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General Introduction

GENERAL INTRODUCTION

The immune system is capable to detect a large variability of pathogens and distinguish 
them from the body’s own healthy tissue. The immune system consists of the innate- and 
adaptive immune system. The adaptive immune system consists of B-and T-lymphocytes, 
which can recognize pathogens with an antigen-specific receptor. B-lymphocytes can 
adapt their responses during an infection to improve recognition of the pathogen and 
they generate long-term immunological memory. These antigen-specific receptors are 
called B-cell receptor (BR) and T-cell receptor (TR), respectively. Since the number of pos-
sible antigens is innumerable, an enormous diversity of the antigen-specific receptors is 
required. To achieve this, the BR and TR contain a variable domain that is unique for each 
individual T or B cell. This variable domain is generated by recombination of the antigen 
receptor genes in a process which is called V(D)J recombination. This process requires 
lymphoid specific proteins to generate DNA double strand breaks (DSB), but is also depen-
dent on a common DNA repair pathway to repair the DSB. Defects in V(D)J recombination 
hamper the production of the antigen-specific receptors, which results in a complete or 
partial block in B- and T-cell differentiation, leading to a combined B- and T-cell deficiency. 

In this General Introduction the B and T-cell development will be described, with spe-
cial focus on the generation of the antigen-specific receptor repertoire. The role of DNA 
repair during the V(D)J recombination process and during further maturation of the B cells 
will be highlighted. Subsequently, clinical and immunological aspects of V(D)J recombina-
tion and DNA repair defects  resulting in immunodeficiency will be addressed. Finally, the 
aims of this thesis will be outlined. 

IMMUNOGLOBULIN AND T-CELL RECEPTOR MOLECULES

B-cell receptor
The BR, also called immunoglobulin (IG) is composed of two identical heavy chains 

(IGH) and two identical light chains, either IGκ or IGλ (Figure 1A). The heavy and light chains 
all consist of a variable and a constant domain. The variable domain of the IG is encoded by 
a combination of one the V, D and J genes (heavy chain) (Figure 1B), or by a combination 
of the available V, and J genes (IGK or IGL). The IGH locus contains 9 constant genes (Cμ, 
Cδ, Cγ3, Cγ1, Cα1, Cγ2, Cγ4, Cε and Cα2), which have different effector functions. Naive B 
cells express Cμ and Cδ, but upon encountering an antigen the effector function can be 
changed, by replacing the constant gene during a process called class switch recombina-
tion (CSR). 
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T-cell receptor
A TR molecule consists of two chains, either a TRα and a TRβ chain (TRαβ) or a TRγ and a 

TRδ chain (TRγδ) (Figure 1C). The vast majority of mature T lymphocytes (85-95%) expresses 
TRαβ; a minority expresses TRγδ (5-15%).1 The variable domain of the TR is encoded by a 
combination of one of the many variable (V), diversity (D) and joining (J) genes (TRB en 
TRD loci), or by a combination of the available V and J genes (TRA and TRG loci).1, 2 The 
constant domains of the TR chains are encoded by constant (C) genes.

B-CELL DEVELOPMENT

Precursor B cells derive from multipotent hematopoietic progenitors and develop in 
the bone marrow into immature B cells (Figure 2). This differentiation occurs in a stepwise 
manner and the main objective is to create a unique IG molecule. At the immature B-cell 
stage, the IG molecule is tested for functionality without high affinity for auto-antigens, 
after which they go to the periphery and become transitional B cells. The transitional B 
cells are immature in their migration capacity and response to antigen, but develop rapidly 
into naive mature B cells. After B cells have encountered antigen, they can further mature 

Figure 1. Composition and generation of T- and B-cell receptors. A) The B-cell receptor (BR) consist of two 
heavy (IGH) and two light chains (IGL). B) Schematic overview of IGH locus including the constant genes. C) The 
T-cell receptor (TR) consist of either a TRα and TRβ chain or a TRγ and TRδ
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in a T-cell dependent or T-cell independent manner and become an antibody secreting 
plasma cell or a memory B cell.

IG rearrangements
During precursor B-cell differentiation, V(D)J recombination starts with the incomplete 

DH-JH rearrangements on both IGH loci (Figure 3),3, 4 which occur at the pro-B cell stage 
(Figure 2).5-7 Subsequently, in the pre-B-I cell stage only one allele continues with the V to 
DJ rearrangement, and the second allele only rearranges when the first is not productive 
(e.g. out of frame or with a stop codon). Once a VDJ exon is formed, RNA transcripts are 
produced and the exon is spliced to the Cμ exon. If the resulting Igμ heavy chain is capable 
of pairing with the surrogate light chain proteins λ14.1 and VpreB, this pre-B-cell receptor 
complex (pre-BcR) is expressed on the plasma membrane of the cell at the large pre-B-II cell 
stage. Expression of a functional pre-BcR is an important checkpoint in precursor B-cell dif-
ferentiation.8, 9 Expression of the pre-BcR receptor induces several processes, which include 
allelic exclusion and induction of proliferation. As soon as the pre-BcR complex is down 
regulated, proliferation will be limited and rearrangement of the IG light chains is initiated, 
and cells will progress to the small pre-B-II cell stage. First, a Vκ will rearrange to a Jκ, and 
if this junction is not productive, subsequent Vκ-Jκ rearrangements can take place until a 
functional Vκ-Jκ junction is formed. If not, further rearrangement to the kappa-deleting 
element (Kde) takes place, which removes the Cκ from the genome.10 If the rearrangement 
of the first IGK allele is not functional, rearrangement of the second IGK allele takes place. 

Figure 2. B cell development. Schematic overview of the stepwise development of B cells from hematopoietic 
stem cells (HSCT) to memory B cells and plasma cells. 
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Figure 3. V(D)J recombination of the IGH locus. Rearrangements at the IGH locus start with a DH-JH 
rearrangement, followed by a V to DJ rearrangement. The excised DNA forms a signal joint, resulting in a B-cell 
receptor excision circle (BREC). Upon functional rearrangements, the RNA is spliced and can be translated into a 
B-cell receptor protein.
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If both IGK alleles are non-functional, rearrangement of the IGL allele takes place.11 Once a 
functional BR is formed that does not display high affinity for autoantigens, the immature 
B cell will further mature and migrate to the periphery as a transitional B cell (Figure 2). 

B-cell maturation in the periphery
After the assembly of a functional BR and screening for poly- and auto-reactivity, B 

cells migrate to the periphery.12 Upon antigen recognition and T-cell activation, reactive B 
cells home to germinal centers of peripheral lymphoid organs to undergo two additional 
maturation steps: somatic hyper mutation (SHM) and CSR.13 Germ-line encoded variable 
regions often make low affinity antibodies.13 During the process of SHM, point mutations 
are induced and accumulate in the rearranged V(D)J gene regions with the potential of 
creating a higher affinity. Due to selection, B cells with high affinity for antigen binding 
regions dominate the late antibody response. In addition to the process of SHM, CSR is 
induced (Figure 2), which results in replacement of the constant region, thereby changing 
the effector function of the BR.  

T-CELL DEVELOPMENT

T-cell development in thymus
T cells derive from bone marrow multipotent hematopoietic progenitors that seed in 

the thymus.14 T cells undergo several immunogenotypic and immunophenotypic changes, 
with the final aim to express a functional TR on the membrane. Four main T-cell devel-
opmental stages can be defined based on the expression of CD4 and CD8 co-receptors 
(Figure 4). T-cell precursors entering the thymus lack CD4 and CD8 surface expression and 
are therefore called double negative (DN). The DN cells can be further subdivided into DN1, 
DN2 and DN3 based on the expression of CD34, CD38 and CD1a (Figure 4). These DN cells 
subsequently develop into immature single positive (ISP) cells expressing CD4, followed 
by further maturation into double positive (DP) cells expressing both CD4 and CD8. During 
the DP stages, T cells are positively selected for recognition of self-peptides/MHC com-
plexes and negative selected for too strong binding to the self-antigen/MHC complexes.15 
Finally, the T cells further mature into single positive (SP) mature T cells expressing either 
CD4 or CD8. 

TR rearrangements
During T-cell development V(D)J recombination starts at the DN stage and occurs in a 

sequential manner starting with the TRD, followed by TRG, TRB and finally the TRA locus 
(Figure 4).1, 16, 17 The TRD rearrangement is a multistep process in which Dδ to Dδ, DDδ to 
Jδ and Vδ to DDJδ are joined, followed by the rearrangement of a Vγ to a Jγ in the TRG 
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locus. If the TRD and TRG rearrangements are productive, a TRγδ receptor can be produced 
and cells can further develop into the TRγδ lineage.1, 16 However, T cells with non-func-
tional TRG/TRD rearrangements can continue with rearranging the TRB locus, followed by 
complex rearrangements in the TRD/A locus.18-21 If the TRB and TRA rearrangements are 
productive, T cells will further develop into the TRαβ lineage. 

V(D)J RECOMBINATION

Both the TR and IG loci consist of multiple V, D and J genes, which can be recombined 
during a process called V(D)J recombination (Figure 3), this process ensures the enormous 
diversity of the antigen receptors. The V(D)J recombination process consist of three phases: 
the initiation phase, the processing phase and the ligation phase (Figure 5). 

The initiation phase
All V, D and J genes are flanked by specific recombination signal sequences (RSSs). 

These RSSs consist of a palindromic heptamer sequence adjacent to the coding sequence 
and a nonamer sequence that are separated by a less conserved spacer region of 12 or 
23 base pairs.22, 23 In principle, only RSS with different spacer lengths can join efficiently, 
known as the 12/23 rule.22  The RSS flank the 3’ V genes, both sides of the D genes and the 
5’side of the J genes. There is a consensus sequence (CACAGTG) for the heptamer and for 
the nonamer (ACAAAAACC). The consensus RSS appears to be the optimal for V(D)J recom-
bination, but only five VH genes (VH3-9, VH3-43, VH4-34, VH4-39 and VH4-59) are flanked 
by this consensus RSS.24 The RSSs flanking the other genes deviate considerably from the 
consensus. V(D)J recombination is initiated by the lymphoid specific recombination acti-
vating gene 1 (RAG1) and 2 (RAG2) proteins (Figure 5), which introduce single strand nicks 
between the coding segment and the flanking RSS.25, 26 This results in a coding end with a 
hairpin structure, and a blunt end at the side of the RSS (signal end). The resulting signal 
ends of both RSS are ligated into a signal joint. 

Hairpin opening and the processing/ligation phase
The RAG proteins are lymphoid specific and are only expressed at the developmental 

stages where V(D)J recombination takes place,6, 16 but the processing and repair of the 
DNA DSB is done by the common nonhomologous end-joining (NHEJ) pathway of DNA 
repair. The DNA DSBs are recognized by the DNA-dependent protein kinase (DNA-PK) 
complex, which is composed of the DNA-PK catalytic subunit (DNA-PKcs) and the KU70/
KU80 heterodimer.27, 28 After initial loading of the Ku70/Ku80 heterodimer onto DNA ends, 
DNA-PKcs is recruited to form a stable protein-DNA complex that ensures protection from 
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exonuclease activities and stimulates juxtaposition of DNA ends.29 Subsequently, the 
Artemis protein is phosphorylated by DNA-PKcs, and opens the hairpin-sealed coding 
ends, which are formed by the RAG proteins.30, 31. To create even more variability in the 
receptors, the DNA ends are further processed, resulting in junctional diversity (Figure 6). 

V JRSS RSS

RAG RAG

Initiation

Processing/ligation

Hairpin opening

ATP
ADP

KU KU

KU KU

Artemis

Artemis
DNA-PKcs

DNA-PKcs

KU KU
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V J

RSSRSS

P

P P

TDT

XRCC4

XLF LIG4

TDT
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TDT
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XLFLIG4

Figure 5. V to J recombination in detail. VJ recombination starts with the induction of DNA DSB between the 
V and J genes and the recombination signal sequences (RSSs), which result in a coding end and a signal joint. 
The DSB of the coding ends are recognized by the KU70/KU80 complex (indicated as KU). Subsequently, DNA-
PKcs binds to the C-terminus of Ku80 and forms a complex with KU. After DNA-PKcs becomes phosphorylated, it 
undergoes a conformational change. DNA-PKcs activates Artemis, which opens the hairpins. Thereafter, the DNA 
is processed by removal of nucleotides and insertion of random N-nucleotides by TdT. Finally, the DSB are ligated 
by LIG4 in complex with XLF and XRCC4.  
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V DJ Cµ
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Figure 7. DNA damage response. DSB are recognized by the MRN complex (MRE11, NBN and RAD50) and 
keep the DNA ends in close proximity. ATM is recruited and phosphorylates histone H2AX, which mediates 
binding of MDC1 and initiates ubiquitination of histones proximal to the break. Finally, 53BP1 is recruited which 
suppresses DNA end resection and skews repair towards non-homologous end joining. Adapted from Blundred 
and Stewart.147 

Figure 6. Junctional diversity. Examples of VDJ junctions showing junctional diversity by nucleotides that are 
removed, non-templated nucleotides that are added (blue) and palindromic nucleotides (red). 
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In case of asymmetric opening of the hairpins, palindromic (P) nucleotides are present. 
Nucleotides can be lost due to exonuclease activity and non-templated (N) nucleotides 
can be randomly added by terminal deoxynucleotidyl transferase (TdT).31-33 

The final step of V(D)J recombination is the ligation step. The coding ends are ligated by 
the DNA ligase IV (LIG4)/XRCC4 complex in conjunction with Cernunnos/XRCC4-like factor 
(XLF) (Figure 5).23, 34-37 LIG4 interacts with XRCC4 via its C-terminal region 38 and forms a 1:2 
complex 39. The interaction with XRCC4 is important for LIG4, since it stabilizes LIG4, and 
protects it from degradation 40.

DNA damage response proteins
After induction of DNA double strand breaks by RAG1 and RAG2, the MRN complex 

consisting of MRE11, RAD50 and NBN is activated.41 This complex binds to the DNA ends 
and tethers them together to ensure that the ends remain in close proximity (Figure 7).42, 43 
In addition, the MRN complex recruits the ataxia-telangiectasia-mutated (ATM) protein to 
the breaks. Activation of ATM involves an autophosphorylation step that converts inactive 
dimers into active monomers.44 After activation, ATM phosphorylates hundreds of targets 
resulting in the initiation of cell cycle arrest, activation of DNA repair pathways and initi-
ation of apoptosis in cells that fail to repair DNA breaks.45-48 Among these ATM targets is 
histone H2A variant H2AX, which gets phosphorylated and forms γH2AX.49 

Subsequently, γH2AX mediated binding of MDC1,50 which stabilizes the MRN com-
plex,51, 52 and initiates the ubiquitination of histones proximal to the break, resulting in 
relaxation of the chromatin surrounding the break site, making it more accessible for repair 
proteins, such as 53BP1.53 The precise role of 53BP1 is not known, but 53BP1 is involved in 
suppressing DNA end resection, which skews the repair towards NHEJ.54, 55

MOLECULAR PROCESSES OF SHM AND CSR

SHM
During the first step of both SHM and CSR, activation-induced cytidine deaminase 

(AID) converts a cytidine (C) to a uracil (U) by deamination (Figure 8A). In the recognition 
of a C, AID has shown a preference for RGYW and WRCY motifs (R=Purine, Y=pyrimidine, W 
= A or T).56, 57 This conversion generates a mismatch between the newly formed U and the 
guanine (G) on the complementary DNA strand. There are several ways this mismatch can 
be repaired, all likely to result in mutations (Figure 8A). During replication, the U can be rec-
ognized as a thymine (T), resulting in a C to T transition mutation (Figure 8B). Alternatively, 
the U can be recognized and removed by uracil-N-glycosylase (UNG), creating an abasic 
site recognizable for members of the base excision repair (BER) machinery.58 Subsequently, 
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apyrimidimic endonuclease (APE) nicks the phosphate backbone at the abasic site, cre-
ating a single stranded (ss)DNA break.59 Error-prone polymerases then insert a random 
nucleotide at the abasic site allowing both transition and transversion mutations to take 
place. This only results in mutations at G:C bases. Mutations at A:T bases can occur when 
MSH2-MSH6 heterodimer recognizes the mismatch 60-63 and recruits additional members 
of the mismatch repair (MMR) machinery, like exonuclease 1(Exo1).64 Exo1 excises base 
pairs and leaves a ssDNA gap.55 This gap can then be filled by polymerase η, which inserts 
random nucleotides at A:T pairs with preferential targeting of WA and TW motifs.65 

CSR
When two ssDNA breaks are in close proximity, a DSB can occur. Due to the high density 

of AID motifs in the switch regions, multiple DSBs occur during CSR (Figure 9). When a 

Figure 8. Somatic hypermutations. A) Somatic hypermutations are induced by deamination of a C to a U by AID. 
The resulting mismatch can be repaired in three different ways. Replication of the U-G mismatch, removal of the 
U by UNG and repair via base-excision repair (BER), or recognition of the mismatch and repair via the mismatch 
repair machinery. B) Transition and transversion mutations.
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break occurs in the switch region of both Cμ and another constant region (Cγ, Cα or Cε), 
the two switch regions can be ligated to perform successful class-switching. Ligation can 
be established by the NHEJ pathway or the alternative end joining (A-EJ) pathway. The 
NHEJ pathway is the predominant pathway for DSB repair in healthy cells,66 but when key 
factors in the NHEJ pathway are missing, A-EJ pathway becomes dominant.67 Key factors in 
the A-EJ pathway are several members of the MMR machinery, including Exo1 and MSH2.67 
Switch regions rearranged by A-EJ show long stretches of microhomology and are more 
error prone.68, 69 The intervening DNA, between the switch regions, is excised, making CSR 
irreversible, but switching to more downstream regions remains possible upon second 
activation. Contrary to SHM, CSR is not random and does not affect the affinity of the Ig 
molecule. Instead, cytokines regulate the accessibility of particular switch regions 70, 71. By 
CSR the effector function of the antibody alters. IgM antibodies are expressed without 
SHM and therefore tend to have low affinity for the antigen. However, these IgM molecules 
form polymers which increases their avidity, but make it harder to diffuse out of the blood 
vessels. The antibodies of the other classes-IgG, IgA, IgE-are smaller, and diffuse easily out 
of the blood into the tissues. IgG is the principal class in blood and can act as neutral-
izing antibody, opsonisation (IgG1 and IgG3) and activation of the complement system 
(IgG3 and IgG1).72 IgA is less susceptible for bacterial proteases and is mainly expressed 
in mucosal tissue acting as neutralizing antibodies.73 Finally, the main function of IgE is 
sensitization of mast cells.74

Figure 9. Class switch recombination. During SHM, AID induces DNA lesion at a low density, resulting in somatic 
mutations. However, during CSR, AID induces high density lesions resulting DSBs which can be repaired via NHEJ 
or A-EJ. 
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IMMUNE RECEPTOR REPERTOIRE

The immune receptor repertoire is defined as the total set of different B or T-cell recep-
tors, and can be divided in naïve and antigen-selected repertoire. The naïve repertoire is 
formed upon V(D)J recombination and is not selected by antigens, in contrast to the anti-
gen-selected repertoire.

Diversity of naïve T- and B-cell receptors
The total diversity of the unique TRs and BRs is the sum of the combinational and junc-

tional diversity of the individual chain, but also the combination of the different chains 
(TRα and TRβ, TRγ and TRδ, or heavy and light chains) that are combined. The many dif-
ferent functional Vβ (n=44-47), Dβ (n=2) and Jβ (n=13) genes in the TRB locus and Vα 
(n=45) and Jα (n=53) genes in the TRA locus determine the potential V(D)J combinational 
diversity of the TRαβ receptors, which is estimated to be >2x106 different combinations. 
The total diversity of the TRαβ receptors is further increased by junctional diversity, which 
is estimated to result in a total repertoire of >1012. The number of functional V, D and J 
genes is lower for the TRγδ receptors, resulting in a limited combinational diversity of 
>5000. However, this is compensated by the extensive junctional diversity present in these 
junctions, resulting in a total estimated repertoire of >1012 (Table 1). The IGH locus con-
sist of 38-46 functional VH, 25 DH and 6 JH genes resulting in a combinational diversity 
of >5.7x103. In combination with the 200 possible Igκ and 124 Ig λ rearrangements, this 

Table 1. Combinational and junctional diversity of the T- and B-cell receptors.

TRαβ TRγδ IG

TRα TRβ TRγ TRδ IGH IGκ IGλ

number of genes 

V genes 45 44-47 6 6 38-46 43 38

D genes 2 3* 25

J genes 53 13 5 4 6 5 4

Combinational diversity >2X106 >5000 >1.8X106

Junctional diversity + ++ ++ ++++ ++ ± ±

Total diversity >1012 >1012 >1012

*Multiple D genes can be used



1

23

General Introduction

results in a combinational diversity of >1.8 x106. Similarly to the TR, junctional diversity 
increases the total estimated diversity of the IG to >1012. 

Antigen-selected repertoire
Both the T- and B-cell receptor repertoires are changed after antigen exposure. A strik-

ing example in the TRγδ repertoire is the presence of Vγ9/Vδ2. In neonatal cord blood and 
infancy, the Vγ9/Vδ2 T-cells only represent 5-15% of all TRγδ+ T cells, however in older chil-
dren and adults 80-90% of the TRγδ+ T cells in blood express this receptor with a specific 
selection epitope in the Vδ2-Jδ1 junctional region.75, 76 In B cells, the presence of somatic 
hypermutations change the antigen-selected repertoire, ensuring higher affinity for the 
antigen. 

SEVERE COMBINED IMMUNODEFICIENCY

Severe combined immunodeficiency (SCID) is an inherited primary immunodefi-
ciency, characterized by absence or dysfunction of T lymphocytes. In these patients both 
the humoral and cellular immunity is defective, and are therefore highly susceptible to 
bacterial, viral, fungal and opportunistic infections. Most of these patients suffer within 
months after birth from severe opportunistic infections, chronic diarrhea, and failure to 
thrive. Antimicrobial prophylaxis and immunoglobulin substitution are mandatory in 
clinical management but curative treatment can only be obtained by allogeneic stem cell 
transplantation (SCT) and, in an experimental setting, gene therapy.77-79 According to the 
classification system of the International Union of Immunological Societies (IUIS) SCID can 
be classified as T-B+SCID or T-B-SCID, based on the presence or absence of B cells.80 

T-B+SCID is caused by mutations in cytokine-mediated signaling, and the majority 
(65%) of the patients have mutations in the IL2RG gene encoding the common γ chain 
(Figure 10) The IL2RG is located on the X chromosome, and is the only SCID gene with an 
X-linked inheritance. Almost half of the SCID patients we diagnosed in Rotterdam originate 
from Turkey. The frequency of consanguinity in Turkey is relatively high, and therefore we 
see a slightly lower frequency of patients with IL2RG mutations. A separate category of 
T-B+SCID patients have mutations in one of the four CD3 genes (CD3G, CD3D, CD3E and 
CD3Z).81, 82 The absence of one of the CD3 chains inhibits formation of the CD3 complex 
and consequently expression and signaling via (pre)TR. 

T-B-SCID can be caused by mutation in V(D)J recombination genes (Figure 10), or by 
mutations in adenylate kinase 2 (AK2) or adenosine deaminase (ADA). The latter two gene 
defects can also be associated with NK cell deficiency. AK2 mutations result in defective 
maturation of lymphoid and myeloid cells, and absence of ADA activity results in elevation 
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Figure 10. Distribution of SCID genes. Distribution of SCID genes in T-B+SCID and T-B-SCID according to the 
European society of immunodeficiency (ESID) database (January 2014), and patients diagnosed in Rotterdam 
excluding the patients originated from Turkey or only the patients originating from Turkey. 

ESID
Rotterdam  
excl.Turkey

Rotterdam 
only Turkey

T-B+SCID

IL2RG

JAK3

IL7RA

CD3

T-B-SCID

RAG

Artemis

XLF

DNA-PKcs

LIG4

n=240 n=43 n=34

n=176 n=66 n=46

Table 2. Characteristics of V(D)J recombination genes.

HUGO 
name

size 
(aa)

exons 
(coding)

clinical phenotype IR sensitive neurological 
abnormalities

V(D)J recombination genes defects

RAG1 RAG1 1043 2 (1) SCID, OS, leaky SCID -

RAG2 RAG2 527 2 (1) SCID, OS, leaky SCID -

Artemis DCLRE1C 692 14 (14) SCID, OS, leaky SCID +

DNA-PKcs PRKDC 4128 87 (87) SCID +

LIG4 LIG4 911 2 (1) SCID, OS,  LIG4 syndrome ++ microcephaly

XLF NHEJ1 299 8 (7) CID ++ microcephaly

XRCC4 XRCC4 336 8 (7) Primoridal dwarphism

V(D)J recombination genes not (yet) associated with immunodeficiency in humans

KU70 XRCC6 608 12 (12)

KU80 XRCC5 732 23 (21)

TdT DNTT 509 11 (11)
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of lymphotoxic metabolites. V(D)J recombination defects result in a block in T and B cell 
development and therefore no T and B cells are present in the peripheral blood. So far, 
genetic defects have been identified in the RAG1, RAG2, Artemis, LIG4, XLF, DNA-PKcs, and 
XRCC4 genes (Figure 10 and Table 2).34, 35, 83-87 Most of the T-B-SCID patients have mutations 
in the RAG1 or RAG2 genes (70%) or in the Artemis gene (20%). The distribution of the 
gene defects we identified in Rotterdam were similar as in the database of the European 
society of immunodeficiencies (ESID). However, Artemis mutations were found 1.5 fold 
more frequently in the Turkish patients (Figure 10). In the next paragraph the V(D)J recom-
bination defects will be discussed in more detail.

V(D)J RECOMBINATION DEFECTS

The immunological phenotype and clinical presentation of V(D)J recombination 
defects can be different, depending on the type of genetic defect, i.e. null mutations or 
hypomorphic mutations with residual V(D)J recombination activity. Importantly, RAG is 
only expressed in lymphocytes during V(D)J recombination, so a RAG deficiency is limited 
to the lymphoid system. However, the NHEJ proteins are important for the repair of DNA 
DSB in every cell. So, patients with defects in any of these proteins not only have a V(D)J 
recombination defect, but can have other clinical manifestations, such as microcephaly or 
neurological abnormalities. They are sensitive for ionizing radiation, and are often referred 
to as radiosensitive (RS) SCID patients.88 

RAG deficiency
In approximately 70% of the T-B-SCID patients, mutations are found in the RAG1 and 

RAG2 genes.83 Especially for the RAG genes, many different mutations have been described 
that give rise to residual activity of the mutated RAG protein.89, 90 In the last decade it has 
become more apparent that different RAG mutations may result in a broad spectrum of 
clinical phenotypes,91, 92 including:

•	 Classical SCID
•	 RAG deficiency (RAGD) with skin inflammation and αβ T-cell expansion (classical 

Omenn syndrome (OS))
•	 RAGD with skin inflammation but without T-cell expansion (incomplete OS)
•	 RAGD with materno-fetal transfusion
•	 RAGD with γδ T-cell expansion
•	 atypical SCID
•	 RAGD with granulomas
•	 RAGD with CD4 cytopenia and thymus hypoplasia
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This broad spectrum of clinical phenotypes impedes timely recognition of RAGD and 
may thus delay treatment (SCT). All these different presentations have now been summa-
rized in a new classification that defines three main categories: SCID, OS and leaky SCID.93 

Artemis deficiency
In 2001, Moshous et al. identified the Artemis gene as being defective in a group of 

patients with RS-SCID.83 Similar to RAG deficiency, hypomorphic Artemis mutations were 
described to give rise to a spectrum of clinical phenotypes including; atypical SCID,94, 95 
OS,96 atypical SCID with chronic inflammatory bowel disease,97 atypical SCID with gran-
ulomas (Chapter 3.3),98 and atypical SCID with hyper IgM syndrome and large granular 
lymphocytic leukemia.99 The defect in V(D)J recombination and NHEJ result in a block in 
precursor B-cell development in bone marrow and sensitivity for ionizing radiation.95 The 
role of Artemis in V(D)J recombination is opening of the hairpins that are formed at the 
coding ends. In case of Artemis deficiency, the hairpins are opened inefficiently and there-
fore increased numbers of P-nucleotides are present in the Ig rearrangements.100 Another 
striking feature of Artemis deficiency is the increased use of microhomology in the switch 
junctions.101 Importantly, several patients with an atypical clinical presentation have devel-
oped hematological malignancies, this stresses the importance to treat these patient with 
SCT, but with consideration of the radiosensitivity of these patients for conditioning.94, 99 

DNA-PKcs deficiency
For many years spontaneous DNA-PKcs mutations have only been reported in animals: 

horses of Arabian breed,102 the classical SCID mouse,103, 104 and Jack Russell terriers.105 The 
phenotype of these animals was reminiscent of the phenotype of classical SCID in humans. 
Finally, in 2009, we presented the first human patient with a hypomorphic DNA-PKcs muta-
tion (Chapter 2).85 This patient presented with the classical SCID phenotype: she had a 
complete block in precursor B-cell development, and was sensitive to ionizing radiation. 
The patient had two homozygous DNA-PKcs mutations, from which the missense mutation 
(p.L3062R), was proven to be the disease causing mutation. Similar to Artemis deficient 
patients, this patient had increased numbers of P-nucleotides in the IG junctions, which 
suggested that the mutant inhibits Artemis activation. Woodbine et al. recently identified a 
second DNA-PKcs deficient SCID patient with dysmorphology, severe growth failure, micro-
cephaly, seizures, and profound globally impaired neurological function.106 The patient 
had compound heterozygous for two new DNA-PKcs mutations. One mutation resulting in 
loss of an exon, and appeared to be inactivating, the other mutation was a hypomorphic 
mutation. This patient illustrates that besides V(D)J recombination and NHEJ, DNA-PKcs is 
also important for neurological development. 
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LIG4 deficiency 
To date, 28 LIG4 deficient patients have been described 86, 107-117 All patients were ion-

izing radiation (IR) sensitive, but clinically they can be divided into six distinct disease 
categories: 1) leukemia,111 2) LIG4 syndrome,107, 110, 112, 113 3) Dubowitz syndrome,116 4) 
Omenn syndrome,114 5) RS-SCID,86, 108, 109 and 6) LIG4-deficiency with dwarfism.115, 117 The 
leukemia patient had no overt immunodeficiency 111. Patients with LIG4 syndrome pres-
ent with microcephaly, developmental delay, mild immunodeficiency, and can develop 
malignancy. One patient presented with the Dubowitz syndrome, which is characterized 
by microcephaly, short stature, abnormal face and mild to severe mental retardation.116 
Patients with RS-SCID closely resemble patients with LIG4 syndrome but the immunode-
ficiency is more severe and they are diagnosed at younger age. All LIG4-deficient patients 
described so far have at least one allele with a hypomorphic mutation in combination with 
a second hypomorphic or null mutation on the other allele. Lig4 knockout mice are embry-
onic lethal 118-120, which suggests that LIG4 is essential for life. In this thesis, we describe 
a patient with a new clinical phenotype of LIG4 deficiency, which was characterized by 
microcephalic primordial dwarfism (Chapter 3.4).115 This case broadens the clinical spec-
trum of LIG4 deficiencies. 

XLF deficiency
In 2006, a novel NHEJ factor was described by two independent groups. Ahnesorg 

et al. identified the XLF by using a yeast-two-hybrid screen,34 and showed that this gene 
was mutated in the previously reported patient with a novel SCID.121 Buck et al. reported 
five patients with combined immunodeficiency and identified the novel NHEJ factor by 
functional complementation assays and called it Cernunnos. XLF is involved in ligation of 
DNA DSB and directly interacts with the LIG4/XRCC4 complex.34, 122, 123 Several XLF deficient 
patients have been described in literature.34, 35, 121, 124 They all have microcephaly, growth 
retardation, increased sensitivity for ionizing radiation, mild to severe immunodeficiency 
and some patients have autoimmunity. 

XRCC4 deficiency
Recently, Shaheen et al. described the first patient with XRCC4-deficiency.125 This 

patient presented with primordial dwarfism, bird-like face, small philtrum, and speech-de-
lay. Unfortunately, no immunological information is known about this patient. The XRCC4 
mutation identified in this patient concerns a missense mutation (p.Trp43Arg) in a con-
served amino acid. This mutation is likely to be hypomporphic, since XRCC4 is considered 
to be essential. However, the activity of this mutant has not been tested yet. Most likely, 
more XRCC4 mutations will be identified in patients with primordial dwarfism. 
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OTHER IMMUNODEFICIENCIES CAUSED BY DEFECTS IN DNA REPAIR GENES

DNA repair pathways play an important role in lymphocyte development and differ-
entiation. Not only defects in NHEJ factors result in immunodeficiency, but also defects 
in other DNA damage response proteins, and proteins involved in repair of breaks during 
SHM and CSR result in immunodeficiency (Table 3). 

Nijmegen Breakage Syndrome
Mutations in NBN, the gene encoding for NBN result in Nijmegen breakage syndrome 

(NBS).126 These patients have a characteristic facial appearance, microcephaly, growth 
retardation, immunodeficiency, increased sensitivity to ionizing radiation, and a strong 
predisposition to (lymphoid) malignancies.126-128 More than 90% of the patients have a 
homozygous 5-nucleotide deletion (c.657del5) which causes a premature stop at codon 
219.129 NBN forms a complex with MRE11 and RAD50, and is involved in sensing DNA DSBs, 
keeping two DNA ends together and activation of ATM. The immunodeficiency in NBS 
patients is characterized by reduced absolute numbers of T and B cells, suggesting a defect 
in V(D)J recombination. Analysis of IG rearrangements did not show differences in length 
or composition of these junctions,43, 130, 131 but NBS patients have increased loss of juxtapo-
sition of the DNA ends and this reduces the chance for successful rearrangements.43 

Ataxia Telangiectasia
Ataxia telangiectasia (AT) is a multisystem disorder caused by mutations in the ATM 

gene.132 AT is characterized by cerebellar ataxia, oculocutaneous telangiectasias, radiosen-
sitivity, chromosomal instability, a propensity for development of (mainly hematologic) 
malignancies, growth retardation, endocrine abnormalities and immunodeficiency.133, 

134 ATM is a protein kinase and member of the phosphoinositidyl 3-kinase related kinase 
(PIKK) family. As described above, ATM has many functions and is not only involved in 
cell cycle regulation, but also in DSB repair during V(D)J recombination and CSR. Clinically, 
the immunodeficiency in patients with AT is highly variable, with a predominant antibody 
deficiency. Patients with early-onset disease are referred to as having classical AT.135, 136 A 
subset of these classical AT patients have a severe early onset hypogammaglobulinema 
reminiscent of a CSR deficiency.137 Patients with variant AT, due to a ATM mutation leading 
to residual enzyme activity, have later onset and less severe antibody deficiency.135, 138 
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Bloom’s syndrome 
Bloom’s syndrome protein (BLM) is a member of the RECQL gene family of helicases 139, 

together with four additional members: RECQL1, WRN, RECQL4 and RECQL5 140. Helicases 
unwind double stranded (ds) DNA, making the strands accessible for replication and repair 
proteins. RECQ helicases are known to be involved in DNA repair and several other cellu-
lar processes 141 Mutation in BLM, result in Bloom’s syndrome (BS), which is characterized 
by short stature, photosensitivity, facial abnormalities, mental retardation, malignancies, 
immunodeficiency, and chromosomal instability. The role of BLM in the immune system is 
not well described, but most BS patients have an antibody deficiency. 

Other DNA repair proteins associated with immunodeficiency
In addition to ATM and NBN, mutations in MRE11,142 RAD50,143 RNF168,144, LIG1,145 and 

the MMR genes are also associated with immunodeficiency (Table 3).146 These genes are 
mainly involved in CSR, resulting in antibody deficiencies in these patients. For most of 
these diseases, the immunological phenotype is a minor aspect of their clinical phenotype, 
because these patients can present with neurological disorders, dysmophic features and 
commonly develop (lymphoid) malignancies. 

Table 3. DNA repair defects associated with immunodeficiency.

Gene HUGO name size (aa) exons (coding) clinical phenotype neurological 
abnormalities

ATM ATM 3056 63 (62) AT ataxia, telangiectasia

NBN NBN 754 16 (16) NBS microcephaly 

BLM BLM 1417 22 (21) BS

MRE11 MRE11A 708 20 (19) AT-related disorder microcephaly

RAD50 RAD50 1312 25 (25) NBS-related disorder microcephaly

RNF168 RNF168 571 6 (6) RIDDLE syndrome microcephaly

LIG1 LIG1 919 28 (27)

MSH2 MSH2 934 16 (16) CMMR-D

MSH5 MSH5 834 25 (24) CMMR-D

MSH6 MSH6 1360 10 (10) CMMR-D

MLH1 MLH1 756 19 (19) CMMR-D

PMS2 PMS2 862 15 (15) CMMR-D

Ataxia Telangiectasia (AT), Nijmegen breakage syndrome (NBS), Bloom’s syndrome (BS), radiosensitivity, 
immunodeficiency, dysmorphic features and learning difficulties (RIDDLE syndrome), constitutional mismatch-
repair deficiency (CMMR-D). 
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OUTLINE OF THE THESIS

V(D)J recombination is necessary to create a diverse repertoire of antigens receptors, 
which is essential for the defense against the many different pathogens. Defects in V(D)J 
recombination result in T-B-SCID. Several genetic defects have been found to cause T-B-
SCID. At this moment, there is a delay in making a molecular diagnosis because detailed 
insight in the clinical heterogeneity is lacking, and not all candidate genes (i.e. genes 
that can be mutated in T-B-SCID) are known. Due to the delay in the diagnostic process, 
the procedure of adequate treatment is often initiated (too) late leading to more serious 
life-threatening infections and irreversible organ damage.

 The aim of this thesis was to unravel the clinical and immunogenetic heterogeneity of 
SCID. In Part 2, we describe a new genetic defect in the DNA-PKcs gene in a patient with a 
classical SCID phenotype (Chapter 2). Part 3 describes detailed insight in the clinical het-
erogeneity of recombination defects. It becomes progressively clear that V(D)J recombina-
tion defects not only result in the ‘classical SCID’ phenotype, but can result in a spectrum of 
clinical phenotypes. We discuss new clinical phenotypes for RAG deficiency (Chapter 3.1), 
Artemis deficiency (Chapter 3.3) and LIG4 deficiency (Chapter 3.4), but we also show that 
even similar RAG mutations can result in a spectrum of clinical phenotypes (Chapter 3.2). 
Finally, in Part 4 we discuss mechanisms of repertoire development and CSR. We used a 
new method, based on next generation sequencing, to determine the composition and 
diversity of the IGH repertoire in more depth. In Chapter 4.1 we showed that XLF is essen-
tial to create junctional diversity by TdT and in Chapter 4.2 we showed for the first time 
that patients with AT have a reduced repertoire diversity. Finally, the General Discussion 
deals with the implications of the studies described in this thesis. 
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ABSTRACT

Radiosensitive T-B- severe combined immunodeficiency 
(RS-SCID) is caused by defects in the nonhomologous end-joining 
(NHEJ) DNA repair pathway, which results in failure of functional V(D)
J recombination. Here we have identified the first human RS-SCID 
patient to our knowledge with a DNA-PKcs missense mutation 
(L3062R). The causative mutation did not affect the kinase activity or 
DNA end-binding capacity of DNA-PKcs itself; rather, the presence 
of long P-nucleotide stretches in the immunoglobulin coding joints 
indicated that it caused insufficient Artemis activation, something 
that is dependent on Artemis interaction with autophosphorylated 
DNA-PKcs. Moreover, overall end-joining activity was hampered, 
suggesting that Artemis-independent DNA-PKcs functions were 
also inhibited. This study demonstrates that the presence of DNA-
PKcs kinase activity is not sufficient to rule out a defect in this gene 
during diagnosis and treatment of RS-SCID patients. Further, the 
data suggest that residual DNA-PKcs activity is indispensable in 
humans.
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INTRODUCTION

Severe combined immunodeficiency (SCID) is an inherited primary 
immunodeficiency. SCID patients present in the first year of life with severe 
opportunistic infections, chronic diarrhea and failure to thrive. The total group 
of SCID patients can be divided in two main categories: T-B+ SCID with a T-cell 
signaling defect (70%) and T-B- SCID with a defect in V(D)J recombination (30%). 
V(D)J recombination assembles variable (V), diversity (D) and joining (J) gene 
segments of the immunoglobulin (Ig) and T-cell receptor (TR) genes during B- and 
T-cell differentiation in order to generate a broad repertoire of antigen specific 
receptors. V(D)J recombination starts with introduction of DNA breaks at the 
border of the gene segments and the flanking recombination signal sequences 
(RSSs) by the RAG1 and RAG2 proteins.1 The resulting blunt signal ends are ligated 
directly, forming a signal joint. The hairpin sealed coding ends require further 
processing before coding joint formation. Recognition and repair of the DNA ends 
occur via the general nonhomologous end joining (NHEJ) pathway of DNA double 
strand break (DSB) repair.2, 3

DSBs induce ATM kinase activity, which phosphorylates histone H2AX,4 
followed by binding of 53BP1, MDC1 and a complex of MRE11, RAD50 and NBS1 
(MRN complex).5, 6 These proteins form a microenvironment that holds together 
the DNA ends over a relatively large distance, but still allow some degree of 
freedom for movement of the DNA ends and access of NHEJ proteins.7 DNA ends 
are first recognized by the NHEJ factor DNA-dependent protein kinase (DNA-PK), 
which is composed of the DNA-PK catalytic subunit (DNA-PKcs) and the Ku70/
Ku80 heterodimer.8 After initial loading of the Ku70/Ku80 heterodimer onto DNA 
ends, DNA-PKcs is recruited to form a DNA end synapsis, ensuring protection from 
exonuclease activities and juxtaposition of DNA ends.9 The presence of Ku70/Ku80 
and DNA-PKcs at DNA ends is not rigid, but constitutes a dynamic equilibrium of 
DNA-bound and DNA-free protein.10, 11 Trans autophosphorylation of the ABCDE 
cluster of DNA-PKcs (seven phosphorylation sites between residues 2609 and 
2647) causes a conformational change that facilitates Artemis nuclease activity.12-14 

During V(D)J recombination, Artemis nuclease activity is required for 
opening of the hairpin sealed coding ends.15 During processing of coding ends, 
nucleotides can be lost due to exonuclease activity and non-templated (N) 
nucleotides can be added by terminal deoxynucleotidyl transferase (TdT).16, 17 
This contributes tremendously to the diversity of the antigen receptor repertoire. 
Trans autophosphorylation of the PQR cluster (six phosphorylation sites between 
residues 2023 and 2056) functions to limit further end processing and to specifically 
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promote end joining. Activation (T3950) loop autophosphorylation is also required 
for efficient end joining.18 Finally, the DNA ends are ligated by the XRCC4-Ligase IV 
complex, which is promoted by XLF (Cernunnos)19, 20 The requirement of XLF can 
differ between various species and/or various cell types.21 

In ~70% of T-B- SCID patients, mutations are found in the RAG1 and RAG2 genes.22,  23

 The majority of the remaining patients show hypersensitivity to ionizing radiation, 
due to mutations in Artemis or LIG4;24-29 mutations in the XLF/Cernunnos gene have 
been found in radiosensitive patients with growth retardation, microcephaly, and 
immunodeficiency due to profound T and B-cell lymphocytopenia.19, 20 We here 
present a new type of RS-SCID with a defect in DNA-PKcs. 

RESULTS 

Flow cytometric analysis of peripheral blood and bone marrow pre-SCT and post-SCT
A girl (patient ID177) from consanguineous parents of Turkish origin (first degree 

relatives) was clinically diagnosed with SCID when she was 5 months old. B and T 
cells were virtually absent from peripheral blood, whereas NK cells were within the 
normal range (supplementary Table 1). Informed consent for patient material was 
obtained according to the guidelines of the medical ethics committees of Hacettepe 
University Children’s Hospital and Erasmus MC. The precursor B-cell compartment 
in bone marrow showed a complete block in B-cell differentiation before the pre-
B-II cell stage comparable to Artemis-deficient SCID25 and RAG-deficient SCID,30 
which suggests that the patient has a defect in V(D)J recombination (Figure 1). 
Patient ID177 received hematopoietic stem cell transplantation (SCT) from her 
HLA identical cousin, which resulted in full reconstitution of the precursor B-cell 
compartment and production of all lymphocyte subsets after three and six months. 

Supplementary Table 1. Absolute numbers of B, T and NK cells in peripheral blood (x 109/l) of the patient at 
diagnosis, three and six months post-SCT 

diagnosis 3 months post -SCT 6 months post -SCT Age matched controls
B-cells <0.01 0.4 0.6 0.6-2.7
T-cells 0.1 2.4 2.2 1.6-6.7
NK cells 0.4 0.4 0.1 0.2-1.2
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DNA repair defect in patient fibroblasts
Mutations in RAG1 and RAG2 were excluded by sequencing analysis. 

Subsequently, clonogenic survival assays showed that ID177 fibroblasts were X-ray 
sensitive (Figure 2A), indicating that patient ID177 has RS-SCID due to a defect in 
NHEJ. However, known candidate genes for RS-SCID (Artemis, LIG4, XLF-Cernunnos) 
were not mutated. Therefore, we analyzed the DSB repair defect in more detail by 
counting foci of the DSB marker γ-H2AX at various time points after irradiation. 
The kinetics of induction and disappearance of γ-H2AX foci at early time points (<6 
hours) did not differ significantly between patient, control (VH10) and Artemis-
deficient cells (Figure 2B). However, γ-H2AX foci disappeared with delayed kinetics 
in Artemis-deficient and patient fibroblasts and 15% of residual foci were still 
present after 72 hours, suggesting that a comparable level of unrepairable DSBs 
existed in patient ID177 and in Artemis-deficient cells.

Composition of Dh-Jh coding joints from bone marrow mononuclear cells
Additional information on the repair defect was obtained by analyzing 

incomplete IGH gene rearrangements (i.e. Dh-Jh) derived from bone marrow 
mononuclear cells. These junctions showed an average total number of 3.0 
palindromic (P-) nucleotides, which is significantly higher than the observed 
0.2 P-nucleotides in healthy controls (P=0.025), although not as high as in 

Figure 1. Flow cytometric analysis of the precursor B-cell compartment 
At diagnosis ID177 had a complete block in precursor B-cell differentiation before the pre-B-II cell stage 
comparable to RAG- and Artemis-deficient SCID patients.25, 30 Already three months post-SCT the precursor B-cell 
compartment showed a normal composition.
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Artemis-deficient patients (6.7 nucleotides)31 (Table 1 and supplementary Table 
2). Artemis-deficient patients have a defect in DNA hairpin opening of the coding 
end,9 which results in exceptionally high numbers of P-nucleotides, with high 
frequency of microhomology in the P-nucleotide tracts.31, 32 The shorter P-tract 
tracts and the absence of P-tract microhomologies in ID177 junctions suggest that 
hairpin-opening defect is somewhat different from Artemis-deficiencies. 

Table 1. Comparison of the junction characteristics of patient ID177 and junctions from healthy controls 29, 
Artemis-deficient 31 and LIG-4 deficient 29 patients.a

Patient 
(number of 
clones)

Dh(del) P- 
nucleotidesb

N- 
nucleotidesb P (del) Jh total P total del

ID177 (23) -2.3 1.0 4.2 2.0 -4.5 3.0 6.8
Control (15) -4.2 0.1 7.9 0.1 -6.0 0.2 10.2
Artemis (53) -1.9 3.0 4.0 3.8 -1.1 6.7 3.3
LIG4 (13) -12.2 0.2 2.8 0.0 -16.0 0.2 28.2

aNumbers represent average numbers of nucleotides per junction
bP, palindromic nucleotides; N, non-templated nucleotides.

Figure 2. ID177 harbors a DSB repair defect.
Clonogenic survival assay using wild type (FN1) fibroblasts, patient fibroblasts (ID177), and fibroblasts from a 
Artemis-deficient patient (Artemis-125) and a LIG4-deficient patient (SC229). Fibroblasts were irradiated with 
increasing X-ray doses. ID177 fibroblasts were radiosensitive. Error bars represent the S.D. from three independent 
experiments.
Numbers of γ-H2AX foci per nucleus were determined at indicated time points after irradiation (average number 
of foci per nucleus in 40 cells) in wild type (VH10) fibroblasts, ID177 and Artemis-deficient fibroblasts (Artemis-631). 
Error bars represent the S.D. from two to four independent experiments. 
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Analysis of NHEJ components Ku70, Ku80, XRCC4 and DNA-PKcs
Since Artemis activity depends on DNA-PKcs autophosphorylation, we analyzed 

the DNA-PKcs locus. Before sequencing this large gene, short tandem repeat (STR) 
analysis was performed in the patient and twelve family members using four 
polymorphic markers surrounding the DNA-PKcs gene (Figure 3A). Patient ID177 
was homozygous for all four markers and the allele defined by those four markers 
was present heterozygously in both parents, in the two related grandmothers 
(sisters) and in one uncle. No family members were homozygous for this genotype. 
Therefore, we sequenced the 12.3 kb DNA-PKcs cDNA and found two homozygous 
mutations (Figure 3B): a three nucleotide deletion (c.6338_6340delGAG) resulting 
in the deletion of a Glycine (p.delG2113) and a missense mutation, resulting in 

Supplementary Table 2. Analysis of Dh-Jh coding joints of the patient 

Dh gene 
segment

3’ 
deletion P nucleotidesa N nucleotidesb P nucleotides 5’ 

deletion
Jh gene 
segment

DH1-26 0 -15/-18 JH4/JH5
DH2-15 -3 CG 0 JH6
DH3-9 -4 TGA 0 JH4
DH3-22 -10 A A 0 JH3
DH3-22 -1 GGG -10 JH4
DH3-22 0 CCT 0 JH3
DH4-17 0 AC -9 JH4
DH4-4 -11/-14 TC GT 0 JH4
DH4-17 -7/-10 CC AAGTAGT 0 JH4
DH5-5 0 GTAACCA AAGTAGT 0 JH4
DH5-5 0 G CCCGTTACGCCC T 0 JH6
DH5-24 -1 GAAAAGG -17 JH6
DH5-24 0 GTAATTG ACC CAAAGTAGT 0 JH4
DH5-12 -2 GGGCCCTATATCCAGATCGG 0 JH4
DH6-13 0 GTACCA TAGTAAT 0 JH6
DH6-25 0 CGATATTGG -5 JH6
DH6-13 -4 ACC -5 JH6
DH6-19 0 TGGTAGGG -7 JH4
DH6-19 -1 AAGTGTCC 0 JH1
DH6-25 -5 C CAAAGTAGT 0 JH4
DH6-13 0 G -2 JH6
DH6-13 0 G -2 JH6
DH6-25 -2 CACCGCC GT 0 JH4
Average -2.2/-2.5 1.0 2.0 -4.7/-5.0

a P nucleotides, palindromic nucleotides 
b N nucleotides, non-templated nucleotides
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Figure 3. DNA-PKcs mutation analysis.
Family tree of patient ID177 and twelve family members. STR analysis was performed using the polymorphic 
markers D8S1460, D8S359, D8S531 and AF075268 surrounding the DNA-PKcs gene. Patient ID177 was 
homozygous for all four markers. This allele, defined by the four markers, was present heterozygously in both 
parents (III-5 and 6), the two grandmothers who are sisters (II-2 and 7) and one uncle (III-8). None of the family 
members were homozygous for this genotype.
Detection of two homozygous mutations in the DNA-PKcs gene in patient ID177; a deletion of three nucleotides 
(c.6338_6340delGAG) resulting in deletion of Glycine 2113 and a missense mutation (c.9185T>G) resulting in 
replacement of Leucine.by Arginine at position 3062.
Schematic representation of the DNA-PKcs protein and the two identified mutations delG2113 and L3062R.
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the replacement of one amino acid (c.9185T>G; p.L3062R) in the DNA-PKcs FAT 
domain (Figure 3C). The mutations were confirmed to be present heterozygously 
in the parents, the two grand mothers and the uncle and were not present 
in the other family members. To exclude that these mutations are recurrent 
polymorphisms, 100 Turkish controls were analyzed and the mutations were not 
detected. Mutations in the other NHEJ components (Ku70, Ku80 and XRCC4) were 
excluded by sequencing.

Normal DNA-PKcs expression and activity
First, we studied the effect of the DNA-PKcs mutations on kinase activity and 

protein expression.  In vitro DNA-PK kinase activity appeared to be similar in extracts 
from patient and control cell cultures (Figure 4A). The observed phosphorylation 
could specifically be inhibited by the DNA-PK inhibitor NU7441 (Figure 4B) in a 
final concentration of 0.5mM.33 NU7441 is specific for DNA-PK kinase inhibition 
(IC50 0.014mM) and inhibits ATM only at high concentrations (IC50 >100mM).33 ATM 
inhibitor KU55933 inhibited the phosphorylation activity with 50% (Figure 3B), 
which can be attributed to less specificity of this inhibitor.34 Ku55933 has an IC50 of 
0.013mM for ATM, but an IC50 of 2.5 mM for inhibition of DNA-PK. These data show 
that ID177 nuclear extracts possesses wild type levels of DNA-PK activity.

Subsequently, we studied autophosphorylation using a phophospecific 
antibody for one of the auto-phosphorylation sites (S2056) (Figure 4C). The S2056 
site is specifically known to be an exclusive DNA-PK target site in vivo.35 DNA-PKcs 
expression was detected in all fractions, while phosphorylated DNA-PKcs was only 
found in irradiated control and ID177 fibroblasts. These experiments showed that 
mutated DNA-PKcs was expressed and retained kinase and autophosphorylation 
capacity.

Confirmation of the disease causing DNA-PKcs mutation
As we did not observe a defect in DNA-PKcs activity we sought a different way 

to prove that the DNA-PKcs mutations have a disease-causing effect. Therefore, 
DNA-PKcs-deficient V3 cells expressing the mutated DNA-PKcs protein were 
studied in a clonogenic survival assay. Indeed, DNA-PKcs carrying both mutations 
did not complement the radiosensitivity of V3 cells, whereas wild type DNA-PKcs 
did, proving that one or both DNA-PKcs mutations in ID177 are disease-causing 
(Figure 5A). 

Alignment of the DNA-PKcs protein sequences of several species showed that 
Leucine 3062 is a highly conserved amino acid in a predicted α-helix (H), whereas 
Glycine 2113 is located in a region with little conservation (Figure 5B). Moreover, 
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Canis familiaris lacks this amino acid as well. Therefore, we hypothesized that 
L3062R is most likely the disease-causing mutation. 

We recently developed a V(D)J recombination assay, which allows detection 
of hairpin opening proficiency by simple analysis of junctions using restriction 
enzyme digestion (Figure 5C).31 This assay is based on cotransfection of a V(D)J 
recombination substrate containing two RSS in inversed orientation and RAG1 
and RAG2. Depending on the way of hairpin opening and coding joint formation, 

Figure 4. Measurement of DNA-PKcs activity.
DNA-PKcs kinase activity of cellular extracts of wild type (MRC5) and ID177 fibroblasts was measured by 
quantification of phosphorylation of a p53 peptide in the presence and absence of DNA.
DNA-PKcs kinase activity in ID177 cellular extracts was measured by quantification of phosphorylation of a p53 
peptide in the presence DNA without inhibitor or with DNA-PKcs specific inhibitor NU7441,33 or ATM-specific 
inhibitor KU5593334 in a final concentration of 0.5mM. Phosphorylation is expressed relative to ID177 without 
inhibitor.
Western blot analysis of DNA-PKcs and phosphorylated DNA-PKcs in cellular extracts from untreated (-) and 
irradiated (2Gy) fibroblasts (+) of ID177 and wild type (C5RO) with the DNA-PKcs antibodies 2208 and 2129 (1:1) 
and the phosphospecific DNA-PKcs antibody S2056.
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Figure 5. Confirmation of disease causing effect of DNA-PKcs mutation
Clonogenic survival assay of DNA-PKcs-deficient V3 cells 57 complemented with wild type DNA-PKcs or mutated 
DNA-PKcs (delG2113/L3062R) compared to wild type (AA8) cells. In contrast to wild type DNA-PKcs, mutated 
DNA-PKcs was not able to complement the radiosensitivity of V3 cells. Error bars represent the S.D. from three 
independent experiments.
Sequence alignment DNA-PKcs protein sequences of different species. G2113 is located in a region without a 
predicted secondary structure (indicated as (–)); L3062 is located in a predicted helix (H). Predictprotein analysis 
software was used.
Coding end structure of recombination substrate (pDVG93) used in the V(D)J recombination assay 31. Depending 
on the way of hairpin opening and coding joint formation, three different types of coding joints can be 
generated and discriminated by restriction enzyme digestion. Coding joints with long stretches of homologous 
P-nucleotides without nucleotide loss gives an NgoMI restriction site, a four-base pair microhomology of the 
coding ends creates a NotI restriction site. Junctions that have been processed differently will not contain either 
of the two restriction sites. 
PCR and restriction enzyme digestion of coding joints recovered from DNA-PKcs-deficient V3 cells and V3 cells 
expressing wild type DNA-PKcs or mutated DNA-PKcs after cotransfection of pDVG93 and RAG1 and RAG2 
expression constructs. Wild type DNA-PKcs and DNA-PKcs delG2113 were able to restore the shifted junction 
pattern as observed in DNA-PKcs-deficient V3 cells.
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three different types of coding joints can be generated and discriminated from 
each other by restriction enzyme digestion. Coding joints without nucleotide loss 
are NgoMI sensitive, whereas a four-base pair microhomology of the coding ends 
creates a NotI restriction site. Junctions that have been processed differently will 
not contain either of the two restriction sites. In a wild type situation, the three 
different types are used in equal frequencies. Similar to Artemis-deficient cells, 
DNA-PKcs-deficient V3 cells showed a complete shift towards NgoMI sensitive 
junctions (Figure 5D). Expression of wild type DNA-PKcs in V3 cells restored normal 
distribution of junctions. The normal junction pattern could not be restored in 
V3 cells by the DNA-PKcs expression construct containing both mutations or 
containing only the L3062R mutation. However, the DNA-PKcs delG2113 was 
able to correct the shifted junction pattern, indicating that the DNA-PKcs L3062R 
missense mutation is the disease-causing mutation.

Figure 6. Residual function of DNA-PKcs defect
Immunostaining of micro-irradiated wild type and delG2113/L3062R YFP-DNA-PKcs-expressing V3 cells after 
cotransfection with a wild type myc-Artemis expression construct (in red). Cells were microirradiated using a 
multiphoton laser system. One of the two cells of V3 expressing delG2113/L3062R YFP-DNA-PKcs was not 
transfected with Artemis. This figure shows representative examples of the experiment. 
DNA end-joining assay in DNA-PKcs-deficient V3 cells and V3 cells expressing wild type or ID177 mutant 
DNA-PKcs. Linearized pDVG94 can be rejoined via direct or microhomology-directed end-joining. Joining via 
microhomology results in the generation of a BstXI restriction site.36 Junctions were PCR amplified and PCR 
products were digested with BstXI, as indicated. 
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Accumulation of mutated DNA-PKcs at DSB sites
To further pinpoint the effect of the DNA-PKcs mutation, we studied the ability 

of mutated DNA-PKcs to recruit Artemis to laser-induced DSB sites in living 
cells.11 Lines of DNA damage were introduced in V3 cells expressing YFP-tagged 
wild type DNA-PKcs or mutated DNA-PKcs. In this assay a myc-tagged Artemis 
expression construct was co-transfected. Mutated DNA-PKcs protein was still 
able to accumulate at DSB sites and to recruit Artemis to these sites (Figure 6A). 
Colocalization of mutated DNA-PKcs and Artemis suggests that the point mutation 
did not disrupt interaction with Artemis. 

Impaired end joining activity of linear substrates
Finally, the relative level of microhomology use was tested in a plasmid 

recircularization assay, which is based on transfection of linear DNA. This is 
a sensitive method to detect subtle NHEJ defects.36 The mutated DNA-PKcs 
expression construct was not able to correct the increased microhomology use in 
DNA-PKcs-deficient V3 cells, showing that the overall NHEJ activity was affected 
by this mutation (Figure 6B). 

DISCUSSION

We identified the first human RS-SCID patient with a mutation in the DNA-PKcs 
gene. Clinically the DNA-PKcs-deficient patient presented as a classical SCID with 
symptoms similar to patients with RAG or Artemis mutations, i.e. with a severe 
immunodeficiency due to lack of B and T cells, but without signs of microcephaly 
or mental retardation as found in XLF-deficient patients20 or in patients with the 
LIG4 syndrome.37 For several years, mutations in this gene have been expected 
to exist in (SCID) patients, because spontaneous mutations in the DNA-PKcs gene 
had already been reported in three different species: in horses of Arabian breed,38 
in mice39, 40 and in Jack Russell Terriers,41 which indicated that mutations in this 
gene are not lethal. This notion was further supported by a recent study in which 
a human adenocarcinoma DNA-PKcs null cell line was generated.42 This study 
clearly demonstrated that under cell culture conditions, DNA-PKcs is not essential 
for human cells.

The disease-causing mutation in the SCID patient described here concerned 
a hypomorphic L3062R missense mutation in the DNA-PKcs FAT domain. This 
mutation did not influence in vitro kinase activity nor hampered DNA-PKcs 
autophosphorylation. Moreover, mutated DNA-PKcs protein was still able to 
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accumulate at DSB sites and to recruit Artemis to these sites in vivo, suggesting that 
Artemis interaction was not disrupted. However, subtle changes in the interaction 
might influence correct positioning of the nuclease domain relative to the DNA 
end. It is interesting to note, that a cryo-electron microscopy based 3-dimensional 
model of the DNA-PK structure places the FAT domain (which contains the L3062R 
mutation) on a protrusion that faces the DNA end.43 Therefore, this domain could 
serve as the Artemis nuclease interaction site. The consequence of the L3062R 
mutation was insufficient Artemis activation leading to disturbed coding joint 
formation and concomitantly to strongly reduced numbers of B and T cells in 
peripheral blood. The coding joints contained long stretches of P-nucleotides, 
indicating that Artemis nuclease activity was strongly inhibited. 

However, the effect of the L3062R mutation was not limited to the Artemis 
activation deficit. Although we did not observe a significant difference in DSB 
repair kinetics in DNA-PKcs-deficient (ID177) and Artemis-deficient cells, joining 
of transfected linear DNA in ID177 was shifted towards microhomology use. Such 
a shift in joining products has been observed before in V3 cells that completely 
lack DNA-PKcs activity,36 but not in Artemis-deficient cells.25 As DNA-PKcs null 
mutations have not been found in patients, we assume that residual DNA-PK 
activity is indispensable in humans. It is possible that DNA-PKcs-dependent NHEJ 
is partially functional in ID177. However, the essential function in humans could 
also be unrelated to NHEJ, possibly a DNA-PK-dependent phosphorylation event. 

The L3062R mutation differs substantially from the spontaneous mutations 
described in SCID horses, mice and dogs, which all concerned DNA-PKcs mutations 
that resulted in truncated proteins. In SCID foals, a 5bp deletion resulted in a 
frame shift and premature stop codon that prevented the translation of the 967 
C-terminal amino acids, which resulted in a nonstable protein.44, 45 C.B-17 BALB/c 
SCID mice have a nonsense mutation in a highly conserved region with a stop 
codon at a position corresponding to amino acid 4045 thereby deleting the 83 
C-terminal amino acids.46 Jack Russell Terriers also have a nonsense mutation that 
deletes the 517 C-terminal amino acids.41, 47 The human DNA-PKcs null cell line 
lacked the kinase catalytic domain (encoded by exons 81, 82 and 83) and did not 
express detectable levels of DNA-PKcs protein.42 In the three mentioned species as 
well as in the human cell line, the DNA-PKcs defects resulted in absence of kinase 
activity.41, 42, 44, 48 This is in strong contrast to the human L3062R mutation, which 
retained kinase activity. It is tempting to speculate that DNA-PKcs kinase activity 
is essential for human development. The human carcinoma cell line was viable, 
although these cells had a severe proliferation and genomic stability deficit, 
suggesting that DNA-PK activity is more important in humans than in most other 



2

57

A DNA-PKcs mutation in a patient with T-B- SCID 

mammals. It is possible, that DNA-PK has an essential function, e.g. some kinase 
signaling event that is carried out by ATM in other mammals. However, we cannot 
exclude that the presence of DNA-PKcs activity is specific for the (hypomorhpic) 
L3062R mutation and that other DNA-PKcs mutations lacking this kinase activity 
can still be found in SCID patients. This study unambiguously shows that the 
presence of DNA-PKcs protein and DNA-PKcs activity is not sufficient to rule out 
a defect in this gene. This might explain the delay in identification of the first 
DNA-PKcs deficient patient and probably of DNA-PKcsmutations in other RS-SCID 
patients.

The question remains whether mutations in the other NHEJ genes (Ku70, Ku80 
and XRCC4) can also be expected in patients. Ku70 and Ku80 knock out mice are 
viable and have a radiosensitive SCID phenotype,49-52 but no spontaneous animal 
models have been reported. In contrast, human cell lines with inactivated Ku70 or 
Ku80 are not viable, which suggests that Ku70 and Ku80 are essential for human 
cell viability.53, 54 XRCC4-deficient mice are embryonic lethal due to apoptosis of 
post-mitotic neurons55 and if this can be extrapolated to humans, functional null 
mutations in XRCC4 are also unlikely. However, hypomorphic mutations in Ku70, 
Ku80 or XRCC4 can never be excluded and therefore testing for defects in these 
genes remains valid in a case of radiosensitive SCID or in case of patients with 
immunodeficiency, growth retardation and/or developmental defects. As shown 
by this study, the analysis of coding joints from the bone marrow precursor B-cells 
is helpful for identification of the type of V(D)J recombination or NHEJ defect and 
can therefore guide the molecular testing of candidate genes.

In conclusion, DNA-PKcs is a new candidate gene for human radiosensitive SCID. 
This study illustrates that the presence of DNA-PKcs kinase activity is not sufficient 
to rule out a defect in this gene and that coding joint analysis is a powerful tool 
in the diagnostic process. In addition, this study suggests that residual DNA-PKcs 
activity is indispensable in humans.

MATERIALS AND METHODS

Case report
A Turkish girl (patient ID177) presented at the age of 5 months with recurrent 

oral candidiasis and lower respiratory tract infections since the third month of life 
with progressive respiratory distress leading to hypoxia. At the age of four month 
she had a large oral aphtous lesion. She is the third child of consanguineous 
parents (first degree relatives). A male sibling was lost due to a congenital heart 
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defect at the age of 3 years. She has a healthy 3 year-old sister. Vaccination with 
Bacille Calmette-Guerin (BCG) went uneventful. She had minimal tonsillary tissue. 
She was transplanted from her HLA-identical cousin (a healthy male) without pre-
transplant conditioning regimen. 

 
Cell lines and tissue culture 

Primary fibroblasts were cultured from a skin biopsy of patient ID177 and were 
used in all assays. Wild type human fibroblasts FN1, VH10, C5RO or MCR5 were 
used as positive controls. In addition, fibroblasts derived from Artemis-deficient 
patients (Artemis-1,25 Artemis-6 and Artemis-731) and a LIG4-deficient patient 
(SC229) were used in several assays. Other cell cultures used in this study were the 
hamster cell lines AA856 (wild type), DNA-PKcs-deficient V3 cells40, 57 and V3 cells 
that were stably transfected with the YFP-DNA-PKcs expression construct.11 All cell 
lines were cultured in a 1:1 mixture of Ham’s F10 medium and DMEM (BioWhittaker), 
supplemented with 10% FCS, penicillin (100 U/ml), and streptomycin (100 μg/ml).

Flow cytometric analysis of peripheral blood and bone marrow
At diagnosis and three and six months after stem cell transplantation (SCT), 

flow cytometric analysis of peripheral blood was performed aiming at the analysis 
of the peripheral lymphocyte subset populations and at assessing the composition 
of the precursor B-cell compartment as previously described.29

Clonogenic survival assay
Clonogenic survival assays with primary skin fibroblasts or hamster cells were 

done as described previously.25, 29 In short, primary skin fibroblasts in exponential 
growth or hamster cells were trypsinized, and 500 to 2,000 cells (5,000 to 80,000 
cells for the highest doses) were seeded into 10 cm plastic dishes (2 dishes per 
dose, 3 for nonirradiated control) and irradiated at room temperature at a dose of 
approximately 2.7 Gy/min (200kV, 4.0 mA). After 12 to 14 days, the cells were rinsed 
with 0.9% NaCl and stained with 0.25% methylene blue for survival assessment. 
Three independent survival experiments were performed. In complementation 
experiments only cell lines with homogeneous human YFP-DNA-PKcs expression 
were analyzed.

Analysis of gH2AX foci after ionizing radiation
X-ray-induced H2AX foci were analyzed in confluent serum starved primary 

human fibroblasts cells after irradiation at a dose of 1 Gy by staining with 
monoclonal anti-phospho-H2AX (Ser139) (Upstate, Billerica, MA, USA) (10 ng/ml) 
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and subsequently with Alexa 488-conjugated goat anti-mouse IgG (Molecular 
Probes). Cell nuclei were counter stained with 4,6-diamidine-2-phenylindole 
(DAPI, Sigma). Foci were examined by fluorescence microscopy and 40 cells per 
time point were analyzed.29

Sequence analysis of genes involved in V(D)J recombination and NHEJ
Sequence analysis of genes involved in V(D)J recombination and NHEJ was 

performed by PCR analysis (for RAG1 (NCBI M29474), RAG2 (NCBI M94633), Artemis/
DCLRE1C (NCBI M94633), XLF/NHEJ1 (NCBI AJ972687), and LIG4 (NCBI X83441)) 
or RT-PCR analysis (for KU70/XRCC6 (NCBI NM_001469), KU80/XRCC5 (NCBI 
NM_021141), XRCC4 (NCBI NM_003401) and DNA-PKcs/PRKDC (NCBI NM_006904)) 
of the coding regions with the TaqGoldTM amplification system followed by direct 
sequencing. Primer sequences are available upon request.

Analysis of Dh-Jh junctions from bone marrow
DNA was isolated from bone marrow mononuclear cells (MNCs) and Dh-Jh 

coding joints were amplified by PCR with family specific Dh primers and a 
consensus Jh primer58, 59 as previously described31 followed by cloning of the PCR 
products into pGEM T-easy (Promega). Individual clones were sequenced and the 
composition of the junctional region was determined using the information from 
the international ImMunoGeneTics (IMGT) information system (http://imgt.cines.
fr/).

Western blot analysis for DNA-PKcs
Cellular extracts were prepared for Western blot analysis of fibroblasts of 

patient ID177 and control fibroblasts (C5RO) 30 min after irradiation with 2 
Gy. Non-irradiated cells were used as control. DNA-PKcs protein expression 
was detected with a mixture of the two rabbit polyclonal antibodies produced 
against amino acids 3486-3677 and 356-570, respectively (antibodies 2208 and 
2129)29 to detect full length DNA-PKcs and the phosphospecific antibody against 
P-S2056-DNA-PKcs.11

DNA-PK kinase activity assay
DNA-PK activity was determined using the SignaTECT DNA-Dependent Protein 

Kinase Assay system (Promega). Cell extracts were prepared from fibroblasts 
and assayed for DNA-dependent kinase activity according to supplier’s protocol. 
DNA-PKcs specific kinase inhibitor NU744133 and ATM inhibitor KU-5593334 were 
obtained from Kudos Pharmaceuticals (Cambridge, UK) kindly provided by Dr. 
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Graeme C.M. Smith and used in a final concentration of 0.5 mM. The inhibitors 
were dissolved in DMSO and as control (no inhibitor) DMSO was added to the 
same concentration.

Short tandem repeat (STR) marker analysis
Four STR markers in the DNA-PKcs gene region were selected (D8S1460, D8S359, 

D8S531 and AF075268). PCR analysis with one FAM-labeled primer was performed 
on DNA samples of the patient and 12 family members. The number of STRs was 
determined using fragment analysis on the ABI3100.

V(D)J recombination assay
V3 cells with or without DNA-PKcs expression were transfected with a 

recombination substrate (pDVG93) containing two RSS in inversed orientation 
and RAG1 and RAG2 expression constructs. Where indicated, also a FLAG-tagged 
DNA-PKcs expression construct was included. All expression constructs were of 
human origin. After 48 h, the fibroblasts were harvested and extrachromosomal 
DNA was isolated to amplify the coding joints. PCR products were digested with 
NotI or NgoMI. After electrophoresis, the gel was dried and PCR products were 
visualized by phosphorimaging.31

DNA-PKcs expression constructs 
Mutated full-length cDNA constructs (delG2113/L3062R, delG2113 and L3062R) 

with FLAG or EYFP tags were generated in pBluescript II with CMV promoter and 
stably transfected in V3 cells.11

End joining assay
EcoRV/Eco47III linearized pDVG94 (with homologous ends (ATCAGC sequence)) 

was transfected into V3 cells and V3 cells expressing either the WT or the mutant 
human DNA-PKcs construct as described previously.36. Newly formed junctions 
were PCR amplified, and the relative microhomology use was determined by BstXI 
digestion.

DNA damage experiments
DSBs were introduced in a subnuclear volume using a pulsed 800 nm 

(multiphoton) laser system as described.10 Cells were transfected with human 
Myc-tagged Artemis (pDVG190)31 and proteins were detected using the EYFP-
signal on DNA-PKcs and anti-Myc tag antisera (Santa Cruz Biotechnology). 
Immunofluorescence was carried out as described.10
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Statistical Analysis
Differences in numbers of P-nucleotides were analyzed by using the non-

parametric Mann-Whitney test (one-tailed; P > 0.05) in the GraphPad Prism 
program (GraphPad Software, San Diego, CA, USA).
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ABSTRACT

A girl presented during childhood with a single course of extensive 
chickenpox and moderate albeit recurrent pneumonia in the presence of 
idiopathic CD4+ T lymphocytopenia (ICL). Her clinical condition remained 
stable over the past 10 years without infections, any granulomatous dis-
ease, or autoimmunity. Immunophenotyping demonstrated strongly 
reduced naive T and B cells with intact proliferative capacity. Antibody 
reactivity on in vivo immunizations was normal. T-cell receptor-Vβ reper-
toire was polyclonal with a very low content of T-cell receptor excision cir-
cles (TRECs). Kappa-deleting recombination excision circles (KRECs) were 
also abnormal in the B cells. Both reflect extensive in vivo proliferation. 
Patient-derived CD34+ hematopoietic stem cells could not repopulate 
RAG2−/−IL2Rγc−/− mice, indicating the lymphoid origin of the defect. We iden-
tified 2 novel missense mutations in RAG1 (p.Arg474Cys and p.Leu506Phe) 
resulting in reduced RAG activity. This report gives the first genetic clue 
for ICL and extends the clinical spectrum of RAG mutations from severe 
immune defects to an almost normal condition.
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INTRODUCTION

Selective depletion of T lymphocytes is common in both primary and secondary immu-
nodeficiencies. Idiopathic CD4+ T lymphocytopenia (ICL) is defined by an unexplained per-
sistent CD4+ T lymphocyte count of < 300 cells/μL or < 20% of the total T-cell count.1

Since the discovery of human retroviruses, sporadic ICL patients were recognized with 
a CD4+ lymphocytopenia not infected by HIV or HTLV-1.2-7 Smith et al reviewed 230179 
cases from the CDC AIDS Reporting System and described 47 ICL patients.2,3 Of these cases, 
only 3 (6%) were asymptomatic. Screening of healthy blood donors confirmed a low prev-
alence of ICL of 0.2%-0.6%.4,5

The disease may have a transient nature over the years but mostly persists.3 The immu-
nologic parameters of ICL consist of a prolonged decrease in CD4+ T cell numbers, some-
times with a concomitant decrease in CD8+ T cells and B cells as well. Immunoglobulin levels 
are normal,2–5 which helps to distinguish ICL from Common Variable Immunodeficiency 
(CVID).1,6

Although function declines with age, thymic output is well maintained into late adult-
hood.7-9 Thymic size correlates with numbers of CD4+CD45RA+ naive T cells. At very young 
age T lymphocytopenia is often caused by congenital defects resulting in severe combined 
immunodeficiency syndromes (SCID).10

Null mutations in RAG1 or RAG2 account for 70% of SCID cases with the classic T−B−SCID 
phenotype.10 Hypomorphic mutations with residual RAG activity occur in typical Omenn 
syndrome,10 or rare cases with lympocytopenia, hypogammaglobulinemia, granulomas in 
the skin, mucosa, internal organs and viral complications, including EBV-related lympho-
mas.11, 12 In the present paper, we describe hypomorphic RAG1 mutations that corresponds 
with mild CD4+ T lymphocytopenia, normal in vitro lymphocyte function and in vivo vacci-
nation responses.

MATERIALS AND METHODS

Subjects and blood samples
Heparinized venous blood was collected from healthy (age-matched) donors, patient 

and family members. The study was approved by the institutional medical ethical com-
mittee and informed consent for the research purpose described was obtained from the 
parents of the child and age-matched controls in accordance with standards of the 1964 
declaration of Helsinki. 
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Lymphocyte phenotyping
Absolute numbers of T cells, B cells, and NK cells were determined with Multitest 6-color 

(FACSCantoII; BD-Biosciences). For T- and B-cell subset analysis directly conjugated mono-
clonal antibodies (MoAbs) were obtained from BD except for CD45RA-RD1 (Beckman-
Coulter) and CD27-FITC (Sanquin).13, 14

Lymphocyte activation, determination of T-cell receptor CDR3 spectratype, TRECs, and 
Lymphocyte proliferation was performed as described.13 CD45RA+ naive T cells were puri-
fied (> 95%) to determine CDR3 patterns in CD4+ and CD8+ T cells or to isolate DNA for 
Sj–T-cell receptor excision circles (TRECs) analysis.14, 15

KREC assay and Vκ3-20–specific IgκREHMA
Four B-cell subsets were purified from PBMCs using FACS-DiVa cell-sorter.16, 17 Somatic 

hypermutation in these subsets was assessed by the Vκ3-20–specific Igκ-restriction 
enzyme hot-spot mutation assay (REHMA).16

RAG gene analysis and in vitro V(D)J recombination assay
The RAG1 and RAG2 genes were amplified by PCR and sequenced.18 The level of recom-

bination activity of the RAG1 mutant proteins were compared with the wt RAG1. 

Case
The patient was the first child of healthy, nonconsanguineous Dutch parents, born in 

May 1992. At the age of 5, she contracted chickenpox with numerous large hemorrhaghic 
skin lesions and VZV-associated pneumonia. Skin lesions healed slowly with cicatricia-
tion. Until the age of approximately 8 years she has suffered from recurrent episodes of 
fever and (viral) pneumonia for which she regularly received antibiotics. High-resolution 
CT scanning of neck, thorax, and abdomen around that age showed mild bronchiectasis 
without enlargement of perihilar lymph nodes or granulomatous lesions in lungs, liver, 
or spleen; a thymus was not detectable (supplemental Figure 1). Dysmorphic features 
were not observed by clinical geneticists. Chromosomal abnormalities (including 22q11 
hemizygosity) were excluded. She remained disease-free for the past 10 years using oral 
cotrimoxazole as prophylaxis.

RESULTS AND DISCUSSION

Lymphocyte subpopulations and humoral immune responses
Immunophenotyping of the patient’s PBMCs showed low numbers of CD4+ T cells and 

to a lesser extent, CD8+ T cells. The CD4+ lymphocytopenia was persistent over time with 
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B

A

C

Figure S1. Thymus as demonstrated by HRCT scanning of an age-matched control suspected of pulmonary 
pathology (A) compared with our patient (B). The normal localization of the thymus is indicated by white 
arrows. The earliest pulmonary X-ray available at 4 years of age (C) already showed the absence of a thymic 
shadow in the patient. 

Table S1. Ig spectrum and serologic reactivity in the patient

Age (years) 4 6 12 

IgG (g/L) 5.6 6.8 7.1 

IgA (g/L) 0.2 0.7 0.4 

IgM (g/L) 0.6 0.8 0.7 

IgE (kU/L)1 5 4 9 

EBV-VCA – IgG + IgG + 

EBV-EBNA nt – – 

CMV – – – 

VZV IgG + IgG + IgG + 

Measles IgG + not tested not tested 

Tetanus Toxoid 0.74 U/mL not tested 1.9 U/mL 

Polio 1 : 2048 1 : 1024 1 : 20482 

1 phadiatop and food allergen screenings negative 
2 post-DTP booster at 10 years of age
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some fluctuations (Figure 1A). The percentage of CD4+ and CD8+ T cells with a CD45RO+ 
memory phenotype was strongly increased as compared with the naive T cells (Figure 1B).

Although B-cell numbers were normal, the distribution of the B-cell subsets was 
severely disturbed (Figure 1B). The frequency of class-switched CD27+ memory B cells 
was low (3.4%-9.2%) whereas the frequency of nonswitched sIgD+CD27+ memory B cells 
showed a high and stable percentage between 58%-72% (controls between 5-15 years: 
18.4 ± 7.2%, n = 40). Humoral immunity was intact (supplemental Table 1). 

In vitro functionality of T cells, thymic function, and TCR repertoire
T-cell proliferation to general stimuli (ie, CD3/CD28, cytokines), and specific antigens 

was intact (Figure 1C; data not shown). Cytokine release, CTL or spontaneous NK-cell killing 
of target cells were normal (data not shown). 

In the absence of a detectable thymus, peripheral in vivo T-cell proliferation was 
expected to be increased to sustain normal T-cell numbers. This was indeed demonstrated 
in 2 ways. First, lymphocyte expression of the nuclear proliferation marker Ki67 was not 
different from age-matched control samples (Figure 1D; data not shown). Second, the con-
tent of TRECs was reduced compared with controls (Figure 1D), indicative for increased 
T-cell proliferation. However, despite extensive peripheral T-cell expansion to sustain the 
number of T cells, no restriction in the TCR repertoire was demonstrated (Figure 1D). 

Cellular and molecular properties of the circulating B-cell compartment
B-cell proliferation was found to be normal on BcR-dependent and BcR-independent 

stimulation (supplemental Figure 2A). The number of cell divisions of the transitional, 
naive-mature, and nonswitched B cells was strongly increased as compared with healthy 
controls (supplemental Figure 2B).16,17 Naive B cells were not somatically mutated and the 
mutation frequency in the expanded fraction of nonswitched natural effector B cells was 

Figure 1. Absolute numbers of CD4+ and CD8+ T cells, CD19+ B cells and CD3+CD16/56+ NK cells over 
time. (A) Numbers of the patient’s lymphocytes are indicated in closed circles;the age-matched control levels 
for different age categories (ie, 4-10 years; 10-18 years) are indicated in a range of 2SD (dotted lines). (B) 
Immunophenotyping of CD4+ and CD8+ T cells and CD19+CD20+ B cells, according to CD45RA/CD27 and sIgD/
CD27, respectively, as compared with a healthy, age-matched control. Proliferative capacity of the patient’s T cells. 
T-cell proliferation of the patient and a healthy control is shown by CFSE dilution after 6 days of culture. Polyclonal 
proliferation was induced by a combination of CD3/CD28 or IL-15, whereas antigen-specific proliferation was 
assessed by stimulation with tetanus toxoid (Tet Tox), cytomegalovirus (CMV) or varicella zoster virus (VZV). (C) 
As expected in the presence of negative serology, CMV antigen did not activate her T cells. Increased proliferation 
of the peripheral CD4_ T-cell compartment as demonstrated by nuclear Ki67 staining in naive (CD45RA_CD27_) 
CD4_ and CD8_ T cells, compared with healthy age-matched naive control T cells, as described.13 TRECs in 
patient’s T cells for the early, so-called signal joint (Sj) over a period of 5 years.(D) For T-cell repertoire analysis 
CDR3 spectratyping in the patient’s T cells was analyzed, being representative for 2 separate experiments in 
triplicate, more than 2 years apart.
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only 4.7% (healthy controls 15%; n = 5; supplemental Figure 2C). These results indicate that 
the number of total peripheral B cells is normal because of extensive (antigen-indepen-
dent) proliferation of the transitional, naive and nonswitched B cells. 

Lymphoid origin of the defect and genetic immunodeficiency screening
T-cell maturation data suggested an intrinsic T-cell developmental defect with thymus 

hypoplasia from early age onward. Using a humanized RAG2−/−IL2Rγc−/− mouse model,19 
normal human T-cell reconstitution on intrahepatic injection of 4 × 105 patient-derived 
CD34+CD38− HSCs from the bone marrow of the patient failed, in contrast to control HSCs. 
In the blood, no patient T cells could be detected at 6 and 9 weeks, nor in the thymus 
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Figure S2. B-cell proliferation and B-cell repertoire analysis in the patient’s B-cell subsets. Proliferation of 
CD19+ B cells of the patient and a control is shown by CFSE dilution after 6 days of culture with the indicated 
stimuli. Plots show CFSE dilution versus CD20 expression. (A). Increased proliferation of transitional, naïve mature, 
and non-switched natural effector B cells, as determined as the ΔCT of the intron-RSS-Kde coding joint and the 
signal joint PCR (B). The percentage of mutated Vκ3-20-Jκ alleles determined the IgκREHMA assay in naïve mature 
B cells (upper panel) and non-switched natural effector B cells (lower panel). The 244 and 247 bp fragments are 
unmutated and the 262 bp fragments are mutated (C).



3.1

77

Idiopathic CD4+ T lymphopenia caused by RAG mutations

at 10 weeks (supplemental Table 2), confirming the lymphoid background of the thymus 
hypoplasia. 

RAG defect
Sequence analysis demonstrated 2 novel heterozygous missense mutations in the 

RAG1 gene (c.1420C > T and c.1516C > T), affecting the evolutionary conserved amino 
acids Arg474 and Leu506 (Figure 2A). The RAG1 p.Arg474Cys recombinant protein had 
25% recombinase activity compared with wild-type RAG1, whereas the p.Leu506Phe 
mutant did not have any residual activity (Figures 2B-C).

Hypomorphic mutations may result in typical Omenn patients with T cells showing 
an oligoclonal TCR repertoire, and poor development of precursor B cells,18, 20 which may 
contribute to hyperinflammation/autoimmunity because of low-affinity autoantibody 
production.21, 22 These features were absent in our patient. 
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Figure 2. RAG1 gene mutations and residual recombination activity. Sequence alignment of RAG1 protein 
of different species. Both the arginine (R) at amino acid position 474 and the leucine (L) at 506 are conserved 
residues. (A) The parents were heterozygous for each of the mutation. (B) Transfection of pDVG93, RAG1 and 
RAG2 in 3T3 fibroblasts results in an inversion rearrangement of pDVG93, which can be detected by the primers 
DG89 and DG147. (C) Only the R474C mutation results in residual recombination activity, as assessed by the in 
vitro recombination assay using pDVG93.
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Table S2. Differentiation capacity into lymphocytes of bone marrow derived HSCs, from patient and 
normal donor in the RAG2−⁄−IL2Rγc−⁄−mouse model

BLOOD (A) 6w 9w 

Mouse Donor %CD45+ nCD45+ %CD45+ nCD45+ 

1 patient 0 0 0.2 11 

2 patient 0 0 0.1 3 

3 control 34.5 19 3.3 114 

4 control 28.6 8 5.1 230 

5 control 47.1 8 12.4 565 

6 control 57.1 24 20.2 303 

THYMUS (B) 10w 

Mouse Donor %CD45+ nCD45+

1 patient 0 0

2 patient 0 0

3 control 74.9 351094

4 control 88.4 9530625

5 control 83.6 16328125

6 control 87.9 274688

Two-day-old newborn sub-lethally irradiated (3.5Gy) RAG2−/−IL2Rγc−/−mice were injected via the intra-hepatic 
route with HSCs from bone marrow[19]. Mice 1 and 2 were injected intra-hepatic with 4x105 HSCs from the 
bone marrow of the patient. Mice 3-6 were injected with an equal number of HSCs from the bone marrow of 
a normal donor. Blood (A) was taken at 6 and 9 weeks after grafting, and all mice were euthanatized 10 weeks 
after grafting for the analysis of the thymus (B). The percentage of human CD3+CD45+ cells was based on the 
cells in the life gate.

Table S3. Pre-activation state of the patient’s T and B lymphocytes

Unstimulated PHA-activated1

CD4+ (% pos) Patient Controls Patient Controls 

Control Ab (γ1) 1 ± 1.1 1 ± 0.8 2 ± 2.1 1 ± 1.2 

CD95 96 ± 11.9* 26 ± 8.1 98 ± 12.3* 45 ± 16.7 

CD70 11 ± 2.8* 2 ± 1.3 57 ± 16.6 36 ± 14.4 

CD27 99 ± 8.5 96 ± 4.2 72 ± 14.9 89 ± 12.1 

Ox40 46 ± 11.0* 6 ± 2.3 80 ± 8.7* 46 ± 16.3 

1PBMC in medium or activated for 4 days with PHA (1 μg/ml) and IL-2 (20 U/mL). Significant differences between 
patient and controls are indicated by an asterisk (p<0.05 [n=4], tested over 5 years). MoAbs were purchased 
from BD.
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Epicrise
V(D)J recombination activity of the RAG1 mutant proteins was very low. Even this resid-

ual RAG1 activity provides a low level of T- and B-cell production for effective host immu-
nity. The functional immune system in terms of the mild clinical course in the absence of a 
detectable thymus could be explained by cytokine-driven proliferation, as reflected by the 
maintenance of a polyclonal repertoire.23 The persistent lymphocyte activation could be 
compatible with cytokine-driven homeostasis (Figure 2A; supplemental Table 3). 

The thymus hypoplasia associated with an immune defect similar to ICL and few clinical 
symptoms was identified to be caused by novel heterozygous RAG1 mutations with very 
low RAG activity. Instead of SCID, Omenn syndrome or extensive granulomatous disease, 
our case study adds to the complexity of hypomorphic mutations in the RAG genes.
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ABSTRACT

Background V(D)J recombination takes place during lymphocyte devel-
opment in order to generate a large repertoire of T- and B-cell receptors. 
Mutations in the recombination activating genes 1 (RAG1) and RAG2 result 
in loss or reduction of V(D)J recombination. It is known that different muta-
tions in the RAG genes vary in residual recombinase activity and give rise 
to a broad spectrum of clinical phenotypes.  

Objective To study the immunological mechanisms causing the clinical 
spectrum of RAG deficiency (RAGD).

Methods We included 22 patients with similar RAG1 mutations 
(c.519delT or c.368_369delAA), resulting in N-terminal truncated RAG1 
protein with residual recombination activity, but presenting with different 
clinical phenotypes. We studied precursor B-cell development, immuno-
globulin (IG) and T-cell receptor repertoire formation, receptor editing, and 
B- and T-cell numbers.

Results Clinically, patients were divided into three main categories: 
T-B-severe combined immunodeficiency (SCID), Omenn syndrome and 
combined immunodeficiency (CID). All patients showed a block in the 
precursor B-cell development, low B- and T-cell numbers, normal immuno-
globulin gene usage, limited B- and T-cell repertoires and slightly impaired 
receptor editing.

Conclusion This study demonstrates that similar RAG mutations can 
result in similar immunobiological effects, but different clinical pheno-
types, indicating that the level of residual recombinase activity is not the 
only determinant for clinical outcome. We postulate a model in which the 
type and moment of antigenic pressure impact on the clinical phenotype 
of these patients.  
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CLINICAL IMPLICATIONS

RAG deficiency can result in a broad spectrum of clinical presentations, but the level of 
residual RAG activity is not always predictive for the clinical outcome. 

INTRODUCTION

Defects in V(D)J recombination result in a block in the B and T cell differentiation, 
because formation of immunoglobulin (IG) and T cell receptors (TR) is perturbed.1 This 
results in a combined immunodeficiency of B and T cells. V(D)J recombination is initiated 
by the recombination activating gene (RAG) 1 and RAG2 proteins by creating double strand 
breaks in the IG and TR loci. Subsequently, these breaks are processed and repaired by 
proteins involved in non-homologous end joining. So far, genetic defects have been iden-
tified in the RAG1, RAG2, Artemis, Ligase IV (LIG4), XLF (Cernunnos) and DNA-PKcs genes.2-8 
The immunological phenotype and clinical presentation of these mutations are different, 
depending on the type of genetic defect, i.e. null mutations or hypomorphic mutations 
with residual V(D)J recombination activity. Especially for the RAG genes, many different 
mutations have been described that give rise to residual activity of the mutated RAG 
protein.9 Different RAG mutations may result in a broad spectrum of clinical phenotypes, 
including SCID, RAG deficiency (RAGD) with skin inflammation and αβ T-cell expansion 
(classical Omenn syndrome (OS)), RAGD with skin inflammation but without T-cell expan-
sion (incomplete OS), RAGD with materno-fetal transfusion, RAGD with γδ T-cell expan-
sion, late-onset SCID, RAGD with granulomas, and RAGD with CD4 cytopenia and thymus 
hypoplasia.9, 10 This broad spectrum of clinical phenotypes impedes timely recognition of 
RAGD and may thus delay treatment (hematopoietic stem cell transplantation).

In this study we selected 22 RAGD patients with similar N-terminal truncating RAG1 
mutations, to study the effect of a similar mutation on the clinical phenotype. These 
patients could be divided into three main different clinical phenotypes, i.e. SCID, OS, and 
combined immunodeficiency (CID), which includes the other phenotypes. We studied 
whether key immunologic parameters (e.g. precursor B-cell development, B- and T-cell 
numbers, B- and T-cell repertoire) might explain the differences in clinical phenotypes. 
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METHODS

Cell samples and flow cytometric immunophenotyping
Peripheral blood (PB), bone marrow (BM) and clinical data were obtained according 

to the guidelines of the Medical Ethics Committee of the Erasmus MC Rotterdam. Flow 
cytometric analysis was performed as previously described.8, 11, 12 

RAG analysis and in vitro V(D)J recombination assay  
The RAG1 and RAG2 genes were amplified by PCR and sequenced as previously 

described.13 The level of recombination activity of the RAG1 expression constructs was 
determined by using the recombination plasmid pDVG93 as described before.10, 13 A 
TaqMan-based RQ-PCR was used to measure RAG1 and RAG2 transcription levels in bone 
marrow mononuclear cells as was described before.14

TRB analysis
T cell receptor beta (TRB) gene rearrangements were studied as described before.15

Sequence analysis of Vκ and Jκ genes
Vκ-Cκ junctions were amplified in a multiplex PCR using primers specific for Vκ1-5 families 

(VκI: 5’-GTAGGAGACAGAGTCACCATCACT-3’, VκII: 5’-TG- GAGAGCCGGCCTCCATCTC-3’, 
VκIII:5’-GGGAAAGAGCCACCCTCTCCTG-3’, VκIV:5’-GGCGAGAGGGCCACCATCAAC-3’) and a 
Cκ primer (5’-ACTTTGGCCTCTCTGGA- TA-3’). PCR products were cloned in the pGEM-Teasy 
vector (Promega, Madison, WI) and prepared for sequencing on the ABI Prism 3130 XL 
fluorescent sequencer (Applied Biosystems). Obtained sequences were analyzed with the 
IMGT database  (http://imgt.cines.fr/) to assign the Vκ and Jκ genes.16, 17 The productive and 
unique sequences were used to determine the frequency of the Vκ and Jκ genes.

Repertoire analysis using next generation sequencing 
The VH-JH junctions were amplified from post-ficoll peripheral blood (PB) mononu-

clear cells in a multiplex PCR using the VH1-6 FR1 and JH consensus BIOMED-2 primers.15 
The primers were adapted for 454 sequencing by adding the forward A or reverse B 
adaptor, the ‘TCAG’ key and multiplex identifier (MID) adaptor. PCR products were puri-
fied by gel extraction (Qiagen, Valencia, CA) and Agencourt AMPure XP beads (Beckman 
Coulter, Fullerton, CA, USA). Subsequently, the PCR concentration was measured using the 
Quant-it Picogreen dsDNA assay (Invitrogen, Carlsbad, CA). The purified PCR products were 
sequenced on the 454 GS junior instrument according the manufacturer’s recommenda-
tions, using the GS junior Titanium emPCR kit (Lib-A), sequencing kit and PicoTiterPlate 
kit (454 Life Sciences, Roche, Brandford, CT). Using the CLC genomic workbench software 
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the samples were separated based on their MID sequence, trimmed and reads with a 
quality score below 0.05 and below 250bp were discarded. The reads were uploaded to 
IMGT HighV-Quest.18 Subsequently these output files were uploaded to the custom Galaxy 
platform 19-21 Further processing was done in the ‘R’ programing language22 to generate 
the tabular and graphical outputs. The CDR3 amino acid patterns were visualized using 
WebLogo (http://weblogo.berkeley.edu/).23, 24 

Statistics
Differences in absolute numbers of lymphocytes subsets were analyzed by the two-

tailed T-test for independent samples (P<0.05 was considered significant) in the GraphPad 
Prism program (GraphPad Software, Inc.). 

 RESULTS

Residual RAG1 activity in patients with N-terminal truncating RAG1 mutations 
Over the past ten years, we identified one of the two mutations resulting in N-terminal 

truncating RAG1 mutations in 22 patients (Table I and II). These c.519delT (hereafter abbre-
viated as delT) and c.368_369delAA (hereafter abbreviated as delAA) mutations have 
been described before in several patients.13, 25-29 They were found to be hypomorphic,13, 

27 because translation can be reinitiated from the alternative start site methionine 202 
(M202) or M183, resulting in an N-terminal truncated RAG1 protein,13 with the same (com-
parable) residual RAG1 activity (<5% compared to wild type) (Figure 1A).13 Sixteen patients 
were homozygous for the delAA or the delT mutation, and six patients were compound 
heterozygous (Table I). Three RAG1 mutations found on the second allele were also ana-
lyzed in the in vitro recombination assay, showing no residual RAG1 activity (Figure 1A). In 
addition, we determined the presence of polymorphisms in the RAG1 gene because these 
might influence the recombination activity of RAG1. The only polymorphism found was 
the p.Arg249His, which was shown not to affect recombination activity.2 

N-terminal truncating RAG1 mutations result in a spectrum of clinical phenotypes 
Although all patients had similar RAG1 mutations resulting in the same N-terminal 

truncation of the RAG1 protein, the clinical phenotypes varied substantially. The patients 
could be divided into three main clinical phenotypes: “classical” T-B-SCID (N=4), OS (N=9), 
and CID (N=9) (Table I and II). The “classical” SCID patients were defined as low B- and T-cell 
numbers and age at diagnosis before the first year of life. The OS patients all suffered from 
generalized and pronounced erythroderma. The patients with CID were diagnosed after 
the first year of life and had >14% γδ T cells or had normal levels of T cells (P17 and P22). 
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Despite the same N-terminal truncation of RAG1 in the 22 patients, the range of clinical 
phenotypes strongly suggests that other factors than residual RAG1 activity contributes to 
the clinical phenotype.

All clinical phenotypes show a block in precursor B-cell development
RAGD results in a block in the precursor B-cell differentiation in BM at the B-cell stages 

where V(D)J recombination of the IG genes takes place.11 To investigate precursor B-cell 
differentiation, the relative distribution of pro-B, pre-B-I, pre-B-II and immature B cells was 
assessed in BM from 11/22 patients. In healthy children, pro-B and pre-B-I cells constitute 
20-25% of the precursor B cells (Figure 1B). All “classical” SCID and OS patient, except for 
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Figure 1. RAG expression and  precursor B-cell compartment. Recombination activity of the c.519delT (delT), 

c.delA368/A369 (delAA), p.P874GX82, p.R559S and p.R759C RAG1 mutations was compared with wild type 

RAG1. Only the delT and the delAA RAG1 mutations result in low levels of residual recombination activity (A). 

Composition of the precursor B-cell compartment in controls (N=9), three “classical” SCID phenotype, two OS 

patients, and six CID patients (B). Relative RAG1 expression levels correlated to RAG2 expression in all the analyzed 

RAG patients as determined by using RQ-PCR (C). 
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P13) showed a complete block before the pre-B-II cell stage (Figure 1B), while most of the 
CID patients had a leaky block with >10% pre-B-II and immature B cells (Figure 1B). To 
exclude that differences in RAG1 transcription levels caused these difference in precur-
sor-B cell composition, RAG1 and RAG2 transcription levels were determined in the bone 
marrow mononuclear cells (BMMNC). It is known that RAG1 and RAG2 transcription levels 
are correlated,.30 but the levels of RAG1 and RAG2 in BMMNC depend on the number of 
cells expressing RAG (pre-B-I and pre-B-II). In all 11 studied patients the RAG1 transcription 
level was correlated to RAG2 (Figure 1C), indicating that the differences in severity of the 
precursor-B cell block were not caused by differences in expression of RAG1. The B-cell 
numbers in PB were undetectable or very low in most patients, except for P15 who had 
normal levels (Table II). Correlating the percentage of pre-B-II and immature cells in BM 
with the number of peripheral B cells showed that only patients with more than 10% pre-
B-II and immature B cells in BM (P13, P14, P15, P16, and P17) had detectable B cells in PB. 
Collectively these data indicate that most patients with CID have a milder block in the 
precursor B-cell composition, and that only patients with a leaky block have detectable 
levels of B cells in the PB.

Immunoglobulin heavy chain combinatorial repertoire
In those patients that had detectable peripheral B cells we studied the IGH V(D)J 

recombination repertoire. IGH gene rearrangements were amplified from mononuclear 
cells derived from PB and/or BM, and subsequently sequenced using next generation 
sequencing in healthy controls (PB and BM), and in three CID patients (P15, P16 and P18). 
The frequency of unique sequences in IGH genes was significantly lower in RAGD patients 
than in controls (Table III), which is a reflection of the low numbers of B-cells present in 
PB. Despite the low recombination activity, the IGHV, IGHD and IGHJ genes usage was not 
restricted (Figure 2A and B and Supplemental Figure 1). 48 out of the 57 IGHV genes used 
in controls were identified in the RAGD patients, as were the 25 IGHD genes and all 6 IGHJ 
genes. The IGHV, IGHD and IGHJ usages were similar to controls, although some genes 
were used with different frequencies (Figure 2 and Figure E1). Most strikingly, the JH6 
usage was lower, while JH4 usage was higher compared to controls. The RAGD patients 
had a significantly lower frequency (5.9-6.2% vs 20.9-24.3% in controls) of unproductive 
rearrangements (Table III), as was reported before.31 Unproductive rearrangements were 
defined as out-of-frame rearrangements or rearrangements with a stop codon. So, even 
though the RAGD patients had reduced V(D)J recombination leading to a limited TR and 
IG repertoire, the IGH gene usage was similar to controls without preferential use of the 
proximal or distal genes. 



Chapter 3.2

90

Ta
bl

e 
I. 

Cl
in

ic
al

 d
at

a 
of

 R
A

G
 d

efi
ci

en
t p

at
ie

nt
s 

 

on
se

t 
in

fe
ct

io
ns

 
(m

)

ag
e 

at
 

di
ag

no
si

s 
(m

)

in
fe

ct
io

ns
re

sp
ir

at
or

y 
tr

ac
t i

nf
ec

ti
on

s
au

to
im

m
un

it
y

H
ep

at
o-

m
eg

al
y

Sp
le

no
-

m
eg

al
y

Ly
m

ph
ad

en
o-

pa
th

y

SC
ID

 
 

 
 

 
 

P1
3

 
 

 
 

 
 

 
P2

6
6

BC
G

no
IT

P
no

no
no

P3
8

8
 

pn
eu

m
on

ia
 a

nd
 u

pp
er

 a
irw

ay
 

in
fe

ct
io

ns
 

 
 

 

P4
6

8
BC

G
 

 
 

 
m

ild
O

S
 

 
 

 
 

 
 

P5
0

0.
5

 
er

yt
hr

od
er

m
a

ye
s

ye
s

ye
s

P6
a

0
0.

5
 

re
cu

rr
en

t p
ne

um
on

ia
er

yt
hr

od
er

m
a

ye
s

no
ye

s
P7

a
0

0.
5

CM
V

no
er

yt
hr

od
er

m
a

ye
s

ye
s

ye
s

P8
0

3.
5

CM
V,

 c
an

di
da

,  
M

RS
E

se
ve

re
 p

ne
um

on
ia

 
er

yt
hr

od
er

m
a

 
 

 
P9

0
4

 
er

yt
hr

od
er

m
a

ye
s

no
ye

s
P1

0
1

1
 

 
er

yt
hr

od
er

m
a

 
 

ye
s

P1
1

1.
5

2
 

 
er

yt
hr

od
er

m
a

 
 

ye
s

P1
2

1
8

BC
G

re
cu

rr
en

t p
ne

um
on

ia
er

yt
hr

od
er

m
a

ye
s

ye
s

ye
s

P1
3

3
6

ca
nd

id
a,

 M
. b

ov
is

, 
co

rn
on

av
iru

s, 
rh

in
ov

iru
s

re
cu

rr
en

t u
pp

er
 a

nd
 lo

w
er

 a
irw

ay
 

in
fe

ct
io

ns
er

yt
hr

od
er

m
a.

 
A

IH
A

. I
TP

ye
s

no
no

CI
D

 
 

 
 

 
 

 
P1

4b
9

30
CM

V,
 c

an
di

da
re

cu
rr

en
t b

ro
nc

ho
pn

eu
m

on
ia

 
ye

s
ye

s
no

P1
5b

9
18

CM
V

re
cu

rr
en

t b
ro

nc
ho

pn
eu

m
on

ia
 

ye
s

ye
s

no
P1

6c
1

11
CM

V
ch

ro
ni

c 
rh

in
iti

s 
 

no
no

no
P1

7
4

6
CM

V,
 B

CG
pn

eu
m

on
ia

 
 

ye
s

ye
s

ye
s

P1
8

18
60

CM
V,

 B
CG

, r
hi

no
vi

ru
s

ye
s

A
IH

A
. I

TP
no

no
no

P1
9

3
13

ca
nd

id
a

ch
ro

ni
c 

rh
in

iti
s 

an
d 

br
on

ch
iti

s
A

IH
A

no
no

no
P2

0
24

48
 

 
A

IH
A

 
 

 
P2

1
13

60
ca

nd
id

a,
 a

sp
er

gi
llo

si
s

re
cu

rr
en

t p
ne

um
on

ia
s, 

br
on

ch
iti

s
A

IH
A

no
no

no
P2

2c
0

17
 

re
cu

rr
en

t p
ne

um
on

ia
s, 

br
on

ch
iti

s
 

no
no

no

a,
 b

 o
r c

 in
di

ca
te

s 
re

la
tiv

es
. 



3.2

91

Similar RAG mutations cause spectrum of clinical phenotypes
Ta

bl
e 

II.
 Im

m
un

ol
og

ic
al

 d
at

a 
of

 R
A

G
 d

efi
ci

en
t p

at
ie

nt
s

 
de

lT
de

lA
A

ot
he

r
CD

3+
 T

 a
bs

 
(x

10
E9

/l)
CD

4+
 T

 a
bs

 
(x

10
E9

/l)
CD

8+
 a

bs
CD

45
RA

 
(%

)
γδ

T 
(%

)
CD

19
+ 

ab
s 

(x
10

E9
/l)

N
K 

ab
s 

(x
10

E9
/l)

SC
ID

 
 

 
 

 
 

 
 

 

P1
 

ho
m

 
0.

06
 (1

.4
-8

.0
)

0.
04

 (0
.9

-5
.5

)
0.

01
 (0

.4
-2

.3
)

 
21

,8
0.

03
 (0

.6
-3

.1
)

0.
08

 (0
.1

-1
.4

)

P2
 

he
t

p.
P8

74
G

fs
X8

2
0.

1 
(2

.4
-6

.9
)

0.
06

 (1
.4

-5
.1

)
0.

01
 (0

.6
-2

.2
)

32
.1

24
.4

0.
01

 (0
.7

-2
.5

)
0.

4 
(0

.1
-1

.0
)

P3
ho

m
 

 
0.

3 
(1

.6
-6

.7
)

0.
06

 (1
.0

-4
.6

)
0.

3 
(0

.4
-2

.1
)

 
 

0 
(0

.6
-2

.7
)

0.
5 

(0
.2

-1
.2

)

P4
 

he
t

p.
R5

59
S

0.
3 

(1
.6

-6
.7

)
0.

2 
(1

.0
-4

.6
)

0.
04

 (0
.4

-2
.1

)
7.

7
10

0 
(0

.6
-2

.7
)

0.
1 

(0
.2

-1
.2

)

O
S

 
 

 
 

 
 

 
 

 
 

P5
ho

m
 

 
20

.1
 (2

.3
-7

.0
)

7.
56

 (1
.7

-5
.3

)
12

.7
5 

(0
.4

-1
.7

)
 

4
0 

(0
.6

-1
.9

)
2.

59
 (0

.2
-1

.4
)

P6
 a

 
ho

m
 

3.
7 

(2
.3

-6
.5

)
3.

1 
(1

.5
-5

.0
)

0.
4 

(0
.5

-1
.6

)
7.

2
5.

2
0.

03
 (0

.6
-3

.0
)

0.
8 

(0
.1

-1
.3

)

P7
 a

 
ho

m
 

36
 (2

.3
-6

.5
)

10
.7

 (1
.5

-5
.0

)
24

.9
 (0

.5
-1

.6
)

3.
1

1
0.

03
 (0

.6
-3

.0
)

0.
4 

(0
.1

-1
.3

)

P8
 

ho
m

 
3.

93
 (2

.3
-6

.5
)

1.
45

 (1
.5

-5
.0

)
2.

19
 (0

.5
-1

.6
)

21
.4

24
.4

0.
02

 (0
.6

-3
.0

)
0.

88
 (0

.1
-1

.3
)

P9
ho

m
 

 
1.

84
 (2

.3
-6

.5
)

1.
48

 (1
.5

-5
.0

)
0.

3 
(0

.5
-1

.6
)

4.
6

3
0.

00
4 

(0
.6

-3
.0

)
1.

64
 (0

.1
-1

.3
)

P1
0

 
he

t
p.

R7
37

H
3.

3 
(2

.3
-7

.0
)

0.
32

 (1
.7

-5
.3

)
2.

97
 (0

.4
-1

.7
)

0.
3

0.
1

0 
(0

.6
-1

.9
)

0.
34

 (0
.2

-1
.4

)

P1
1

 
he

t
p.

R5
59

S
4.

33
 (1

.6
-6

.7
)

4 
(1

.0
-4

.6
)

0.
27

 (0
.4

-2
.1

)
 

 
0.

01
 (0

.6
-2

.7
)

0.
93

 (0
.2

-1
.2

)

P1
2

 
ho

m
 

2.
21

 (2
.3

-6
.5

)
1.

34
 (1

.5
-5

.0
)

0.
61

 (0
.5

-1
.6

)
 

 
0.

07
 (0

.6
-3

.0
)

0.
56

 (0
.1

-1
.3

)

P1
3

 
ho

m
 

0.
6 

(2
.4

-6
.9

)
0.

6 
(1

.4
-5

.1
)

0.
01

 (0
.6

-2
.2

)
4.

8
2.

9
0.

07
 (0

.7
-2

.5
)

0.
2 

(0
.1

-1
.0

)

CI
D

 
 

 
 

 
 

 
 

 
 

P1
4 b

 
ho

m
 

0.
3 

(0
.9

-4
.5

)
0.

1 
(0

.5
-2

.4
)

0.
07

 (0
.3

-1
.6

)
35

49
.5

0.
4 

(0
.2

-2
.1

)
0.

8 
(0

.1
-1

.0
)

P1
5 b

 
ho

m
 

0.
5 

(1
.4

-8
.0

)
0.

1 
(0

.9
-5

.5
)

0.
2 

(0
.4

-2
.3

)
38

.9
64

.1
0.

4 
(0

.6
-3

.1
)

2.
9 

(0
.1

-1
.4

)

P1
6 c

 
ho

m
 

0.
16

 (1
.6

-6
.7

)
0.

07
 (1

.0
-4

.6
)

0.
02

 (0
.4

-2
.1

)
26

.9
46

.3
0.

09
 (0

.6
-2

.7
)

0.
32

 (0
.2

-1
.2

)

P1
7

 
ho

m
 

2.
7 

(1
.6

-6
.7

)
0.

2 
(1

.0
-4

.6
)

1.
5 

(0
.4

-2
.1

)
90

.7
90

.2
0.

06
 (0

.6
-2

.7
)

0.
7 

(0
.2

-1
.2

)

P1
8

he
t

 
p.

R7
59

C
0.

53
 (0

.9
-4

.5
)

0.
07

 (0
.5

-2
.4

)
0.

12
 (0

.3
-1

.6
)

 
57

.2
0.

12
 (0

.2
-2

.1
)

1.
32

 (0
.1

-1
.0

)

P1
9

 
ho

m
 

0.
10

 (1
.6

-6
.7

)
0.

01
 (1

.0
-4

.6
)

0.
10

 (0
.4

-2
.1

)
 

97
.5

0.
04

 (0
.6

-2
.7

)
0.

23
 (0

.2
-1

.2
)

P2
0

 
ho

m
 

0.
77

 (0
.9

-4
.5

)
0.

25
 (0

.5
-2

.4
)

0.
24

 (0
.3

-1
.6

)
 

41
.7

0.
02

* 
(0

.2
-2

.1
)

0.
18

 (0
.1

-1
.0

)

P2
1

 
he

t
p.

A
44

4V
0.

12
 (0

.9
-4

.5
)

0.
10

 (0
.5

-2
.4

)
0.

06
 (0

.3
-1

.6
)

 
14

.4
0.

00
1 

(0
.2

-2
.1

)
0.

25
 (0

.1
-1

.0
)

P2
2 c

 
ho

m
 

1.
97

 (1
.6

-6
.7

)
0.

42
 (1

.0
-4

.6
)

1.
50

 (0
.4

-2
.1

)
42

 
0.

29
 (0

.6
-2

.7
)

0.
72

 (0
.2

-1
.2

)

Th
e 

nu
m

be
rs

 in
 b

ra
ck

et
s 

in
di

ca
te

s 
no

rm
al

 v
al

ue
s, 

* 
in

di
ca

te
d 

un
de

r r
itu

xi
m

ab
 tr

ea
tm

en
t a

nd
 a

, b
 o

r c
 in

di
ca

te
s 

re
la

tiv
es

.



Chapter 3.2

92

VH6-1
VH1-2
VH1-3
VH4-b
VH4-4

VH7-4-1
VH2-5
VH3-7
VH1-8
VH3-9
VH3-11
VH3-13
VH3-15
VH1-18
VH3-19
VH3-20
VH3-21
VH3-22
VH3-23
VH1-24
VH2-26
VH4-28
VH3-30

VH3-30-3
VH4-30-2
VH4-30-4
VH4-31
VH3-33
VH4-34
VH3-35
VH4-39
VH3-43
VH1-45
VH1-46
VH3-47
VH3-48
VH3-49
VH5-51
VH5-a
VH3-52
VH3-53
VH1-58
VH4-59
VH4-61
VH3-64
VH3-66
VH1-69
VH2-70
VH3-71
VH3-72
VH3-73
VH3-74
VH7-81

DH7-27
DH1-26
DH6-25
DH5-24
DH4-23
DH3-22
DH2-21
DH1-20
DH6-19
DH5-18
DH4-17
DH3-16
DH2-15
DH1-14
DH6-13
DH5-12
DH4-11
DH3-10
DH3-9
DH2-8
DH1-7
DH6-6
DH3-3
DH2-2
DH1-1

JH
1

JH
2

JH
3

JH
4

JH
5

JH
6

JH
1

JH
2

JH
3

JH
4

JH
5

JH
6

JH
1

JH
2

JH
3

JH
4

JH
5

JH
6

JH
1

JH
2

JH
3

JH
4

JH
5

JH
6

JH
1

JH
2

JH
3

JH
4

JH
5

JH
6

JH
1

JH
2

JH
3

JH
4

JH
5

JH
6

JH
1

JH
2

JH
3

JH
4

JH
5

JH
6

JH
1

JH
2

JH
3

JH
4

JH
5

JH
6

JH
1

JH
2

JH
3

JH
4

JH
5

JH
6

JH
1

JH
2

JH
3

JH
4

JH
5

JH
6

JH
1

JH
2

JH
3

JH
4

JH
5

JH
6

JH
1

JH
2

JH
3

JH
4

JH
5

JH
6

control BM control PBP16 BM P15 PB P16 PB P18 PB

control BM control PBP16 BM P15 PB P16 PB P18 PB

A

B

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

Figure 2. Immunoglobulin heavy chain gene usage. Heatmap of the different combinations of DH-JH (A) 

and VH-JH (B) as determined in the unique junctions (defined by the unique combination of VH, DH, JH and 

nucleotide sequences of CDR3). 
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Table III. Number of IGH sequences

all sequences unique sequences unproductive productive

control BM 35472 18241 (51.4) 8633 (24.3) 26839 (75.7)

P16 BM 12195 3325 (27.3) 1629 (13.3) 10566 (86.7)

control PB 19294 9185 (61.2) 4030 (20.9) 15003 (77.8)

P15 PB 16826 7706 (45.8) 1047 (6.2) 15779 (93.8)

P16 PB 14572 3763 (25.8) 896 (6.1) 13676 (93.9)

P18 PB 25100 3730 (14.9) 1488 (5.9) 23612 (94.1)

The number in brackets indicates percentages. Unproductive refers to out-of-frame rearrangements or 
rearrangements containing a stop codon in the CDR3 region. 
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Selection of B cells is slightly impaired
OS is characterized by autoimmune-like clinical features including severe erythroder-

mia, hepato-splenomegaly and lymphadenopathy.32, 33 The immune dysregulation in OS 
patients may be caused by the severe abnormalities of thymic architecture and impaired 
expression of autoimmune regulator (AIRE) and tissue-specific antigens (TSA).34, 35 In addi-
tion, hypomorphic Rag mouse models have shown a disturbance in B-cell tolerance.36, 37 
Besides the OS patients, also one “classical” SCID patient, and four patients with CID suf-
fered from autoimmunity and all displayed idiopathic thrombocytopenic purpura (ITP) 
and/or autoimmune hemolytic anemia (AIHA) (Table I). Unfortunately, the thymic architec-
ture and AIRE and TSA expression could not be studied in our patients, but we were able 
to evaluate three parameters in the IGH sequences that are associated with autoimmunity. 
These are characterized by long complementary determining regions 3 (CDR3s), and the 
frequency of IGHV4-34 which is known to encode intrinsically self-reactive cold agglutinin 
antibodies that recognize carbohydrate antigens on erythrocytes.38, 39 The distribution of 
the CDR3 length of the unique junctions in BM and PB was similar to controls (Figure 3A), 
except for patient 18 who seemed to have increased numbers of junctions with a CDR3 
of 16 and 22 amino acids (aa). These junctions with a CDR3 length of 22 aa displayed high 
similarity (Figure 3B). No sequence similarity was found when all 16aa CDR3s were com-
pared (Figure 3B), but 18.3% of these junctions used IGHV6-1 and all these junctions had 
a highly similar CDR3 sequence (Figure 3B), which suggests that they might recognize a 
common antigenic determinant. The frequency of long CDR3s (≥15 aa) was significantly 
lower in patient 15 and 16 (P<0.0001), but not in patient 18 (Figure 3C). The frequency of 
IGHV4-34 usage was significantly higher in patient 16 (p<0.0001) and patient 18 (p<0.0001) 
(Figure 3D). From the three patients we analyzed, patient 18 had autoimmunity, which was 
reflected by the high frequency IGHV4-34 usage. 

Besides selection against long CDR3s, B-cell tolerance is also generated by receptor 
editing of self-reactive B cells. These self-reactive B cells are induced to express the RAG 
proteins and edit their receptor light chains via available upstream Vκ and downstream Jκ 
genes, to change the affinity of their receptors. Therefore, the Vκ-Jκ junctions were ampli-
fied from five OS patients and four patients with CID. The IGKV gene usage was not sig-
nificantly different from controls (Figure 3E), but less IGKJ5 genes were used in the RAGD 
patients (Figure 3F) So, receptor editing seems partly affected, as deduced from the very 
low IGKJ5 usage.

 
Difference between clinical phenotypes in absolute number of T cells but not in T cell 
repertoire

The hallmark of classical OS is an expansion of autologous T cells with a HLA DR+CD45 
RO+ phenotypes and an oligoclonal αβ-T-cell repertoire.40 Consistent with this, most of 
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Figure 3. Functional characteristics of IGH junctions. Functional characteristics of the IGH junctions were 

determined in three RAGD patients in PB or BM. Distribution of CDR3 length frequencies in BM and PB was similar 

in control and RAGD patients (A), however P18 had increased numbers of junctions with a CDR3 length of 16 and 

23 amino acids (aa). Sequence logo showed no similarity of the 16aa CDR3s of P18, but high similarity of CDR3s 

of 16 aa using the IGHV6-1 gene and of the 22aa CDR3s (B).  The frequency of long CDR3s (≥15aa) was decreased 

in P15 and P16 (C). The IGHV4-34 usage was increased in P16 and P18 (D). The percentage of IGKV and IGKJ genes 

was determined in six controls, five OS patients, and four patient with CID. The IGKV usage was normal (E), but 

hardly and IGKJ5 gene was used (F).
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the OS patients had normal or elevated CD3+ T-cell numbers, in addition two CID patients 
had normal numbers (P17 and P22), while all other patients had low absolute numbers of 
CD3+ T cells (Table II). Remarkably many patients had high percentage (>14%) of γδ T-cells, 
including 2 “classical” SCID, 1 OS and 8 CID patients (Table II). In addition, we determined 
the T-cell proliferation by determining the δREC-φJα T-cell receptor excision circles (TREC)41 
content per 50 ng DNA  in three “classical” SCID patients, seven OS patients, and five CID 
patients.  In 11 patients, TRECs were not detectable and in the other four patients (P2, 
P5, P7 and P18) the number of TRECs/50 ng DNA was lower than 1, compared to 134±75 
TREC/50ng DNA in control (n=7 age 8m-11yr) (data not shown), meaning that the T cells 
that were present in these patients showed extensive proliferation. Furthermore, the 
T-cell repertoire was determined by testing the TRB gene rearrangements in two “classical” 
SCID patients, three OS patients, and two CID patients. In all patients, the TRB repertoire 
was clearly restricted (Figure 4). Taken together, the T cells that were present in the RAGD 
patients showed extensive proliferation and had a restricted TR repertoire. 

DISCUSSION

Many different RAG1 mutations have been reported to the RAG mutation database.42 
While most are null mutations, several have been described to result in residual recombi-
nase activity.11, 13, 25, 27, 43 Previously, it was hypothesized that null mutations in RAG1 would 
result in “classical” T-B-SCID and partial reduction of RAG activity would result in OS or an 
intermediate late-onset SCID or OS phenotype.28 Over the last few years the spectrum of 
reported clinical phenotypes of RAGD has broadened and now also includes RAGD with γδ 
T-cell expansion, RAGD with skin inflammation but without T-cell expansion (incomplete 
OS), RAGD with granulomas, RAGD with maternofetal transfusion, and RAGD with CD4 
cytopenia and thymus hypoplasia.10, 40 A few case reports have shown that the same RAG 
mutation can result in a different clinical phenotype.25, 29, 44, 45 This study is the first to report 
an in depth immunobiological evaluation of 22 RAGD patients with similar RAG1 mutations 
resulting in the same N-terminal truncation of the RAG1 protein. These similar mutations 
result in three different clinical phenotypes, which indicates that a specific mutation does 
not predict the clinical phenotype of a patient. 

Since all patients had similar mutations, the residual RAG1 protein activity was expected 
to be comparable between all patients. The N-terminally truncated RAG1 protein is pro-
duced through translation starting from an alternative start site (M183 or M202), hence the 
amount of protein is dependent on how efficient these start sites are used. Since the RAG1 
transcription level correlated with those of RAG2 we assume that all patients had similar 
expression of the mutant RAG1 protein (Figure 1C). We cannot exclude that epigenetics 
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Figure 4. TRB repertoire. TR spectratyping profiles of TRB gene rearrangements using the BIOMED-2 TRB tube 

B. The upper two panels show the monoclonal and the polyclonal control. The patient panels SCID, OS, and CID 

show a restricted TRB repertoire.
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and modifier genes accounted for small differences in RAG1 protein expression. Although 
a previous attempt to identify such modifier genes in humans was not successful,46 studies 
in mouse models could shed more light on the contribution of epigenetics and modifier 
genes.

In our cohort, V(D)J recombination was not completely abolished but was strongly 
reduced, due to the low residual activity of the RAG1 protein. Reduced V(D)J recombination 
was characterized by normal IGHV, IGHD and IGHJ gene usage, without preferential use of 
proximal or distal genes. However, as was shown before,31 the frequency of unproductive 
sequences was significantly lower than in healthy controls, indicating that the B cells in 
the RAGD patients failed to correct unproductive rearrangements by recombination of the 
second IGH allele. 

As a consequence of the reduced V(D)J recombination fewer B and T cells with a func-
tional receptor can be produced. To compensate for the low circulating B and T cells, the 
proliferation of the lymphocytes is increased. This idea is corroborated by the low numbers 
of TRECs in the RAGD patients. The increased proliferation of T cells might result in normal 
or elevated T-cells counts, especially in the OS patients, however the corresponding TR 
repertoire in all the RAGD patients remains restricted.

Most RAGD patients showed clinical signs of immune dysregulation, such as erythro-
derma, lymphadenopathy, hepato-splenomegaly, idiopathic thrombocytopenic purpura 
and autoimmune hemolytic anemia. B cells have been shown to contribute to the immune 
dysregulation in the Rag mouse models.36, 37 Sera from these mice contained high-affinity 
anti-dsDNA and tissue-specific autoantibodies, and B cells displayed impaired receptor 
editing. In addition, these mice had increased serum B cell-activating factor (BAFF), which 
might rescue autoreactive B-cell clones. This increase in serum BAFF levels was also seen in 
patients with RAG-, Artemis- and X-linked SCID.37 Similarly to observations in  mice, most 
RAGD patients did not use the IGKJ5 gene while the IGKV gene usage was normal. This 
suggests that receptor editing in this group of RAGD patients was slightly impaired, which 
can either be caused by reduced recombination activity due to the RAG1 mutation, or by 
the low B numbers leading to reduced selection against autoreactive B cells. The IGH reper-
toire was investigated for long CDR3s, and increased IGHV4-34 usage, which are associated 
with autoreactive antibodies.47, 48 From the three RAG patients we analyzed, only patient 
18 suffered from autoimmunity, which was reflected by and increased VH4-34 gene usage.

The patients divided into the three main clinical RAGD groups hardly differed in their 
immunobiological parameters and consequently, we could not find any specific pattern 
that could explain the different clinical phenotypes. Based on our results and earlier 
reported data we propose an explanatory model for the development of different clinical 
phenotypes in RAGD patients with similar mutations (Figure 5). If RAGD results in reduced 
V(D)J recombination, low B- and T-cell numbers are produced with some (compensatory) 
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clonal expansion. This expansion might increase the B- and T-cell numbers to even normal 
levels, but does not change the limited repertoire. In such limited repertoire the selection 
against auto-reactive cells is impaired. Provided the deficient immune system is not acti-
vated, RAGD patients are asymptomatic. However, the inevitably moment that the immune 
system will be activated by potentially a wide range of different (auto)antigens, the type of 
antigen and activated effector lymphocyte will have important consequences for the clin-
ical phenotype. In addition, the impaired negative and positive selection of thymic lym-
phocytes and a reduced number of regulatory T cells might result in autoimmunity when 

Figure 5. Model for development of clinical phenotype in RAG deficiency. RAG deficiency results in reduced 

V(D)J recombination leading to fewer B and T cells with a limited repertoire. In an attempt to compensate for the 

low numbers the B and T cells start to proliferate, but the repertoire remains limited and imbalanced, so that the 

selection and immune regulation are impaired. Most likely the type of antigenic stimulation together with the 

incomplete and imbalanced repertoire that has been developed will impact on the eventual clinical phenotype 

with immune dysregulation problems. 

RAG deficiency

Immune receptor 
repertoire diversity

Compensatory proliferation 
of immune cells

Selection and immune regulation 
of immune cells

Triggering of 
immune system

antigens from outside → ← autoantigens

colonization infections autoimmunity

Heterogeneity in clinical presentation

↑

↓

B and T cell production 

M
odifier genes



Chapter 3.2

100

the patients are exposed to auto-antigens. This phenomenon may occur at any early stage, 
even in utero, illustrated by the fact that patients with OS may have severe erythroderma 
already at birth, which is unlikely to be triggered by infections. Additionally, directly after 
birth the skin and gastrointestinal tract become colonized by commensal bacteria, which 
may trigger chronic diarrhea seen in most RAGD patients. Key steps in the development of 
a certain clinical phenotype will be the B- and T-cell repertoire, the type of (auto)antigen 
exposure, the specificity of the antigen receptors and the timing, the cell type involved in 
the immune activation and the potential influence of genetic variations in modifier genes. 
Variability in any of these factors might eventually lead to different clinical phenotypes 
despite similar genetic defect.

In conclusion, this study clearly shows that the type of RAG1 mutation and the level of 
residual RAG1 recombinase activity are not the only determinants predicting the clinical 
phenotype, as previously assumed. The clinical outcome of an individual RAGD patient, 
depends on a complex interplay between the (limited) immune receptor repertoire, (auto)
antigen exposure, the specificity of antigen receptors and the timing and cell type involved 
in the immune activation. Therefore, the clinical outcome of RAGD patients with similar 
mutations is extremely difficult to predict.
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ABSTRACT

Artemis deficiency is known to result in classical T-B- severe com-
bined in immunodeficiency (SCID) in case of Artemis null mutations 
or Omenn’s syndrome in case of hypomorphic mutations in the 
Artemis gene. We describe two unrelated patients with a relatively 
mild clinical T-B-SCID phenotype, caused by different homozygous 
Artemis splice-site mutations. The splice-site mutations concern 
either  dysfunction of a 5’ splice-site or an intronic point mutation 
creating a novel 3’ splice-site, resulting in mutated Artemis protein 
with residual activity or low levels of wild type Artemis transcripts. 
During the first 10 years of life the patients suffered from recurrent 
infections necessitating antibiotic prophylaxis and intravenous 
immunoglobulins. Both mutations resulted in increased ionizing 
radiation sensitivity and insufficient V(D)J recombination, causing 
B-lymphopenia and exhaustion of the naïve T-cell compartment. 
The patient with the novel 3’ splice-site had progressive granulo-
matous skin lesions, which disappeared after stem cell transplan-
tation (SCT). We showed that an alternative approach to SCT can in 
principle be used in this case: an antisense oligonucleotide (AON) 
covering the intronic mutation restored wild type Artemis transcript 
levels and NHEJ activity in the patient fibroblasts.
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INTRODUCTION

Severe combined immunodeficiency (SCID) is an inherited primary immunode-
ficiency. Most SCID patients suffer within months after birth from severe opportu-
nistic infections, chronic diarrhea, and failure to thrive. Antimicrobial prophylaxis 
and immunoglobulin substitution are mandatory in clinical management but 
curative treatment can only be obtained by allogeneic stem cell transplantation 
(SCT) and, in an experimental setting, gene therapy.1-3 Immunologically, SCID is 
characterized by absence or dysfunction of T-lymphocytes. SCID patients can be 
divided into two main categories: those with T-B+ SCID (70%), generally result-
ing from a T cell signaling defect, and those with T-B- SCID (30%), mostly due to 
a defect in recombination of the variable (V), diversity (D) and joining (J) gene 
segments.4, 5

Differentiation of lymphoid precursors to mature B- and T-lymphocytes requires 
the rearrangement and expression of genes encoding the immunoglobulins (Ig) 
or T cell receptors. V(D)J gene segments are recombined to form a functional V(D)
J exon. V(D)J recombination is initiated by the lymphoid specific recombination 
activating gene 1 (RAG1) and 2 (RAG2) proteins. These proteins introduce double 
strand breaks (DSBs) in the DNA near the recombination signal sequences (RSSs) 
that flank the V, D and J segments.6, 7 Subsequently, the DNA DSBs are repaired by 
the non-homologous end-joining pathway (NHEJ). The DNA DSBs are recognized 
by the DNA-dependent protein kinase (DNA-PK) complex, which is composed of 
the DNA-PK catalytic subunit (DNA-PKcs) and the KU70/KU80 heterodimer that 
directly binds to the DNA ends.8 Subsequently, the Artemis protein is phosphor-
ylated by DNA-PKcs, and opens the hairpin-sealed coding ends.9, 10 The coding 
ends are then further processed by inclusion of palindromic (P) nucleotides due to 
asymmetric hairpin opening, loss of nucleotides due to exonuclease activity, and 
addition of non-templated (N) nucleotides by terminal deoxynucleotidyl trans-
ferase (TdT).11 In the final step, the coding ends are ligated by the DNA ligase IV 
(LIG4)/XRCC4 complex in conjunction with XLF(Cernunnos).12, 13

In approximately 70% of T-B-SCID patients mutations are found in the RAG1 
and RAG2 genes.14 The majority of the remaining patients show hypersensitivity 
for ionizing radiation (IR), suggesting a defect in the NHEJ pathway of DNA DSB 
repair.15 Mutations in the Artemis, LIG4 and DNA-PKcs genes have been identified 
in these patients.14, 16-19 Furthermore, mutations in the XLF gene have been found 
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in radiosensitive patients with growth retardation, microcephaly, and immunode-
ficiency due to profound T- and B-cell lymphocytopenia.13

Not all mutations in V(D)J recombination genes give rise to the classical SCID 
phenotype. Hypomorphic mutations in the RAG1, RAG2 and Artemis genes can 
result in the Omenn’s syndrome (OS).20, 21 Similar to SCID patients, OS patients 
present in infancy with viral or fungal pneumonitis, chronic diarrhea and failure to 
thrive. Unlike classical SCID, patients with OS have severe erythroderma, increased 
IgE levels and eosinophilia.22, 23 Hypomorphic RAG1 and RAG2 mutations have also 
been reported to cause primary immunodeficiency disease with granulomatous 
skin lesions.24 Here we present two SCID patients with different types of Artemis 
splicing defects, both leading to an atypical Artemis-SCID phenotype, character-
ized by a later onset and milder disease course and in one patient severe localized 
granulomatous skin lesions. 

RESULTS 

Case report patient 1
Patient 1 (ID189) is the second daughter of healthy, consanguineous, parents of 

Turkish descent. She presented at the age of five with two episodes of pneumonia, 
of which the last one was caused by Influenza A. Adenotomy was performed due 
to frequent upper respiratory tract infections. She experienced chickenpox during 
infancy with a normal clinical course. The patient was generally in a good clinical 
condition, with a good psychomotor development and normal growth. The family 
history revealed one male cousin who had died in Turkey at the age of 15 years 
from a hematological malignancy. He had been diagnosed with common variable 
immunodeficiency, suffered from recurrent infections and had been on intrave-
nous immunoglobulin (IVIG) replacement therapy. Another female cousin had 
been on IVIG therapy for some years as a child, but had apparently grown up to be 
a healthy adult. Physical examinations showed a healthy girl with no dysmorphic 
features, no lymphadenopathy or splenomegaly, remarkably small tonsils and dif-
fuse pulmonary wheezing and rhonchus. Antibody responses to pneumococcal 
polysaccharides and tetanus vaccinations were normal. PCR for Epstein Barr virus 
(EBV) was positive with incomplete seroconversion (EBV-VCA IgM neg; EBV-VCA-
IgG pos; anti-EBNA neg). The antibody titers after previous vaccination against 
mumps, measles and rubella were in the normal range, IgM anti-Varicella was neg-
ative, IgG was positive. Antibodies against CMV and PCR for CMV sequences were 
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negative. A high resolution computed tomography scan showed minimal brochi-
ectasis with a normal pulmonary function test. On co-trimoxazole prophylaxis, the 
next two years were uneventful, although signs of mild chronic pulmonary inflam-
mation persisted. Because of an increase in respiratory complaints eventually IVIG 
was started, which led to a marked clinical improvement. However, at the age of 9 
years, she suffered again from frequent respiratory tract infections and increased 
exercise intolerance. Laboratory tests showed a progressive decrease of B cells and 
naïve T lymphocytes. SCT was performed at 11 years of age using a matched-un-
related donor and a conditioning regimen containing busulfan, fludarabin and 
alemtuzumab.

Case report patient 2
This female patient (ID153) of Turkish descent, born from consanguineous 

parents, presented at the age of 4 years with a history of recurrent upper and 
lower respiratory tract infections requiring treatment with oral antibiotics. Two 
years later she developed a severe hypogammaglobulinemia and IVIG substi-
tution was initiated. After start of IVIG, infection episodes became scarce and 
mild. Notably, although a primary EBV infection was experienced without clinical 
manifestations, recurrent EBV reactivations, measured by plasma EBV-DNA spe-
cific quantitative PCR, could be documented from the age of 7 years onwards. In 
addition, the patient had an uncomplicated course of chickenpox before the age 
of 4 years and spontaneously recovered from Influenza A infection at the age of 
9 years. Specific antibodies against Varicella Zoster Virus and H. influenzae (after 
vaccination in infancy) could be detected. At the age of 5 years she developed skin 
lesions on the back of her left hand, which steadily progressed into multiple iso-
lated and subsequently confluent lesions on the left hand and lower arm (Figure 
1). Histological analyses showed granulomatous inflammation (reported before 
25). Despite extensive and repetitive pathological, microbiological and molecular 
evaluations, no mycobacterial or fungal pathogens or other infectious agents 
could be detected. Furthermore, multiple episodes of empirical treatment with 
tuberculostatic agents or intralesional corticosteroid injections did not affect the 
progressive behaviour of the lesions. Based on the T- and B-lymphopenia together 
with the progressive granulomatous skin lesions, the decision was made to treat 
the patient with allogeneic SCT. After conditioning with busulfan, cyclophospha-
mide and ATG (thymoglobulin), a 6/6 allele matched unrelated cord blood was 
infused at the patient’s age of 10 years. SCT was considered successful as all blood 
myeloid and lymphoid cells were from donor origin. Functional immune reconsti-
tution was observed, documented by recovery of naïve T cells and normal B cell 
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counts, clearance of reactivated EBV, CMV and adenovirus, and regression of the 
granulomatous skin lesions (Figure 1). 

Immunological characteristics
Immunological evaluation in patients 1 and 2 revealed decreased numbers of T 

cells and B cells, but normal levels of NK cells (Table 1). Within the T cell subsets the 
numbers of memory and activated T cells were normal, while the naïve (CD45RA+) 
T cells were low. Apparently, the history of both patients regarding vaccination 
responses and dealing with viral infections indicates that the T cells present are 
able to support humoral immune responses and to perform cellular immune 
functions. The serum immunoglobulin levels in patient 1 were normal, except for 
the decrease in IgG2 and IgG4 levels (Table 1). In patient 2 the immunoglobulin 
levels were normal at 4 years of age, but two years later she developed a severe 

Figure 1. Granulomatous skin lesions. The left lower arm of patient 2 showing granulomatous skin lesions 
before SCT at the age of 8 years (A) and the regression of the granulomatous skin lesions 1 year after SCT at the 
age of 11 years (B). 
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hypogammaglobulinemia (Table 1). We analyzed if the B cells could undergo 
somatic hypermutation (SHM) for affinity maturation of the antigen receptor, by 
determining the mutation frequency in IgG and IgA transcripts. The overall muta-
tion frequency in patient 1 at 5 years of age was normal, while in patient 2 at 8 
years of age the mutation frequency was significantly lower than in age-matched 
healthy controls (Figure 2). In both patients, the pattern of SHM was suggestive for 
the potential to produce an antigen-selected B-cell receptor. Despite the low num-
bers of B and T cells, the infectious episodes in the patients were limited, especially 
after initiation of IVIG, indicating that the immune system is only partially impaired.

Precursor B-cell differentiation block and increased ionizing radiation sensitivity 
Both patients showed a combined immunodeficiency with reduced numbers 

of peripheral B lymphocytes and naïve T lymphocytes, which is suggestive for a 
general differentiation defect of cells belonging to the adaptive immune system. 
Therefore, precursor B-cell differentiation was studied in bone marrow (BM) sam-
ples from both patients by assessing the relative distribution of pro-B, pre-B-I, pre-
B-II and immature B cells. In healthy children, pro-B and pre-B-I cells constitute 

Table 1. Lymphocyte subsets and immunoglobulin (sub)classes in peripheral blood of patients 1 and 2. 

Leukocyte subsets (109/L) phenotype patient 1
10 yrs

patient 2
8 yrs

healthy controls
(5-10yrs) 53

Lymphocytes 0.6 1.1 1.1-5.9
T cells CD3+ 0.3 0.66 0.7-4.2

Total CD4+ 0.14 0.15 0.3-2.0
CD4+CD45RA+ 0.02 0.01 0.3-1.2
CD4+CD45RO+ 0.12 0.14 0.2-0.6
Total CD8+ 0.15 0.28 0.3-1.8
CD8+CD45RA+ 0.07 0.12 0.2-0.8
CD8+CD45RO+ 0.12 0.18 0.04-0.3
CD3+TCRγδ+ 0.02 0.34 < 0.2 

B cells CD19+ 0.02 0.10 0.2-1.6
NK cells CD16+CD56+ 0.09 0.21 0.09-0.9
Immunoglobulin 
(sub) classes (g/L)

patient 1
5 yrs

patient 2
6 yrs

healthy controls
(2-7 yrs) 54

IgG1 8.0 2.11 3.5-10.0
IgG2 0.38 0.44 0.6-3.5
IgG3 0.31 0.04 0.14-1.3
IgG4 <0.01 <0.05 <0.3-1.2
IgM 1.34 0.25 0.5-1.8
IgA 0.72 0.08 0.1-1.6
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20-25% of the precursor B cells (Figure 3A). Patients with a complete V(D)J recom-
bination defect caused by mutations in RAG1/RAG2 or Artemis only have pro-B and 
pre-B-I cells and completely lack pre-B-II and immature B cells (Figure 3A). In both 
patients, the pro-B and pre-B-I cell fractions represented approximately 85% of 
the precursor B-cells. Analysis of a second bone marrow sample of patient 2 two 
years later showed an identical pattern, which indicates that the composition of 
the precursor B cell compartment was stable over time. This composition points 
towards an incomplete block in precursor B-cell differentiation before the cyto-
plasmic Igm+ pre-B-II cell stage (Figure 3A), which is characteristic for an incom-
plete V(D)J recombination defect. Sequence analysis of RAG1 and RAG2 revealed 
no mutations. Subsequently, a clonogenic survival assay was performed to deter-
mine whether the patients’ fibroblasts, cultured from a skin biopsy were radio-
sensitive. Fibroblasts from both patients showed increased sensitivity to ionizing 
radiation (Figure 3B). In contrast PBMNC of patient 2 did not have increased num-
bers of karyotype abnormalities after low doses of ionizing radiation. Therefore, 
DSB repair was studied in more detail in patient 2 by counting g-H2AX foci, a DSB 
marker, at various time points after irradiation. The g-H2AX foci disappeared with 
delayed kinetics in patient 2 and Artemis-deficient fibroblasts (Figure 3C). This 
resulted in 15% residual foci after 72 hours, suggesting that a comparable level of 

Figure 2. Analysis of somatic hypermutations. Frequencies of Somatic Hypermutations (SHM) in the VH-Cg 
and the VH-Ca transcripts were normal in patient 1 and significantly reduced in patient 2 compared to two age-
matched controls. ** denotes p<0.01.
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unrepairable DSBs remained in patient 2 fibroblasts and in Artemis-deficient cells. 
These observations were indicative for a defect in DSB repair by NHEJ. 

Hypomorphic mutations in Artemis
Artemis is the first candidate gene for NHEJ defects. Therefore, the coding exons 

and splice-sites of the Artemis gene were sequenced. Patient 1 had a homozy-
gous mutation in the 5’ splice-site of exon 6 (c.464+1G>A) (Figure 4A). The same 
mutation was recently described in a patient with an atypical Artemis deficiency 
with chronic inflammatory bowel disease.26 This splice-site mutation leads to 

Figure 3. Composition precursor B-cell compartment in bone marrow and DNA DSB repair characteristics. 
Composition of the precursor B-cell compartment in healthy controls (n=8), patient 1 (5 years) and patient 2 
(7 and 9 years), RAG-deficient (n=17) and Artemis-deficient (n=7) patients. Patients 1 and 2 had an incomplete 
block in precursor B-cell differentiation (A). Clonogenic survival assay showed increased sensitivity to ionizing 
radiation of fibroblasts of patient 1 and 2 similar as the Artemis-deficient patient. (B). The numbers of γ-H2AX 
foci per nucleus (average of 40 cells) after radiation with 1 Gy disappeared with delayed kinetics in patient 2 and 
Artemis-deficient (Artemis-6).27  fibroblasts compared to control (VH10) fibroblasts (C). Error bars represent the 
SD from 3 independent experiments.
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alternative splicing yielding two aberrant Artemis transcripts. In the first transcript 
(Artemis ex5-ex7) exon 6 is skipped, leading to an in-frame deletion of 34 amino 
acids of the β–Lact domain (p.M121_R155delinsI). The β–Lact domain is essential 
for Artemis activity since mutants, lacking parts of the β–Lact domain, could not 
complement the Artemis defect.27 In the second transcript (Artemis ex6+18nt) a 
cryptic 5’ splice-site 18 nucleotides downstream of exon 6 was used resulting in 
the in-frame insertion of six amino acids (p.R155_V156insYWGSYR) (Figure 4A). The 
6 amino acids are inserted exactly between the β–Lact and the β–CASP domains, 
leaving the β–Lact domain intact. Rohr et al. showed that the Artemis protein car-
rying this insertion of 6 amino acids retained residual activity 26 

In patient 2, no mutations were found in the coding exons and splice-sites of 
the Artemis gene. However, polymorphic short tandem repeat markers up- and 
downstream of the Artemis gene showed that this locus was homozygous in the 
patient. Since the patient’s parents are consanguineous, Artemis was still consid-
ered a candidate gene. Therefore Artemis transcripts were sequenced. This revealed 
a 190-bp insertion (cryptic exon) between exons 11 and 12. Genomic sequence 
alignment showed that the inserted cryptic exon was part of Artemis intron 11, 
located ~2.0 kb downstream of exon 11 (Figure 4A). Sequence analysis of this part 
of the intron and the flanking regions in genomic DNA revealed a homozygous 
nucleotide substitution (c.972+1997G>C), which introduced a new 3’ splice-site 
consensus sequence. Besides this newly formed 3’ splice-site a pre-existing cryptic 
5’ splice-site was used. At the protein level, a stretch of 61 amino acids was inserted 
after glutamate 324 followed by a stop codon (p.Glu324ins61X). Interestingly, the 

Figure 4. Artemis mutations and expression of WT and patient-specific Artemis transcripts. Schematic 
representation of the positions of the splice-site mutations in the Artemis gene and the WT and patient-specific 
transcripts that are present in patient 1 (left panel) and patient 2 (right panel). The relative Artemis transcript 
expression was measured by real-time quantitative PCR (RQ-PCR), locations of the primers used in the RQ-PCRs 
are indicated. For primer and probe sequences see Table 2 (A). Relative Artemis expression measured in fibroblasts 
of control (C5RO), patient 1 or 2, an Artemis-deficient patient (Artemis-5) 27 lacking exon 1 till 3, a patient 
expressing mutant Artemis (Artemis-8) 27 and a RAG-deficient patient (RAG-SCID-12). WT Artemis transcripts were 
not expressed in fibroblasts of patient 1. For detection of WT Artemis transcripts in patient 1 a forward primer 
overlapping the exon 6-7 border (Artemis ex6ex7 F) in combination with a reverse primer in exon 8 (Artemis ex8R) 
and the probe TR Artemis ex7ex8 (B).  WT Artemis transcripts were expressed at low level in fibroblasts of patient 
2 (C). T, B and NK cells from patient 1 only expressed patient-specific Artemis transcripts (D). In patient 2 the WT 
Artemis transcripts expression was higher in T, B and NK cells compared to fibroblasts (E). The expression levels 
of the patient-specific Artemis transcripts were slightly higher in mature B cells (CD19+IgD+IgM+) compared to 
precursor B cells (CD19+IgD-) in patient 1 (F), but in patient 2 the WT Artemis expression in mature B cells was 
much higher compared to precursor B cells. 
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cryptic 190bp exon corresponds to the right arm of an Alu element in the anti-
sense direction (Alu consensus position 90-279 28) and the cryptic 5’ splice-site cor-
responds with Alu consensus position 89. Besides the aberrant Artemis transcripts, 
correctly spliced wild type (WT) Artemis transcripts were present.

Differential expression of Artemis transcripts in fibroblasts, precursor B cells and mature B 
cells

To determine the levels of WT and patient-specific aberrant transcripts in dif-
ferent cell types, real time quantitative (RQ) PCR was performed. The location and 
sequences of the primers and probes used to measure the different transcripts 
are indicated in Figure 4A and Table 2. Fibroblasts of patient 1 only expressed 
patient-specific alternative Artemis transcripts, but no WT Artemis transcripts 
(Figure 4B). None of the patient-specific Artemis transcripts were expressed in 
control fibroblasts or in fibroblasts of Artemis-deficient or RAG-deficient SCID 
patients. Fibroblasts of patient 2 expressed both patient-specific Artemis tran-
scripts (Artemis ex11+190nt) and WT Artemis transcripts, although WT expression 
was much lower (>300 fold decrease) than in control fibroblasts (Figure 4C). The 
respective absence or strong decrease in WT Artemis transcripts in patient 1 and 2 
explains the sensitivity to ionizing radiation of the fibroblasts. WT Artemis expres-
sion was also absent in sorted T, B and NK cells of patient 1 (Figure 4D). 

Table 2. Sequences of primers and probes used for real time quantitative PCR.

primer name primer sequences 

Artemis exon 10 F GGAGAAAGGAGCAGAAAAACAAA

Artemis exon 12R TGGATATGCGTTCACAGGACA

Artemis patient 2 R GGCAATAAAGCGAGACTCCAT

Artemis ex6ex7 F ACTCCGGGGGCAGAGTCA

Patient 1 ex6nt18 F ACTCCGGGGGCAGGTACT

Patient 2 ex5ex7 F ACTGTCCGGGATCAGTTATAGTCA

Artemis ex8R GCTTCGGACCAGCTCTAAGACT

probe name probe sequences 

TR Art exon 11 AGCTCTGTATGAACTCTCTCCAGTCCTCACAA

TR Artemis ex7ex8 ACACTCCTCCCGACTTGGAATTTGGTAAAA

Sequences are given in the 5’ to 3’ order.
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The expression of WT Artemis in the sorted lymphocyte subsets of patient 2 was 
only 10-fold decreased compared to control subsets (Figure 4E). This decrease was 
much less than the >300 fold decrease of WT Artemis transcripts in fibroblasts, and 
could explain why the fibroblasts of patient 2 were sensitive for ionizing radiation 
while the  PBMCs of patient 2 were not. This difference in WT Artemis expression 
could not be explained by reversion mutations in T, B and NK cells, since these were 
excluded by sequence analysis of sorted fractions (data not shown). The 10-fold 
decrease of WT Artemis in PBMCs in patient 2 was unexpected, since precursor 
B cells in bone marrow had a clear V(D)J recombination defect due to improper 
or insufficient NHEJ activity. Therefore, precursor B cells (pre-B-I, pre-B-II and 
immature B cells) and mature B cells were sorted from bone marrow to determine 
Artemis transcript levels. The expression level of WT Artemis transcripts in precursor 
B cells was approximately 40-fold lower than in mature B cells derived from patient 
2 (Figure 4G). The expression levels of both mutant Artemis transcripts in precursor 
B cells in patient 1 were only slightly lower compared to mature B cells (Figure 4F). 
In summary, the difference in sensitivity to ionizing radiation between fibroblasts 
and PBMNC can be explained by the differential expression of Artemis transcripts 
in fibroblasts versus lymphocyte populations and differences in expression in B 
cell subsets of various differentiation stages.

Effect of the Artemis splice-site mutations on V(D)J recombination
The two patients had different types of Artemis splice-site mutations. Patient 1 

had a homozygous splice-site mutation resulting in expression of mutant Artemis 
protein with residual activity, whereas patient 2 had a mutation causing severely 
reduced expression of WT Artemis transcripts. To understand the effects of the dif-
ferent hypomorphic Artemis mutations on its function, we studied Artemis-related 
processes during B-cell differentiation. Artemis is involved in V(D)J recombination, 
which takes place during precursor B-cell differentiation. Both mutations had 
effect on V(D)J recombination given the block in precursor B-cell differentiation 
in bone marrow (Figure 3A). Therefore, we studied V(D)J recombination in more 
detail by analyzing the coding joints of incomplete IGH gene rearrangements 
(i.e. DH-JH) in DNA isolated from BM mononuclear cells. Both Artemis- and DNA-
PKcs-deficient patients have a defect in DNA hairpin opening and show increased 
P-nucleotides in DH-JH junctions (Table 3).18, 19, 27 In coding joints of both patients 
the average number of palindromic (P-) nucleotides per junction was significantly 
increased to 1.2 in patient 1, and 2.0 in patient 2 compared to healthy controls (0.3 
P-nucleotides per junction) (Table 3). These long stretches of P-nucleotide resulted 
in significantly less deletions compared to controls. The number of non-templated 
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(N-) nucleotides was not significantly different from controls. These results show 
that mutant Artemis with residual activity in patient 1 or low levels of WT Artemis 
in patient 2 resulted in defective hairpin opening. 

Effect of the Artemis mutations on CSR
In mature B cells, class switch recombination (CSR) allows previously rearranged 

Ig heavy-chain V domains to be expressed in association with a different constant 
(C) region, leading to production of different isotypes.29 Artemis has recently been 
shown to be involved in CSR 23. Switch (S) junctions resulting from in vivo (CSR) 
events, were cloned and sequenced from B cells of patient 1 and 2. Unique Sm-Sa1 
sequences, representing independent CSR events, were subsequently compared 
with Sm and Sa junctions (n=154) from healthy adult controls.30, 31 Previously 
described Artemis-deficient patients showed a strong dependence on long micro-
homologies and a complete lack of “direct end-joining”.23  The average length of 
length of microhomology, defined as successive nucleotides that were shared by 
both the Sm and Sa regions at the CSR junctions, was not significantly different 
from control in patient 1 (3.8± 5.2 bp vs. 1.8 ± 3.2 bp in controls) and in patient 2 
(2.0 ± 2.7 bp vs. 1.8 ± 3.2 bp in controls). Furthermore, the pattern of Sm-Sa junc-
tions was indistinguishable from that in controls (Table 4). In summary, expression 
of mutated Artemis protein with residual enzymatic activity or reduced level of WT 
Artemis had no impact on CSR.

Table 3. DH-JH junction characteristics of patients 1 and 2 compared with healthy controls, Artemis-
deficient patients and a DNA-PKcs patient. 

Patient DH(del) P-nucleotides N-nucleotides P-nucleotides (del)JH total total del

(no. of clones)           P-nucleotides  

Patient 1(25) 3.1 0.7 6.2 0.5 5.1 1.2** 8.2**

Patient 2 (27) 3.9 0.4 4.2 1.6 4.2 2.0*** 8.1**

Control (91) 4.5 0.2 9.2 0.1 6.7 0.3 11.2

Artemis (53)27 1.9 3.0 4.0 3.8 1.1 6.8*** 3.0***

DNA-PKcs (23)19 2.3 1.0 4.2 2.0 4.5 3.0*** 6.8***

Values represent average numbers nucleotide per junctions. DH(del), average number of nucleotides deleted 
from the 3’ end of the DH gene segment per coding joint given as a negative value; JH(del) average number of 
nucleotides deleted from the 5’ end of the JH gene segment per coding joint given as a negative value; Total del, 
average of total number of deleted nucleotides per coding junction. Statistical analysis was performed using 
unpaired T-test. * p<0.05; ** p<0.01; ***p<0.001. 
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In vitro restoration of the Artemis splice defect by antisense oligonucleotide (AON) exon 
skipping

The defect in patient 2 was caused by a rare intronic mutation that creates a 
new splice-site leading to exonisation of 190 nucleotides of intronic sequence. We 
attempted to correct this defect by skipping this cryptic exon. For this purpose, we 
used antisense oligonucleotides (AONs) to modulate splicing by hiding specific 
sites essential for exon inclusion from the splicing machinery, without modifying 
the genome.32 The AONs used to modulate splicing are different from the oligo-
nucleotides that are used to achieve down regulation of transcripts. The AONs 
should not activate RNase H, which would degrade the pre-mRNA, and should 
be able to compete with splicing factors for access to the pre-mRNA. We have 
applied an AON with 2’-O-methyl ribose groups and a full-length phosphorothio-
ate backbone. This AON is RNase H inactive and has a higher affinity for the target 
sequence than the 2’-deoxy counterpart. For patient 2 an AON covering the newly 
formed 3’ splice-site in intron 11 of the Artemis gene was designed (Figure 5A). 
Fibroblasts of patient 2 and a healthy control were transfected with a 5’- fluorescein  
labeled AON. After 24 and 48 hours WT and mutant (Artemis ex11+190nt) Artemis 
transcript levels were measured by RQ-PCR. The levels of WT Artemis transcripts 
in patient 2 were already restored to normal levels within 24 hours after transfec-
tion (Figure 5B). In addition, mutant Artemis expression was approximately 10-fold 
decreased. No effects of AON transfection were seen on Artemis expression levels 
in control fibroblasts. Moreover, in the clonogenic survival assay we demonstrated 
that AON treatment also partially suppressed the sensitivity to ionizing radiation 

Table 4. Characterization of Sμ-Sα junctionsa.

Perfectly matched short homology Total No. of 
S fragments

0bp 1-3bp 4-6bp 7-9bp ≥10bp
1-bp insertions No insertions

Patient 1 3 (17%) 2 (11%) 7 (39%) 3 (17%) 1 (6%) 2 (11%) 18
Patient 2 5 (22%) 7 (31%) 4 (17%) 6 (35%) 2 (9%) 0 (0%) 23
Artemis -/- 6 (11%)* 0 (0%)* 10 (19%) 8 (15%) 9 (17%) 21 (39%)*** 54
Controls 
(1-6 yr)

34 (25%) 24 (18%) 25 (18%) 21 (15%) 11 (8%) 22 (16%) 137

Controls 
(adults)

39 (25%) 28 (18%) 56 (36%) 15 (10%) 11 (7%) 5 (3%) 154

a). The switch junctions from Artemis-deficient patients were compared with those from age matched controls 
(1-6 years of age), whereas the switch junctions from patient 1 and 2 were compared with adult controls. 
Statistically significant differences are bolded. * p<0.05; ** p<0.01; ***p<0.001. 
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Figure 5. AON partially suppresses the radiation sensitivity in patient 2 fibroblasts. Location of the 
antisense oligonucleotide covering the G>C nucleotide substitution. The dotted lines represent the splice-sites 
of the cryptic exon (A). WT Artemis transcripts levels in fibroblasts from patient 2 significantly increased 24 hours 
after transfection with 200 nmol AON compared to transfection without AON, while the patient-specific Artemis 
transcripts significantly decreased. The WT Artemis transcript level did not change in control (C5RO) fibroblasts 
after tansfection with 200 nmol AON (B). Sensitivity for ionizing radiation was partially supressed in fibroblasts 
of patients 2 after transfection with 100 nmol AON compared to fibroblasts transfected with 0 nmol AON. 
Transfecting the control (C5RO) fibroblasts did not result in a different sensitivity for ionizing radiation. Error bars 
represent the SD from 3 independent experiments. * denotes p<0.05. (nd) not detectable.
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in the patient fibroblasts (Figure 5C). In conclusion, Artemis splice-site defect could 
be restored by AON mediated cryptic exon skipping.

DISCUSSION

In this study we described two unrelated girls suffering from recurrent infec-
tions during the first 10 years of their lives. The infectious problems associated 
with decreased B cell and naïve T cell counts in combination with reduced serum 
Ig isotype and IgG subclass levels necessitated IVIG therapy. They had normal 
psychomotor development and growth. Patient 2 suffered from severe localized 
granulomatous skin lesions. The clinical presentation of both patients was caused 
by two different types of Artemis splice mutations resulting in residual enzymatic 
activity in one patient and reduced level of WT activity in the other patient 

Artemis deficiency normally causes T-B- SCID with opportunistic infections 
already during the first months of life. Although both patients had an Artemis 
defect, the infectious episodes were limited with a relatively mild course, espe-
cially after initiation of IVIG. Apparently, the T cells present were able to induce 
cellular immune responses and to support humoral immunity. However, due to a 
low numbers of B cells, naïve T cells and a potentially limited Ig and TR repertoire, 
clonal selection will be less optimal giving rise to dysregulation in the immune 
system. This immune dysregulation might underlie the granulomatous skin lesions 
in patient 2. 

Immunodeficiency disease with granulomas has been described previously 
in patients with hypomorphic mutations in the RAG1 or RAG2 genes.24, 33 Similar 
to patient 2, repeated tests revealed no micro-organisms in the granulomas of 
these RAG mutated patients, suggesting that the granulomas were secondary to 
the impaired immune regulation. The granulomatous skin lesions largely resolved 
after transplantation and reconstitution of the donor immune system in patient 2, 
comparable to the patients with hypomorphic RAG mutations.24 Apparently, V(D)J 
recombination defects with residual recombination activity can give rise to a vari-
ety of atypical clinical presentations.33

One (c.464+1G>A) of the two Artemis mutations was previously identified in a 
patient with late onset immunodeficiency and inflammatory bowel disease that 
presented at the age of 9 months.26 The same Artemis genotype resulted in a differ-
ent clinical phenotype; this might be due to age at the first encounter of infections, 
genetic background (e.g. modifier genes or epigenetic factors) or environmental 
factors.33 
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The second mutation (c.972+1997G>C), is a unique homozygous mutation in 
intron 11 of the Artemis gene resulting in exonization of 190 nucleotides from an 
intronic sequence in Artemis transcripts. The mutation corresponds to a nucleo-
tide substitution at position 279 of an Alu consensus sequence.34 Interestingly, it 
has been shown that mutating this specific guanine nucleotide to any other nucle-
otide, as is the case in patient 2, results in exonization of the Alu sequence.34 The 
Artemis gene has a higher transposable element content (45%) than the average of 
the human genome (37%).35 The most abundant transposable elements found in 
Artemis are Alu short interspersed elements (23% of total gene sequence), making 
Artemis prone to exonization of Alu elements in mRNA during splicing.

As expected from the V(D)J recombination defect, the expression level of 
mutant and WT Artemis transcripts in patient 1 and 2 was strongly reduced in pre-
cursor B cells and fibroblasts. However, mature B cells had only mildly reduced 
levels of Artemis transcripts. The different splicing patterns between fibroblasts, 
precursor B cells, mature B cells, T cells and NK cells might be caused by cell type 
and tissue-specific patterns of alternative splicing 36, 37. However, differences in the 
various B-cell subsets might also reflect positive selection of a limited number of 
precursor B-cell clones that had a higher Artemis expression and were therefore 
able to generate a functional BCR and differentiate into mature B cells.

To dissect the functional impact of the hypomorphic Artemis mutations, we 
studied Artemis-related processes during B-cell development. In precursor B cells 
the reduced Artemis activity or low level of WT Artemis protein resulted in inef-
ficient V(D)J recombination. In mature B cells, Artemis is involved in class switch 
recombination.23, 38 Artemis-deficiency results in CSR characterized by strong 
dependence of long microhomologies in the switch junctions and a complete lack 
of “direct end-joining”. We showed that reduced levels of WT Artemis and residual 
Artemis activity resulted in normal switch junction formation. 

Current treatments for SCID patients include SCT 39 and gene therapy for some 
conditions.40 However, SCT is still associated with significant treatment related 
morbidity and mortality, especially when material from unrelated and HLA mis-
matched donors is used.41 Gene therapy is currently limited by technical difficul-
ties and the risk of side effects.42 New approaches for treatment of primary immu-
nodeficiencies have been described, including the use of antisense morpholino 
oligonucleotides.43 In this study we used 2’-O-methyl modified AONs to restore 
the expression of WT Artemis transcripts, without modifying the genome. AON 
treatment has also been successfully used in gene correction therapy to restore 
the reading frame in Duchenne muscular dystrophy patients.44 Our in vitro results 
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showed the potential for AON treatment as therapeutical approach for patients 
with specific splice defects. 

In conclusion, patients with an Artemis defect can present as an atypical SCID 
with granulomatous skin lesions in the absence of life-threatening infections. 
Therefore, a NHEJ defect needs also to be considered in patients having reduced 
number of naïve T cells and B cells in the circulation who presented with milder 
clinical symptoms than classical T-B- SCID. Furthermore, this study illustrates that 
AON treatment is a promising approach to treat patients with primary immunode-
ficiencies and other diseases caused by intronic splice-site mutations.

MATERIALS AND METHODS

Cell samples and flow cytometric immunophenotyping
Peripheral blood, bone marrow and a skin biopsy were obtained with informed 

consent and according to the guidelines of the local Medical Ethics Committees. 
Flow cytometric analysis of peripheral blood and bone marrow was performed as 
previously described.16, 18, 45 

Cell lines and tissue culture
Primary fibroblasts were cultured from a skin biopsy of patient 1 and 2. 

Furthermore, fibroblasts from controls (C5RO and VH10), Artemis-deficient 
patients (Artemis-5 and Artemis-6; both having genomic deletions of exon 1-3 
27), a patient with mutant Artemis (Artemis-8 (c.1391_1395delGAATC)) and a RAG-
deficient patient (RAG-SCID12) (c.1782C>A)) were used. Fibroblasts were cultured 
in DMEM (BioWhittaker, Walkersville, MD), supplemented with 10% FCS, penicillin 
(100 U/ml), and streptomycin (100 μg/ml).

Radiation sensitivity assays.
Clonogenic survival assay and the X-ray-induced gH2AX foci assay were per-

formed as previously described. 18, 19, 27

Sequencing and STR marker analysis
Sequence analysis of genes involved in V(D)J recombination and NHEJ was per-

formed by PCR analysis (for RAG1 (NCBI M29474), RAG2 (NCBI M94633), Artemis/
DCLRE1C (NCBI M94633), XLF/NHEJ1 (NCBI AJ972687), and LIG4 (NCBI X83441) or 
RT-PCR analysis (for Artemis/DCLRE1C) of the coding regions with the TaqGoldTM 
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amplification system followed by direct sequencing. Primer sequences are avail-
able upon request. STR marker analysis was performed as previously described.19

Real-time quantitative PCR (RQ-PCR)
Primers and probe (Table 2) were designed to amplify WT or patient-specific 

Artemis transcripts using Taqman-based RQ-PCR. The RQ-PCR was performed on 
the ABIPRISM 7700 sequence detection system (Applied Biosystems) as described 
previously.46 

Analysis of coding joints and SHM
DH-JH junctions were analyzed as previously described.19, 27 Somatic hyper-

mutation (SHM) was studied in Vh3-Ca, Vh4-Ca, Vh3-Cg and Vh4-Cg fragments, 
amplified from PBMC cDNA and cloned into pGEM-T easy vector (Promega). IMGT 
nomenclature (http://imgt.cines.fr/) was used to assign the V, D and J segments, 
and to identify somatic mutations.47 The mutation frequency was determined for 
the Vh gene segment of each transcript.

Characterization of switch recombination junctions
Genomic DNA was purified from PBMCs using standard methods. The amplifi-

cation of Sm-Sa fragments from in vivo switched cells was performed as described 
previously,30, 48 except that a modified version of Taq polymerase (Go Taq, Promega, 
USA) was used in the PCR reactions. With this modification, a 2-4-fold increase in 
sensitivity was achieved. The PCR amplified switch fragments were gel purified 
(Qiagen, Germany), cloned into a modified version of the pGEM-5zf (+) vector and 
sequenced by an automated fluorescent sequencer in Macrogen (Seoul, Korea). 
The switch recombination breakpoints were determined by aligning the switch 
fragment sequences with the corresponding reference sequences (Sm, X54713; 
Sa1, L19121; Sa2, AF030305), as described previously.30, 49

AON design and transfection
The AON was designed according to the guidelines for AON design using the 

mfold version 3.2 server program as described before.50, 51 The AON was synthe-
sized with the following chemical modifications: a 5’ fluorescein group (6-FAM), a 
full-length phosphorothioate backbone and 2’-O-methyl modified ribose groups 
(Eurogentec, Belgium). Fibroblasts from patient 2 and control (C5RO) were seeded, 
after 24 hours they were transfected with 200 nmol AON for 3h using 2μl poly-
ethylenimine (PEI) (ExGen500; MBI Fermentas) per μg of transfected AON. At 24h 
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post-transfection, RNA was isolated using Rneasy minikit (Qiagen, Valencia, CA) 
and all RNA was used for reverse transcription as described previously.52

Statistics
Differences in numbers of P-nucleotides and mutation frequencies in SHM 

were analyzed using the nonparametric Mann-Whitney U-test (1-tailed) and tran-
scripts expression differences were analyzed by the two-tailed T-test for indepen-
dent samples (P<0.05 was considered significant) in the GraphPad Prism program 
(GraphPad Software). Statistical analysis for the switch junctions was performed 
using c2 test.
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 ABSTRACT

DNA double strand break repair via non-homologous end joining 
(NHEJ) is involved in recombination of immunoglobulin and T-cell 
receptor genes. Mutations in NHEJ components result in syndromes 
that are characterized by microcephaly and immunodeficiency. 
We present a patient with lymphopenia, extreme radiosensitivity, 
severe dysmaturity, corpus callosum agenesis, polysyndactily, dys-
morphic appearance, and erythema, which are suggestive for a new 
type of NHEJ deficiency. We identified two heterozygous mutations 
in LIG4. The p.S205LfsX29 mutation results in lack of the nuclear 
localization signal and appears to be a null mutation. The second 
mutation p.K635RfsX10 lacks the C-terminal region responsible for 
XRCC4 binding and LIG4 stability and activity and therefore this 
mutant might be a null mutation as well or have very low residual 
activity. This is remarkable since LIG4 knockout mice are embryonic 
lethal and so far in humans no complete LIG4 deficiencies have 
been described. This case broadens the clinical spectrum of LIG4 
deficiencies.
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INTRODUCTION 

The non-homologous end joining (NHEJ) pathway is involved in repair of DNA 
double strand breaks (DSBs). These can be generated during DNA replication, expo-
sure to exogenous agents such as ionizing radiation, or physiologically during V(D)
J recombination, as happens during the early stages of B- and T-cell differentiation 
to generate antigen specific B- and T-cell receptors. Defects in NHEJ factors result 
in ionizing radiation (IR) sensitivity, and in defects in V(D)J recombination leading 
to immunodeficiency. Genetic defects have been described in several NHEJ genes, 
including DCLRE1C (MIM# 605988), PRKDC (MIM# 600899), NHEJ1 (MIM# 611290) 
and LIG4 (MIM# 601837).1-5 To date, 16 LIG4 deficient patients have been described 
(summarized in Supp. Table S1).5-14 All patients were IR sensitive, but clinically they 
can be divided into five distinct disease categories: 1) leukemia, 2) LIG4 syndrome 
(MIM# 606593), 3) Dubowitz syndrome (MIM# 223370) 4) Omenn syndrome (MIM# 
603554) and 5) radiosensitive severe combined immunodeficiency (RS-SCID; MIM# 
602450). Here we present a male patient with a new clinical phenotype of LIG4 
deficiency characterized by microcephalic primordial dwarfism and neurological 
abnormalities.

The patient was born with extreme dysmaturity after 37 weeks of gestational 
age. At the age of 3 months, his height was 43 cm (-7.4 SD), weight 1870 grams 
(-8.9 SD), and head circumference was 29 cm (-8.9 SD). Besides the dysmaturity, 
the patient had several dysmorphisms (Figure 1A and 1B) including hypotelorism, 
small viscerocranium, flat philtrum, thin upper lip, preaxial polydactyly (dupli-
cation of distal phalanx of left thumb), brachymesophalangy of the digits V on 
both hands, and partial cutaneous syndactyly of digits II to V of both feet (Figure 
1C and 1D), dysplastic kidneys with bilaterally vesicourethral reflux and urethral 
valves. Additionally, the patient had the neurological abnormalities, corpus cal-
losum dysgenesia and colpocephaly. At the age of 2 and 4 months he suffered 
from a Pseudomonas aeruginosa and Enterococcus faecalis urinary tract infection, 
respectively, and he tested positive for P. aeruginosa, P. jiroveci, rhinovirus, norovi-
rus, astrovirus, Clostridium difficile and Candida. Besides the infectious complica-
tions, the first 3 months of life were characterized by feeding difficulties, diarrhea, 
failure to thrive, cholestatic icterus, tubulopathy, generalized erythema and very 
dry cracked skin. Initially the patient seemed to recover from the opportunistic 
infections, but a second episode of an acute sepsis-like syndrome with respiratory 
insufficiency complicated by severe gastro-intestinal bleeding -probably due to 
the development of thrombocytopenia- could not be successfully treated; the 
patient died at the age of 6 months. 
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Figure 1. Dysmorphic features of the face, hand and feet and ionizing radiation sensitivity. The patient 
presented with facial dysmporphisms including beaked nose (A), hypotelorism, small viscerocranium, flat philtrum, 
thin upper lip (B). In addition, the patient had a duplication of distal phalanx of left thumb, brachymesophalangy 
of the digits V on both hands (C) and partial cutaneous syndactyly of digits II to V of both feet (D). Clonogenic 
survival assay of wild type (C5RO) fibroblasts and patients’ fibroblasts deficient for Artemis, DNA-PKcs, XLF or LIG4 
(LIG4 SCID). The patient was extremely sensitive for ionizing radiation. Each curve represents the mean of at least 
two independent experiments. Error bars represent SEM (E). 
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Immunologic evaluation showed normal numbers of NK cells, very low B cell 
numbers and increased T cell numbers (Supp. Table S2 and Materials and Methods). 
The increase in the number of T cells was mainly caused by an increase in the CD8+ 
T cells probably related to a viral infection. The presence of maternal T-cells was 
excluded. Immunoglobulin (Ig) G was decreased, which was not secondary to mal-
absorption, whereas IgM and IgA were normal (Supp. Table S2) and Ig substitution 
therapy was initiated at the age of 4.5 months. 

The clinical presentation, especially the immunodeficiency together with 
microcephaly was suggestive for a NHEJ defect. Therefore the patient’s fibroblasts 
were tested in a clonogenic survival assay (Supp. Materials and Methods). These 
were extremely IR sensitive by an order of magnitude c.f. the control at 10% sur-
vival (Figure 1E) and even more sensitive than those of LIG4 and XLF deficient 
patients (three times more sensitive than the control at 10% survival) which are 
normally more IR sensitive than fibroblasts from Artemis and DNA-PKcs deficient 
patients (Figure 1E). This result was indicative for a severe NHEJ defect.

Sequencing of the LIG4 gene (Materials and Methods) showed the presence 
of two heterozygous single nucleotide deletions in the LIG4 gene (c.613delT and 
c.1904delA) (submitted to www.lovd.nl/LIG4). The first deletion was inherited from 
the mother and resulted in a frame shift and a premature stop codon in the DNA-
binding domain (p.S205LfsX29). This mutation was recently described in the LIG4 
patient presenting with the Dubowitz syndrome.14 The mutant LIG4 protein lacks 
the nuclear localization signal (NLS), the active site, the adenylation domain, the 

Supplementary Table S2. Immunophenotyping of the patient 

6 months (x109/L) Reference values (x109/L)
 (Comans-Bitter, et al., 1997)

CD3 5.73 2.4-6.9
CD4 3.38 1.5-5.0
CD4CD45RA/RO 0.10/3.31 RA>RO
CD8 2.41 0.5-1.6
CD8CD45RA/RO 0.10/2.3 RA>RO
CD19 0.06 0.6-3.0
CD56 0.31 0.1-1.3

4 months (g/L) Reference values 5-6 months
IgG 0.76 2.6-15.2
IgM 0.22 0.07-0.65
IgA 0.85 0.08-0.90
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Figure 2. LIG4 mutants and their expression. Schematic representation of the LIG4 protein (NM_001098268.1) 
and the GFP-LIG4 expression constructs. The different domains, active site (K273) and mutations identified in 
the patient are indicated. The nuclear localization signal (NLS1 (P623QEKKRK629) and NLS2 (A630APKMKKVI638)18 is 
indicated in black. The numbers between brackets indicated the amino acid position (A). Localization of GFP-LIG4 
WT and mutants after transient transfection of U2OS cells (B).
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oligo-binding domain, both BRCT motifs and the XRCC4 binding site (Figure 2A). 
Since, LIG4 exerts its function in the nucleus we investigated the localization of 
the mutant LIG4 proteins by using green fluorescent protein (GFP) tagged LIG4 
expression constructs (Figure 2A and Supp. Material and Methods). In contrast 
to wild type (WT) LIG4 the S205LfsX29 LIG4 mutant was only expressed in the 
cytoplasm (Figure 2B), which indicates the S205LfsX29 mutant represents a null 
mutation.

The second paternally inherited deletion resulted in a frame shift, changing the 
last four amino acids of the NLS (K635K636V637I638 → R635K636L637L638) without affecting 
the charge, and a premature stop codon (p.K635RfsX10). In this mutant part of the 
NLS is retained, but it lacks both BRCT motifs and the XRCC4 binding site, which 
are necessary for the interaction with Cernunnos/XLF.15 LIG4 interacts with XRCC4 
and forms a 1:2 complex.16 The interaction with XRCC4 is important since it sta-
bilizes LIG4 protecting it from degradation.17 This implies that the p.K635RfsX10 
mutant has probably very low residual activity or might even be a null mutant. 

In our overexpression system, this mutant was still expressed in the nucleus 
(Figure 2B) and is therefore consistent with the results of Girard et al who found 
that deleting both BRCT motifs and the XRCC4 binding domain (∆653-911) still 
resulted in nuclear expression of the mutant LIG4 protein.18 None of the reported 
LIG4 mutations in patients retains the NLS but lacks the XRCC4 interaction domain 
(Supp. Table S1 and Supp. Figure S1). The p.R814X mutant lacks the BRCT 2 motif, 
but the NLS and XRCC4 binding site are present.6, 10 This mutant is expressed in the 
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Figure S1. Localization of LIG4 mutations. Schematic representation of all LIG4 mutations described in 
literature, the patient described here and our unpublished patient (see Supp. Table S1). 
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nucleus and retained ~10-15% residual double strand ligation activity, but was 
barely detectable in the patient.10 The estimated residual activity of this mutant 
is <1%.18 The p.R580X mutant lacks the NLS and the XRCC4 interaction domain. 
Since this mutant is not stably expressed, does not interact with XRCC4 and does 
not enter the nucleus, it is considered to be a null mutant. Similar to the p.R580X 
mutant, the p.K635RfsX10 mutant lacks XRCC4-interacting domain,15 which is nec-
essary for LIG4 stability and protection of LIG4 from degradation.17 Based on these 
data and the severity of the clinical phenotype of the patient, we expect that this 
mutant has even less residual activity than the LIG4 mutants described before and 
might represent a null mutation. This is remarkable since LIG4 is considered to be 
essential for humans and Lig4 knockout mice are embryonic lethal.19, 20 This study 
shows that LIG4 mutations affect the immune system or neurological develop-
ment with different severity.

MATERIAL AND METHODS

Cell samples and flow cytometric immunophenotyping
Peripheral blood and a skin biopsy were obtained with informed consent and 

according to the guidelines of the local Medical Ethics Committees. Flow cytomet-
ric analysis of peripheral blood was performed as described previously (Noordzij, 
et al., 2003; van der Burg, et al., 2006). 

Cell lines and tissue culture
Primary fibroblasts were cultured from a skin biopsy from the patient in addition 

to fibroblasts from a healthy control (C5RO), Artemis-deficient (Artemis-6) (van der 
Burg, et al., 2007), XLF deficient (XLF-5) and DNA-PKcs deficient patients (van der 
Burg, et al., 2009) and a LIG4 SCID patient (van der Burg, et al., 2006). Fibroblasts 
were cultured in DMEM (BioWhittaker, Walkersville, MD, USA), supplemented with 
10% FCS, penicillin (100 U/ml), and streptomycin (100 μg/ml).

Clonogenic survival assay and sequence analysis
Clonogenic survival assay was performed as described previously (van der 

Burg, et al., 2009). XLF(NHEJ1) (NM_024782.2) and LIG4 (NM_001098268.1) were 
amplified by PCR and sequenced according to (van der Burg, et al., 2009).
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Localization of LIG4 mutants
Mutant GFP-LIG4 expression constructs (S205LfsX29 and K635RfsX9) were made 

by using the QuickChange site directed mutagenesis kit (Agilent Technologies, 
Santa Clara, CA, USA) using the GFP-LIG4 WT as the parent plasmid. U2OS cells 
were transfected using Fugene 6 (Promega, Madison, WI, USA). After 24h cells 
were fixed with 2% paraformaldehyde and expression was determined using a 
fluorescence microscope. 
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ABSTRACT 

Background. Ataxia Telangiectasia (AT) is a multisystem DNA-repair dis-
order caused by mutations in the ATM gene. AT patients have reduced B- and 
T-cell numbers and a highly variable immunodeficiency. ATM is important 
for V(D)J recombination and immunoglobulin class switch recombination 
(CSR), however, little is known about the mechanisms resulting in antibody 
deficiency severity. Objective. To examine the immunological mechanisms 
responsible for antibody deficiency heterogeneity in AT. Methods. In this 
study, we included patients with classical AT plus early onset hypogam-
maglobulinemia (n=3); classical AT (n=8); and variant AT (late onset; n=4). 
We studied peripheral B- and T-cell subsets, B-cell subset replication his-
tory, somatic hypermutation frequencies, CSR patterns, B-cell repertoire 
and ATM kinase activity. Results. Classical AT patients lacked ATM kinase 
activity, while variant AT patients showed residual function. Most patients 
had disturbed naive B-cell and T-cell homeostasis as evidenced by low cell 
numbers, increased proliferation, a large proportion CD21lowCD38low aner-
gic B cells and decreased antigen receptor repertoire diversity. Impaired 
formation of T-cell dependent memory B-cells was predominantly found in 
AT plus hypogammaglobulinemia. These patients had extremely low naive 
CD4+ T-cell counts, which were more severely reduced compared to clas-
sical AT patients without hypogammaglobulinemia. Finally, AT deficiency 
resulted in defective CSR to distal constant regions that might reflect 
impaired ability of B-cells to undergo multiple germinal center reactions. 

Conclusion. The severity of the antibody deficiency in AT correlates with 
disturbances in B and T-cell homeostasis resulting in reduced immune 
repertoire diversity, which consequently affects the chance of successful 
antigen-dependent cognate B-T interaction. 
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INTRODUCTION 

Ataxia Telangiectasia (AT) is an autosomal recessive multisystem disorder resulting 
from mutations in the ATM gene (Ataxia Telangiectasia Mutated). AT is characterized by 
cerebellar ataxia, oculocutanous teleangiectasias, radiosensitivity, chromosomal instabil-
ity, a propensity for the developing (mainly hematological) malignancies, growth retar-
dation and endocrine abnormalities.1 Furthermore, AT has been recognized as a primary 
immunodeficiency.2 

ATM is critically important for processes in lymphocyte development that rely on DSB 
repair,3, 4 such as V(D)J recombination5 and Class Switch Recombination (CSR)6, 7 of immu-
noglobulin (Ig) genes. Similar to patients with the Nijmegen Breakage Syndrome (NBS),8 a 
closely related DNA repair disorder, AT patients have low circulating B- and T-cell numbers. 
Considering the role of ATM in V(D)J recombination,  this could be due to reduced numbers 
of precursor cells that are able to successfully rearrange their antigen receptor genes8. CSR 
depends on repair of DSBs at recombining Ig switch (S) regions.9 ATM deficiency affects 
DSB recognition and/or repair during CSR and as a consequence alternative pathways of 
error-free joining are used.6, 7, 10, 11

Although the effects of ATM mutations on the V(D)J recombination and CSR processes 
have been studied in detail, little is known about the consequences of ATM mutations on 
the degree of immunodeficiency. Clinically, the immunodeficiency in AT is highly variable 
with a predominant antibody deficiency. Patients with early onset disease are referred to 
as classical AT.12,13 A subset of patients with classical AT has a severe early onset hypogam-
maglobulinemia, reminiscent of a CSR deficiency.14 Variant AT patients have a later onset 
and a less severe antibody deficiency.12, 15

To understand the immunological mechanisms responsible for AT disease heteroge-
neity, we analyzed the blood B- and T-cell compartments of 15 AT patients with different 
degrees of antibody deficiency severity extensively with flow cytometric and molecular 
analysis16,17 Reminiscent of NBS, naive B and T cells showed extensive replication histories 
and a restricted antigen receptor repertoire, and disease severity was clearly correlated 
with numbers of circulating naive T cells. 

MATERIALS AND METHODS 

Patients
Peripheral blood samples and clinical data were collected from 15 patients with Ataxia 

Telangiectasia and 45 healthy age-matched controls. These studies were approved by the 
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Medical Ethics Committees of the Radboud University Nijmegen Medical Center and the 
Erasmus MC Rotterdam.

Flow cytometric analysis and high speed cell sorting of blood B cell subsets
Six-color flow cytometric immunophenotyping of peripheral blood was performed 

on a FACS LSRII (BD Biosciences) and data were analyzed using FACS Diva software (BD 
Biosciences) as described previously16. Memory B-cell subsets were characterized as 
described previously16. Naive mature B-cells were sorted from post-Ficoll mononuclear cells 
on a FACS AriaII (BD Biosciences) followed by DNA extraction with a direct lysis method.18 

KREC and TREC assays to determine the replication history of B- and T-cells 
The replication history of sorted B cell subsets was determined with the Kappa-deleting 

Recombination Excision Circles (KREC) assay as described previously.17 The proliferation of 
T cells was measured by the γδTREC as previously described.19

Sequence analysis of complete IGH gene rearrangements 
RNA was isolated from mononuclear cells using the GeneElute Mammalian Total RNA 

Miniprep kit (Sigma-Aldrich). After reverse transcription using random hexamers, IGA and 
IGG transcripts were amplified as described previously.20 Obtained sequences were ana-
lyzed with IMGT database (http://imgt.cines.fr/) and JoinSolver program (http://joinsolver.
niaid.nih.gov). 

ATM  kinase activity 
ATM kinase activity was measured as described previously.21 

Repertoire analysis
VH-JH rearrangements were amplified from 200ng sorted naive B cells in a multiplex 

PCR using the Biomed-2 VH1-6 FR1 and JH consensus primers22. The primers were adapted 
for 454 sequencing by addition of an adaptor, the ‘TCAG’ key and multiplex identifier 
(MID). PCR products were purified by gel extraction (Qiagen, Valencia, CA) and Agencourt 
AMPure XP beads (Beckman Coulter). Subsequently, the concentration of the PCR prod-
uct was measured using the Quant-it Picogreen dsDNA assay (Invitrogen, Carlsbad, CA). 
For every individual, 3 independent PCRs were performed and sequenced on the 454 GS 
junior instrument according the manufacturer’s recommendations, using the GS junior 
Titanium emPCR kit (Lib-A), sequencing kit and PicoTiterPlate kit (454 Life Sciences, Roche, 
Brandford, CT). The sequences of >250bp were separated per individual based on the 
MID tag and trimmed based on quality score 0.05 in CLC genomic workbench software. 
The reads were exported in Fasta format and uploaded to IMGT High V-Quest23. From this 
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output, the number of unique junctions (as defined by IGHV, IGHD and IGHJ gene usage 
and CDR3 region) per PCR reaction was determined.

STATISTICS

Statistical analysis was performed with Graphpad Prism 5.0 software (Graphpad 
Software, San Diego, CA, USA). Whenever two groups with continuous outcomes were 
compared, the Mann-Whitney test was applied. Whenever multiple groups with continu-
ous outcomes were compared, the non-parametric Kruskal-Wallis rank sum test was used, 
followed by pair wise Mann Whitney tests if the former indicated significant differences. 
For categorical variables the c2 or Fisher’s exact tests were used. Correlation coefficients 
given are Spearman’s. Statistical significance was set at two sided P<0.05.

RESULTS

Patients
Patient characteristics are summarized in Table 1. Genotype phenotype correlations of 

the patients (among others) have been reported elsewhere15. AT patients were divided 
in three groups: classical AT plus hypogammaglobulinemia (n=3), classical AT (n=8) and 
variant AT (n=4), i.e. patients with late onset. None of the classical AT patients showed ATM 
kinase activity, whereas patients with variant AT showed residual activity. 

Patients with classical AT plus hypogammaglobulinemia were diagnosed with severe 
hypogammaglobulinemia (IgG levels <1 gr/L, Table 2) before the age of one year, before 
the diagnosis of AT was made. Patient AT1 and AT3 presented with recurrent infections. 
Patient AT2 was screened for hypogammaglobulinemia prior to the development of infec-
tions, because she was sibling of patient AT3. They were treated with immunoglobulin 
replacement therapy. In contrast, patients with classical AT had total IgG levels > 5 gr/L and 
normal IgG1 levels. Total IgG levels were slightly decreased for age in only three cases and 
one of them received immunoglobulin replacement. Most classical AT patients suffered 
from an IgG2 and/or IgA deficiency. None of them showed progression of the antibody 
deficiency over time. 

Of the variant AT patients, only one showed a mild IgG2 deficiency. Variant AT patients 
showed pneumoccal polysaccharide antibody levels (without booster vaccination) above 
protective level (0.35 μg/ml). 
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Low transitional B-cells and increased proliferation of naive mature B-cells in AT
To investigate the difference in severity of antibody deficiency in AT patients, detailed 

analysis of the lymphocyte subsets was performed. Absolute B-cell numbers were reduced 
in all classical AT patients with hypogammaglobulinemia patients, in 5/8 classical AT 
patients and in only 1/4 variant AT patients (Table 2).24 7/11 patients with classical AT (with 
or without hypogammaglobulinemia) showed a reduction of total T-cell numbers as well. 
NK-cell numbers were in the normal range for all patients. 

ATM deficiency results in impaired DSB repair during V(D)J recombination,25 potentially 
affecting B-cell production in the bone marrow explaining the reduced peripheral B-cell 
numbers. To study this, we quantified early emigrants from bone marrow, i.e. circulating 
transitional B-cells.26 All AT patients showed reduced numbers of transitional B cells as 
compared to healthy controls, irrespective of residual ATM kinase activity (Figure 1A). Thus, 
bone marrow output or homeostasis of new emigrant B cells seemed affected in AT.

Naive mature B cells were reduced in 13/15 (87%) of AT patients (Figure 1A). To study 
whether the naive mature B-cells showed increased (compensatory) proliferation, the in 
vivo B-cell replication history was determined in sorted naive mature B-cells of 6 patients 
with classical and 3 with variant AT. Naive mature B-cell proliferation of classical AT patients 
was increased with a median of 5.1 cell divisions as compared to 1.8 in controls (Figure 1B). 
Subsequently, we studied CD21lowCD38low B-cells, which is a distinct B-cell population con-
taining mostly autoreactive unresponsive clones that might represent anergic or innate-
like B-cells.27 In AT, the proportion of CD21lowCD38low B-cells was increased in all three AT 
groups (Figure 1C), most prominently in AT with hypogammaglobulinemia.    

Reduced antigen receptor repertoire of naive mature B-cells in AT
Based on the reduced B-cell egress from bone marrow and increased proliferation of 

naive B-cells, a restricted B-cell repertoire was assumed. To address this issue, DNA was 
isolated from sorted naive B-cells and antigen receptor repertoire diversity was assessed 
by next generation sequencing of IGH gene rearrangements. Given that each newly gen-
erated B cell has a unique IGH gene rearrangement, amplification of identical sequences 
in independent PCR reactions (i.e. coincidences) would indicate restriction of the Ig rep-
ertoire.28 Indeed, AT patients showed increased numbers of coinciding IGH sequences 
in independent PCR reactions of sorted naive B-cells as compared to controls (Table 3, 
Supplemental Table 2). Thus, on top of their reduced numbers, naive B-cells in AT showed 
a reduced antigen receptor repertoire diversity. 

Decreased memory B-cells in AT 
Six memory B-cell subsets were studied that are thought to derive from 

GC-dependent and –independent pathways16 (Figure 2A). Patients with classical AT plus 
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hypogammaglobulinemia showed the most severe reduction of B-cell memory: all subsets 
were decreased, except for the T-cell independent CD27-IgA+ memory B-cells (Figure 2B). 
Patients with classical AT only displayed reduced CD27+IgA+ memory B-cells, whereas 
patients with variant AT only showed reduced CD27+IgG+ memory B-cells despite 
normal serum IgG levels. The relative distribution of the six memory B-cells (Figure 2C) 
shows that CD27+ class switched memory B-cells were most severely reduced in AT plus 
hypogammaglobulinemia.

Low naive CD4+ T-cell counts are associated with hypogammaglobulinemia and low memory 
B-cell numbers

To study whether T-cell abnormalities contributed to the reduced numbers of (germinal 
center derived) memory B-cells, we assessed blood T-cell subsets in our patients with flow 

Figure 1. Naive and CD21lowCD38low defects in Ataxia Telangiectasia. A. Absolute numbers of blood 
transitional B-cells (CD19+CD27-CD24highCD38high) and naive mature B-cells (CD19+CD27-CD24dimCD38dim) in 
three categories of AT patients. B. Naive B cell replication history as measured with the KREC assay. C. Proportions 
of CD21lowCD38low B-cells. Data are compared to normal controls using the Mann-Whitney test. Individual data 
points are displayed and bars indicate medians. Significant values are indicated: ****, P<0.0001; ***, P=<0.0005; 
**, P<0.005; *, P<0.05.
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Figure 2. Memory B-cell subset distribution in AT. A. Memory B-cell subsets according to Berkowska et al Blood 
201116 B. Absolute numbers of memory B-cell subsets in three categories of AT patients. C. Relative distributions 
of memory B-cell subsets. Data are compared to normal controls using the Mann-Whitney test. Significant values 
are indicated: ***, P<0.0005; **, P<0.005; *, P<0.05.
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Table 3. B-cell repertoire analysis of IGH sequences of naive B-cells

Total 
sequences

Coincidences 

none 2 3

      Control 1 (17 yr) 25,280 25212 34 0

      Control 2 (10  yr) 22,429 22421 4 0

      Control 3 (25 yr) 32,537 32537 0 0

AT15 22,043 21628 191 11

AT7 16,027 15779 124 0

AT11 12,463 12409 27 ND
ND = not determined. Each AT patients is different from each control by c2 test (all P<0.0001),  
except for AT11 compared to control 1 (P=0.06).  
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cytometic immunophenotyping. Total CD3+, CD4+ and CD8+ numbers were decreased 
as compared to controls, but did not differ significantly between the three groups of AT 
patients (Figure 3A and 3B). However, patients with classical AT plus hypogammaglobu-
linemia showed fewer naive CD4+ T-cells than patients with classical AT and variant AT 
(Figure 3A). Naive CD8+ cells were reduced in all three AT groups as compared to controls. 
Memory and effector CD4+ and CD8+ T-cells were not significantly differenct from con-
trols (Figure 3A and 3B). The reduction of naive T-cell subsets was also apparent from the 
relative distribution of the subsets within the CD4+ and CD8+ compartments (Figure 3C). 
TRECs were decreased in patients with classical AT, indicative of decreased thymic output 
and/or increased peripheral T-cell proliferation (Figure 3D).

Because naive CD4+ T-cell numbers differed between the three groups of AT patients, 
we calculated the correlations between naive CD4+ T-cell counts, memory B-cell subset 
counts and immunoglobulin levels. Naive CD4+ T-cell counts strongly correlated with 
CD27+IgA+ memory B-cells subset counts (r=0.93,  P=0.001), and with IgG2 levels (r=0.73  
P=0.01). These results indicate that low naive CD4+ T-cell counts are associated with poor 
memory B-cell formation and a more severe antibody deficiency. 

Somatic hypermutation and Ig class switch recombination in ATM deficiency
The frequencies of SHM in IGHG and IGHA transcripts were not different from controls 

(Supplemental Figure 1A), and replacement mutations in rearranged IGHV genes were pre-
dominantly targeted to CDR regions (Supplemental Figure 1B). Thus, affinity maturation 
appeared to be normal in the (reduced number of ) antigen-experienced B-cells.

To study Ig CSR in more detail, we determined the IGHG and IGHA subclass usage in 
amplified IGH transcripts (Figure 4A and 4B). In classical AT and AT plus hypogammaglob-
ulinemia, the usage of downstream IGHG regions (IGHG2 and IGHG4) was severely reduced 
as compared to controls (Figure 4B; P<0.0001 and P=0.02 respectively), suggesting that 
CSR to the more downstream IGHG2 and IGHG4 gene segments was impaired. Although 
variant AT also seemed to display reduced IGHG2 and IGHG4 used as compared to controls, 
the difference did not reach significance (P=0.053).  Analysis of IGHA transcripts revealed 
that patients with classical AT and patients with variant AT showed significantly reduced 
usage of IGHA2 transcripts (P<0.0001 and P=0.006, respectively). Only 12 IGHG transcripts 
and no IGHA transcripts could be amplified from patients with AT plus hypogammaglobu-
linemia, which prevented a meaningful analysis. In these patients, CSR to all Ig subclasses 
is likely decreased, because of the severely decreased number of class-switched memory 
B-cells and the profound hypogammaglobulinemia. 
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Figure 3. T-cell subset distribution in AT. Absolute numbers of CD4+ (A) and CD8+ T-cell subsets in three 
categories of AT patients B. C. Relative distributions of T-cell subsets D.TRECs in sorted T-cells. Naïve T-cells 
(CD45RA+CD27+); memory T-cells (CD45RA-CD27+) and effector T-cells (CD45RA+/-CD27-). Significant values 
are indicated: ***, P<0.0005; **, P<0.005; *, P<0.05.
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DISCUSSION 

In this study, we demonstrated that the antibody deficiency in AT is caused by dis-
turbed naive B- and T-cell homeostasis leading to reduced immune repertoire formation 
and reduced memory B-cell formation. While these defects are present in all patients, three 
clinical subgroups can be defined, of which the disease severity correlated with circulating 
memory B cells and naive T cells. 

Reduction of transitional and naive mature B-cell counts is the hallmark of abnormal 
naive B-cell homeostasis and was observed in all AT patients. This finding shows strong 
resemblance with reduced levels of naive mature B-cells in NBS patients.29 We previously 
showed that in NBS the production of precursor B-cells in bone marrow is impaired due 
to loss of juxtaposition of RAG-induced immunoglobulin DNA ends, thereby obstruction 
DSB repair during V(D)J recombination.29 In AT deficient mice, the DSB repair phase during 
V(D)J recombination is also impaired,5 which is in concordance with the observed low 
transitional B-cell counts in AT patients. Despite increased proliferation, the number of 
naive B-cells is low, similar as found in NBS patients29. Increased proliferation could be a 
mechanism to compensate for decreased bone marrow output. Alternatively, it could be 
the result of lack of cell cycle control by ATM during V(D)J recombination. Irrespective of 
the mechanism of increased naive B-cell proliferation, it will result in a peripheral B-cell 
compartment with a restricted B-cell repertoire. We were able to confirm the decrease 
of naive B-cell repertoire by deep sequencing of IGH gene rearrangements. We recently 
described increased naive B-cell proliferation in a subgroup of CVID patients with a B-cell 
pattern similar to AT patients (low transitional and memory B-cells), which could therefore 
point to a DNA repair disorder.29  An increase of CD21lowCD38low anergic B-cells was pres-
ent in CVID patients with increased naive B-cell proliferation29, 30 as well as in AT patients, 
indicating that increased proliferation of the naive B-cell compartment is associated with 
B-cell anergy.  

Similar to the reduced naive B-cells, naive CD4+ T-cells and TREC levels were also 
reduced in AT. This was shown to result from reduced thymic output and a concomitant 
reduction of TRECs, increased proliferation and a consequently restricted TCR repertoire.31 
Recently, these findings were attributed to premature aging of the immune system.32, 33 
Both naive CD4+ and naive CD8+ T-cells were most severely decreased in patients with 
classical AT plus hypogammaglobulinemia, followed by classical AT and variant AT. 

Despite reduced naive T-cell numbers, AT patients mainly suffer from an antibody 
deficiency and not from opportunistic infections related to T-cell deficiencies. We found 
normal numbers of circulating memory and effector CD4+ and CD8+ T-cells in all three 
AT categories. This indicates that peripheral T cells of AT patients have a normal terminal 
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differentiation upon antigenic stimulation without giving apparent clinical signs of a T-cell 
deficiency despite the low number of naive T-cells. 

It is unknown why only part of the patients with classical AT have severe hypogamma-
globulinemia, because they all lack ATM kinase activity. In this study, we showed that the 
absolute number of naive CD4+ T-cells and naive B-cells was significantly lower in AT plus 
hypogammaglobulinemia, implying a more severe V(D)J recombination defect. The cur-
rently used methods to measure ATM kinase activity assays might not be sensitive enough 
to detect low levels of residual ATM kinase activity or, alternatively, might not measure all 
ATM protein functions important for B and T-cell development, i.e. V(D)J recombination 
and CSR. 

Memory B-cell formation was impaired in all AT patients. Five out of six memory B-cell 
subsets were decreased in classical AT plus hypogammaglobulinemia, whereas in classical 
AT and variant AT only T-cell dependent germinal center reactions were affected. These 
data suggest that naive CD4+ T-cells seem to play an important role in the severity of the 
antibody deficiency in AT, most probably by affecting T-cell dependent germinal center 
reactions. We hypothesize that due to the limited number and limited repertoire of both 
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(functional) naive mature B-cells and naive CD4+ T-cells the chance of an antigen-depen-
dent cognate B-T interaction, which is required for initiation of a germinal center reaction, 
is decreased in AT. At this moment, we cannot rule out that also other intrinsic B-cell or 
T-cell factors contribute directly to memory B-cell formation. 

It has been shown that ATM deficiency affects DSB recognition and/or repair during 
CSR.6, 7 Sm-Sg junctions in AT patients have severely reduced mutations or insertions, indi-
cating that the predominantly used error prone NHEJ pathway in CSR is impaired in AT 
patients.11 However, the effect of the CSR deficiency on the subclass distribution of IGH 
constant genes has not been explored so far. In this study, we showed that the propor-
tion of distal IGHG2, IGHG4 and IGHA2 constant regions was reduced. These findings are in 
line with studies in ATM-deficient mice that suggest a defect in joining of distant switch 
regions.6 Frequently Ig CSR to distal constant genes occurs indirectly via an IGH-proximal 
gene. Berkowska et al.16 showed that 24% of hybrid switch regions (Sμ-Sγ2) in genomic 
DNA of sorted populations of normal controls contained remnants of Sγ3, Sγ1, or Sα1, 
whereas only 9% of Sμ-Sγ1 junctions had Sγ3 remnants. In addition, IGHG2 and IGHG4 
switch regions contain higher SHM loads, potentially reflecting multiple GC reactions. 
Based on these data, defective switch to distant constant regions in AT could be explained 
by an impaired ability of B-cells to undergo multiple successful GC responses, could point 
towards a role for ATM in the use of distal switch regions or both. 

Patients with variant AT did not have a clinically apparent antibody deficiency, which is 
in line with earlier observations15. However, they still showed signs of a CSR deficiency at 
the molecular level, reminiscent of a sub-clinical antibody deficiency. We hypothesize that 
the subclinical antibody deficiency in variant AT might become clinically apparent with 
progressive ageing of the immune system. 

In conclusion, AT patients have disturbed naive B-cell and T-cell homeostasis most 
likely due reduced B and T-cell production linked to disturbed V(D)J recombination and 
consequently have a limited B-cell and T-cell receptor repertoire. Therefore, the chance 
of successful initiation of a germinal center reaction is reduced leading to reduction of 
especially T-cell dependent memory B-cell populations. Consequently, AT patients suffer 
from an antibody deficiency with variable severity depending on the presence of residual 
ATM kinase activity and naive T-cell counts.

REFERENCES

1. Rotman G, Shiloh Y. ATM: from gene to function. Hum Mol Genet 1998; 7:1555-63.

2. Peterson RD, Kelly WD, Good RA. Ataxia-Telangiectasia. Its Association with a Defective Thymus, Immu-

nological-Deficiency Disease, and Malignancy. Lancet 1964; 1:1189-93.



Chapter 4.2

178

3. Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature 2000; 

408:433-9.

4. Xu Y. DNA damage: a trigger of innate immunity but a requirement for adaptive immune homeostasis. 

Nat Rev Immunol 2006; 6:261-70.

5. Bredemeyer AL, Sharma GG, Huang CY, Helmink BA, Walker LM, Khor KC, et al. ATM stabilizes DNA dou-

ble-strand-break complexes during V(D)J recombination. Nature 2006; 442:466-70.

6. Reina-San-Martin B, Chen HT, Nussenzweig A, Nussenzweig MC. ATM is required for efficient recombina-

tion between immunoglobulin switch regions. J Exp Med 2004; 200:1103-10.

7. Lumsden JM, McCarty T, Petiniot LK, Shen R, Barlow C, Wynn TA, et al. Immunoglobulin class switch 

recombination is impaired in Atm-deficient mice. J Exp Med 2004; 200:1111-21.

8. van der Burg M, Pac M, Berkowska MA, Goryluk-Kozakiewicz B, Wakulinska A, Dembowska-Baginska B, et 

al. Loss of juxtaposition of RAG-induced immunoglobulin DNA ends is implicated in the precursor B-cell 

differentiation defect in NBS patients. Blood; 115:4770-7.

9. Kracker S, Durandy A. Insights into the B cell specific process of immunoglobulin class switch recombi-

nation. Immunol Lett 2011; 138:97-103.

10. Pan-Hammarstrom Q, Dai S, Zhao Y, van Dijk-Hard IF, Gatti RA, Borresen-Dale AL, et al. ATM is not re-

quired in somatic hypermutation of VH, but is involved in the introduction of mutations in the switch 

mu region. J Immunol 2003; 170:3707-16.

11. Pan Q, Petit-Frere C, Lahdesmaki A, Gregorek H, Chrzanowska KH, Hammarstrom L. Alternative end join-

ing during switch recombination in patients with ataxia-telangiectasia. Eur J Immunol 2002; 32:1300-8.

12. Staples ER, McDermott EM, Reiman A, Byrd PJ, Ritchie S, Taylor AM, et al. Immunodeficiency in ataxia 

telangiectasia is correlated strongly with the presence of two null mutations in the ataxia telangiectasia 

mutated gene. Clin Exp Immunol 2008; 153:214-20.

13. Stray-Pedersen A, Aaberge IS, Fruh A, Abrahamsen TG. Pneumococcal conjugate vaccine followed by 

pneumococcal polysaccharide vaccine; immunogenicity in patients with ataxia-telangiectasia. Clin Exp 

Immunol 2005; 140:507-16.

14. Noordzij JG, Wulffraat NM, Haraldsson A, Meyts I, van’t Veer LJ, Hogervorst FB, et al. Ataxia-telangiectasia 

patients presenting with hyper-IgM syndrome. Arch Dis Child 2009; 94:448-9.

15. Verhagen MM, Last JI, Hogervorst FB, Smeets DF, Roeleveld N, Verheijen F, et al. Presence of ATM protein 

and residual kinase activity correlates with the phenotype in ataxia-telangiectasia: a genotype-pheno-

type study. Hum Mutat 2012; 33:561-71.

16. Berkowska MA, Driessen GJ, Bikos V, Grosserichter-Wagener C, Stamatopoulos K, Cerutti A, et al. Human 

memory B cells originate from three distinct germinal center-dependent and -independent maturation 

pathways. Blood 2011; 118:2150-8.

17. van Zelm MC, Szczepanski T, van der Burg M, van Dongen JJ. Replication history of B lymphocytes reveals 

homeostatic proliferation and extensive antigen-induced B cell expansion. J Exp Med 2007; 204:645-55.

18. van der Burg M, Kreyenberg H, Willasch A, Barendregt BH, Preuner S, Watzinger F, et al. Standardization 

of DNA isolation from low cell numbers for chimerism analysis by PCR of short tandem repeats. Leuke-



4.2

179

Antibody deficiency severity in AT

mia 2011; 25:1467-70.

19. Hazenberg MD, Verschuren MC, Hamann D, Miedema F, van Dongen JJ. T cell receptor excision circles as 

markers for recent thymic emigrants: basic aspects, technical approach, and guidelines for interpreta-

tion. J Mol Med 2001; 79:631-40.

20. van der Burg M, Verkaik NS, den Dekker AT, Barendregt BH, Pico-Knijnenburg I, Tezcan I, et al. Defective 

Artemis nuclease is characterized by coding joints with microhomology in long palindromic-nucleotide 

stretches. Eur J Immunol 2007; 37:3522-8.

21. Barone G, Groom A, Reiman A, Srinivasan V, Byrd PJ, Taylor AM. Modeling ATM mutant proteins from 

missense changes confirms retained kinase activity. Hum Mutat 2009; 30:1222-30.

22. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, et al. Design and 

standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell recep-

tor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action 

BMH4-CT98-3936. Leukemia 2003; 17:2257-317.

23. Lefranc MP. IMGT databases, web resources and tools for immunoglobulin and T cell receptor sequence 

analysis, http://imgt.cines.fr. Leukemia 2003; 17:260-6.

24. Comans-Bitter WM, De Groot R, Van den Beemd R, Neijens HJ, Hop WCJ, Groeneveld K, et al. Immuno-

phenotyping of blood lymphocytes in childhood. J Pediatr 1997; 130:388-93.

25. Bredemeyer AL, Huang CY, Walker LM, Bassing CH, Sleckman BP. Aberrant V(D)J recombination in ataxia 

telangiectasia mutated-deficient lymphocytes is dependent on nonhomologous DNA end joining. J Im-

munol 2008; 181:2620-5.

26. Palanichamy A, Barnard J, Zheng B, Owen T, Quach T, Wei C, et al. Novel human transitional B cell popu-

lations revealed by B cell depletion therapy. J Immunol 2009; 182:5982-93.

27. Isnardi I, Ng YS, Menard L, Meyers G, Saadoun D, Srdanovic I, et al. Complement receptor 2/CD21- hu-

man naive B cells contain mostly autoreactive unresponsive clones. Blood 2010; 115:5026-36.

28. Boyd SD, Marshall EL, Merker JD, Maniar JM, Zhang LN, Sahaf B, et al. Measurement and clinical moni-

toring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci Transl Med 2009; 

1:12ra23.

29. Driessen GJ, van Zelm MC, van Hagen PM, Hartwig NG, Trip M, Warris A, et al. B-cell replication history 

and somatic hypermutation status identify distinct pathophysiological backgrounds in common vari-

able immunodeficiency. Blood 2011; 118:6814-23.

30. Rakhmanov M, Keller B, Gutenberger S, Foerster C, Hoenig M, Driessen G, et al. Circulating CD21low B 

cells in common variable immunodeficiency resemble tissue homing, innate-like B cells. Proc Natl Acad 

Sci U S A 2009; 106:13451-6.

31. Giovannetti A, Mazzetta F, Caprini E, Aiuti A, Marziali M, Pierdominici M, et al. Skewed T-cell receptor 

repertoire, decreased thymic output, and predominance of terminally differentiated T cells in ataxia 

telangiectasia. Blood 2002; 100:4082-9.

32. Exley AR, Buckenham S, Hodges E, Hallam R, Byrd P, Last J, et al. Premature ageing of the immune system 

underlies immunodeficiency in ataxia telangiectasia. Clin Immunol 2011; 140:26-36.



Chapter 4.2

180

33. Carney EF, Srinivasan V, Moss PA, Taylor AM. Classical Ataxia Telangiectasia Patients Have a Congenitally 

Aged Immune System with High Expression of CD95. J Immunol 2012; 189:261-8.

SUPPLEMENTS
A

AT classical

0

10

20

30

40

50

60

70

FR1 CDR1 FR2 CDR2 FR3

2423222120 25 26 27 28 29 30 31 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 62 63 64 65 66 67 68 69 70 71 72 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

su
bs

tit
ut

io
n 

(%
 o

f t
ot

al
 tr

an
sc

rip
ts

)

position (in amino acids)

B

position (in amino acids)

AT variant

0

10

20

30

40

50

60

70

FR1 CDR1 FR2 CDR2 FR3

2423222120 25 26 27 28 29 30 31 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 62 63 64 65 66 67 68 69 70 71 72 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

su
bs

tit
ut

io
n 

(%
 o

f t
ot

al
 tr

an
sc

rip
ts

)

position (in amino acids)

control total

0

10

20

30

40

50

60

70

FR1 CDR1 FR2 CDR2 FR3

2423222120 25 26 27 28 29 30 31 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 62 63 64 65 66 67 68 69 70 71 72 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

su
bs

tit
ut

io
n 

(%
 o

f t
ot

al
 tr

an
sc

rip
ts

)

AT classical AT variant

%
 m

ut
at

io
ns

 in
 IG
H

 tr
an

sc
rip

ts

10

8

6

4

2

0

12

classical child n=2

control child n=4

classical adult n=1

control adult n=3

classical child n=2

control child n=4

classical adult n=1

control adult n=3

variant n=3

control adult n=3

variant n=3

control adult n=3

IGHG
IGHA

Supplemental figure 1. Frequency of somatic 
hypermutations in IGHA and IGHG transcripts A. 
SHM in IGHGA and IGHG transcripts in classical 
and variant AT; children and adult compared 
to age matched controls. Data are compared 
with the Mann Whitney test. Significant 
values are indicated *** P=<0,0005 ** P<0,005 
* P<0.05. B. Distribution of replacement 
mutation substitutions in rearranged IGHV 
genes in classical AT, variant AT and controls. 
CDR: complementarity determining region, FR: 
framework region.

Supplemental Table 1. Normal value of immunoglobulin levels

Age IgA (g/L) IgM (g/L) IgG (g/L) IgG1 (g/L) IgG2 (g/L) IgG3 (g/L) IgG4 (g/L)

7-12 year 0.3-2.0 0.5-2.0 6.0-12.3 3.8-10.0 0.9-5.0 0.15-1.5 <0.03-2.1

>12  year 0.70-4.0 0.4-2.3 7.0-16.0 3.8-10.0 0.9-5.0 0.15-1.5 <0.03-2.1
Based on de Vries E, Kuijpers TW, Tol MJD van et al. Ned Tijdschr Geneeskd 200;144:2197-203
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Antibody deficiency severity in AT

VH DH JH
CDR3 
(aa)

JUNCTION

controle 1

IGHV4-30-2*01 IGHD3-3*01 IGHJ6*02 17 tgtgccagagtagtatcggatttttggagcggcgagttgtacggtatggacgtctgg

IGHV1-69*06 IGHD1-26*01 IGHJ6*02 17 tgtgcccggggagtgggagcccatgggtcatactactactacggtatggacgtctgg

IGHV4-30-2*01 IGHD3-3*01 IGHJ6*02 15 tgtgccggattttggagtggttcctactactactacggtatggacgtctgg

IGHV3-23*01 IGHD6-13*01 IGHJ4*02 14 tgtgcgaaagattcccatagcagcagcttcacttattttgactactgg

IGHV3-30*03 IGHD2-15*01 IGHJ6*02 17 tgtgcgaaagattttagtgggcggaccacgcgctactactacggtatggacgtctgg

IGHV1-2*04 IGHD3-3*01 IGHJ6*02 22 
tgtgcgaaagcggcccgccccaaacacaacgtattacgctttttggagtggcctcacggtatg-
gacgtctgg

IGHV3-30*03 IGHD4-11*01 IGHJ4*02 12 tgtgcgaaaggcgactacggaaataggtactttgagtattgg

IGHV3-23*01 IGHD3-22*01 IGHJ3*02 14 tgtgcgaaagggtgtagtggttatttccttgatggttttgatatctgg

IGHV3-30-3*01 IGHD2-8*01 IGHJ6*02 24 
tgtgcgagaccccacatcaaggatattgtactaatggtgtatgccaggcacccattggcgtacg-
gtatggacgtctgg

IGHV4-59*08 IGHD6-19*01 IGHJ4*02 18 tgtgcgagactagtttttcgtggcagtggctggtatagggggcgctactttgactactgg

IGHV1-69*06 IGHD2-2*01 IGHJ6*02 20 tgtgcgagagaactggtagtaccagctgctccggcttactactactactacggtatggacgtctgg

IGHV1-18*01 IGHD6-13*01 IGHJ4*02 12 tgtgcgagagaagagatagcagcagctgaagctgactactgg

IGHV4-34*01 IGHD5-18*01 IGHJ6*02 22 
tgtgcgagagaagtggactacagctatggtaagacggggccccgttactactactacggtatg-
gacgtctgg

IGHV1-18*01 IGHD6-6*01 IGHJ6*02 15 tgtgcgagagacccgtgggtagcagctcgccactacggtatggacgtctgg

IGHV1-18*01 IGHD3-16*01 IGHJ6*02 16 tgtgcgagagacgcaattactttcggttactactactacggtatggacgtctgg

IGHV1-18*01 IGHJ6*02 7 tgtgcgagagacggtatggacgtctgg

IGHV1-2*04 IGHD3-3*01 IGHJ6*02 24 
tgtgcgagagagagaatgaattcgaggggaatttttggagtggttatgggctctgtaggctacg-
gtatggacgtctgg

IGHV4-39*07 IGHD3-16*01 IGHJ6*02 13 tgtgcgagagagggattaggttatcactacggtatggacgtctgg

IGHV1-2*04 IGHD3-22*01 IGHJ4*02 11 tgtgcgagagagtccccaggctattactatgatagctgg

IGHV4-39*07 IGHD5-12*01 IGHJ4*02 11 tgtgcgagagatcatgatatagtggctacgaaccactgg

IGHV3-7*03 IGHD3-10*01 IGHJ4*02 11 tgtgcgagagattggcggttcggggagttgaattactgg

IGHV4-59*01 IGHD3-22*01 IGHJ5*02 18 tgtgcgagagatttgaggtattactatgatagtaccaccgggtggtggttcgacccctgg

IGHV3-11*03 IGHD2-15*01 IGHJ6*02 16 tgtgcgagagcctatgtcggcatggtggctgcgacctacggtatggacgtctgg

IGHV4-34*01 IGHD1-26*01 IGHJ4*02 12 tgtgcgagaggccggagatactatgatatgattgactactgg

IGHV4-59*01 IGHD3-22*01 IGHJ4*02 12 tgtgcgagagggagtagtggataccgtacctttgactactgg

IGHV4-59*08 IGHD1-14*01 IGHJ4*02 11 tgtgcgagaggggcggacccctggtactttgactactgg

IGHV4-39*07 IGHD6-6*01 IGHJ6*02 15 tgtgcgagaggttcagctcgtccttgggtctactacggtatggacgtctgg

IGHV4-59*01 IGHD5-24*01 IGHJ4*02 16 tgtgcgagatggacacctcgacggatggctacaattacgggacttgactactgg

IGHV4-39*01 IGHD4-17*01 IGHJ5*02 11 tgtgcgagccctacggagtacaactggttcgacccctgg

IGHV4-34*01 IGHD6-13*01 IGHJ6*02 16 tgtgcgagccttgggtttagcagcccctactactactacggtatggacgtctgg

IGHV3-7*03 IGHD3-16*01 IGHJ6*02 15 tgtgcgaggcttcgacccgatgactactactactacggtatggacgtctgg

IGHV4-39*07 IGHD6-6*01 IGHJ6*02 13 tgtgcgagggtcccccaagaatactactacggtatggacgtctgg

IGHV4-39*07 IGHD6-19*01 IGHJ4*02 13 tgtgcgctagcagtggctggcccgaacttggcctttgactactgg

IGHV3-23*01 IGHD5-24*01 IGHJ4*02 11 tgtgcgtctgggggagatggctacaatcttgactactgg

Supplemental Table 2. Sequences of coincidences
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VH DH JH
CDR3 
(aa)

JUNCTION

Controle 2

IGHV3-23*01 IGHD4-17*01 IGHJ5*01 11 tgtgcgaaagatcctcacgactacggtgacggctactgg

IGHV4-34*01 IGHD2-2*01 IGHJ1*01 18 tgtgcgagagcggccgtggtatattgtagtagtaccaactgcggatacttccagcactgg

IGHV4-59*01 IGHD3-10*01 IGHJ5*02 14 tgtgcgagagtaaatagggttcggggattttactggttcgacccctgg

IGHV4-34*03 IGHD2-21*02 IGHJ6*03 15 tgtgcgagagtcactgctcgttactactactactactacatggacgtctgg

AT15

IGHV3-21*01 IGHD3-9*01 IGHJ4*02 10 tgcgcgagttccgataattacttccttgactcctgg

IGHV3-15*01 IGHD3-22*01 IGHJ5*02 19 tgtaccacggtaccgtattactatgatagtttccgaacctgggacaactggttcgacccctgg

IGHV3-64*01 IGHD3-22*01 IGHJ3*02 22 
tgtacgagagacttaaagctccaaagcgatagtagtgggagctactcccagtcacatggttttga-
tatctgg

IGHV3-7*01 IGHD6-13*01 IGHJ4*02 11 tgtacgagagagggtataacagcaggggcggactactgg

IGHV3-7*01 IGHD5-18*01 IGHJ4*02 16 tgtacgagggacgtggatacagctccccaggtttgtccctactttgactactgg

IGHV1-46*01 IGHJ3*02 8 tgtactagaggaaatgcttttgatatctgg

IGHV3-73*01 IGHD3-16*02 IGHJ5*02 17 tgtactagcagatactacattacgtttgggggagttatctaccggttcgacccctgg

IGHV3-9*01 IGHD3-10*01 IGHJ4*02 13 tgtgcaaaagatttctccacctcgttcggggagttaagagattgg

IGHV3-9*01 IGHD3-9*01 IGHJ4*02 13 tgtgcaaaagccaatcttggctggggggattactttgactactgg

IGHV3-9*01 IGHD4-23*01 IGHJ4*02 14 tgtgcaaaagccctggggggtaactacataggccccttggactactgg

IGHV6-1*01 IGHD6-13*01 IGHJ3*02 20 tgtgcaagagagaacctcccgggtatagcagcagctggtacccccaatgatgcttttgatatctgg

IGHV6-1*01 IGHD6-13*01 IGHJ4*02 14 tgtgcaagagagcccgatagcagcagcgggactctctttgactactgg

IGHV6-1*01 IGHD5-24*01 IGHJ4*02 11 tgtgcaagagagggatggctacaaagctttgactactgg

IGHV6-1*01 IGHD6-19*01 IGHJ6*02 16 tgtgcaagagagtcaggtagcagtggcttttctccctacggtatggacgtctgg

IGHV6-1*01 IGHD5-12*01 IGHJ4*02 9 tgtgcaagagatcgatcctactttgactactgg

IGHV3-74*01 IGHD2-15*01 IGHJ4*02 13 tgtgcaagagatcggacctggggtagctcctactttgactactgg

IGHV6-1*01 IGHD6-6*01 IGHJ6*03 18 tgtgcaagagatcgggagtatagcagctcgacttactactactactacatggacgtctgg

IGHV6-1*01 IGHD6-13*01 IGHJ4*02 13 tgtgcaagagatctatcagcagcagctgtcaggtttgactactgg

IGHV6-1*01 IGHD1-1*01 IGHJ3*02 16 tgtgcaagagatcttatggactggaacgacgttgagagtgcttttgatatctgg

IGHV6-1*01 IGHD1-14*01 IGHJ4*02 15 tgtgcaagagattactccccggaaccacgaaggtattactttgactactgg

IGHV3-74*01 IGHD3-3*01 IGHJ3*02 10 tgtgcaagagatttttctgatgcttttgatatctgg

IGHV6-1*01 IGHD3-16*01 IGHJ6*02 14 tgtgcaagagctcggtcgggggtctactactacggtatggacgtctgg

IGHV3-74*01 IGHD3-10*01 IGHJ4*02 20 tgtgcaagaggagactatggttcggggagttattataacgatgcctccggaacttttgactactgg

IGHV3-74*01 IGHD6-13*01 IGHJ4*02 9 tgtgcaagagggagcagctggattacctactgg

IGHV3-74*01 IGHD6-19*01 IGHJ4*02 14 tgtgcaagaggggggtatagcagtggctggtaccactttgactactgg

IGHV6-1*01 IGHD1-26*01 IGHJ5*02 13 tgtgcaagagggggtgggagctactacggctggttcgacccctgg

IGHV6-1*01 IGHD1-1*01 IGHJ6*02 8 tgtgcaagaggtaccggtatggacgtctgg

IGHV3-13*01 IGHD3-22*01 IGHJ6*02 19 tgtgcaagaggtagtagtggttattaccctaattactactactactacggtatggacgtctgg

IGHV6-1*01 IGHD1-1*01 IGHJ3*02 17 tgtgcaagagtaaatgggtacaactggaactacccgccaggggcttttgatatctgg

IGHV3-74*01 IGHD3-22*01 IGHJ3*02 17 tgtgcaagagtcggtagtgggtattactatgatactaagggtgcttttgatatctgg
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Antibody deficiency severity in AT

VH DH JH
CDR3 
(aa)

JUNCTION

AT15

IGHV6-1*01 IGHD2-15*01 IGHJ4*02 14 tgtgcaagattggtggcagggggaccttcgtactactttgactactgg

IGHV3-74*01 IGHJ6*02 10 tgtgcaagcgactacgcctacggtatggacgtctgg

IGHV3-74*01 IGHD4-17*01 IGHJ2*01 15 tgtgcaaggggagggactacggtgactgggctgtggtacttcgatctctgg

IGHV6-1*01 IGHD3-3*01 IGHJ4*02 11 tgtgcaagtgggtcggacccccggtcattatactattgg

IGHV3-33*01 IGHD5-24*01 IGHJ4*02 9 tgtgcaattctacaaggattctttgactattgg

IGHV4-59*01 IGHD4-11*01 IGHJ1*01 11 tgtgcacgatacacgaacgctgaatacttccagcactgg

IGHV3-21*01 IGHD6-13*01 IGHJ5*02 15 tgtgccaggaagcagcagctggtaaaaagaggagactggttcgacccctgg

IGHV4-34*01 IGHD5-18*01 IGHJ4*02 19 tgtgcccgaagcgggaaggggctatggttaggggcctcgggtcggtcctactttgaccactgg

IGHV3-66*02 IGHD3-3*01 IGHJ6*03 12 tgtgcccgatattactactactactactacatggacgtctgg

IGHV3-23*01 IGHD5-18*01 IGHJ3*02 15 tgtgcgaaagaagatacagctatggttacaaatgatgcttttgatatctgg

IGHV3-23*01 IGHD1-1*01 IGHJ4*02 12 tgtgcgaaagacccccaagaggagtactactttgactactgg

IGHV3-23*01 IGHD6-19*01 IGHJ6*02 16 tgtgcgaaagacggcagtggccattactactactactacggtatggacgtctgg

IGHV3-53*01 IGHD5-18*01 IGHJ3*02 11 tgtgcgaaagacgggatacatgatgcttttgatatctgg

IGHV3-30*03 IGHJ4*02 7 tgtgcgaaagacgtctttgactactgg

IGHV3-23*01 IGHD3-10*01 IGHJ1*01 14 tgtgcgaaagagggtgaggggtccgaccttgaatacttccagcactgg

IGHV3-23*01 IGHD3-22*01 IGHJ4*02 14 tgtgcgaaagataaacaggactatgatagtagtccaattgactactgg

IGHV3-23*01 IGHD1-26*01 IGHJ3*01 10 tgtgcgaaagataacagtgggagctacgggcactgg

IGHV3-23*01 IGHD3-10*01 IGHJ5*02 18 tgtgcgaaagatccgtccgccttattactatggttcggggaggggtggttcgacccctgg

IGHV3-30*03 IGHD1-7*01 IGHJ6*02 17 tgtgcgaaagatcgcgggtataactggaactacgacgggtacggtatggacgtctgg

IGHV3-30*03 IGHD3-10*01 IGHJ6*02 19 tgtgcgaaagatcggagttcggggagttattatagccttacgaggtacggtatggacgtctgg

IGHV3-30*03 IGHD1-20*01 IGHJ6*02 15 tgtgcgaaagatcgggcgctgtataactggaactacggtatggacgtctgg

IGHV3-23*01 IGHD6-25*01 IGHJ6*02 15 tgtgcgaaagatctcctgcggcggcactactactacggtatggacgtctgg

IGHV3-23*01 IGHD3-3*01 IGHJ6*03 21 
tgtgcgaaagatgcgcggtcctacgatttttggagtggttatcactactactactacatggacgtct-
gg

IGHV3-23*01 IGHD2-15*01 IGHJ4*02 13 tgtgcgaaagattgggagcagcttttgtactactttgactactgg

IGHV3-30*03 IGHD6-19*01 IGHJ4*02 14 tgtgcgaaagattggggggatgggcagtggtactactttgactactgg

IGHV3-23*01 IGHD6-13*01 IGHJ4*02 17 tgtgcgaaagatttgacactccttagcagcagacccctttactactttgacttctgg

IGHV3-23*01 IGHD2-2*01 IGHJ4*02 10 tgtgcgaaagcaggcccccagtactttgactactgg

IGHV3-30*03 IGHD3-22*01 IGHJ1*01 17 tgtgcgaaagcgggctactatgatagtagtggttattggaggtacttccagcactgg

IGHV3-23*01 IGHD3-10*01 IGHJ4*02 19 tgtgcgaaaggtcggcccctaggggtcctatggttcgggagtcaagactactttgactactgg

IGHV3-23*01 IGHD5-18*01 IGHJ4*02 15 tgtgcgaaagtcaccttggttggatacaactatggttgttttgactactgg

IGHV3-23*01 IGHD3-22*01 IGHJ3*02 21 
tgtgcgaaatacaggcaatggaattactatgatagtagtgcttattacacggatgcttttgatatct-
gg

IGHV3-23*01 IGHD6-6*01 IGHJ4*02 14 tgtgcgaaatccctaactgcagctcgtccgaactactttgactactgg

IGHV3-23*01 IGHD1-26*01 IGHJ6*03 21 
tgtgcgaacggccaagacgggggggcagtgggagctactattctctactactactacatg-
gacgtctgg

IGHV3-66*01 IGHD6-13*01 IGHJ4*02 10 tgtgcgaagggggatatagcagcagctgcgcggtgg

IGHV3-23*01 IGHD6-19*01 IGHJ4*02 16 tgtgcgaatctatcacccgggtatagcagtggctgggaagactttgactactgg
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VH DH JH
CDR3 
(aa)

JUNCTION

AT15

IGHV4-59*08 IGHD3-10*01 IGHJ6*03 17 tgtgcgactaggggagggggagccccctactactactactactacatggacgtctgg

IGHV3-23*01 IGHD2-8*01 IGHJ4*02 19 tgtgcgagaaacggacgttgggatattgtactaatggtgtatgctctccctttgggctactgg

IGHV3-66*01 IGHD6-13*01 IGHJ6*02 17 tgtgcgagagatcggatagcagcagctggtaccgactactacggtatggacgtctgg

IGHV3-21*01 IGHD1-14*01 IGHJ6*02 16 tgtgcgagagatcgggaccgccattactactactactacggtatggacgtctgg 

IGHV3-7*01 IGHD3-16*02 IGHJ4*02 20 tgtgcgagagatctcgatgattacgtttgggggagttatcgttacccaagcccctttgactactgg

IGHV3-48*01 IGHD5-12*01 IGHJ4*02 13 tgtgcgagagatctcggatatagtggctacgattacggctactgg

IGHV1-18*01 IGHD3-22*01 IGHJ5*01 17 tgtgcgagagatctctatgatagtagtggtcgtatatataccccgaccgtctactgg

IGHV4-59*01 IGHD3-22*01 IGHJ3*02 13 tgtgcgagagatgccctagtggttggaaatgcttttgatatctgg

IGHV3-48*01 IGHD2-21*01 IGHJ6*02 19 tgtgcgagagatggaggcgaggggaccgaggtagactactactactacggtatggacgtctgg

IGHV3-21*01 IGHD2-15*01 IGHJ4*02 20 tgtgcgagagatgggtggttttgtagtggtggtccctgccaccgtctatactactttgactactgg

IGHV3-21*01 IGHD3-9*01 IGHJ4*02 16 tgtgcgagagattacgatattctgactgctaattcatactactttgactactgg

IGHV1-18*01 IGHD3-22*01 IGHJ1*01 14 tgtgcgagagattactactatgatagtagtggttatccccattactgg

IGHV4-59*01 IGHD5-12*01 IGHJ6*03 18 tgtgcgagagattcaaggggctccggttattactactactactactacatggacgtctgg

IGHV3-48*01 IGHD3-10*01 IGHJ4*02 8 tgtgcgagagattcgcggggtgactactgg

IGHV3-21*01 IGHD3-22*01 IGHJ3*02 22 
tgtgcgagagattcggcttattactatgatagtagtggttatcaaagagggttcgatgcttttga-
tatctgg

IGHV4-59*01 IGHD6-19*01 IGHJ4*02 16 tgtgcgagagattggagcagtggctggaccccgcggtactactttgactactgg

IGHV4-34*01 IGHD4-17*01 IGHJ4*02 14 tgtgcgagagcaaacccagactacggtgatgaaatgcttgactactgg

IGHV3-21*01 IGHD6-19*01 IGHJ4*02 15 tgtgcgagagcagagagtggctggtaccagaagtactactttgactactgg

IGHV4-4*07 IGHD5-18*01 IGHJ3*02 19 tgtgcgagagcattcgcggatacaactatggttttatcgggcctttatgcttttgatatctgg

IGHV1-3*01 IGHD2-21*01 IGHJ4*02 14 tgtgcgagagctctgggggtgaactcaccgtactactttgactactgg

IGHV3-11*01 IGHD5-18*01 IGHJ4*02 12 tgtgcgagagctgtaagtggatacagctatgttaactactgg

IGHV4-59*01 IGHD3-10*01 IGHJ5*02 19 tgtgcgagaggaagtagggttacctattactatggttgggggtgtggccagttcgacccctgg

IGHV1-2*04 IGHD6-6*01 IGHJ6*03 15 tgtgcgagaggacagcagctcgcctactactactactacatggacgtctgg

IGHV4-34*01 IGHD4-17*01 IGHJ5*02 16 tgtgcgagaggacgaaccgcctctacggtgaagcgactgtggttcgacccctgg

IGHV3-23*01 IGHD6-19*01 IGHJ5*02 11 tgtgcgagaggaggatggtacaactggttcgacccctgg

IGHV3-7*01 IGHD6-6*01 IGHJ6*02 16 tgtgcgagaggaggcccaacccgttactactactactacggtatggacgtctgg

IGHV4-34*01 IGHD3-10*01 IGHJ5*02 21 
tgtgcgagaggcaaagtagggtcacgtattactatggttcggggagttatttcctccttcgacccct-
gg

IGHV4-34*01 IGHD5-18*01 IGHJ4*02 11 tgtgcgagaggcacagatacaactacgggagtctactgg

IGHV4-34*01 IGHD2-2*01 IGHJ4*02 20 tgtgcgagaggcaggaccggatattgtagtagtaccagctgctatgttaccccatttgactactgg

IGHV4-34*01 IGHD1-26*01 IGHJ4*02 11 tgtgcgagaggcccccagtgggagcgaattgactactgg

IGHV4-34*01 IGHD3-3*01 IGHJ4*02 21 tgtgcgagaggcccgccgcctaagtattacgatttttggagtggttattattcctactttgactactgg

IGHV4-34*01 IGHD6-13*01 IGHJ4*02 11 tgtgcgagaggccgaagtaagctggaacttgactactgg

IGHV4-34*01 IGHD6-13*01 IGHJ5*02 15 tgtgcgagaggccgatatagcagcaggggagggaactggttcgacccctgg

IGHV4-34*01 IGHD4-17*01 IGHJ4*02 13 tgtgcgagaggccgtcacggtgactacgccgggtttgactactgg

IGHV4-34*01 IGHD4-11*01 IGHJ4*02 16 tgtgcgagaggcgtcatctacagtaacgatcgcaggtactactttgactactgg

IGHV1-8*01 IGHD3-9*01 IGHJ6*02 19 tgtgcgagaggctccgtattacgatattttgaccgctactactactacggtatggacgtctgg
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VH DH JH
CDR3 
(aa)

JUNCTION

AT15

IGHV1-8*01 IGHD3-9*01 IGHJ6*02 19 tgtgcgagaggctccgtattacgatattttgaccgctactactactacggtatggacgtctgg

IGHV1-69*04 IGHD1-26*01 IGHJ4*02 8 tgtgcgagagggaactactttgactactgg

IGHV3-11*01 IGHD4-17*01 IGHJ6*02 19 tgtgcgagagggaccattgactacggagaatattactactactactacggtatggacgtctgg

IGHV3-66*02 IGHD3-16*02 IGHJ4*02 9 tgtgcgagagggggaattaccgtggactactgg

IGHV3-21*01 IGHD3-22*01 IGHJ4*02 9 tgtgcgagaggggttaactactttgactactgg

IGHV4-59*01 IGHD3-16*02 IGHJ3*02 9 tgtgcgagagggtcttttgcttttgatatctgg

IGHV3-7*01 IGHD2-15*01 IGHJ4*02 14 tgtgcgagagggtggtctggtggctccttgtactactttgactactgg

IGHV3-21*01 IGHD3-22*01 IGHJ4*02 16 tgtgcgagaggtaccctccctacgtattactatgatagtagtgtttactactgg

IGHV4-34*01 IGHD1-26*01 IGHJ4*02 11 tgtgcgagaggtagtgggagtcaaacttttgactactgg

IGHV3-20*01 IGHD3-9*01 IGHJ5*02 17 tgtgcgagaggtccaggcgatattttgactggttattacaactggttcgacccctgg

IGHV4-34*01 IGHD3-10*01 IGHJ5*02 19 tgtgcgagaggtgactatggttcggggagttatatacctcccgcgcggtggttcgacccctgg

IGHV3-21*01 IGHD2-21*01 IGHJ4*02 13 tgtgcgagaggtggggagggcgatggctactactttgactactgg

IGHV4-34*01 IGHD6-13*01 IGHJ4*02 20 
tgtgcgagagtaatgtatagcagcagctggtacgccgtagccctcccgggctactttgactact-
gg

IGHV4-34*01 IGHD5-18*01 IGHJ4*02 16 tgtgcgagagtgaggcgtggatacagctatggtggggtctactttgactactgg

IGHV4-34*01 IGHD5-24*01 IGHJ4*02 13 tgtgcgagagtggggatggctacaattactggtttggactactgg

IGHV3-23*01 IGHD4-17*01 IGHJ4*02 13 tgtgcgagagttcactacggtgacttcccgtactttgactactgg

IGHV3-48*03 IGHD3-22*01 IGHJ4*02 18 tgtgcgagagttcccccgagcgattattactatgatagtagtggttattctgactactgg

IGHV4-34*01 IGHD5-18*01 IGHJ4*02 17 tgtgcgagagttgggagaacgtacatacaactatggtcccgaccttttgactactgg

IGHV3-48*01 IGHD6-19*01 IGHJ6*02 16 tgtgcgagagtttcgggctggtacggtcactactactacggtatggacgtctgg

IGHV4-b*01 IGHD1-26*01 IGHJ5*02 15 tgtgcgagatcggcgatagtgggagctagggtattctggttcgacccctgg

IGHV3-21*01 IGHD3-3*01 IGHJ4*02 23 
tgtgcgagatctcaacgtattacgatttttggagtggttattatacggccaggtcagcggggct-
ttgactactgg

IGHV5-51*01 IGHD6-13*01 IGHJ1*01 14 tgtgcgagatgtatagcagcagctggtacaggttacttccagcactgg

IGHV4-61*02 IGHD1-26*01 IGHJ3*02 13 tgtgcgagattggcgttgcgtgggaactatgcttttgatacctgg

IGHV4-59*01 IGHD4-17*01 IGHJ4*02 11 tgtgcgagatttcatgactacggtgacttcgccgactgg

IGHV3-21*01 IGHD3-10*01 IGHJ3*02 10 tgtgcgagcctttcgcgtgatgcttttgatatctgg

IGHV4-59*01 IGHD5-18*01 IGHJ6*03 19 tgtgcgagcggtggatacagctatggttacgactactactactactactacatggacgtctgg

IGHV3-23*01 IGHD3-22*01 IGHJ4*02 14 tgtgcgagcgttgatagtagtggttattacttctactttgactactgg

IGHV3-21*01 IGHD3-16*01 IGHJ6*02 13 tgtgcgagctatggggaagactactactacggtatggacgtctgg

IGHV4-59*01 IGHD5-24*01 IGHJ4*02 13 tgtgcgaggagagagatggctatgattggatactttgactactgg

IGHV4-59*01 IGHD2-15*01 IGHJ5*02 17 tgtgcgaggagtcattgtagtgggagtagctgctacctcgactggttcgacccctgg

IGHV3-64*01 IGHD1-26*01 IGHJ3*02 15 tgtgcgaggcccctcagggtgggagctactcatgatgcttttgatatctgg

IGHV4-34*01 IGHD2-2*01 IGHJ6*03 14 tgtgcgagggtccccagttactactactactactacatggacgtctgg

IGHV4-59*01 IGHD1-26*01 IGHJ6*02 11 tgtgcgagggtcggatactactacggtatggacgtctgg

IGHV4-34*01 IGHD3-10*01 IGHJ6*03 18 tgtgcgagggttcggggagttattattgggcgctactactactactacatggacgtctgg

IGHV4-59*01 IGHD4-17*01 IGHJ4*02 12 tgtgcgaggtcctactacggtgactactactttgactactgg

IGHV4-34*01 IGHD3-10*01 IGHJ4*02 11 tgtgcgaggttctcggacagctactactttgactactgg
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AT15

IGHV4-34*01 IGHD3-10*01 IGHJ4*02 11 tgtgcgaggttctcggacagctactactttgactactgg

IGHV1-2*02 IGHD6-19*01 IGHJ4*02 14 tgtgcgagtaccggagggccgcgggatagcagtggcgctcacgggtgg

IGHV4-39*01 IGHD1-1*01 IGHJ6*02 13 tgtgcgagtactggagactactactactacggtatggacgtctgg

IGHV3-33*01 IGHD4-17*01 IGHJ6*03 12 tgtgcgagttacggtgactactactactacatggacgtctgg

IGHV3-7*01 IGHD2-21*01 IGHJ4*02 14 tgtgcgagttccacccggggattcctcccagactactttgactactgg

IGHV1-8*01 IGHJ6*02 10 tgtgcgatttactactactacggtatggacgtctgg

IGHV3-30*03 IGHD3-9*01 IGHJ6*03 19 tgtgcgcgagaggcgggattacgatattttgactggttatactactactacatggacgtctgg

IGHV4-4*07 IGHD1-1*01 IGHJ5*02 14 tgtgcgcgaggggcaactggatcaccatacaattggttcgacccctgg

IGHV1-18*01 IGHD6-19*01 IGHJ4*02 15 tgtgcgcggggatttatccctgaccagtggctggtaccccttgactactgg

IGHV4-59*01 IGHD2-15*01 IGHJ3*02 12 tgtgcgcggtggctgccaacggatgatgcttttgatatctgg

IGHV1-58*02 IGHD3-3*01 IGHJ5*02 15 tgtgcggcaggggcccaagattacgatttttggagtggttattcactttgg

IGHV1-2*02 IGHD5-18*01 IGHJ3*02 20 tgtgcgggtagacaccacagctatggttacaattgggttgcaataaatgatgcttttgatatct-
gg

IGHV5-51*01 IGHD1-26*01 IGHJ4*02 11 tgtgcggtgagtaggagctactactactttgactactgg

IGHV1-46*01 IGHD5-12*01 IGHJ4*02 12 tgtgctagagggcttgacacggtggctacgattagttactgg

IGHV6-1*01 IGHD6-13*01 IGHJ4*02 11 tgtgcaagagaaggcagcagctggtacgtagactattgg

IGHV6-1*01 IGHD3-10*01 IGHJ3*02 9 tgtgcaagaggtgcgggtgcttttgatatctgg

IGHV1-8*01 IGHD1-26*01 IGHJ6*03 15 tgtgcaagagtaaatggtgggagctactactactactacatggacgtctgg

IGHV3-30*03 IGHD6-13*01 IGHJ4*02 15 tgtgcgaaacatggtgagggagagcagcagctggcgtactttgactactgg

IGHV3-23*01 IGHD3-22*01 IGHJ4*02 14 tgtgcgaaagatggttactatgatagtagtgcttattttgtctactgg

IGHV3-23*01 IGHD3-9*01 IGHJ4*02 14 tgtgcgaagcaactggattacgatattttgactggttgtgactactgg

IGHV4-34*01 IGHD6-6*01 IGHJ6*02 16 tgtgcgaccctagcagctcgtccgccctactattattatggtatggacatctgg

IGHV4-34*01 IGHD3-3*02 IGHJ5*02 16 tgtgcgagacaattttggagtgcttatcccgaatacaactggttcgacccctgg

IGHV4-59*01 IGHD5-24*01 IGHJ4*02 12 tgtgcgagacgaactggagagatggcgagctttgactactgg

IGHV5-51*01 IGHD6-13*01 IGHJ4*02 11 tgtgcgagagagagcgatagcagcagctggttctactgg

IGHV3-11*01 IGHD4-17*01 IGHJ5*02 11 tgtgcgagagagtcccgcatgactacggtgacgcggtgg

IGHV3-21*01 IGHD4-17*01 IGHJ4*02 10 tgtgcgagagataagactacgcactttgactactgg

IGHV3-7*01 IGHD3-10*01 IGHJ4*02 9 tgtgcgagagatcgcggatgttttgactactgg

IGHV3-21*01 IGHD6-25*01 IGHJ4*02 14 tgtgcgagagatcggttggggggtatagcagtggcgacggactactgg

IGHV3-21*01 IGHD5-24*01 IGHJ5*02 18 tgtgcgagagcgggagggatggctacaataatttgggagtacaactggttcgacccctgg

IGHV1-8*01 IGHD5-24*01 IGHJ4*02 17 tgtgcgagaggccccaacctgagatggctacaattatacggctactttgactactgg

IGHV4-34*01 IGHD2-2*01 IGHJ5*02 16 tgtgcgagaggcttgagccttaccagagactcctctaactggttcgacccctgg

IGHV3-7*01 I GHD2-21*02 IGHJ4*02 16 tgtgcgaggattacgagtgcatattgtggtggtgactgccctcttgactactgg

IGHV3-30*03 IGHD6-13*01 IGHJ4*02 16 tgtgcgaggggacagaggggcagcagctggcccgattatctaattgactactgg

IGHV1-2*02 IGHD3-22*01 IGHJ4*02 13 tgtgcgagggttgatagtagtggttattactactttctctactgg

AT7

IGHV3-15*07 IGHD5-18*01 IGHJ4*02 14 tgtaccacagaggcacgcaacgtggatacagctatggttgactactgg
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IGHV3-15*07 IGHD1-26*01 IGHJ3*02 14 tgtaccaccttagtgggagctactactgcgtatgcttttgatatctgg

IGHV3-49*04 IGHD6-19*01 IGHJ4*02 13 tgtactagagagtatgggcagtggctggtcccttttgactactgg

IGHV3-49*04 IGHD3-22*01 IGHJ3*02 17 tgtactagagcgcgttactatgatagtagtggttcccctgatgcttttgatatctgg

IGHV3-9*01 IGHD3-10*01 IGHJ3*02 9 tgtgcaaaagcccggggcgcttttgatatctgg

IGHV1-24*01 IGHD1-1*01 IGHJ4*02 7 tgtgcaacacacctctttgactactgg

IGHV1-24*01 IGHD6-25*01 IGHJ4*02 15 tgtgcaacagagtttagtctcgggtacccacaatactactttgactactgg

IGHV1-24*01 IGHD1-26*01 IGHJ4*02 16 tgtgcaacagtctatagtgggagctactacggcgggtactactttgactactgg

IGHV3-74*01 IGHD3-10*01 IGHJ3*02 9 tgtgcaagagaggttcgggcttttgatatctgg

IGHV6-1*01 IGHD6-6*01 IGHJ4*02 14 tgtgcaagagatcctagtataacaactcgtctcgactttgactactgg

IGHV3-74*01 IGHD1-14*01 IGHJ4*02 8 tgtgcaagagatcggaactttgactactgg

IGHV6-1*01 IGHD1-7*01 IGHJ4*02 14 tgtgcaagagatcgtctcaactggaactacggtacatttgactactgg

IGHV6-1*01 IGHD5-18*01 IGHJ4*02 15 tgtgcaagagatgagggaggaatacagctatggtccggttttgactactgg

IGHV3-13*01 IGHD1-26*01 IGHJ4*02 15 tgtgcaagagccaagggccgaaggagtgggagctacgttcttgactactgg

IGHV3-74*01 IGHD3-22*01 IGHJ4*02 13 tgtgcaagaggggatagtagtggttattccccctttgactactgg

IGHV6-1*01 IGHD3-10*01 IGHJ3*02 19 tgtgcaagagtttacactatggttcggggagttactatagattcccatgcttttgatatctgg

IGHV2-5*10 IGHD4-11*01 IGHJ6*02 14 tgtgcacacagaccccagtactactactactacggtatggacgtctgg

IGHV4-30-2*01 IGHD3-22*01 IGHJ3*02 14 tgtgccagaacccatagtagtggttattacggtgcttttgatatctgg

IGHV3-23*01 IGHD5-12*01 IGHJ4*02 15 tgtgcgaaaatccatagtggctacgattccccgtactactttgactactgg

IGHV3-23*01 IGHD6-13*01 IGHJ4*02 19 
tgtgcgaaacaaccaaccgggtatagcagcagctggtacggtcaaggatactttgac-
tactgg

IGHV3-23*01 IGHD2-21*02 IGHJ4*02 18 tgtgcgaaaccaagagcatattgtggtggtgactgctatcctccttactttgactactgg

IGHV3-23*01 IGHD6-25*01 IGHJ2*01 19 
tgtgcgaaactgtgggcgcggtatagcagctcctacccattaaactggtacttcgatctct-
gg

IGHV3-23*01 IGHD7-27*01 IGHJ4*02 17 tgtgcgaaagaagactctcacaaactggggatggtgggggactactttgactactgg

IGHV3-23*01 IGHD6-19*01 IGHJ4*02 16 tgtgcgaaagaccatagcagtggctggtcaggccggttctactttgactactgg

IGHV3-23*01 IGHD6-19*01 IGHJ4*02 15 tgtgcgaaagacccaacgggtatagcagtggctggttcttttgactactgg

IGHV3-23*01 IGHD3-22*01 IGHJ4*02 16 tgtgcgaaagatccctatgatagtagtggttattacaccacttttgactactgg

IGHV3-23*01 IGHD2-21*02 IGHJ4*02 14 tgtgcgaaagatcgccggggggcggtgactactatctttgactactgg

IGHV3-23*01 IGHD6-19*01 IGHJ4*02 18 tgtgcgaaagatcgggggggtagtatagcagtggctggtaatagggtttttgactactgg

IGHV3-23*01 IGHD4-23*01 IGHJ4*02 16 tgtgcgaaagatcgtaggctttacggtggtaacccctactactttgactactgg

IGHV3-23*01 IGHD3-22*01 IGHJ1*01 17 tgtgcgaaagatcgtggaacgtattactatgatagtagtggttattacctacactgg

IGHV3-23*01 IGHD6-6*01 IGHJ6*02 17 tgtgcgaaagatctcagctcgtccggcccttactactactacggtatggacgtctgg

IGHV3-23*01 IGHJ3*02 8 tgtgcgaaagatgatgcttttgatatctgg

IGHV3-15*07 IGHD1-26*01 IGHJ3*02 14 tgtaccaccttagtgggagctactactgcgtatgcttttgatatctgg

IGHV3-49*04 IGHD6-19*01 IGHJ4*02 13 tgtactagagagtatgggcagtggctggtcccttttgactactgg

IGHV3-49*04 IGHD3-22*01 IGHJ3*02 17 tgtactagagcgcgttactatgatagtagtggttcccctgatgcttttgatatctgg

IGHV3-9*01 IGHD3-10*01 IGHJ3*02 9 tgtgcaaaagcccggggcgcttttgatatctgg

IGHV1-24*01 IGHD1-1*01 IGHJ4*02 7 tgtgcaacacacctctttgactactgg



Chapter 4.2

188

VH DH JH
CDR3 
(aa)

JUNCTION

AT7

IGHV1-24*01 IGHD6-25*01 IGHJ4*02 15 tgtgcaacagagtttagtctcgggtacccacaatactactttgactactgg

IGHV1-24*01 IGHD1-26*01 IGHJ4*02 16 tgtgcaacagtctatagtgggagctactacggcgggtactactttgactactgg

IGHV3-74*01 IGHD3-10*01 IGHJ3*02 9 tgtgcaagagaggttcgggcttttgatatctgg

IGHV6-1*01 IGHD6-6*01 IGHJ4*02 14 tgtgcaagagatcctagtataacaactcgtctcgactttgactactgg

IGHV3-74*01 IGHD1-14*01 IGHJ4*02 8 tgtgcaagagatcggaactttgactactgg

IGHV6-1*01 IGHD1-7*01 IGHJ4*02 14 tgtgcaagagatcgtctcaactggaactacggtacatttgactactgg

IGHV6-1*01 IGHD5-18*01 IGHJ4*02 15 tgtgcaagagatgagggaggaatacagctatggtccggttttgactactgg

IGHV3-13*01 IGHD1-26*01 IGHJ4*02 15 tgtgcaagagccaagggccgaaggagtgggagctacgttcttgactactgg

IGHV3-74*01 IGHD3-22*01 IGHJ4*02 13 tgtgcaagaggggatagtagtggttattccccctttgactactgg

IGHV6-1*01 IGHD3-10*01 IGHJ3*02 19 tgtgcaagagtttacactatggttcggggagttactatagattcccatgcttttgatatctgg

IGHV2-5*10 IGHD4-11*01 IGHJ6*02 14 tgtgcacacagaccccagtactactactactacggtatggacgtctgg

IGHV4-30-2*01 IGHD3-22*01 IGHJ3*02 14 tgtgccagaacccatagtagtggttattacggtgcttttgatatctgg

IGHV3-23*01 IGHD5-12*01 IGHJ4*02 15 tgtgcgaaaatccatagtggctacgattccccgtactactttgactactgg

IGHV3-23*01 IGHD6-13*01 IGHJ4*02 19 
tgtgcgaaacaaccaaccgggtatagcagcagctggtacggtcaaggatactttgac-
tactgg

IGHV3-23*01 IGHD2-21*02 IGHJ4*02 18 tgtgcgaaaccaagagcatattgtggtggtgactgctatcctccttactttgactactgg

IGHV3-23*01 IGHD6-25*01 IGHJ2*01 19 
tgtgcgaaactgtgggcgcggtatagcagctcctacccattaaactggtacttcgatctct-
gg

IGHV3-23*01 IGHD7-27*01 IGHJ4*02 17 tgtgcgaaagaagactctcacaaactggggatggtgggggactactttgactactgg

IGHV3-23*01 IGHD6-19*01 IGHJ4*02 16 tgtgcgaaagaccatagcagtggctggtcaggccggttctactttgactactgg

IGHV3-23*01 IGHD6-19*01 IGHJ4*02 15 tgtgcgaaagacccaacgggtatagcagtggctggttcttttgactactgg

IGHV3-23*01 IGHD3-22*01 IGHJ4*02 16 tgtgcgaaagatccctatgatagtagtggttattacaccacttttgactactgg

IGHV3-23*01 IGHD2-21*02 IGHJ4*02 14 tgtgcgaaagatcgccggggggcggtgactactatctttgactactgg

IGHV3-23*01 IGHD6-19*01 IGHJ4*02 18 
tgtgcgaaagatcgggggggtagtatagcagtggctggtaatagggtttttgactact-
gg

IGHV3-23*01 IGHD4-23*01 IGHJ4*02 16 tgtgcgaaagatcgtaggctttacggtggtaacccctactactttgactactgg

IGHV3-23*01 IGHD3-22*01 IGHJ1*01 17 tgtgcgaaagatcgtggaacgtattactatgatagtagtggttattacctacactgg

IGHV3-23*01 IGHD6-6*01 IGHJ6*02 17 tgtgcgaaagatctcagctcgtccggcccttactactactacggtatggacgtctgg

IGHV3-23*01 IGHJ3*02 8 tgtgcgaaagatgatgcttttgatatctgg

IGHV3-23*01 IGHD3-3*01 IGHJ3*02 16 tgtgcgaaagatggaggggcccgccctctaccccatgatgcttttgatatctgg

IGHV3-30*03 IGHD1-26*01 IGHJ4*02 16 tgtgcgaaagatggtcgggtgggagccgaacctaaaaactactttgactactgg

IGHV3-23*01 IGHD6-19*01 IGHJ4*02 15 tgtgcgaaagattgggcaggagcagtggctggtaactactttgactactgg

IGHV3-23*01 IGHD3-3*01 IGHJ4*02 10 tgtgcgaaagattgggggtggacctttgactactgg

IGHV3-23*01 IGHD3-9*01 IGHJ1*01 12 tgtgcgaaagccgtgtccgtttctgaatacttccagcactgg

IGHV3-23*01 IGHD1-26*01 IGHJ4*02 15 tgtgcgaaagcggcggtgtgggagctccaaacgccgtactttgactactgg

IGHV3-23*01 IGHD3-22*01 IGHJ6*02 15 tgtgcgaaagctaaggtagcagtcaactactactacggtatggacctctgg

IGHV3-23*01 IGHD3-22*01 IGHJ4*02 17 tgtgcgaaagggaaggggaattactatgatagtagtggttattactttgactactgg

IGHV3-30*03 IGHD3-22*01 IGHJ1*01 18 tgtgcgaaaggttattactatgatagtagtggttattaccctgaatacttccagcactgg
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IGHV3-23*01 IGHD3-22*01 IGHJ4*02 13 tgtgcgaaagtagggcgatactatgatagtagctttgactactgg

IGHV3-53*01 IGHD4-17*01 IGHJ4*02 15 tgtgcgaaagtggggcctacggtgactacgatgtactactttgactactgg

IGHV3-23*01 IGHD3-16*01 IGHJ2*01 11 tgtgcgaaggcagggggaaactggtacttcgatctctgg

IGHV3-30*01 IGHD3-10*01 IGHJ6*02 22 tgtgcgaccgagcccctattactatggttcggggagttacctagcgggtactactacggtat-
ggacgtctgg

IGHV4-39*01 IGHD4-23*01 IGHJ4*02 16 tgtgcgagaacacactacggtggtaactccgccctttactactttgactactgg

IGHV3-7*01 IGHD3-22*01 IGHJ4*02 19 tgtgcgagaagaagagaggaggggtattactatgatagtagtggttattactttgactactgg

IGHV3-30*01 IGHD5-12*01 IGHJ4*02 18 tgtgcgagacaattacgtggatatagtggctacgatgtacagggaaattttgactactgg

IGHV5-a*01 IGHD6-19*01 IGHJ3*02 10 tgtgcgagacaccccaggggtgcttttgatatctgg

IGHV4-39*01 IGHD6-13*01 IGHJ6*02 17 tgtgcgagacataatgctatagcagcagctggttactactacggtatggacgtctgg

IGHV4-39*01 IGHD6-19*01 IGHJ3*02 15 tgtgcgagacatggaactagcagtggctggttagatgcttttgatatctgg

IGHV4-39*01 IGHD6-25*01 IGHJ4*02 16 tgtgcgagacatggggatcgtccaatagcagcagccacgaactttgactactgg

IGHV4-39*01 IGHD6-25*01 IGHJ4*02 13 tgtgcgagacatgtccatatagcagctggtacggttcactactgg

IGHV4-39*01 IGHD6-13*01 IGHJ4*02 15 tgtgcgagacatgtgctacagcagctgggaggttactactttgactactgg

IGHV4-39*01 IGHD1-26*01 IGHJ4*02 12 tgtgcgagaccgtatagtgggagctacactcttgactactgg

IGHV3-20*01 IGHD3-9*01 IGHJ3*02 18 tgtgcgagacgaggttacgatattttgactggttattcccctggtgcttttgatatctgg

IGHV4-39*01 IGHD2-15*01 IGHJ6*02 14 tgtgcgagacgtcgtgggagctactactactacggtatggacgtctgg

IGHV5-51*01 IGHD2-2*01 IGHJ5*02 20 tgtgcgagacgttcaagcggatattgtagtagtaccagctgcagagacaactggt-
tcgacccctgg

IGHV3-33*01 IGHD6-13*01 IGHJ4*02 11 tgtgcgagagaaggggacaggccttactttgactactgg

IGHV4-b*01 IGHD6-6*01 IGHJ4*02 14 tgtgcgagagacttccatgaggttgggagctactactttgactactgg

IGHV3-48*03 IGHD6-13*01 IGHJ3*02 20 tgtgcgagagaggaatactaccggtcctttgggggagcagcagctggccgagcttttga-
tatctgg

IGHV3-33*01 IGHD5-18*01 IGHJ4*02 13 tgtgcgagagaggtggatacagctatggtttactttgactactgg

IGHV1-46*01 IGHD5-18*01 IGHJ1*01 16 tgtgcgagagaggtttgggatacagctatggccccgggatacttccagtactgg

IGHV3-7*01 IGHD2-15*01 IGHJ6*02 19 tgtgcgagagataaagtggtggtagctgctacggactactactactacggtatggacgtctgg

IGHV3-7*03 IGHD6-19*01 IGHJ4*02 16 tgtgcgagagataaggatagcagtggctggtacggccactactttgactactgg

IGHV3-48*03 IGHD1-26*01 IGHJ3*02 18 tgtgcgagagataatcggggtgggagctactacaagtgttgtgatgcttttgatatctgg

IGHV3-48*03 IGHJ4*02 6 tgtgcgagagatattgactactgg

IGHV4-59*01 IGHD3-10*02 IGHJ5*02 15 tgtgcgagagatcacctcaactggggccggggaaactggttcgacccctgg

IGHV3-48*03 IGHD3-10*01 IGHJ2*01 18 tgtgcgagagatccaccccagccctttggttcggggaagtactggtacttcgatctctgg

IGHV4-61*01 IGHD2-2*01 IGHJ3*02 10 tgtgcgagagatcgccaggatgcttttgatatctgg

IGHV3-33*01 IGHD6-6*01 IGHJ3*02 10 tgtgcgagagatcgccctgatgcttttgatatctgg

IGHV3-7*03 IGHD4-23*01 IGHJ1*01 15 tgtgcgagagatctgactacggtggtgcgcgctgaatacttccagcactgg

IGHV3-21*01 IGHD5-12*01 IGHJ4*02 16 tgtgcgagagatgggtatagtggctacgattacaagaactactttgactactgg

IGHV1-18*01 IGHD6-6*01 IGHJ4*02 17 tgtgcgagagattccggtagcagctcgtccttaggtcgtcgctcctttgactactgg

IGHV4-59*01 IGHD3-10*01 IGHJ4*02 14 tgtgcgagagattcggcagctatggttaggggattctttgactactgg

IGHV1-46*01 IGHD7-27*01 IGHJ3*02 11 tgtgcgagagattctggggatgatgcttttgatatctgg
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IGHV1-3*01 IGHD6-19*01 IGHJ4*02 17 tgtgcgagagattttgaggagatagcagtggctggtaccggctactttgactactgg

IGHV4-59*01 IGHD2-15*01 IGHJ4*02 11 tgtgcgagagcccggaagctgtactactttgactactgg

IGHV3-7*01 IGHD6-19*01 IGHJ4*02 16 tgtgcgagagccctgatagcagtggctggtaaggggtactactttgactactgg

IGHV3-21*01 IGHD3-22*01 IGHJ4*02 19 tgtgcgagagccttaaacgaccttcctaattactatgatagtagtggttattactactgctgg

IGHV3-21*01 IGHD2-8*01 IGHJ4*02 18 tgtgcgagaggccagggatattgtactaatggtgtatgctattactactttgactactgg

IGHV4-34*01 IGHD3-3*01 IGHJ6*02 17 tgtgcgagaggcctgcgcgatttttggagttactactactacggtatggacgtctgg

IGHV1-69*01 IGHD5-24*01 IGHJ5*02 12 tgtgcgagaggcgtagagatctggaactggttcgacccctgg

IGHV3-7*03 IGHD1-26*01 IGHJ4*02 12 tgtgcgagaggctgggagcgggcgggtatgattgactactgg

IGHV3-33*01 IGHD1-26*01 IGHJ4*02 10 tgtgcgagaggctggtgggagccacccggctactgg

IGHV3-48*03 IGHD3-9*01 IGHJ4*02 18 tgtgcgagagggacgtattacgatattttgactgccaataaggggtactttgactactgg

IGHV4-34*01 IGHD6-19*01 IGHJ3*02 15 tgtgcgagagggatagcagtggctggtcagagtgatgcttttgatatctgg

IGHV1-2*04 IGHD6-6*01 IGHJ4*02 12 tgtgcgagagggcatagcagctcgtcggactttgactactgg

IGHV1-18*01 IGHD1-1*01 IGHJ4*02 9 tgtgcgagagggctggaaatctttgactactgg

IGHV1-2*04 IGHD3-22*01 IGHJ4*02 17 tgtgcgagaggggattactatgatagtagtggttatccgtactactttgactactgg

IGHV4-59*01 IGHD6-25*01 IGHJ4*02 11 tgtgcgagaggggcagcagcaacaaactttgactactgg

IGHV3-7*01 IGHD6-6*01 IGHJ4*02 14 tgtgcgagaggggctcgtatagcagctcggtactactttgactactgg

IGHV3-30*01 IGHD3-10*01 IGHJ4*02 10 tgtgcgagagggggattatactactttgactactgg

IGHV3-33*01 IGHD3-16*01 IGHJ5*02 9 tgtgcgagaggggggagcgggttcgacccctgg

IGHV4-34*01 IGHJ2*01 9 tgtgcgagagggtactggtacttcgatctctgg

IGHV4-34*01 IGHD1-26*01 IGHJ4*02 14 tgtgcgagagggttgggagctaccgtctcgtactactttgactactgg

IGHV1-69*01 IGHD6-13*01 IGHJ6*02 23 
tgtgcgagaggtgactcgtatagcagcagctgggcagctgggaggtactactactac-
tacggtatggacgtctgg

IGHV1-69*06 IGHD4-17*01 IGHJ2*01 10 tgtgcgagagtaggctacggtgactacagtagctgg

IGHV3-30*01 IGHD5-18*01 IGHJ4*02 13 tgtgcgagagtatacagttatggctatcgtgactttgactactgg

IGHV3-53*01 IGHD5-18*01 IGHJ4*02 14 tgtgcgagagtatcacagctatggcagacaggatactttgactactgg

IGHV1-69*06 IGHD6-13*01 IGHJ4*02 17 tgtgcgagagtccgaagccccgggtatagcagcagccggtacgggcttgactactgg

IGHV3-30-3*01 IGHD6-19*01 IGHJ3*02 17 tgtgcgagagtcgagggggatagcagtggctggtacggggatgcttttgatatctgg

IGHV1-69*01 IGHD2-15*01 IGHJ6*02 20 
tgtgcgagagtctcggatattgtagtggtggtagctgcagactactactacggtatg-
gacgtctgg

IGHV4-34*01 IGHD5-12*01 IGHJ6*02 16 tgtgcgagagtgcaggctgggatcctctactactactacggtatggacgtctgg

IGHV4-61*01 IGHD6-13*01 IGHJ4*02 16 tgtgcgagagtggggagcagcagctggtatccctcctactactttgactactgg

IGHV1-2*04 IGHD6-19*01 IGHJ3*02 15 tgtgcgagagtggttagcagtggctggtacgagggtgcttttgatatctgg

IGHV3-30*01 IGHD2-15*01 IGHJ3*02 14 tgtgcgagagttaaggccagctgctactcatgtgcttttgatatctgg

IGHV1-69*01 IGHD5-18*01 IGHJ4*02 17 tgtgcgagagttccccgcctacgtggatacagctatggttacgactttgactactgg

IGHV4-34*01 IGHD6-6*01 IGHJ4*02 17 tgtgcgagagttggtatagcagctcgtccgggccgggaagcacatcttgactactgg

IGHV4-34*01 IGHD3-9*01 IGHJ5*02 21 
tgtgcgagatcgggagccggggtgatacgatattttgactggttacctcggaactggt-
tcgacccctgg

IGHV3-30-3*01 IGHD6-6*01 IGHJ4*02 12 tgtgcgagattcaggtatagcagctcgtccgtgggctactgg
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IGHV3-11*03 IGHD1-7*01 IGHJ3*02 11 tgtgcgagatttcgaactcgtggtgcttttgatatctgg

IGHV4-59*01 IGHD6-19*01 IGHJ3*02 13 tgtgcgagctaccagtggctggcacctggtgcttttgatatctgg

IGHV3-30*01 IGHJ3*02 8 tgtgcgaggaatgatgcttttgatatctgg

IGHV3-33*01 IGHD3-22*01 IGHJ4*02 18 tgtgcgaggctgtattactatgatagtagtggttattacaacgggggctttgactactgg

IGHV4-39*01 IGHJ6*02 12 tgtgcgagggccccttactactactacggtatggacgtctgg

IGHV1-3*01 IGHD2-2*01 IGHJ6*02 20 tgtgcgaggggaattgtagtagtaccagctgctatgtactactactactacggtatg-
gacgtctgg

IGHV1-69*01 IGHD1-26*01 IGHJ4*02 13 tgtgcgaggtccttgacgatagtgggagcctactttgactactgg

IGHV3-53*01 IGHD4-23*01 IGHJ3*02 9 tgtgcgagtacctctgatgcttttgatatctgg

IGHV4-34*01 IGHD1-26*01 IGHJ3*02 16 tgtgcgagtatccagtgggagctactgaatcgaccttctgcttttgatatctgg

IGHV3-64*05 IGHD3-10*01 IGHJ4*02 15 tgtgtgaaagatctatttactatggttcggggagttggccttgactactgg

IGHV3-64*05 IGHD3-3*01 IGHJ4*02 13 tgtgtgaaagcttacgatttttggagtggttattatgactactgg

IGHV3-30*01 IGHJ4*02 6 tgtgcgagggactttgactactgg

AT11

IGHV6-1*01 IGHD3-3*01 IGHJ5*02 10 tgtgcaagagagaggggttactggttcgacccctgg

IGHV3-23*01 IGHD5-18*01 IGHJ4*02 15 tgtgcgaaagataaactacggatacagctatgggcctcgattgactactgg

IGHV4-34*01 IGHD1-1*01 IGHJ1*01 9 tgtgcgagaaacgactttcctttccagcactgg

IGHV4-39*07 IGHD6-13*01 IGHJ2*01 12 tgtgcgagaatgggcagcttctactggtacttcgatctctgg

IGHV4-59*08 IGHD5-12*01 IGHJ4*02 12 tgtgcgagacacgtagtggctacggccccttatagttactgg

IGHV4-59*08 IGHD3-10*01 IGHJ5*02 10 tgtgcgagacgtcggggtcgctggttcgacccctgg

IGHV4-59*08 IGHD6-13*01 IGHJ4*02 17 tgtgcgagacttccgtatagcagcagctggtacgggtcctactactttgactactgg

IGHV4-34*01 IGHD5-24*01 IGHJ1*01 5 tgtgcgagagaccaattctgg

IGHV3-21*01 IGHD2-21*01 IGHJ5*02 13 tgtgcgagagagggcttcgacggtgctgctgagttcgtcacctgg

IGHV4-34*01 IGHD2-15*01 IGHJ5*02 21 tgtgcgagagcgggtcgtgattattgtagtggtggtagctgcaactcacacaggtggt-
tcgacccctgg

IGHV4-31*03 IGHD1-26*01 IGHJ4*02 15 tgtgcgagagcttggggaaagtgggagctacccagcgcctttgactactgg

IGHV4-34*01 IGHD1-26*01 IGHJ4*02 17 tgtgcgagaggacggggcggattgcaagtgggagctactatatactttgactactgg

IGHV3-21*01 IGHD2-21*02 IGHJ4*02 6 tgtgcgagaggactgccctactgg

IGHV4-34*01 IGHD4-17*01 IGHJ4*02 20 tgtgcgagaggagagccgccggcgaatccccggccaggtacggtgacctgttgctttgactact-
gg

IGHV4-34*01 IGHD5-12*01 IGHJ4*02 11 tgtgcgagaggcagggccacccactactttgactactgg

IGHV4-34*01 IGHD6-13*01 IGHJ4*02 11 tgtgcgagaggcagggcgtcggagccttttgactactgg

IGHV4-34*01 IGHD2-2*01 IGHJ4*02 9 tgtgcgagaggccaggactactttgactactgg

IGHV4-34*01 IGHD4-11*01 IGHJ4*02 12 tgtgcgagaggcccggacaataaccactcttttgactactgg

IGHV4-34*01 IGHD6-13*01 IGHJ6*02 17 tgtgcgagaggcgtatattggtcggggtatagcagcttttacggtatggacgtctgg

IGHV3-30*04 IGHD1-26*01 IGHJ4*02 20 tgtgcgagaggtttgcggggaaatatagtgggagctacaaaggggcttgactactttgactact-
gg
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IGHV4-31*03 IGHD2-2*01 IGHJ3*02 21 tgtgcgagagtggtgaatctaggatattgtagtagtaccagctgctatgcgggggcttttgatatctgg

IGHV3-7*01 IGHD3-22*01 IGHJ3*02 18 tgtgcgaggggtgattaccatgatagtagtggttattgggtcgatgcgtttgatatctgg

IGHV4-31*03 IGHD2-2*01 IGHJ3*02 21 tgtgcgagagtggtgaatctaggatattgtagtagtaccagctgctatgcgggggcttttgatatctgg

IGHV3-7*01 IGHD3-22*01 IGHJ3*02 18 tgtgcgaggggtgattaccatgatagtagtggttattgggtcgatgcgtttgatatctgg

IGHV4-39*01 IGHD1-26*01 IGHJ4*02 12 tgtgcgaggtatagtgggagctacggctactttgactactgg

IGHV4-34*01 IGHD3-22*01 IGHJ4*02 11 tgtgcgcgaggcgcccgtagtagtggttatcacttctgg

IGHV4-34*01 IGHD3-10*01 IGHJ4*02 15 tgtgcggcaggtgcccttctcggtttagggagcctcctttttgactactgg

IGHV4-59*01 IGHD2-15*01 IGHJ3*02 10 tgtgcggtggtagctgccggggcttttgatatctgg

IGHV3-74*01 IGHD3-16*01 IGHJ3*02 8 tgtgggatccttaatgcttttgatatctgg
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GENERAL DISCUSSION

Severe combined immunodeficiency (SCID) is one of the most life-threatening inher-
ited primary immunodeficiencies (PID). SCID patients present in the first year of life with 
severe opportunistic infections, chronic diarrhea and failure to thrive. One variant of SCID, 
T-B-SCID, is caused by a defect in V(D)J recombination. The V(D)J recombination process 
is required for generation of antigen specific B- and T-cell receptors that form the basis of 
the adaptive immune system. Important processes during V(D)J recombination are intro-
duction of DNA double strand breaks (DSB) in the immune receptor genes by RAG1 and 
RAG2 and repair of DSB. Several genetic defects have been found to cause T-B-SCID, such 
as RAG1, RAG2, Artemis, XLF, LIG4 and DNA-PKcs (see Chapter 1). At this moment, there is a 
delay in making a diagnosis, because detailed insight in the clinical heterogeneity is lack-
ing, and not all candidate genes (i.e. genes that can be mutated in T-B-SCID) are known. 
Due to the delay in the diagnostic process, adequate treatment is often initiated (too) late, 
leading to more serious life-threatening infections. The aim of this thesis was to unravel 
the clinical and immunogenetic heterogeneity of SCID. This chapter discusses methods 
for the identification of genetic defects and new candidate genes for PID, the spectrum of 
recombination defects, the role of DNA repair in lymphocyte development, the relevance 
of accurate diagnostics for treatment choices in SCID patients, newborn screening for SCID, 
and new approaches to study the immune receptor repertoire. 

IDENTIFICATION OF GENETIC DEFECTS

From candidate gene approach to next generation sequencing
The most commonly used method to identify genetic defects in SCID patients is the 

candidate gene approach.1 When SCID is suspected, flow cytometric immunophenotyping 
of the lymphocyte subsets in peripheral blood can be used as a screening assay. Analysis of 
the B, T and NK cells, can be used to discriminate between T-B+SCID and T-B-SCID. Based on 
the clinical presentation and immunophenotyping, candidate genes are sequenced using 
Sanger sequencing. Over 180 different PID-causing genes have been described,2 from 
which around 8 genes have been associated with T-B-SCID (Chapter 1). 

The candidate gene approach has proven to be successful, but it can be time consum-
ing because in many cases multiple genes have to be evaluated. Over the last three to four 
years, next generation sequencing (NGS) methods became available, which allows rapid 
high-throughput sequencing. The advantages of NGS over the candidate gene approach 
are the large number of genes analyzed in a short period of time, and as the costs for 
NGS are decreasing, NGS will ultimately become cheaper than Sanger sequencing. Several 
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approaches can be used to identify the genetic defect by use of NGS, including targeted 
sequencing of the known PID genes, whole exome sequencing (WES) or whole genome 
sequencing (WGS). 

Targeted approach sequencing of the known PID genes by NGS was recently described 
by Nijman et al.3 They showed that 161 of the known PID genes are suitable for accurate 
mutation detection by this method. Targeted sequencing would allow time-effective and 
cost-effective identification of mutations in PID patients, but novel PID genes cannot be 
identified. 

WES and WGS are unbiased methods to sequence only the coding regions (WES) or 
the whole genome (WGS). The main advantage of the WES and WGS methods is the iden-
tification of novel disease-causing genes. In case of consanguineous families, WES can be 
combined with homozygosity mapping, in which the genomic region most likely to harbor 
the pathogenic mutation is identified based on homozygous clusters of single nucleotide 
polymorphisms.4, 5 

Pitfalls of the NGS approaches
NGS approaches are good methods to identify new genetic mutations, or mutations in 

new candidate genes, but there are some pitfalls. First, sequencing of many genes results 
in detection of many variations. The difficulty is to distinguish the pathogenic variant from 
the thousands of non-pathogenic variations. This requires good bioinformatics algorithms. 
Second, not all genes are covered equally. Genomic regions with a high GC content are 
difficult to sequence. Nijman et al. have shown that for the 170 candidate PID genes that 
were tested, nine genes could not be evaluated, probably because of high GC content or 
the presence of pseudogenes.3 In addition, sequences with large structural variations, such 
as insertions, deletions and translocations, do not align properly to the genome and can 
therefore be missed. Gross deletions are frequently reported for the PID genes IGHM, BTK 
and Artemis.6 

Third, mutations in promoter or regulatory regions and introns resulting in alternative 
expression or splicing of the genes are generally not targeted by WES and the candidate 
gene approach. In Chapter 3.3 an intronic Artemis mutation is described resulting in alter-
native splicing of the Artemis gene.7 This mutation was located 2kb outside the coding 
exons, and would therefore not have been detected by WES, or the candidate gene 
approach. This example illustrates the limitations of the techniques and that in certain 
cases additional assays are necessary to identify the genetic mutation. These include anal-
ysis of transcripts, protein expression or functional (in vitro) tests. 



5

199

General Discussion

Identification of new candidate genes
Over the last years, many new PID candidate genes have been described, from which 

many have been identified by NGS.8 In Chapter 2 we described the identification of DNA-
PKcs as new candidate gene of PID. The mutations in DNA-PKcs were not identified by 
NGS, but via Sanger sequencing after (functional) assays suggesting a DNA-PKcs defect. 
Irrespective of the applied sequencing approach, after identification of a genetic defect in 
a potential new candidate gene, the causality between the genetic defect and the (clinical) 
phenotype should be proven. 

Online tools can provide first clues on functionality of the mutated protein, but in the 
end functional assays are required. In case of our DNA-PKcs- deficient patient, we iden-
tified two homozygous mutations in the DNA-PKcs gene, from which one or both could 
be pathogenic. Interspecies similarities can provide the first clues on protein function, 
since mutations in conserved regions are more likely to be pathogenic than mutations 
in non-conserved regions. In addition, the secondary protein structure of proteins can 
be predicted based on related proteins by online tool such as PredictProtein (www.pre-
dictprotein.org), to check whether the mutation changes the secondary structure of the 
protein. In case of our DNA-PKcs mutations, one mutation was found in a non-conserved 
region, but the other mutation was found in a highly conserved region in a predicted α-he-
lix, suggesting that this mutation was most likely pathogenic. Other tools, like Polyphen 
(http://genetics.bwh.harvard.edu/pph2), can predict the possible impact of amino acid 
substitutions on the protein structure. All these prediction tools are only indicative, and 
functional assays are required to confirm the hypothesis. In case of the DNA-PKcs mutation, 
we could confirm that one mutation was pathogenic by a functional recombination assay 
and a complementation assay (clonogenic survival assay) (Chapter 2).9

Can other recombination defects be expected?
For recombination defects, seven candidate genes (RAG1, RAG2, Artemis, DNA-PKcs, XLF, 

LIG4, and XRCC4) are known (see Chapter 1). Mutations in the other known NHEJ genes 
(KU70, and KU80 have not (yet) been identified. Ku70- and Ku80-knockout mouse models 
are viable, and have indeed a SCID phenotype.10-13 Remarkably, human cell lines with inac-
tivated KU70 or KU80 are not viable,14, 15 indicating that KU70 and KU80 are essential for sur-
vival in humans. Although functional null mutations in KU70, and, KU80 are unlikely to be 
found in humans, hypomorphic mutations in these genes cannot be excluded. Therefore, 
testing for defects in these genes remains valid in radiosensitive-SCID or in patients with 
immunodeficiency, growth retardation, and/or developmental defects. 
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SPECTRUM OF RECOMBINATION DEFECTS

Clinical and immunological spectrum of RAG deficiencies
The last decade, it became clear that V(D)J recombination defects not only result in 

classical SCID17 or OS18, but that there is a wide clinical heterogeneity with considerable 
immunological variation.19 Especially for the RAG genes, many different clinical presen-
tations have been described (Figure 1). Null mutations in RAG result in T-B-SCID, while 
hypomorphic RAG mutations have been associated with a spectrum of clinical and immu-
nological phenotypes.19  In Chapter 3.1 we described a patient that has extended the 
spectrum of RAG mutations from severe immune defects to an almost normal condition.20 
This patient presented with idiopathic CD4+ T lympocytopenia caused by hypomorphic 
RAG1 mutations. During childhood the patient presented with a single course of extensive 
chickenpox and moderate albeit recurrent pneumonia, but otherwise she remained dis-
ease-free for at least 10 years using prophylaxis. 

Recently, Lee et al have shown in a comprehensive study that the severity of the clinical 
presentation correlates with the residual recombination activity of the RAG1 mutant.21 They 
analyzed the expression and recombination activity of 79 human RAG mutants and linked 
these data to the phenotype of the patients. This suggested that the clinical presentation 
of the patient can be predicted based on the RAG1 mutation. However, in Chapter 3.2 we 
have shown in a group of 22 RAG deficient patients that even a similar RAG1 mutation can 
result in different clinical presentations. 

The patients presented with “classical” T-B-SCID, OS, or combined immunodeficiency 
(CID). The main immunological difference was that the OS patients had expansion of the 
(αβ-)T cells and most of the CID patients had a ‘leaky’ instead of complete block in the 
precursor B-cell development. However, these differences cannot fully account for the 

SCID Omenn  CID CD4 cytopenia RAGD
with 

granulomas

RAGD
with γδT cell
expansion

Figure 1. Spectrum of RAG deficiency. RAG deficiency can present in a spectrum of clinical presentations, 
including typical severe combined immunodeficiency (SCID), Omenn syndrome, RAG deficiency (RAGD) with γδT 
cell expansion, RAGD with granuloma, combined immunodeficiency (CID), and CD4 cytopenia, 
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differences in the clinical phenotype. Therefore we hypothesized that hypomorphic muta-
tions in SCID genes result in reduced V(D)J recombination leading to fewer B and T cells 
with a limited repertoire. In an attempt to compensate for their low numbers the B and 
T cells start to proliferate, but the repertoire remains limited and imbalanced, so that the 
selection and immune regulation are impaired. Dependent on the coincidental (limited) 
repertoire, infection, allergy or autoimmunity can develop, together contributing to the 
heterogeneity in the clinical presentation.

This model (Figure 2) that we proposed in Chapter 3.2 holds probably not only true 
for RAG deficiencies, but for all hypomorphic mutations in genes involved in V(D)J recom-
bination. This is further illustrated by the two patients described in Chapter 3.3, who had 
hypomorphic Artemis mutations, and had a mild clinical phenotype. Also mutations in 
other PID genes like ZAP70 or JAK3 can result in different clinical phenotypes.22, 23 

Hypomorphic mutations 
in SCID genes

Immune receptor 
repertoire diversity

Compensatory proliferation 
of immune cells

Selection and immune regulation 
of immune cells

Triggering of 
immune system

antigens from outside → ← autoantigens

infections allergy autoimmunity

Heterogeneity in clinical presentation

↑

↓

B and T cell production 

M
odifier genes

Figure 2. Model for heterogeneity in the clinical presentation of patients with hypomorphic mutations in 
SCID genes. (for details see text).
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Besides immunodeficiency and autoimmunity, the immunological spectrum of RAG 
deficiencies also includes granulomas,24-26 which were also found in one of the Artemis-
deficient patient described in Chapter 3.3.7 The lesions in this patient steadily progressed 
into multiple isolated and subsequently a confluent lesion. In none of these SCID patients 
with granulomas a pathogen was detected. However, the lesions of the Artemis-deficient 
patient regressed after HCT, suggesting an underlying immunological problem.

In summary, the clinical and immunological spectrum of RAG deficiencies is not only 
determined by the specific mutation, but also depends on a complex interplay between 
the (limited) immune receptor repertoire, (auto-) antigen exposure, the specificity of anti-
gen receptors and the timing and cell type involved in the immune activation (Figure 2).

Clinical and immunological spectrum of DNA repair defects 
Most of the components of the V(D)J recombination machinery are not solely involved 

in this process. Only RAG1, RAG2, and TdT are restricted to lymphoid cells. The other pro-
teins are involved in repair of DNA double strand breaks via nonhomologous end joining 
(NHEJ) or involved in sensing of DNA damage (NBN and ATM). Besides immunodeficiency, 
patients with mutations in Artemis, DNA-PKcs, XLF, LIG4, NBN and ATM can have additional 
non-immunological problems such as increased susceptibility for developing malignan-
cies, increased sensitivity to ionizing radiation (IR), and neurological problems (Table 2 and 
3 Chapter 1). 

Patients with defects in DSB repair are sensitivity for IR, but not all patients show the 
same degree of sensitivity (Figure 3). Patients with Artemis deficiency show a moderate 
sensitivity for IR compared to XLF- and LIG4-deficient patients (Figure 3). This is consis-
tent with the finding of Riballo et al. that Artemis is only necessary for approximately 10% 
of DNA DSBs induced after IR, but is dispensable for DSBs that can be directly ligated.27 
Artemis is, however, essential for hairpin-opening, which explains the complete block in 
V(D)J recombination in Artemis-deficient patients. 

For DNA-PKcs mutations only two patients have been described. Fibroblasts of the first 
DNA-PKcs deficient patient described in Chapter 2 had a similar sensitivity to IR as Artemis 
deficient patients.9 This DNA-PKcs mutant still had residual kinase activity and the mutation 
mainly inhibited Artemis activation. However, the second DNA-PKcs mutant described by 
Woodbine et al. had less residual activity and showed very poor cloning efficiency, pre-
cluding clonogenic survival analysis.28 However, it is likely that this DNA-PKcs patient was 
more sensitive for IR than our patients, since poor cloning efficiency is observed in cells 
which are very sensitive for IR.29 

Artemis-deficient patients do not only differ from the other patients with NHEJ defects 
in sensitivity to IR, but also in clinical presentation. While Artemis-deficient patients have 
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a severe immunodeficiency, patients with AT, NBS, XLF- and LIG4-deficiency have serious 
neurological abnormalities and are less immunodeficient. 

Patients with AT have severe neurologic abnormalities. They present with progressive 
neurological impairment and cerebellar ataxia, but clinically the immunodeficiency tends 
to be mild, although the degree of immunodeficiency is variable ranging from no antibody 
deficiency to hypogammaglobulinemia, which probably depends on the residual func-
tion of ATM. Interestingly, both the classical AT and AT patients with hypogammaglobu-
lenemia had no (detectable) ATM activity. However, the immune system in the patients 
with hypogammaglobulinemia was more disturbed than classical AT patients. It could be 
that the current detection method for ATM activity is not sensitive enough to measure 
low residual activity, or that it does not measure ATM function important for lymphocyte 
development. ATM is known to function in V(D)J recombination and CSR. The main role of 
ATM during V(D)J recombination is to stabilize the DNA DSB complex,30 but it is likely that 
other proteins such as DNA-PKcs can take over its function. It has been reported that ATM 
and DNA-PKcs are functionally redundant during signal joint formation.31

NBS, LIG4- and XLF-deficient patients generally present with microcephaly, which might 
be a consequence of extensive apoptosis of newly generated post-mitotic neuronal cells, 
due to increased occurrence of unrepaired DSBs.16 However, depending on the residual 

Figure 3. Clonogenic survival assay of patients with NHEJ defect. Fibroblasts cultured from skin biopsies were 
exposed to increasing doses of irradiation and the percentage survival was determined after 8 days. Fibroblasts 
from patients deficient in Artemis (Artemis-6),94 DNA-PKcs,9 XLF-1 (Chapter 4.1), LIG4 SCID,40 and LIG4 with 
primordial dwarfism (Chapter 3.4) are displayed.
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activity, the neurological problems of these patients might be more severe. Especially for 
LIG4 mutations the diversity in neurological abnormalities is large. Almost all of the LIG4-
deficient patients present with microcephaly,32-38 only in two patients no microcephaly 
is reported.39, 40 However, in Chapter 3.4 we described a LIG4-deficient patient with the 
most severe neurological abnormalities.29 Besides microcephaly this patient presented 
with corpus callosum dysgenesia and colpocephaly. A similar severe neurological pheno-
type was also observed in the DNA-PKcs-deficient patient described by Woodbine et al.28 
This patient presented with microcephaly, seizures, and had profound globally impaired 
neurological function. This in contrasts to the DNA-PKcs patient described in Chapter 2 
and the DNA-PKcs- deficient animal models that had no evident neurological phenotype, 
suggesting that there is more stringent requirement for DNA-PKcs in humans. 

In conclusion, the clinical phenotype of patients with DNA repair defects is difficult 
to predict. Mutations in the same gene can result in a spectrum of immunological and 
non-immunological phenotypes, and some functions of DNA repair proteins are partly 
complementary. 

TREATMENT OF SCID

Hematopoietic stem cell transplantation
The curative treatment for SCID is allogeneic hematopoietic stem cell transplantation 

(HCT) and for some specific conditions gene therapy.41 The first bone marrow transplan-
tation was done in 1968 in a patient with X-linked SCID.42 Over the years, the long-term 
survival of these patients improved.43 Transplantation by use of a geno-identical sibling 
donor now gives survival of 90%.44 However the outcome of HCT is dependent on early 
diagnosis, availability of the compatible donor, type of SCID, preceding co-morbidity, age 
at transplantation, and the condition regime.41 

T-B-SCID patients have a poorer outcome after HCT than T-B+SCID. This holds true for 
both the RAG-deficient T-B-SCID patients as the radiosensitive T-B-SCID patients.44, 45 For 
the radiosensitive T-B-SCID patients, this is possibly associated with the generalized radio-
sensitivity, but it is also possible that the T-B-SCID patients have a later block in thymocyte 
development, leading to a precursor competition in the thymus.44, 46 In addition, since 
many conditioning regimes use alkylating agents that are particularly DNA damaging, 
radiosensitive T-B-SCID patients require a adapted conditioning regime.

Gene therapy
The main drawback of HCT is the availability of a suitable donor. Therefore, gene ther-

apy is a good alternative. Gene therapy is based on ex-vivo transfer of a transgene via viral 
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infection to patient-derived hematopoietic stem cells, followed by transplantation back 
to the patient. Gene therapy for primary immunodeficiencies is now available for patients 
with ADA-SCID, SCID-X1 (γc deficiency), and Wiskott-Aldrich syndrome.47 For T-B-SCID, no 
gene therapy is available at the moment, but gene therapy for Artemis,48, 49 RAG1,50, 51 and 
RAG252 are already evaluated in the preclinical phase. 

Gene correction
Another more experimental approach is gene correction.53 This method is similar to 

homologous recombination, and relies on replacing the DNA region containing the muta-
tion with a fragment of DNA containing wild-type sequence, while leaving the surround-
ing DNA intact. The DNA DSBs would be introduced at specific DNA target sequences 
surrounding the gene of interest. This can be done by either homing endonucleases, or 
zinc finger nucleases, which are artificial fusion proteins.54-56 The first proofs of principle 
for this approach was already shown for RAG1 and IL-2 receptor gamma,53, 56 but further 
research is necessary. 

Modulation of splicing by using antisense oligonucleotides
In Chapter 3.3 we described the proof of principle of antisense oligo nucleotides 

(AON) for the correction of an Artemis-splicing defect. AONs are now successfully used 
in phase II clinical trials in patients with Duchenne muscular dystrophy (DMD).57 AONs are 
synthetically modified single-stranded nucleic acids that hybridize to specific sequences 
on pre-mRNA and can thereby change splicing. In case of our Artemis-deficient patient, 
the coding exons and the flanking splice-sites were unmutated, but a single nucleotide 
substitution deep in an intron resulted in alternative splicing of the Artemis transcripts. The 
AON was designed to bind to the site of the intronic mutation thereby blocking the newly 
formed splice site for the splicing machinery. After addition of the AON to the patient’s 
fibroblasts, the normal Artemis splicing was restored and the cells were less sensitive for 
ionizing radiation. 

The success of AON treatment is dependent on the (residual) function of the resulting 
protein. In case of our Artemis patient, splicing was restored and the wild-type Artemis 
protein was expressed. In case of DMD patients, AON treatment results in exon skipping, 
leading to a restoration of the reading frame and the expression of a partially functional 
protein. SCID is a rare disease, and splice-site mutations do not occur so often, especially 
not the splice site mutations that are potential candidates for AON treatment. In addition, 
this approach is hampered by the fact that the AONs need to be continuously adminis-
trated. Therefore, AON treatment is probably not suitable for SCID patients, but for other 
diseases in which splicing needs to be changed AON treatment is a promising approach. 



Chapter 5

206

NEWBORN SCREENING FOR SCID

A retrospective study in SCID patients diagnosed prenatally or at birth, because of 
diagnosis of SCID in a previous sibling or family member, has shown that SCID babies diag-
nosed at birth have significantly decreased number of infections, are transplanted earlier, 
and have a improved survival.58 These studies have shown the necessity of early diagnosis 
and thereby the relevance of newborn screening for SCID. 

Chan and Puck showed that the absence of T cell receptor excision circles (TRECs) 
extracted from dried bloodspots could be used as an assay for newborn screening for 
SCID.59 These δREC-ψJα TRECs are formed during recombination of the TRA locus.60, 61 
During the first stages of TRA rearrangements the TRD locus, which is positioned within 
the TRA locus, is deleted. This results in the formation of the δREC-ψJα TRECs which can be 
easily detected by real-time quantitative PCR.62, 63 TRECs do not replicate and are therefore 
diluted during proliferation,62, 64 which makes them suitable markers for the numbers of 
naive T cells that have recently emigrated from the thymus.62, 63, 65, 66 

Healthy newborns have TREC numbers equal to 10% of T cells, but adult T cells expand 
predominantly by proliferation and have therefore lower numbers of TRECs.67 As a conse-
quence, maternal T cells and oligoclonal expansions of T cells, such as in OS, do not con-
found the TREC analysis. 

Using the TRECs for newborn screening only allows detection of patients with T cell 
deficiencies. However, excision circles cannot only be used as a marker to measure num-
bers of naive T cells, but also as a marker for replication history of B cells by using the 
kappa-deleting recombination excision circles (KRECs).68 Nakagawa et al. were the first to 
show that KRECs could be amplified from neonatal Guthrie cards and allows identifica-
tion of patients with B-cell maturation defects like X-linked agammaglobulinemia (XLA).69 
In addition, it has been shown that combined measuring of TREC and KREC is a suitable 
screening for patients with SCID, XLA, AT and NBS.70

However, before SCID can be implemented in the newborn screening, ten criteria 
should be met (Table 1).71, 72 The “white paper” on the need for newborn screening for SCID 
in Europe, has shown that these ten criteria are met.73 In the next paragraph we will discuss 
the first five criteria, which are related to the incidence of SCID, treatment, the diagnostic 
test, and the presence of an asymptomatic stage.

According to criterion 1 the condition should be an important health problem. SCID 
is an important health problem, the patients die without effective treatment. Although 
the incidence is not exactly known, it is around 1:50,000-100,000 live births, but the true 
incidence is probably higher. The lasts years several pilot studies on SCID screening have 
been performed (reviewed by Buckley74) that have screened almost a million newborns. In 
these studies a total number of 14 SCID and 40 cases of T-cell lymphopenia were identified. 
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These data suggests that the SCID incidence might be higher than the previously esti-
mated value of 1:50,000- 1:100,000 live births. 

SCID can be diagnosed by a suitable test and can be treated with HCT (criteria 2, 3 and 
5). According to criterion 4, there should be a recognizable latent or early asymptomatic 
stage. In most SCID patients infections only start after the first few months of life, because 
they are partly protected from infection by maternal antibodies. In addition, several 
studies have shown that the survival significantly increased if treatment is started in the 
asymptotic phase of the disease.58 A retrospective study on 43 SCID patients diagnosed in 
the Netherlands (De Pagter et al. manuscript in preparation), showed a high mortality rate 
(41.4%) caused by fulminant and opportunistic infections. In addition, they showed that 
SCID is associated with a diagnostic and therapeutic delay, which is believed to reduce the 
curative treatment outcome.

Hopefully, newborn screening for SCID will soon be implemented in the Netherlands 
for early diagnosis of SCID, so that treatment can be initiated before clinical symptoms and 
complications with irreversible organ damage occur.

Table 1. World health organization (WHO) criteria for newborn screening*

Criteria

1 The condition sought should be an important health problem

2 There should be an accepted treatment for patients with recognised disease

3 Facilities for diagnosis and treatment should be available

4 There should be a recognizable latent or early symptomatic stage

5 There should be a suitable test or examination

6 The test should be acceptable to the population

7 The natural history of the condition, including development from latent to declared disease, should be 
adequately understood

8 There should be an agreed policy on whom to treat

9 The cost of case finding (including diagnosis) should be economically balanced in relation  to possible 
expenditure on medical healthcare as a whole

10 Case finding should be a continuing process and not a “once and for all” project additionally

*World health organization (WHO) criteria for newborn screening.71, 72
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DNA REPAIR IN LYMPHOCYTE DEVELOPMENT

Fundamental studies in PID patients with a recombination defect are important for 
better understanding of the immune system, but also contribute to knowledge on DNA 
repair. Several DNA repair pathways are known to be involved in the three processes requir-
ing DNA repair during lymphocyte development, i.e. V(D)J recombination, SHM and CSR. 
These include classical and alternative NHEJ, base-excision repair, and mismatch repair. 
In addition to these, ATM, NBN,75 MRE11,76 RAD50,77 RNF168,78 BLM, and LIG1,79 must be 
involved in lymphocyte development as well, because mutations in these genes are asso-
ciated with immunodeficiency (Table 3 General Introduction).80 However, not for all these 
genes, the exact role in lymphocyte development is known. It is therefore challenging to 
study the effect of genetic defects in these genes on V(D)J recombination, CSR and SHM. 
The role of ATM has been described in Chapter 4.2. Here, two examples of new studies are 
discussed.

Role of XLF in V(D)J recombination
In this thesis, we show for the first time a new role of XLF in V(D)J recombination 

(Chapter 4.1). The function of XLF has mostly been studied in DNA repair, but not so much 
in V(D)J recombination. During DNA repair XLF stimulates LIG4 activity,81, 82 forms filaments 
with XRCC4 to keep the DNA ends together in a ligation synapse, 83-86 and is essential for 
gap-filling by polymerase (pol) λ and polμ during NHEJ.87 In Chapter 4.1 we have shown 
that XLF-deficient B-cells have reduced numbers of N-nucleotides inserted in their IG 
heavy chain junctions, resulting in shorter CDR3 regions, and consequently resulting in less 

Table 2. Junction characteristics of in vitro recombination assay 

  Deleted nucleotides N-nucleotides P- nucleotides

Control (5) 7.4 0.0 0.4

Control + TdT (15) 4.5 2.0 0.4

Control + TdT+ XLF (6) 9.8 1.3 0.0

XLF-deficiency (23) 9.1 0.4 0.0

XLF-deficiency +TdT (12) 8.3 0.5 0.1

XLF-deficiency +TdT+XLF (13) 4.2 0.9 0.3
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junctional diversity. These data suggest that XLF is essential for addition of N-nucleotides 
by TdT. This newly described function for XLF is closely related with its function in gapfilling 
by polλ and polμ. 

Polλ, polμ and TdT are members of the polX family of polymerases,88 Bertocci et al. have 
shown that the three polymerases have specific functions during V(D)J recombination, 
that result from their regulated recruitment and not from competition between these 
enzymes.89 In contrast to TdT, Polμ is a template-dependent polymerase, and is involved 
in end-processing of IG light chain junctions.90 Polλ participates in heavy chain rearrange-
ments, in a step preceding the action of TdT.89 These data strongly suggests that XLF plays 
an important role in gap filling and nucleotide addition during V(D)J recombination. To 
confirm this hypothesis, we performed as pilot study an in vitro recombination assay in 
XLF-deficient fibroblasts complemented with and without XLF and TdT and determined 
the N-nucleotide addition (Table 2). We could show that complementation with both 
XLF and TdT resulted in an increased number of N-nucleotides compared to comple-
mentation with TdT only, but the difference was not significant. This has several causes. 
XLF-deficient fibroblasts grow poorly and are therefore hard to transfect. This experiment 
requires transfection of up to five constructs (RAG1, RAG2, XLF and TdT expression con-
structs and a recombination substrate), which is technically challenging. The number of 
junctions analyzed is still too low, and the maximum number of N-nucleotides in these in 
vitro recombination assays is relatively low.90 Therefore, we have to improve our assay to 
confirm the preliminary results that N-nucleotide addition is restored when XLF-deficient 
cells are complemented with XLF. This study can form the basis for better understanding 
of generation of junctional diversity.

Role of helicases in lymphocyte development
Helicases unwind double stranded (ds) DNA, making the strands accessible for repli-

cation and repair proteins. RECQ helicases are known to be involved in DNA repair and 
several other cellular processes.91 We choose to study patients with Bloom’s syndrome (BS) 
with mutations in the BLM gene. BLM is a member of the RECQL gene family of helicases,92 

together with four additional members: RECQL1, WRN, RECQL4 and RECQL5.93  Bloom’s 
syndrome is characterized by short stature, photosensitivity, facial abnormalities, mental 
retardation, malignancies, immunodeficiency, and chromosomal instability. Five BS 
patients were included in our study, three adults and two children. The BS patients have 
low to normal levels of T and B cells, but most BS patients have an antibody deficiency 
(Table 3). SHM and CSR seem differently affected in the children and adult patients. The BS 
children had reduced percentages of SHM in IgG transcripts, while SHM in IgA transcript 
was normal (Figure 4A). However, CSR seemed to be skewed toward the more proximal 
genes in both IgG and IgA transcripts (Figure 4B). The adult BS patient showed normal SHM 
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and CSR of IgG transcripts, while CSR was also clearly skewed towards the proximal Ca1 
gene in IgA transcripts (Figure 4). These data suggest a role for BLM in B-cell maturation. 
However, a role for BLM during V(D)J recombination cannot be excluded. The variant AT 
patients also had low to normal numbers of B cells, but this was caused by compensatory 
proliferation, and they still showed a reduced diversity of the IGH repertoire (Chapter 4.2). 
Therefore, we will also perform immune receptor repertoire analysis to further investigate 
this issue in BS patients (see next section).

IMMUNE RECEPTOR REPERTOIRE

Analysis of Ig rearrangements in precursor-B-cells and peripheral B-cells is a powerful 
tool to get insight into the adaptive immune system of healthy individuals and (immuno-
deficient) patients. There are several levels of analysis, each providing different informa-
tion. Junction analysis provides insight in the V(D)J recombination process itself and can 
be used to identify the defective step in e.g. SCID patients. Analysis of the gene usage can 
shed light on combination diversity. Finally, with the recent developments in next gen-
eration sequencing (such as 454 sequencing), we are now able to make an estimation of 
the immune receptor repertoire diversity. This has implications for PID patients, but also 
for other immunological disorders. The different aspects of immune receptor analysis are 
discussed in this section. 

Table 3. Serum immunoglobulin levels in five BS patients

  IgG IgA IgM IgG1 IgG2 IgG3 IgG4

  mg/l mg/l mg/l mg/l mg/l mg/l mg/l

BS adult 1 6.03 3.04 0.92 3.73 1.78 0.36 < 0.05

BS adult 2 5.32 1.19 0.16 3.35 1.08 0.28 0.16

BS adult 3 6.49 3.45 1.16 3.38 1.73 0.58 < 0.05

BS child 1 6.01 1.45 0.15 3.76 1.3 0.30 0.24

BS child 2 8.88 0.64 0.18 6.68 0.67 0.25 < 0.05

Bold numbers indicate reduced values, as compared to age-matched controls

Figure 4. SHM and CSR in Bloom syndrome patients. A. Percentage of SHM in IgG and IgA transcripts, in 
children and adult controls and Bloom syndrome (BS) patients. B. CSR in IgG and IgA transcripts, in children and 
adult controls and Bloom syndrome (BS) patients.
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Junction analysis
Analysis of the first rearrangements of the IGH (i.e. DH-JH rearrangements) by clon-

ing and Sanger sequencing, has proven to be informative when studying recombination 
defects. Abnormalities in the numbers of deletions, N-and P-nucleotides can give clues 
about defects in the recombination process (Table 4). RAG-deficient patients have a normal 
distribution of their junctions, because RAG is only important for the induction of the DSBs 
and not for the processing or the repair. Artemis-deficient patients have increased numbers 
of P-nucleotides, suggesting asymmetric hairpin opening.94 In addition, the DNA-PKcs-
deficient patient described in Chapter 2 also had increased numbers of P-nucleotides, 
indicating a defect in the processing phase of V(D)J recombination. Patients with LIG4-
deficiency have increased numbers of deleted nucleotides, probably because of a severe 
delay in the ligation of the breaks allowing prolonged exonuclease activity.40 

In Chapter 3.3 we used junction analysis as a diagnostic tool to identify the candidate 
gene in an atypical SCID patient without mutations in the coding exons or splice-sties of 
the RAG1, RAG2, and Artemis genes. Analysis of the DH-JH junctions showed increased the 
numbers of P-nucleotides, suggesting incorrect hairpin opening by Artemis. Therefore 
Artemis transcripts were sequenced, leading to the identification of the intronic nucleotide 
substitution resulting in a new splice site. 

Table 4. DH-JH junction characteristics

Type of V(D)J 
recombination defect Deleted nucleotides N-nucleotides P- nucleotides

None 

control 10.2 7.9 0.2

Initiation 

RAG-SCID 12.1 7.7 0.3

Hairpin opening

DNA-PKcs SCID 6.8 4.2 3.0

Artemis-SCID 3.3 4.0 6.7

Ligation

LIG4-SCID 28.2 2.8 0.2

XLF-SCID 12.5 0 0.2

Aberrant values are indicated in bold.
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Junction analysis by using next generation sequencing 
All data on the DH-JH rearrangements described in Table 1 is obtained by conventional 

cloning and Sanger sequencing. This is a laborious method, and the number of unique 
junctions that can be obtained for analysis is not high (20-100 junctions). However, by use 
of NGS, more junctions can be studied in a more time-effective and cost-effective way. 
Since for most of the patients peripheral blood is available, we chose to study the VH-JH 
junctions. We used the best available primers set, the frame work 1 BIOMED-2 primers.95 
The VDJ junctions were amplified from DNA in a multiplex PCR using VH1-6 subgroup 
primers and the JH consensus primer, which were adapted for the use for 454 sequencing 
(Roche).

Since a large number of unique junctions can be analyzed with NGS, better insight into 
the V(D)J recombination process is obtained. Several parameters of the IGH repertoire can 
be studied, including the V, D and J gene usage, and the CDR3 length and composition. For 
example, in Chapter 4.1 we have showed that the CDR3 regions of XLF-deficient patients 
were about 10 nucleotides shorter than controls. Increased CDR3 length and VH4-34 usage 
are associated with autoimmunity. In Chapter 3.2 we studied the IGH repertoire of three 
RAG deficient patients and showed that the patient presenting with autoimmunity indeed 
had an increased CDR3 length.

Figure 5. B-cell receptor repertoires. The peripheral B-cell receptor repertoire can be divided into naive and 
antigen-selected repertoire. The red number indicate the proposed block in differentiation of the CVID patients. 
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Naive and antigen-selected repertoire
Until recently, we were not able to study the repertoire diversity in depth, but by use of 

NGS, the repertoire can be studied in much more detail. The B-cell repertoire in peripheral 
blood can be divided into naive and antigen-selected repertoire (Figure 5). Since the B-cell 
repertoire changes by SHM and selection processes, it is important to select and sort the 
correct B-cell population. 

The naive repertoire, present in the transitional and naive mature B cells, has not 
encountered an antigen, and most closely resembles the initial repertoire formed by V(D)
J recombination. This repertoire can be used to study V(D)J recombination processes and 
the diversity of the naive repertoire. The IGH junctions can be amplified from DNA and 
from RNA. Junctions amplified from RNA are mostly functional, while amplifying junctions 
from DNA makes it possible to also study the unproductive rearrangements, which have 
not been selected.

The antigen-selected repertoire is found in cells which encountered antigen, and is 
therefore different from the initial repertoire, because it has undergone SHM with sub-
sequent selection. Depending on the research question, different B-cell repertoires can 
be studied. Antigen-selected repertoire is mostly studied at RNA level, by amplifying the 
transcripts with primers located in or upstream of the V gene and in the constant gene. 
This enables to study both SHM and CSR, and amplification is less influenced by inefficient 
primer annealing on positions of mutations in the J gene. 

Currently, the antigen-selected repertoire is studied by conventional cloning and 
Sanger sequencing. The PCR products amplifying the VDJ junctions spliced to the constant 
region are long, depending on the primers used, between the 500-800 base pairs. Only a 
few NGS platforms can handle those long reads. In addition, somatic mutations introduced 
during SHM make the analysis of the antigen-selected repertoire more complicated. Every 
sequencing platform has a specific error rate, but because somatic mutations are intro-
duced in the IGH junctions, it is difficult to determine if a mutation is a technical error or a 
somatic mutation. Therefore, new bioinformatics algorithms should be developed. 

Large scale analysis of repertoire
The strength of analyzing repertoire by NGS is the number of rearrangements that can 

be analyzed, but at the same time the amount of data makes the analysis time-consuming. 
Therefore analysis tools are required that can handle large numbers of sequences. This first 
step after data gathering is alignment of the rearrangements to the reference sequences 
and assignment of the genes. The most updated online database with all V, D and J refer-
ence sequences can be found in the International ImMunoGeneTics Information system 
(IMGT).96 They also offer the tool IMGT/HIGH V-quest, wich assigns the V, D and J genes 
and gives information about junction characteristics like, functionality, CDR3 length, and 
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junction composition.97 This free tool is online available, but the disadvantage is that it 
cannot be used locally on your computer and implemented in a data pipeline. Another 
commonly used tool is IgBLAST.98 This free online tool, which can also be used locally on 
your computer, can also make use of the IMGT database for reference sequences, but it 

Figure 6. Approach to measure repertoire diversity. A. An immunocompetent individual has a very diverse 
junction  pool. If three independent PCR will be performed on this pool, every junction is likely to be unique. B. 
An immunodeficient individual has a more restricted junction pool. If three independent PCRs will be performed 
on this pool, the same junction is likely to be present in more PCR (coincidence).

Diverse junction pool

Every junction 
is unique

3 independent PCRs

Restricted junction pool

Same junction is 
likely present in 2 
or 3 independent 
PCRs (coincidence)

3 independent PCRs

A

B
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uses slightly different criteria to determine e.g. the CDR3 region. Therefore the results form 
IMGT and IgBLAST are not completely overlapping. 

Analysis and visualization of the data cannot be done by IMGT or IgBLAST. Not many 
analysis or visualization tools are available, but the immunoglobulin analysis tool (IgAT)99 is 
a useful tool for the visualization of V, D and J gene usage and several CDR3 characteristics. 
However, we wanted to develop an own pipeline that can visualize the V, D and J gene 
usage in different ways, but also a tool that is able to calculate the diversity of the reper-
toire by using coincidences. 

Boyd et al. developed an algorithm that calculates the IGH repertoire size and diver-
sity.100, 101 This method is based on the number of unique junctions that are present in 
parallel PCR amplifications. An immune competent individual has a very diverse junc-
tional pool. If VDJ junctions would be amplified from this pool by e.g. three independent 
PCRs, none of these junctions would likely to be present in more than one independent 
PCR (Figure 6A). However, the junctional pool of an immunodeficient individual is not so 
diverse. Amplifying junctions from such pool, is likely to result in the presence of the same 
junction in more than one independent PCR (Figure 6B). The occurrence of a similar junc-
tion in more than one PCR is called coincidence.  

We are currently developing our own analysis and visualization pipeline that will 
become publically available (Figure 7). The tool can analyze the data via IgBLAST which is 
integrated into the tool, but it can also handle the IMGT/HIGH V-quest output file. In case 
of using IgBLAST, NGS data should be transformed into fasta files, which can be uploaded 
to the custom Galaxy platform.102-104 In case of using IMGT/HIGH V-quest, files should be 
uploaded to IMGT/HIGH V-quest and the output files can be uploaded to the custom 
Galaxy platform. Further processing will be done in the ‘R’ programming language105 to 
generate the tabular and graphical outputs. This tool was already used to generate the 
visualization and calculation of the coincidences in Chapter 3.2, Chapter 4.1 and Chapter 
4.2. These (online) analysis tools, make the analysis of large amount of data much more 
time-effective and visualization of the data easier. 

Repertoire diversity in immunodeficient patients
The estimated T and B cell repertoire in immunocompetent individuals is more than 1012. 

However, defects in V(D)J recombination result in defects in the generation of the BR and 
TR, leading to (strongly) reduced repertoire diversity. We propose an immune repertoire 
model, in which the immune status of an individual on a scale between immunodeficient 
and immunocompetent is determined by the diversity of the immature repertoire and the 
potential to select and further fine-tune antigen-specific cells that form the peripheral rep-
ertoire (Figure 8). We believe that certain immunodeficiencies, like AT, NBS, a subgroup of 
CVID, and maybe even BS patients have a reduced repertoire diversity. In addition, there 
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Input:
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data

Analyze and plot 
the dataigBLAST
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Figure 7. Pipeline for analysis and visualization of IGH rearrangements. From NGS data, fasta files can be 
extracted. These can either be uploaded into the pipeline (blue) or can be uploaded to the IMGT/HIGH V-quest 
and subsequently these output file can be uploaded  into the pipeline. In the pipeline, the data is extracted or 
converted and individual PCRs of the same individual can be merged, finally the data is analyzed and visualized. 
This Repertoire analysis pipeline is being developed by Andrew Stubbs, Michael Moorhouse and David Vetter in 
collaboration with the Department of Immunology at Erasmus MC, Rotterdam, NL.

Figure 8.  Immune repertoire model. Immune repertoire model. The immune status is dependent on the size 
and diversity of the immune repertoire. Primary immunodefiencies will be used as disease model. SCID, severe 
combined immunodeficiency; AT, Ataxia Telangiectasia; NBS, Nijmegen Breakage Syndrome;
CVID, common variable immunodeficiency; ID, immunodeficiency.
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is a group of patients with an undefined immunodeficiency but with recurrent infections, 
who might also have a “gap” in their repertoire. 

In Chapter 4.2, we studied 15 patients with mutations in the ATM gene resulting in 
classical AT, classical AT with hypogammaglobulinemia, or variant AT. These patients 
had low numbers of transitional B cells, suggesting reduced B-cell output from the bone 
marrow. In addition, the naive mature B cells showed increased compensatory prolifera-
tion. Together, this suggests a restricted B-cell repertoire. We used the above described 
approach and amplified the VDJ junctions from naive B cells with three independent PCRs 
and used next generation sequencing to analyze a large number of junctions. Uniqueness 
of the junctions was defined by the V, D and J genes and the nucleotide sequence of the 
CDR3 region. Subsequently, the coincidence of the unique junctions was determined in 
between the three independent PCRs. The AT patients had increased frequency of coinci-
dences, indicating a reduced naive IGH repertoire. 

Similarly to the AT patients, Driessen et al. described that a subgroup of CVID patients 
also had reduced naive-B cells which showed extensive proliferation history.106 This study 
encompasses a complete analysis of the peripheral B-cell maturation to get better insight in 
B-cell defects in CVID. They proposed a classification based on B-cell maturation pathways 
(Figure 5). Five different groups with proposed immunological defects were identified: 1) 
B-cell production/DNA DSB repair defect, 2) early-maturation defect, 3) B-cell activation/
proliferation defect, 4) germinal center defect, 5) post-germinal center defect. Interestingly, 
the B-cell maturation pattern from the patients in group 1 resembles the B-cell phenotype 
of patients with AT (Chapter 4.2) and NBS,107 suggesting that these patients also have a 
reduction in their naive IGH repertoire. To study the diversity of the repertoire six indepen-
dent PCRs were performed per sample. Subsequently, the occurrence (coincidence) of a 
unique junction (defined as unique combination of V, J and amino acid sequence of the 
CDR3) in these six independent PCR was determined, and the clonality of the repertoire 
was calculated according to Boyd et al.100 using our data pipeline (Figure 7). In this study 
two patients per CVID pattern106, one NBS patients and one control were tested. Per patient 
5,000 to 50,000 unique IGH junctions were analyzed. The CVID patients with B-cell pattern 
3 to 5 had similar clonality scores as controls and no reduction in the naive repertoire was 
observed. However, the NBS patients and the CVID patients with B-cell pattern 1 and 2 
had a relatively high number of coincident IGH junctions. This resulted in a 10-100 times 
higher clonality score (Table 5), indicating that these patient indeed have a reduced IGH 
repertoire. This study confirms that the proposed CVID classification based on B-cell mat-
uration patterns, results in homogenous CVID groups with a similar pathophysiological 
defect, and that patients from CVID group 1 and 2 are likely to have recombination defect. 
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Further applications of repertoire analysis
Next generation sequencing is a powerful tool to study the immune receptors and 

has many applications. Repertoire analysis can be used to study the V(D)J recombination 
process, e.g. what is the influence of the recombination signal sequences on the V, D and 
J gene usage.  Furthermore, we now mainly focused on repertoire diversity in immunode-
ficient patients, but we don’t know how the diversity in healthy individuals changes over 
time. It is speculated that elderly people have a more restricted repertoire. Furthermore, if 
a link between the site of antigen interaction (CDR3) and peptide interaction can be made, 
we can study which receptors play a dominant role in immune responses, autoimmunity 
and allergy. 

CONCLUSIONS

The studies described in this thesis indicate that there is considerable clinical and 
immunological heterogeneity in SCID and other recombination deficiencies caused by 
DNA repair defects. Early diagnosis and identification of the genetic defect is import-
ant for the treatment of the patients. We expect that this will become easier in the near 

Table 5. Coincidences in CVID and NBS patients

    unique junctions coincidences  

 
unique 
sequences 1 2 3 4 5 6 1 2 3

clonality 
score

NBS4 16291 1987 1859 3615 3257 3521 2052 14169 1040 14 9.9E-06

CVID1-1 5825 791 696 1102 1173 1034 1029 5779 23 1.7E-06

CVID1-2 21888 3067 2558 1650 4661 5488 4464 21666 102 6 6.2E-07

CVID2-1 18555 3570 2419 3055 3318 3555 2638 18305 125 8.8E-07

CVID2-2 21502 3840 3656 3537 3674 3615 3180 21270 116 6.1E-07

CVID3-1 28813 4938 5314 3947 4677 5732 4205 28787 13 4.1E-08

CVID3-2 33943 5022 6043 4943 6111 7384 4440 33903 20 4.4E-08

CVID4-1 23926 3165 4992 5109 3136 3509 4015 23860 33 1.4E-08

CVID4-2 48057 7844 8495 9267 9489 5865 7097 47982 36 1 4.2e-08

CVID5-1 54103 9860 8091 8161 11667 7134 9190 54045 29 2.5e-08

CVID5-2 43866 7474 7583 6248 8963 6548 7050 43830 18 2.4E-08

control 1 30198 15453 3352 11393 30180 9 3.8E-08
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future if neonatal screening for SCID will be added to the national screening program. In 
addition, new techniques like targeted sequencing of the known SCID genes, and whole 
exome/genome sequencing will soon be implemented in PID diagnostics. This will lead 
to the identification of additional SCID candidate genes and will also give new insights in 
multi-genetic disorders, such as CVID.

Recombination defects not only result in classical SCID or OS, but there is a wide clinical 
heterogeneity. Immunologically the patients can present as typical SCID, OS or CID. Null 
mutations result in typical SCID, but hypomorphic mutations can result in SCID, OS or CID. 
The clinical phenotype of patients with hypomorphic mutations is hard to predict, since 
patients with the same gene defect or even similar mutations give rise to a heterogeneity 
in the clinical presentation. The clinical phenotype of a patient depends on the complex 
interplay between the (limited) immune receptor repertoire, (auto)antigen exposure, 
the specificity of the antigen receptors and cell type involved in the immune activation. 
Patients with DNA repair disorders do not only have an immunological phenotype, but 
they are also sensitive for ionizing radiation, have increased susceptibility for developing 
malignancies, and can present with neurological abnormalities. 

Studies in PID patients with a recombination defect are not only important for the 
better understanding of the immune system, but also contribute to knowledge on DNA 
repair. Besides mutations in NHEJ factors, mutations in other DNA repair proteins are also 
associated with immunodeficiency. Further research is necessary to unravel the exact role 
in lymphocyte development for these genes. 

Until recently, we were not able to study the immune receptor repertoire in depth. 
However, NGS finally allows to study the diversity of the repertoire. In this thesis we used 
a new approach to show that immunodeficient patients have a reduced repertoire diver-
sity.  This approach in not only applicable for PID, but can also be used to study repertoire 
development in immunocompentent individuals, as well as in other more frequent immu-
nological disorders such as allergy and auto-immunity. 
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Tables with PCR primers and Taqman probes
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Tables with PCR primers and Taqman probes

 Table 3A. PCR primers used for next generation sequencing of the IGH rearrangementsa 

Gene A (forward) adaptor Key MID (see 
table b) Template-specific sequence

VH1 FR1b CGTATCGCCTCCCTCGCGCCA TCAG GGCCTCAGTGAAGGTCTCCTGCAAG

VH2 FR1 b CGTATCGCCTCCCTCGCGCCA TCAG GTCTGGTCCTACGCTGGTGAAACCC

VH3 FR1 b CGTATCGCCTCCCTCGCGCCA TCAG CTGGGGGGTCCCTGAGACTCTCCTG

VH4 FR1 b CGTATCGCCTCCCTCGCGCCA TCAG CTTCGGAGACCCTGTCCCTCACCTG

VH5 FR1 b CGTATCGCCTCCCTCGCGCCA TCAG CGGGGAGTCTCTGAAGATCTCCTGT

VH6 FR1 b CGTATCGCCTCCCTCGCGCCA TCAG TCGCAGACCCTCTCACTCACCTGTG

Gene B (reverse) adaptor Key MID (see 
table b) Template-specific sequence

JH consb CTATGCGCCTTGCCAGCCCGC TCAG CTTACCTGAGGAGACGGTGACC

a. See Chapter 3.2, 4.1, and 4.2

b. Van Dongen et al. (2003) Leukemia 17:2257-317

Table 3B. Multiplex identifier (MID) sequences a

Multiplex identifier (MID) Sequence MID

MID1 ACGAGTGCGT

MID2 ACGCTCGACA

MID3 AGACGCACTC

MID4 AGCACTGTAG

MID5 ATCAGACACG

MID6 ATATCGCGAG

MID8 CTCGCGTGTC

MID10 TCTCTATGCG

MID13 CATAGTAGTG

MID14 CGAGAGATAC

MID15 ATACGACGTA

MID16 TCACGTACTA

a. See Chapter 3.2, 4.1, and 4.2
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Table 4. PCR primers for IGK rearrangementsa

Gene Sequence (5’-3’)

Vκ1b GTAGGAGACAGAGTCACCATCACT

Vκ2 b TGGAGAGCCGGCCTCCATCTC

Vκ3 b GGGAAAGAGCCACCCTCTCCTG

Vκ4 b GGCGAGAGGGCC-ACCATCAAC

Cκ ACTTTGGCCTCTCTGGATA

a. See Chapter 3.2

b. Van Zelm et al. (2005) J Immunol 175:5912-22

Table 5. PCR primers used for somatic hypermutation 

and class switch recombination analysisa

Target Primer sequence (5’-3’)

VH3 leader ACCATGGAGTTTGGGCTGAG

VH4 leader GAACATGAAGCACCTGTGGTTCT

CαL CGGGAAGACCTTGGGGCTG

Cγ consensus CACGCTGCTGAGGGAGTAG

a. See Chapter 3.3 and 4.2
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Abbreviations 

LIST OF ABBREVIATIONS

AID activation-induced cytidine deaminase 

ADA adenosine deaminase 

AK2 adenylate kinase 2

A-EJ alternative end joining

AON antisense oligo nucleotides

APE apyrimidimic endonuclease 

AT Ataxia telangiectasia 

ATM ataxia-telangiectasia-mutated 

AIHA autoimmune hemolytic anemia 

AIRE autoimmune regulator

BAFF B cell-activating factor 

BCG Bacille Calmette-Guerin 

BER base excision repair 

BR B-cell receptor 

BcR B-cell receptor complex

BREC B-cell receptor excision circle

BS Bloom’s syndrome 

BM bone marrow 

XLF Cernunnos/XRCC4-like factor

CSR class switch recombination

CID combined immunodeficiency

CVID common variable immunodeficiency 

CDR complementary determining region 

C constant gene

CMMR-D constitutional mismatch-repair deficiency 

D diversity

LIG4 DNA ligase IV

DNA-PK DNA-dependent protein kinase
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DNA-PKcs DNA-PK catalytic subunit

DN double negative

DP double positive

DSB double strand break

ds double stranded

DMD Duchenne muscular dystrophy 

EBV Epstein Barr virus 

ESID European society of immunodeficiencies

Exo1 exonuclease 1

GFP green fluorescent protein 

H heavy chain

HSCT hematopoietic stem cell transplantation

ICL idiopathic CD4+ T lymphocytopenia 

ITP idiopathic thrombocytopenic purpura 

ISP immature single positive

IMGT ImMunoGeneTics Information system 

IG immunoglobulin

IVIG intravenous immunoglobulin

IR ionizing radiation

J joining 

Kde kappa-deleting element

KREC kappa-deleting recombination excision cir

MMR mismatch repair

MNC mononuclear cells 

MID multiplex identifier 

NGS next generation sequencing 

NBS Nijmegen breakage syndrome 

NHEJ nonhomologous end joining

N non-templated

NLS nuclear localization signal 

OS Omenn syndrome 
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Abbreviations 

P palindromic

PB Peripheral blood 

PIKK phosphoinositidyl 3-kinase related kinase

PID primary immunodeficiencies

RIDDLE syndrome radiosensitivity, immunodeficiency, dysmorphic features and 
learning difficulties

RS radiosenstive

RAGD RAG deficiency 

RAGD RAG deficiency 

RAG recombination activating gene

RSS recombination signal sequences

SCID severe combined immunodeficiency

STR short tandem repeat 

SP single positive

ss single stranded

SHM somatic hypermutation

SCT stem cell transplantation

TREC T cell receptor excision circles 

TR T-cell receptor

TdT terminal deoxynucleotidyl transferase 

TSA tissue-specific antigen

UNG uracil-N-glycosylase 

V variable

WES whole exome sequencing

WGS whole genome sequencing

WT wild type 

XLA X-linked agammaglobulinemia 
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Summary 

SUMMARY 

Every day our body is exposed to many different pathogens. These pathogens or anti-
gens can be recognized and eliminated by our immune system. T- and B-lymphocytes are 
part of the adaptive immune system. These lymphocytes recognize pathogens with a spe-
cific antigen receptor, called the T-cell receptor (TR) and B-cell receptor (BR), respectively. 

The antigen receptors are unique for every antigen, therefore an enormous diversity of 
these specific antigen receptors is needed. To achieve this, the TR and BR have a variable 
domain that is unique for every T or B cell. This variable domain consists of a “variable” 
(V), “diversity” (D), and a “joining” (J) gene. For every V, D, or J gene multiple variants are 
present in the DNA. By recombining different V, D, and J genes many different antigen 
receptors can be created. This recombination of the antigen receptor genes takes places 
during T-and B-cell development, and is called V(D)J recombination. 

During V(D)J recombination DNA in the antigen receptor loci is cleaved by the so called 
recombination activating genes 1 (RAG1) and RAG2. Subsequently, the DNA is ligated by 
a common DNA repair pathway, called non-homologous end joining (NHEJ). The joining 
of the antigen receptor genes is not precise; nucleotides can be removed or randomly 
inserted. This causes even more variation of the antigen receptors. The total repertoire of 
the T- and B- cell receptors is estimated to be more than 1012. 

Defects in V(D)J recombination result in a block in B- and T-cell differentiation, lead-
ing to severe combined immunodeficiency (SCID). The adaptive immune system of SCID 
patients is not functioning properly, therefore they have difficulties with protecting the 
body against bacteria and viruses. Soon after birth SCID patients become very ill and they 
suffer from recurrent opportunistic infections, protracted diarrhea, and failure to thrive. 
Without adequate treatment these patients will die. Current treatments for SCID are hema-
topoietic stem cell transplantation, and in an experimental setting gene therapy. 

SCID is an inherited disorder, and is caused by mutations in genes important for V(D)
J recombination. Most of these genes are not only important for the immune system, 
but are also important for the repair of DNA double strand breaks in all cells of our body. 
Patients with defects in these DNA repair genes are therefore also sensitive for ionizing 
radiation, but they can also have other defects, such as microcephaly (small head) and 
growth retardation. 

Many mutations identified in the V(D)J recombination genes result in a complete loss 
of V(D)J recombination activity, these mutations give rise to the classical SCID phenotype. 
However, some mutations result in residual V(D)J recombination activity, these mutations 
are called hypomorphic mutations. The clinical phenotype of patients with hypomor-
phic mutations is not always SCID. These patients can have low numbers of T and B cells. 
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However, these cells can be autoreactive, and therefore give rise to autoimmunity. The aim 
of this thesis was to unravel the clinical and immunogenetic diversity of SCID.

In Chapter 2 we described the identification of a new candidate gene for SCID. This 
gene, called DNA-PKcs, was known to be mutated in horses, dogs and mice suffering from 
SCID, but mutations in humans were never identified. The patient we described in Chapter 
2 had a classical presentation of SCID, with early onset of recurrent infections, protracted 
diarrhea and failure to thrive. The DNA-PKcs protein is a large protein with many functions. 
We were able to show that the mutated DNA-PKcs protein had residual activity, and the 
main defect was the inability to activate another protein, called Artemis. 

The chapters in Part 3 of this thesis concern the clinical and immunological spectrum 
of recombination defects. In the last decade it became clear that V(D)J recombination 
defects not only result in T-B-SCID or Omenn syndrome (OS), but several patients with 
an atypical presentation have been described in literature. In Chapter 3.1 we describe a 
patient with such an atypical presentation. During childhood the patient presented with 
a single course of extensive chickenpox and moderate albeit recurrent pneumonia, but 
otherwise she remained disease-free for at least 10 years using prophylaxis. Over time, a 
subset of T cells, called CD4+ T cells were low, a condition called CD4+ lymhocytopenia. 
Because the cause of this was not known, this patient was diagnosed with idiopathic CD4+ 
T lymphocytopenia. The genetic defects underlying this disease were mutations in the 
RAG1 gene. This gene is responsible for cutting the DNA during V(D)J recombination. This 
case extended the spectrum of RAG mutations from severe immune defects to an almost 
normal condition.

In Chapter 3.2 we studied 22 SCID patients with similar mutations in the RAG1 gene. 
Unlike you would expect, the clinical presentation of these patients was not the same, but 
rather diverse. Some patients presented with the “classical” SCID phenotype, other patients 
presented with Omenn syndrome (OS) and others had a milder presentation, which we 
called combined immunodeficiency (CID). Patients with OS also suffer from recurrent 
infections, protracted diarrhea and failure to thrive, but in addition they have an expansion 
of T cells that causes an inflammatory skin disease, called erythroderma. The patients with 
CID were diagnosed after one year of age and they had an expansion of a subset of T cells 
(γδ T cells) that are normally not so frequent. Different immunological parameters were 
studied, but no substantial differences were identified that could explain the difference in 
clinical presentation. Therefore we hypothesized that the clinical outcome of an individual 
RAG deficient patient, depends on a complex interplay between the (restricted) immune 
receptor repertoire, (auto)antigen exposure, the specificity of the limited number of anti-
gen receptors, and the timing and cell type involved in the immune activation.

In Chapter 3.3 we described two unrelated patients, who had a very mild clinical phe-
notype. During the first 10 years of life they suffered from recurrent infections necessitating 
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antibiotic prophylaxis and intravenous immunoglobulins, but they did not receive bone 
marrow transplantation. Initially the genetic defect was not identified in these patients 
because the coding regions of the SCID genes did not show mutations. However, several 
diagnostic tools suggested a genetic defect in the Artemis gene. This gene is involved in 
the processing of the DNA breaks during V(D)J recombination. By analysis of the non-cod-
ing regions of the Artemis gene, we identified mutations that influence the splicing of the 
Artemis gene, resulting in a mutated Artemis protein. This study showed that NHEJ defects 
should be considered in patients presenting differently from the “classical” SCID patients, 
and diagnostic tools can be very helpful to identify the genetic defect. 

In Chapter 3.4 we described a patient with a mutation in the DNA repair gene LIG4. 
Patients with mutations in DNA repair genes have, besides the immunological problems, 
also other problems such as sensitivity for ionizing radiation and neurological abnormal-
ities. This is also described in literature for patients with LIG4 deficiency. However, the 
patient described in this chapter had a very severe clinical phenotype that has not been 
described before. The patient was born with primordial dwarfism and several morpholog-
ical abnormalities. Furthermore, the patient had very serious neurological defects, he did 
not only had microcephaly, but also parts of the brain were malformed. All mutations in 
the LIG4 gene described in literature result in residual activity of the protein. However, the 
mutations identified in this patient result in no or very low residual LIG4 activity. This also 
explained the very severe clinical phenotype observed in this patient.  

The last part of this thesis (Part 4) described the mechanism for antigen receptor rep-
ertoire development. To be able to cope with many different pathogens there needs to 
be a large diversity of the immune receptors. This diversity is created by recombination of 
the different immune receptor genes (combinatorial diversity) and by processing of the 
DNA (junctional diversity). In Chapter 4.1 we described the role of the XLF protein on 
junctional diversity. The XLF protein is involved in the ligation of DNA ends. XLF-deficient 
patients have microcephaly, and are sensitive for ionizing radiation, however the immu-
nodeficiency is milder. In our study we showed that XLF deficient patients have defects in 
processing of the DNA during V(D)J recombination, resulting in less junctional diversity. 

The total diversity of the B-cell receptors is more than 1012, however with the current 
methods we were only able to measure the diversity until 103. Recently, next generation 
sequencing techniques were developed, which allows sequencing of many sequences 
in a short time . By using this method we could study the immune receptor repertoire 
in more detail and identify reductions in the diversity of the immune repertoire, which 
were not previously identified. In Chapter 4.2 the immune receptor repertoire of patients 
with Ataxia Telangiactasia (AT) was studied. This disease is caused by mutations in the ATM 
gene, which is involved in sensing DNA damage. These patients present with neurological 
problems and have an antibody deficiency. By using NGS to study the immune receptors, 
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we were able to show that these patients have a reduced diversity of their repertoire in 
addition to the antibody deficiency. 

The studies in this thesis showed the clinical and immunological diversity of recombi-
nation defects. They showed that recombination defects do not only present as SCID, but 
almost in a normal condition. Furthermore, this thesis showed that mutation in DNA repair 
genes do not only give rise to immunological problems, but also to serious non-immuno-
logical problems. Therefore clinicians should be aware that patients with dwarfism and 
neurological abnormalities  can have DNA repair defects. 

These studies also showed that the clinical presentation is difficult to predict, and is 
dependent on multiple factors, including the limited antigen receptor repertoire. By using 
the innovative NGS technique, we were able to measure this limited antigen receptor rep-
ertoire. This does not only give more insight into the V(D)J recombination process, but 
could in the future also be used to determine to which antigens an individual is protected. 
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Iedere dag wordt ons lichaam blootgesteld aan verschillende ziekteverwekkers. Deze 
ziekteverwekkers of andere lichaamsvreemde bestanddelen (antigenen) kunnen worden 
herkend en geëlimineerd door het immuunsysteem. T en B cellen zijn witte bloedcellen 
die hierbij een belangrijke rol vervullen. Deze T en B cellen hebben op hun celoppervlak 
een receptor die antigeen kan herkennen (antigeenreceptor). De B cellen kunnen deze 
antigeenreceptor ook uitscheiden, dit worden antistoffen genoemd.

Een antigeenreceptor of antistof is specifiek voor een antigeen. Aangezien het aantal 
mogelijke antigenen enorm is, zijn er minstens zo veel antigeenreceptoren nodig. Om dit 
te bereiken hebben de antigeenreceptoren een variabel gedeelte dat uniek is voor iedere 
T- of B-cel. Dit variabele gedeelte bestaat uit een “variable” (V), “diversity” (D), en “joining” 
(J) gen, of alleen een V en een J gen. Voor elk van deze V, D en J genen zijn verschillende 
varianten aanwezig in het DNA. Tijdens de T- en B-cel ontwikkeling worden één van deze 
V, D en J genen aan elkaar gekoppeld, dit proces noemen we V(D)J recombinatie. Door 
combinaties te maken van de verschillende V, D en J genen ontstaan veel verschillende 
antigeenreceptoren. 

Tijdens V(D)J recombinatie worden DNA breuken geïnduceerd in de antigeenreceptor 
genen door de RAG1 en RAG2 eiwitten. Vervolgens worden de DNA breuken aan elkaar 
gezet door een veel gebruikte DNA herstel methode, genaamd non-homologous end 
joining (NHEJ). Het aan elkaar zetten van de DNA uiteinden gebeurd niet precies, DNA 
bouwstenen (nucleotiden) kunnen worden weggehaald of willekeurig worden ingevoerd. 
Dit zorgt voor nog meer variatie van de antigeenreceptoren. De totale variatie (repertoire) 
van de B en T cel antigeenreceptoren wordt geschat op meer dan een biljoen (>1012).  

Fouten in het V(D)J recombinatie proces kunnen leiden tot een ernstige gecombi-
neerde immuundeficiëntie (SCID). Patiënten met SCID hebben geen goed functionerend 
immuunsysteem, en hebben daarom moeite hun lichaam te beschermen tegen ziektever-
wekkers. Patiënten met SCID worden snel na de geboorte ernstig ziek. Ze krijgen ernstige 
infecties waar gezonde kinderen niet ziek van worden (opportunistische infecties), diarree 
en gedijen slecht. Zonder adequate behandeling overlijden deze patiënten gedurende 
hun eerste levensjaar. De huidige behandeling bestaat uit beenmerg transplantatie of, in 
experimentele setting, gentherapie. 

SCID is een aangeboren afwijking en wordt veroorzaakt door mutaties in genen die 
belangrijk zijn voor V(D)J recombinatie. Een groot deel van de eiwitten betrokken bij V(D)
J recombinatie zijn niet alleen belangrijk voor het immuunsysteem, maar hebben ook 
een belangrijke rol in het herstel van DNA schade in alle cellen van het lichaam. Patiënten 
met een defect in zo’n DNA schade herstel eiwit zijn daardoor gevoelig voor ioniserende 
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straling, daarnaast kunnen ze andere afwijkingen hebben zoals een klein hoofd (microce-
falie) of een groeiachterstand. 

Veel SCID patiënten hebben mutaties die er voor zorgen dat er helemaal geen V(D)
J recombinatie meer mogelijk is, dit leidt tot het ernstige klinische beeld SCID. Er zijn 
echter ook mutaties waarbij er nog wel een klein beetje V(D)J recombinatie mogelijk is, 
dit noemen we hypomorfe mutaties. Het klinische beeld van deze patiënten lijkt niet altijd 
op SCID. Deze patiënten kunnen nog wel hele lage aantallen T en B cellen hebben, maar 
het gevaar is dat deze cellen “niet goed zijn” waardoor ze bijvoorbeeld het eigen lichaam 
aan kunnen vallen.  Het doel van dit proefschrift was het ontrafelen van de klinische en 
immunologische diversiteit van  SCID. 

In Hoofdstuk 2 beschrijven we de identificatie van een nieuw kandidaat gen voor 
SCID. Dit gen, genaamd DNA-PKcs, was al geassocieerd met SCID in paarden, honden en 
muizen, maar mutaties in mensen waren nooit gevonden. De patiënt waarin het nieuwe 
genetische defect werd gevonden, presenteerde zich als een ‘klassieke’ SCID patiënt. De 
patiënt had terugkerende opportunistische infecties, diarree en gedijde slecht. Het DNA-
PKcs eiwit is een groot eiwit met vele functies. In deze studie hebben we laten zien dat het 
gemuteerde DNA-PKcs eiwit nog steeds vele functies goed vervulde, echter kon het niet 
goed een ander eiwit, betrokken bij V(D)J recombinatie, activeren. Hierdoor konden de 
DNA breuken niet goed hersteld worden. 

De hoofdstukken in Part 3 van dit proefschrift gaan over de klinische en immunol-
ogische diversiteit van recombinatie defecten. In het laatste decennium is het duidelijk 
geworden dat V(D)J recombinatie defecten niet alleen resulteren in een klassieke SCID 
presentatie, maar er zijn een substantieel aantal patiënten die zich anders presenteren. In 
Hoofdstuk 3.1 beschrijven we een patiënt met een atypische presentatie. Tot haar 10e lev-
ensjaar had deze patiënt waterpokken gehad en meerdere longontstekingen, maar verder 
was deze patiënte niet ziek geweest. Deze patiënt bleek lage aantallen T cellen te hebben. 
De genetische oorzaken bij deze patiënt waren twee heterozygote mutaties in de RAG1 
genen. Dit gen is betrokken bij het knippen van het DNA tijdens V(D)J recombinatie. Deze 
casus laat zien dat V(D)J recombinatie defecten zich bijna als normaal kunnen presenteren. 

In Hoofdstuk 3.2 hebben we 22 patiënten bestudeerd die allen een soortgelijke 
mutatie hebben in het RAG1 gen. Deze patiënten bleken echter niet dezelfde klinische pre-
sentatie te hebben. Sommige patiënten presenteerde zich als “klassieke” SCID patiënten, 
terwijl andere Omenn syndroom (OS) hadden en een grote groep patiënten had een ver-
schillende atypische presentatie die we samen gecombineerde immuundeficiënties (CID) 
hebben genoemd. Patiënten met OS hebben naast dezelfde symptomen als SCID ook nog 
een gedissemineerde roodheid van de huid. De patiënten met CID hadden een mildere 
presentatie, ze waren pas na de leeftijd van één jaar gediagnostiseerd, en hadden een 
groot percentage TRγδ=positieve T cellen, een subgroep van de T cellen die normaal niet 



A

245

Samenvatting

veel voor komen (<5%). We hebben verschillende immunologische parameters bekeken, 
maar er was eigenlijk geen parameter welke het verschil in klinische presentatie kon verk-
laren. Daarom denken we dat de klinische uitkomst van RAG patiënten afhangt van een 
complexe samenhang tussen de gelimiteerde immuun receptor repertoire, (auto)anti-
geen blootstelling, en de specificiteit van de antigeenreceptoren die aanwezig zijn op het 
moment dat het immuunsysteem geactiveerd wordt. 

In Hoofdstuk 3.3 hebben we nog twee patiënten beschreven met een atypische klin-
ische presentatie. Deze patiënten waren beiden 10 jaar oud en hadden wel een aantal 
opportunistische infecties gehad waarvoor behandeling nodig was, maar verder hadden 
ze geen grote immunologische problemen. In eerste instantie was het moeilijk om bij 
deze patiënten het genetisch defect te vinden, omdat we geen mutatie vonden in de 
coderende gedeeltes van de bekende SCID genen. Echter, diverse diagnostische analyses 
wezen in de richting van het Artemis gen. Analyse van het niet-coderende gedeelte van 
dit gen, wezen uit dat beide patiënten een mutatie hadden die de samenstelling van de 
Artemis transcripten veranderde waardoor een mutant Artemis eiwit aanwezig was in de 
patiënten. Deze studie laat zien dat patiënten met een V(D)J recombinatie defect zich niet 
altijd als een “klassieke” SCID patiënt hoeven te presenteren en dat diagnostische analyses 
erg belangrijk zijn bij het opsporen van het genetische defect. 

In Hoofdstuk 3.4 beschrijven we een patiënt met een mutatie in een DNA herstel 
gen LIG4. Patiënten met mutaties in een DNA herstel gen hebben naast immunologische 
problemen ook nog andere problemen zoals gevoeligheid voor straling en neurologische 
afwijkingen. Dit geldt ook voor de patiënten met mutaties in LIG4 die beschreven zijn in de 
literatuur. Echter, de patiënt beschreven in dit hoofdstuk had een zeer ernstige klinische 
presentatie die nog niet eerder beschreven was. De patiënt was veel te klein bij de geb-
oorte en had zogenoemde dwerggroei. Verder had deze patiënt meerdere morfologische 
afwijkingen, zoals afwijkingen aan de handen en voeten. De neurologische afwijkingen 
waren ook zeer ernstig bij deze patiënt, hij had niet alleen een klein hoofd, maar ook delen 
van de hersenen waren  niet goed aangelegd. 

Alle mutaties in LIG4 beschreven in de literatuur resulteren in restactiviteit van het 
eiwit. Echter de mutaties in deze patiënt hebben geen of nauwelijks restactiviteit. Dit verk-
laart ook het ernstige klinisch beeld. Deze studie laat zien dat mutaties in DNA herstel 
genen niet direct alleen een duidelijke immunologische presentatie kunnen hebben, maar 
aanwezig kunnen zijn in patiënten met dwerggroei.   

Het laatste gedeelte van dit proefschrift (Part 4) gaat over het mechanisme van anti-
geenreceptor repertoire ontwikkeling. Het immuunsysteem moet ons beschermen tegen 
vele verschillende ziekteverwekkers, daarom hebben we een grote diversiteit (repertoire) 
nodig van de antigeenreceptoren. In Hoofdstuk 4.1 wordt de rol van het eiwit XLF in het 
creëren van junctie diversiteit beschreven. XLF is een DNA herstel eiwit, wat tijdens V(D)J 
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recombinatie betrokken is bij het aan elkaar plakken van de twee DNA uiteinden. Patiënten 
met een mutatie in XLF, hebben een milder immunologisch probleem vergeleken met 
andere SCID patiënten, maar daarnaast hebben ze ook neurologische problemen resulter-
end in een klein hoofd en zijn ze  gevoelig voor ioniserende straling. In deze studie hebben 
we aangetoond dat patiënten met XLF mutaties niet goed willekeurige nucleotiden 
kunnen inbouwen tijdens het V(D)J recombinatie proces. Dit zorgt voor  minder variatie in 
de antigeenreceptoren. 

De totale diversiteit van het B cel repertoire wordt geschat op meer dan 1012, echter 
met de huidige technieken waren we niet in staat om naar een diversiteit van meer dan 
103 te kijken. Recent is er een nieuwe techniek beschikbaar gekomen waarbij vele dui-
zenden stukjes DNA in korte tijd worden geanalyseerd, deze techniek noemen we next 
generation sequencing (NGS). Door gebruik te maken van deze methode, konden we het 
antigeenreceptor repertoire in meer detail bekijken. In Hoofdstuk 4.2  hebben we een 
groep patiënten met Ataxia Telangiectasia bestudeerd. Deze patiënten hebben mutaties 
in het ATM gen, dit gen is betrokken bij het detecteren van DNA schade. Door gebruik te 
maken van de nieuwe NGS techniek hebben we voor het eerst kunnen laten zien dat deze 
patiënten een verminderd antigeenreceptor repertoire hebben. 

De studies in dit proefschrift werpen licht op de klinische en immunologische diversi-
teit van recombinatie defecten. Ze laten zien dat recombinatie defecten zich kunnen pre-
senteren als SCID, maar soms ook gepaard gaan met een minimale klinische presentatie. 
Tevens kunnen patiënten met mutaties in DNA herstel genen ook niet-immunologische 
afwijkingen hebben. Artsen moeten er dan ook bedacht op zijn dat kinderen met groeiaf-
wijkingen of neurologische aandoeningen een DNA herstel defect kunnen hebben. Deze 
studies hebben echter ook laten zien dat klinische presentatie moeilijk te voorspellen is, en 
waarschijnlijk afhankelijk is van meerdere factoren, waaronder het aanwezige gelimiteerde 
antigeenreceptor repertoire. Met behulp van de innovatieve NGS techniek kunnen we dit 
gelimiteerde antigeenreceptor repertoire nu in beeld brengen. Dit leidt tot meer inzicht 
over het V(D)J recombinatie mechanisme en zou  in de toekomst ook gebruikt kunnen 
worden om te bepalen tegen welke ziekteverwekkers een individu is beschermd. 
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DANKWOORD

Ik weet nog goed dat ik eind 2006 voor het eerst bij Mirjam op gesprek kwam voor mijn 
bachelor stage. Mirjam vertelde vol enthousiasme over het werk aan primaire immuunde-
ficiënties en V(D)J recombinatie. Ik werd direct aangestoken door haar enthousiasme en 
de combinatie van immunologie en genetica sprak mij erg aan. Gelukkig mocht ik stage 
lopen bij Mirjam, en de zoektocht naar het genetisch defect in een SCID patiënt was super 
om te doen. 

Gelukkig kon ik het onderzoek naar SCID voortzetten tijdens mijn eerste Masterstage 
op de afdeling genetica in de groep van Dik van Gent. Het laatste jaar van mijn master, 
heb ik niet aan SCID gewerkt, maar aan ribosoom deficiënties in het lab van Marieke von 
Lindren op de afdeling Hematologie. 

De afgelopen vier jaar als OIO zijn voorbij gevlogen. Ik heb super veel geleerd, en heb 
veel leuke verschillende onderzoeken mogen doen. Dit proefschrift had er niet gelegen 
zonder hulp van veel mensen, die ik hieronder wil bedanken. 

Als eerste wil ik mijn promotoren, co-promotoren en de ander leden van de promotie-
commissie bedanken. 

Beste Mirjam, dankjewel voor je enthousiaste begeleiding van mijn promotieonder-
zoek! Je hebt me echt de kans gegeven om zelfstandig de onderzoeken te doen, en waar 
nodig was je er om te overleggen. Je wist me ook iedere keer weer te stimuleren en de pos-
itieve kant in te laten zien als de experimenten niet helemaal gingen zoals ik gehoopt had. 
Ik bewonder de manier waarop jij op een positieve manier kritiek kan geven, waardoor je 
het beste in me naar boven haalde. Ik heb erg veel van je geleerd en hoop nog lang met je 
samen te mogen werken. 

Beste Jacques, bedankt dat je mijn promotor bent, ik heb veel van je mogen leren. 
Ondanks dat je erg druk was in binnen- en buitenland was je nauw betrokken bij de ver-
schillende onderzoeken. Je weet mensen te motiveren en bent waar nodig kritisch. 

Beste Nico, dankjewel dat jij mijn co-promotor bent. Ik vond het erg leuk en leerzaam 
om samen met jou te brainstormen over het RAG project. Ondanks dat je druk bent, heb 
je wel iedere keer de tijd genomen om kritisch naar mijn manuscripten te kijken en onder-
bouwend commentaar te geven. 

Beste Prof. dr. A.J. van der Heijden, bedankt dat u mijn promotor bent. 
Prof. dr. Bobby Gaspar, thank you very much for your willingness to join the thesis com-

mittee and for the efforts to judge the thesis manuscript. 
Beste Dik, bedankt dat je wilt plaatsnemen en secretaris wilt zijn van de promotiecom-

missie. Ik heb de afgelopen jaren enorm veel van je geleerd over DNA repair. De combi-
natie van de immunologie en de genetica vind ik erg leuk en het was daarom erg leuk 
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dat ik tijdens mijn stages, maar ook tijdens mijn promotietraject op beide afdelingen heb 
kunnen werken. Ik hoop nog lang samen met je te mogen werken. 

Beste Prof. Frank Staal, bedankt dat je plaats wilde nemen in de promotie commissie. 
Beste Robert Bredius, dankjewel dat je plaats wilt nemen in de kleine commissie. Ik 

weet nog goed hoe ik voor het eerst bij jullie op de kamer kwam toen Arjen Lankester 
mijn interne begeleider was voor mijn bachelor stage. Ook tijdens het onderzoek naar de 
Artemis deficiënte patiënten waren jullie nauw betrokken, en wees je me op de tweede 
patiënt van Merlijn van den Berg. 

Beste Prof. Dr. Hofstra, bedankt dat u plaats wilt nemen in de kleine commissie.
Natuurlijk wil ik alle collega’s en oud-collega’s van de PID groep bedanken: Barbara, 

Ingrid, Sandra, Erik, Gertjan, Marjolein, Bob en Sandra de Bruijn. Barbara en Ingrid, ik vind 
het echt super dat jullie mijn paranimfen zijn en ik ben blij dat jullie naast mij staan tijdens 
de verdediging. Barbara, dankjewel voor al je hulp. Niets is te veel gevraagd en je bent 
altijd bereid om iets op te zoeken. Dankjewel dat je altijd een luisterend oor hebt, en dat ik 
zo nu en dan mijn hart kan luchten bij jou. Ingrid, jij hebt me echt goed ingewerkt op het 
lab. Ik kwam behoorlijk onervaren op het lab tijdens mijn eerste stage, maar jij hebt mij 
echt helemaal wegwijs gemaakt. Het is echt fijn om met jou samen te werken, en ik vond 
het ook erg leuk dat we het 454 sequencen hebben opgezet. Sandra, dankjewel voor je 
bijdrage aan de verschillende studies. Je bent altijd bereid om iets op te zoeken of te doen. 
Erik, dankjewel voor alle hulp met de vele PCR’s, opzuiveren van PCR producten en 454 
runs. Bob, dank voor je bijdrage aan de verschillende studies. Sandra de Bruijn, dankjewel 
voor je hulp op het lab tijdens mijn stages en natuurlijk daarna met het maken van de 
vele figuren voor de verschillende artikelen. De figuren probeer ik nu zelf te maken, maar 
bedankt dat ik nog altijd bij jou terecht kan voor vragen. Gertjan, het is echt super leuk om 
met je samen te werken! Je bent geduldig en hoe druk je ook bent, je hebt altijd tijd om 
mijn vragen te beantwoorden. Je promotie was erg leuk en ik hoop dat ik mijn verdediging 
net zo goed mag doen als jij. Marjolein, leuk dat je als OIO bent begonnen in de PID groep, 
ik wens je veel succes en hoop dat je net zo’n leuke tijd mag hebben als ik heb gehad. 

Ook wil ik alle andere collega’s van de afdeling bedanken voor hun hulp, iedereen is 
bereid om mee te helpen of te denken bij de verschillende experimenten. In het bijzonder 
wil ik de collega’s van de BCD bedanken. Het onderzoek wat we doen heeft veel overeen-
komsten, en het is altijd fijn om met vragen bij jullie terecht te kunnen.  Menno, dankjewel 
voor je advies tijdens mijn studie en promotie. Is het toch nog goed gekomen met de 
stagiaire die op haar 21e nog steeds thuis woonde! 

Maaike, Patricia en Jane, dankjewel voor een luisterend oor en jullie expertise.  Jeroen(-
tje), bedankt voor alle gesprekken, de gezellige of als er gewoon even stoom afgeblazen 
moest worden. 
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Caroline, heel erg bedankt voor je hulp bij het maken van dit proefschrift. Ik ben erg blij 
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