observed in the 

ESI mass spectrum of 20:3 with NaF. Abundances of the [M - 2H + Na]- ion (normalized to 

total product ion abundance) and [M - 2H + Na]-/[M - H]- branching ratios for these 

complexes are presented in Table 3. For the 20:3-sodium fluoride complex, the [M - 2H + 

Na]- ion abundance and [M - 2H + Na]-/[M - H]- branching ratio are 79.5% and 4.1, 

respectively. In comparison, the [M - 2H + Na]- ions generated from the sodium chloride and 

sodium acetate complexes are of very low abundance (0.047% and 0.17%, respectively), i.e., 

formation of the [M - H]- product ion is the favored dissociation pathway. In addition, the 

abundance of the [M - 2H + Na]- ion formed from the sodium-bound homodimer is close to 

that of the [M - H + NaOAc]- ion at 0.19% (Table 3). 

 

The ability of the anion to deprotonate a bis-allylic position of 20:3 may be summarized as 

follows: F- >> OAc- > Cl-. This aligns with the order of experimental gas-phase basicities: F- 

= 1530 kJ/mol [39, 40]; OAc- = 1429 kJ/mol [39, 41]; and Cl- = 1373 kJ/mol [39, 42]. The 

[M - 2H + Na]- ion of 20:3 was the base peak only for the fatty acid-sodium fluoride complex 
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suggesting its gas-phase basicity lies between that of fluoride and acetate, i.e., 1429-1530 

kJ/mol. 

 

Direct formation of [M - 2H + Na]- anions by electrospray ionization 

The ESI mass spectrum of a methanolic solution of 3 µM 22:6 with 200 µM NaOH is shown 

in Figure 3(a). A peak at m/z 327 is observed corresponding to the [M - H]- ion of 22:6. 

Interestingly, however, an [M - H + NaOH]- ion at m/z 367 was not observed (data not 

shown). Instead, an ion at m/z 349 is observed with a relative abundance of 8.1%, 

representing the [M - 2H + Na]- ion of 22:6 (Figure 3a). When 200 µM NaHCO3 was used in 

place of 200 µM NaOH, the resulting ESI mass spectrum is essentially the same, with the 

appearance of the [M - 2H + Na]- ion at m/z 349 (relative abundance of 8.1% - Figure 3b) and 

the absence of an [M - H + NaHCO3]- ion at m/z 411. A CID spectrum of the [M - 2H + Na]- 

ion at m/z 349 formed by the ESI of 22:6 with NaOH is shown in Figure 3(d). This spectrum 

displays the same product ions as observed in the CID spectrum for the [M - 2H + Na]- 

product ion from the sodium fluoride complex of 22:6 (Figure 2c), thereby confirming that 

the m/z 349 ion is indeed the 22:6 [M - 2H + Na]- ion. The CID spectra of the [M - 2H + Na]- 

ions formed via the two different methods are not identical. Significantly, the CID spectrum 

of the [M - 2H + Na]- ion formed directly by ESI of 22:6 with NaOH displays product ions 

originating from acyl chain cleavages in higher abundances. The differences between these 

two CID spectra provide further evidence against deprotonation at the α-position since if 

deprotonation occurred exclusively at the α-position in both methods, the CID spectra should 

be identical. Conversely, the differences between the two CID spectra can be rationalized by 

different distributions of the five possible isomeric ions for 22:6 when deprotonation occurs 

at the bis-allylic positions. The acyl chain cleavages observed in Figures 2(c) and 3(d) 

provide information on double bond position and likely occur by charge-driven fragmentation 
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mechanisms at the site of the resonance-stabilized carbanion (see Scheme S1, Supplementary 

Material, for a proposed mechanism for the m/z 215 product ion). A full investigation of these 

fragmentation mechanisms is, however, beyond the scope of this study.   

 

A control experiment was also performed, whereby a 3 µM 22:6 solution with no added 

sodium salt was ionized under identical conditions (Figure 3c). In this spectrum, an ion of m/z 

349 was observed with a relative abundance of 1.6%. CID was performed on the m/z 349 ion 

observed in Figure 3(c) and confirmed at least a minor contribution of the 22:6 [M - 2H + 

Na]- ion to the m/z 349 ion population (data not shown). This suggests that anionic fatty acid-

sodium ion complexes can be formed from background sodium under favorable ionization 

conditions. 

 

Cai and Cole have previously demonstrated that the stability of anionic adducts is controlled 

by the relative gas-phase basicities of the deprotonated analyte molecule, [M - H]-, and the 

adducting anion [43]. The complex formed between the analyte molecule and adducting 

anion is most stable when the gas-phase basicities of the deprotonated analyte molecule and 

adducting anion are similar [43]. A modification of this principle is required when 

considering fatty acid [M - H + NaX]- complexes. That is, it may be expected that the direct 

loss of HX will occur if the gas-phase basicity of the adducting anion, X-, is much greater 

than that of the [M - 2H + Na]- ion. The gas-phase basicity of hydroxide is 1606 kJ/mol [39, 

44], which is higher than that of fluoride. Therefore, it is proposed that the higher gas-phase 

basicity of hydroxide means that a stable fatty acid-sodium hydroxide complex cannot be 

formed as it will dissociate to form the [M - 2H + Na]- ion. This does not, however, explain 

the absence of an [M - H + NaHCO3]- ion and appearance of the [M - 2H + Na]- ion in the 

ESI mass spectrum of 22:6 with NaHCO3 (Figure 3b). Bicarbonate has a gas-phase basicity 
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of 1458 kJ/mol [45] which is less than the gas-phase basicity of fluoride and closer to that of 

acetate. Based on gas-phase basicities, it may therefore be expected that a stable [M - H + 

NaHCO3]- ion should be observed in the ESI mass spectrum of 22:6 with NaHCO3. Indeed, 

anionic steroid-bicarbonate complexes have previously been observed [46, 47], further 

suggesting that the [M - H + NaHCO3]- ion should be observed in the ESI mass spectrum of 

22:6 with NaHCO3.  

 

To rationalize the absence of the [M - H + NaHCO3]- ion, it was hypothesized that methoxide 

is formed during the ionization process via a reaction between methanol, the electrospray 

solvent, and bicarbonate. The gas-phase basicity of the methoxide anion is 1573 kJ/mol [39, 

48, 49] which is higher than that of fluoride. This would account for the [M - 2H + Na]- ion 

observed in Figure 3(b) since dissociation of the fatty acid-sodium methoxide complex may 

be expected during the electrospray process. In fact, the higher gas-phase basicity of 

hydroxide may even suggest that methoxide, and not hydroxide, drives the formation of the 

[M - 2H + Na]- ion in the ESI mass spectrum of 22:6 with NaOH (Figure 3a). To examine 

this hypothesis, ESI mass spectra were acquired from m/z 15 to 70 for the following 

solutions: methanol/water (4:1 v/v); methanol/water (4:1 v/v) with 200 µM NaOH; 

methanol/water (4:1 v/v) with 200 µM NaHCO3; and methanol/water (4:1 v/v) with 200 µM 

NaF (data presented in Table 4). Significantly, a ~100 fold increase in the m/z 31 ion 

abundance was observed in the ESI mass spectra of NaOH and NaHCO3 solutions when 

compared to the ESI mass spectrum of the control solution with no added sodium salt. 

Moreover, abundant hydroxide and bicarbonate ions were not observed for the NaOH and 

NaHCO3 solutions whereas an abundant m/z 19 ion, corresponding to fluoride, was observed 

in the ESI mass spectrum of the NaF solution (Table 4). While care must be taken when 

examining ion abundances in the low-mass region of ion-trap mass spectrometers, the ~100 
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fold increase in methoxide abundance and absence of abundant hydroxide and bicarbonate 

ions for the NaOH and NaHCO3 solutions support the hypothesis that [M-2H+Na]- ion 

formation is driven by methoxide.  

 

Interestingly, the deprotonation of methanol would not be expected on the basis of basicity in 

either the condensed or gas phase. However, the drying of negatively-charged droplets 

formed by ESI results in rapid increases in pH, ion concentration and relative surface area. 

Under analogous conditions, the rates of bimolecular reactions involving anionic 

intermediates have been found to increase by up to several orders of magnitude [50]. In 

addition, bicarbonate exists in equilibrium with carbonic acid and carbon dioxide; 

furthermore, carbonic acid is not stable in the gas-phase and readily dissociates to form water 

and carbon dioxide [51]. Considering the changes that occur in negatively-charged droplets 

and the chemistry of bicarbonate, it is proposed that loss of carbon dioxide from drying 

charged droplets during the ESI process drives the equilibrium towards the formation of 

methoxide as shown in Equation 3.  

 

HCO3
-
 (aq) + CH3OH(aq) → CH3O-

(g) + H2O(g) + CO2(g)  (3) 

 

Computational chemistry 

Ab initio calculations were performed to gain greater insight into the stability and dissociation 

of [M - H + NaX]- complexes. As a model system, the deprotonated fatty acid, 4Z,7Z-

nonadienoate (9:2), was complexed with sodium fluoride and sodium hydroxide. Potential 

energy diagrams for the formation and dissociation of these complexes are provided in 

Figures 4(a) and (b).  
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Complexing NaF to the [M - H]- ion of 9:2 is exothermic by 53.3 kcal/mol (Figure 4a). 

Several local minima were identified for the [M - H + NaF]- ion where the sodium cation is 

situated between the carboxylate and fluoride anions. In the lowest energy structure, 

additional stability is gained through interactions between fluoride and the partial positive 

charges of allylic hydrogens (Figure 4a). All structures for the [M - H + NaF]- ion return 

energies within 4 kcal/mol suggesting that many different structures may be sampled over the 

lifetime of a vibrationally-activated species. Three possible dissociation channels for the [M - 

H + NaF]- ion of 9:2 were considered, these are [M - 2H + Na]-, [M - H]- and F- ion 

formation. In the case of [M - 2H + Na]- ion formation, three sites of deprotonation were 

considered: (i) the bis-allylic position at C6; (ii) the mono-allylic position at C9; and (iii) the 

α-position at C2. The lowest energy dissociation pathway is [M - 2H + Na]- ion formation 

where fluoride deprotonates the bis-allylic position at C6 (endothermic by 41.1 kcal/mol – 

note that an ion-dipole complex was not identified between HF and the [M - 2H + Na]- ion). 

The structure of the [M - 2H + Na]- ion from this pathway is shown in Figure 4 and has the 

sodium cation bridging the carboxylate and resonance-stabilized carbanion. In contrast, 

deprotonation of the mono-allylic position at C9 and α-position at C2 are higher energy 

pathways (endothermic by 53.9 and 85.9 kcal/mol, respectively), supporting the proposed 

mechanism where deprotonation occurs at a bis-allylic position (Scheme 1). The formation of 

the [M - H]- ion is the reverse process to the formation of the fatty acid-sodium fluoride 

complex and is thus endothermic by 53.3 kcal/mol. F- ion formation via the neutral loss of the 

fatty acid sodium salt is a higher energy pathway than [M - H]- ion formation and [M - 2H + 

Na]- ion formation when deprotonation occurs at the bis-allylic position (endothermic by 59.0 

kcal/mol). This is consistent with the earlier assertion that F- ion formation is at most a minor 

dissociation channel. For the 18:2 fatty acid, the [M - H]- ion was the major CID product 

from the [M - H + NaF]- complex (Table 1). In contrast, these calculations reveal that [M - 
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2H + Na]- ion formation is the lowest energy dissociation channel for the 9:2-sodium fluoride 

complex. This apparent discrepancy may be attributed to differences between the model 

system and 18:2 fatty acid. More likely, however, is the possibility that NaF neutral loss is 

entropically favored over HF neutral loss where the fluoride anion has to align with a bis-

allylic hydrogen within the [M - H + NaF]- complex. 

 

The potential energy diagram for the 9:2-sodium hydroxide complex (Figure 4b) differs 

greatly from that of the sodium fluoride complex (Figure 4a). Significantly, proton transfer 

from the bis-allylic position to hydroxide within the [M - H + NaOH]- complex is exothermic 

by 0.4 kcal/mol. This results in the formation of a stable [M - 2H + Na + H2O]- complex. 

Neutral loss of H2O from this complex to form the [M - 2H + Na]- ion is then endothermic by 

17.3 kcal/mol. The formation of [M - H]- and -OH ions are much higher energy processes 

(endothermic by 47.2 kcal/mol and 56.9 kcal/mol, respectively). The comparatively low 

energy to form the [M - 2H + Na]- ion suggests that excitation could conceivably be achieved 

during the ion generation and isolation process. These data therefore provide mechanistic 

insight into the direct formation of [M - 2H + Na]- ions by strongly basic anions during the 

electrospray process (i.e., hydroxide and methoxide). 

 

Conclusion 

We have demonstrated that fatty acid [M - 2H + Na]- ions may be formed efficiently via two 

methods: (i) CID of fatty acid [M - H + NaF]- complexes; and (ii) direct formation by 

electrospray ionization of the fatty acid in the presence of sodium hydroxide or bicarbonate. 

The formation of [M - 2H + Na]- ions is not without precedent as peptide [M - 2H + Na]- ions 

[22, 23] and fatty acid [M - 2H + FeIICl]- ions [31] have previously been reported. However, 

the formation of peptide [M - 2H + Na]- ions requires the deprotonation of an amide nitrogen 
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[22, 23] whereas a carbanion is formed for fatty acid [M - 2H + Na]- ions. Moreover, 

deprotonation occurs at the bis-allylic positions of polyunsaturated fatty acids in the 

formation of [M - 2H + Na]- ions. This differs from saturated fatty acid [M - 2H + FeIICl]- 

ions, where deprotonation was proposed to occur at the α-position [31]. The two methods for 

[M - 2H + Na]- ion formation allow the CID of these ions to be investigated for the first time. 

The presence of a carbanion on the fatty acyl chain suggests that charge-driven fragmentation 

processes occur in the CID of fatty acid [M - 2H + Na]- ions resulting in abundant product 

ions from acyl chain cleavages. The nature of these fragmentation mechanisms and their 

pertinence for structural characterization are the subject of ongoing investigations.  
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Tables 

Table 1 Spectrum lists from the CID spectra of the [M - H + NaF]- ions of 18:1, 18:2, 20:4 

and 20:5. Only product ions of greater than 1% relative abundance (RA) are listed; with the 

exception of the [M - 2H + Na]- ion from the 18:1-sodium fluoride complex at m/z 303. The 

precursor ion is underlined in each column while (1) and (2) refer to the [M - H]- and [M - 2H 

+ Na]- product ions, respectively. 

18:1 18:2 20:4 20:5 

m/z             RA% 
281.3 (1)     100 
303.3 (2)     0.06 
323.3           1.6 
 

m/z             RA% 
279.3 (1)     100 
301.3 (2)     66.7 
321.3           1.8 
 

m/z             RA% 
303.3 (1)     16.9 
325.3 (2)     100 
345.3           9.6 
 

m/z             RA% 
201.2           1.8 
301.3 (1)     8.4 
319.3           1.0 
321.3           2.2 
323.3 (2)     100 
343.3           9.4 
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Table 2 Abundances of the [M - 2H + Na]- ion normalized to total product ion abundance 

(i.e., [M - 2H + Na]- ion abundance/total product ion abundance %) and [M - 2H + Na]-/[M - 

H]- branching ratios calculated from CID spectra for the fatty acid-sodium fluoride 

complexes of 18:0, 18:1, 18:2, 20:3, 20:3, 20:4, 20:5 and 22:6. 

NaF complexes with fatty acids containing 0-6 double bonds 

Fatty acid 18:0 18:1 18:2 20:3 20:4 20:5 22:6 
[M − 2H + Na]¯ˉ
∑product  ions

% 0.031 0.064 39.7 79.5 
 

83.2 84.2 87.5 

[M − 2H + Na]¯ˉ
M − H ¯ˉ

 4.7x10-4 6.4x10-4 6.7x10-1 4.1 5.9 11.8 46.4 
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Table 3 Abundances of the [M - 2H + Na]- ion normalized to total product ion abundance 

(i.e., [M - 2H + Na]- ion abundance/total product ion abundance %) and [M - 2H + Na]-/[M - 

H]- branching ratios for the [M - H + NaX]- ions of 20:3; where X = F-, Cl-, OAc- and [M - 

H]-. Gas-phase basicities: F- = 1530 kJ/mol [39, 40]; Cl- = 1373 kJ/mol [39, 42]; OAc- = 1429 

kJ/mol [39, 41]. 

NaX complexes with 20:3 

NaF [M − 2H + Na]¯ˉ
∑product  ions % 79.5 

 
[M − 2H + Na]¯ˉ

M − H ¯ˉ  4.1 

NaCl [M − 2H + Na]¯ˉ
∑product  ions % 0.047 

 
[M − 2H + Na]¯ˉ

M − H ¯ˉ  4.9x10-4 

NaOAc  [M − 2H + Na]¯ˉ
∑product  ions % 0.17 

 
[M − 2H + Na]¯ˉ

M − H ¯ˉ  1.8x10-3 

Na(20:3-H) [M − 2H + Na]¯ˉ
∑product  ions % 0.19 

 
[M − 2H + Na]¯ˉ

M − H ¯ˉ  2.0x10-3 
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Table 4 Ion abundances from low-mass negative ion ESI mass spectra of the following 

solutions: methanol/water (4:1 v/v); methanol/water (4:1 v/v) with 200 µM NaOH; 

methanol/water (4:1 v/v) with 200 µM NaHCO3; and methanol/water (4:1 v/v) with 200 µM 

NaF. ESI mass spectra were recorded under identical conditions and the mass spectrometer 

was optimized for the detection of methoxide. 

 m/z 17 (-OH) m/z 19 (F-) m/z 31 (-OCH3) m/z 61 (HCO3
-) 

Methanol/water (4:1 v/v) 4.28 x 10-2 2.07 x 10-1 1.16 x 102 4.46 x 10-1 

Methanol/water (4:1 v/v) 
with 200 µM NaOH 

4.71 x 100 5.07 x 100 1.20 x 104 5.28 x 101 

Methanol/water (4:1 v/v) 
with 200 µM NaHCO3 

4.85 x 100 2.23 x 100 1.24 x 104 5.10 x 101 

Methanol/water (4:1 v/v) 
with 200 µM NaF 

2.01 x 100 5.43 x 102 3.40 x 103 5.36 x 101 
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Figure and Scheme legends 

Figure 1 a) Negative ion ESI mass spectrum of 20:3 with 100 µM NaF. b) CID spectrum of 

the [M - H + NaF]- ion of 20:3 at m/z 347 from spectrum (a).  

 

Figure 2 Negative ion CID spectra for the [M - H + NaF]- ions of a) 18:0 at m/z 325 and b) 

22:6 at m/z 369. c) CID spectrum of the m/z 349 ion from spectrum (b) acquired in an MS3 

experiment. The m/z 349 ion is the [M - 2H + Na]- ion of 22:6 and is formed via the neutral 

loss of HF from the m/z 369 precursor ion. Fatty acid-sodium fluoride complexes were 

formed by electrospray ionization of the fatty acids with 100 µM NaF. The m/z 183 product 

ion in spectrum (a) potentially originates from contamination with isobaric C12 linear 

alkylbenzene sulfonates. 

 

Figure 3 Negative ion ESI mass spectra of 3 µM 22:6 in methanol/water/acetonitrile (79:20:1  

by volume) with a) 200 µM NaOH, b) 200 µM NaHCO3 and c) no added sodium salt. d) CID 

spectrum of the [M - 2H + Na] ion at m/z 349 from spectrum (a). Gas-phase basicities: HCO3
- 

= 1458 kJ/mol [45]; -OH = 1606 kJ/mol [39, 44]. 

 

Figure 4 Potential energy diagrams for the formation and dissociation of 9:2 complexed with 

a) NaF and b) NaOH. Energies in kcal/mol are calculated at the M06-2X/6-31+G(d) level and 

include unscaled zero-point corrections. For the formation of [M - 2H + Na]- ions, energies 

and structures provided are for deprotonation at the (i) α-position and (ii) bis-allylic position. 

The site of deprotonation is indicated with an * symbol on both [M - 2H + Na]- ion structures. 

 

Scheme 1 Proposed mechanism for the formation of the [M - 2H + Na]- ion of 20:3 via HF 

neutral loss from the fatty acid-sodium fluoride complex. In this mechanism, proton transfer 
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occurs from a bis-allylic position to the fluoride anion resulting in the neutral loss of HF and 

formation of a resonance-stabilized carbanion. Note that deprotonation could occur at either 

bis-allylic position leading to two possible isomeric [M - 2H + Na]- ions for 20:3. 
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