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G−CONVERGENCE, DIRICHLET TO NEUMANN MAPS

AND INVISIBILITY

DANIEL FARACO, YAROSLAV KURYLEV, AND ALBERTO RUIZ

Abstract. We establish optimal conditions under which the G-
convergence of linear elliptic operators implies the convergence of the
corresponding Dirichlet to Neumann maps. As an application we show
that the approximate cloaking isotropic materials from [19] are indepen-
dent of the source.

1. Introduction

We start with the definition of the Dirichlet to Neumann map (Voltage
to current) map. Given an elliptic matrix σ ∈ L∞(Ω), for a given boundary

data ϕ ∈ H1/2(∂Ω), there is a unique solution u ∈ H1(Ω) to the Dirichlet
problem;

(1.1)

{
∇ · (σ∇u) = 0 in Ω

u
∣∣
∂Ω

= ϕ.

When the boundary is sufficiently smooth, the measurements on the
boundary consist of the classical Dirichlet–to–Neumann map

(1.2) Λσ(ϕ) = 〈σ∇u, ν〉
∣∣
∂Ω
,

where ν denotes the exterior unit normal to the boundary. In this way
Λσ : H1/2(∂Ω) → H−1/2(∂Ω). It follows by integration by parts that Λσ
can also be described in the weak form as

(1.3) 〈Λσ(ϕ), ψ〉 =

∫

Ω
〈σ∇u,∇ψ̃〉,

where ψ ∈ H1/2(∂Ω) and ψ̃ ∈ H1(Ω) is an extension of ψ into Ω. In case
∂Ω lacks of a proper normal, the weak formulation is still valid.

The Calderón inverse problem consists of the stable determination of σ
from Λσ, see [30, 20, 28, 7] for the uniqueness in the isotropic case, [3, 5,
9, 10, 13, 16, 12] for stability and [27, 28] for the reconstruction. Much less
is known in the anisotropic case except in dimension d=2 [8]. Notice that
when the Dirichlet to Neumann map is known for all energies, uniqueness
and stability are studied also for the anisotropic case, see e.g. [22, 6].

The results from [3, 9, 10, 13, 16, 12] require some uniform control of the
oscillations of σ (conditional stability). Unfortunately, wild oscillations of a
sequence of conductivities σn creates an instability of the Calderón problem.
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This is well expressed in terms of the G-topology [15, 21]. It is not hard
to see that if σn G-converges to σ, the corresponding Dirichlet to Neumann
maps converge weakly. Namely, for each ϕ,ψ ∈ H1/2(∂Ω),

(1.4) 〈Λσh(ϕ), ψ〉 → 〈Λσ(ϕ), ψ〉.

Now, if σn G-converges to σ but does not convergence pointwise, we
deduce that the convergence (1.4) does not imply any sort of Lp convergence.
(Notice σn, σ could be choosen to be C∞!).

However, the stability estimates are normally stated in terms of the oper-
ator norm and (1.4) by itself does not imply the convergence in the operator
norm ‖‖L(H1/2(∂Ω)→H−1/2(∂Ω)). In [1], it is proved that if, in addition to the

G−convergence, we have that σn = σ = I on Ωδ = {x ∈ Ω : d(x, ∂Ω) ≤ δ},
with Ω being the unit disc and σ = I, then in fact the G-convergence implies
the convergence in the operator norm. On the other hand, the stability at
the boundary of the inverse problem implies that, in order to obtain operator
norm convergence, some control on the behaviour of the conductivities at the
boundary is needed. For example, it was proved, see [31], [11], [4] and [14],
that, for isotropic conductivities, if limn→∞ ‖Λρn → Λρ‖H1/2→H−1/2(∂Ω) = 0

then

(1.5) lim
n→∞

‖ρn − ρ‖L∞(∂Ω) = 0

Thus, the G-convergence by itself can not guarantee the operator norm
convergence. Let Ω ⊂ R

n and define, for K ≥ 1, δ > 0,

(1.6)

MK(Ω) = {σ ∈ L∞(Ω, Mn×n) :
1

K
|ξ|2 ≤ σξ · ξ ≤ K|ξ|2

for almost every x ∈ Ω and ξ ∈ R
n};

Ωδ = {x ∈ Ω : d(x, ∂Ω) < δ}.

The following theorem seems to be essentially sharp (see comments be-
low).

Theorem 1.1. Let Ω ⊂ R
d be a domain. Assume that

(1.7) lim
δ→0

δ−1

(
lim sup
n→∞

‖σn − σ‖L∞(Ωδ)

)
= 0

and that σn ∈MK converges to σ in the sense of the G−convergence. Then

lim
n→∞

‖Λσn − Λσ‖H1/2(∂Ω)→H−1/2(∂Ω) = 0.

Let us emphasize that no regularity assumption is made on the domain
or on the conductivities. The condition (1.7) can be read as a weak version
of

(1.8) lim
n→∞

(‖∇ν(σn − σ)‖L∞(∂Ω) + ‖σn − σ‖L∞(∂Ω)) = 0.

Note that the above conditions are natural, since the convergence of the
D-N maps is known to imply convergence of the conductivities and their
normal derivatives at the boundary under mild regularity assumptions ([31,
5, 11, 4, 14]). Moreover, in Theorem 4.9 we provide an explicit example
which shows that, just the convergence σn to σ in L∞(∂Ω) together with
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their convergence in Lp(Ω), for any p < ∞, are not sufficient for the norm-
convergence of the DN maps.

The proof of Theorem 1.1 is very different in spirit to that from [1] and
we believe it to be of an independent interest. The proof in [1] uses the
decay properties of the spherical harmonics away from the boundary. Under
some regularity assumptions on σ, which in turn imply certain properties
of the corresponding Poisson kernel, a related strategy works (estimating
decay properties of solutions with oscillating boundary data away from the
boundary). To prove theorem 1.1 we argue in a different manner. Namely,
we sudy the behaviour of the solutions near the boundary. If, for example,
σn = σ on Ω\Ω′, where Ω′ ⊂⊂ Ω, then the difference of two solutions of the
Dirichlet problem associated with σn and σ solves the same elliptic equation
in Ω \ Ω′. It turns out that the resulting operators from the boundary
into Ω \ Ω′ are compact in a proper space. Our way to codify this is to
factorize Λσn − Λσ = T ◦ An, where T is compact. The arguments behind
this procedure are quite robust and allow to relax the condition σn = σ on
Ω \ Ω′ to (1.7).

Next we turn to applications of our techniques to what is called an ap-
proximate cloaking. In the last decade it has been shown that the fail-
ure of uniqueness in the Calderón problem is related to the modeling of
invisible materials and what is called acoustic and electromagnetic cloak-
ing, see [17, 29, 24, 18]. It is shown there that the available conductivities
yielding perfect cloaking are singular and anisotropic. Recently it has been
shown that they can be approximated by elliptic isotropic materials in the G-
convergence sense [19], see also [23, 26, 25] for different approachs. Leaving
precise formulations of the involved operators and a general case to section
3, assume that Ω = B3, i.e. the ball of radius 3 in R

3 and q ∈ L∞(B1) is an
arbitrary potential. Consider the D-N maps associated with the Dirichlet
problems, with spectral parameter λ, for the free space,

(1.9)

{
−∇ · ∇u = λu

u
∣∣
∂Ω

= ϕ,

cf. (1.1), and for cloaked space,

(1.10)

{
−g

−1/2
n ∇ · σn∇u+ qu = λu

u
∣∣
∂Ω

= ϕ.

Here the weight factors gn and the isotropic conductivities σn = γnI, which
are supported in {x : 1 ≤ |x| ≤ 2}, are chosen independent of q. Denoting
by Λλout and Λλn the corresponding D-N operators, we have

Theorem 1.2. The exists a sequence gn, γn such that, for all except a count-
able number of λ,

‖Λλn − Λλout‖H1/2(∂Ω)→H−1/2(∂Ω) → 0, as n→ ∞.

This theorem means that, by a proper choice of gn, γn, one can better
and better hide from an external observer any potential in B1. The novelty
here is that we have an operator norm convergence instead of the strong
convergence in [19]. We refer the reader to section 3 for the more general
case as well as the explanation of the nature of the exceptional points λ.
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Let us note that, motivated by the applications to acoustic, quantum and
electromagnetic cloaking, we extend our results of the type of Theorem 1.1,
to the operators

(1.11)  Lnu = −∇An · σn∇Anu+ qnu, u|∂Ω = 0,

where ∇A = ∇+ iA with A being a real one-form. However, for the sake of
brevity, we do so only for the case when σn = σ, An = A, qn = q in Ω \ Ω′.

Finally, we point out that, since the G-convergence rules out general sta-
bility results with respect to Lp classes, one is tempted to conjecture that
the convergence of the D-N maps implies the G-convergence. Recall that
if F is a diffeomorphism of Ω, which is the identity at the boundary, then
ΛF ∗(σ) = Λσ. As discussed for example in [2], the isotropic conductivities
are G-dense in the set of anisotropic conductivities, so that the only hope is
to recover from the D-N maps the G-limit up to a gauge transformation. In
contrast to the previous results on the conditional stability, the compactness
of the sets MK in the G-topology indeed provides a stability result which is
unconditional respect to regularity (we still require ellipticity).

Theorem 1.3. Let d = 2, σn ∈MK . Then

(1.12) lim
n→∞

Λσn = Λσ,

weakly in H−1/2(∂Ω) if and only if there exists a sequence of quasicon-
formal maps Fn : Ω → Ω, Fn|∂Ω = id|∂Ω, such that, in the sense of the
G−convergence,

(1.13) F ∗
n(σn) → σ.

Let us emphasize that since there is no requirement at the boundary here
we speak only of weak convergence of the D-N maps.

The paper is structured as follows. In section 2 we start by proving the
convergence of the D-N maps for the operators of form (1.11), assuming
that σn = σ, An = A, qn = q in a neighborhood of the boundary, see Theo-
rem 2.1. Note that this is the case which will be needed for applications to
aprroximate cloaking considered in section 3. In section 4 we prove Theo-
rem 1.1 and in section 5 we prove Theorem 1.3.

Acknowledgments: We thank G.Alessandrini, R.Brown and J.Sylvester
for inspiring conversations on the problem. We also thank G.Alessandrini
for suggesting that a condition similar to (1.7) might hold. The research
started during visit of the three authors to the Isaac Newton Institute in
Cambridge during the program ”Inverse problems” in 2011, was continued
during several visits of the second author to Madrid and during the pro-
gram ”Inverse problems and applications” at the Mittag-Leffer Institute in
Stockholm in 2013. The second author would also like to thank ACMAC,
Heraklion which he visited during the final stage of the preparation of the
manuscript. We would like to thank for the fantastic research enviroment
in all these occasions.
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2. Operators which coincide near the boundary

Let Ω ⊂ R
n be any bounded domain. We consider the conductivity

equations with magnetic potential An and electrical potential qn ∈ L∞(Ω)
and the spectral parameter λ ∈ C. Namely, for u ∈ H1(Ω,C) we define the
Dirichlet problem for the corresponding differential operator  Ln:

(2.1)  Lnu = −∇An · σn∇Anu+ qnu, u|∂Ω = 0.

Here

(2.2) σn ∈MK , K > 1, i.e.
1

K
I ≤ σn(x) ≤ KI, x ∈ Ω,

and

(2.3) An ∈ L∞(Ω,Rd), ‖An‖∞ ≤ K, qn ∈ L∞(Ω,R), ‖qn‖∞ ≤ K,

where for simplicity we assume all K ′s to be the same. The magnetic gradi-
ent is given by ∇Anu = ∇u+ iAnu. Note that conditions (2.2), (2.3) imply
the existence of λ(K), such that

(−∞, λ(K)) ∩ spec( Ln) = ∅.

If λ /∈ spec(Ln), then for a given boundary data ψ ∈ H1/2(∂Ω) there is a

unique solution un = uψn(λ) ∈ H1(Ω) to the Dirichlet problem;

(2.4)

{
 Lλnun := ( Ln − λ)un = 0

un
∣∣
∂Ω

= ψ.

For the regular domains we define the Dirichlet to Neumann map, Λλn :
H1/2(∂Ω) → H−1/2(∂Ω) by

Λλn(ψ) = ν · σn∇Anun.

It follows by integration by parts that Λλn can also be described in the weak
form as

(2.5) 〈Λλn(ψ), ϕ〉 =

∫

Ω
(σn∇Anun · ∇Anϕ̃+ (qn − λ)unϕ̃),

where ϕ ∈ H1/2(∂Ω) and ϕ̃ ∈ H1(Ω) is an extension of ϕ to Ω. We will

denote the solution of (2.4) by uψn or even un (we omit the dependence on
λ). In this section we prove that

Theorem 2.1. Let  Ln,  L be operators of form (2) which satisfy (2.2), (2.3).

Assume that there is Ω′ with Ω
′
⊂⊂ Ω such that σn = σ, An = A and qn = q

on Ω \ Ω′. Then, if the operators  Ln G- converge to  L, we have

(2.6) ‖Λλn − Λλ0‖H1/2→H−1/2 → 0.

Here λ /∈ spec( L) and, for any K ⊂ C being a compact set such that K ∩
spec( L) = ∅, the convergence is uniform for λ ∈ K.

The proof of the theorem is rather long and will consist of several steps.
Let us first note that there are several equivalent definitions of the

G−convergence of operators, see e.g. Th. 13.6 and Example 13.13, [15]
which essentially amount to the convergence of the solutions. For our pur-
pose we use
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Definition 2.2. The operator  Ln G-converges to  L if, for any f ∈ H−1(Ω)
and λ < λ(K), it holds that

(2.7) ( Ln − λI)−1f → ( L − λI)−1f, as n→ ∞,

weakly in H1
0 (Ω).

The following two lemmata follow more or less straightforward from the
definition of the G-convergence. To this end we first introduce the quadratic
form, ℓn, associated with  Ln,

(2.8) ℓn[u] =

∫

Ω
(σn∇Anu,∇Anu) + qn|u|

2, u ∈ H1
0 (Ω).

Lemma 2.3. Let now λ ∈ K. Then, for any f ∈ H−1(Ω),

(2.9) ( Ln − λI)−1f → ( L − λI)−1f, as n→ ∞,

weakly in H1
0 (Ω) and uniformly in K.

Proof. Using the coercivity of ℓn the proof follows the lines of [19, Lemma
2.7]. Note that this fact does not require the coincidence of σn, An and qn
with σ, A and q near ∂Ω since it follows from the uniform ellipticity of forms
ℓn together with the strong resolvent convergence of (2.7). �

Lemma 2.4. Let  Ln G-converge to  L and λ /∈ spec( L). Then, for each

ψ ∈ H1/2(∂Ω),

(Λλn − Λλ)(ψ) ⇀ 0 in H−1/2.

Proof. Denoting by un, u the solutions to (2.4), we have, by Theorem 22.9
[15], that

ℓn[un] − λ‖un‖
2 → ℓ[u] − λ‖u‖2, as n→ ∞.

Polarising this equality, we arrive at

〈Λλn(ψ), ϕ〉 → 〈Λλ(ψ), ϕ〉.

�

We denote by H̊1(Ω \Ω′) the functions in H1(Ω \Ω′) with trace 0 on ∂Ω.
A key fact in our arguments is the following Caccioppoli type inequality.

Lemma 2.5. Let w ∈ H̊1(Ω \ Ω′) be a weak solution of

(2.10)  Lλw = f + divF on Ω \ Ω′,

for f ∈ L2(Ω) and F being a vector field in L2(Ω \ Ω′). Then, for any Ω′′,

Ω
′
⋐ Ω′′, Ω

′′
⋐ Ω, there exists a C = C(Ω,Ω′,Ω′′,K, λ) such that

(2.11)

∫

Ω\Ω′′

|∇w|2 ≤ C

(∫

Ω\Ω′

|w|2 +

∫

Ω\Ω′

|F |2 +

∫

Ω\Ω′

|f |2

)
.

Moreover if we choose Ω′ = Ω2δ and Ω′′ = Ωδ the estimate is

(2.12)

∫

Ωδ

|∇w|2 ≤ C

(
δ−2

∫

Ω2δ

|w|2 +

∫

Ω2δ

|F |2 +

∫

Ω2δ

|f |2
)
.
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Proof. Choose η ∈ C∞(Rn \ Ω′) such that η = 1 on Ω \ Ω′′ and η = 0 near
∂Ω′. Since w has zero trace on ∂Ω, η2w ∈ H1

0 (Ω \ Ω′). Thus it is a proper
test function for the weak formulation of (2.10). Thus,
∫

Ω\Ω′

〈σ∇Aw,∇A(η2w)〉 =

∫

Ω\Ω′

〈F,∇(η2w)〉−

∫

Ω\Ω′

η2(q−λ)|w|2+

∫

Ω\Ω′

fη2w

Hence ∣∣
∫

Ω\Ω′

η2〈σ∇Aw,∇Aw〉
∣∣

≤
∣∣2
∫

Ω\Ω′

η〈σ∇Aw,∇η〉w
∣∣

︸ ︷︷ ︸
=I1

+
∣∣
∫

Ω\Ω′

〈F,∇(η2w)〉
∣∣

︸ ︷︷ ︸
=I2

+C

∫

Ω\Ω′

|w|2+

∫

Ω\Ω′

|fη2w|

We can bound the first term on the right hand side by

I1 ≤
∣∣2
∫

Ω\Ω′

η〈σ∇Aw,∇Aw〉
1/2〈σ∇η,∇η〉1/2|w|

∣∣

≤ 2K‖∇η‖L∞

(∫

Ω\Ω′

η2〈σ∇Aw,∇Aw〉

)1/2(∫

Ω\Ω′

|w|2

)1/2

≤ 1/2

(∫

Ω\Ω′

η2〈σ∇Aw,∇Aw〉

)
+ 16K2‖∇η‖2L∞

∫

Ω\Ω′

|w|2,

where we have used that σ ≤ KI. Hence we absorb the term
1/2

(∫
η2〈σ∇Aw,∇Aw〉

)
by the left hand side to obtain

|

∫

Ω\Ω′

η2〈σ∇Aw,∇Aw〉| ≤ C‖∇η‖2L∞

∫

Ω\Ω′

|w|2

+ 2|

∫

Ω\Ω′

〈F,∇(η2w)〉| +C

∫

Ω\Ω′

|fw|.

(2.13)

Now we deal with the term I2 = |
∫
Ω\Ω′ 〈F,∇(η2w)〉|. By integrating by

parts and the definition of ∇A we have that,

I2 ≤ |

∫

Ω\Ω′

〈F, 2η∇η〉w| + |

∫

Ω\Ω′

η2〈F,∇Aw〉| +

∫

Ω\Ω′

|〈F, η2iAw〉|.

Next, we use the Cauchy-Schwartz inequality for the first and the third terms
of the right and the Hölder inequality for the second, in order to bound I2
by

≤ C(

∫

Ω\Ω′

|Fη|2+

∫

Ω\Ω′

|∇η|2|w|2)+

∫

Ω\Ω′

η2|F ||∇Aw|+

∫

Ω\Ω′

|F |2η2+

∫

Ω\Ω′

|Aw|2

≤ C

∫

Ω\Ω′

η2|F |2+C‖∇η‖2L∞

∫

Ω\Ω′

|w|2+(

∫

Ω\Ω′

η2|F |2)1/2(

∫

Ω\Ω′

η2|∇Aw|
2)1/2.

Since,

(

∫

Ω\Ω′

η2|F |2)1/2(

∫

Ω\Ω′

η2|∇Aw|
2)1/2 ≤ C

∫

Ω\Ω′

η2|F |2+
1

2K

∫

Ω\Ω′

η2|∇Aw|
2,

we have obtained the bound

I2 ≤ C

∫

Ω\Ω′
η2|F |2 +

1

2K

∫

Ω\Ω′
η2|∇Aw|

2 + C‖∇η‖2L∞

∫

Ω\Ω′
|w|2.(2.14)
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Now we incorporate estimate (2.14) into (2.13) estimating the term∫
Ω\Ω′ |fη2w| by Cauchy-Schwarz. We obtain that

|

∫

Ω\Ω′

η2〈σ∇Aw,∇Aw〉|

≤ C

∫

Ω\Ω′

η2|F |2 +
1

2K

∫

Ω\Ω′

η2|∇Aw|
2 + C‖∇η‖2L∞

∫
|w|2 +

∫
|f |2.

Since 1
K I ≤ σ,

1

K

∫

Ω\Ω′

|η∇Aw|
2 ≤ |

∫

Ω\Ω′

η2〈σ∇Aw,∇w〉|

and thus we can absorb the term 1
2K

∫
Ω\Ω′ η

2|∇Aw|
2 to the left hand side to

obtain the bound

(2.15)
∫

Ω\Ω′

|η∇Aw|
2 ≤ C

(∫

Ω\Ω′

|F |2 + ‖∇η‖2L∞

∫

Ω\Ω′

|w|2 +

∫

Ω\Ω′

|f |2

)
,

where C depends on (K,A, q) but not of Ω′,Ω′′.
In order to obtain (2.11) we simply expand ∇Aw and observe that η = 1

on Ω \ Ω′′.
In order to obtain (2.12) we define the cut-off more carefully. Let ηδ ∈

C0,1(Ω) be defined by

(2.16) ηδ(x) = η(d(x, ∂Ω)/δ),

where η(s) ∈ C∞
0 (R+), η(s) = 1 for s < 1, η(s) = 0 for s > 2. Observe that

supp(ηδ) ⊂ Ω2δ and

(2.17) ‖ηδ‖C0,1(Ω) ≤ Cδ−1.

Plugging ηδ into (2.15) yields (2.12). �

Let us fix a boundary value ψ ∈ H1/2(∂Ω) and, as in the beginning of this

section, denote the corresponding solutions to (2.4) by uψn , with uψ being
the solution to (2.4) for  Lλ. It will be convenient for us to work with the
difference

dψn(λ) = dψn = uψn − uψ ∈ H1
0 (Ω).

Due to (2.2) and (2.3), it follows that

‖dψn‖H1(Ω) ≤ ‖uψn‖H1(Ω) + ‖uψ‖H1(Ω) ≤ C‖ψ‖H1/2(∂Ω)

It is convenient to state the above inequality as a separate lemma.

Lemma 2.6. Let

(2.18) Aλ
n(ψ) = dψn |Ω\Ω′

, Aλ
n : H1/2(∂Ω) → H̊1(Ω \ Ω′).

Then these operators are uniformly bounded wrt n and λ ∈ K.

We prove now the strong convergence of the Dirichlet to Neumann maps.
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Proposition 2.7. Let  Ln,  L and K satisfy conditions of Theorem 2.1. Then,
for any ψ ∈ H1/2(∂Ω),

lim
n→∞

‖(Λλn − Λλ)(ψ)‖H−1/2 = 0,

the convergence being uniform for λ ∈ K.

Proof. Let us fix a boundary value ψ ∈ H1/2(∂Ω) and define uψn , uψ, d
ψ
n =

Aλ
nψ as above. Observe that, with ψ̃ ∈ H1(Ω), ψ̃ = 0 in Ω′, ψ̃|∂Ω = ψ,

uψn = ψ̃ + ( Ln − λI)−1F, uψ = ψ̃ + ( L − λI)−1F,

where

F = ∇A · σ∇Aψ̃ − (q − λ)ψ̃ ∈ H−1(Ω), supp(F ) ⊂ Ω \ Ω′.

Then it follows from G-convergence that that

dψn → 0,

where convergence is weak in H̊1(Ω\Ω′) and strong in L2(Ω\Ω′). (A direct
proof under condition 1.7 is given in Lemma 4.2). We continue by applying
Caccioppoli inequality (2.5) and taking into the account that

(2.19) ∇A · σ∇Ad
ψ
n − (q − λ)dψn = 0 in Ω \ Ω′,

we see that

dψn |Ω\Ω′′ → 0 in H̊1(Ω \ Ω′′).

This implies the desired result taking into the account the weak definition
of the Dirichlet-to-Neumann map (2.5) and the ability to take φ̃ there so

that φ̃ = 0 in Ω′′ and

‖φ̃‖H1(Ω\Ω′′) ≤ C‖φ‖H1/2(∂Ω).

�

In order to utilize that the functions dψn satisfy (2.19), we introduce the
following subspace:

Definition 2.8. We denote L2
s(Ω \ Ω′) to be the L2(Ω \ Ω′)-closure of the

set {u : u ∈ H̊1
loc(Ω \ Ω′) and  Lλu = 0 in Ω \ Ω′}.

Lemma 2.9. Let v ∈ L2
s(Ω \ Ω′). Then v ∈ H̊1

loc(Ω \ Ω′) and is a solution
in Ω \ Ω′ of equation (2.19).

Proof. Let vk ⊂ H̊1
loc(Ω \ Ω′) ∩ L2

s(Ω \ Ω′) satisfy (2.19) and

lim
k→∞

‖vk − v‖L2(Ω\Ω′) = 0.

Then, for any Ω′′ such that Ω′ ⊂ Ω′′ ⊂ Ω, vk is a Cauchy sequence in
H̊1(Ω \ Ω′′). Indeed, since vk vanish on ∂Ω, this follows from Lemma 2.5.

Thus, vk → v strongly in H̊1
loc(Ω \ Ω′). As a strong limit of solutions is a

weak solution to (2.19), the claim follows. �
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Lemma 2.10. Fix λ ∈ K. Let Aλ
n be defined by (2.18) and T λ : L2

s(Ω\Ω′) →
H−1/2(∂Ω) be defined for ϕ ∈ H1/2(∂Ω) as

(2.20) (T λ(v), ϕ) =

∫
(〈σ∇Av,∇Aϕ̃〉 + (q − λ)vϕ̃),

where ϕ̃ is a H1(Ω) extension of ϕ such that ϕ̃ = 0 on Ω′′. Then

Λλn − Λλ = T λ ◦ Aλ
n.

Moreover, the operators Aλ
n are uniformly bounded and the operator T λ is

compact.

Proof. Notice that the composition makes sense since

Range(Aλ
n) ⊂ L2

s(Ω \ Ω′) ⊂ H̊1
loc(Ω \ Ω′).

The factorization is obvious and the uniform boundedness of Aλ
n is proven

in Lemma 2.6. Let us show that T λ is compact. To this end it is sufficient
to show that, if vk ∈ L2

s(Ω \ Ω′) is a bounded sequence, then T λ(vk) is
precompact in H−1/2(∂Ω).

Let us take a sequence of nested compact sets Ω′ ⊂ Ω′′ ⊂ Ω′′′ ⊂ Ω.
It follows from Definition 2.8 together with Cacciopoli inequality (2.5)

that

‖vk‖H1(Ω\Ω′′) ≤ C‖vk‖L2(Ω\Ω′).

By Banach-Alaoglu theorem there is a (not relabeled) subsequence vk such
that

vk → v∞ ∈ H1(Ω \ Ω′′) → 0,

where the convergence is weak in H1(Ω\Ω′′) and strong in L2(Ω \ Ω′′). Then
v∞ is also a solution to the equation

 Lλv∞ = 0 on Ω \ Ω′′.

Thus, it follows by Caccioppoli inequality (2.5) that

(2.21) ‖vk − v∞‖H1(Ω\Ω′′′) → 0.

Now, by the definition of T λ,

‖T λvk−T λv∞‖H−1/2 = sup
{‖ϕ‖

H1/2(∂Ω)
=1}

∫
(〈σ∇A(vk−v∞),∇Aϕ̃〉+(q−λ)(vk−v∞)φ̃),

where we take the extension function ϕ̃ so that supp(ϕ̃) ⊂ Ω\Ω′′′. Choosing
ϕ̃ so that

‖ϕ̃‖H1(Ω) ≤ C‖ϕ‖H1/2(∂Ω),

we see that

‖T λvk − T λv∞‖H−1/2 ≤ CK‖vk − v∞‖H1(Ω\Ω′′′)‖ϕ‖H1/2 ,

which tends to zero by (2.21). Thus, the desired compactness of T λ(vk) is
proved.

�

We are now in position to complete the proof of Theorem 2.1.
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Proof. Notice that (H1/2)∗(∂Ω) = H−1/2(∂Ω). Taking φ̃ in (2.5) to be
the solution of (2.4) with λ instead of λ and φ instead of ψ, we see that

(Λλn − Λλ) : H1/2(∂Ω) → H−1/2(∂Ω) satisfies

(Λλn − Λλ)∗ = (Λλ̄n − Λλ̄).

Thus,

(Λλn − Λλ) =
(
T λ̄ ◦ Aλ̄

n

)∗
= (Aλ̄

n)∗ ◦ (T λ̄)∗,

where (T λ̄)∗ : H1/2(∂Ω) → L2
s(Ω\Ω′) is a compact operator. Thus, for every

ǫ > 0, there exists a finite dimensional projection operator Pǫ : H1/2(∂Ω) →
H1/2(∂Ω), such that

(2.22) ‖(T λ̄)∗(I − Pǫ)‖H1/2(∂Ω)→L2
s(Ω\Ω′) ≤ ǫ.

Since Pǫ is finite dimensional, it follows from the strong convergence of
Λλn − Λλ, Proposition 2.7, that

lim
n→∞

‖Λλn − Λλ)Pǫ‖H1/2(∂Ω)→H−1/2(∂Ω) = 0.

Moreover, the above limit is uniform wrt λ ∈ K. On the other hand, since

‖(Aλ̄
n)∗‖L2

s(Ω\Ω′)→H−1/2(∂Ω) ≤ C(K), λ ∈ K, we obtain from (2.22) that

‖(Λλn − Λλ)(I − Pǫ)‖H1/2(∂Ω)→H−1/2(∂Ω) ≤ Cǫ.

Since ǫ is arbitrary, these estimates prove the theorem. �

Remark 2.11. Assuming σ,A ∈ C0,1(Ω \ Ω′), equation (2.6) remains valid

for the operator norm in H1/2(∂Ω). Moreover, assuming further smoothness

of σ, A and q, we obtain equation (2.6) with the operator norm from H1/2

to Hs with larger s.

3. Application to cloaking

In this section we apply the previous construction to study an approxi-
mate invisibility as introduced in [19]. To start, we recall the main result in
[19].

Let us consider Ω = Br, r = 3, where Br ⊂ R
3 is a ball of radius r

centered at 0. Denote by  Lout the operator

(3.1)
 Loutu = −∇Aout · ∇Aoutu+ qoutu,

D(Aout) = {u ∈ H1
0 (Ω) : ∇Aout · ∇Aoutu ∈ L2(Ω)}.

Here the magnetic potential Aout and electric potential qout satisfy,

|Aout| · |x| ∈ L∞(Ω), qout ∈ L∞(Ω),

see (15) and preceeding discussion in [19], where β1 stands for Aout and κ1
stands for qout. Denote by Λλout the Dirichlet-to-Neumann map correspond-
ing to  Lout − λ.

Next, consider the Dirichlet-to-Neumann map ΛλR,m,ǫ associated to the
approximate cloaking. To this end, consider the Dirichlet problem of the
type (2.4),

(3.2)

{
 LλR,m,ǫu = −g

−1/2
m ∇A · σR,ǫ∇Au+ qu− λu = 0

u
∣∣
∂Ω

= ψ,
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cf. (126), (127) in [19]. Here σR,ǫ is a regular, isotropic G−approximation to
the singular cloaking conductivity σs and gm is a truncation of gs, namely,
gm(x) = max{m−1, gs(x)}, where gs = (det σs)

2/(n−2). To define σR, R ≥ 1,
we start with the diffeomorphism FR = (F1,R, F2,R) : (B3 \Bρ) ⊔BR → Ω,
where F2,R is the identity on BR, while

F1,R(x) =

(
|x|

2
+ 1

)
x

|x|
, ρ < |x| < 2, ρ = 2(R−1); F1,R(x) = x, |x| > 2.

Then σR = (FR)∗(γ0, γ0), where γij0 = δij so that σR degenerates on ∂B1

when R = 1 but is bounded for R > 1, with however lower bound going to
0 if R → 1. We note that in [19], for technical reasons, γ0 is substituted by
2γ0 in BR, however, the constructions in [19] can be readily modified for the
considered case.

With A ∈ L∞(Ω), q ∈ L∞(Ω), the operator  LR is defined as in (2) with

σR instead of σn and an extra factor g
−1/2
s in front of the main term in the

right-hand side of (2). The operator  L1 represents perfect cloaking but it
is singular. To avoid further confusing in terminology we will denote this

operator by  Lsing. The operators  LR are self-adjoint in L2(Ω, g
1/2
s dx). Note

that then

Aout = (F1,1)∗(A|B3\B1
), qout = (F1,1)∗(q|B3\B1

),

which, in particular, produces the 1/|x| singularity of Aout.
At last, the isotropic σR,ǫ are obtained from σR by de-homogenization,

see S.3, [19], so that, if λ /∈ spec( Lsing), then, for f ∈ L2(Ω),

( LR,ǫ,m − λI)−1 f → ( LR,m − λI)−1 f,

see Lemma 3.3, [19]. Note that the condition λ /∈ spec( Lsing) implies
that, for R close to 1, large m and small ǫ, λ is outside the spectra
of all the operators considered above so all the objects are well-defined.
Then it is shown in [19], see Corollary 4.4, that there exists a sequence

R(n) → 1, m(n) → ∞, ǫ(n) → 0 such that, for any h ∈ H3/2(∂Ω),

‖ΛλR(n),m(n),ǫ(n)h− Λλouth‖H1/2(∂Ω) → 0.

Here ΛλR(n),m(n),ǫ(n), Λλout are Dirichlet-to-Neumann maps associated with

the operators  LR(n),ǫ(n),m(n),  Lout and λ /∈ spec( Lsing).
Using the methods of section 2, we have

Theorem 3.1. The exists a sequence R(n) → 1, m(n) → ∞, ǫ(n) → 0 such
that, for any λ /∈ spec( Lsing),

‖ΛλR(n),m(n),ǫ(n) − Λλout‖H1/2(∂Ω)→H−1/2(∂Ω) → 0, as n→ ∞.

Observe that Λout does not depend upon the behaviour of A and q inside
B1. Thus, Theorem 3.1 means that A|B1 , q|B1 are almost cloaked from an
external observer by a proper choice of σR,ǫ.

Proof. By Theorem 4.3, [19], for f ∈ L2(Ω) and λ /∈ spec( Lsing),
(3.3)

lim
n→∞

(
 LR(n),ǫ(n),m(n) − λI

)−1
f = ( Lsing − λI)−1 f in L2(Ω, g1/2s dx),
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where the convergence is uniform for λ ∈ K, K being a compact in C \
spec( Lsing).

Let, for f ∈ L2(Ω \B2)

(3.4) RR,m,ǫ(λ)f =
(
( LR,m,ǫ − λI)−1f

)
|Ω\B2

∈ H̊1(Ω \B2),

where in the right-hand side we continue f by 0 to B2 and we use similar
notation for RR,m(λ), etc. Our next goal is to show that, for f ∈ L2(Ω\B2)
and λ ∈ K,

(3.5) Rn(λ)f → Rsing(λ)f, ‖Rn(λ)‖L2→H̊1 < C(K).

Here Rn(λ) = RR(n),m(n),ǫ(n)(λ) and the convergence in (3.5) is the weak

convergence in H̊1(Ω \B2).

Indeed, using Lemmata 2.7, 2.8, [19], for f ∈ L2(Ω, g
1/2
s dx) and λ ∈ K,

lim
n→∞

(
 LR(n) − λI

)−1
f = ( Lsing − λI)−1 f in H1

0 (Ω, g1/2s dx),

and there are C(K), R(K) > 1 such that, for R < R(K),

‖ ( LR − λI)−1 ‖
L2(g

1/2
s dx)→H1

0 (g
1/2
s dx)

< C(K).

Since σR(x) = γ0, g(x) = 1 for |x| > 2, these two equations imply that

(3.6) RR(λ)f → Rsing(λ)f in H̊1(Ω \B2), ‖RR(λ)‖L2→H̊1 < C(K).

Next, using Lemma 2.11, [19], we see that equation (3.6) remains valid if
we put in RR,m(λ) instead of RR(λ) and first take the limit as m→ ∞ and
then as R→ 1. Here RR,m(λ) are defined by (3.4) with  LR,m.

At last, by means of Lemma 3.3, [19], we see that (3.6) remains valid, in
the sense of the weak-convergence, if we put RR,m,ǫ(λ) instead of RR,m(λ)
and (3.5) follows.

Since R∗
R,ǫ,m(λ)h = RR,ǫ,m(λ)h, if h ∈ L2(Ω \ B2), it follows from (3.5)

that, for h ∈
(
H̊1(Ω \B2)

)∗
and λ ∈ K,

lim
R→1

lim
m→∞

lim
ǫ→0

RR,ǫ,m(λ)h → R1(λ)h in L2(Ω \B2),

in the sense of the weak convergence in L2(Ω\B2) and, when R is sufficiently
close to 1, m is sufficiently large and ǫ is sufficiently close to 0,

(3.7) ‖Rn(λ)‖(H̊1(Ω\B2))∗→L2(Ω\B2)
< C(K),

Then, similar to the proof of Theorem 4.3, [19], there is a sequence R(n) →
1, m(n) → ∞, ǫ(n) → 0, such that

(3.8) 〈Rn(λ)h, f〉 → 〈R1(λ)h, f〉, h ∈
(
H̊1(Ω \B2)

)∗
, f ∈ L2(Ω \B2).

Moreover, operators Rn(λ) satisfy (3.7).

To continue, consider the solutions uψn(λ) and uψ1 (λ) to the Dirichlet

problems (3.2) for  Lλn and  Lλsing with ψ ∈ H1/2(∂Ω). Using a bounded

extension, ψ̃ ∈ H1(Ω), supp(ψ̃) ⊂ Ω \ B5/2, we see that dψn(λ) =(
uψn(λ) − uψsing(λ)

)
|Ω\B2

satisfies

dψn(λ) = (Rn(λ) −Rsing(λ)) h,
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where h is given in terms of the extension as

h = ∇Aout · ∇Aoutψ̃ − (qout − λ)ψ̃.

Note that since supp(h) ⊂ Ω \B5/2, we have h ∈ (H̊1(Ω \B2)
∗. Moreover,

(3.9) ‖dψn(λ)‖L2(Ω\B2) < C(K)‖ψ‖H1/2(∂Ω), w − lim dψn(λ) = 0.

where w − lim is the weak limit in L2(Ω \B2).

Now, notice that  Lλsing(d
ψ
n (λ)) = 0 on Ω \ B2. Thus, we can use the

Cacciopoli inequality (2.11) to obtain that

(3.10) ‖dψn(λ)‖H1(Ω\B5/2)
≤ ‖dψn (λ)‖L2(Ω\B2) < C(K)‖ψ‖H1/2(∂Ω)

and thus, by compactness of the Sobolev embeddding and (3.9) (and
Kuratowski-Zorn Lemma), it follows that

(3.11) lim sup
n→∞

‖dψn(λ)‖H1(Ω\B11/4)
≤ c lim

n→∞
‖dψn(λ)‖L2(Ω\B5/2)

= 0

We can now mimic the arguments in section 2. Namely, recall that, for
ψ,ϕ ∈ H1/2(∂Ω), we have that,

〈(ΛλR(n),m(n),ǫ(n) − Λλout)ψ,ϕ〉

=

∫

Ω\B11/4

(
∇Aoutd

ψ
n · ∇Aoutϕ̃+ (qout − λ)dψn ¯̃ϕ

)
.

Here ϕ̃, supp(ϕ̃) ⊂ Ω \ B11/4 is the extension of ϕ. Thus, cf. the proof of
Proposition 2.7 we have that

(3.12) ‖(ΛλR(n),m(n),ǫ(n) − Λλout)ψ‖H−1/2(∂Ω) ≤ C‖dψn(λ)‖H1(Ω\B11/4)

and hence (3.11) yields the strong convergence

(3.13) lim
n→∞

‖(ΛλR(n),m(n),ǫ(n) − Λλout)ψ‖H−1/2(∂Ω) = 0

Next, we introduce the intermediate space

Definition 3.2. We denote L2
s(Ω \ B11/4) to be the L2(Ω \ B11/4)-closure

of the set {u ∈ H̊1
loc(Ω \B11/4) :  Lλsingu = 0}.

We factorize the difference of Dirichlet to Neumann maps by

ΛλR(n),m(n),ǫ(n) − Λλout = T λ ◦ Aλ
n.

Exactly as in the end of proof of Theorem 2.1 in section 2, Aλ
n : H1/2(∂Ω) →

L2
s(Ω \ B11/4), defined by An(ψ) = dψn(λ), is uniformly bounded in n and,

due to (3.10), (3.12), T λ : L2
s(Ω \B11/4) → H−1/2(∂Ω) are compact. Since

(
ΛλR(n),m(n),ǫ(n) − Λλout

)∗
= Λλ̄R(n),m(n),ǫ(n) − Λλ̄out,

this gives rise to the factorization (Aλ̄
n)∗ ◦ (T λ̄)∗ with compact (T λ̄)∗. Thus,

we can find Pǫ so that (T λ̄)∗(I−Pǫ) is small in norm and prove the theorem.
�

Remark 3.3. By a slight modification of the arguments we can show that
Theorem 3.1 remains valid if BR is changed into an arbitrary smooth Rie-
mannian manifold (M,g) with ∂M diffeomorphic to ∂B1, cf. [18].
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Remark 3.4. Similar to Remark 2.11, Theorem 3.1 remains valid for the
operator norm in H1/2(∂Ω) if σ and A are C0,1−smooth near ∂Ω.

4. General Condition

In this section we relax the conditions on the behaviour of σn and σ near
the boundary under which the G−convergence implies the convergences of
the Dirichlet-to-Neumann maps in the operator norm. It will be desirable
to be able to deal with the situation when, for every n,

|σn(x) − σ(x)| ≤ Cd(x, ∂Ω)1+ǫ, ǫ > 0

(this is the condition suggested by G.Alessandrini as mentioned in Introduc-
tion), or when, for some Ω′ ⋐ Ω, we have that

lim
n→∞

‖σn − σ‖L∞(Ω\Ω′) = 0.

As discussed in the introduction, we prove that actually a condition resem-
bling the convergence of the conductivities and their normal derivatives at
the boundary and weaker than both conditions above suffices.

Theorem 4.1. Let for δ > 0, let Ωδ = {x ∈ Ω : d(x, ∂Ω) ≤ δ}. Assume
that

(4.1) lim
δ→0

δ−1

(
lim sup
n→∞

‖σn − σ‖L∞(Ωδ)

)
= 0

and that σn ∈MK converges to σ in the sense of the G−convergence. Then

lim
n→∞

‖Λσn − Λσ‖H1/2(∂Ω)→H−1/2(∂Ω) = 0.

For the sake of simplicity we will consider only the case of the conductivity
equation at λ = 0, however, with the obvious modifications the proof will
work as well for the more general operators treated in section 2. We also
recall the smooth extensions and restrictions of Sobolev functions to Ωδ.

Let ηδ ∈ C0,1(Ω) be supported in Ωδ with ‖∇ηδ‖L∞(Ω2δ) ≤ C/δ, see (2.16)
from the proof of (2.11).

Then set ψδ = ηδψ̃ ∈ H1(Ω) and observe that supp(ψδ) ⊂ Ω2δ and

(4.2) ‖ψδ‖H1(Ω) ≤ ‖ηδ‖C0,1(Ω)‖ψ̃‖H1(Ω) ≤ Cδ−1‖ψ‖H1/2(∂Ω).

Now recall Caccioppoli estimate (2.12),

(4.3)

∫

Ωδ

|∇w|2 ≤ C

(
δ−2

∫

Ω2δ

|w|2 +

∫

Ω2δ

|F |2 +

∫

Ω2δ

|f |2
)
,

where w ∈ H̊1(Ω2δ) satisfies (2.10) in Ω2δ.
In order to prove the convergence of the Dirichlet-to-Neumann maps in

the operator norm, we treat the current case as a perturbation of the one
considered in section 2, where σn = σ near the boundary. As in section 2,

we introduce the function dψn = uψn − uψ.
Let us recall that the G−convergence implies the convergence of the so-

lutions to the corresponding Dirichlet problems (see [15, Thm22.9]). In the
next lemma we give a quick proof under the condition (1.7) valid also for
the situation in section 3 where we do not have uniform ellipticity.
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Lemma 4.2. Let σn G-converge to σ. Then, for any ψ ∈ H1/2(∂Ω),

(4.4) ‖dψn‖L2(Ω) → 0, as n→ ∞.

Proof. With ψδ as above, we have

 Ln(uψn − ψδ) = ∇ · Ψδ + ∇ · Fn,δ,  L(uψ − ψδ) = ∇ · Ψδ,

Ψδ = −σ∇ψδ, Fn,δ = (σ − σn)∇ψδ.

Thus,

dψn = ( L−1
n −  L−1)(∇ · Ψδ) +  L−1

n (∇ · Fn,δ) = I1n,δ + I2n,δ.

Notice that in the case σ = σn on Ωδ, I
2
n,δ = 0. Due to (2.2) and (4.2),

‖I2n,δ‖H1
0 (Ω) ≤ C(K)‖σn − σ‖L∞(Ω2δ)‖ψδ‖H1(Ω)

≤ C(K)δ−1‖σn − σ‖L∞(Ω2δ)‖ψ‖H1/2(∂Ω).

Thus, due to condition (1.7), for any ǫ > 0 there are δ(ǫ), n(δ, ǫ) such that
if δ < δ(ǫ), n > n(δ, ǫ),

‖I2n,δ‖H1
0 (Ω) < ǫ.

Fixing δ < δ(ǫ) and taking into the account that σn G−converges to σ, we
see that

‖I1n,δ‖L2(Ω) → 0 as n→ ∞.

These two equations imply (4.4). �

Next we represent dψn in Ω2δ as

dψn = vn,δ +mn,δ,

where vψn,δ, m
ψ
n,δ are the solutions to the following equations

(4.5)

{
∇ · σ∇vψn,δ = ∇ · ((σ − σn)∇uψn)

vψn,δ = 0 on ∂(Ω2δ)

and

(4.6)

{
∇ · σ∇mψ

n,δ = 0 in Ω2δ

mψ
n,δ = dψn on ∂(Ω2δ).

Notice that vψn,δ ∈ H1
0 (Ω2δ), m

ψ
n,δ ∈ H̊

1(Ω2δ).
Therefore, using the weak definition of the Dirichlet-to-Neumann map,

we have
(4.7)

〈(Λσn − Λσ)ψ,ϕ〉 =

∫

Ω2δ

(σn∇u
ψ
n − σ∇uψ) · ∇ϕδ

=

∫

Ω2δ

σ∇dψn · ∇ϕδ +

∫

Ω2δ

(σn − σ)∇uψh · ∇ϕδ

=

∫

Ω2δ

(σn − σ)∇uψh · ∇ϕδ +

∫

Ω2δ

σ∇vψn,δ · ∇ϕδ +

∫

Ω2δ

σ∇mψ
n,δ · ∇ϕδ

= 〈Dn,δψ, ϕ〉 + 〈Vn,δψ, ϕ〉 + 〈Mn,δψ, ϕ〉.

We summarize the above in the following lemma.
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Lemma 4.3. Let Dn,δ, Vn,δ,Mn,δ : H1/2(∂Ω) → H−1/2(∂Ω) be defined by
the last equation in (4.7). Then, for each δ > 0,

(4.8) Λσn − Λσ = Dn,δ + Vn,δ +Mn,δ.

We start bounding the first and second terms on the above decomposition.

Lemma 4.4. Let Dn,δ and Vn,δ be defined as above. Then

(4.9)
‖Dn,δ‖H1/2(∂Ω)→H−1/2(∂Ω) + ‖Vn,δ‖H1/2(∂Ω)→H−1/2(∂Ω)

≤ Cδ−1‖σn − σ‖L∞(Ω2δ).

Proof. The case of Dn,δ follows from Cauchy-Schwartz inequality and (4.2).
The definition of Vn,δ implies that

‖Vn,δ‖H1/2(∂Ω)→H−1/2(∂Ω) ≤ Cδ−1 sup
‖ψ‖

H1/2(∂Ω)
=1

‖∇vψn,δ‖L2(Ω2δ)

Using vψn,δ ∈ H1
0 (Ω2δ) as a test function for the equation (4.5), we see that

(4.10)

∫

Ω2δ

|∇vψn,δ|
2 ≤ K

∫

Ω2δ

|σ∇vψn,δ · ∇v
ψ
n,δ|

≤ K

∫

Ω2δ

|(σ − σn)∇uψn · ∇vψn,δ|

≤ K‖(σ − σn)∇uψn‖L2(Ω2δ) ‖∇v
ψ
n‖L2(Ω2δ)

≤ K‖σ − σn‖L∞(Ω2δ) ‖∇u
ψ
n‖L2(Ω2δ) ‖∇v

ψ
n‖L2(Ω2δ)

Dividing both terms by ‖∇vψn,δ‖L2(Ω2δ) and recalling that ‖∇uψn‖L2(Ω) ≤

C‖ψ‖H1/2(∂Ω) the claim follows. �

Note that, by continuing vψn,δ by 0 into Ω \ Ω2δ, (4.10) implies that

(4.11) ‖vψn,δ‖H̊1(Ω) ≤ C‖σ − σn‖L∞(Ω2δ) ‖ψ‖H1/2(∂Ω).

Now we deal with the term Mn,δ. Namely, we prove the strong uniform
boundedness of both Mn,δ(ψ) and M∗

n,δ(ψ).

Lemma 4.5. Let ψ ∈ H1/2(∂Ω) and δ > 0. Then there exists a constant
C(K) such that , for any δ > 0,
(4.12)
lim sup
n→∞

‖Mn,δ(ψ)‖H−1/2(∂Ω) ≤ Cδ−1 lim sup
n→∞

‖σn − σ‖L∞(Ω2δ)‖ψ‖H1/2(∂Ω).

Also,
(4.13)

lim sup
n→∞

‖M∗
n,δ(ψ)‖H−1/2(∂Ω) ≤ Cδ−1 lim sup

n→∞
‖σn − σ‖L∞(Ω2δ)‖ψ‖H1/2(∂Ω).

Proof. Notice that, as follows from (4.2) and (4.7), for each δ > 0 and

ϕ ∈ H1/2(∂Ω),

(4.14) |〈Mn,δ(ψ), ϕ〉| ≤ Cδ−1‖∇mψ
n,δ‖L2(Ωδ)‖ϕ‖H1/2(∂Ω)

Now we use mψ
n,δ − dψn = −vψn,δ ∈ H1

0 (Ω2δ) as a test function in equation

(4.6). By the strong ellipticity we get that

‖∇mψ
n,δ‖L2(Ω2δ) ≤ K2‖∇dψn‖L2(Ω2δ) ≤ C‖ψ‖H1/2(∂Ω).
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Now observe that{
∇ · σn∇d

ψ
n = ∇ · (σn − σ)∇uψ in Ω2δ

dψn = 0 on ∂Ω.

Thus, by (4.3) it follows that

‖∇dψn‖L2(Ωδ) ≤
C

δ
‖dψn‖L2(Ω) + C‖(σ − σn)∇uψ‖L2(Ω2δ)

≤
C

δ
‖dψn‖L2(Ω) + C‖(σ − σn)‖L2(Ω2δ)‖∇u

ψ‖L2(Ω).

Fix δ > 0 and let n go to ∞. Then, using Lemma 4.2 and (4.14), we arrive
at the desired estimate (4.12).

At last, (4.13) follows from (4.12) and (4.9) since, due to the fact that the
DN maps are self-adjoint, we have from (4.8) that

M∗
n,δ = Mn,δ + Vn,δ +Dn,δ − V ∗

n,δ −D∗
n,δ.

�

Next, following section 2, we reintroduce the following definitions:

Definition 4.6. We denote by L2
s(Ω2δ) the L2(Ω2δ)-closure of the set {u ∈

H̊1
loc(Ω2δ) : ∇ · σ∇u = 0}.

We introduce also the modified operators,

(4.15) An,δ : H1/2(∂Ω) → L2
s(Ω2δ), An,δ(ψ) = mψ

n,δ,

and

(4.16) T δ : L2
s(Ω2δ) → H−1/2(∂Ω), 〈T δ(v), ϕ〉 =

∫

Ω2δ

σ∇v · ∇ϕδ,

so that

(4.17) Mn,δ = T δ ◦ An,δ.

Here ψδ is defined as in the beginning of this section.

Lemma 4.7. The operators T δ are compact and, for any fixed δ > 0, the
operators An,δ are uniformly bounded wrt n.

Proof. As in section 2, we notice that the Caccioppoli inequality, Lemma 2.5
and the compactness of the Sobolev embedding imply that the restriction
operator,

Rδ : L2
s(Ω2δ) → H̊1(Ω3δ/2) → L2

s(Ω3δ/2) → H̊1(Ωδ),

is a bounded and, due to the second embedding above, compact operator.

Now the operator T̃ δ : H1(Ωδ) → H−1/2(∂Ω) defined by

〈T̃δ(v), ϕ〉 =

∫

Ωδ

σ∇v · ∇ϕδ/2, ϕ ∈ H1/2(∂Ω),

is continuous. Hence T δ = T̃ δ ◦Rδ is also compact.
As for the uniform boundedness, for a fixed δ, of the operators An,δ, it

follows from the decomposition of An,δ in form:

ψ ∈ H1/2 7→ dψn,δ ∈ H1(Ω) 7→ trace(dψn ) ∈ H1/2(∂Ω2δ) 7→ mψ
n,δ ∈ L

2(Ω2δ).

�
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We can now return to the uniform estimate for the operators Mn,δ.

Lemma 4.8.

(4.18) lim sup
n→∞

‖Mn,δ‖H1/2(∂Ω)→H−1/2(∂Ω) ≤ Cδ−1 lim sup
n→∞

‖σn − σ‖L∞(Ω2δ).

Proof. By (4.17), it follows from Lemma 4.7 that, for any ǫ > 0, δ > 0, there

is a finite dimensional projector Pǫ,δ : H1/2(∂Ω) → H1/2(∂Ω) such that

(4.19) ‖M∗
n,δ ◦ (I − Pǫ,δ)‖H1/2(∂Ω)→H−1/2(∂Ω) ≤ ǫ.

Then, by using estimate (4.13) and the fact that Range(Pǫ,δ) has finite
dimension, it follows that, for a fixed δ,
(4.20)

lim sup
n→∞

‖M∗
n,δ ◦ Pǫ,δ‖H1/2(∂Ω)→H−1/2(∂Ω) ≤ Cδ−1 lim sup

n→∞
‖σn − σ‖L∞(Ω2δ).

Note that the constant C in the above estimate is chosen independent of
ǫ, δ.

Thus, from (4.19) and (4.20), we have

lim sup
n→∞

‖M∗
n,δ‖H1/2(∂Ω)→H−1/2(∂Ω) ≤ Cδ−1 lim sup

n→∞
‖σn − σ‖L∞(Ω2δ) + ǫ,

for arbitrary ǫ > 0. Since

‖M∗
n,δ‖H1/2(∂Ω)→H−1/2(∂Ω) = ‖Mn,δ‖H1/2(∂Ω)→H−1/2(∂Ω),

the claim follows. �

To complete the proof of Theorem 4.1 , by Lemmata 4.3, 4.4 and 4.8 we
get that, for every δ > 0,

lim sup
n→∞

‖Λσn − Λσ‖H1/2(∂Ω)→H−1/2(∂Ω) ≤ Cδ−1 lim sup
n→∞

‖σn − σ‖L∞(Ω2δ).

We complete this section by an example which shows that, in order to
achieve the uniform convergence of the DN maps, one should indeed control
the behavior of σn in some vicinity of ∂Ω and to see, in fact, that the control
of σn and even all its derivatives on ∂Ω is not sufficient.

Theorem 4.9. For any α > 0, there exists a sequence σn ∈M1+α(B(0, 1)),
σn = I on Ωδn , δn → 0, such that σn → I in the sense of the G−convergence,
but

lim sup ‖(Λσn − ΛI)‖H1/2→H−1/2 >
α

16(2 + α)
.

Proof. Take α > 0, Ω = B(0, 1) ⊂ R
2, and consider the family of isotropic

conductivities, σR, R < 1,

σR = γR I = (χB(0,1)(x) + αχB(0,R)−B(0,R2)(x)) I

For these conductivities we have, on one hand, that when R → 1, then σR
G-converge to I. On the other hand, we have the expression,

〈(ΛR − Λ1)e
ikθ, eilθ〉 = δlk|k|mk,

where

mk =
2α(2 + α)(R2|k| −R4|k|)

(2 + α)2 − α2R2|k| − α(2 + α)(R2|k| −R4|k|)
.
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Taking the Hα−norm on ∂B(0, 1) of the form

‖u‖2Hα = |u0|
2 +

∑

k 6=0

|k|2α|uk|
2, if u =

∑
uke

ikθ,

we thus have

‖(ΛR − Λ1)e
ikθ‖H−1/2 = |k|1/2mk = |mk|‖e

ikθ‖H1/2 .

Then, assuming R > (3/4)1/4 and choosing k = [ −1
2 log2R

], we see that

‖(ΛR − Λ1)‖H1/2→H−1/2 >
α

16(2 + α)
.

Hence, choosing σn = σR(n), R(n) → 1 as n → ∞, we see that there is no
convergence Λn → ΛI in the operator norm. �

5. Stability with respect to the G-convergence

Stability with respect to the G-convergence has been proved in 2D by
Alessandrini and Cabib in [2] assuming further that ∇ ·σ = 0. As discussed
also in that paper, the lack of uniqueness in the Calderón problem in the
anisotropic case prevents stability in the general case. Compactness argu-
ments show that this is the only obstruction. Moreover in dimension 2, it is
known [8, Theorem 1] that the lack of uniqueness is due to a quasiconformal
change of variables. Since changes of variables preserve the G-convergence,
the unconditional stability, in the introduction, follows. We will first recall
the basic definitions, then prove that indeed the G-convergence is preserved
by the change of variables and finally will combine it all to prove Theo-
rem 1.3.

For a constant K ≥ 1, a K-quasiconformal mappings is a homeomophism
F : C → C which belongs to W 1,2

loc (C) and such that

(5.1) ‖DF (x)‖2 ≤ KJF , JF = det(DF ).

Given σ ∈ MK(Ω), its associated quadratic form lσ : H1
0 (Ω) → R is

defined by

lσ[u] =

∫

Ω
〈σ∇u,∇u〉,

cf. (2.8). Let F = I at ∂Ω. Then F∗(σ) is formally given by

(5.2) lF∗(σ)(u, v) = lσ(F ∗(u), F ∗(v)) = lσ(u ◦ F, v ◦ F ).

Expressing the push forward F∗ in coordinates, we have

F∗(σ)(y) = J−1
F (x)DF (x)σDF (x)t|F−1(y)=x.

It is straightforward to see that that, if F is K−quasiconformal, then

(5.3) F∗ : MK(Ω) →MK2(Ω).

Together with the fact that F = I on ∂Ω, this implies that F∗ is bijective
in H1

0 (Ω) and, by duality, in H−1(Ω). Explicitly, if f ∈ H−1(Ω) we solve

(5.4) △v = f, f ∈ H−1(Ω) with v ∈ H1
0 (Ω),
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and notice that

(5.5) F ∗(f) = ∇ · (F∗(I)∇(v ◦ F−1)) ∈ H−1(Ω).

Now, since 〈f, F ∗(ϕ)〉 = 〈F ∗(f), ϕ〉 it follows that

(5.6) L−1
F∗(σ)

(F ∗(f)) = F ∗(L−1
σ (f))

Lemma 5.1. Let F be a quasiconformal homeomorphism fixing the bound-
ary of a planar domain Ω. Let σn, σ ∈MK(Ω). Then σn → σ in the sense of
G convergence if and only if F∗(σn) → F∗(σ) in the sense of G convergence.

Proof. By the definition of the G-convergence and (5.6) it is enough to show
that if un ∈ H1

0 (Ω) converges weakly to u then F ∗(un) converges weakly to
F ∗(u). Since F∗ : H1

0 (Ω) → H1
0 (Ω), there is C > 0 such that

‖un ◦ F
−1‖H1

0
≤ C.

By the weak compactness of H1
0 (Ω), it follows that the sequence un ◦

F−1 has a subsequence converging weakly in H1
0 and, therefore, strongly

in L2, to some v ∈ H1
0 . On the other hand, the subsequence of un has

a further subsequence which converges almost everywhere to u and thus
F ∗(un) → F ∗(u) almost everywhere. By the uniqueness of the weak limits
v = F ∗(u). �

Proof of Theorem 1.3 Due to Lemma 2.4, it is sufficient to prove that
(1.12) implies (1.13).

Recall that MK is compact ([15, Theorem 22.3]) and metrizable ([15,
Corollary 10.23]) with respect to the G-topology. Hence, if (1.12) is valid,
the sequence σn (and any its subsequence) has a subsequence σn(k), k =
1, 2, . . . , which converges in the G−sense to a limit conductivity denoted by
σ̃, σ̃ ∈ MK . It then follows from the weak definition of the DN map, (2.5),
that

Λσ = Λσ̃.

Thus, since the G-topology is metrizable, if we define, for K̃ > 1,

(5.7) MK̃(σ) = {σ̃ ∈MK̃ : Λσ = Λσ̃},

it follows that

lim
n→∞

dG(σn,MK(σ)) = 0,

where dG is a distance in MK inducing the G−topology.
The above arguments work in any dimension but in 2D the sets MK̃(σ)

are described in [8, Theorem 1]. Namely,
(5.8)
MK̃(σ) = {σ̃ ∈MK̃ : σ̃ = F ∗(σ) for some quasiconformal map F with F|∂Ω = I},

Thus, it is enough to prove that

lim
n→∞

dG(σ,MK2(σn)) = 0,

see (5.3). We prove this by contradiction. Assume that there is ǫ > 0 and a
subsequence n(k), such that

dG(σ,Mk) > ǫ, where Mk = MK2(σn(k)).
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Since MK2(Ω) is G-compact there is a non-relabelled subsequence of σn(k)
which is G−convergent to σ̃ ∈MK2 . Since, for any σ̃n ∈MK2(σn), we have
Λσ̃n = Λσn , and Λσn → Λσ in the weak sense, we see that Λσ̃ = Λσ. By [8],
there is a quasiconformal F, with F = id on ∂Ω, such that

F∗(σ̃) = σ.

Now Lemma 5.1 implies that F∗(σnk
) ∈ Mk converges to σ. This is a

contradiction.
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stituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM, 28049 Madrid, Spain

E-mail address: daniel.faraco@uam.es

Dept. of Mathematics, University College London, Gower Street, London

WC1E 6BT, UK

E-mail address: y.kurylev@ucl.ac.uk
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