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Summary

Transcription is highly stochastic, occurring in irregular
bursts [1–3]. For temporal and spatial precision of gene

expression, cells must somehow deal with this noisy
behavior. To address how this is achieved, we investigated

how transcriptional bursting is entrained by a naturally
oscillating signal, by direct measurement of transcription

together with signal dynamics in living cells. We identify a
Dictyostelium gene showing rapid transcriptional oscilla-

tions with the same period as extracellular cAMP signaling
waves. Bursting approaches antiphase to cAMP waves,

with accelerating transcription cycles during differentiation.
Although coupling between signal and transcription oscil-

lations was clear at the population level, single-cell tran-
scriptional bursts retained considerable heterogeneity, indi-

cating that transcription is not governed solely by signaling
frequency. Previous studies implied that burst heterogene-

ity reflects distinct chromatin states [4–6]. Here we show
that heterogeneity is determined by multiple intrinsic and

extrinsic cues and is maintained by a transcriptional persis-
tence. Unusually for a persistent transcriptional behavior,

the lifetime was only 20 min, with rapid randomization

of transcriptional state by the response to oscillatory
signaling. Linking transcription to rapid signaling oscilla-

tions allows reduction of gene expression heterogeneity
by temporal averaging, providing a mechanism to generate

precision in cell choices during development.
Results and Discussion

Oscillatory Transcription of the csaA Gene

Transcription occurs in irregular bursts or pulses. Despite this
noisy behavior, organisms manage to achieve spatial and
temporal precision in their gene expression. A growing body
of evidence indicates that the temporal dynamics of signaling
can provide specificity in transcription [7–12] in a diverse range
of contexts, from the DNA damage response to calcium, ERK,
NF-kB, insulin, and steroid signaling. Information coding by
signaling dynamics has been proposed to offer several
advantages over signal amplitude in the regulation of gene
expression [7, 8, 13, 14]. However, it is unclear how signaling
regulates the noise inherent in the transcriptional process
to generate precision in gene expression. Previous studies
have measured effects of signal dynamics by relating exo-
genous stimulation to reporter protein expression or steady-
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state population RNA levels. However, to understand how
accurate expression emerges from noisy transcription re-
quires direct visualization of the dynamics of the actual bursts,
without the temporal or population averaging of standard gene
expression measures. In addition, although exogenous stimu-
lation is a useful approach, to understand transcriptional
regulation in natural biological contexts it is necessary to
investigate natural signaling dynamics. Here we investigated
how oscillatory signaling entrains transcription by direct
imaging of transcriptional bursts, in combination with mea-
surements of the natural dynamics of the transcriptional
inducer. The period of oscillation is on the timescale of
minutes, considerably faster than previously observed gene
expression oscillations. By tracking cells over successive
oscillations, we measure the timescale of transcriptional vari-
ability between cells and show that oscillating stimulation is
a mechanism that can act to override variability and generate
accuracy in gene expression.
To visualize transcriptional bursts, we inserted MS2 repeats

[15] into a gene and detected themusing theMS2-GFPprotein,
which has a high affinity, sequence-specific interaction with
MS2 RNA stem loops, allowing RNA appearance at the
transcription site to be visualized as a fluorescent spot. Most
genes show exponentially distributed burst durations [16].
The Dictyostelium csaA gene, which encodes a developmen-
tally induced cell adhesion glycoprotein [17], does not show
robust exponential bursts [16]. Closer examination of csaA
bursting data revealed periodic fluctuations in spot intensity
(see Figure S1A available online) indicative of oscillatory
transcription.
csaA is induced by extracellular cAMP [18–20]. During early

development, cAMP signaling between cells causes cell ag-
gregation. Cell responses of signal amplification and transient
desensitization cause oscillatory waves of cAMP to propagate
throughout the population [21–26]. Waves are first detected
at 3–4 hr of development, before a progressive increase in
oscillation frequency as cells form streams, then mounds.
To understand the mechanisms controlling csaA oscillations,
we used high-content imaging to analyze csaA transcription
at multiple times between differentiation onset (0 hr) and cell
streams (6 hr).
Cell speed (measured as the two-frame displacement) was

used as a proxy for cAMP wave phase [23]. Clear vertical stri-
ations are visible in motility traces (Figure 1A), indicating that
cells across several fields of view exhibited synchronous
bursts of motility. In equivalent plots of transcription spot
intensity (Figure 1B), collective oscillations are less apparent,
with considerable cell heterogeneity. Since waves of cAMP
were synchronous across fields of view, we reduced noise
by averaging cell behavior in each frame, revealing robust
oscillatory behavior in each field for both motility (Figure 1C,
top) and transcription (Figure 1C, bottom).
Autocorrelation of averaged motility (Figure S1F, top left)

reveals a peak around 5 min, the wave period of motility at
5 hr. Similarly, average transcription intensity autocorrelations
(Figure S1F, top right) peak with the same lag, indicating
that motility and transcription oscillations have the same
frequency. Waves were also apparent in the displacement
autocorrelation for single cells (Figure S1F, lower left). The
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Figure 1. Oscillations in Transcription and

Motility

(A) Two-frame displacement for individual cells

tracked over time for four fields of view at 5 hr

development. Each row represents one cell.

Color denotes two-frame motility (mm/min; black

[low] to white [high]). Dark areas indicate where

a cell has not been tracked. Data from four stage

positions were captured simultaneously. Cell

tracks are organized by track starting time during

capture.

(B) Transcription spot intensity in the same cells

as in (A).

(C) Displacement (upper) and spot intensity

(lower) averaged over each field of view reveal

clear oscillations.

(D) Wavelet analysis: the averaged displacement

for a single field of view (top panel, solid line).

Phase is indicated by background color. Bottom

panel: wavelet transform of the displacement

data; ridge points are indicated by black circles.

(E) Displacement (top panel) and transcription

(bottom panel) data grouped by motility phase.

The phase lag was estimated by fitting a sinusoi-

dal function to the cross-correlation between

motilityand transcription.Errorbars indicateSEM.
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single-cell transcription autocorrelation displayed very weak
periodicity (Figure S1F, lower right), indicating a temporally
heterogeneous response. There was a weak correlation
between motility and transcriptional output of a cell within a
motility cycle (Figure S1G), suggesting a common sensing
mechanism. The correlation disappeared during cell aggrega-
tion, perhaps reflecting geometric constraints on motility.

Phase Shift between Signaling and Transcription Waves

Peaks of transcription spot intensity were not in synchrony
with motility peaks (Figure 1C), with a clear phase shift
between the two waves. To quantify transcription phase
behavior, we used wavelet analysis to extract the phase of
the motility wave (Figure 1D) [27]. The average transcription
spot intensity varied depending on the motility phase
(Figure 1E), with a mean lag after the
motility peak of 162� (SD 39�; four fields
of view). To define the developmental
regulation of the oscillations, we imaged
multiple time windows between 0 and
6 hr, over multiple experimental days.
The average field-of-view spot intensity
peaked around 4 hr, before decreasing
by 6 hr (Figure 2A). The phase lag
between motility and transcription also
varied during differentiation (Figure 2B).
At early times, the lag was small, around
90�. After wave onset, the phase lag
increased to around 180� and remained
close to antiphase in cell streams (6 hr).
This plot trajectory provides in vivo
support for a two-phase process of
transcriptional regulation during early
differentiation [18].
Why do cells show decreased spot

intensity as cells begin aggregation?
A previous study on NF-kB oscillations
also observed a dampening effect as
the frequency of stimulation increased [9], indicating that this
system does not fully reset at higher frequencies. NF-kB
models may not apply here, as NF-kB repression relies on
negative feedback from a target gene, whereas cAMP is a
robustly oscillating external signal and so does not need an
intracellular circuit to generate oscillations. As cAMP waves
became faster upon aggregation, transcription remained
approximately antiphase with the motility cycle, rather than
encroaching on the next motility wave, ruling out a simple
time delay as the sole regulator of the transcriptional lag.
Together with the high-frequency repression, this suggested
a model with stimulation and repression at different points
in the signal wave. We constructed a very simple model
for csaA regulation, wherein a cell has a number of activity
states of monotonically increasing initiation rate (Figure S2A);



Figure 2. Developmental Changes in Transcrip-

tional Strength and Phasing

(A) Variation of transcription intensity with devel-

opmental time. Each data point represents a

field of view. Colors denote distinct experiments.

(B) Phase lag between motile and transcriptional

responses. The circular mean and circular SEM

are displayed as a function of developmental

time.

(C) A simple model of transcriptional phasing

with examples of average transcription state for

a range of cAMP frequencies. Increasing cAMP

wave frequency reduces transcription amplitude,

in line with real data.

(D) Cell mixing experiments address relative

effects of cAMP wave timing and developmental

time.

(E) Representative experiments comparing

motility and transcriptional phasing of 4.5 hr

csaAMS2 cells (green) mixed with 6.5 hr cells

(red). Four of six experimental repeats showed

clear transcriptional oscillations (one of the two

transcriptional nonoscillators showed no motility

oscillation).

(F) Comparison of motility and transcriptional

phasing of 6.5 hr csaAMS2 cells (green) mixed

with 6.5 hr cells (red). Five of six repeats showed

clear transcriptional oscillations, with the nono-

scillating repeat showing no motility periodicity.

(G) Transcription phase lag (left) and relative spot

intensity (right) for csaAMS2 cells in 4.5 hr and

6.5 hr mixes.

Error bars indicate SEM.
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transition rates between states depend on the cAMP gradient
such that downward transitions are enhanced during the rising
phase of the cAMP wave and repressed during the falling
phase (Figure S2B). We assumed rate constants independent
of developmental time to determine whether cAMP dynamics
alone can describe observed transcriptional profiles. An
extended discussion of modeling considerations, including
alternative model architectures, is contained in the Supple-
mental Results. The simulated average transcriptional activity
(Figure S2C) showed qualitative agreement with experimental
data (Figure 2A), increasing and then decreasing in intensity
as wave frequency increased. The simulated phase lag be-
tween cAMP and transcription also increased at higher wave
frequencies (Figure S2D), as observed when cells proceed
through development (Figure 2B). Figure 2C illustrates the
average transcriptional response for a simulated population
of 1,000 cells to increasing cAMP wave frequency. Before
robust cAMP waves (Figure 2C, top),
the transcriptional response is strong,
but transcription is less frequent, so the
overall average is lower (0–3 hr in in Fig-
ure 2A). The transcription intensity re-
mains high and approaches antiphase
with the cAMP when waves become
robust (4 hr; Figure 2C, second panel).
Transcription declines as waves be-
come closer together, turning off the
gene before it becomesmaximally active
(Figure 2C, bottom two panels). This
simple model illustrates the minimal
elements required to reproduce ob-
served intensity and timing behavior of
transcription bursts. Although it is known that oscillation
frequency can manifest spatially, for example by determining
somite length in vertebrate embryos [28, 29], this model
temporally links the onset, peak, and then repression of tran-
scription to signal frequency, providing a timing mechanism
to induce gene expression at the correct point in development.
To test the validity of the model, we generated cell mixes

of 4.5 hr csaAMS2 cells mixed at a 20:80 ratio with 6.5 hr cells
expressing only a nuclear marker. Control mixes used 6.5 hr
csaAMS2 cells and 6.5 hr nuclear marker cells. If cAMP oscil-
lation frequency is the sole driver of transcriptional behavior,
we would expect 4.5 hr cells to respond to the faster waves
of cAMP with the same periodicity and strength as 6.5 hr cells.
The 4.5 hr cells entered streams (Figure 2D), and in four of five
experimental repeats displaying motility oscillations, cells
also showed robust transcriptional oscillations (Figure 2E).
The timing of these oscillations was similar to 6.5 hr cells in



Figure 3. Quantifying Extrinsic and Intrinsic

Regulation of the Transcriptional Response

(A) Comparison of trough and subsequent peak

transcription responses for a characteristic 5 hr

field, normalized by field-of-view overall mean.

The dotted line shows a linear fit to the data

points with gradient and intercept indicated.

The solid line indicates equal peak and trough

intensities. Inset: the ratio of peak to trough

response as a function of trough transcription

intensity.

(B) Relationship between response gradient

and the mean spot intensity of fields of view.

The measured correlation coefficient is 0.43

(p = 1024).

(C) Relationship between response gradient and

intercept.

(D) Cartoon illustrating the link between the

response gradient and the balance between

intrinsic and extrinsic variation. The thick black

line shows a typical relationship between peak

and trough intensities, intermediate between a

line of gradient 1 (no response to cAMP) and a

horizontal line (response determined entirely

by cAMP). Alternative scenarios not supported

by the data are described in Figure S3C. The

scenario depicted in the cartoon is a conse-

quence of the different forms of our wave model

(Figures S3D and S3E).

(E) Distribution of response gradient and inter-

cept as a function of developmental time. Whis-

kers extend to the most extreme data point in

the distribution not flagged as an outlier. Outliers

fall more than 1.5-fold outside the interquartile

range beyond the upper or lower quartile.
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controlmixes (Figure 2F), in support of themodel. However, for
all experimental repeats, the average spot intensity was higher
in 4.5 hr mixes than in 6.5 hr mixes (Figure 2G), as expected for
4–5 hr cells in standard conditions (Figure 2A). Therefore,
although cAMP frequency can explain transcription oscillation
dynamics, the strength and penetrance of the transcriptional
response is additionally determined by intrinsic factors
responsive to developmental time.

Dynamics of Transcriptional Heterogeneity

The oscillations of signaling and transcription show clear
coupling at the population level. However, transcription oscil-
lations were discernible only in field-of-view averages and
showed considerable noise at the single-cell level (Figure S3A).
Some cells had a strong transcription spot throughout a
trough, whereas others showed a weak spot in peaks. What
are the sources of this variability in response to signal oscilla-
tions? Are they extrinsic or intrinsic to the cell?
Most analyses measure only instanta-
neous cell-cell variability [6]; however,
our approach allows us to measure
how variability between cells changes
over time. To quantitatively investigate
the dynamics of this heterogeneity, we
defined the transcriptional response of
a cell to cAMP by measuring average
spot intensities in troughs and sub-
sequent peaks (Figures 3A and S3B).
This allows us to understand how
the response of the cell is determined.
Simply put, if all cells have the same peak transcription
independent of trough intensity, then we infer that the peak
level is externally controlled, whereas if peak and trough
intensities are similar, then the internal state of the cell is
more important than the external signal. We observed
strong correlation between trough and peak intensities
(Figure 3A). As expected, the peak intensity tended to be
greater than the preceding trough intensity (most points lie
above y = x). A linear fit to the data has a gradient of
0.64 6 0.03 (intercept 0.48 6 0.03). A gradient < 1 means
that as trough intensity becomes larger, the response be-
comes smaller, to a point where cells already transcribing
strongly were unaffected by cAMP waves (Figure 3A inset,
approximated by the intersection between the fit and y = x
in Figure 3A), implying saturation of the transcription site.
The response gradient correlated with the average field-of-
view spot intensity (Figure 3B), again indicating an upper limit
on transcript load.



Figure 4. Sources of Transcriptional Heteroge-

neity

(A) Fields of view more dense than average have

weaker transcription than average. Each field is

denoted by a marker, with color indicating

developmental time and shape denoting imaging

day. Points are normalized relative to other fields

captured simultaneously.

(B) Average spot intensity against average local

density at 5 hr. Different markers represent four

different fields of view captured simultaneously.

A weak negative correlation is observed both

within fields of view (main figure) and between

fields (inset). Error bars indicate SEM.

(C) Histogram of the weak and heterogeneous

negative correlation within individual fields of

view for all data at all time points.

(D) Transcriptional response of individual cells to

the third wave of cAMP (from start of image

capture) compared with their response to waves

1, 2, 3, 4, and 5.

(E) Ensemble of decay curves for transcriptional

persistence (light gray lines) as a function

of temporal separation. The average behavior

(circles) is described by exponential decay to

a nonzero plateau. Error bars indicate SEM.

(F) Correlation between transcriptional persis-

tence and the response gradient.
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We observed an inverse correlation between response
gradient and intercept (Figure 3C), and together with the
evidence of an upper limit on transcript load, this allows us
to interpret the response profile as the balance between
intrinsic and extracellular influences on transcription (Fig-
ure 3D; alternative theoretical models not fitting the data are
treated in Figure S3C). A horizontal response means that the
peak response is constant and does not depend on transcrip-
tion intensity in the trough, and is instead determined by the
cAMP wave. In contrast, a gradient of 1 (and zero intercept;
Figure 3C) implies that peak and trough intensities are equal
and that transcription is unaffected by the wave. Therefore,
the response gradient scales with the relative importance of
intrinsic factors, and the intercept estimates the fraction of
transcriptional behavior determined by extracellular varia-
tions. Although changes in intercept and gradient occur during
differentiation (Figure 3E), these changes aremodest, implying
that relative contributions of extrinsic and intrinsic regulation
do not undergo large alterations despite substantial changes
in cell physiology and responsiveness. However, as we
demonstrate below, the properties of
these response parameters allow insight
into the regulation of heterogeneity.

Regulation of Transcriptional
Heterogeneity

What mechanisms generate heteroge-
neity of response to the cAMP wave?
We have identified both cell-extrinsic
and cell-intrinsic contributions. A clear
extrinsic driver of transcriptional hetero-
geneity is cell density, with transcription
inhibited at high cell densities. A nega-
tive correlation was observed between
transcription and field-of-view density
(Figures 4A and S4A). Cells in dense
regions have weaker transcription than those in sparse areas
at all developmental times. Figure 4B plots spot intensity
against local density at 5 hr for individual cells within four
fields of view captured simultaneously. Comparing within
individual fields gives weak negative correlations with a rela-
tively high degree of heterogeneity (Figure 4C). The weak
effect observed within each field of view means that there is
some local effect whereby transcription is controlled based
on the environment around each cell; however, the stronger
effect between fields of view (Figure 4B inset) implies that
the length scale of signaling is greater than the typical cell-
cell separation (tens ofmicrometers) but less than the interfield
distance of 1800 6 100 mm. This length scale suggests
cAMP signal strength as a possible source of heterogeneity.
The manner in which Dictyostelium self-organizes into aggre-
gation centers means that there are many environments
in which cells find themselves. A cell must nevertheless differ-
entiate with the correct timing appropriate to its local environ-
ment, from isolation, through streams to mounds, requiring
adequate sensing and adaptation mechanisms.
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The lack of clear periodic behavior in transcription in single
cells implied that the response in each cell changes with suc-
cessive waves and is not determined entirely by the extracel-
lular signal. We compared intensities in a wave to adjacent
waves for individual cells (Figure 4D). The response to wave
3 was strongly related to the responses in directly adjacent
waves, with cells having an above average intensity in wave
3 likely to have above average intensities in waves 2 and 4.
Waves 1 and 5 were also related to wave 3; however, the effect
was weaker. These data indicate persistence in transcriptional
activity.

The lifetime of the correlation between waves was con-
siderably shorter than for other examples of transcriptional
persistence [30]. Due to the limited number of cells in each
field, correlation decay curves are noisy, particularly for large
time lags (Figure 4E; see also Figure S4B). However, the
average decay curve (circles) fits an exponential function
(red curve) approaching a nonzero plateau. This behavior is
suggestive of two timescales of transcriptional persistence,
one decaying over a period of 20 min and another persisting
beyond the imaging timeframe. The effects of cell density
and transcriptional persistence on csaA oscillations appear
independent, as the two measures were uncorrelated (Fig-
ure S4C). Short-term transcriptional persistence is a key
feature of our wave model (Figures S4E and S4F). Transient
persistence would buffer cells against short-term environ-
mental fluctuations.

Persistence was dependent on the properties of csaA tran-
scription. Persistence between successive waves was weakly
correlated with mean and SD of field spot intensity (r = 0.26
and r = 0.21, respectively). In other words, cells with brighter
spots showed greater persistence, and in heterogeneous
populations (high SD), persistencewill appear greater because
deviations from the field average (and therefore fluctuation
times) are large. The strongest correlation for transcriptional
persistence occurred with the response parameters (Fig-
ure 4F). The persistence of transcription intensity between
waves was proportional to the response gradient; put simply,
the memory of transcriptional activity was lost faster in fields
of view with large responses to cAMP waves. The size of the
transcriptional response to cAMP (peak:trough intensity)
does not persist between waves (Figure S4D). Together, these
observations imply that the transcriptional state is randomized
by the cAMP wave. The alternative hypothesis in which stimu-
lation transiently augments transcription before cells return
to their previous individual states is not consistent with our
observations.

Persistence dictates the timescale over which differences
can be perceived between cells. While a measurement of
a fixed population provides a snapshot of instantaneous
heterogeneity, a short persistence means that the level of
transcription quickly fluctuates, and therefore, when single-
cell transcription is integrated over time, this heterogeneity
is quickly reduced. Transcriptional persistence (also called
epigenetic memory) is generally considered to occur over
timescales of a cell cycle or greater [30–32], with chromatin
or transcriptional feedback proposed to stabilize expression
states [33]. Our data imply that oscillatory transcriptional
behavior is a mechanism to rapidly override these slowly
varying intrinsic states and, via this consequent reduction
in heterogeneity in gene expression, allow accurate cell re-
sponses during development. An understanding of the mech-
anisms by which stochastic responses are integrated to
generate a robust transition in space and time is vital in every
developmental system, and the combination of approaches
we have developed here will allow the timescales of single-
cell heterogeneity to be measured quantitatively in the many
other contexts in which signal dynamics are crucial in the
regulation of gene expression.

Experimental Procedures

To visualize nascent csaA transcripts, we used Dictyostelium AX3 cells with

24 MS2 loops inserted into the 50 UTR of the csaA coding sequence [16].

These cells were cotransformed with plasmids expressing RFP-H2B (to

facilitate tracking and spot identification) and MS2-GFP [2], and clones

expressing both markers were selected using 20 mg/ml G418. Cells grown

in HL5 media were prepared for imaging by washing with KK2 (20 mM

KPO4, pH6.2), plated on KK2/2% agar at 2.5 3 106 cells/cm2, and then

placed in humidified chambers at 22�C. Prior to imaging, 1 cm squares

were excised and inverted onto Bioptechs Delta TPG dishes (0.17 mm).

Agar was covered inmineral oil to prevent desiccation. We used awide-field

fluorescence system specifically designed for fast sensitive imaging of

photosensitive samples [34]. Four xy positions were imaged for 40 min

with 30 s intervals. z stacks consisting of 19 slices with 0.33 mm separation

were captured using a GFP/mCherry filter set (Chroma 59022), with 50 ms

exposure per slice per channel. UV (Schott GG420) and neutral density

filters (Chroma ND0.6A) were used to attenuate illumination. Data were

processed to extract cells that were tracked unambiguously for >10 consec-

utive frames. Image processing is described in the Supplemental Experi-

mental Procedures and Figure S1. For cell mixing, csaAMS2 cells were

mixed 1:4 with AX3 expressing H2B-mCherry from the genomic rps30

gene. csaAMS2 cells developed 2 or 4 hr were mixed with 4 hr H2B-mCherry

cells and replated on agar. Agar was inverted after 1 hr, and streams were

imaged after a further 90 min, with four xy positions imaged for each time

point of the six experimental repeats.

Supplemental Information

Supplemental Information includes four figures, Supplemental Results, and

Supplemental Experimental Procedures and can be found with this article

online at http://dx.doi.org/10.1016/j.cub.2013.12.011.
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