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Abstract
Background/Aims: Erythrocytes may enter eryptosis, a suicidal death characterized by cell 
shrinkage and phosphatidylserine exposure at the erythrocyte outer membrane. Susceptibility 
to eryptosis is enhanced in aged erythrocytes and stimulated by NFκB-inhibitors Bay 11-
7082 and parthenolide. Here we explored whether expression of NFκB and susceptibility to 
inhibitor-induced eryptosis is sensitive to erythrocyte age. Methods:  Human erythrocytes 
were separated into five fractions, based on age-associated characteristics cell density and 
volume. NFκB compared to ß-actin protein abundance was estimated by Western blotting and 
cell volume from forward scatter. Phosphatidylserine exposure was identified using annexin-V 
binding. Results: NFκB was most abundant in young erythrocytes but virtually absent in aged 
erythrocytes. A 24h or 48h exposure to Ringer resulted in spontaneous decrease of forward 
scatter and increase of annexin V binding, effects more pronounced in aged than in young 
erythrocytes. Both, Bay 11-7082 (20 µM) and parthenolide (100 µM) triggered eryptosis, 
effects again most pronounced in aged erythrocytes. Conclusion: NFκB protein abundance is 
lowest and spontaneous eryptosis as well as susceptibility to Bay 11-7082 and parthenolide 
highest in aged erythrocytes. Thus, inhibition of NFκB signalling alone is not responsible for 
the stimulation of eryptosis by parthenolide or Bay 11-7082.

 Copyright © 2013 S. Karger AG, Basel
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Introduction

Senescence of nucleated cells is defined as an irreversible cellular growth arrest and 
is induced by internal factors, such as oncogenes [1], or external stimuli, e. g. cytokines [2]. 
Anucleated, circulating human erythrocytes are unable to proliferate and thus are growth-
arrested per se. As a consequence, their life span is limited by a special form of senescence 
leading to a gradual process of cellular shrinkage and phosphatidylserine exposure, 
and eventually to clearance of aged erythrocytes after approx. 120 days [3]. Mechanisms 
accounting for erythrocyte senescence include a conformational change of the band 3 
membrane protein domain thus leading to the appearance of an antigen specific for senescent 
cells. This triggers binding of specific autologous immunoglobulin G and subsequent 
removal of senescent erythrocytes by macrophages, such as Kupffer cells in the liver [4]. 
The conformational change presumably results from oxidative damage of membrane lipids, 
membrane proteins, or hemoglobin [5-9].

Senescent erythrocytes have been shown to be particularly sensitive to triggers of eryptosis 
[10], the suicidal erythrocyte death characterized by breakdown of cell membrane integrity, 
phosphatidylserine asymmetry and cell shrinkage [11]. Eryptosis is triggered by increase 
of the cytosolic Ca2+ concentration ([Ca2+]i) [11]. Ca2+ may enter erythrocytes through Ca2+-
permeable cation channels [12, 13], which are activated by oxidative stress [14]. Increased 
[Ca2+]i activates Ca2+-sensitive K+ channels [15] and subsequently K+ exit, hyperpolarization, 
Cl- exit and water loss that leads to cell shrinkage [16]. Increased [Ca2+]i further triggers 
cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface 
[17]. Ca2+ sensitivity of cell membrane scrambling is enhanced by ceramide [18]. Eryptosis 
is further stimulated by energy depletion [19] and caspase activation [20-24]. Signalling 
of eryptosis involves several kinases including AMP activated kinase (AMPK) [13], cGMP-
dependent protein kinase [25], Janus-activated kinase 3 (JAK3) [26], casein kinase [27, 28], 
p38 kinase [29], PAK2 kinase [30] as well as sorafenib- [31] and sunifinib- [32] sensitive 
kinases.

Eryptosis is observed in several clinical conditions [11], such as diabetes [24, 33, 34], 
renal insufficiency [35], hemolytic uremic syndrome [36], sepsis [37], malaria [38-43], sickle 
cell disease [44], Wilson’s disease [42], iron deficiency [45], malignancy [46], phosphate 
depletion [47], and metabolic syndrome [48]. Moreover, eryptosis is triggered by a wide 
variety of xenobiotics [10, 32, 48-67] including Nuclear Factor κ B (NFκB) inhibitors Bay 11-
7082 and parthenolide [68]. NFκB is known as a transcription factor fostering cell survival 
[69-71]. The possibility was therefore considered that NFκB participates in the signalling of 
eryptosis [72]. Alternatively, the inhibitors are in part effective by mechanisms unrelated to 
NFκB-inhibition.

The present study explored if the amount of NFκB changes during the erythrocyte's aging 
and if a correlation between enhanced eryptosis in aged erythrocytes [10] and NFκB abundance 
exists. To demonstrate the possible functional relationship between age-sensitive NFκB 
abundance and age-sensitive eryptosis, the effect of Bay 11-7082 and parthenolide have 
been tested in young and aged erythrocytes. As a result, a correlation was found between 
erythrocyte age and NFκB abundance on the one hand as well as eryptosis on the other. 
However, the fact that both NFκB inhibitors showed the highest eryptosis induction in aged 
erythrocytes, where NFκB abundance is lowest, indicates an NFκB-independent mode of 
action.

Materials and Methods

Erythrocytes, solutions and chemicals
As described earlier [10], erythrocytes were isolated from the blood of healthy volunteers by following 

the guidelines of the ethical commission of the Radboud University Nijmegen Medical Centre. Blood was 
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collected in EDTA, and erythrocytes were fractionated according to cell volume using elutriation followed 
by a fractionation according to cell density using discontinuous Percoll gradients as described earlier [73]. 
This yields 24 fractions, that were combined to five fractions (I to V); whereby fraction I comprises the 
youngest, and fraction V the oldest cells [73, 74]. These fractions have been characterized with respect 
to cell survival in vivo, hemoglobin content, metabolome characteristics and membrane composition. The 
mean corpuscular volume (MCV) of these fractions was measured using a haematology analyzer (Sysmex 
XT1800i, Sysmex Corporation, Kobe, Japan). 

Fractionated erythrocytes were incubated in vitro at a hematocrit of 0.4% in Ringer solution containing 
(in mM) 125 NaCl, 5 KCl, 1 MgSO4, 32 N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES), 5 glucose, 
1 CaCl2; pH 7.4 at 37°C for 24 or 48 hours [10]. Bay 11-7082 (Sigma, München, Germany) or parthenolide 
(Biomol, Hamburg, Germany) were added to the Ringer solution at the indicated concentrations for 24 or 48 
hours. For this, stock solutions of Bay 11-7082 or parthenolide in dimethyl sulfoxide (DMSO) were diluted 
in Ringer solution. DMSO did not exceed final concentrations of 0.1%. Vehicle-treated erythrocytes served 
as controls.

Phosphatidylserine exposure and forward scatter
Erythrocyte fractions I to V or the corresponding unfractionated population (or whole blood indicated 

as WB) were incubated in Ringer solution in the absence or presence of Bay 11-7082 or parthenolide. After 
incubation, erythrocytes were washed in annexin-binding buffer at pH 7.4 containing (in mM): 125 NaCl, 10 
HEPES and 5 CaCl2. Erythrocytes were then stained with Annexin-Fluos from Roche Diagnostics (Mannheim, 
Germany) at a 1:35 dilution and mixed gently on a vortex mixer. After 20 min incubation in the dark at room 
temperature, samples were diluted 1:5 with annexin-binding buffer, thoroughly mixed to achieve single 
cell suspensions, and analysed by flow cytometry on a FACS-Calibur from Becton Dickinson (Heidelberg, 
Germany). Cell volume differences were estimated by forward scatter (FSC), and annexin-fluorescence 
intensity was measured in FL-1 with an excitation wavelength of 488 nm and an emission wavelength of 
530 nm as described earlier [10].

Western blotting 
To determine age-dependent differences in the expression of NFκBs (i.e. p50 and p65 subunits), 

human erythrocytes were separated into five fractions (fractions I to V). Each fraction (250 µl erythrocyte 
pellet containing approx. 1.0 x 109 cells) was lysed in 50 ml of 20 mM HEPES/NaOH (pH 7.4) hypotonic 
shock solution containing 1“complete protease inhibitor cocktail” tablet from Roche Diagnostics. Ghost 
membranes were pelleted (15.000 x g, for 30 min at 4°C) and lysed in 250 µl lysis buffer pH 7.4 containing 
125 mM NaCl, 25 mM HEPES, 10 mM EDTA, 10 mM NaF, 10 mM sodium pyrophosphate, 0.1% sodium 
dodecyl sulfate, 0.5% sodium deoxycholate, 1% Triton X-100, 0.4% β-mercaptoethanol and 1 "complete 
protease inhibitor cocktail” tablet. Lysed ghost membranes were solubilized in Laemmli sample buffer at 
95°C for 5 min, resolved by 8% SDS-PAGE and electrophoretically transferred onto a PVDF membrane (Roth, 
Karlsruhe, Germany) as described earlier [68]. Membranes were then incubated in blocking solution (5% 
nonfat milk in tris-buffered saline (TBS) containing 0.01% Tween 20 (TBST)) at room temperature for 1 
h. For detection of NFκB subunits p65 and p50, the membranes were incubated with a 1:1000 dilution 
of affinity purified rabbit anti-NFκB p65 or anti-NFκB p50 (Cell Signaling Technology Inc., Danvers, MA, 
USA) at 4°C overnight. After washing membranes with TBST, immunoreactive proteins were visualized 
using enhanced chemoluminescence following incubation with a 1:5000 dilution of the secondary donkey-
anti-rabbit horse-radish-peroxidase (HRP)-conjugated antibody (GE Healthcare, München, Germany) for  
1 h at room temperature. β-actin was used as loading control and its detection was evaluated by an affinity 
isolated rabbit anti-β-actin antibody (Sigma-Aldrich, Taufkirchen, Germany). Immunoreactive bands were 
quantified by videodensitometry, and the NFκB p65/ß-actin ratio or NFκB p50/β-actin ratio of the samples 
was calculated.

Statistics
Data are expressed as arithmetic or geometric means ± SEM. Statistical analysis was made using  ANOVA 

with Tukey’s test as post hoc test, or using student´s t test where appropriate. A p value < 0.05 was considered 
statistically significant.
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Results

According to our previous study, the susceptibility to triggers of eryptosis is a function 
of erythrocyte age. Thus, erythrocytes have been separated into 5 fractions (I to V) according 
to age-associated differences in density and volume [10]. As illustrated in Fig. 1A, the MCV 
steadily declined with increasing age (higher fraction numbers) which served as a quality 
control for separation. In addition, cell volume decrease was confirmed by measurement of 
the forward scatter (FSC) which was lower in fraction V as compared with fraction I after 
incubation for 24 hours in Ringer solution (Fig. 1B). The forward scatter decreased even 
further following incubation in Ringer for 48 hours (Fig. 1C). 

The decrease in forward scatter was paralleled by an increase of annexin V binding. 
As shown in Fig. 1D, after incubation for 24 hours in Ringer solution the percentage of 
annexin V binding erythrocytes was higher in fraction V than in fraction I. Incubation of the 
erythrocytes in Ringer solution for 48 hours resulted in a further increase of the percentage 
of annexin V binding cells (Fig. 1E). 

In theory, the increased eryptosis of aged erythrocytes could be paralleled by changes of 
NFκB abundance. To explore the impact of erythrocyte age on the amount of NFκB, the levels 
of the NFκB subunits p65 and p50 have been determined by Western blotting. As shown in 
Fig. 2A, the abundance of the NFκB subunit p65 was highest in erythrocytes of fraction I. In 
erythrocytes of fraction V, the NFκB protein subunit p65 was virtually absent (Fig. 2A, C). 
Similar observations were made with NFκB subunit p50, which was again most abundant in 
fraction I and almost absent in fraction V (Fig. 2B, D).

Fig. 1. Decreased erythrocyte volume and 
increased annexin-V binding in old eryth-
rocytes. A. Means erythrocyte age (left) and 
mean corpuscular volume (MCV, right) in the 
five fractions isolated by volume and density 
fractionation. MCV data from one representa-
tive fractionation are shown. B. Means ± SEM 
(n = 3) of the erythrocyte forward scatter 
(geometric mean) of fractions I to V follow-
ing incubation for 24 hours at 37oC in control 
Ringer solution. * significantly different from 
fraction I (p < 0.05; ANOVA). C. Means ± SEM 
(n = 3) of the erythrocyte forward scatter 
(geometric mean) of fractions I and V follow-
ing incubation for 48 hours at 37oC in con-
trol Ringer solution. * significantly different 
from fraction I (p < 0.05; student´s t test). D. 
Mean percentage ± SEM (n = 3) of annexin V 
binding of erythrocytes from fractions I to V 
following incubation for 24 hours at 37oC in 
control Ringer solution. * significantly differ-
ent from fraction I (p < 0.05, ANOVA). E. Mean 
percentage ± SEM (n = 3) of annexin V binding 
of erythrocytes from fractions I and V follow-
ing incubation for 48 hours at 37oC in control 
Ringer solution. * significantly different from 
fraction I (p < 0.05; student´s t test). 
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Fig. 3 displays the result of erythrocyte forward scatter after 24 h of incubation as a 
function NFκB subunit p65 (Fig. 3A) or NFκB subunit p50 (Fig. 3B) abundance. Fig. 4 
displays the percentage of annexin V binding erythrocytes after a 48 hours incubation in 
Ringer solution as a function of NFκB subunit p65 (Fig. 4A) or NFκB subunit p50 (Fig. 4B) 
abundance. 

The positive correlation between the forward scatter, and the negative correlation 
between the percentage of annexin V-exposing erythrocytes and the amount of NFκB 
subunits p50 and p65 does not necessarily reflect a causal relationship between the NFκB 
subunits abundance and the susceptibility to eryptosis. However, if such a causal relationship 
would exist, then pharmacological inhibition of the NFκB signalling pathway should trigger 

Fig. 2. Erythrocyte NFκB subunit abundance as a function of erythrocyte age. A. Western blot demonstrating 
the expression of NFκB protein subunit p65 (upper panel) and ß-actin (lower panel) in fractions I to V 
of a representative erythrocytes fractionation. WB = whole blood extracts (unfractionated); Co. = positive 
control for p65 expression. B. Western blot demonstrating the expression of NFκB protein subunit p50 
(upper panel) and ß-actin (lower panel) in fractions I to V of a representative erythrocytes fractionation. 
WB = whole blood extracts (unfractionated); Co. = positive control for p50 expression. C. Arithmetic means 
± SEM (n = 3) of the NFκB protein subunit p65/ß-actin abundance in erythrocytes of fractions I to V. Data 
are given as relative expression values (% of whole blood). * significantly different from fraction I (p < 0.05). 
D. Arithmetic means ± SEM (n = 3) of the NFκB protein subunit p50/ß-actin abundance in erythrocytes of 
fractions I to V. Data are given as relative expression values (% of whole blood). * significantly different from 
fraction I (p < 0.05).

Fig. 3. Positive correlation between 
erythrocyte NFκB subunit abundance 
and erythrocyte forward scatter. A. 
Erythrocyte forward scatter following 
incubation for 24 hours in control Ring-
er solution as a function of NFκB pro-
tein subunit p65/ß-actin abundance. B. 
Erythrocyte forward scatter following 
incubation for 24 hours in control Ring-
er solution as a function of NFκB pro-
tein subunit p50/ß-actin abundance.

D
ow

nl
oa

de
d 

by
: 

R
ad

bo
ud

 U
ni

ve
rs

ite
it 

N
ijm

eg
en

   
   

   
   

   
   

   
   

  
14

9.
12

6.
75

.1
 -

 1
0/

12
/2

01
5 

10
:1

1:
56

 A
M

http://dx.doi.org/10.1159%2F000354481


Cell Physiol Biochem 2013;32:801-813
DOI: 10.1159/000354481
Published online: September 20, 2013

© 2013 S. Karger AG, Basel
www.karger.com/cpb 806

Ghashghaeinia et al.: Age Sensitivity of NFκB and Eryptosis

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

eryptosis. Moreover, pharmacological inhibition of NFκB signalling should dissipate the 
difference between young and aged erythrocytes, if mainly the lack of NFκB accounted for 
the enhanced susceptibility of aged erythrocytes to eryptosis. As illustrated in Fig. 5, the 
opposite was true. Treatment of erythrocytes with 20 µM Bay 11-7082, a concentration 
which should completely block NFκB, was followed by stimulation of annexin V binding, 
an effect more pronounced in aged erythrocytes than in young erythrocytes (Fig. 5A, B). 
Accordingly, titration of Bay 11-7082 did not dissipate but enhanced the difference of annexin 
V binding between erythrocytes of fraction I and erythrocytes of fraction V (Fig. 5C). Similar 
observations were made with 100 µM parthenolide (Fig. 6A, B), which again did not dissipate 
but enhanced the difference of annexin V binding between young and old erythrocytes (Fig. 

Fig. 4. Inverse correlation between eryth-
rocyte NFκB subunit abundance and phos-
phatidylserine exposure. A. The percentage 
of  Annexin V binding erythrocytes following 
incubation for 48 hours in control Ringer so-
lution as a function of NFκB protein subunit 
p65/ß-actin abundance. B. The percentage 
of  Annexin V binding erythrocytes following 
incubation for 48 hours in control Ringer so-
lution as a function of NFκB protein subunit 
p50/ß-actin abundance.

Fig. 5. Effect of Bay 11-7082 on 
phosphatidylserine exposure of 
erythrocytes of different age. A. 
Original histograms of annexin V 
binding erythrocytes in fraction 
I (left) or fraction V (right) 
following exposure for 24 h to 
Ringer solution in the absence 
(DMSO) or presence of 21 µM 
Bay 11-7082. B. Mean percentage 
± SEM in fractions I to V (n = 3) of 
annexin V binding erythrocytes 
following exposure for 24 h (left) 
or 48 h (right) to Ringer solution 
in the absence (DMSO) or 
presence of 21 µM Bay 11-7082. 
Note that erythrocytes from 
fraction V are more susceptible to 
Bay 11-7082-induced eryptosis 
as compared with erythrocytes 
from fraction I. C. Annexin V 
binding of erythrocytes from 
fraction I (red squares) or fraction 
V (black squares) as a function 
of Bay 11-7082 concentration 
following exposure for 24 h. 
Data represent the mean of 3 
determinations. 
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Fig. 6. Effect of parthenolide on phosphatidylserine 
exposure of erythrocytes of different age. A. Origi-
nal histograms of annexin V binding erythrocytes in 
fraction I (left) or fraction V (right) following expo-
sure for 24 h to Ringer solution in the presence of 
100 µM parthenolide. B. Mean percentage ± SEM in 
fractions I to V (n = 3) of annexin V binding eryth-
rocytes following exposure for 24 h to Ringer solu-
tion in the absence (DMSO) or presence of 100 µM 
parthenolide. Note that erythrocytes from fraction 
V are more susceptible to parthenolide-induced 
eryptosis as compared with erythrocytes from frac-
tion I. DMSO controls are the same as shown in Fig. 
5B. C. Annexin V binding of erythrocytes from frac-
tion I (red squares) or fraction V (black squares) as 
a function of parthenolide concentration following 
exposure for 24 h. Data represent the mean of 3 de-
terminations.

6C). Thus, in aged erythrocytes with the lowest NFκB abundance, the inverse correlation 
between the higher sensitivity to parthenolide and Bay 11-7082-induced eryptosis and 
the NFκB expression level has to be based on NFκB-independent modes of action of the 
inhibitors. As a consequence, young erythrocytes, with their high NFκB abundance and the 
associated low sensitivity to parthenolide- and Bay 11-7082-induced eryptosis, require a 
higher concentration of parthenolide or Bay 11-7082 in order to achieve the same rate of 
eryptosis as aged erythrocytes (Fig. 6C and Fig. 5C, respectively). 

Discussion

Our data confirm the previous observation that aged erythrocytes are particularly sensitive 
to eryptosis [10]. The present study further reveals that the amount of NFκB is constantly 
decreasing during an erythrocyte’s life span and negligible in aged erythrocytes. In view of the 
earlier observation that pharmacological inhibition of NFκB triggered eryptosis [68], the 
coincidence of low NFκB protein subunit abundance and high susceptibility to eryptosis 
could have reflected a causal relationship. If so, pharmacological inhibition of NFκB should be 
more effective in erythrocytes expressing high NFκB levels than in erythrocytes expressing 
low levels of NFκB. Accordingly, pharmacological inhibition of NFκB should dissipate the 
difference between young and aged erythrocytes. As illustrated in Fig. 5 and Fig. 6, the effects 
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of parthenolide or Bay 11-7082 on eryptosis were more pronounced in aged than in young 
erythrocytes. Accordingly, the inhibitors augmented the differences between erythrocytes of 
fraction I and erythrocytes from fraction V. Thus, the difference in susceptibility to inhibitor-
induced eryptosis between young and aged erythrocytes was not due to the differences in 
NFκB abundance. Moreover, even though the substances are expected to inhibit NFκB, their 
effectivity in erythrocytes of fraction V, i.e. in the virtual absence of NFκB, indicates that the 
substances trigger eryptosis by mechanisms other than inhibition of NFκB. For example, 
these mechanisms could be glutathione (GSH) depletion (data not shown) [68, 75-77] and/
or caspase activation [78-80]. Parthenolide with its properties to inhibit many components 
of the canonical NFκB signalling pathway, e.g. IKKs [81-83], and NFκB p65 [84-86] seems 
to be a much better candidate to investigate the possible role of NFκB signalling in cell 
death mechanisms in erythrocytes than Bay 11-7082 which in this pathway solely inhibits 
IKK [87-89]. Bay 11-7082 was originally identified as an inhibitor of the NFκB signalling 
pathway [90]. 

We have shown previously that old erythrocytes contain higher Ca2+ levels [10]. Thus, 
age-sensitive eryptosis is partially Ca2+-dependent, e.g. through Ca2+-mediated activation of 
the scramblase and the Gardos channel. The analysis of the relationship between Redox-
sensitive NFκB activity and Ca2+-induced cell death, as demonstrated in nucleated cells [91], 
will be a challenging task of future eryptosis research. 

The enhanced in vitro susceptibility of aged erythrocytes towards parthenolide should 
lead to their elimination, and thus to a drift towards younger erythrocyte populations in 
vivo. In consequence, this could enhance erythropoiesis resulting in increased reticulocyte 
counts in vivo. However, clinical studies using feverfew extracts or parthenolide did not 
show any significant toxicity [92]. Administration of the NFκB inhibitor ethacrynic acid [93] 
favourably influences the clinical course of sickle cell anemia by tight covalent binding of this 
compound to hemoglobin S [94]. Whether or not other NFκB inhibitors, e.g. parthenolide or 
Bay 11-7082, equally possess an anti-anemia effect or influence the numbers of circulating 
reticulocytes remains to be shown.  

The present results do not address the potential role of NFκB for the regulation of 
gene expression in erythrocyte progenitor cells. In this context, evidence has been provided 
that the glucocorticoid receptor is needed for stress erythropoiesis [95]. As glucocorticoid 
receptors are known to inhibit NFκB transcriptional activity by direct physical interaction 
in a DNA-independent matter (for review see: [96]), stimulation of eryptosis by NFκB 
inhibitors might also be related to decreased abundance of glucocorticoid receptors in aged 
human erythrocytes. In addition, acting as transcription factors in progenitor cells, NFκBs 
may indeed control the expression of genes relevant for the susceptibility to eryptosis. 
Mature, circulating erythrocytes are, however, devoid of nuclei and unable to express novel 
proteins. In those cells, the NFκB protein abundance may be irrelevant for the susceptibility 
to eryptosis. 

Interestingly, we can find certain parallels regarding the inverse correlation between 
NFκB abundance and eryptosis when we look at the proliferative rate of cancer cells and their 
NFκB activity. Cancer cells with low NFκB DNA-binding activity also exhibit a significantly 
higher sensitivity to the anti-proliferative effects of parthenolide and vice versa [97], i.e. cancer 
cells with a high NFκB DNA-binding activity show a significantly lower sensitivity to the anti-
proliferative effects of parthenolide.

In conclusion, our current study clearly indicates an inverse correlation between 
erythrocyte age and NFκB abundance. Thus, NFκB protein was most abundant in young 
erythrocytes and virtually absent in aged erythrocytes. Concomittantly, NFκB inhibitor-
induced eryptosis was most pronounced in aged erythrocytes, pointing to NFκB-independent 
mechanisms leading to an enhanced susceptibility of aged erythrocytes to parthenolide- and 
Bay11-7082-induced eryptosis. 
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