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Abstract

We consider a modification of General Relativity motivated by the
treatment of anisotropies in Continuum Mechanics. The Newtonian limit
of the theory is formulated and applied to galactic rotation curves. By
assuming that the additional structure of spacetime behaves like a New-
tonian gravitational potential for small deviations from isotropy, we are
able to recover the Navarro-Frenk-White profile of dark matter halos by
a suitable identification of constants. We consider the Burkert profile in
the context of our model and also discuss rotation curves more generally.

1 Introduction

Astrophysics and cosmology are faced with two severe theoretical difficulties,
that can be summarised as the dark energy and the dark matter problems. To
address the first, one could, in principle, accept the cosmological constant to be
a small fundamental constant of physics and neglect issues arising from particle
physics. In fact the cosmological constant is consistent with all observations to
date, see [1]. However it appears that there is no obvious route to escape the
need for dark matter. We cannot ‘solve’ the dark matter problem by adding
an additional constant to physics. The main experimental evidence for the
existence of dark matter comes from the behaviour of the galactic rotation
curves, first observed by Rubin [2], and the mass discrepancy in galactic clusters.
Both suggest there exits some form of matter at galactic and extra-galactic scales
which only interacts very weakly with normal matter, its main interaction being
via the gravitational force [3]. On cosmological scales, recent Planck data [1]
puts very tight constraints on the amounts of dark matter and dark energy,
respectively, confirming the presence of these components in the universe.

∗c.boehmer@ucl.ac.uk
†nicola.tamanini@cea.fr
‡matthew.wright.13@ucl.ac.uk

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/19885528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Galactic rotation curves of spiral galaxies give strong evidence for the pres-
ence of some additional form of matter. One can observe neutral hydrogen
clouds at large distances from the centre of the galaxy where the Newtonian
gravitational field is weak. These clouds lie way outside the luminous part of
the galaxy. Observations show that these clouds are moving at approximately
constant tangential velocity vtg. Newton’s law of gravity together with the
centrifugal force yield the well known relation

v2
tg

r2
=
GM

r3
.

In order for parts of the outer galaxy to move with approximately constant
tangential velocity would require the mass of this region to grow with r. This
is in stark contrast to observations which show that these regions contain little
luminous matter. Thus, an additional (dark, since we cannot see it) matter
component is required to explain this behaviour. There exists a plethora of
dark matter models, see e.g. [4], having their roots either in particle physics or
modified gravity.

In [5] a new approach to modifying general relativity was formulated. It is
based on ideas well known in Continuum Mechanics. For similar works related
to dark energy see also [6], while in the context of cosmological dark matter,
continuum mechanics inspired models were studied in [7, 8]. These approaches
differ from ours in various ways, for instance, in [7] a background metric and
an internal material metric are introduced into the model and its effects on
the CMB were investigated. Dark matter models inspired by superfluidity were
studied in [9, 10].

The main idea of our approach, on the other hand, is to reinterpret the term
gµνRµν in the Einstein-Hilbert action as the isotropic limit of a more general
theory. This approach is particularly natural in the context of the teleparallel
equivalent of general relativity [11]. The inverse gµν is seen as the rank 2
isotropic tensor. This motivates an action based on the term CµνRµν where
Cµν is a “material” tensor encoding the information about the internal degrees
of freedom of the spacetime vacuum. The action of this theory is then given by

S =

∫
d4x
√
−g (CµνRµν + Lm) . (1)

The metric remains the only dynamical degree of freedom in this theory and
we only consider variations of the action with respect to gµν and the matter
degrees of freedom. The material tensor is kinematical.

This approach to modifying the Einstein-Hilbert action follows on from the
ideas put forward by Brans and Dicke [12]. They allowed for the gravitational
constant to vary in space and time, thereby introducing an additional scalar
degree of freedom which was treated dynamically. The Brans-Dicke model is
partially contained in our approach when we choose Cµν = φ(xα)gµν . The
main difference is that φ(xα) is a dynamical degree of freedom while we keep
Cµν kinematical. Our approach is a natural generalisation allowing for tensorial
modifications of the action. In other words, we allow for the gravitational field
to be anisotropic in general. When compared to other modifications of General
Relativity, our model is relatively harmless. The field equations of our model are
still second order, no additional fields are introduced, local Lorentz invariance
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is not broken etc. One should think of the macroscopic form of Maxwell’s
equations where constitutive equations define the form of the dielectric tensor
D = εE, or using the index notation Di = εi

jEj . In general εi
j is a rank

2 (kinematical) tensor which for an isotropic medium is given by εi
j = εδij

where ε is the usual dielectric constant. We are extending this idea to general
relativity. In the isotropic limit when we choose Cµν = (c4/16πG)gµν we recover
general relativity. It is interesting to note that similar actions to (1) have
been considered in Lorentz violating theories of gravity [13], however, they are
motivated very differently. It is also interesting to note that [14] also explored
relations in the context of linear elasticity. This resulted in an expressions which
relates the baryonic energy density to the dark matter energy density.

The variation with respect to gµν gives the following gravitational field equa-
tions

ΣµναβRµν −
1

2
gαβCµνRµν +

1

2
�Cαβ

+
1

2
gαβ∇µ∇νCµν −∇µ∇(αCβ)µ =

8πG

c4
Tαβ , (2)

where Σ is defined as

Σµναβ = −δC
µν

δgαβ
. (3)

One can verify that the choice Cµν = gµν will yield general relativity. Despite
its slightly unusual form, this theory has some neat features. The field equations
are of second order and the usual energy-momentum conservation equation holds
due to Noether’s theorem. This leads to an additional consistency equation

Jβ = 0 , (4)

where Jβ is given by the covariant derivative of the left-hand side of (2) which
reads

Jβ = ∇αΣµναβRµν + Σµναβ∇αRµν −
1

2
gαβRµν∇αCµν

− Cασ∇αRβσ −Rβσ∇αCασ . (5)

One can also show that a Schwarzschild like solution exists [5].
In the following we will investigate the Newtonian limit of this theory by

following the standard techniques [15] of expanding the field equations around
Minkowski space.

2 Expansion around Minkowski space

We want to expand the spacetime metric gµν around the Minkowski metric
ηµν = diag(−1,+1,+1,+1) and consider Cµν to be nearly isotropic, i.e. to
differ from gµν only by a small amount. Therefore we will write

gµν = ηµν + hµν ,

Cµν = gµν − εµν = ηµν − hµν − εµν . (6)
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The first relation in (6) is nothing but the usual weak field limit of general
relativity and we assume |hµν | � 1 in order for this to be well-posed. The
second linearisation in (6) corresponds to the assumption that Cµν differs from
isotropy, i.e. from gµν corresponding to General Relativity (GR), just by a
small amount εµν . In order for this expansion to be consistent we must assume
|εµν | � 1.

The minus signs in the decomposition of Cµν in (6) have been taken such
that Cµν = gµν + εµν at first order in εµν . In other words, if we were to choose
Cµν = gµν , then we would have that Cµν = ηµν − hµν in first order, which is
precisely our choice of signs.

This theory now depends on two small quantities, namely hµν and εµν and
there are no a priori reasons why one should be smaller than the other. However,
experiments and observations at the Solar System scales show no trace of this
anisotropy. The gravitational field around the Sun is spherical as opposed to
ellipsoidal, say. Thus, we expect the effects of anisotropy perturbation εµν to
be smaller than the ones due to the metric perturbation hµν . However, as we
will see, even if the two magnitudes are comparable the phenomenology at small
distances will not be changed. For this reason we will consider |εµν | to be of
the same order of |hµν | neglecting terms of O(h2), O(ε2) and O(hε). The next
quantity in the field equations we need to consider is Σµναβ .

We will assume that

δεµν

δgαβ
∼ O(h) , (7)

which in turns implies Σµναβ = ηµαηνβ + O(h). This is consistent with the
Newtonian limit in GR. We are now ready to expand the field equations.

Expanding (2) term by term to the required order gives the linearised field
equations

− 1

2
(�h

αβ
+ ηαβ∂µ∂νh

µν − 2∂µ∂
(αh

β)µ
)

− 1

2
(�εαβ + ηαβ∂µ∂νε

µν − 2∂µ∂
(αεβ)µ) =

8πG

c4
Tαβ , (8)

where we have defined the following tensor operations

Sµν = Sµν −
1

2
ηµνS ,

S = ηµνS
µν . (9)

As is usual when linearising gravitational field equations, we work in the
harmonic gauge ∂µh

µν
= 0 meaning that (8) simplifies to

−1

2
�h

αβ − 1

2
�εαβ − 1

2
ηαβ∂µ∂νε

µν + ∂µ∂
(αεβ)µ =

8πG

c4
Tαβ . (10)

We also note that the consistency equation (4)

Jβ = ∇αΣµναβRµν + Σµναβ∇αRµν −
1

2
gαβRµν∇αCµν

− Cασ∇αRβσ −Rβσ∇αCασ = 0 , (11)

is automatically satisfied in this linear approximation. This is indeed expected
as the theory should reduce to GR without additional constraints.
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3 The Newtonian limit

Next we wish to consider the linearised field equations in the slow moving case.
We assume that ∂0hµν and ∂0εµν can be neglected. Then the (0, 0)-component
of (10) becomes

∇2h
00

+∇2ε00 − ∂m∂nεmn = −16πG

c4
T 00 , (12)

and the (i, j)-components become

∇2h
ij

+∇2εij − 2∂m∂
(iεj)m + δij∂m∂nε

mn = −16πG

c4
T ij . (13)

By taking the 3 dimensional trace of the (i, j)-field equations (13), we get

∇2h
ii

+∇2εii + ∂m∂nε
mn = −16πG

c4
T ii . (14)

We can now add equations (12) and (14) and arrive at

∇2(h
00

+ h
ii

+ ε00 + εii) = −16πG

c4
(T 00 + T ii) . (15)

Following the weak field limit approach used in General Relativity, we set T 00 =
c2ρ and T ii = 0 and find

∇2(h
00

+ h
ii

+ ε00 + εii) = −16πG

c2
ρ . (16)

This is our first significant result in the Newtonian limit of this theory. It should
be noted that the quantities h and ε are both dimensionless.

Let us define

ϕ = −1

4
(h

00
+ h

ii
+ ε00 + εii) , (17)

then ϕ satisfies Poisson’s equation ∇2ϕ = 4πG
c2 ρ. One can verify that all quanti-

ties involved have the correct physical units. Note that both hµν and εµν appear
in the definition of the potential (17).

In the Newtonian limit of General Relativity, the field equations allow us

to deduce |h00| � |h0i| � |hij |. Assuming this here is equivalent to assuming
|ε00| � |ε0i| � |εij |, which we will assume from now on. In other words, if we
assume |ε00| � |ε0i| � |εij |, which naively corresponds to assuming that the
“sources” due to the spacetime vacuum are slow moving, then from the field

equations we obtain |h00| � |h0i| � |hij |. This gives h
00

= −h = h and we find

h00 =
1

2
h = −2ϕ− 1

2
ε00 , (18)

h11 = h22 = h33 = −2ϕ− 1

2
ε00 . (19)

In the following we analyse the far field of a stationary source. We set
Tµν = 0 far away from the source, so that (15) becomes

∇2(h
00

+ ε00) = 0 , (20)
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which has the standard solution

h
00

+ ε00 =
K

r
+O(r−2) . (21)

Here K is a constant of integration with units length. Comparison with equa-
tion (17) yields

ϕ = −1

4
(h

00
+ ε00) = −GM

c2r
+O(r−2) , (22)

which suggests that we should identify K = 4GM/c2.
Thus far from a stationary source the spacetime metric is given by

ds2 =− [1− 2GM

c2
1

r
+

1

2
ε00 +O(r−2)]c2dt2

+ [1 +
2GM

c2
1

r
− 1

2
ε00 +O(r−2)](dx2 + dy2 + dz2). (23)

We note that in both metric components the sign of ε00 is opposite to the sign
of the mass term. There is also a factor 4 difference and ε00 is dimensionless.
In order to change all this it turns out to be convenient to define

σ = −c
2ε00

4
(24)

so that σ has units of velocity squared. The metric component now is ‘sym-
metric’ in the sense that both terms now have the same sign. Let us finally
define

ḠM

r
=
GM

r
+ σ (25)

which we can view as the effective gravitational potential. Therefore, we can
write the metric as

ds2 =− [1− 2ḠM

c2
1

r
+O(r−2)]c2dt2

+ [1 +
2ḠM

c2
1

r
+O(r−2)](dx2 + dy2 + dz2) (26)

This can be neatly interpreted as a varying gravitational constant. Provided
that Ḡ is approximately constant in the solar system, this solution will pass
the three classical tests of general relativity; see Sec. 4.1 below for an explicit
example.

Our interpretation of (25) as the effective gravitational potential can be
confirmed by considering the Newtonian limit of metric (26). For this we assume
σ to be a function of r only and take the relevant limit c→∞. The only non-
vanishing Christoffel symbol (besides the terms due to spherical symmetry) is
given by

Γrtt[c→∞] =
GM

r2
− σ′ (27)

which is interpreted as the effective gravitational force, and matches the in-
terpretation (25). This is not too surprising as our theory can be seen as a
generalisation of Brans-Dicke theory, see [5].
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4 Dark matter density profiles

4.1 The Navarro-Frenk-White profile

As a first approximation we assume all the baryonic matter to be concentrated
at the centre of the galaxy implying that we can effectively consider spherical
symmetry. Of course corrections must be taken into account for applications
to realistic galaxies: the baryonic matter in the outer parts of the galaxy will
affect the results and the real form of a galaxy certainly do not respect spherical
symmetry. However the scope of the present work is only to show that weak field
limit applications of the theory advanced in [5] can provide interesting features
capable of mimicking dark matter at galactic scales. A complete treatment
for realistic galaxies and a comparison with observational data is outside the
objectives of the present analysis.

In the following we examine the gravitational rotation curves induced by this
metric assuming that σ is a function of the radius only. It is well known, see
e.g. [16], that the tangential velocity of a test particle in a spherically symmetric
metric is given by

v2
tg

r2
=
c2

2r

d

dr
log gtt . (28)

Hence, using our metric (26), we find for the tangential velocity

v2
tg

r2
=
c2

2r

(1− 2ḠM
c2

1
r )′

1− 2ḠM
c2

1
r

=
1

2r

( 2GM
r2 − 2σ′)

1− 2GM
c2r − 2 σ

c2

=
1

r

(GM
r2
− σ′

)(
1− 2GM

c2r
− 2

σ

c2

)−1

. (29)

By Taylor expanding the denominator, ignoring terms of O(h2), O(hε) and
O(ε2), we find the following expression for the tangential velocity

v2
tg

r2
=
GM

r3
− σ′

r
. (30)

These assumptions are equivalent to saying 2GM/c2 � r and σ � c2. Equiva-
lently, we could have Taylor expanded in 1/c2; compare with (27).

Let us interpret the mass parameter M as the baryonic mass, then we can
write the tangential velocity as

v2
tg

r2
=

4πG

3
ρbaryonic −

σ′

r
, (31)

and introduce an effective density ρeff(r) given by

ρeff = ρbaryonic −
3σ′

4πGr
. (32)

It is important to note that ρeff is in fact not singular at the origin: We are
working in the weak field limit which means our approximation is not valid for
small values of r where the gravitational field is strong. As such, we are not
allowed to consider this approximation for small radii.
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In order to make a theoretical prediction, we need to specify the form of σ.
The one thing we really know about gravity is that the Newtonian potential is
inversely proportional to the radius, and that it works pretty well! Therefore,
one of the simplest ways to parametrise σ is to assume that σ itself should be
inversely proportional to the radius and to write

σ =
GM
Rσ + r

= β
GM

Rσ + r
, (33)

where M = Mβ is a constant with units mass and β is dimensionless, its
relevance becomes clear shortly. It turns out that such a choice for σ gives rise
to the Navarro-Frenk-White (NFW) profile of dark matter halos [17]. We have

ρ =
ρ0

r
Rs

(1 + r
Rs

)2
, (34)

if we identify Rσ = Rs and M = ρ0V = 4πρ0R
3
s/3. This is a quite remark-

able result. By allowing the additional structure to vary like the gravitational
potential we arrive at a somewhat natural explanation to flat galactic rotation
curves (or dark matter) and are also able to give a good justification of the
Navarro-Frenk-White profile.

The radius Rσ is a constant which essentially determines at what distances
the Newtonian laws are modified. We require σ to be relevant only at galactic
scales and to give no contributions at Solar System distances. At distances
r � Rσ we have σ ' σ0 = constant which implies no departures from the
Newtonian dynamics on Solar System scales, see (32). Recalling the metric (26)
we can compute the post-Newtonian parameter γ and write

2γ
GM

c2r
= 2

ḠM

c2r
=

2

c2

(
GM

r
+ σ

)
= 2

GM

c2r

(
1 +

σr

GM

)
, (35)

from which we can deduce that γ − 1 is given by

γ − 1 =
σr

GM
. (36)

Next, using the parametrisation (33) we arrive at

γ − 1 =
βr

Rσ

(
1 +

r

Rσ

)−1

≈ βr

Rσ
, (37)

where we assumed that r/Rσ � 1 at solar system scales.
The Cassini bound constrains deviations on the post-Newtonian parameter

γ−1 from zero, the current level [15] is γ−1 < 10−5. We can make a rough order
of magnitude estimate on the possible values of Rσ allowed by this observation.
This results in the simple bound βr/Rσ < 10−5. Taking the radius r to be
roughly solar system distances, approximately 1015m, one finds

β < 10−20m−1 ×Rσ . (38)

For the NFW profile, fits from numerical simulations to the observed rotation
curves imply Rσ = Rs & 1021 m (∼ 100 kpc), see [17]. Consequently, one can
thus safely identify Rσ with Rs as long as β satisfies the bound β < 10.

8



To have an idea of the possible values of β, we must recall that in deriving
these results, we made the assumptions that ε and h are of the same order. This
is equivalent to the parameter β being of the order one, β ' O(1). We must
check this assumption is indeed valid. This is a crucial check to the validity of our
result. So far, we have derived and solved the modified field equations making
a variety of assumptions to treat certain quantities as being small. Next, we
will see that our results are consistent with various galaxies. Now, we are using
best fit estimates of the NFW profile parameters Rs and ρ0 from the 19 galaxies
spanning four orders of magnitude of mass given in [17]. We find estimates of
β in the range 1 < β < 5. These galaxies provide strong evidence that β is
indeed of O(1). This in turn justifies our assumptions and shows the NFW
profile can appear somewhat naturally in our theory. Note that these values of
β only satisfy the above Solar System constraints by one order of magnitude.
This implies that in principle the theory could be tested and possibly falsified
by future experiments.

It is well known that the NFW profile has some shortcomings and does
not accurately describe the rotation curves of many galaxies [18, 19]. We will
therefore consider other density profiles in the context of our model.

4.2 Burkert density profile

It is important to emphasise that our model contains an additional kinematical
degree of freedom in the form of the material tensor Cµν . As there are no
constraints as to how this is chosen, in principle, our model is able to reproduce
any given velocity profile. The same holds true for general relativity where we
could use (28) to find the metric function gtt and then use the Einstein field
equations to determine the remaining components of the metric. This approach
tends to result in metrics with singularities. In our model, the dark matter
density profile is the second term in (32) which gives

ρdm = − 3σ′

4πGr
. (39)

This allows us to find σ by integration from a given dark matter profile

σ = σ0 −
∫

4πGr

3
ρdm(r) dr, (40)

where σ0 is the constant of integration. This determines σ for given dark matter
profile ρdm(r) which in turn is related to the velocity profile. Thus we are able
to find the forms of σ for various galaxies, including the outer parts of the galaxy
where for instance the NFW profile no longer matches observations well [18, 19].
However, there is little predictive power in this approach unless one can find
a ‘universal’ function σ, depending on a few constants, which matches galactic
rotation data well for a large number of galaxies. In this sense it is a matter of
taste whether one prefers to determine ρdm or σ from observations.

For concreteness let us consider the Burkert profile [20] whose density profile
is

ρdm =
ρ0r

3
0

(r + r0)(r2 + r2
0)

(41)
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where ρ0 is the central density and r0 is a scaling constant. The Burkert profile
accurately describes the observed rotation curves of dwarf galaxies, which are
known to be dark matter dominated, and in contrast to the NFW profile the
Burkert profile has a central core.

Using (40), our model can replicate such a dark matter profile provided σ is
of the form

σ = σ0 −
1

4

GM
r0

(
arctan(r/r0)− log

(1 + r/r0)2

1 + r2/r2
0

)
(42)

where we defined the quantity M = 4πr3
0ρ0/3, as above. We note that σ

approaches a constant value when r � r0 which corresponds to the velocity
approaching zero.

An interesting point can be made here. When comparing the NFW pro-
file (34) with the Burkert profile (41), they appear to be ‘similar’ in the sense
that their functional forms do not differ significantly. However, this cannot be
said for their corresponding forms of σ, compare (33) with (42), they are very
different. The reason for this comes mainly from the integration in (40). It could
therefore be of interest to study (40) in some detail for given density profiles of
a variety of galaxies.

5 Discussion

A simple form for the function σ(r) would be a polynomial function in the
radius r. Interestingly, such a simple choice is in good agreement with previous
studies. For instance in [21] a power law correction to the Newtonian potential
was considered which would also correspond to a power law form of σ. A similar
result was found by [22] where the corrections to the baryonic velocity profile
were linear and quadratic in the distance from the centre. This would again
correspond to a polynomial form for the material function σ. The velocity
profile derived in [23] led to a trigonometric function in the radius, however,
this can also be well approximated to be a polynomial for small distances from
the centre of the galaxy. We would also like to mention to logarithmic correction
suggested in [24] which would also correspond to a logarithmic form of σ.

Within our effective framework we can reinterpret different approaches to
dark matter by providing an effective description which includes the phenomenol-
ogy of many of those models. For instance, in Modified Newtonian Dynamics,
galactic rotation curves are asymptotically flat [25, 26, 27], see also [28, 29] for
a relativistic formulation and applications. Following Eq. (31) this constraints
the asymptotic form of σ′, namely MOND-like behaviour requires a decay of the
form σ′ ∼ 1/r. This means we require logarithmic terms in σ like those present
in (42). It is perhaps unsurprising that Brans-Dicke theories with suitably cho-
sen potentials can also explain rotation curves, see for instance [30, 31].

Another example is the Emergent Gravity Paradigm [14] where the dark
matter energy density is related to the baryonic one. In our description this
could be achieved by assuming σ to be a function of ρbaryonic. Note that this
would require the additional assumption in our model as the ‘material’ spacetime
structure due to σ would be related to the matter. Finally, we would like to
mention the modified gravity model proposed by Moffat [32] which also yields
flattened galactic rotation curves.
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A similar observation can be made for the Mass-Discrepancy-Acceleration
Relation [33, 34, 35] which shows a simple relationship between the radial accel-
eration due to dark matter and baryonic matter. In our model, the gravitational
force or acceleration, see Eq. (27), depends directly on σ′ suggesting a relation-
ship between σ′ and the acceleration due to the baryonic matter. An interesting
issue to investigate in the future would be to find a phenomenological parametri-
sation of σ, depending on various constants and on the baryonic matter profile,
which allows one to describe the discussed models explicitly.

6 Conclusion

We studied the Newtonian limit of a modification of General Relativity which
is based on ideas from Continuum Mechanics. By expanding the metric about
Minkowski space and by assuming small deviations from the isotropy of the
gravitational force, we were able to formulate the Newtonian limit of the the-
ory, equation (16). We solved this equation finding the gravitational field far
from a static and spherically symmetric source. The resulting metric can be in-
terpreted as a modification of General Relativity with an effective gravitational
constant. These results were then applied in the context of dark matter halos
in galaxies. Assuming that the additional structure of spacetime σ behaves like
the gravitational potential led to the NFW profile. This assumption on σ is
equivalent to considering the Navarro-Frenk-White profile. We also considered
our model in a more general context and discussed how the Burkert profile can
be replicated in this setting, additionally we also discussed some dark matter
profiles used in previous work and their relation to our model.
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