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First-principles energetics of water clusters and ice: A many-body analysis
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Standard forms of density-functional theory (DFT) have good predictive power for many materials,
but are not yet fully satisfactory for cluster, solid, and liquid forms of water. Recent work has
stressed the importance of DFT errors in describing dispersion, but we note that errors in other parts
of the energy may also contribute. We obtain information about the nature of DFT errors by using
a many-body separation of the total energy into its 1-body, 2-body, and beyond-2-body components
to analyze the deficiencies of the popular PBE and BLYP approximations for the energetics of water
clusters and ice structures. The errors of these approximations are computed by using accurate
benchmark energies from the coupled-cluster technique of molecular quantum chemistry and from
quantum Monte Carlo calculations. The systems studied are isomers of the water hexamer cluster,
the crystal structures Ih, II, XV, and VIII of ice, and two clusters extracted from ice VIII. For the
binding energies of these systems, we use the machine-learning technique of Gaussian Approxi-
mation Potentials to correct successively for 1-body and 2-body errors of the DFT approximations.
We find that even after correction for these errors, substantial beyond-2-body errors remain. The
characteristics of the 2-body and beyond-2-body errors of PBE are completely different from those
of BLYP, but the errors of both approximations disfavor the close approach of non-hydrogen-bonded
monomers. We note the possible relevance of our findings to the understanding of liquid water.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4852182]

I. INTRODUCTION

The pioneering work of Parrinello and co-workers1 in the
1990s initiated a major effort to understand the properties of
water systems from first principles using density-functional
theory (DFT). This effort is important not just for the pure
liquid and solid, but for general aqueous systems, including
solutions2 and water on surfaces.3 However, standard DFT
methods often give less than satisfactory predictions for
water in its liquid,4–19 crystalline20–26 and cluster forms,27–30

for reasons that are still not generally agreed.26 Strenuous
efforts have been devoted to the development of improved
exchange-correlation functionals and empirical correction
potentials, with a strong recent emphasis on the description
of dispersion (non-local electron correlation).13–19, 22–26, 29–34

However, these efforts have met with only partial success,26

and it is not established that dispersion is the only important
source of DFT errors for water systems. Here we show how a
combination of correlated quantum chemistry, machine learn-
ing, and quantum Monte Carlo can be used to analyze DFT
errors for water in a variety of aggregation states, focusing
particularly on clusters and ice structures. With a many-body
decomposition of the total energy, we find that the two com-
monly used density functionals PBE35 and BLYP36 suffer
not only from 1- and 2-body errors, but also from substantial

a)Author to whom correspondence should be addressed. Electronic mail:
m.gillan@ucl.ac.uk

beyond-2-body errors, which may not be associated with
non-local correlation.

Many recent papers on the problems of DFT for water
systems have been concerned with the thermodynamics,
structure, and dynamics of the liquid at near-ambient
conditions.4–14, 16, 18, 19, 33 Some of these papers assume that
the poor description of dispersion is the main source of
errors in describing the liquid. Liquid water is obviously
important, but we have chosen to concentrate here on clusters
and ice structures because they are somewhat easier to
study and we consider them to be equally important. In
addition, we deliberately avoid making any assumptions
about what is wrong with standard DFT approximations.
The errors of standard DFT methods for assemblies of
water molecules show themselves in many ways, including:
inaccurate predictions of monomer deformation energies37

and the energies for some dimer geometries;27, 28, 38 wrong
stability ordering of isomers of some clusters, notably the
hexamer;29, 39 incorrect relative energies of different ice
structures;23–26 errors of up to 30% in the predicted density
of the liquid;14, 15, 19, 40 and substantial errors in the structure
and diffusivity of the liquid.4, 14–16, 19 An understanding of
the relationships between these different errors is clearly
needed, and the present work is intended to contribute to this
understanding.

The many-body expansion that we use has long
served41, 42 as a standard tool for analyzing the energetics of
water clusters. It expresses the total energy Etot(1, 2, . . . N) of
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a system of N monomers as:

Etot(1, 2, . . . N) =
∑

i

E(1)(i) +
∑

i<j

E(2)(i, j )

+E(>2)(1, 2, . . . N) . (1)

Here, i is the collection of variables describing monomer
i (position, orientation, internal distortion from equilibrium
geometry), E(1)(i) the 1-body (1B) energy of monomer i,
E(2)(i, j) the 2-body (2B) interaction energy of monomers i and
j, and the beyond-2-body (B2B) energy E(>2) is everything not
included in 1B and 2B energy. Electrostatic interactions be-
tween the electron distributions on the monomers, exchange-
repulsion between these distributions, and non-local correla-
tions of their fluctuations account for a large part of the 2B
interactions, with contributions also from polarizability and
charge transfer (partial covalency).43 We know that B2B in-
teractions are crucially important, because the dipole moment
of the water molecule increases by at least 40%44 and per-
haps as much as 65% or more18, 45–48 when it passes from
the gas phase to the ice and liquid phases. The importance
of B2B energies is also apparent from the well-known co-
operativity of hydrogen bonding, i.e., the non-additivity of
hydrogen-bond energies, which has been extensively investi-
gated for water and other systems for over 40 years.41, 49–52 It
is often assumed that polarizability gives the only important
contribution to E(>2),53–55 but it is likely that the electronic
redistribution associated with the change of dipole moment
affects exchange-repulsion, non-local correlation, and charge
transfer.42 It is therefore important to understand the distri-
bution of DFT errors between the terms of the many-body
expansion.

Our plan in the present work is to analyze DFT errors
for water clusters and ice structures by separating them into
their 1B, 2B, and B2B parts. To do this, we use the machine-
learning technique known as GAP (Gaussian Approximation
Potentials).56 This Bayesian inference technique was origi-
nally designed to use data-bases of DFT energies and forces
to train rapidly computable algorithms to perform simulations
with essentially the same accuracy as the original data-bases.
However, we have recently shown57 how the same ideas can
be used to train algorithms for predicting the differences be-
tween DFT energies and forces and those computed using the
accurate correlated quantum chemistry techniques MP2 and
CCSD(T) (second-order Møller-Plesset and coupled-cluster
singles, doubles and perturbative triples).58 The GAP meth-
ods allow us to create accurate representations of the 1B and
2B errors of any chosen DFT approximation, and hence to
correct almost exactly for these errors. Provided we have ac-
curate total energies for the systems we wish to study, we can
then separate the DFT errors into their 1B, 2B, and B2B parts,
thus gaining additional insight into the nature of the errors.

We have chosen to focus on the PBE and BLYP
functionals for several reasons. First, these functionals have
been among the most commonly used in DFT simulations
of liquid water (see, e.g., Refs. 7, 8, 10, 11, 14, 15, and 17),
as well as in studies of ice energetics.22, 23, 26 Second, the er-
rors of the two functionals are known to be of rather differ-
ent kinds. For example, it is well known that BLYP gives

substantial under-binding for the water dimer, while PBE
gives a very good binding energy, at least for the dimer in
its global-minimum geometry.28, 59 Our third reason for ex-
amining PBE and BLYP is connected with the description
of exchange-repulsion. It has long been recognized that in
generalized-gradient approximations (GGA) the dependence
of the enhancement factor F on reduced gradient x in the ex-
change part of the functional strongly affects the description
of the exchange interaction due to wave-function overlap be-
tween closed-shell molecules.60–62 (Recall that x is defined as
|∇ρ|/ρ4/3, where ρ is electron density, and enhancement fac-
tor F(x) determines the dependence of the functional on the
gradient.) The enhancement factors of BLYP and PBE differ
greatly for large x values,61 and we can regard the two func-
tionals as representatives of high- and low-F varieties of GGA
functional. (There is a connection here with our second rea-
son, since the high exchange-enhancement of BLYP appears
to be responsible for its 2-body under-binding.61)

In Sec. II, we give technical details of our CCSD(T),
DFT, and QMC calculations on clusters and the DFT cal-
culations on ice structures. We also provide a summary of
the GAP techniques, and we show how they can be used to
correct the BLYP and PBE approximations so that they give
extremely accurate predictions for the energies of the water
dimer in any configuration of interest. In Sec. III, we then
use the isomers of the water hexamer to verify that the use
of GAP corrections to analyze the errors of BLYP and PBE
into their 1B, 2B, and B2B components reproduces the results
known from earlier work. Following this, we use the same
techniques to analyze the errors of these two DFT approxi-
mations for four important ice structures. We shall show that
further insight into the errors for ice structures can be gained
by studying clusters taken from the ice VIII structure. In
Sec. IV, we discuss connections between our analysis
and other recent work, and we also suggest the possible
implications for the understanding of liquid water.

II. TECHNIQUES

A. Coupled-cluster and DFT methods

The absolute accuracy of basis-set converged CCSD(T)
calculations58 on aggregates of water molecules is generally
believed to be ∼0.1 mEh (∼3 meV) per monomer,63, 64 and we
use energies calculated with this technique as benchmarks for
characterizing the errors of DFT approximations, which are
typically an order of magnitude greater.27, 28 Our benchmark
CCSD(T) calculations on the dimer and hexamer clusters, as
well as the DFT calculations on the dimers, hexamers, and
larger clusters, were performed using the MOLPRO code.65, 66

The coupled-cluster calculations on the dimers reported
below employ the approach sometimes called “focal-point”
analysis,64, 67 in which the energies are first calculated
with MP2 with large basis sets, and the energy difference
�CCSD(T) between CCSD(T) and MP2 is then computed
using somewhat smaller basis sets. In both the MP2 and
the CCSD(T) calculations, we use explicitly correlated (F12)
methods,68–70 which greatly accelerate the convergence to the
complete-basis-set (CBS) limit in correlated calculations and
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avoid the need for basis-set extrapolation.71 We employed
the standard Dunning72, 73 correlation-consistent augmented
basis sets aug-cc-pVQZ for the MP2 calculations, and aug-
cc-pVTZ for the difference CCSDT - MP2. (For brevity, we
refer to these basis sets as AVQZ and AVTZ.) The counter-
poise technique74 was used to compute the 2-body energy.
Our tests done with larger basis sets indicate that our bench-
mark 2-body energies for the dimer are within ∼40 μEh of
the CBS limit of CCSD(T). (Numerical examples of the tests
on which this statement is based are provided in the sup-
plementary material.75) The PBE and BLYP 2-body energies
of the dimers were computed using AVQZ basis sets with
counterpoise. Tests on a subset of the configurations using
AV5Z basis sets indicate that the residual basis-set error in the
2-body energy with AVQZ is less than 40 μEh.

For the CCSD(T) benchmarks on the prism, cage, book,
and ring isomers of the hexamer reported in Sec. III, we
use a method analogous to the focal-point method. The to-
tal energies of the four isomers were first computed with
MP2 using AVQZ basis sets and F12. We then added the
1-, 2-, and 3-body differences CCSD(T) - MP2. For the 1-
body correction, we actually used the exceedingly accurate
Partridge-Schwenke 1-body energies90 rather than CCSD(T)
values, though the differences between the two are negligible
for present purposes. For the 2- and 3-body corrections, we
used AVTZ basis sets with F12 and counterpoise. The PBE
and BLYP energies of the four isomers were obtained from
direct calculations on the entire hexamers using AV5Z basis
sets. All the DFT calculations on the nonamer and decamer
geometries were performed using AVQZ basis sets.

Our calculations on the XI, II, XV, and VIII crystal struc-
tures of ice using the PBE and BLYP functionals (Sec. III)
were performed with the CASTEP package.76 The calculations
employed on-the-fly generated ultra-soft pseudopotentials,
1200 eV plane-wave cut-off and a 3 × 3 × 3 Monkhorst-Pack
k-point mesh in the primitive unit cell, both chosen to achieve
1 meV convergence of total energies. The geometry and lat-
tice parameters were relaxed until atomic displacements were
smaller than 0.0001 Å and the pressure was less than 0.1 GPa.

B. Quantum Monte Carlo

We have used the diffusion Monte Carlo (DMC) tech-
nique to obtain benchmark energies of the water clusters
larger than the hexamer. The advantage of DMC for larger
clusters is that its computational scaling with number of
molecules is much milder than that of coupled-cluster
methods, while for non-covalent interactions in water
and other molecular systems, a considerable body of
evidence23, 28, 29, 77–79 indicates that its accuracy approaches
that of CCSD(T). Full information about DMC can be found
in reviews.80–82

Our DMC calculations were performed with the CASINO

code83 within the usual fixed-node approximation84 and using
B-spline basis sets.85 We used Dirac-Fock pseudopotentials,86

the oxygen having a frozen core with a radius of 0.4 Å and
the hydrogen pseudopotential having a core radius of 0.26
Å. Pseudopotential non-locality was treated with the usual

locality approximation.87 The trial wavefunctions were of
Slater-Jastrow type, with a single Slater determinant. The
single-electron orbitals were obtained from DFT-LDA plane-
wave calculations using the PWSCF package,88 the plane-
wave cut-off being 300 Ry, and the orbitals being re-expanded
in B-splines.85 The time-step used was 0.002 a.u., which is
the same as that used in Ref. 23. To check that this is short
enough, we did tests on the nonamer geometries (see be-
low) using times steps as small as 0.0005 a.u., and we found
no changes in the total energy within our statistical error of
0.5 mEh.

C. Machine-learning with GAP

The GAP machine-learning techniques that we have
developed for representing and correcting 1B and 2B DFT er-
rors of molecular systems57 are a particular form of the more
general GAP techniques56 that have been applied to a variety
of other types of system. The GAP corrections employed here
are more accurate than the ones that we reported recently for
water.57

We summarize briefly the GAP procedure. For a system
of molecules whose configuration is specified by a point R in
a many-dimensional configuration space, the GAP algorithm
is “trained” with the values f(Rn) of the energy (or corrections
to the energy) at a finite set of configurations {Rn}. The rules
of Bayesian inference89 are then used to compute the most
likely values of f(R) at configurations R not in the training
set. The predictions are based on the assumption that f(R) is
a “smooth” function of R, the correlation between the values
of f(R) and f(R′) at different points being characterized by a
Gaussian covariance function C(R, R′). The most likely value
f(R) is then given by

f (R) =
data∑

n

C(R, Rn)αn , (2)

where the coefficients αn are given by inversion of the linear
equations:

f (Rm) =
data∑

n

[C(Rm, Rn) + εδmn] αn , (3)

where δmn is the Kronecker delta, and the diagonal shift ε is
included to regularize the linear algebra.

The correction of 1B errors of any chosen DFT approxi-
mation is a straightforward matter, since the space of configu-
rations R is only 3-dimensional. Many methods would suffice
to make the correction, but it is convenient to use a GAP-like
approach, with the training data being the errors of the 1B
DFT energy E1B(DFT) on a uniform grid in the space of O-
H bond lengths r1, r2 and H-O-H bond angle θ . In practice,
we take 0.8 Å <r1, r2 < 1.15 Å at intervals of 0.025 Å and
72.5◦ < θ < 127.5◦ at 5◦ intervals, the DFT energy values
being computed using the MOLPRO package65, 66 with AV5Z
basis sets. To compute the 1B DFT errors, we use bench-
mark values of E1B given by the standard Partridge-Schwenke
representation,90 which is essentially exact for present
purposes.
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FIG. 1. Left panel: Errors of 2-body energy of H2O dimer with BLYP and PBE functionals relative to CCSD(T) benchmarks as function of O-O distance.
Calculations are for sample of 198 dimer configurations drawn from a classical m.d. simulation of bulk water at ambient conditions. Right panel: Residual
errors of the approximations obtained by adding GAP 2-body corrections to PBE and BLYP. Units: mEh.

The 2B error of a particular DFT approximation is a func-
tion in the space of configurations of a water dimer. As de-
scribed elsewhere,57 we ensure rotational and translational
symmetry by working with the space of 15 interatomic dis-
tances R ≡ {|ri − rj|}, where ri are the atomic positions.
To impose invariance with respect to interchange of identical
atoms, we symmetrize the covariance function over permu-
tations of these atoms. The GAP representation of the cor-
rection energy �E2B ≡ E2B(CCSD(T)) − E2B(DFT) to be
added to the DFT energy is constructed in two stages. In the
first stage, we create a GAP representation of the difference
E2B(MP2/AVTZ) − E2B(DFT/AVQZ), where the notation in-
dicates that we use Dunning correlation-consistent basis sets,
with the augmented quadruple-zeta set being used for DFT
and augmented triple-zeta for second-order Møller-Plesset
energies. With these basis sets, the DFT energies are within
∼20 μEh of the CBS limit, but the MP2 energies are only ap-
proximate. In the second stage, we correct for the basis-set er-
rors of MP2 and also for the difference between CCSD(T) and
MP2. The correction for basis-set errors of E2B(MP2/AVTZ)
employs values of the difference E2B(MP2-F12/AVQZ) −
E2B(MP2/AVTZ), where MP2-F12 indicates the use of ex-
plicitly correlated methods;68–70 we add to this the dif-
ference E2B(CCSD(T)-F12/AVTZ) − E2B(MP2-F12/AVTZ).
The training set of dimer configurations for the data used in
the first stage of GAP correction is a set of 9040 configura-
tions, consisting of sub-sets of 6000, 1000, and 2040 configu-
rations. The first of these subsets consists of dimer configura-
tions drawn at random from the classical molecular dynamics
(m.d.) simulation of liquid water at ambient conditions de-
scribed in Ref. 28, subject to the condition that the oxygen-
oxygen distance ROO is less than 4.5 Å. The second sub-set is
drawn from the same m.d. simulation, subject to the condition
that ROO is between 4.5 and 6.0 Å. The final sub-set of 2040
configurations is drawn from a simulation of a water dimer

in a confining potential performed with first-principles m.d.
at a temperature of 4000 K; these configurations are included
to ensure good sampling of the dimer energy surface at small
ROO values. The configuration set for the second stage of GAP
correction is a set of 1507 configurations created simply by
taking every sixth configuration from the set of 9040 con-
figurations. The basis sets used here are significantly larger
than those used in our recent work,57 and the GAP corrections
generated here are of correspondingly higher quality.

To illustrate the high accuracy achieved by the GAP
corrections, we show in Fig. 1 the errors of the uncorrected
and corrected BLYP and PBE approximations for the 2B en-
ergy of a thermal sample of 198 configurations of the wa-
ter dimer. These configurations were drawn from exactly the
same classical molecular dynamics simulation of ambient liq-
uid water referred to above, but the configurations are entirely
independent of those used in training the GAP algorithm.
The errors of the approximations are obtained by computing
the difference between their 2B energies and the benchmark
2B energies given by CCSD(T) close to the CBS limit (see
above). The substantial 2B errors of uncorrected BLYP and
PBE seen in the left panel of Fig. 1 have been thoroughly
discussed in previous papers.28, 42 The important point here is
that for both functionals the GAP corrections reduce the errors
to extremely small values of considerably less than ∼0.1 mEh

over the whole range of O-O separations. This means that if
we subtract our GAP representation of the 1B and 2B errors
from the DFT energies of any water system, the remaining
errors are entirely B2B errors.

III. RESULTS

We start the presentation of our results by illustrating
how our many-body analysis works for the prism, cage, book,
and ring isomers of the water hexamer (see Fig. 2). This forms
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FIG. 2. The four isomers of the H2O hexamer for which we analyze DFT
errors of the binding energies: (a) prism; (b) cage; (c) book; and (d) ring. Red
and gray spheres represent O and H atoms, with connecting lines showing
hydrogen bonds.

a convenient test case, since the hexamer has been thoroughly
studied by many previous authors,29, 39, 91–93 its energetics
is very precisely known,94 and there have been previous
many-body analyses28, 29, 42 of the DFT errors in the binding
energies of its isomers. There is an important reason why the
water hexamer has received so much attention. For smaller
clusters, the most stable isomers have ring-like geometries,
but from the hexamer onwards compact geometries are more
stable, so that in the hexamer itself there is a rather subtle
energy competition between different geometries. Highly
converged CCSD(T) calculations94 show that the compact
prism and cage isomers are more stable than the extended
book and ring, but standard DFT approximations wrongly
make the extended geometries more stable.28, 29 We show
here how our GAP 1B and 2B corrections allow the B2B
errors of DFT approximations to be clearly separated.

We compare in Fig. 3 the total binding energies of the
isomers computed with BLYP, PBE, and CCSD(T). The
atomic positions used for all the calculations correspond to
the equilibrium configurations calculated by Santra et al.29

using the MP2 approximation with aug-cc-pVTZ basis sets.
The BLYP and PBE energies are those reported in our recent
work,28 while the CCSD(T) energies were computed as de-
scribed above. As expected from previous work,28, 29, 42 BLYP
is seriously under-binding and its errors become rapidly more
positive as we pass from extended (ring, book) to compact
(cage, prism) isomers. Quantitatively, BLYP makes the prism
and ring isomers under-bound by 13.3 and 6.8 mEh respec-
tively. On the other hand, PBE is somewhat over-binding, but
again its errors become more positive (less negative) as we go
to more compact geometries. With PBE, the prism and ring
are over-bound by 0.5 and 4.6 mEh.

If we now eliminate the 1B and 2B errors by using our
GAP representations to subtract them from the total ener-
gies, then the errors of the resulting approximations (we de-
note the new approximations by BLYP-2 and PBE-2) are by
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FIG. 3. Left panel: Total energies of isomers of the H2O hexamer relative
to free monomers from PBE, BLYP, and benchmark CCSD(T) calculations,
Right panel: Errors of total energy of PBE and BLYP and 1- and 2-body
corrected PBE-2 and BLYP-2. Units: mEh

definition B2B errors. As shown in Fig. 3, the errors of BLYP-
2 are negative but almost constant, so that BLYP-2 is some-
what overbound, but it predicts excellent relative energies of
the isomers, as reported in recent work.28, 57 Quantitatively,
we find that its errors relative to the CCSD(T) benchmarks are
−2.7, −2.8, −3.0, and −2.6 mEh for the prism, cage, book,
and ring isomers. The errors of PBE-2 are smaller than those
of uncorrected PBE, but they are far from negligible, so that
the relative energies with PBE-2 are still poor. The errors of
PBE-2 are 1.7, 1.5, 0.0, and −1.1 mEh for the prism, cage,
book, and ring. This shows that the erroneous stability order-
ing with BLYP is mainly due to the excessive 2B repulsion of
BLYP seen in Fig. 1, while with PBE both 2B and B2B errors
are important, as pointed out before.28, 42

We now turn to the energetics of ice structures, which
give striking evidence of the difficulties facing standard first-
principles methods.23–26 Essentially the same analysis that we
used for the hexamers can be used to determine the contribu-
tion of many-body errors to the total DFT errors for the co-
hesive energies of ice structures. Ice has a complicated phase
diagram, with no less than 15 known crystal structures,95 but
we study here only the proton-ordered structures XI, II, XV,
and VIII forming the sequence of increasingly compact struc-
tures found at low temperatures as pressure increases from
0 to ∼20 kbar. The errors of DFT approximations for these
and other structures have recently been studied in detail,23, 26

and it was shown that the energies predicted by standard
DFT methods increase much too fast from extended to com-
pact structures. We illustrate the problem with the energies in
Fig. 4, where we show our own calculated cohesive energies
with BLYP and PBE compared with experimental values.96

Zero-point energies have been removed from the experimen-
tal values, as described in Ref. 23, and the resulting “cor-
rected” experimental cohesive energies are almost identical
to those given by quantum Monte Carlo calculations.23

Our GAP representations of the 1B and 2B errors of
BLYP and PBE are readily computed in periodic boundary
conditions, as explained in Ref. 57. We show in Fig. 4 the
errors of the uncorrected and corrected approximations for
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the cohesive energies of the XI, II, XV, and VIII structures.
The picture resembles what we saw for the hexamers. Uncor-
rected BLYP becomes increasingly under-binding as we go
from extended to compact structures, but its corrected ver-
sion BLYP-2 has almost constant negative errors, so that its
relative energies are very good, as reported elsewhere.57 By
contrast, the corrected version PBE-2, while better than PBE
itself, still gives substantial errors. This implies that for BLYP
the problem with relative energies stems mainly from its sys-
tematically under-binding 2B interaction, but for PBE both
2B and B2B errors are important.

The energy changes with increasing compactness along
the series XI, II, XV, and VIII can be understood in more de-
tail. In all these structures, each H2O monomer is hydrogen-
bonded to four first neighbors at O-O distances of ∼2.7 Å.95

In XI (the proton-ordered form of the Ih structure of common
ice), the monomers form a tetrahedral network, the second-
neighbors being at the large distance of 4.5 Å. From XI to
II, XV, and VIII, the hydrogen-bonded first-neighbor dis-
tances change only slightly, but the second-neighbor distances
contract dramatically, until in VIII each monomer has eight
neighbors at almost equal distances of ∼2.8 Å, four of which
are unbonded to the central monomer.95 The close approach of
monomers that are not H-bonded to each other in the compact
structures appears to be implicated in the large DFT errors, as
has been pointed out before (e.g., Ref. 15).

To further probe DFT errors in describing the close
approach of non-H-bonded monomers, we have studied two
clusters cut from the ice VIII crystal. The first is a non-
amer consisting of an H2O molecule and its eight neighbors
(Fig. 5), and we examine the energy variation when the H-
bonded neighbors are held fixed but the four unbonded neigh-
bors are moved radially outward. The second cluster is a de-
camer composed of two pentamers, each pentamer consisting
of an H2O molecule and its four H-bonded neighbors, the two
central monomers in the pentamers being each other’s non-H-
bonded neighbors in ice VIII (Fig. 5). For this second clus-
ter, we examine the energy variation when the pentamers are
rigidly displaced relative to each other along the line joining

FIG. 5. Nonamer (left panel) and decamer (right panel) cut from ice VIII
structure. For each cluster, four configurations are created. For the nonamer,
this is done by displacing the non-H-bonded monomers marked “N” radially
outward by 0.0, 0.5, 1.0, and 1.5 Å. For the decamer, the configurations are
created by displacing the pentamer fragments having central monomers “C”
along the axis joining them so that their separation is increased by 0.0, 0.5,
1.0, and 1.5 Å.

the non-H-bonded central monomers. The idea in both cases
is to keep H-bonds unchanged but to vary the distances be-
tween non-H-bonded monomers. For each cluster, we con-
sider four configurations. The first (configuration 1) has ex-
actly the geometry extracted from ice VIII, and the other three
configurations are generated by displacing the moving frag-
ments in successive steps of 0.5 Å, so that the distance be-
tween non-H-bonded O atoms increases from ca. 2.7 Å in
configuration 1 to ca. 4.2 Å in configuration 4.

Figure 6 reports the DMC benchmark and DFT energies
of the two clusters. The benchmark binding energies (left
panels) show that there is a significant lowering of energy
as the separated fragments approach each other, particularly
for the decamer, which shows a stabilization of over 10mEh

(� 300 meV). However, the stabilization is not correctly re-
produced by either PBE or BLYP. For the nonamer, as we
pass from configuration 4 to configuration 1, there should be
a stabilization of ∼2 mEh, instead of which there is a desta-
bilization of ∼8 mEh with PBE and ∼17 mEh with BLYP. In
the case of the decamer, there should be a large stabilization of
∼12 mEh, but there is no stabilization with PBE and a destabi-
lization of ∼5 mEh with BLYP. The qualitative similarity with
the incorrect DFT trends for the ice structures implies that es-
sentially the same DFT errors that give such poor predictions
for ice can be observed in relatively small clusters.

Comparing the errors of PBE and BLYP before and
after GAP correction for 2B errors (right panels of Fig. 6),
we see again the pattern that we found for the hexamers and
the ice structures. The BLYP-2 approximation is somewhat
overbinding, with an error that is fairly constant, particularly
for the nonamer. In the case of PBE, correction for 2B errors
brings a significant improvement, but does not eliminate the
problem, so that a substantial part of the error is due to B2B
effects.

IV. DISCUSSION AND CONCLUSIONS

Our results show that DFT difficulties in treating
water systems are partly due to the wrong description of
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FIG. 6. Left panels: Total binding energies of the four nonamer (upper) and
decamer (lower) configurations derived from the ice VIII structure computed
with DMC, PBE-1, and BLYP-1; fragments move outward from configura-
tion 1 to configuration 4. Right panels: Errors of the total energy relative to
DMC wtih PBE-1, BLYP-1, PBE-2, and BLYP-2 for the nonamer (upper)
and decamer (lower) configurations. Energy units: mEh.

many-body energies. This is not an entirely new result, since
it has been emphasized before that the incorrect stability
ordering of isomers of the hexamer predicted by some stan-
dard DFT functionals—PBE is an example—is partly due to
beyond-2-body (B2B) errors.28, 42 However, the present work
shows that the same effects occur even more strongly for ice
structures, since correction of both BLYP and PBE for 1- and
2-body errors still leaves substantial errors in their energies.
This is important, because there has been a considerable
recent effort to correct DFT approximations for water and
ice by adding empirical “dispersion-correction” potentials
acting between pairs of water molecules.13, 14, 17, 19, 24 Purely
2-body corrections of this kind can indeed improve the
description of liquid water,13, 14, 17 but our results suggest
that they cannot be fully successful unless they are added
to a DFT approximation that is accurate for the B2B part
of the energy. The same comment does not necessarily
apply to more sophisticated dispersion-inclusive techniques
in which non-local correlation responds to changes of
electron density,15, 16, 18, 23, 26, 33 but even so the treatment
of B2B energies by these techniques clearly merits further
study.

It is noteworthy that the errors of BLYP and PBE for
water systems are completely different. The very different
character of their 2B errors is well known:28, 42, 59 BLYP is
systematically too repulsive (insufficiently attractive) for the
water dimer over a wide range of O-O separations, while PBE
gives a rather accurate binding energy at the global minimum
of the dimer. However, we are not aware that the strongly con-
trasting nature of their B2B errors has been emphasized be-
fore. The fact that BLYP becomes significantly overbinding
for a range of water systems after correction for its 1B and 2B
errors was shown in recent work,57, 100 where it was noted that
this overbinding is fairly constant if one compares different
isomers of the hexamer or different ice structures. (See also
Ref. 52, where it was shown that B3LYP, a hybrid version of
BLYP, exaggerates the cooperative strengthening of hydrogen
bonding in HF clusters.) However, we have seen here that the
B2B errors of PBE vary quite strongly across both the hex-
amers and the ice structures. This appears to indicate that the
physical mechanisms underlying the B2B errors can be very
different for different DFT approximations.

We noted in the Introduction that in GGA approxima-
tions such as BLYP and PBE some of the 2-body errors in
the interactions between closed-shell molecules are closely
related to the behavior of the exchange-enhancement factor
at large reduced gradients. There is a connection here with
self-interaction errors and the fact that conventional DFT ap-
proximations make the tails of electron distributions too dif-
fuse. One promising way of addressing this problem is based
on the introduction of atom-centered potentials designed to
correct the density distribution, as proposed by Torres and
DiLabio97 and independently by von Lilienfeld et al.98 It has
been demonstrated that this approach can greatly improve the
prediction of dimer binding energies.99 If, as seems possible,
some of the many-body errors revealed in the present work
have a similar origin, it may be that correction of the den-
sity distribution using these methods could help to cure these
errors. This is an interesting direction for future study.

It is an important question whether the errors of DFT for
solid and liquid condensed-phase water are related to those
exhibited by small clusters. Our results suggest that there is
a close relationship. In both the isomers of the hexamer and
the ice structures, uncorrected BLYP is seriously underbind-
ing, and the degree of underbinding increases strongly as we
pass from extended to compact structures. In both systems,
the underbinding arises from the excessive 2B repulsion of
BLYP shown by the dimer. The B2B error that remains when
BLYP is corrected for 1B and 2B errors leads to overbinding
in both the hexamers and the ice structures, and this overbind-
ing is almost constant across both kinds of system, so that
their relative energies are well predicted. These facts were al-
ready noted in our recent work on GAP methods for water.57

In a separate study,100 we have shown that essentially the
same errors of uncorrected and corrected BLYP appear in
thermal-equilibrium nano-droplets and even in liquid water.
The present work reveals that the errors of uncorrected and
corrected PBE also take very similar forms for the hexamers
and the ice structures, even though these forms differ strongly
from what is found with BLYP. The errors of uncorrected PBE
destabilize the compact hexamers and ice structures too much
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compared with the extended structures. Correction for 1B and
2B errors reduces the incorrect destabilization, but does not
cure the problem, and the remaining B2B errors have essen-
tially the same form for both hexamers and ice. We have also
seen here that very similar patterns of errors emerge for the
nonamer and decamer clusters cut from ice VIII.

The present work is not primarily about liquid water, but
we offer some tentative suggestions about its possible rele-
vance to DFT errors for the liquid, and particularly the under-
estimation of equilibrium density and the over-structuring
produced by both BLYP and PBE. It has been noted before15

that these errors may appear because the DFT approximations
unduly disfavor the close approach of non-hydrogen-bonded
pairs of monomers, an effect that would also explain their er-
roneous predictions for the relative energies of ice structures.
In the case of BLYP, we have seen that its excessive 2B repul-
sion does make the close approach of non-hydrogen-bonded
monomers energetically unfavorable in ice, and correction
for this yields good relative energies. This suggests that for
BLYP the reported attempts to improve the liquid properties
by adding 2B attractive potentials14, 17, 19 are soundly based,
though the amount of 2B correction may not always have been
optimal. With PBE, by contrast, our analysis indicates that
B2B errors are a major cause of the problem, so that the addi-
tion of 2B attractive potentials would not by itself provide an
adequate solution. Such 2B “corrections” would in any case
tend to worsen the description of the water dimer.

The nature of the many-body errors of DFT approxima-
tions for water and other molecular systems requires further
analysis. Errors of monomer polarizability may be signifi-
cant, but it seems likely that other sources of many-body error
also contribute. For example, the large enhancement of dipole
moment and the associated redistribution of electron density
when the water monomer passes from the gas phase to con-
densed phases might well lead to errors of exchange-repulsion
or non-local correlation that differ from those shown by the
water dimer in free space. (The importance of many-body
contributions other than those accounted for by polarizabil-
ity has also been recognized in the development of parame-
terized interaction models.101) Recently developed forms of
embedded many-body expansion102, 103 may perhaps provide
a framework for analyzing such effects.

In summary, we have presented a many-body analysis
of DFT errors for the energetics of water clusters and ice
structures. The analysis employs GAP machine-learning tech-
niques to correct almost exactly for 1- and 2-body errors, so
that beyond-2-body errors can be cleanly separated. Taking
the BLYP and PBE approximations as examples, we find that
beyond-2-body errors are substantial in both cases but have
very different characteristics. The results imply that a fully
satisfactory description of water systems can only be provided
by techniques that give an accurate account of the many-body
components of the energy.
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