
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/125719

 

 

 

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/19886413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/125719


REVIEW

Noninvasive ventilation and the upper airway:
should we pay more attention?
Eline Oppersma1,2, Jonne Doorduin2, Erik HFM van der Heijden3, Johannes G van der Hoeven2

and Leo MA Heunks2*

Abstract

In an effort to reduce the complications related to
invasive ventilation, the use of noninvasive ventilation
(NIV) has increased over the last years in patients with
acute respiratory failure. However, failure rates for NIV
remain high in specific patient categories. Several
studies have identified factors that contribute to NIV
failure, including low experience of the medical team
and patient–ventilator asynchrony. An important
difference between invasive ventilation and NIV is the
role of the upper airway. During invasive ventilation
the endotracheal tube bypasses the upper airway, but
during NIV upper airway patency may play a role in
the successful application of NIV. In response to
positive pressure, upper airway patency may decrease
and therefore impair minute ventilation. This paper
aims to discuss the effect of positive pressure
ventilation on upper airway patency and its possible
clinical implications, and to stimulate research in this
field.

Introduction
Noninvasive ventilation (NIV) is increasingly used in
acute respiratory failure, for instance in patients with ex-
acerbation of chronic obstructive pulmonary disease or
acute heart failure [1-3]. An important goal of NIV is to
prevent endotracheal intubation and thereby reduce the
complications related to invasive ventilation [1,4]. How-
ever, failure rates of NIV range between 5 and 50% [5,6]
and most of these patients require endotracheal intu-
bation [5-9]. Several factors have been identified that in-
crease the success rate of NIV. These factors include
careful selection of patients, properly timed intervention,
a comfortable and well-fitting interface, coaching and
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encouragement of patients, careful monitoring, and a
skilled and motivated team [6,8,10]. In particular, careful
selection is of major importance in patients with chronic
obstructive pulmonary disease. A low pH (<7.25) is a
strong predictor of NIV failure [10,11], but an improve-
ment in pH 1 to 2 hours after the initiation of NIV
accurately predicts NIV success [5,11-13].
Today, the pathophysiology of NIV failure is incom-

pletely understood. How can ventilation be inadequate
with NIV, but adequate with similar levels of support
after endotracheal intubation? An important difference
in the application of NIV versus invasive ventilation is,
evidently, the involvement of the upper airway. During
invasive ventilation the endotracheal tube bypasses the
upper airway and the cuff of the endotracheal tube pro-
vides an air-tight seal in the trachea. In contrast, during
NIV the upper airway might play a role in the efficiency
of delivered ventilation. Indeed, ventilator settings du-
ring NIV affect the patency of the upper airway [14,15].
This effect implies that deviant behavior of the upper
airway may play a role in the failure of NIV. The present
concise review discusses the physiology and current un-
derstanding on the effects of NIV on upper airway pa-
tency. We will discuss the clinical relevance of the
available studies and will list important points to stimu-
late research in this field.

Noninvasive ventilation and upper airway
physiology
Patient–ventilator asynchrony
The aim of NIV is to decrease the work of breathing
and/or improve oxygenation and ventilation. The most
frequently used mode of NIV is pressure support venti-
lation (PSV). For the most effective unloading of the
inspiratory muscles, the ventilator should cycle in syn-
chrony with the patient’s neural respiratory drive [16].
Although triggering and cycling of mechanical support
during PSV depends on the patient’s respiratory effort,
asynchrony between the patient and ventilator occurs
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frequently [17]. Several types of asynchrony and dys-
synchrony between the patient’s neural drive and venti-
lator support have been identified and are shown in
Figure 1 [18,19]. Suboptimal synchrony between the pa-
tient and the ventilator may be affected by respiratory
mechanics, the breathing pattern, neural drive, ventilator
settings, the type of interface and the amount of air leak
[18,20-23]. The consequences of patient–ventilator
asynchrony are poorly understood, but a high incidence
of asynchrony is associated with discomfort and a
prolonged duration of NIV [17].
The above-discussed types of asynchrony are related

to the interaction between the activity of the inspiratory
muscles and the ventilator’s response. Indeed, this is suf-
ficient for patients requiring invasive ventilation. How-
ever, during NIV it is also important that the ventilator
acts in synchrony with the upper airway muscles. Glottic
narrowing during inspiration increases upper airway re-
sistance and may limit effective ventilation. We will
discuss this type of asynchrony after briefly summari-
zing the knowledge of upper airway physiology relevant
to the topic of this review.

Upper airway
The upper airway comprises the nose, oral cavity, pha-
rynx and larynx. The upper airway is involved in che-
wing, swallowing, speech and smell, and its primary
functions are to act as a conductor of air, to humidify
and warm the inspired air and prevent foreign materials
from entering the tracheobronchial tree [24]. The nose
and oral cavity are mainly static in their conducting
function, whereas the pharynx and larynx predominantly
are muscular structures and thus may alter the patency
of the upper airway [15,25]. A simplified representation

of the muscles of the upper airway is shown in Figure 2
and a view of the intrinsic muscles of the larynx shown
in Figure 3 [26,27].
Stella and England studied the effect of pressure and

flow in isolated piglet upper airway [28]. They showed
that the presence of negative pressure in the upper air-
way and flow during inspiration results in phasic respira-
tory activity of the posterior cricoarytenoid muscle
above tonic levels, which results in glottic widening du-
ring inspiration and reduces resistance to airflow. This
response effectively unloads the inspiratory muscles.
Positive pressure and flow during expiration results in
phasic activity of the thyroarytenoid muscle, resulting in
glottic narrowing and therefore increased resistance to
the expiratory flow. Accordingly, this study shows that,
at least in an animal model, respiratory flow patterns
affect the activity of the upper airway muscles.
Earlier, Sant’Ambrogio and colleagues showed that flow

receptors actually respond to temperature changes from
body to room temperature (thermoreceptors) [29]. Stella
and England used these findings to analyze the laryngeal
muscle response to continuous versus oscillating flow
patterns and different body and room temperatures. They
reported that a negative pressure and inspiratory flow re-
sults in increased posterior cricoarytenoid activity (opening
of the glottis), independent of the stimulus modality. Fur-
thermore, positive pressure and expiratory flow increased
the thyroarytenoid activity for all stimuli, although constant
room air applied to the upper airway results in more activ-
ity of the thyroarytenoid muscle than an oscillatory stimu-
lus, implying that constant room air results in enhanced
constriction of the glottis. Accordingly, both pressure and
flow receptors play an important role in muscle activity of
the upper airway during respiration [28,30].

Figure 1 Screenshots from a ventilator in noninvasive ventilation pressure support mode. Tracings from top to bottom: airway pressure
(Paw), airway flow (V’), tidal volume (V), and diaphragm electrical activity (Edi). Different types of patient ventilator asynchrony and dyssynchrony
are shown: double triggering, early cycling off, trigger delay, wasted efforts and auto triggering [18,19].
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Receptors in the upper and lower airway modulate ac-
tivity of the upper airway muscles. The most prominent
receptors are the bronchopulmonary C-fiber receptors,
rapidly adapting receptors (RARs) and slowly adapting
pulmonary stretch receptors (PSRs) (Table 1).
Pulmonary C-fiber receptors are located between the

alveolar epithelium and the pulmonary capillaries,
whereas bronchial C-fiber receptors have been identified
in the conducting airway. The receptors’ fiber endings
extend into the space between epithelial cells or form
a plexus immediately under the basement membrane.
C-fiber receptors are excited by large mechanical deforma-
tions, chemical stimuli (for example, capsaicin and carbon
dioxide), lung edema by increased interstitial fluid volume,
or increased temperature [31,32]. C-fiber receptor acti-
vation evokes inhibitory effects (apnea or bradypnea;

hypotension and bradycardia). C-fiber receptor stimulation
can result in closing of the upper airway by glottic
narrowing to protect the respiratory system against in-
halation of gaseous irritants, by activation of laryngeal
muscles [33].
RARs are located in and under the epithelium

throughout the respiratory tract from the nose to the
bronchi. The receptors respond in reaction to mecha-
nical (extremely sensitive) and chemical stimuli, and
produce mainly excitatory effects such as tachypnea
[33,34]. The RARs in the larynx are usually called irri-
tant receptors because of their activation by inhaled irri-
tants such as ammonia or cigarette smoke, and they
probably cause cough and expiration reflexes. When the
laryngeal mucosa is stimulated, RAR reflexes elicit laryn-
goconstriction and bronchoconstriction, which may be
part of the glottal closure seen during cough. However,
the exact modulation of laryngeal upper airway muscle
activities by RARs is incompletely understood [31,33,34].
PSRs do not affect patency of the upper airway but

modulate the respiratory cycle: they terminate inspiration
and extend expiration [35]. PSRs are activated by stret-
ching the airway wall and fire throughout the respiratory
cycle (tonic activity) or in response to lung inflation
(phasic activity). The discharge rate is progressively in-
creased as a function of lung volume. PSRs are also widely
known as the receptors responsible for the Hering–Breuer
reflex, one of the first negative feedback loops in physi-
ology. Hering and Breuer found that lung inflation de-
creases the tidal volume and increases the respiratory rate,
thereby protecting the lungs from hyperinflation, while
maintaining constant alveolar ventilation: an inspiratory
off-switch [33,36].
To summarize, respiration and in particular patency of

the upper airway depends on a complex, but incom-
pletely understood, interplay between several inhibitory

Figure 3 Intrinsic muscles of the larynx. From [27].

Figure 2 Anatomical representation of the upper airway and
the important muscles controlling airway patency. From [26].
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and excitatory pathways. Physical conditions such as
pressure, flow and temperature affect upper airway pa-
tency. NIV may affect these physical characteristics and
therefore affect patency of the upper airway.

Interaction between the upper airway and
noninvasive ventilation
Moreau-Bussière and colleagues studied the effect of
NIV on activity of the glottal constrictor (thyroaryte-
noid) and dilator (cricothyroid) muscles in awake lambs.
Figure 4 shows thyroarytenoid, cricothyroid and dia-
phragm muscle activity during spontaneous breathing or
NIV with PSV [37]. During spontaneous breathing, both
the thyroarytenoid and cricothyroid muscles are active –
thyroarytenoid muscle activity occurring primarily at
the end of inspiration. However, with application of
pressure support during NIV, inspiratory cricothyroid

activity disappears whereas activity of the thyroarytenoid
muscle increases. This results in glottal narrowing and
restricted ventilation, as reflected by respiratory induc-
tance phlethysmography [37].
A subsequent study demonstrated that increased glot-

tal constrictor muscle activity during NIV depends
mainly on activation of bronchopulmonary receptors.
After bilateral vagotomy, the increase in inspiratory
activity of the thyroarytenoid muscle previously observed
with increasing support during NIV was absent [14].
There are limited data that demonstrate a similar re-

sponse to NIV in humans. Rodenstein and colleagues
exposed healthy subjects to increasing levels of support
with NIV while their glottis was continuously moni-
tored through a fiberoptic bronchoscope. The higher
the level of support, the narrower the glottic aperture
and the higher the airway resistance. This effect led to

Figure 4 Moving time averaged electrical activities of muscles during noninvasive ventilation. Moving time averaged electrical activities of
thyroarytenoid (TA), cricothyroid (CT), and diaphragm (Dia) muscles during noninvasive ventilation in wakefulness, without continuous positive
airway pressure (CPAP) and with pressure support ventilation, in newborn lambs [37]. i, inspiration; e, expiration.

Table 1 Relevant respiratory receptors and their location and effect

Receptors Location Stimulus Effect

C-fiber Pulmonary Between alveolar epithelium
and pulmonary capillary

Large mechanical
deformations, chemical
stimuli and temperature increases

Inhibitory effects as apnea,
hypotension and bradycardia

Bronchial In the walls of conducting airway

Rapidly adapting In epithelium close to
bronchial venules

Very sensitive to mechanical
stimuli and slow response to
chemical stimuli

Irritant receptors cause cough
and expiration reflexes

Pulmonary stretch In close association with airway
smooth muscle

Mechanical changes, stretch of
airway wall

Terminate inspiration and extend
expiration (Hering–Breuer reflex).
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a progressive decrease in the percentage of tidal vol-
ume effectively reaching the lungs, apparently at least
partly due to the behavior of the glottis [15,38,39].
In summary, studies in animals and humans indicate

that positive pressure ventilation reduces patency of the
upper airway during neural inspiration.
Neurally adjusted ventilator assist (NAVA) is a rela-

tively new mode of noninvasive ventilatory support. The
key features of NAVA are that the ventilator is cycled by
diaphragm electrical activity, thereby improving patient–
ventilator synchrony [40,41], and that the level of
support is proportional to the electrical activity of the
diaphragm [42]. The electrical activity of the diaphragm
is measured by an array of bipolar electrodes mounted
on a nasogastric feeding tube.
In contrast to PSV, glottal constrictor muscle activity

does not increase with NAVA during inspiration in
lambs [43]. Apparently, NAVA induces less glottal clos-
ure and more synchronous ventilation and may thus be
advantageous compared with PSV during NIV. A pos-
sible underlying mechanism for the absence of glottal
constrictor activity during inspiration with NAVA is that
the pressure rise mimics the normal progressive recruit-
ment of the diaphragmatic motor units, whereas during
PSV insufflation from the ventilator is performed with a
constant level of pressure (decelerating flow pattern),
often with a short inspiratory rise time to further de-
crease the patient’s inspiratory work. The consequent
rapid nonphysiological rise in airway pressure at the on-
set of inspiration with PSV could be responsible for acti-
vating, in a reflex manner, the inspiratory activity of the
glottal constrictor muscles and thus limits the efficiency
of NIV [43]. This hypothesis should be the subject of
further clinical research.

Monitoring muscles of the upper airway
The importance of monitoring inspiratory muscle activ-
ity during mechanical ventilation has been stressed in
the literature [44]. In contrast, little is known about the
role of monitoring upper airway activity during NIV –
probably related to the complexity of monitoring the
upper airway function in these patients.
Activation of intrinsic laryngeal muscles affects glottis

opening and thus affects resistance to flow into and out
of the lungs [28]. Monitoring the recruitment of upper
airway dilator muscles during inspiration could be clinic-
ally relevant because the phasic activity of upper airway
dilator muscles increases with respiratory constraints, as
in patient–ventilator asynchrony [45,46]. Cheng and col-
leagues studied the upper airway in healthy subjects,
using magnetic resonance imaging with tagging [47].
This study showed not only that the genioglossus muscle
but also nonmuscular soft tissues surrounding the upper
airway move before the onset of inspiratory flow [47].

Movement of certain reference points on the genioglos-
sus muscle was greater during normal inspiration than
during loaded inspiration, suggesting that the increase in
activity of the muscle during loaded inspiration does not
result in dilation but in stiffening of the upper airway
[47]. Moreover, this study demonstrated that movement
of nonmuscular soft tissue affects upper airway patency.
A complex interaction exists between movement of

nonmuscular soft tissue and genioglossus muscle activ-
ity. Although laryngeal muscle (for example, genioglos-
sus or cricothyroid muscle) electromyography is feasible
during NIV [37,45], one should note that electromyog-
raphy does not provide information about nonmuscular
soft tissue movement. Additional techniques should
therefore be used to evaluate upper airway patency.
Magnetic resonance imaging probably provides the most
reliable information but it is expensive and cumbersome,
particularly in patients on NIV. Recently, a study showed
that the upper airway could be visualized with ultra-
sound, although the value of assessing upper airway pa-
tency with this technique has not been studied [48]. In
addition, endoscopy has been used to assess upper air-
way patency, but ideally should be used at different
levels in the upper airway.

Clinical relevance and future research
Increasing the success rate of NIV is of major clinical
importance. In contrast to invasive ventilation, the upper
airway plays an important role as a conductor of air dur-
ing NIV. Current literature suggests that during NIV it
is important that the ventilator acts in synchrony with
the upper airway muscles to allow adequate ventilation.
In lambs and piglets, the patency of the upper airway is
influenced by ventilator-induced changes in pressure
and flow [14,30,37,43]. However, we do not know
whether this phenomenon can be extrapolated to
humans. The involved reflexes are similar in humans to
those in newborn lambs, but are thought to be less
pronounced.
Today, there are limited data on the effects of NIV on

upper airway physiology in patients with acute respira-
tory failure. It is reasonable to assume that when the
ventilator cycles in synchrony with the upper airway, this
will improve efficiency of ventilation. As discussed,
upper airway patency is linked to neural respiratory
drive. Therefore, improved synchrony between the venti-
lator and respiratory drive may improve ventilation
partly by limiting wasted ventilation at the level of the
upper airway. Currently, it would be preliminary to pro-
vide recommendations on how the level of assist, level
of positive end-expiratory pressure and flow pattern
should be adapted to enhance patency of the upper air-
way in patients with acute respiratory failure.
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Future research should therefore aim at studying the
effect of different ventilator modes and settings on the
patency of the upper airway in patients. For example,
NAVA ventilation in lambs has been shown to decrease
glottal constrictor muscle activity compared with PSV
during NIV. Settings of the ventilator such as the rise
time, trigger sensitivity, and the level of pressure support
and positive end-expiratory pressure should also be the
subject of further research. These settings could influence
the behavior of the upper airway and potentially limit
adequate lung ventilation. Currently, a study is investigat-
ing the effect of ventilator settings during NIV on
upper airway patency in patients with an exacerbation of
chronic obstructive pulmonary disease (Clinicaltrials.gov
ID: NCT01791335). Our recommendations for further re-
search focus on inspiration, but expiration could also be
influenced by upper airway patency.

Conclusions
In conclusion, we have shown that regulation of the upper
airway is complex and influenced by NIV. The latter
findings are mostly based on animal data. Understanding
of the laryngeal reactions during different modes and set-
tings of NIV in patients will be crucial to determine
whether a diminished upper airway patency contributes to
NIV failure.

Abbreviations
NAVA: Neurally adjusted ventilator assist; NIV: Noninvasive ventilation;
PSR: Pulmonary stretch receptor; PSV: Pressure support ventilation;
RAR: Rapidly adapting receptor.

Competing interests
The authors declare that they have no competing interests.

Author details
1MIRA – Institute for Biomedical Technology & Technical Medicine, University
of Twente, PO Box 217, 7500 AE Enschede, the Netherlands. 2Department of
Critical Care Medicine (707), Radboud university medical center, PO Box
9101, 6500 HB Nijmegen, the Netherlands. 3Department of Pulmonology
(454), Radboud university medical center, PO Box 9101, 6500 HB Nijmegen,
the Netherlands.

Published:

References
1. Brochard L, Mancebo J, Elliott MW: Noninvasive ventilation for acute

respiratory failure. Eur Respir J 2002, 19:712–721.
2. Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P,

Poole-Wilson PA, Stromberg A, van Veldhuisen DJ, Atar D, Hoes AW,
Keren A, Mebazaa A, Nieminen M, Priori SG, Swedberg K, ESC Committee
for Practice Guidelines: ESC guidelines for the diagnosis and treatment
of acute and chronic heart failure 2008: the Task Force for the diagnosis
and treatment of acute and chronic heart failure 2008 of the European
Society of Cardiology. Developed in collaboration with the Heart Failure
Association of the ESC (HFA) and endorsed by the European Society of
Intensive Care Medicine (ESICM). Eur J Heart Fail 2008, 10:933–989.

3. Chandra D, Stamm JA, Taylor B, Ramos RM, Satterwhite L, Krishnan JA,
Mannino D, Sciurba FC, Holguin F: Outcomes of noninvasive ventilation
for acute exacerbations of chronic obstructive pulmonary disease in the
United States, 1998–2008. Am J Respir Crit Care Med 2012, 185:152–159.

4. Boldrini R, Fasano L, Nava S: Noninvasive mechanical ventilation. Curr Opin
Crit Care 2012, 18:48–53.

5. Moretti M, Cilione C, Tampieri A, Fracchia C, Marchioni A, Nava S: Incidence
and causes of non-invasive mechanical ventilation failure after initial
success. Thorax 2000, 55:819–825.

6. Antonelli M, Conti G, Moro ML, Esquinas A, Gonzalez-Diaz G, Confalonieri M,
Pelaia P, Principi T, Gregoretti C, Beltrame F, Pennisi MA, Arcangeli A, Proietti
R, Passariello M, Meduri GU: Predictors of failure of noninvasive positive
pressure ventilation in patients with acute hypoxemic respiratory failure:
a multi-center study. Intensive Care Med 2001, 27:1718–1728.

7. Lightowler JV, Wedzicha JA, Elliott MW, Ram FS: Non-invasive positive
pressure ventilation to treat respiratory failure resulting from
exacerbations of chronic obstructive pulmonary disease: Cochrane
systematic review and meta-analysis. BMJ 2003, 326:185.

8. Carlucci A, Richard JC, Wysocki M, Lepage E, Brochard L: Noninvasive
versus conventional mechanical ventilation. An epidemiologic survey.
Am J Respir Crit Care Med 2001, 163:874–880.

9. Keenan SP, Mehta S: Noninvasive ventilation for patients presenting with
acute respiratory failure: the randomized controlled trials. Respir Care
2009, 54:116–126.

10. Confalonieri M, Garuti G, Cattaruzza MS, Osborn JF, Antonelli M, Conti G,
Kodric M, Resta O, Marchese S, Gregoretti C, Rossi A, Italian Noninvasive
Positive Pressure Ventilation (NPPV) Study Group: A chart of failure risk for
noninvasive ventilation in patients with COPD exacerbation. Eur Respir J
2005, 25:348–355.

11. Mehta S, Hill NS: Noninvasive ventilation. Am J Respir Crit Care Med 2001,
163:540–577.

12. Meduri GU, Turner RE, Abou-Shala N, Wunderink R, Tolley E: Noninvasive
positive pressure ventilation via face mask. First-line intervention in
patients with acute hypercapnic and hypoxemic respiratory failure.
Chest 1996, 109:179–193.

13. Ambrosino N, Foglio K, Rubini F, Clini E, Nava S, Vitacca M: Non-invasive
mechanical ventilation in acute respiratory failure due to chronic
obstructive pulmonary disease: correlates for success. Thorax 1995,
50:755–757.

14. Roy B, Samson N, Moreau-Bussière F, Ouimet A, Dorion D, Mayer S,
Praud J-P: Mechanisms of active laryngeal closure during noninvasive
intermittent positive pressure ventilation in nonsedated lambs. J Appl
Physiol 2008, 105:1406–1412.

15. Parreira VF, Jounieaux V, Aubert G, Dury M, Delguste PE, Rodenstein DO:
Nasal two-level positive-pressure ventilation in normal subjects. Effects
of the glottis and ventilation. Am J Respir Crit Care Med 1996,
153:1616–1623.

16. Tobin MJ, Jubran A, Laghi F: Patient–ventilator interaction. Am J Respir Crit
Care Med 2001, 163:1059–1063.

17. Vignaux L, Vargas F, Roeseler J, Tassaux D, Thille A, Kossowsky M, Brochard
L, Jolliet P: Patient–ventilator asynchrony during non-invasive ventilation
for acute respiratory failure: a multicenter study. Intensive Care Med 2009,
35:840–846.

18. Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L: Patient–ventilator
asynchrony during assisted mechanical ventilation. Intensive Care Med 2006,
32:1515–1522.

19. Sassoon C: Triggering of the ventilator in patient-ventilator interactions.
Respir Care 2011, 56:39–51.

20. Colombo D, Cammarota G, Alemani M, Carenzo L, Barra FL, Vaschetto R,
Slutsky AS, Della Corte F, Navalesi P: Efficacy of ventilator waveforms
observation in detecting patient–ventilator asynchrony. Crit Care Med
2011, 39:2452–2457.

21. Leung P, Jubran A, Tobin MJ: Comparison of assisted ventilator modes on
triggering, patient effort, and dyspnea. Am J Respir Crit Care Med 1997,
155:1940–1948.

22. Navalesi P, Costa R: New modes of mechanical ventilation: proportional
assist ventilation, neurally adjusted ventilatory assist, and fractal
ventilation. Curr Opin Crit Care 2003, 9:51–58.

23. Murata S, Yokoyama K, Sakamoto Y, Yamashita K, Oto J, Imanaka H,
Nishimura M: Effects of inspiratory rise time on triggering work load
during pressure-support ventilation: a lung model study. Respir Care
2010, 55:878–884.

24. Des Jardins TR: Cardiopulmonary Anatomy & Physiology: Essentials for
Respiratory Care. 5th edition. Clifton Park, NY: Thomson Delmar Learning.
London: Thomson Learning (distributor); 2008.

Oppersma et al. Critical Care Page 6 of 7

05 Dec 2013

2013, 17:245
http://ccforum.com/content/17/6/245

http://ccforum.com/content/17/6/245


25. Mittal RK: Motor Function of the Pharynx, Esophagus, and its Sphincters.
Morgan & Claypool Life Sciences: San Rafael, CA; 2011.

26. Fogel RB, Malhotra A, White DP: Sleep. 2: pathophysiology of obstructive
sleep apnoea/hypopnoea syndrome. Thorax 2004, 59:159–163.

27. Netter medical illustration used with permission of Elsevier. All rights reserved.
[http://www.netterimages.com/image/20362.htm]

28. Stella MH, England SJ: Modulation of laryngeal and respiratory pump
muscle activities with upper airway pressure and flow. J Appl Physiol
2001, 91:897–904.

29. Sant'Ambrogio G, Tsubone H, Sant'Ambrogio FB: Sensory information from
the upper airway: role in the control of breathing. Respir Physiol 1995,
102:1–16.

30. Stella MH, England SJ: Laryngeal muscle response to phasic and tonic
upper airway pressure and flow. J Appl Physiol 2001, 91:905–911.

31. Kubin L, Alheid GF, Zuperku EJ, McCrimmon DR: Central pathways of
pulmonary and lower airway vagal afferents. J Appl Physiol 2006,
101:618–627.

32. Lee LY, Pisarri TE: Afferent properties and reflex functions of
bronchopulmonary C-fibers. Respir Physiol 2001, 125:47–65.

33. Bailey EF, Fregosi RF: Modulation of upper airway muscle activities by
bronchopulmonary afferents. J Appl Physiol 2006, 101:609–617.

34. Sant'Ambrogio G, Widdicombe J: Reflexes from airway rapidly adapting
receptors. Respir Physiol 2001, 125:33–45.

35. Davies A, Pirie L, Eyre-Todd RA: Adaptation of pulmonary receptors in the
spontaneously breathing anaesthetized rat. Eur Respir J 1996,
9:1637–1642.

36. Boron WF, Boulpaep EL: Medical Physiology: A Cellular and Molecular
Approach. Updated 2nd edition. Philadelphia, PA: Saunders; 2012.

37. Moreau-Bussière F, Samson N, St-Hilaire M, Reix P, Lafond JR, Nsegbe É,
Praud J-P: Laryngeal response to nasal ventilation in nonsedated new-
born lambs. J Appl Physiol 2007, 102:2149–2157.

38. Jounieaux V, Aubert G, Dury M, Delguste P, Rodenstein DO: Effects of nasal
positive-pressure hyperventilation on the glottis in normal sleeping
subjects. J Appl Physiol 1995, 79:186–193.

39. Jounieaux V, Aubert G, Dury M, Delguste P, Rodenstein DO: Effects of nasal
positive-pressure hyperventilation on the glottis in normal awake sub-
jects. J Appl Physiol 1995, 79:176–185.

40. Piquilloud L, Tassaux D, Bialais E, Lambermont B, Sottiaux T, Roeseler J,
Laterre PF, Jolliet P, Revelly JP: Neurally adjusted ventilatory assist (NAVA)
improves patient-ventilator interaction during non-invasive ventilation
delivered by face mask. Intensive Care Med 2012, 38:1624–1631.

41. Bertrand PM, Futier E, Coisel Y, Matecki S, Jaber S, Constantin JM: Neurally
adjusted ventilator assist versus pressure support ventilation for
noninvasive ventilation during acute respiratory failure: a cross-over
physiological study. Chest 2013, 143:30–36.

42. Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, Gottfried SB,
Lindstrom L: Neural control of mechanical ventilation in respiratory
failure. Nat Med 1999, 5:1433–1436.

43. Hadj-Ahmed MA, Samson N, Bussieres M, Beck J, Praud JP: Absence of
inspiratory laryngeal constrictor muscle activity during nasal neurally
adjusted ventilatory assist in newborn lambs. J Appl Physiol 2012,
113:63–70.

44. Doorduin J, van Hees HW, van der Hoeven JG, Heunks LM: Monitoring of
the respiratory muscles in the critically ill. Am J Respir Crit Care Med 2013,
187:20–27.

45. Hug F, Raux M, Morelot-Panzini C, Similowski T: Surface EMG to assess and
quantify upper airway dilators activity during non-invasive ventilation.
Respir Physiol Neurobiol 2011, 178:341–345.

46. Schmidt M, Chiti L, Hug F, Demoule A, Similowski T: Surface
electromyogram of inspiratory muscles: a possible routine monitoring
tool in the intensive care unit. Br J Anaesth 2011, 106:913–914.

47. Cheng S, Butler JE, Gandevia SC, Bilston LE: Movement of the human
upper airway during inspiration with and without inspiratory resistive
loading. J Appl Physiol 2011, 110:69–75.

48. Cheng SP, Lee JJ, Liu TP, Lee KS, Liu CL: Preoperative ultrasonography
assessment of vocal cord movement during thyroid and parathyroid
surgery. World J Surg 2012, 36:2509–2515.

Cite this article as: Oppersma et al.: Noninvasive ventilation and the
upper airway: should we pay more attention? Critical Care

Oppersma et al. Critical Care Page 7 of 7

10.1186/cc13141

2013, 17:245

2013, 17:245
http://ccforum.com/content/17/6/245

http://www.netterimages.com/image/20362.htm
http://ccforum.com/content/17/6/245

	Abstract
	Introduction
	Noninvasive ventilation and upper airway physiology
	Patient–ventilator asynchrony
	Upper airway

	Interaction between the upper airway and noninvasive ventilation
	Monitoring muscles of the upper airway

	Clinical relevance and future research
	Conclusions
	Abbreviations
	Competing interests
	Author details
	References

