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Abstract

A new representation for discrete dynamical systems is presented by applying
Kolmogorov’s representation theorem to the system functions .

Keywords : Kolmogorov’s Representation Theorem , Separable Dynamical Sys-

tems .
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1 Introduction

In this paper we shall consider the application of Kolmogorov’s representation
theorem ([1]) to discrete dynamical systems. The theorem states that any con-
tinuous function of n variables may be written in terms of functions of one
variable. The result has been refined by a number of authors - see , for exam-
ple, [2] and [3]. Here it will be convenient , however , to use the theorem in
its original form , although the later versions of the result could be used in the
same way.

In section 2 we shall show that any discrete system defined by continuous
functions may be written in a separable form in which the defining equations
consist of sums of functions of single variables. The stability of such systems will
then be discussed in section 3 , by representing them in a ‘quasi-linear ’form.
Systems with controls are then considered in section 4 and a similar separable
representation to that of section 2 is obtained. Finally the stability results of

section 3 are applied to this representation in section 5.

2 Representation of Discrete Systems

In this section we shall consider a discrete nonlinear system of the form
z(k + 1) — z(k) = f(=z(k)) (2.1)

for some function f : R® — R" , where z(k) € R" for each n . First recall

the famous theorem of Kolmogorov relating a general continuous function of n



variables to functions of one variable .

Theorem 2.1

For each n > 2 there exist continuous real functions ¥*?(z) , defined on E! =
[0,1] , such that every continuous real function f(zi,...,z,) defined on the

n-cube E™ | is representable in the form

2n+1 n
flz1y.oyzn) = Z Xq [ ¢P9(zp)] ‘
g=1 p=1

a
We emphasize here that the functions ?? are independent of f ;only X¢ depends
on the particular function f under consideration . The functions ¥ are strictly
monotonically increasing and have values in E?! .
Corollary 2.2
Ifn > 2 and f(y1,-..,Yn) is a continuous function defined on the n-cube

[~a,a] x ... x [—a,a] , then we can write

2n41 n y +a
f(ylﬁ"':yﬂ)= qul Ti)pq (_F,Q—)
q=1 p=1 a

where ¥?7(z) is defined on E! .

Proof
Put
_Yita
T 2
in theorem 2.1 . O

It follows that , if the solutions to (2.1) are bounded we can assume that z(k+1)



isin E™ for each k by scaling the variables z(k) ; this will be done in the following

discussion . Consider the p'® component of equation (2.1) , namely ,

zo(k 4+ 1) = zp(k) + fo(z1(k), z2(k), ..., za(k)).

Then we have

PP(zp(k +1)) = P4 (2 (k) + fp(z1(k), 22(K), ..., 2a(k))) (2.2)

Since the right hand side is continuous we can write

2n+1 n
P9 (zp (k) + fo(za(k), 2a(k), ... za(K)) = 3 xF [Z w"f’(xr(k))] (2.3)
g'=1 r=1

by theorem 2.1 , for some functions x}7,1 <p<n,1<gq,¢ <2n+1. Next

introduce the new variables

qu’ = Tf)lql(ll)

vy = V¥ (z2)

Yn-1¢ = ¢n—1q'(zn_l)

Ung = M (z1) + ¥ (z2) + ...+ ¥ (2a),1 < ¢ S 2+ 1

Then , from (2.2) and (2.3) we have

2n+1l
2 xg! lwng ()]
q'=1
2n41
2 X3 lume ()]

g'=1

qu(k + 1)

Y2q(k +1)



n+1

(b +1) = zz " [zw'(z,(k))]

n n+1

= Z Z fq[ynq‘(k)]
=1 ¢'=1
2n+l1 n

= Z Z ! lyng (K)]

Define the (2n +1)* functions x!, by

Then we have

and we have proved

Theorem 2.3

A general discrete system of the form (2.1) may be transformed into the system

2n+1

z(k+1) = > 7 (zp(k),1<g< 2n+1
¢'=1

where

zg =M (21) + % (22) + ... + 977 (z,)

for some functions xg, . Moreover , we have

2n41

YP(z)= ) X [z(K)],1<p<n—1
¢'=1

where

=3

p=1



By the strict monotonicity of the /s we can therefore evaluate z in terms of

P o

3 Stability of Separable Discrete Systems

The main point of theorem 2.3 is that we can write any discrete system in the

following separable form :

zi(k +1) Fu(z1(k)) + fra(za(k)) + ... + fin(za(k))

...... (3.1)
za(k+1) = far(zi(k) + faz(z2(k) + ...+ fan(za(k))
for some odd integer n . It is therefore desirable to study the systems of the

form (3.1) in more detail. In this section we shall consider the stability theory

of such systems. Note first that we can write this system in the form

zi(k+1) fu(zi(k)  fio(za(k) ... fin(za(k) z(k)
zo(k +1) _ for(z1(k)  fao(za(k) ... fon(zn(k) zo(k)
I za(k +1) | i far(z1(k)  fra(z2(k) ... fan(za(k) 1L zn(k) |
or
2(k+1) = A(z(d)z(k), (3.2)
where
A(z(k)) = (fij(z5)/25), 2(k) = (z1(k), - .., za(k))T (3.3)



The first result approximates A(z(k)) by a constant matrix A :
Lemma 3.1

Suppose that there exists a matrix 4 such that A(z(k)) , given by (3.3) , satisfies
lA(z)-All< K| All,Vz € R
for some K > 0 . Then the solution z(k) of (3.2) is bounded by
Il z(k) lI< (1 + K) [ AD* | =(0) || -

Proof
This is a standard approximation result ; however , since it is usually stated for

continuous-time systems , we shall prove it here for completeness . Thus , from

(3.2) we have
z(k + 1) = Az(k) + (A(z(k)) — 4)z(k)

so that

k-1 '
z(k) = A 2(0) + Y A1 (A2 (i) — A)z(i).

i=0

(This is the discrete variation of constants formula.) Hence
k-1 .

[l 2(k) <l AN 200) 1+ 11 A 12| Az()) = 4 || || =) |

=0

or

k-1
a(k) <[l z(0) || + ) Ka(i)

i=0



where
a(k) =l A |I7*)| =(k) ||
Hence ,
a(k) = (1+ K)* || 2(0) ||
(by the discrete Gronwall inequality ) and so

Il =(B) 1< (1 + K) |1 A [*]] (0) .

(=}
Corollary 3.2
Under the hypotheses of lemma 3.1, if A is stable and satisfies
[All<1-¢
for some ¢ > 0 , then the system (3.2) is stable if = > K  le. if
1 Az) = All<1- | 4]l (3.4)
a

Remark
Note that (3.4) implies that || A(z) [|< 1 for all z € R™ . If A(z) is continuous

in z then this implies stability in the following simple way . We have
| z(k + 1) lI<Il Al=z(R)) || || =(k) || - (3.5)
Since || A(z) || is continuous and || A(z) ||< 1 we have

| A(z) [<e(é) <1, z€Bs={z:| z]< 6}



for some a(6) by compactness of Bs . Now , by (3.5) , || z(k) || is decreasing so

that if || z(0) ||= &1 , then
Il A(z(E)) [I< a(6:) < 1
for all k , so that by (3.5) again

lzk+1) Il < a(é) =) |

< (e(8)* 1l =(0) |

—3 0

as k — oo . Thus lemma 3.1 is unnecessary in this case . However , if A(z)
is not continuous then the inequality || A(z) ||< 1 for all z is not sufficient for
(asymptotic) stability ; we require || A(z) ||< @ < 1 uniformly in z . m

Let r(C') denote the spectral radius of the matrix C ; then
rC) <l
for any (induced) norm || . || on the set of matrices , while
(C) =l ClIs(c)

where || . ||s(c) is the spectral norm (with respect to C). Choosing the norm in
corollary 3.2 to be || . ||s(4) We obtain
Corollary 3.8

Under the hypotheses of lemma 3.1 , if A is stable and satifies

| Allsay<1—e



for some € > 0, then the system (3.2) is stable if

r(A(z) — A) < 1—r(A).

Proof

By corollary 3.2 we have

r(A(z) - 4) < |[A() ~ A llsca)
< 1=l Allsa
= 1-r(A).

Theorem 8.4
Suppose the matrix function A(z) = (fi;(z;)/z;) satisfies the following condi-

tion : Each function f;; has the form
fij(25) = aijzj + gij(z;)
and the matrices
A = (aij), G(z) = (935 (;)/ ;)
satisfy the spectral inequality
r(G(z)) < 1—-r(A)

for all z € R” . Then the system (3.2) is stable . O
(This follows immediately from corollary 3.3.) Note that g;; is not assumed to

be continuous .

10



4 Systems with Control
Consider next the nonlinear control system
z(k + 1) = z(k) + f(=(k), u(k)) , (4.1)
where
t€R" , ueR™.

Then , as in theorem 2.1 , we can write

2(n+m)+1 n m
few= 3 x LZW(%HZW”(M
g=1 =1 r=1

for any continuous function f : R**™ — R where the function ¥*9,1 < p <

n+m,1 <q¢<2(n+m)+1 are independent of f . Hence , as in section 2 , we

have
Wiap(k+1) = VP (k) + fol@ak), ..., 2a(k), us(), ., um (k)
2(n+m)+1 n m
= Y X @)+ Yt ()
g'=1 r=1 r=1

for some functions x‘:? . (1<p<n+m1<qg<2n+m)+1.) As before

k]

define
g = $¥z1)
Yn=-1¢q = ¢ﬂ-lq(3n—1)
Yng = PH(z)+...+Y™(zn) =z

11



and

m
Uy = Z Y+ (u,).
r=1

Then we have

2(n+m)+1
zg(k+1) = z ve (29 (k) +vg1)

g'=

where

n
9 _ Pg
T = qu' :
p=1

Note , however , that the controls v, are not independent . In fact , v can be
chosen only from the nonlinear subset of R¥"+™)+! which is the image of the

function g : R™ — R¥"+m)+1 given by

m

gq(u) = Z¢n+r'q(ur)- (4.2)

r=1

We have therefore proved the control analogue of theorem 2.3 , namely :
Theorem 4.1
A general discrete control system of the form (4.1) (where f is continuous ) may

be written in the form

2(n+m)+1

b+ = S 78 (zg (k) + vg0)
¢'=1

where
zg=9M(z1) +... +9™(20), 1 S¢S 2An+m) +1

for some functions 7], . The v control space is a (nonlinear) subset of R2("+m)+1

given by the image of the function ¢ as in (4.2) . o

12



5 Application to Control of Nonlinear Systems

From theorem 4.1 we can write any discrete control system (with continuous

dynamics) in the form

zy(k+1) fua(zi(k) + v1(k)) + ... + fin (zn (k) + vn (k)

...... (5.1)

en(k+1) = fy(zik) + (k) + ...+ fun(zn (k) + on (k)

for some odd integer N where v(k) € T C R¥ for some subset I' . As before we

can express this system in a ‘pseudo-linear *form
z(k +1) = A(z(k) + v(k))z (),
where
[A(z(k) + v(k))];; = fij (x5 (k) + v; (k))/z; (k).

In order to use the theory of section 3 to obtain a stabilizing controller , we
must determine the values of v(k) and z(k) for which A(z(k) + v(k)) is ’close’
to some constant matrix 4 . For fixed z € R" let G(z) be the subset of those

elements v of I' for which
|| A(z +v) ||< 1.
(Of course , G(z) may be empty .) Moreover , let X C R" be defined by
X={zeR":G(z) # 0}

13



Finally , we shall call a subset S C X invariant (under the dynamics of (5.1))

if , for each z € X there exists v = v(z) € G(z) such that

fle+0)2(fulzi+v) +...+ fin(en +ov),. ., (5.2)

fvi(zi+v)+ ...+ fun(zy +vn)) €S.
Let
X; = U{SC X : Sinvariant},

1.e X1 is the largest invariant set in X . Then we have
Theorem 5.1
If X; # 0,0 € X; and there exists a stable matrix A4 such that for each z € X},

and for each v € G(z) we have
| Alz+v) - All< 1=l A] (5.3)

on the set X then the system (5.1) is stabilizable .

Proof

This follows from corollary 3.2 by choosing v € G(z) so that f(z + v) € X for
any z € Xy , since the solution is then guaranteed to belong to X for all £ .O
Remark

This result also holds if X is replaced by any invariant set S for which 0 € 5.0
Corollary 5.2

If X = R" and there exists a stable matrix A such that (5.2) holds , then the

system (5.1) is stabilizable . O

14



6 Conclusions

A new representation for nonlinear systems has been introduced by applying
Kolmogorov’s representation theorem to the right hand sides of the system equa-
tions . It has been shown that a difference equation (without control) can be
written in a separable form while a control system has a similar representation
with the controls being restricted to a certain subset of the space .

Some stabilizability results for such separable systems have been proved.
Because of the nature of the functions in Kolmogorov’s theorem the imple-
mentation of the ideas contained in this paper must be based on numerical

procedures . These will be examined in a future paper .
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