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ABSTRACT

COMPRESSIVE PARAMETER ESTIMATION WITH EMD

FEBRUARY 2014

DIAN MO

B.Sc., BEIHANG UNIVERSITY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Marco F. Duarte

In recent years, sparsity and compressive sensing have attracted significant atten-

tion in parameter estimation tasks, including frequency estimation, delay estimation,

and localization. Parametric dictionaries collect signals for a sampling of the param-

eter space and can yield sparse representations for the signals of interest when the

sampling is sufficiently dense. While this dense sampling can lead to high coherence in

the dictionary, it is possible to leverage structured sparsity models to prevent highly

coherent dictionary elements from appearing simultaneously in a signal representa-

tion, alleviating these coherence issues. However, the resulting approaches depend

heavily on a careful setting of the maximum allowable coherence; furthermore, their

guarantees apply to the coefficient vector recovery and do not translate in general to

the parameter estimation task. We propose a new algorithm based on optimal sparse

approximation measured by earth mover’s distance (EMD). Theoretically, we show

that EMD provides a better metric for the performance of parametric dictionary-

based parameter estimation and K-median clustering algorithms has the potential
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to solve the EMD-optimal sparse approximation problems. Simulations show that

the resulting compressive parameter estimation algorithm is better at addressing the

coherence issuers without a careful setting of additional parameters.
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CHAPTER 1

INTRODUCTION

Compressive sensing (CS) has emerged as a framework for integrated sensing and

compression of signals that are known to be sparse or compressible in some trans-

formations [1, 2, 3]. CS has attracted significant attention in recent years when its

applications have been extended from signal recovery to parameter estimation through

the design of parametric dictionaries (PDs), which yield sparse representations for the

signals of interest. A PD consists of a set of signals corresponding to a discrete set

of parameter values sampled from a continuous parameter space, such as the possible

values of frequencies in frequency estimation, delays in time delay estimation, and lo-

cations in localization. Intuitively, a PD collects a set of samples of the signal space.

Making this connection between parameter estimation and sparsity recovery allows

for compressive parameter estimation algorithms that rely on the rich sparsity-based

CS framework. The resulting coefficient vectors obtained from CS signal recovery

are interpreted by matching each nonzero entry of coefficient vectors to a parame-

ter value. This PD-based approach has been previously formulated for a bunch of

landmark parameter estimation problems, including localization, bearing estimation

[4, 5, 6, 7, 8, 9], time delay estimation (TDE) [10, 11, 12], and frequency estimation

(FE) [13, 14, 15, 16].

Unfortunately, only in the contrived case when the unknown parameters are all

contained in the sampling set of the parameter space can the PD-based compressive

parameter estimation be perfect. Fortunately, it may give low estimation error if the

unknown parameters are very close to some sampled parameters [5]. Thus, dense
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sampling of the parameter space may be able to improve the parameter estimation

error. However, the resulting PDs will have significantly high coherence, i.e., the

largest normalized inner product of any pair of PD elements will become closer to

one, which is known to hamper the performance of standard CS recovery algorithms

[17]. Previous approaches address this coherence problem by leveraging structured

sparsity models [18] to inhibit the highly coherent PD elements from appearing si-

multaneously in the recovered signals’ representation [5, 15, 19, 16, 11]. However, the

performance of the resulting algorithms are highly dependent on the careful setting of

an allowable value of the maximum coherence between the chosen elements and have

to be compensated by the spacing distance of the parameters that can be observed

simultaneously.

Another issue that arises in PD-based compressive parameter estimation is that

almost all proposed CS recovery algorithms guarantee stable recovery of coefficient

vectors with error measured by the `2 norm, i.e., the estimated coefficient vector is

very close to the true coefficient vector in Euclidean distance. Most of these algo-

rithms link the proof of the guarantee to a thresholding operation, which sets all

entries of a input vector to zero except for those with largest magnitudes and returns

the optimal sparse approximation to the input vector, again, in terms of the `2 norm.

However, such a guarantee has a very limited impact on PD-based compressive pa-

rameter estimation, since only in the most demanding case of perfect recovery can

the guarantee be linked to the accurate estimation of the indices of nonzero entries of

coefficient vectors, which can be translated into accurate parameter estimate. This

motivates the need for a new metric for coefficient vectors that is able to capture the

difference between two coefficient vectors in terms of similarity between their nonzero

entries.

Several metrics are available to measure the error of coefficient vectors in respect

of similarity between their nonzero entries rather than Euclidean distance and are
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applied to compressive parameter estimation. The Hamming distance measures the

number of the entries that are either both zero or both nonzero in the true coeffi-

cient vectors and its estimated coefficient vector, and certain CS recovery approaches

consider this criterion [20, 21, 22, 23]. Unfortunately, the Hamming distance only

controls the number of errors committed in parameter estimation, not the magnitude

of the errors that occur. As an alternative, the earth mover’s distance (EMD) [24, 25]

quantifies the magnitudes of the errors by minimizing the amount and distance of

flow among the entries of the estimated coefficient vector that make the estimated

coefficient vector become equal to the true coefficient vector. Using this distance in

compressive parameter estimation leverages the fact that if the entries of the coeffi-

cient vector are sorted by the corresponding parameter values, the distance of flow

between any pair of entries is linear with the distance of corresponding parameters,

so the EMD between the true coefficient vector and the estimated coefficient vector is

indicative of the parameter estimation error. Very recently, the EMD has been inte-

grated within CS to provide recovery algorithms for sparse and compressible signals,

where the accuracy is measured in terms of the EMD [26, 27].

In this project, our goal is to derive a new method of PD-based compressive

parameter estimation that can address the coherence issue and leverage the EMD to

measure the estimation error of coefficient vectors. We will replace the thresholding

operation in proposed CS recovery algorithms by a new sparse approximation to

search the optimal K-sparse approximations to input vectors in the sense of EMD,

which is believed to be well solved by the K-median clustering [26, 27]. Additionally,

we will present theorems showing that the parameter estimate error is bounded by

EMD of coefficient vectors and that the estimate error resulting from K-median

clustering, under some certain condition, can be very small. With these theorems, we

are able to incorporate theK-median clustering into standard CS recovery algorithms.
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CHAPTER 2

BACKGROUND

2.1 Compressive Sensing

2.1.1 Sparsity

For a long time, sparsity has been exploited in signal processing and approxi-

mation, including applications such as image compression and denoising. Usually, a

discrete signal x ∈ CN is K-sparse when it has at most K nonzero entries.

Let I = {1, 2, . . . , N} denotes the index set of any N -dimensional vector x. S ⊂ I

represents a subset with only K elements, i.e., |S| = K, and Sc represents the relative

complement of S in I:

Sc = {i ∈ I : i /∈ S}. (2.1)

xS ∈ CK represents a K-dimensional vector with K entries of x corresponding to the

indices S. Then that x is a K-sparse vector at S means x has nonzero entries only

at indices S, i.e., xS ∈ CK and xSc = 0, where those indices S is called the support

of x.

It is easy to verify that both the sum of two sparse vectors with the same support

and the scalar multiplication of a sparse vector are also sparse vectors with the same

support. So all the sparse signals x with support S form a subspace, called K-

dimensional canonical subspace XS:

XS = {x ∈ CN : xS ∈ CK , xSc = 0}. (2.2)
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There are a total of
(
N
K

)
canonical subspaces and all sparse vectors with at most

K nonzero entries lie in the the union of all canonical K-dimension subspaces, which

is called the K-sparse model:

ΣK =
⋃

S⊂I

XS. (2.3)

Usually, signals are not sparse themselves, but have sparse representation in some

bases or frames. In this case, a signal x is K-sparse in a basis or a frame Ψ when

there exists a coefficient vector c that has at most K nonzero entries such that

x = Ψc, c ∈ ΣK . (2.4)

A sparse signal is always sparse in the canonical basis, whose matrix representation

is the identity matrix. In this paper the concept of sparse refers to the concept of

sparse in a basis or a frame unless otherwise specifically stated.

While the elements of a basis are linearly independent, a frame is a generalized

concept of basis that the elements in the frame can be linear depend. Due to the

redundancy, a frame provides more flexibility than an orthonormal basis due to its

redundancy, which leads to improved sparsity properties. Therefore, frames are more

often employed than orthonormal bases.

2.1.2 Compressive Sensing

Compressive sensing (CS) acquires and compresses the sparse signal in a random

fashion [1, 2, 3]. In CS, a discrete signal x ∈ CN is compressed using a dimension-

reducing measurement matrix Φ ∈ RM×N to obtain linear measurements y ∈ CM

as

y = Φx = ΦΨc. (2.5)

In general, it is ill-posed to recover the signal x from its measurements y whenM < N

and so Φ has a nontrivial null space. But it is possible to recover an accurate sparse
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estimation x̂ to the signal x from the measurements y when x is known to be sparse

in some basis or frame.

In order to recover a good estimation x̂, the matrix Υ = ΦΨ must satisfy the

restricted isometry property (RIP) [2, 28]. A matrix Υ has RIP with constant η if,

for all c ∈ ΣK ,

(1− η)‖c‖2
2 ≤ ‖Υc‖2

2 ≤ (1 + η)‖c‖2
2. (2.6)

When η � 1, the matrix Υ approximately preserves the Euclidean distance between

any pair of K-sparse signals, so it is possible to invert the sampling process stably.

While checking whether the matrix Υ satisfies the RIP is an NP-hard problem [2],

fortunately, random matrices whose entries are independently and identically drawn

from Gaussian, Bernoulli, or more generally sub-Gaussian distributions satisfy the

RIP with high probability providing that M = O(K log(N/K)) [29, 30].

Given measurements y and the knowledge that x is sparse, it is natural to attempt

to recover the coefficients c by solving an optimization problem:

ĉ = arg min
c
‖c‖0 s.t. Υc = y. (2.7)

The `0 norm ‖ · ‖0 counts the number of all nonzero entries of a vector:

‖c‖0 = | supp(c)|. (2.8)

Since the `0 norm, which does not satisfy the absolute scalability property required

by a norm, i.e., ‖αc‖0 6= |α|‖c‖0, is not a norm and is not a convex function, solving

(2.7) is NP-hard.

Recent research shows the possibility to replace the `0 norm by the `1 norm to

formulate a convex optimization problem as

ĉ = arg min
c
‖c‖1 s.t. Υc = y, (2.9)
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and the equivalence between (2.7) and (2.9) [31, 32], where the `1 norm ‖ · ‖1 sums

the absolute magnitudes of all nonzero entries of a vector:

‖c‖1 =
∑

i

|ci|. (2.10)

The `1 norm is a convex function and the resulting problem (2.9) can be well posed

as a linear programming problem [33].

While convex optimization approaches to recover sparse signals, including interior-

point methods [31] and projected gradient method [34], are powerful methods for com-

puting sparse representations and obtaining accurate estimation, there are a variety

of greedy methods for solving CS recovery problems, which are often much faster

than the convex optimization methods but have similar performance. The greedy

algorithms rely on iterative approximation, either by iteratively obtaining an im-

proved estimation of the coefficient vector such as Iterative Hard Thresholding (IHT)

[35, 36], or by iteratively identifying the support of the coefficient vector such as Or-

thogonal Matching Pursuit (OMP) [37, 38], Compressed Sampling Matching Pursuit

(CoSaMP) [39], Subspace Pursuit (SP) [40].

The core of the mentioned greedy algorithms is the thresholding operator H(·)

that sets all but the K entries of the input vectors with largest magnitudes to zero

and returns the nearest K sparse approximations in terms of the `2 norm:

H(c,K) = arg min
c∗∈ΣK

‖c− c∗‖2 (2.11)

The sparse approximation resulting from the thresholding operator finds optimal K

sparse approximations for input vectors in the sense that the output vectors are K-

sparse and the Euclidean distance between the inputs vectors and the output vectors

are small.
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Algorithm 1 Iterative Hard Thresholding
Input: measurement matrix Φ, basis or frame matrix Ψ, measurements y, sparsity

K
Output: estimated signal x̂
1: Initialize: ĉ = 0, x̂ = 0, Υ = ΦΨ
2: repeat
3: ĉ = H(ĉ+ ΥT (y −Υĉ), K)
4: x̂ = Ψĉ
5: until stop criterion is met

For example, as defined in Algorithm 1, IHT iterates a gradient descent step fol-

lowed by thresholding until a convergence criterion is met. Other algorithms including

OMP, CoSaMP and SP also implement the hard thresholding to search the optimal

sparse approximation.

2.1.3 Model-Based Compressive Sensing

While classical CS processes signals by exploiting the fact that the signals can be

described as sparse in some basis or frame, the locations of the nonzero entries of

coefficient vectors often have underlying structure. Such structure can be captured

by model-based CS, which reduces the freedom degree of sparse signals by permitting

only certain entries to be nonzero.

A K-sparse coefficient vector x lies in the K-sparse model ΣK , which is the union

of all
(
N
K

)
canonical subspaces XS. In contrast to sparsity, where there are no constrain

on the support of coefficient vectors, structured sparsity endows sparse signals with

an additional structure that allows only certain canonical subspaces and disallows

others. If {S1, S2, . . . , SJ} is the set containing all allowed supports with |Sj| = K

for each j = 1, 2, . . . , J , then a K-structured sparse signal x lies in the K-structured

sparse model ΞK ⊂ CN , the union of the S canonical subspaces XS1 ,XS2 , . . . ,XSJ :

ΞK =
S⋃

s=1

XΛs (2.12)
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If a signal is known to be structured sparse, then the RIP constraint on the CS

measurement matrix can be relaxed to a model-based RIP that (2.6) are required to

hold only for structured sparse signals rather than all sparse signals [41, 42]. This

prior knowledge reduces the required number of linear measurements to accurately

recover the sparse signals to M = O(K + log S), which can be a significant reduction

from M = O(K log(N/K)) [18, 41].

To take advantage of the theory of model-based CS, several model-based CS re-

covery algorithms are derived by replacing the standard sparse approximation with a

structured sparse approximation algorithm. In place of standard sparse approxima-

tion H(·) that results from thresholding, which returns the best sparse approximation

in the sparse signal set, model-based CS uses a structured sparse approximation M(·)

that returns the nearest sparse approximation in the structured sparse signal set with

allowed support in terms of `2 norm:

M(c,K) = arg min
c∗∈Ξk

‖c− c∗‖2. (2.13)

In a similar way to sparse approximation, structured sparse approximation finds the

optimal structured sparse approximations for input vectors in the sense that the out-

put vectors are sparse with additional structures and the Euclidean distance between

input vectors and output vectors are small.

Structured sparsity has recently been incorporated into IHT [41, 15], OMP [19],

and CoSaMP [18]. As in Algorithm 2, a model-based IHT can be easily formulated

by integrating a structured sparse approximation into the classical IHT algorithm in

Algorithm 1.
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Algorithm 2 Model-Based IHT
Input: measurement matrix Φ, basis or frame matrix Ψ, measurements y, sparsity

K
Output: estimated signal x̂
1: Initialize: ĉ = 0, x̂ = 0, Υ = ΦΨ.
2: repeat
3: ĉ = M(ĉ+ ΥT (y −Υĉ), K)
4: x̂ = Ψĉ
5: until stop criterion is met

2.2 Compressive Parameter Estimation

2.2.1 Introduction to compressive parameter estimation

The parametric models form another and a more general class of low dimensional

signal model, where a K-dimensional continuous parameter θ ∈ RK can be identified

that carries the relevant information about a signal x ∈ CN , which changes as a

continuous (typically nonlinear) function of this parameter. Typically, parametric

signals are defined via a mapping ψ : Θ → X from a parameter space Θ ⊆ R to

a signal space X ⊆ CN that connects a parameter θ ∈ Θ and its parametric signal

x = ψ(θ) ∈ X. ψ(Θ) ⊆ X represents all parametric signals corresponding to all

possible parameters.

Parameter estimation problems deal with the estimation of the underlying pa-

rameters from the observed signals, especially when the signals are contaminated by

noise. Parameter estimation from a noisy signal y = x+n, where n denotes Additive

White Gaussian Noise (AWGN), aims to find the nearest signal x̂ ∈ ψ(Θ) to y and

then invert the mapping to estimate the parameter values θ̂. CS theory suggests that

the distance between any two parametric signals can be approximately preserved by

a random projection operator Φ ∈ RM×N [43]. In other words, parameter estimation

can be performed directly on noisy CS measurements y = Φx+ n without having to

recover the full signal x̂ from y and then estimate the parameter θ̂, when the mapping

is known and available. However, this mapping often takes the form of a nonlinear

manifold and therefore is complex to leverage.
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Parametric dictionaries (PDs) have been used to perform parameter estimation

directly on noisy CS measurements without recovering the full observed signals using

sparse signal models. PDs are motivated by the fact that, in many practical applica-

tion, the observed signals can be expressed or approximated by a linear combination

of parametric signals with distinct unknown parameters, i.e.,

x =
K∑

k=1

ckψ(θk). (2.14)

By introducing a PD Ψ ⊆ ψ(Θ) as a collection of a samples from the set of parametric

signals

Ψ = [ψ(ω1), ψ(ω2), . . . , ψ(ωL)], (2.15)

which correspond to a set of samples from parameter space Ω = {ω1, ω2, . . . , ωL} ⊆ Θ,

the signal can be written as the product of the PD and a sparse coefficient vector

x = Ψc, in the case that the sampling is large and dense enough so that unknown

parameters are all contained in the sampling set, i.e., θ = {θ1, θ2, . . . , θK} ⊆ Ω.

Therefore, finding the unknown parameters is reduced to finding at most K PD

elements from Ψ whose linear combination corresponds to CS measurements that are

close to the observed CS measurements, or, in other words, to obtaining an estimation

of the support of the coefficient vector.

2.2.2 Issues in compressive parameter estimation

The PD-based compressive parameter estimation can be perfect only if the over-

sampling set of parameter space is dense and large enough to contain all of the

unknown parameters. If this tough case is not met for some unknown parameter

θk, a denser and larger sampling of the parameter space increases the chance that a

observation ψ(ωl) for some sampled parameter ωl is sufficiently close to the observa-

tion ψ(θk) for the unknown parameter θk, i.e., ‖ψ(ωl) − ψ(θk)‖2 is very small, such

that we can estimate the unknown parameter θk by the sampled parameter ωl ∈ Ω.
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When the sampling step of the parameter space is ∆, it is easy to verify that the

distance between the the nearest sampled parameter ωl and the unknown parameter

θk is bounded by half of the sampling step:

min
ωl∈Ω
|ωl − θk| ≤

∆

2
. (2.16)

This shows that the small error of estimating the unknown parameter by the nearest

sampled parameter requires the small sampling step or the dense sampling of the

parameter space.

However, highly dense sampling increases the similarity between the PD elements

for adjacent parameters and the coherence in the PD, which is measured by the

maximum normalized inner product of PD elements:

µ(Ψ) = max
1≤i 6=j≤L

|〈ψ(ωi), ψ(ωj)〉|
‖ψ(ωi)‖2‖ψ(ωi)‖2

. (2.17)

The denser that the sampling is, the higher similarity that the dictionary elements

for adjacent parameter have, and the closer that coherence µ(Ψ) is to one. This

increases the difficulty of distinguishing between elements and severely hampers the

performance of compressive parameter estimation [44, 17].

Alternatively, one can take advantage of structured sparsity to address the coher-

ence issue [18]. In contrast with classical sparsity that searches for the sparse ap-

proximation among all sparse vectors, structured sparsity only searches for the sparse

approximation among the sparse vectors that exhibit particular additional structure.

One can use a coherence-inhibiting structured sparse approximation in which the re-

sulting K nonzero entries of coefficient vectors correspond to PD elements that have

low coherence, in order to inhibit the highly coherent PD elements from appearing in

signal representation simultaneously [5, 15, 16, 11]. Such coherence-inhibiting frame-

work has derived a variety of parameter estimation algorithms, such as structured

12



Algorithm 3 Coherence-Inhibiting Structured Sparse Approximation
Input: input vector c, parameter dictionary Ψ, maximum coherence ν, sparsity K
Output: estimated vector ĉ
1: Initialize: ĉ = 0, D = Ψ∗Ψ, S = ∅
2: for k = 1 to K do
3: j = arg maxi ci
4: ĉj = cj
5: S = {i : Di,j} ≥ µ
6: cS = 0
7: end for

iterative hard thresholding (SIHT) [5, 15], band-exclusion orthogonal matching pur-

suit (BOMP) [19], and band-exclusion interpolating subspace pursuit (BISP) [16, 11].

Algorithm 3 shows the coherence-inhibiting structured sparse approximation, in

which the coefficient with largest magnitude is kept and the coefficients corresponding

to the elements that are highly coherent with the element of largest coefficient are

vanished. The resulting estimate coefficient vector ĉ is K-sparse with the support Ŝ

corresponding to low coherent PD elements

µ(ΨŜ) ≤ ν. (2.18)

The maximum coherence ν in the algorithm is defined as a band width within

the dictionary elements can not appear simultaneously in the signal representation.

Although it is clear that an appropriate choice of maximum coherence can improve

the performance of band-exclusion algorithms, little has been studied about the choice

of maximum coherence and the sensitivity of the aforementioned algorithms to the

maximum coherence. Intuitively, setting the parameter too low results in performance

that is similar to that of standard algorithms, which is poor. Alternatively, setting

the parameter too high results in wide band exclusion and thus strict requirements

on the minimum separation of the parameters in signals, resulting in suboptimal

performance for the signals that do not meet this requirement. Figure 2.1 shows the

average estimation error of time delay estimation as a function of CS subsampling
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Figure 2.1: Average time delay estimation error as a function of subsampling rate
with different chirp duration

rate κ when the maximum coherence is fixed at ν = 0.001, which is the optimal

value for the signals with chirp duration T = 1 µs, but the chirp duration T of the

signal varies from 1 µs to 5 µs. Since the different chirp durations lead to different

coherences of corresponding PDs, the band-exclusion algorithm with fixed maximum

coherence have different performance on the signals with different chirp duration. The

result confirms the conclusion that the performances of parameter estimation based

on band-exclusion algorithms is very sensitive to the choice of maximum coherence.

The second issue in the PD-based compressive parameter estimation is that all

proposed CS recovery algorithms guarantee stable recovery of coefficient vectors with

the error being measured by the `2 norm, i.e., the estimated coefficient vector are close

to the true coefficient vector in Euclidean distance. The guarantee is linked with the
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core thresholding operation, which thresholds all entries of input vector to zero except

for those with the largest magnitudes and returns the optimal sparse approximation

to the input vector in terms of the `2 norm. However, the guarantee provides perfect

parameter estimation that accurately estimates the support of the coefficient vectors

only in the most demanding case of exact recovery, i.e., the estimated coefficient vector

exactly match the true coefficient vector. Otherwise if the exact recovery can not be

met, such a guarantee is meaningless since the `2 norm can not precisely measure the

difference between the supports of two coefficient vectors. Consider a simple frequency

estimation as in Figure 2.2, where the true coefficient vector is a canonical basis vector

c = ei, which corresponds to a signal with a single component at frequency fi. Two

candidate estimated coefficient vectors ĉ1 = ei+1 and ĉ2 = ei+7, which respectively

correspond to signals with single components at frequencies fi+1 and fi+7, share the

same Euclidean distance to c, when the exact estimation is impossible. Nonetheless,

the estimated frequncy f̂1 = fi+1 from ĉ = ei+1 has smaller error than f̂2 = fi+7

from ĉ = ei+7, when the Fourier transform is sorted so that fi < fi+1 < fi+7. This

motivates the need for new metrics that can capture the difference between the two

candidates and prefer the former over latter in the simple example.

There are several metrics that measure the distance between two vectors in terms

of similarity between their supports. The Hamming distance measures the number of

either both zeros or both nonzeros at the same entries of two vectors and has been

considered in some certain algorithms [20, 21, 22, 23]. Unfortunately, The Hamming

distance only controls the number of errors committed in parameter estimation, but

not the magnitude of the errors that occur. As an alternative, the earth mover’s dis-

tance quantifies the magnitudes of the errors by minimizing the amount and distance

of flow among the entries of one vector to match another one [24, 25].
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Figure 2.2: Example of frequency estimation

2.3 Earth Mover’s Distance

The earth mover’s distance (EMD) was first proposed by Rubner et al. as a

crossbin distance to measure the similarity between signatures [24, 25]. Intuitively, if

two signatures can be seen as earth and holes, the EMD measures the least amount

of work needed to fill a collection of holes properly spread in space with a collection

of earth spread in the same space, where a unit of work corresponds to transporting

a unit of earth by a unit of ground distance.

The EMD between two vectors relies on the notion of mass being assigned to each

entry of the two vectors involved, with the goal being to transfer mass among the

entries of the first vector in order to match the mass of the entries of the second

vector. The EMD captures the difference between two vectors by finding the flow

with the smallest work (measured as the product of the amount of the flow to be

moved and the distance of the flow) among all possible flow that is applied to the

first vector to yield the second one.
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More precisely, EMD between two vectors with the same `1 norm can be defined

as the minimum flow work moving among the nonzero entries of the first vectors c to

match the second vector ĉ. If S = {s1, s2, . . . , sK} and Ŝ = {ŝ1, ŝ2, . . . , ŝK} are the

supports of c and ĉ respectively, fij denotes the amount of flow moved from the entry

si to the entry ŝj, and dij measures the ground distance or the distance of flow fij to

be moved:

dij = |si − ŝj|, (2.19)

then the EMD results from an optimization problem:

EMD(c, ĉ) = min
f

∑

i,j

fijdij

s.t.
∑

j

fij = csi , i = 1, 2, . . . , K;

∑

i

fij = ĉŝj , j = 1, 2, . . . , K;

fij ≥ 0, i, j = 1, 2, . . . K.

(2.20)

In the case that the two vectors have different `1, one can always easily add an extra

sink or an extra source to receive or provide the difference associated with a large

ground distance to other entries.

That the EMD can be a metric for coefficient vectors in compressive parameter

estimation leverages the fact that if the entries of the coefficient vectors are sorted by

the corresponding parameter values, the distance of flow between any pair of entries

is linear with the distance of corresponding parameters, so the EMD between the true

coefficient vector and the estimated coefficient vector is indicative of the parameter

estimation error.

Recently, there has been a significant interest in developing methods for geometric

representations of EMD to provide approximated and simple computations of EMD.

The goal is to find a mapping g so that the EMD between two vectors c and ĉ can
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be easily approximated by the distance of their mapping values g(c) and g(ĉ). The

mapping provided in [45, 46] guarantees that, for some constant C > 0,

‖g(c)− g(ĉ)‖1 ≤ EMD(c, ĉ) ≤ C‖g(c)− g(ĉ)‖1. (2.21)

Based on these results, it appears that the EMD between coefficient vectors can

provide a approximate bound of the error between corresponding parameter values

if the parametric model can be expressed as such mappings. Though the EMD has

been recently integrated within CS to provide recovery algorithms for sparse and

compressible signals, where the accuracy is measured in terms of the EMD [26, 27],

no such guarantee has been proposed to show the relationship between the EMD of

coefficient vectors and the error of corresponding parameters.

2.4 K-Median Clustering

Cluster analysis partitions data points based on the the information that describes

the points and their similarity [47, 48]. Clustering is a task of partitioning a set of

points into different groups in such way that the points in the same group, which is

called a cluster, are more similar to each other than to those in other groups. The

greater that the similarity within a group is or the greater that the difference among

groups is, the better or more distinct that the clustering is.

The goal of clustering L points {p1, p2, . . . , pL} associated with weights w1, w2, . . . , wL

and mutual similarity d(pi, pj) into K clusters is to find K points {q1, q2, . . . , qK},

which are called centroids of the clusters, and then K clusters {C1, C2, . . . , CK}, each

of which contains all points that are more similar to its centroid than other centroids:

Ci = {pl : d(pl, qi) ≤ d(pj, qj)} (2.22)
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To qualify how good the clustering is, the measure function or the objective function

is defined as the total sum of the similarity between each point and its closet centroid:

J =
K∑

i=1

∑

pj∈Ci

wjd(qi, pj). (2.23)

Different choices of similarity can result in different meaning for the centroids [48].

If the mutual similarity is measured as the squared Euclidean distance, the centroids

will be the means of the clusters, and so the clustering is called K-mean clustering.

If the similarity is represented by the Manhattan distance:

d(pi, pj) = |pi − pj|, (2.24)

then the measure function defined in (2.23) becomes the sum of the `1 norm of each

point to its nearest centroid:

J =
K∑

i=1

∑

pj∈Ci

wj|qi − pj|. (2.25)

One can solve for the centroids by differentiating the measure function and setting it

to zero:
∂

∂qi
J = 0

⇒ ∂

∂qi

K∑

i=1

∑

pj∈Ci

wj|qi − pj| = 0

⇒
K∑

i=1

∑

pj∈Ci

wj
∂

∂qi
|qi − pj| = 0

⇒
∑

pj∈Ci

wj
∂

∂qi
|qi − pj| = 0

⇒
∑

pj∈Ci

wjsign(qi − pj) = 0.

(2.26)
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Algorithm 4 K-Median Clustering (Q,S) = C(W,P,K)

Input: weights W , points P , number of cluster K
Output: centroids Q, cluster indices S
1: Initialize: choose Q as random points.
2: repeat
3: si = arg minj=1,...,K |pi − qj| for each i = 1, . . . , L
4: qj = argp

∑
i:si=j

wisign(p− pi) = 0 for each j = 1, . . . , K
5: until S does not change

Where the sign(·) gets the sign of a number. Equation (2.26) illustrates that the

resulting centroids are the medians of the clusters and the points on the different

sides of the centroids have balanced weight:

∑

j:pj∈Ci,pj<qi

wj =
∑

j:pj∈Ci,pj>qi

wj. (2.27)

A well-known K-median clustering is formally described as Algorithm 4 [47], in

which initial centroids are generated randomly. Then each point is assigned to the

cluster with nearest centroid and each centroid is updated by the median of all points

in the cluster repeatedly until the centroids do not change.

2.5 Polar Interpolation

A recently proposed alternative to improve the estimation performance of PD-

based parameter estimation when the unknown parameters are not all contained in

the sampling set of the parameter space is to use interpolation in the parameter space

[49, 16, 11]. The motivation behind such approaches is that the low-dimensional para-

metric model that expresses the relationship between parameters and signals in a small

neighborhood can be well approximated by a closed-form expression that integrates

as much knowledge of the parametric model characteristics as possible while remain-

ing computationally feasible. Therefore, the signal of a parameter that is outside

of the sampling set can be accurately estimated from the signals of its surrounding

20



ψ(θ)ψ
(
ωl − ∆

2

)

ψ(ωl)

ψ
(
ωl +

∆
2

)

ψ(θk)

d

(a)

u

v

σ

r

d

ψ
(
ωl +

∆
2

)

ψ(ωl)

ψ
(
ωl − ∆

2

)

ψ(θk)

(b)

Figure 2.3: Illustration of polar interpolation

sampled parameters via interpolation. Although Taylor series interpolation is a pop-

ular model, certain applications that feature parametric invariance of the norm and

distances between signals are better suited to a polar interpolation scheme [49, 16, 11].

For many parameter estimation problems, including frequency estimation and

time delay estimation, all parametric signals share the same magnitude and therefore

are characterized by a curve contained in the surface of a high-dimensional hyper-

sphere in CN . A small curve of this manifold can therefore be approximated by an

arc of a circle on the high-dimensional hypersphere, which is uniquely determined by

a triplet of PD elements corresponding to three sampled parameters contained in the

segment. It is possible to find a basis for the span of the triplet of elements that

provides a trigonometric map from the angle between the middle element and the

observed signal and the differential of the parameter values for the two signals.

More specifically, assume that the parameter space is sampled with a step size

∆. As shown in Figure 2.3, The unknown parameter θk is linked to the closest

value ωl within the sampled set Ω; therefore, the unknown signal ψ(θk) lies on the
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segment of the manifold {ψ(θ) : ωl − ∆/2 ≤ θ ≤ ωl + ∆/2}. This segment is

approximated by the unique circular arc that contains the triplet of PD elements

{ψ(ωl −∆/2), ψ(ωl), ψ(ω + ∆/2)}. The polar approximation is obtained as

ψ(θk) ≈ d(ωl) + r cos

(
2(θk − ωl)

∆
σ

)
u(ωl) + r sin

(
2(θk − ωl)

∆
σ

)
v(ωl), (2.28)

where d(ωl), u(ωl), and v(ωl) are a basis for the circle corresponding to its center

and trigonometric coordinates and the constants r and σ represent the radius and

the half-angle of the relevant circular arc. The approximation basis elements can be

computed in closed form using the formula

[d(ωl), u(ωl), v(ωl)] =

[
ψ

(
ωl −

∆

2

)
, ψ(ωl), ψ

(
ωl +

∆

2

)]



1 1 1

r cos(σ) r r cos(σ)

−r sin(σ) 0 r sin(σ)




−1

, (2.29)

which intuitively provides the mapping between the angles {−σ, 0, σ} and the PD

element triplet. When multiple parameters are observed simultaneously, we collect

the estimation basis elements d(ωl), u(ωl) and v (ωl) into the matrices D, U , and V

so that the observed signal x can be expressed as as

x =
K∑

k=1

ckψ(θk) ≈ Dc+ Uα + V β, (2.30)

where c, α and β collect the trigonometric coefficients from the individual approxima-

tions (2.28). The solution to this equation can be obtained by posing a constrained

convex optimization problem [49, 11]; the resulting coefficients α and β yield an

estimate of the parameter via the bijective relation

θ̂k = ωl +
∆

2σ
arctan

(
βk
αk

)
. (2.31)
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CHAPTER 3

CLUSTERING PARAMETER ESTIMATION

3.1 Estimation Error

The task of parameter estimation is to make the error between the true parameters

and estimated parameters is as small as possible. Solving for the estimation error

between a set of unknown parameter values θ = {θ1, θ2, . . . , θK} and a set of estimated

parameter values θ̂ = {θ̂1, θ̂2, . . . , θ̂K} is an assignment problem that minimizes the

cost of assigning each true parameter value to an estimated parameter value. If the

cost of assigning the true parameter θi to the estimated parameter θ̂j is the ground

distance between the two parameters:

tij = |θi − θ̂j|, (3.1)

and binary value gij ∈ {0, 1} denotes the status of the assignment:

gij =





1 θi is assigned to θ̂j

0 θi is not assigned to θ̂j
, (3.2)

then the parameter estimation error (PEE) results from the integer programming

problem:
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PEE(θ, θ̂) = min
g

∑

i,j

gijtij

s.t.
∑

j

gij = 1, i = 1, 2, . . . , K;

∑

i

gij = 1, j = 1, 2, . . . , K;

gij ∈ {0, 1}, i, j = 1, 2, . . . , K.

(3.3)

Collecting all gij and tij, we have the vectors:

g = [g11, g12, . . . , g1K , g21, g22, . . . , gKK ]T (3.4)

and

t = [t11, t12, . . . , t1K , t21, t22, . . . , tKK ]T . (3.5)

Providing that 1TK and IK denotes the K-dimensional vector whose entries are all 1

and the K ×K identity matrix, respectively, and

A =



IK ⊗ 1TK

1TK ⊗ IK


 , (3.6)

where ⊗ is the Kronecker tensor product, (3.3) can be written in the canonical form

of integer programming:

PEE(θ, θ̂) = min
g
tTg

s.t.Ag = 1T2K

g ∈ {0, 1}K2

. (3.7)

It is easy to show that A is a total unimodular matrix, whose square non-singular

submatrices are all integer matrices with determinant 1 or −1. So the integer pro-

gramming problem (3.7) has the equivalent answer as its linear programming [50]:
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PEE(θ, θ̂) = min
g
tTg

s.t.Ag = 1T2K

g ≥ 0

. (3.8)

In PD-based compressive parameter estimation, based on the fact that there exists

a bijective relationship between parameters and entries of the coefficient vectors, it

will be possible to control the parameter estimation error by controlling the estimation

error of the supports of the coefficient vectors. The main reason to discard the `2

norm used to measure the recovery error in previously proposed methods is that `2

norm of the coefficient vectors can not really measure the difference of their nonzero

entries, which is the PD-based compressive parameter estimation to minimized.

The EMD can be a potential metric for the estimation error of the coefficient

vectors due to the fact that the distance of flow moving from one entry to another

is proportional to the distance between the corresponding parameters. When the

sampling step of the parameter space is denoted by ∆, the distance between the

entries si and ŝj of the coefficient vectors and the distance between the parameters

θi and θ̂j have such relationship:

tij = |θi − θ̂j| = ∆|si − ŝj| = ∆dij. (3.9)

If vectors f and d collect fij and dij in the same way as (3.4) and (3.5), and b collects

all nonzero entries of c and ĉ as

b = [cs1 , cs2 , . . . , csK , ĉŝ1 , ĉŝ2 , . . . , ĉŝK ]T , (3.10)

the equation (2.20) for solving EMD can also be simplified as the canonical form:

25



EMD(c, ĉ) = min
f
dTf

s.t.Af = b

f ≥ 0

. (3.11)

Based on the similarity of (3.8) and (3.11), It is straightforward to formulate the

following theorem, which is proved in Appendix A.

Theorem 3.1.1. Assume that ∆ is the sampling step of the parameter space. If c

and ĉ are the coefficient vectors corresponding to two sets of parameters θ and θ̂, then

the EMD between the two coefficient vectors provide an upper bound of the parameter

estimation error between the two sets of parameters:

PEE(θ, θ̂) ≤ ∆

cm
EMD(c, ĉ), (3.12)

where cm is the smallest magnitude among the entries of c and ĉ.

To illustrate the theorem, 100 pairs of sets of parameters are randomly sampled

from the parameter space with the sampling step ∆ = 1 and the corresponding

coefficient vectors are generated with minimum magnitude cm = 0.5. Each point has

the coordinates of the EMD of the coefficient vectors and the PEE of the parameters.

As shown in Figure 3.1, all points are below the line, which represents PEE(θ, θ̂) =

(∆/cm)EMD(c, ĉ).

Following the aforementioned analysis, if the EMD-optimal sparse approximation

is available to provide the guarantee on the stable recovery of coefficient vectors in

terms of EMD, one can can potentially provide a simple extension of the guarantee

to PD-based compressive parameter estimation.

26



0 5 10 15 20 25
0

10

20

30

40

50

EMD

P
E

E

Figure 3.1: PEE as a function of EMD

3.2 EMD-Optimal Sparse Approximation

An EMD-optimal sparse approximation, which stably finds the optimal sparse

approximation in the sense that the EMD from the input vector to the output vector

is small, plays the crucial role in our proposed compressive parameter estimation.

Motivated by the aforementioned algorithms such as SIHT or BOMP, in order to

integrate EMD into the CS framework, an EMD-optimal sparse approximation should

be formulated to provide a best sparse approximation to the input vector with error

being measured in terms of EMD.

In the case that one want to find a K-sparse vector ĉ ∈ CL with fixed support

Ŝ ⊂ I = {1, 2, . . . , L} that has smallest EMD to an arbitrary vector v ∈ CL, the

minimum flow work defined in (2.20) is achieved when the flow is only active between
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each entry of the vector v and its nearest nonzero entry ŝi of the vector ĉ, i.e., the

entry ŝi has a connection to all the entries of v that have smaller distance to ŝi than

to other nonzero entries of ĉ. In other words, K nonzero entries of ĉ partition the

entries of v into K different groups:

Vi = {l ∈ I : |l − ŝi| ≤ |l − ŝj|}, (3.13)

and the EMD defined in (2.20) yields

EMD(v, ĉ) =
K∑

i=1

∑

j∈Vi

|vi||j − ŝi|. (3.14)

It is important to note that objective function (3.14) matches the objective function

(2.25). If entries of v represent L points associated with weight |v1|, |v2|, . . . , |vL|, and

support Ŝ represent the centroids resulting from performing K-median clustering on

the entries, then the EMD between v and ĉ equals to the objective function of K-

median clustering, which is minimized. So K-median clustering is able to returns the

nearest sparse vector to an arbitrary vector in terms of EMD, which is the task of

EMD-optimal sparse approximation.

As we mentioned before, the goal of the compressive parameter estimation is to

find a number of PD elements, whose linear combination has the linear measurements

that are close to the observed linear measurements. To find those PD elements,

greedy algorithms project the observed measurements into the space spanned by all

PD elements and obtain the correlation values between the observed measurements

and all PD elements, which are the inner product of the observed measurements

and PD elements. Obviously, the PD elements with large correlation values are the

elements that we expect.

In the limiting case that the sampling step of the parameter space ∆ → 0, both

the sampling of signal space and parameter space are extremely dense and therefore
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signals are continuous functions of a continuous parameter. The PD element corre-

sponding to parameter θ ∈ R can be expressed as ψ(ω− θ), which is a shifted version

of a smooth and unit-energy function ψ(ω). A parametric signal x(ω) involving the

unknown parameters θ1, θ2, . . . , θK has the form as

x(ω) =
K∑

i=1

ciψ(ω − θi), (3.15)

where ci > 0 is the magnitude. Let the auto-correlation function be defined as

λ(θ) = 〈ψ(ω − θ), ψ(ω)〉 =

∣∣∣∣
∫

R
ψ∗(ω − θ)ψ(ω)dω

∣∣∣∣ . (3.16)

When there is no compressive sensing and noise, where the parametric signal is the ob-

served linear measurements, the correlation function between measurements and PD

elements can be expressed as a linear combination of the auto-correlation functions:

v(θ) = 〈ψ(ω − θ), x(ω)〉

= 〈ψ(ω − θ),
K∑

i=1

ciψ(ω − θi)

=
K∑

i=1

ci〈ψ(ω − θ), ψ(ω − θi)〉

=
K∑

i=1

ci〈ψ (ω − (θ − θi)) , ψ(ω)〉

=
K∑

i=1

ciλ(θ − θi).

(3.17)

In most parameter estimation problems, the auto-correlation function λ(θ) has bounded

variation such that the cumulative auto-correlation function, defined as

Λ(θ) =

∫ θ

−∞
λ(ω)dω, (3.18)
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Figure 3.2: (a) auto-correlation function and (b) cumulative auto-correlation function

is bounded and has the supremum at infinity, i.e., Λ(∞) = 2E. As shown in Figure

3.2b, Λ(θ) is a monotonic increasing function with some other important properties

as Λ(0) = E and Λ(−θ) + Λ(θ) = 2E.

Due to the smoothness and unit energy of ψ(ω), λ(θ) is a continuous function and

reaches the maximum value 1 at θ = 0, as shown in Figure 3.2a. So that the corre-

lation function has the local maximum c1, c2, . . . , cK at the parameters θ1, θ2, . . . , θK ,

which exactly match the unknown parameters. So the greedy algorithms estimated

the parameters by finding the parameters corresponding to the local maximum of

correlation function.

Another property of the auto-correlation function is that the function decreases

as the distance of the parameter to zero increases until finally vanishing, since the

coherence between PD elements decreases as the distance of their parameters in-

creases. When the auto-correlation function decays very fast, where the PD elements

are almost incoherent and the coherence in PD is very small, it is possible to find

the local maximum of correlation function by the thresholding operator. When the

auto-correlation function decays slowly, where the PD elements are highly coherent,

the thresholding operator will unavoidably find the values around the global maxi-

mum that are larger than other local minimums if additional approaches like the band
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exclusion are not implemented. Instead, the K-median clustering tries to locate the

local minimum directly.

There are some conditions that the auto-correlation function should satisfy to en-

sure small estimation error performing K-median clustering on the correlation func-

tion. First, any pair of parameters must be well separated. If two parameters θi and

θj are too close to each other, the similarity of ψ(ω − θi) and ψ(ω − θj) makes it dif-

ficult to distinguish them. So the conditions should contain the minimum separation

distance:

ζ = min
i 6=j
|θi − θj|. (3.19)

Second, any parameter should be far away from the bound of the sampling range.

Often it is enough and convenient to estimate parameter in a range [θmin, θmax] ⊂ R

rather than the entire real number. According to (2.27), which implies that a centroid

balances the weights of points on different sides of the cluster, there will be a bias

in the estimation to compensate the missed weight of the correlation function on one

side when one parameter is too close to the bound of parameter range. Therefore the

conditions should also contain the minimum off-bound distance ε so that

θmin + ε ≤ θi ≤ θmax − ε. (3.20)

Third, if the magnitudes of some parameters are too small, K-median clustering

may regard them as the noisy and ignore them. So another condition should be the

dynamic range of component magnitudes:

r = max
i,j

ci
cj
. (3.21)

Combining all these conditions, we can state the following theorem to guarantee the

performance of K-median clustering, which is proved in Appendix B.
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Theorem 3.2.1. Assume that the signal x in a parameter estimation problem has K

parameters θ1, θ2, . . . , θK with magnitude dynamic range r. For any error tolerance

δ > 0, if the minimum separation distance satisfies

ζ ≥ 2Λ−1

(
2E

(
1− Λ(δ)/E − 1

(2K − 2)r + 1

))
+ 2δ, (3.22)

and the minimum off-bound distance satisfies

ε ≥ Λ−1

(
2E

(
1− Λ(δ)/E − 1

(2K − 2)r + 1

))
, (3.23)

then the estimation error using K-median clustering is bounded by the error tolerance:

|θk − θ̂k| ≤ δ, k = 1, 2, . . . , K (3.24)

Theorem 3.2.1 provides a very important insight that the smaller that the target

error tolerance δ is, the larger that the minimum separation ζ and the minimum dis-

tance to bound ε will need to be. For a simple example, assume that auto-correlation

function has the form of Gaussian function as

λ(θ) =
1√
2πσ

exp

(
− θ2

2σ2

)
(3.25)

and K = 2, r = 1.5. When δ = 0.1σ, ζ = 3.50ε and ε = 1.65σ; when δ = 0.01σ,

ζ = 4.39σ and ε = 2.19σ.

It is worth noting that the theorem focuses on the worst case in practice. Figure

3.3 gives both maximum estimation error from the theorem and the experiments

with randomly generated data as a function of minimum separation. It is remarkable

that the required minimum separation distance in practice is much less than the

theoretic value. Nevertheless, the theorem still help a lot in the theoretical analysis

of parameter estimation problems.
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Figure 3.3: Theoretical and experimental maximum error as a function of minimum
separation

3.3 Parameter Estimation Algorithm

Since most existing sparse recovery algorithms rely on a thresholding operation

to obtain optimal sparse approximations in the `2 metric, it is particularly easy to

modify the existing recovery algorithms to achieve sparse recovery with EMD. For ex-

ample, we propose a new PD-based parameter estimation algorithm, called Clustering

Subspace Pursuit (CSP), as shown in Algorithm 5. CSP merges the Subspace Pursuit

algorithm [40] with EMD-based sparse approximation and replaces the thresholding

steps from subspace pursuit by K-median clustering to find estimated support S from

a residual (or proxy) coefficient vector v.

As mentioned, CSP will have the potential to provide the EMD-optimal error guar-

antee for coefficient vectors, which inherits from K-median clustering. Additionally,
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Algorithm 5 Clustering Subspace Pursuit (CSP)
Input: measurement vector y, measurement matrix Φ, parametric dictionary Ψ,

sparsity K, parameter sampling set Ω
Output: estimated signal x, estimated parameter values θ
1: Initialize x = 0, Σ = ∅.
2: repeat
3: v = (ΦΨ)T (y − Φx)
4: S = S ∪ C(v,K)
5: c = (ΦΨΣ)+y
6: S = C(c,K)
7: x = ΨSc
8: θ = ΩS

9: until a convergence criterion is met

CSP has the ability to avoid highly coherent PD elements from appearing simultane-

ously in the signal representation without the requirement for a coherence-inhibiting

parameter ν that is required when structured sparsity is used. The reason is that the

entries of the coefficient vector corresponding to the highly coherent PD elements are

close to each other and will be assigned into the same cluster. All those PD elements

are represented by the elements of the centroid and cannot appear simultaneously.
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CHAPTER 4

RESULTS

To evaluate the performance of our proposed approach, we consider the time delay

estimation problem where the signals are measured using a CS measurement matrix.

The continuous signal model is a chirp waveform with time delay s defined as

g(t, s) := p(t− s) exp

(
j2π

(
f0 + f∆

t− s
2T

)
(t− s)

)

where f0 = 1 MHz is the chirp center frequency, f∆ = 5 MHz is the sweep frequency,

and p(t) is a raised cosine pulse that windows the chirp signal in time:

p(t) =





1 + cos(2πt/T ), t ∈ (0, T ),

0 otherwise.

Here, T = 1 µs is the duration of the chirp signals. We sample the chirp signals with

a frequency fs = 50 MHz and collect N = 500 samples of each continuous signal to

generate the discrete signal gs, whose samples can be written as

gs[n] =
1√

1.5Tfs
g

(
n− 1

fs
, s

)
, n = 0, 1, . . . , N − 1,

where the coefficient 1/
√

1.5Tfs normalizes the discrete signals. The observed signals

can then be written as x =
∑K

i=1 akgsk , where the parameters sk are selected at

arbitrary resolution from the range [0, 10µs], with a minimum separation distance

ζ = 1 µs and a minimum off-bound distance ε = 0.5 µs, and ak is the magnitude
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for the kth component. We generate a PD for this problem by sampling the the time

delay (i.e., parameter) space with a spacing of Ts = 0.02 µs (matching the sampling

period), which can be written as

Ψ = [g0, gTs , g2Ts , . . . , g(N−1)Ts ]. (4.1)

The signal x is then sensed using a random demodulator [51] simulated by an M ×N

CS matrix Φ for a variety of values of M .

Our experiments compare the time delay estimation performance of CSP to that

of two existing baseline algorithms designed for high coherence PDs: band-excluding

subspace pursuit (BSP) and band-excluded orthogonal matching pursuit (BOMP)

[19]. Furthermore, we integrate polar interpolation within these algorithms to ac-

commodate arbitrary values for the delay outside of the sampled set [49, 16]; note in

particular that the BSP+Polar algorithm is equivalent to BISP [16, 11]. We set the

maximum allowed coherence to ν = 0.001 for all structured sparsity (band-excluded)

algorithms.

Our first experiment considers compressive time delay estimation from noiseless

measurements as a function of the CS subsampling rate κ = M/N (Figure 4.1a), as

well as for noisy measurements under AWGN with fixed subsampling rate κ = 0.4

as the function of the SNR level (Figure 4.1b). Both figures shows the performance

of the algorithms in these setups averaged over 1000 randomized realizations. While

the performance of CSP does match that of the band-excluding algorithms when no

interpolation is used, there is a significant improvement in estimation performance

when polar interpolation is added to the algorithms. In this case, BOMP estimates

only one time delay at a time; the interference from the remaining copies of the

delayed signal can cause noticeable errors in the interpolation stage.

Our next experiment evaluates the role that the maximum allowed coherence ν has

on the performance of the algorithms. To verify this parameter, we vary the minimum
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Figure 4.1: Average delay estimation error as a function of the CS sampling rate
κ for noiseless measurements, where the minimum separation (a) ζ = 1 µs and (c)
ζ = 0.5 µs, and of the SNR level with κ = 0.4, where the minimum separation (b)
ζ = 1 µs and (d) ζ = 0.5 µs

separation distance ζ = 0.5µs. We expect that the band-exclusion algorithms will

be sensitive to the fixed choice of the maximum allowed coherence ν. Figure 4.1c

and Figure 4.1d replicate the setups in Figure 4.1a and Figure 4.1b respectively

except for the minimum separation distance and shows decreased performance for

all algorithms except for CSP and CSP+Polar. Clearly, the drop in performance in

the band-exclusion algorithms is due to a suboptimal choice of the parameter ν for

the time delay problems that feature the decreased minimum separation. This gap
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Figure 4.2: Average time delay estimation error of (a) BSP, (b) CSP, (c) BSP+Polar,
and (b) CSP+Polar as a function of the CS subsampling rate κ for several chirp
durations T

in performance is expected to become more significant as the minimum separation

between the delays (or parameters in general) becomes smaller.

Our last experiment further focuses on this sensitivity on the choice of the max-

imum allowed coherence parameter ν for BSP in contrast with CSP. We test the

performance of these algorithms as a function of the CS subsampling rate κ, with

and without polar interpolation, for a variety of chirp duration lengths. Figure ??

shows the average performance over 100 randomized realizations per setup, and shows

both a range of degradation levels in BSP performance and a sharp degradation in
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BSP+Polar performance as the chirp duration varies. This is in contrast to CSP and

CSP+Polar in Figure 4.2 , whose performances are essentially stable over the choice

of PD.

39



CHAPTER 5

CONCLUSION

In this project, based on compressive sensing and parameter estimation, we prove

that the earth mover’s distance (EMD) is a potential metric to measure the difference

of the coefficient vectors, and the EMD of the coefficient vectors can approximate the

parameter estimation error of the corresponding parameters. Also we prove that the

K-median clustering can directly locate the local maximum points of the correlation

function of the observed signals and the parametric dictionary elements, which are

exactly the unknown parameters, and therefore K-median clustering can serves as the

EMD-optimal sparse approximation to output the nearest sparse vector to a input

vector in terms of EMD. The proposed algorithms for compressive parameter esti-

mation resulting from incorporating K-median clustering into the standard recovery

algorithms shows its advantage to prevent the highly coherent dictionary elements

from appealing simultaneously without additional parameters, such as the maximum

coherence required by the band-exclusion algorithms, and its ability to accurate esti-

mate the unknown parameters in different cases.

In future, it is expected to apply the new method to other parameter estimation

problems, where more sophisticated analysis is needed. The theorems derived for time

delay estimations is base on the fact that all unknown parameters have dimension 1

and all coefficients in the signal representation are non-negative. For other parameter

estimation problems with 1-dimensional parameters and both negative and positive

coefficients, such as the frequency estimation, the difference between the resulting

correlation function and previous correlation function required a modified theorem to
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stated the precise conditions for accurate estimations. For the parameter estimation

with parameters in more than 1 dimension space, such as the localization and bearing

estimation, new methods are needed to locate the local maximum of the resulting

function, which will be a function on a multi-dimension parameter space and can not

be efficiently handled by K-median clustering. Besides, approaches to deal with the

noisy in correlation function, which comes from the noisy in observed signals and

the subsampling in compressive sensing, can improve the robust of the algorithms to

noisy and subsampling.
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APPENDIX A

PROOF OF THEOREM 3.1.1

Assume that f ∗ and g∗ respectively solve the optimization problem in (3.11) and

(3.8) and r = f ∗ − cmg∗. Then from (3.11), we have

EMD(c, ĉ) = dTf ?

= dT (cmg
? + r)

= cmd
Tg? + dT r

=
cm
∆
tTg? + dT r

=
cm
∆

PEE(θ, θ̂) + dT r.

(A.1)

Obviously, the first term in (A.1) answers the optimization problem (3.11) when b is

the vector with all entries having magnitude cm. The second term compensates the

distance when the magnitudes increase from cm, which should be non-negative.

Note that f ?ij ≥ 0, and g?ij ∈ {0, 1} for any i, j = 1, 2, . . . , K. When g∗ij = 0,

rij = f ∗ij − cmg∗ij ≥ 0. When gij = 1, since the amount of flow fij from the entry si to

the entry ŝj increases from cm as the magnitudes on both entries increase from cm to

ci and ĉj,respectively, we have that rij = f ?ij − cmg?ij ≥ 0. So dT r ≥ 0 due to the fact

that d has non-negative entries.

Then it is possible to rewrite (A.1) as

EMD(c, ĉ) ≥ cm
∆

PEE(θ, θ̂), (A.2)

and prove the theorem. �
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APPENDIX B

PROOF OF THEOREM 3.2.1

Without loss of generality, assume that parameter values are sorted so that

θmin + ε ≤ θ1 < θ2 < · · · < θK ≤ θmax − ε, (B.1)

For any σ > 0, there exists D > 0 such that

Λ(D) = 2E(1− σ). (B.2)

Since Λ(θ) is monotonically increasing and Λ(−θ) + Λ(θ) = 2E, then

Λ(θ) ∈





[0, 2Eσ] θ ∈ (−∞,−D]

[2E(1− σ), 2E] θ ∈ [D,∞)

(B.3)

Assume that the estimate error is bounded by e > 0 such that,

−e ≤ θk − θ̂k ≤ e. (B.4)

When K-median clustering partitions the correlation function v(θ) into K groups

according to θ̂1, θ̂2, . . . , θ̂K , the point (θ̂i + θ̂i+1)/2 is the bound for both cluster i and
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cluster i + 1, since the point has the same distance to both centroids. Using (B.4),

we have

−e ≤ θk + θk+1

2
− θ̂k + θ̂k+1

2
≤ e. (B.5)

Assume that the minimum off-bound distance

ε ≥ D, (B.6)

with the relationship in (B.1), it is obvious that θmin − θk ≤ θmin − θ1 ≤ −ε ≤ −D

which further leads to

0 ≤ Λ(θmin − θk) ≤ 2Eσ, (B.7)

and θmax − θk ≥ θmax − θK ≥ ε ≥ D, which also leads to

2E(1− σ) ≤ Λ(θmax − θk) ≤ 2E. (B.8)

Assume again that the minimum separation distance

ζ ≥ 2D + 2e. (B.9)

When i < k, the results that

θ̂k − θi = θ̂k − θk + θk − θi

≥ θ̂k − θk + θk − θk−1

≥ −e+ ζ

≥ 2D + e

> D

(B.10)
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and
θ̂k + θ̂k+1

2
− θi =

θ̂k − θi
2

+
θ̂k+1 − θi

2

≥ D +
e

2
+D +

e

2

≥ 2D + e

> D

(B.11)

from (B.1) and (B.4) lead to

2E(1− σ) ≤ Λ(θ̂k − θi) ≤ 2E, (B.12)

and

2E(1− σ) ≤ Λ

(
θ̂k + θ̂k+1

2
− θi

)
≤ 2E. (B.13)

When i = k, the result that

θ̂k + θ̂k+1

2
− θk =

θ̂k − θk
2

+
θ̂k+1 − θk

2

≥ −e
2

+D +
e

2

≥ D

(B.14)

can lead to

2E(1− σ) ≤ Λ

(
θ̂k + θ̂k+1

2
− θk

)
≤ 2E. (B.15)

When i = k + 1, the results that

θ̂k − θk+1 = θ̂k − θk + θk − θk+1

≤ e− 2D − 2e

≤ −2D − e

< −D

(B.16)
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and
θ̂k + θ̂k+1

2
− θk+1 =

θ̂k − θk+1

2
+
θ̂k+1 − θk+1

2

≤ −D − e

2
+
e

2

≤ −D

(B.17)

can also lead to

0 ≤ Λ(θ̂k − θk+1) ≤ 2Eσ, (B.18)

and

0 ≤ Λ

(
θ̂k + θ̂k+1

2
− θk+1

)
≤ 2Eσ. (B.19)

When i > k + 1, the results that

θ̂k − θi = θ̂k − θk + θk − θi

≤ θ̂k − θk + θk − θk+1

≤ e− 2D − 2e

≤ −2D − e

< −D

(B.20)

and
θ̂k + θ̂k+1

2
− θi =

θ̂k − θi
2

+
θ̂k+1 − θi

2

≤ −D − e

2
−D − e

2

≤ −2D − e

< −D

(B.21)

can also lead to

0 ≤ Λ(θ̂k − θi) ≤ 2Eσ, (B.22)

and

0 ≤ Λ

(
θ̂k + θ̂k+1

2
− θi

)
≤ 2Eσ. (B.23)
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In summary, we have that

Λ(θ̂k − θi) ∈





[2E(1− σ), 2E] i = 1, 2, . . . , k − 1

[0, 2Eσ] i = k + 1, k + 2, . . . , K

(B.24)

and

Λ

(
θ̂k + θ̂k+1

2
− θi

)
∈





[2E(1− σ), 2E] i = 1, 2, . . . , k

[0, 2Eσ] i = k + 1, k + 2, . . . , K

(B.25)

The cluster 1 with centroid θ̂1 includes the parameter range in [θmin, (θ̂1 + θ̂2)/2].

Then the weight balance property (2.27) gives that

∫ θ̂1

θmin

v(θ)dθ =

∫ θ̂1+θ̂2
2

hp1

v(θ)dθ

⇒
∫ θ̂1

−∞
v(θ)dθ −

∫ θmin

−∞
v(θ)dθ =

∫ θ̂1+θ̂2
2

−∞
v(θ)dθ −

∫ θ̂1

−∞
v(θ)dθ

⇒2

∫ θ̂1

−∞
v(θ)dθ =

∫ θmin

−∞
v(θ)dθ +

∫ θ̂1+θ̂2
2

−∞
v(θ)dθ

⇒2

∫ θ̂1

−∞

K∑

i=1

ciλ(θ − θi)dθ =

∫ θmin

−∞

K∑

i=1

ciλ(θ − θi)dθ +

∫ θ̂1+θ̂2
2

−∞

K∑

i=1

ciλ(θ − θi)dθ

⇒2
K∑

i=1

ci

∫ θ̂1

−∞
λ(θ − θi)dθ =

K∑

i=1

ci

∫ θmin

−∞
λ(θ − θi)dθ +

K∑

i=1

ci

∫ θ̂1+θ̂2
2

−∞
λ(θ − θi)dθ

⇒2
K∑

i=1

ci

∫ θ̂1−θi

−∞
λ(θ)dθ =

K∑

i=1

ci

∫ θmin−θi

−∞
λ(θ)dθ +

K∑

i=1

ci

∫ θ̂1+θ̂2
2
−θi

−∞
λ(θ)dθ

⇒2
K∑

i=1

ciΛ(θ̂1 − θi) =
K∑

i=1

ciΛ(θmin − θi) +
K∑

i=1

ciΛ

(
θ̂1 + θ̂2

2
− θi

)

⇒2c1Λ(θ̂1 − θ1) =

K∑

i=1

ciΛ(θmin − θi) +
K∑

i=1

ciΛ

(
θ̂1 + θ̂2

2
− θi

)
− 2

K∑

i=2

ciΛ(θ̂1 − θi).

(B.26)
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Combining the results

0 ≤
K∑

i=1

ciΛ(θmin − θi) ≤
K∑

i=1

ci2Eσ (B.27)

from (B.7),

K∑

i=1

ciΛ

(
θ̂1 + θ̂2

2
− θi

)
= c1Λ

(
θ̂1 + θ̂2

2
− θ1

)
+

K∑

i=2

ciΛ

(
θ̂1 + θ̂2

2
− θi

)

⇒2E(1− σ)c1 ≤
K∑

i=1

ciΛ

(
θ̂1 + θ̂2

2
− θi

)
≤ 2Ec1 +

K∑

i=2

ci2Eσ

(B.28)

from (B.25), and

−2
K∑

i=2

ci2Eσ ≤ −2
K∑

i=2

ciΛ(θ̂1 − θi) ≤ 0 (B.29)

from (B.24), (B.26) lead to the bound for estimate error for θ1:

2E(1− σ)c1 − 2Eσ
K∑

i=2

2ci ≤ 2c1Λ(θ̂1 − θ1) ≤ 2E(1 + σ)c1 + 2Eσ
K∑

i=2

2ci

⇒E(1− (1 + 2(K − 1)r)σ) ≤ Λ(θ̂1 − θ1) ≤ E(1 + (1 + 2(K − 1)r)σ).

(B.30)

For any 2 ≤ k ≤ K − 1, cluster k with centroid hpk includes the parameter range

[(θ̂k−1 + θ̂k)/2, (θ̂k + θ̂k+1)/2]. Following the same weight balance result as before, we

get

∫ θ̂k

θ̂k−1+θ̂k
2

v(θ)dθ =

∫ θ̂k+θ̂k+1
2

θ̂k

v(θ)dθ

⇒2
K∑

i=1

ciΛ(θ̂k − θi) =
K∑

i=1

ciΛ

(
θ̂k−1 + θ̂k

2
− θi

)
+

K∑

i=1

ciΛ

(
θ̂k + θ̂k+1

2
− θi

)

⇒2ckΛ(θ̂k − θk) =

K∑

i=1

ciΛ

(
θ̂k−1 + θ̂k

2
− θi

)
+

K∑

i=1

ciΛ

(
θ̂k + θ̂k+1

2
− θi

)
− 2

∑

i 6=k

ciΛ(θ̂k − θi)

(B.31)
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Similarly, combining the results that

K∑

i=1

ciΛ

(
θ̂k−1 + θ̂k

2
− θi

)
=

k−1∑

i=1

ciΛ

(
θ̂k−1 + θ̂k

2
− θi

)
+

K∑

i=k

ciΛ

(
θ̂k−1 + θ̂k

2
− θi

)

⇒2E(1− σ)
k−1∑

i=1

ci ≤
K∑

i=1

ciΛ

(
θ̂k−1 + θ̂k

2
− θi

)
≤ 2E

k−1∑

i=1

ci + 2Eσ
K∑

i=k

ci

(B.32)

from (B.25),

K∑

i=1

ciΛ

(
θ̂k + θ̂k+1

2
− θi

)
=

k∑

i=1

ciΛ

(
θ̂k + θ̂k+1

2
− θi

)
+

K∑

i=k+1

ciΛ

(
θ̂k + θ̂k+1

2
− θi

)

⇒2E(1− σ)
k∑

i=1

ci ≤
K∑

i=1

aiΛ

(
θ̂k + θ̂k+1

2
− θi

)
≤ 2E

k∑

i=1

ci + 2Eσ
K∑

i=k+1

ci

(B.33)

from (B.25), and

− 2
∑

i 6=k

ciΛ(θ̂k − θi) = −2
k−1∑

i=1

ciΛ(θ̂k − θi)− 2
K∑

i=k+1

aiΛ(θ̂k − θi)

⇒− 2E
k−1∑

i=1

2ai − 2Eσ
K∑

i=k+1

2ci ≤ −2
∑

i 6=k

2ciΛ(θ̂k − θi) ≤ −2E(1− σ)
k−1∑

i=1

2ci

(B.34)

from (B.24), (B.31) lead to the same bound of estimation error for θk

2E(1− σ)ck − 2Eσ
∑

i 6=k

2ci ≤ 2ckΛ(θ̂k − θk) ≤ 2E(1 + σ)ck + 2Eσ
∑

i 6=k

2ci

⇒E(1− (1 + 2(k − 1)r)σ) ≤ Λ(θ̂k − θk) ≤ E(1 + (1 + 2(k − 1)r)σ).

(B.35)

The clusterK with centroid θ̂K includes the parameter ranged [(θ̂K−1+θ̂K)/2, θmax]

and has centroid θ̂K . The balance weight property gives that
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∫ θ̂K

θ̂K−1+θ̂K
2

v(θ)dθ =

∫ θmax

θ̂K

v(θ)dθ

⇒2
K∑

i=1

ciΛ(θ̂K − θi) =
K∑

i=1

ciΛ

(
θ̂K−1 + θ̂K

2
− θi

)
+

K∑

i=1

ciΛ(θmax − θi)

⇒2cKΛ(θ̂K − θK) =
K∑

i=1

ciΛ

(
θ̂K−1 + θ̂K

2
− θi

)
+

K∑

i=1

ciΛ(θmax − θi)− 2
K−1∑

i=1

ciΛ(θ̂K − θi),

(B.36)

Combine

2E(1− σ)
K−1∑

i=1

ci ≤
K∑

i=1

ciΛ

(
θ̂K−1 + θ̂K

2
− θi

)
≤ 2E

K−1∑

i=1

ci + 2EσcK (B.37)

from (B.25),

2E(1− σ)
K∑

i=1

ci ≤
K∑

i=1

ciΛ(θmax − θi) ≤ 2E
K∑

i=1

ci, (B.38)

from (B.8), and

−2E
K−1∑

i=1

ci ≤ −2
K−1∑

i=1

ciΛ(θ̂K − θi) ≤ −2E(1− σ)
K−1∑

i=1

2ci (B.39)

from (B.24), we have the same bound of estimate error for θK

E(1− (1 + 2(K − 1)r)σ) ≤ Λ(θ̂K − θK) ≤ E(1 + (1 + 2(K − 1)r)σ) (B.40)

In summary, for any k = 1, 2, . . . , K, we have the same result

E(1− (1 + 2(K − 1)r)σ) ≤ Λ(θ̂k − θk) ≤ E(1 + (1 + 2(K − 1)r)σ). (B.41)

If we choose δ = e > 0 such that

Λ(δ) = E(1 + (1 + 2(K − 1)a)σ), (B.42)
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then all estimate error is bound by δ:

−δ ≤ θ̂k − θk ≤ δ (B.43)

Combine (B.2) and (B.42), we can calculate

D = Λ−1

(
2E

(
1− Λ(δ)/E − 1

(2K − 2)r + 1

))
. (B.44)

With this, the final conlusion can be derived using (B.6) and (B.9). �
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