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Abstract 

Obesity is strongly associated with type-2 diabetes mellitus (T2DM). Gut hormones 

are peptides secreted from the gut in response to nutrient intake that act to regulate 

appetite, food intake, energy and glucose homeostasis. Thus, alterations in gut 

hormone abundance and/or signalling can contribute to the development of the obese 

and T2DM phenotype. The incretin hormones glucagon-like peptide-1 (GLP-1) and 

glucose-dependent insulinotropic hormone (GIP) augment glucose-mediated insulin 

secretion. Peptide YY (PYY) is released from the gut post-prandially and acts 

primarily as a satiety signal. Recently studies have highlighted a potent role for PYY 

in regulating glucose homeostasis, which however to date remains partially 

understood. Dipeptidyl peptidase-4 (DPP-4) is involved in the biological inactivation 

of the incretins hence; DPP-4 inhibition is used for the treatment of T2DM. DPP-4 

also mediates the enzymatic processing of the full length PYY 1-36 to the truncated 

isoform PYY 3-36. Thus, DPP-4 inhibition may potentially impact on pancreatic 

PYY function and signalling and may alter the effects of the PYY system on glucose 

homeostasis by shifting the balance between the PYY isoforms. In addition, gut 

peptides have been identified as possible contributors to cases of hyperinsulinaemic-

hypoglycaemia (HH) resulting from bariatric surgery. Therefore, this thesis aimed to 

(1) determine the contribution of pancreatic PYY deletion to the intra-islet PYY 

system; glucose homeostasis and body weight phenotype and (2) establish the impact 

of hyperinsulinism (HI) on DPP-4 and its gut hormone substrates. To address the 

first point, pancreatic-specific Pyy null (PdxPyy KO) mice were phenotyped for 

changes in the pancreatic endocrine system, followed by body weight and glucose 

metabolism, in vivo. Further investigations measuring gut hormone mRNA 

suggested the intra-islet system was contributing to the observed reduction in weight 

gain and HI. Finally, patients with congenital forms of HI (in particular KATPHI) 

were evaluated for PYY, GLP-1 and GIP and their enzyme. This study highlighted a 

role for DPP-4, PYY and GIP in mediating HI. In conclusion, this thesis 

demonstrates a role for gut hormones in energy and glucose homeostasis. Further 

work is required to understand the interaction of gut peptides on islet function. This 

will provide the essential understanding to develop tissue-specific targeted treatment 

for obesity and T2DM. 



 

 5 

Contents 

DECLARATION OF WORK ...................................................................................2 

ACKNOWLEDGEMENTS  .....................................................................................3 

ABSTRACT  ..............................................................................................................4 

CONTENTS  ..............................................................................................................5 

FIGURE LIST  ........................................................................................................13 

TABLE LIST  ..........................................................................................................16 

ABBREVIATIONS  ................................................................................................17 

 

1. INTRODUCTION  ..............................................................................................22 

1.1 Energy and glucose homeostasis   .......................................................................23 

1.2. The central regulatory circuits of appetite and body weight control  ................25 

1.3. Leptin  ................................................................................................................29 

1.4. The enteroinsular axis: A bidirectional interaction of the gut & pancreas  .......30 

1.4.1. Insulin  .................................................................................................31 

1.4.2. Glucagon  ............................................................................................35 

1.4.3. Somatostatin  .......................................................................................35 

1.5. The role of gastrointestinal hormones in energy control and glucose homeostasis   
....................................................................................................................................37 

1.5.1. Ghrelin  ...............................................................................................37 

1.5.2. Glucose-dependent insulinotropic peptide (GIP)  ...............................38 

1.5.3. Glucagon-like peptide-1 (GLP-1)  ......................................................39 

1.5.4. Peptide YY (PYY)  .............................................................................43 

1.6. Hyperinsulinaemic hypoglycaemia (HH)   ........................................................48 

1.6.1. Weight loss surgery-induced HH  .......................................................48 

1.6.2. Congenital forms of HH  .....................................................................51 

1.7. Rationale of study  .............................................................................................55 

1.8. Objectives of thesis  ...........................................................................................59 



 

 6 

2. METHODOLOGY  .............................................................................................60 

2.1 Materials  .............................................................................................................61 

2.2. Patients  ..............................................................................................................61 

2.2.1. Ethics  ..................................................................................................61 

2.2.2. Patient recruitment  .............................................................................61 

2.2.3. Patient blood collection  ......................................................................62 

2.2.4. Patient tissue collection .......................................................................62 

2.3. Animals  .............................................................................................................62 

2.3.1. C57BL/6 mice  ....................................................................................63 

2.3.2. Pyy mice  .............................................................................................63 

2.3.3. PdxPyy mice  .......................................................................................63 

2.3.4. YfpPyyCre mice  ..................................................................................64 

2.4. Genotyping  ........................................................................................................64 

2.4.1. Ear clipping  ........................................................................................64 

2.4.2. DNA extraction  ..................................................................................64 

2.4.3. Polymerase chain reaction (PCR)  ......................................................64 

2.5. Gene expression measurements  ........................................................................67 

2.5.1. Islet isolation  ......................................................................................67 

2.5.2. Islet RNA extraction  ..........................................................................67 

2.5.3.Whole tissue RNA extraction  .............................................................68 

2.5.4. RNA purification  ................................................................................68 

2.5.5. Quantification of RNA  .......................................................................71 

2.5.6. cDNA synthesis  ..................................................................................71 

2.5.7. Quantitative Real-Time PCR (qRTPCR)  ...........................................71 

2.6. In vivo metabolic studies  ..................................................................................74 

2.6.1. Acute feeding studies  .........................................................................74 

2.6.2. Chronic feeding studies  ......................................................................74 

2.6.3. Fasting blood glucose measurement ...................................................74 



 

 7 

2.6.4. Intraperitoneal glucose tolerance test (IPGTT)  ..................................74 

2.6.5. Oral glucose tolerance test (OGTT)  ...................................................74 

2.6.6. Oral glucose-stimulated insulin secretion (OGSIS) measurement  .....75 

2.7. Pancreatic immunohistochemistry (IHC) and morphological analysis  .............75 

2.7.1. Preparation of pancreata  .....................................................................75 

I. Murine  ...........................................................................................75 

II. Human  .........................................................................................75 

2.7.2. Tissue processing for paraffin embedding  .........................................76 

2.7.3. Sectioning and de-paraffinisation .......................................................76 

2.7.4. Immunostaining for fluorescent detection  .........................................77 

2.7.5. Pancreatic immunefluorescent images and morphometric analysis.....77 

2.7.6. Haematoxylin and eosin staining  .......................................................79 

2.8. Assays  ...............................................................................................................80 

2.8.1. Radioimmunoassay (RIA)  ..................................................................80 

2.8.2. Enzyme-linked immunoassays (ELISA)   ...........................................81 

2.9. Statistical analysis of data  .................................................................................81 

 

3. CHARACTERISATION OF THE INTRA-ISLET PYY SYSTEM  .............82 

3.1. Introduction  .......................................................................................................83 

3.2. Hypothesis  .........................................................................................................85 

3.3. Aims  ..................................................................................................................85 

3.4. Study design  ......................................................................................................85 

3.5. Results  ...............................................................................................................86 

3.5.1. Establishing and optimising an islet isolation protocol in mice  .........86 

3.5.2. Optimising the qRTPCR protocol to determine the Yr present in 
isolated pancreatic islets from C57BL/6 mice  .............................................89 

3.5.2.1. RNA extraction  ...................................................................89 

3.5.2.2. Reverse transcription  ...........................................................90 

3.5.2.3. qRTPCR  ..............................................................................90 



 

 8 

3.5.2.4. Determining islet Yr subtype expression .............................91 

3.5.3. Evaluating the intra-islet localisation of PYY and DPP-4 in normal WT 
mouse pancreata using IHC  .........................................................................92 

3.5.3.1. Confirmation of islet PYY expression using transgenic mice 92 

3.5.3.2. IHC antibody optimisation & controls  ................................94 

3.5.3.3. Assessing PYY antibody cross-reactivity with homologous 
sequences  .........................................................................................95 

3.5.3.4. The DPP-4 antibody  ............................................................96 

3.5.3.5. Assessing the distribution and localisation of PYY and DPP-4 
within different islet cell subtypes in WT mouse pancreata  ............97 

3.5.3.5.1. PYY localisation in β-, α- and δ-cells  ..................97 

3.5.3.5.2. DPP-4 localisation in β-, α-, δ- and PYY positive 
cells  ......................................................................................99 

3.5.3.6. Confirming the expression of Y1R on β-cells and DPP-4 
positive cells in WT mouse pancreata  ............................................101 

3.5.4. Evaluating the effect of pancreatic-specific and global Pyy deletion on 
islet morphology and expression  ................................................................102 

3.5.4.1. Morphological islet changes in the PdxPyy and Pyy mice  102 

3.5.4.2. Assessment to detect changes in pancreatic cell area 
expression of the Pyy mouse using IHC and qRTPCR ...................104 

3.5.4.2.1. Pyy KO: Pancreatic insulin mRNA and β-cell area 104 

3.5.4.2.2. Pyy KO: Pancreatic glucagon mRNA and α-cell area104 

3.5.4.2.3. Pyy KO: Pancreatic somatostatin  mRNA and δ-cell 
area .......................................................................................104 

3.5.4.3. Morphometric assessment of islet cell area expression in the 
PdxPyy mouse using IHC ................................................................108 

3.5.4.3.1. PdxPyy KO: Changes in pancreatic β-cell area ..108 

3.5.4.3.2. PdxPyy KO: Changes in pancreatic α-cell area ..109 

3.5.4.3.3. PdxPyy KO: Changes in pancreatic δ-cell area ...110 

3.6. Summary  .........................................................................................................111 



 

 9 

3.6.1. Islet isolation for gene expression analysis  ......................................111 

3.6.2. Pancreatic localisation of PYY, DPP-4 and Y1R in the WT mouse  111 

3.6.3. Determining changes in pancreatic expression in the Pyy transgenic 
lines  ............................................................................................................112 

3.6.4. Conclusion  .......................................................................................112 

 

4. INVESTIGATING THE IN VIVO ROLE OF INTRA-ISLET PYY IN 
ENERGY AND GLUCOSE HOMEOSTASIS  ..................................................113 

4.1. Introduction  .....................................................................................................114 

4.2. Hypothesis  .......................................................................................................116 

4.3. Aims  ................................................................................................................116 

4.4. Study design  ....................................................................................................116 

4.5. Results  .............................................................................................................117 

4.5.1. Constructing the Pdx-specific Pyy null mouse  ................................117 

4.5.1.1. Confirmation of pancreatic-specific Pyy gene deletion in the 
PdxPyy KO mouse using genotyping PCR  ....................................117 

4.5.1.2. Evaluating the protein expression of PYY in pancreatic islets 
of the PdxPyy mice  ........................................................................120 

4.5.2. In vivo evaluation of the physiological characteristics of intra-islet Pyy 
deletion on energy and glucose homeostasis  .............................................121 

4.5.2.1. Evaluating the effects of Pdx-mediated deletion of Pyy on 
food intake  ......................................................................................121 

4.5.2.2. Evaluating the effects of Pdx-mediated deletion of Pyy on 
body weight  ....................................................................................123 

4.5.2.3. Evaluating the effects of Pdx-mediated deletion of Pyy on 
factors that may contribute to the observed body weight phenotype125 

4.5.2.4. Evaluating the effects of Pdx-mediated deletion of Pyy on 
glucose homeostasis .........................................................................127 

I. IPGTT  .............................................................................127 

II. OGTT and OGSIS  .........................................................129 



 

 10 

4.5.3. Investigating the possible compensatory factors that may contribute to 
the observed energy and glucose homeostatic phenotypes of the PdxPyy KO 
mouse  .........................................................................................................131 

4.5.3.1. Assessing the hormonal changes that may contribute to the 
PdxPyy KO phenotype: PYY expressing sites  ...............................131 

4.5.3.2. Assessing the duodenal hormonal changes that may 
contribute to the PdxPyy KO phenotype  . .......................................132 

4.5.3.3. Assessing the gut hormone changes that may contribute to the 
PdxPyy KO phenotype  . ..................................................................133 

4.6. Summary  .........................................................................................................134 

4.6.1. Analysis of Pdx-specific deletion of Pyy  .........................................134 

4.6.2. PdxPyy deletion effects on body weight and appetite regulation  ....134 

4.6.3. PdxPyy deletion and glucose homeostasis  .......................................134 

4.6.4. PdxPyy deletion and the gut  .............................................................135 

4.6.5. Conclusion  .......................................................................................135 

 

5. CHARACTERISING THE ROLE OF GUT HORMONES IN 
HYPERINSULINAEMIC HYPOGLYCAEMIA (HH) .....................................136 

5.1. Introduction  .....................................................................................................137 

5.2. Hypothesis  .......................................................................................................140 

5.3. Aims  ................................................................................................................140 

5.4. Study design  ....................................................................................................140 

5.5. Results  .............................................................................................................141 

5.5.1. Assessing the changes in expression of pancreatic genes involved in 
energy and glucose balance   .......................................................................141 

5.5.2. Characterising the distribution and localisation of islet PYY and DPP-4 
in normal healthy pancreas from children....................................................142 

5.5.2.1. PYY localisation in α-, β-, and δ-cells  . .............................142 

5.5.2.2. DPP-4 localisation in α-, β-, and δ-cells  . ..........................142 

5.5.3. Evaluating the pancreatic changes in patients with KATPHI  ............148 

5.5.3.1. Morphological changes in patients with KATPHI  . .............148 



 

 11 

5.5.3.2. Proliferative changes in patients with KATPHI . ..................149 

5.5.3.3. Assessment to detect islet expression changes in patients with 
KATPHI .............................................................................................150 

5.5.4. Changes in plasma gut hormone levels in patients with KATPHI  .....156 

5.5.4.1. Recruitment and biochemical characteristics of KATPHI 
patients   . .........................................................................................156 

5.5.4.2. Assessing circulating gut hormones levels in patients with 
KATPHI  ............................................................................................156 

5.5.4.3. Assessing correlations between circulating metabolites in 
patients with KATPHI at normoglycaemia and at hypoglycaemia. ...156 

5.6. Summary  .........................................................................................................160 

5.6.1. mRNA analysis of pancreatic genes involved in energy and glucose 
homeostasis  ................................................................................................160 

5.6.2. PYY and DPP-4 localisation and expression in the healthy pancreas 160 

5.6.3. Changes in islet hormone expression in KATPHI patients  ................160 

5.6.4. Role of gut hormones in KATPHI .......................................................161 

5.6.5. Conclusion  .......................................................................................161 

 

6. OVERALL DISCUSSION AND CONCLUSIONS .......................................162 

6.1. Characterisation of the intra-islet PYY system  ...............................................163 

6.2. Investigating the in vivo role of intra-islet PYY in energy and glucose 
homeostasis  ............................................................................................................170 

6.3. Characterising the role of gut hormones in hyperinsulinaemic hypoglycaemia 
(HH)  ........................................................................................................................175 

6.4. Overall conclusion ...........................................................................................181 

 

REFERENCES ......................................................................................................183 

APPENDICES .......................................................................................................203 

APPENDIX I: SOLUTIONS  ...............................................................................204 

APPENDIX II: SUPPLEMENTARY IHC IMAGES FOR C3  .......................205 



 

 12 

CD ROM for Appendix II ................................................... in sleeve on back cover 

APPENDIX III: PRESENTATIONS & AWARDS  ..........................................206 

APPENDIX IV: PUBLICATIONS  .....................................................................207



 

 13 

Figure list 

Figure 1.1: Diagrammatic representation of the hypothalamic nuclei involved in 
energy homeostasis  ..................................................................................................27 

Figure 1.2: Graphical illustration of the incretin effect  ............................................30 

Figure 1.3: Diagrammatic representation of β-cell function  ....................................33 

Figure 1.4: Diagrammatic representation of the proposed insulin action on 
responsive tissues  .....................................................................................................34 

Figure 1.5: Figure illustrating the processing of the proglucagon precursor to its 
tissue-specific post-translational processing products  .............................................42 

Figure 1.6: Comparison of sequence homology between PYY, NPY and PP  .........44 

Figure 1.7: Figure illustrating the processing of the proPYY precursor to different 
bioactive isoforms of PYY  .......................................................................................45 

Figure 1.8: Possible regulatory pathways of intra-islet PYY  ...................................56 

Figure 1.9: Schematic representation of reported pathways that potentially promote 
islet β-cell regeneration and secretion  ......................................................................58 

 

Figure 2.1: RNA integrity number measurement by the Agilent bioanalyser  .........70 

 

Figure 3.1: Successful pancreatic perfusion with collagenase buffer to yield isolated 
islets ..........................................................................................................................87 

Figure 3.2: Islet isolation from collagenase perfused whole pancreata ....................88 

Figure 3.3: Differences in Yr expression of the whole pancreas and isolated islets. 91 

Figure 3.4: Validation of PYY protein expression using a transgenic reporter line .93 

Figure 3.5: Confirmation of normal islet cell staining in WT mice  .........................94 

Figure 3.6: Absence of PYY staining in Pyy KO mice. ............................................95 

Figure 3.7: Validation of DPP-4 antibody used in WT mice ....................................96 

Figure 3.8: PYY is not localised in the β-cells. ........................................................97 

Figure 3.9: Islet PYY is present in the α- and δ-cells in WT mice ...........................98 

Figure 3.10: DPP-4 is localised on α-, β- and PYY positive cells but not with 
somatostatin in WT mice ........................................................................................100 



 

 14 

Figure 3.11: Y1R is localised on β-cells and DPP-4 positive cells in WT mice. ...101 

Figure 3.12: Changes in morphological structure the Pyy transgenic mice. ...........103 

Figure 3.13: Global Pyy deletion has no effect on Ins gene expression or β-cell area. 105 

Figure 3.14: Global Pyy deletion leads to a reduction in α-cell area.  ....................106 

Figure 3.15: Global Pyy deletion leads to an increase in δ-cell area ......................107 

Figure 3.16: PdxPyy deletion has no effect on β-cell area  .....................................108 

Figure 3.17: PdxPyy deletion results in a reduction in α-cell area  ........................109 

Figure 3.18: PdxPyy deletion results in an increase in δ-cell area ..........................110 

 

Figure 4.1: PdxPyy mouse targeting strategy.  ........................................................118 

Figure 4.2: Evidence for the deletion of Pyy in the PdxPyy KO mouse.  ...............119 

Figure 4.3: Assessment of Pdx-regulated PYY protein expression  .......................120 

Figure 4.4: Assessment of food intake in the PdxPyy mice  ...................................122 

Figure 4.5: Body weight phenotype of the PdxPyy mice  .......................................124 

Figure 4.6: PdxPyy KO mice show decreased adiposity  ........................................126 

Figure 4.7: Assessment of IPGTT in the PdxPyy mice  ..........................................128 

Figure 4.8: Assessment of OGTT and OGSIS in the PdxPyy mice  .......................130 

Figure 4.9: Assessment of Pyy mRNA in the PdxPyy mice  ..................................131 

Figure 4.10: Assessment of duodenal gut hormone gene expression .....................132 

Figure 4.11: Assessment of gut hormone gene expression in the male PdxPyy mice 133 

 

Figure 5.1: Gene expression results from pancreatic tissue samples of control and 
KATPHI patient .........................................................................................................141 

Figure 5.2: PYY is only localised in the human α-cells.  ........................................143 

Figure 5.3: DPP-4 is localised in and on β-cells with insulin in healthy children 
pancreatic tissue.  ....................................................................................................144 

Figure 5.4: DPP-4 is localised in and on α-cells with glucagon in healthy children 
pancreatic tissue  .....................................................................................................145 



 

 15 

Figure 5.5: DPP-4 is localised in and on a few δ-cells with somatostatin in healthy 
children pancreatic tissue ........................................................................................146 

Figure 5.6: DPP-4 is not co-localised with PYY cells in healthy children pancreatic 
tissue.  ......................................................................................................................147 

Figure 5.7: Normal and KATPHI pancreatic architecture.  .......................................148 

Figure 5.8: KATPHI promotes islet-cell proliferation.  ............................................149 

Figure 5.9: KATPHI promotes β-cell proliferation.  .................................................151 

Figure 5.10: KATPHI absent of α-cell proliferation.  ...............................................152 

Figure 5.11: KATPHI promotes δ-cell proliferation.  ...............................................153 

Figure 5.12: KATPHI does not promote PYY-positive cell proliferation.  ..............154 

Figure 5.13: KATPHI is absent of α-cell proliferation. ............................................155 

Figure 5.14: Assessment of circulating DPP-4-regulated gut hormones in patients 
with KATPHI.  ..........................................................................................................158 

Figure 5.15: Correlation analysis between circulating metabolite levels in patients 
with KATPHI. ...........................................................................................................159 

 

Figure 6.1: Potential regulatory pathways of the intra-islet PYY system. ..............174 

 



 

 16 

Table list 

Table 1.1: Regulatory factors involved in the control of food intake and energy 
balance ......................................................................................................................28 

Table 1.2: Aetiology of hypoglycaemia in neonates .................................................52 

Table 1.3: Key genes involved CHI ..........................................................................53 

 

Table 2.1: Genotyping primers and PCR conditions. ...............................................66 

Table 2.2: Probes used for TaqMan gene expression analysis. .................................73 

Table 2.3: IHC antibodies  ........................................................................................78 

Table 2.4: Immunoassays used for quantification of circulating hormones .............80 

 

Table 3.1: RNA extraction of isolated islets from wild type mice using Qiagen 
RNeasy kit. ................................................................................................................89 

 

Table 5.1: Recruited KATPHI patient details.  .........................................................157 



 

 17 

Abbreviations 

3V  Third cerebral ventricle 

18s  18s ribosomal RNA 

ACTB  β-actin 

ADP/ATP Adenosine bi/triphospate 

AgRP  Agouti-related peptide 

ANOVA Analysis of variance 

ANS  Autonomic nervous system  

ARC  Arcuate nucleus 

AU  Arbitrary unit(s) 

AUC  Area under curve 

BAT  Brown adipose tissue 

BBB  Blood brain barrier 

BMI  Body mass index 

Bo  RIA reference tube 

BrdU  Bromodeoxyuridine 

BSA  Bovine serum albumin 

BSU  Biological Services Unit 

BW   Body weight  

Ca2+  Calcium ion 

cAMP  Adenosine 3’, 5’ –cyclic monophosphate 

CART  Cocaine- and amphetamine-regulated transcript 

CCK  Cholesytokinin 

cDNA  Complementary deoxyribonucleic acid 

CHI  Congenital form of hyperinsulinism 

CNS  Central Nervous System 

Ct  Cycle threshold 

DAPI  4',6-diamidino-2-phenylindole 

D-CHI  Diffuse disease 

DIO  Diet-induced Obesity 

DM  Diabetes mellitus 

DMEM Dulbecco’s modified eagle medium 



 

 18 

DMH  Dorsomedial Hypothalamus 

DNA  Deoxyribonucleic acid 

DPP-4  Dipeptidyl Peptidase-4  

EDTA  ethylene diaminetetraacetic acid 

ELISA Enzyme linked-Immunosorbent Assay 

ER  endoplasmic reticulum  

FBS  Foetal Bovine Serum 

F-CHI  Focal disease 

FU  Fluorescent units 

GAPDH  Glyceraldehyde-3-phosphate dehydrogenase 

GBP  Gastric bypass 

GCG  Glucagon 

GCGR Glucagon receptor 

GCK  Glucokinase 

GHIH  Growth hormone inhibiting hormone 

GHSR  Growth hormone secretagogue receptor 

GI  Gastrointestinal  

GIP  Glucose-dependent peptide 

GIPR  Glucose-dependent peptide receptor 

GLP-1/2  Glucagon-like peptide-1/2 

GLP-1R Glucagon-like peptide-1 receptor 

GLUD1 Glutamate dehydrogenase 

GLUT  Glucose transporter type 

GPCR  G-Protein Coupled Receptor 

GOSH  Great Ormond Street Hospital 

GSIS   Glucose-stimulated insulin secretion 

HADH 3-hydroxyacyl-CoA dehydrogenase 

H&E  Haematoxylin and eosin 

HFD  High-fat diet  

HI  Hyperinsulinaemia/Hyperinsulinism 

HH  Hyperinsulinaemia Hypoglycaemia 

HNF4α Hepatocyte nuclear factor-4α 

HPRT  Hypoxyanthine guanine phosphoribosyl transferase 



 

 19 

HPS  Hypothalamic-pituitary-somatotropin axis 

HPT  Hypothalamic-pituitary-thyroid axis 

IHC  Immunohistochemistry 

IGF  Insulin-like growth factor 

IL2  Interleukin 2 

Ins/INS Insulin  

i.p.  Intraperitoneal 

IPGTT  Intraperitoneal glucose tolerance test  

ir  Immunoreactivity 

IR  Insulin receptor 

IRS  Insulin receptor substrate 

i.v.  Intravenous  

IVC  Individually Ventilated Cages 

KATP   ATP-sensitive potassium channels 

Kir  Potassium inward-rectifying subunit 

KO  Knock-out 

LHA  Lateral hypothalamic areas 

Lepr   Leptin receptor  

MC(1-5)R Melanocortin Receptor (1-5) 

MBH  Medial basal portions of the hypothalamus  

MCT  Monocarboxylase transporter 

NBF  Neutral buffered formalin  

NFW  Nuclease-free water 

NIPHS Noninsulinoma pancreatogenous hypoglycaemia syndrome 

NPY  Neuropeptide Y 

NRES  National research ethics 

NSB  Non-specific binding 

NTS  Nucleus of the solitary tract  
OFC  Orbital frontal cortex 

OGTT  Oral glucose tolerance test  

OGSIS  Oral glucose-stimulated insulin secretion  

OXM  Oxyntomodulin 

PBS  Phosphate buffered saline 



 

 20 

PC  Proconvertase 

PCR   Polymerase chain reaction  

Pdx  Pancreatic-duodenal homeobox 

PKA  Protein kinase A 

POMC Proopiomelanocortin 

PP  Pancreatic polypeptide 

Ppx  Pancreatectomy 

PVN  Paraventricular nucleus 

PYY  Peptide YY  

qRTPCR Quantitative real-time PCR 

rcf  Relative centrifugal field 

RIA  Radioimmunoassay 

RIN  RNA integrity number 

RM-ANOVA Repeated measures analysis of variance 

RPM  Revolutions per minute 

RT  Reverse transcription 

SD  Standard deviation 

SEM  Standard error mean 

SPF  Specific pathogen free 

SRIF  Somatostatin release inhibitory factor 

SST  Somatostatin  

SSTR  Somatostatin receptor 

STZ  Streptozotocin 

SUR  Sulphonylurea 

T2DM  Type-2 diabetes mellitus 

t  Time 

TAE  Tris-acetate EDTA 

TC  Total count 

Ubc  Ubiquitin C 

UCP  Uncoupling protein 

VGCC  Voltage-gated calcium channels 

VMH  Ventromedial hypothalamus 

WAT  White adipose issue 
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w/v  weight/volume 
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1. Introduction 

1.1. Energy and glucose homeostasis 

Energy balance is required for an array of homeostatic functions essential for survival. 

The fine tuning of this control is achieved through interactions of complex feedback 

systems from neuronal inputs to the gut-brain axis regulating what and when we eat 

(Murphy and Bloom, 2006). However, it is not the dysfunction of one of these specific 

steps that has caused obesity and diabetes pandemics, but a regulatory system that is 

finding the demand too great. 

Obesity is characterised as a condition where stores of fat exceed normal and healthy 

limits. This is crudely but clinically defined as a body mass index (BMI) of 30 kg/m
2
 or 

more in adults. In school-aged children and adolescents, this is measured by growth 

references matched for age and sex. Two standard deviations from the normal 

distribution is characterised as obese.  

The modern age supply of cheap and highly calorific dense food and sedentary lifestyles 

are forcing malfunctions in this otherwise stable and constant metabolic homeostatic 

setting (Hill et al., 2003). Obesity is a multifaceted condition with pathogenic 

contributions occurring via physical, psychological and social involvements (Moore et 

al., 1962). It appears to have no boundaries, virtually affecting all individuals regardless 

of age or socioeconomic group in the developing and developed world. According to 

2008 statistics from the World Health Organisation (WHO), it was estimated that 500 

million adults across the globe were obese, which is over 10% of the world’s adult 

population. 40 million under-5s were also classified as overweight by 2011 with 30 

million of this number being from developing countries (WHO, 2013). In general, the 

incidence of obesity is higher in females, but poses a very high and serious risk of other 

conditions such as cardiovascular diseases, several forms of cancers (Calle and Thun, 

2004) and most notably type-2 diabetes mellitus (T2DM) to both sexes (Haslam, 2010). 

Maintenance of energy balance; energy intake (food intake) and expenditure 
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(metabolism) must be homeostatically matched (Morton et al., 2006). Traditional 

exercising and dieting methods are failing to control obesity, making it essential to 

improve our understanding of the mechanisms implicated in body weight changes in the 

bid to solve the soaring obesity crisis seen worldwide. 

Glycaemic control is important in maintaining the storage of fuels, in particular glucose. 

Glucose is stored in tissues from ingested carbohydrates. The stomach and remaining 

gastrointestinal tract (GI) break down the carbohydrates eaten and absorb the glucose 

molecules, which circulate in the periphery. The increase in plasma glucose levels 

promotes glucose-stimulated insulin secretion (GSIS). Insulin; a pancreatic -cell 

hormone aids in the transport of glucose to tissues. Like the dysregulation of energy 

homeostasis, imbalances in glucose control can also be detrimental, leading to a severe 

condition known as diabetes mellitus (DM). Normally fasted blood glucose 

concentrations in adult humans are maintained within a very tight and narrow range of 

3.9 to 5.5 mM. DM arises in individuals where there is a resistance for insulin to 

function normally (also known as ‘insulin resistance’), which is termed as T2DM. 

T2DM is hyperinsulinaemia (HI)-induced insulin resistance and thus, promotion of 

hyperglycaemia.  

‘Diabesity’ (Astrup and Finer, 2000), a term used to link obesity to diabetes is thought 

to be caused by the build-up of fat surrounding tissues (visceral fat) and thus, prevents 

insulin from functioning. This inhibits an intake of glucose into the tissue causing blood 

glucose concentration to remain high. As the tissue appears to be deficient in fuel 

required for cellular activity, it continues to send signals to the pancreas to produce 

more insulin; this results in exertion of the insulin-producing pancreatic -cells. This 

eventually leads to -cell failure with a subsequent reduction and sometimes loss of 

insulin production. This can eventually result in the individual going from insulin 

resistance to an insulin deficient state. 
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Currently, predictions are that more than half of obese persons will eventually be 

diagnosed with T2DM. Shaw et al. (Shaw et al., 2010) predicted that the prevalence of 

adult diabetes was 6.4% in 2010, worldwide.  A further 20 years will apparently see this 

figure go to 7.7%. Disturbingly, it is estimated a rise in the number of adults with DM 

will occur; an increase by 20% in developed countries and 73% in the developing world. 

Thus, it is fundamental that we progress to understanding and treating the root cause of 

this metabolic imbalance. 

 

1.2. The central regulatory circuits of appetite and body weight 

control 

During the 1950s, Stellar identified the hypothalamus and the brainstem as the central 

homeostatic sites of energy balance (Grill and Kaplan, 2002). These feeding sites 

receive both endocrine and neural inputs from the periphery to adjust to both the short-

term nutritional status and the long-term tissue stores. The non-homeostatic regions of 

the central nervous system (CNS) such as the orbital frontal cortex (OFC) have also 

been implicated in feeding behaviour (Batterham et al., 2007). This is thought to be an 

adaptation to our current environment and lifestyles.  A prominent role of the brain and 

in particular the hypothalamus in regulating the feeding behaviour was established about 

50 years ago, however the last 20 years have provided the milestones in our major 

developmental understandings of how the brain exerts control over energy balance 

(Murphy and Bloom, 2006). Taken from the Greek (hypo- below; below thalamus), the 

hypothalamus (Figure 1.1) is a major centre for the regulation of food intake and energy 

balance (Harrold, 2004). The hypothalamus is present in all mammals; it occupies the 

midbrain below the thalamus and lies on either side of the third ventricle (3V). It also 

plays an important role in hormonal regulation and links the nervous system to the 

endocrine system via the pituitary gland. Whilst the hypothalamus is a simple looking 

structure, it is integrated into numerous complex neuronal systems. These neuronal 

circuits interchange regulatory factors, which causes subsequent changes in food intake 

and fat deposition. Identified through classical lesioning experiments, the hypothalamic 
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regions involved in the regulation of energy balance and food intake have led to 

observations of certain phenotypes in rodents (Morton et al., 2006). Lesions to the 

medial basal portions of the hypothalamus (MBH) results in increased adiposity; 

whereas damage to the lateral hypothalamic areas (LHA) produces a reduction in food 

intake and body weight (Hetherington and Ranson, 1940). Further work demonstrated 

the primary region of the MBH area that was disrupted and caused hyperphagia and 

obesity was in fact the ventromedial hypothalamus (VMH), and hence, was 

appropriately named the ‘satiety’ centre. In contrast, the LHA was termed the ‘feeding’ 

centre and taken together led to the ‘dual centre’ hypothesis (King, 2006).  

The hypothalamic control of feeding is now well-known to be far more sophisticated 

and complex than previously thought. For example, lesions to other MBH subnuclear 

areas, such as the paraventricular nuclei (PVN) and arcuate nucleus (ARC) led to 

hyperphagia and weight gain (Elfers et al., 2011). However, lesions restricted to the 

dorsomedial hypothalamus (DMH) resulted in hypophagia, without producing changes 

to body weight (Bellinger and Bernardis, 2002). This identified the role of many 

hypothalamic nuclei in controlling body weight and energy stores.  

Post-prandially, the hypothalamus senses the changes in metabolic status from both 

central and peripheral factors (Table 1.1). Circulating factors appear to be released in 

response to adiposity, in addition to secretion of satiety factors from the GI tract in 

response to nutrient-intake (Cuomo et al., 2011). This hypothalamic-gut crosstalk 

governs the regulation and expression of central mediators involved in energy balance. 

The orexigenic mediators act to stimulate food intake and reduce energy expenditure, 

causing an increase in adiposity (Tiesjema et al., 2007). However, after a meal and/or 

when adiposity is above physiological requirements, the satiety factors (anorectic 

factors) act to reduce feeding and increase the body’s natural thermogenic pathways to 

remove excess stores. These anorectic factors provide negative feedback to the 

hypothalamic regions that control food intake (Xu et al., 2011). 
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Figure 1.1: Diagrammatic representation of the hypothalamic nuclei involved in 

energy homeostasis (grey box) (Schwartz et al., 2000). ARC: arcuate nucleus; PVN: 

paraventricular nucleus; VMH: ventromedial hypothalamus; DMH: dorsomedial 

hypothalamus; LH: lateral hypothalamic area; OC: optic chiasm.  
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Orexigenic peptides 

 

 

Anorectic/Anorexigenic peptides 

 

Peripheral Ghrelin 

Peptide YY (PYY) 

Insulin 

Leptin 

Glucagon-like Peptide- 1/2 (GLP-1/2) 

Oxyntomodulin (OXM) 

Cholecystokinin (CCK) 

Central 
Neuropeptide Y (NPY) 

Agouti- Related Peptide (AgRP) 

 

Melanocortins 

Cocaine- and Amphetamine- Related Transcript (CART) 

 

 

Table 1.1: Regulatory factors involved in the control of food intake and energy balance. The orexigenic mediators act to 

stimulate food intake and reduce energy release, thus, increasing adiposity. However, after a meal and/or when adiposity is above 

physiological requirements, the satiety factors (anorectic) act to reduce feeding and increase the body’s natural thermogenic pathways 

to remove excess stores. These anorectic factors provide negative feedback to the hypothalamic regions that control food intake. This 

energy homeostatic mechanism is fine-tuned to a ‘set’ balance, ensuring the stores are sufficient for physiological requirements.  



 29 

1.3. Leptin 

Leptin is an adipocyte-derived hormone that acts to reduce food intake by inducing a 

feeling of ‘satiety’ (Wang et al., 1997). Leptin is a 167 amino acid hormone, which was 

discovered by Friedman, Leibel and Coleman whist working with leptin mutant mice 

(Coleman, 1978, Green et al., 1995). These mice were spontaneously found in the 

Jackson Laboratories as obese and hyperphagic. Further work led to finding of the gene 

that encoded leptin (Ob gene) and the leptin receptor (Lepr) gene; Lepr. The anorectic 

action of leptin is partially mediated via the down-regulation of hypothalamic orexigen 

neuropeptide Y (NPY). Central leptin receptors (Lepr) are expressed on neurones in the 

ARC, PVN and DMH, including the NPY/AgRP (agouti-related peptide: orexigen 

peptide) neurones. After a fatty meal, adiposity increases and with this the adipocytes 

release leptin to provide a negative feedback to areas expressing the Lepr, including the 

hypothalamic feeding and satiety centres (Zhang et al., 1997). Leptin crosses the blood-

brain barrier (BBB) and enters the CNS via a saturable transport system (Banks et al., 

2000).  

The NPY/AgRP neurones are negatively regulated by leptin, consequently causing a 

reduction in Npy mRNA and inhibiting the stimulation to eat. Peripherally, leptin 

increases energy expenditure by stimulating uncoupling protein (UCP) -1 in brown 

adipose tissue (BAT) (Wang et al., 1997). However, obese individuals appear to become 

leptin-resistant, a phenomenon that remains unknown (Myers et al., 2010).  

Apart from the hypothalamus, satiety factors signal from the periphery to other central 

regions of the brain, including the brainstem. These central sites are linked via neuronal 

projections that have yet to be identified and characterised (Thorens, 2012). It was 

recently demonstrated that the brainstem exhibits superior homeostatic control than the 

hypothalamic circuits (Williams and Schwartz, 2011). Transgenic mice deficient in Lepr 

within the nucleus of the solitary tract (NTS) of the hindbrain (Phox2b Cre 

Lepr(flox/flox) display hyperphagia, increased weight gain as seen in the 

hypothamlamic-specific LeprKO
VMH

 mice (Bingham et al., 2008); however, unlike the 
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LeprKO
VMH

 mice, the increases in metabolic rate seen in the Phox2b Cre Lepr(flox/flox) 

mice produced a compensatory increase in food intake but prevented the development of 

obesity (Scott et al., 2011). 

 

1.4. The enteroinsular axis: A bidirectional interaction of the gut & 

pancreas 

In 1902, the first description of a connection between the gut and the pancreas was 

established by Bayliss and Starling who demonstrated that a factor in intestinal mucosa 

extracts, which they named as ‘secretin’ (Bayliss and Starling, 1902, Hirst, 2004). 

Secretin acted via blood to stimulate the pancreatic exocrine secretions (Chey and 

Chang, 2003). This was followed by Perley and Kipnis showing that ingested nutrients 

increased the stimulation of insulin release more potently than intravenous 

administration of glucose (Perley and Kipnis, 1967). Creutzfeldt then labelled this effect 

as an ‘incretin’ effect, i.e. a GI hormone that is released due to enteral stimulation which 

in turn augments insulin release (Figure 1.2) (Creutzfeldt, 1979). The link between the 

gut and pancreas was referred to as the ‘enteroinsular axis’ (Unger and Eisentraut, 

1969).   

 

 

 

 

 

 

 

Figure 1.2: Graphical illustration of 

the incretin effect. This figure 

illustrates the difference in insulin 

response to oral versus intravenous 

glucose load. This difference between 

the insulinotropic effect is the incretin 

effect. Adapted from (Nauck et al., 

1986).

Oral glucose 

Intravenous  
glucose 

Time 

P
la

s
m

a
 I

n
s
u

li
n

 



	
   31 

1.4.1. Insulin 

Apart from glucose, insulin secretion is also stimulated by other factors including the 

autonomic nervous system (ANS) and gut peptides. However the ANS mechanisms are 

not fully understood (Rodriguez-Diaz and Caicedo, 2013). Proinsulin is synthesised 

from the human INS or rodent Ins gene and via proconvertase- (PC-) 1, 2 and 

carboxypeptidase activity yields the mature insulin and C-peptide. Post-prandial glucose 

enters the β-cells via the glucose transporter type-2 (GLUT2) transporter. Glucose then 

enters glycolysis and respiratory cycles and yields the high-energy molecule, ATP. The 

ATP molecules travel to and inhibit the potassium-dependent ATP channels (KATP) 

resulting in depolarisation of the cell membrane via its two subunits: sulphonylurea 

receptor-1 (SUR-1) and inward rectifying potassium channels (Kir6.2). This triggers 

voltage-gated calcium channels (VGCC) to open and an influx of calcium (Ca2+) occurs. 

The Ca2+ promotes exocytosis of the pre-packaged mature insulin and active C-peptide, 

which are released into the circulation (Figure 1.3). Hence, C-peptide is used as a 

surrogate marker for insulin resistance. Pancreatic β-cells release insulin in two phases. 

The first phase release is rapid and mediated by increases in blood glucose 

concentrations. Whereas, the second phase of insulin secretion is glucose-independent. 

This is much slower and more sustained as newly synthesised insulin-containing 

vesicles are released (Seino et al., 2011).  

Insulin has an oscillation phase; it increases and then steadily decreases levels every 3-6 

minutes. This rhythmic delivery keeps the body in fine balance and is thought to prevent 

insulin resistance occurring. Insulin travels to responsive tissues, typically the liver, 

muscle and adipocytes and binds to its receptor; the insulin receptor (IR); a tyrosine 

kinase receptor. IR activates kinases to phosphorylate insulin receptor substrate-1 (IRS-

1) to induce the translocation of GLUT4 to the outer plasma membrane. This allows for 

an increase in cellular glucose entry (Figure 1.4). The cascading phosphorylation by 

IRS-1 simultaneously promotes hepatic glycogen synthesis or lipid synthesis in 

adipocytes. Ir KO mice develop HI, thought to be a result of insulin signalling from the 

insulin-like growth factor-1 receptor (IGF-1R) (Accili et al., 1996, Joshi et al., 1996). 
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Joshi et al., 1996). On the other hand, Ins null mice develop DM (Duvillié et al., 1997). 

An eventual loss of β-cell volume and function are seen in T2DM. Thus, restoration or 

maintenance of β-cell health and function with new treatments and knowledge are 

actively pursued. 

Unlike the peripheral tissues, the brain uses glucose in an insulin-independent manner 

(Seaquist et al., 2001). However, IRs have been identified in the hypothalamus and 

studies have recognised the importance of brain insulin signalling and function in 

maintaining glucose balance (Szabo and Szabo, 1975). Central administration of 

exogenous insulin reduces glucose synthesis from the liver, however, inhibition of IR 

signalling leads to increased hepatic glucose production in the presence of insulin 

resistance (Obici et al., 2002).  Furthermore, specific ablation of IRs in mice from 

discrete hypothalamic neurons causes glucose intolerance and insulin resistance. 

However, these findings are confounded by the development of obesity in these mice 

(Bruning et al., 2000). 
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Figure 1.3: Diagrammatic representation of -cell function. 1) Post-prandial glucose 

is taken into the -cells via the GLUT2 glucose transporters. 2) Glucose is oxidised and 

the high-energy molecule, ATP is produced. 3) ATP travels to the KATP – dependent 

channels and 4) prevents the efflux of potassium which in turn causes the membrane to 

depolarise. 5) This trigger the opening of voltage-gated calcium (Ca
2+

) channels 

(VGCC) and 6) calcium inflow 7) stimulates insulin exocytosis. KATP – dependent 

channels: SUR-1 (sulphonylurea receptor-1) and Kir6.2 (the inward rectifying 

potassium ion channel).   
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Figure 1.4: Diagrammatic representation of the proposed insulin action on 

responsive tissues. 1) Insulin binds to its receptor (IR) on responsive tissues and 2) 

activates IRS-1. 3) IRS-1 binds to and phosphorylates GLUT4 vesicles and leads to 

translocation. 4) Eventually there is an increase in the GLUT4 affinity for glucose. 5) 

Additionally, the IRS-1 supports glycogen or lipid synthesis.  
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1.4.2. Glucagon 

During low energy states, the liver extracts insulin from the blood and down-

regulates IR expression. At the same time, there is activation for the synthesis of 

glucagon, a pancreatic hormone produced from the proglucagon precursor via PC-2 

activity into a 29 amino acid protein. Glucagon was initially discovered in the 1920s 

and found primarily in islet -cells (Gaede et al., 1950). The hormone acts on the 

glucagon receptor (GCGR) and activates the secondary messengers; cyclic adenosine 

monophosphate (cAMP) and protein kinase A (PKA) (Hue, 1982). It also functions 

to tonically promote insulin release. However, the counter-regulation of glucagon 

secretion is lost in T2DM, promoting fasting and post-prandial hyperglucagonaemia 

which additively affects hyperglycaemia (Larsson and Ahren, 2000). In turn, 

glucagon activates hepatic glucose production through the glycogenolysis and 

gluconeogenesis pathways, whilst simultaneously inhibiting the glycogenesis and 

glycolysis pathways (Jiang and Zhang, 2003).  

GCGR disruption by antagonism and antisera reduces hyperglycaemia in rodent 

models of diabetes (Johnson et al., 1982, Unson et al., 1996). Gcgr KO mice have an 

increase in glucose tolerance, and are resistant to streptozotocin- (STZ-) induced 

diabetes, in vivo. This suggests a decrease in glucagon action may act as potential 

therapy for T2DM (Gelling et al., 2003).  Subsequently, Ali et al. showed Gcgr
-/-

 

have an decrease in fasting glucose and islet cell hyperplasia but glucose tolerance 

was blunted (Ali et al., 2011).  

 

1.4.3. Somatostatin 

A third islet cell subtype; the -cell expresses somatostatin. Six somatostatin genes 

exist in the vertebrates, whereas only one has been identified in the human. 

Somatostatin has also been found expressed in the stomach, here it functions to 

reduce gastric acid secretion via parietal cells (Gao and Hu, 2006). It is also known 

as growth hormone-inhibiting hormone (GHIH) or somatotropin release-inhibiting 

factor (SRIF) and has a role in other non-metabolic endocrine functions (Park et al., 

2000). Somatostatin exists as two equipotent isoforms: as a 14 amino acid protein 
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(SS-14) or as a 28 amino acid product (SS-28) from a 92 amino acid precursor 

(Schally et al., 1980). Somatostatin inhibits glucagon and insulin release. It has been 

shown that Sst KO isolated islets have an increase in their first phase insulin 

response thought to be via lack of inhibitory action at KATP channels. A Sst
-/-

 mouse 

was generated and phenotyped in vivo (Cordoba-Chacon et al., 2013). This mouse 

lost its first phase of insulin secretion but the second phase was exaggerated in the 

KO group. Moreover, Sst deletion also resulted in an increase in both insulin and 

glucagon secretion, in vitro and in vivo but failed to suppress glucose-mediated 

suppression of glucagon release (Hauge-Evans et al., 2009).  

Somatostatin mediates its glucoregulatory effects via its G protein-coupled receptors 

(GPCR); somatostatin receptors (SSTR1-5). Transgenic mice for the different 

somatostatin receptor-subtypes have provided a deeper understanding of their 

function in glucose homeostasis. All SSTRs with the exception of SSTR3 couple to 

voltage-gated potassium channels (Youos, 2011). Somatostatin activates the 

potassium channels and promotes hyperpolarisation and inhibition of Ca
2+ 

-mediated 

exocytosis (Sharp, 1996). Both SSTR2 and 4 are more potent at increasing the 

potassium currents (Yang et al., 2005).  

SSTR 1-5 are located on α- and β-cells. Exogenous somatostatin and its analogues 

inhibit nutrient-stimulated insulin and glucagon secretion, both in vitro and in vivo. 

SSTR2 is found expressed on α-cells (Cejvan et al., 2003), whilst SSTR1 and 5 are 

both found on β-cells (Youos, 2011). Sstr2 null mice have an increase in nutrient-

stimulated glucagon secretion without altering insulin release. Sstr5 KO mice have 

an increased level of islet insulin content, a reduction in blood glucose and plasma 

insulin levels yet have more glucagon compared to control mice (Strowski et al., 

2003). These mice also developed hyperleptinaemia but are resistant to high-fat diet 

(HFD)- induced insulin resistance. Subsequently, Ramirez et al. developed another 

Sstr5 KO mouse, and the male transgenic group showed increases in SSTR1-3 

immunoreactivity (ir), pancreatic somatostatin like-ir and gene expression and a 

reduction in islet insulin content (Ramirez et al., 2004).   
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1.5. The role of gastrointestinal hormones in energy control and 

glucose homeostasis 

Our understanding of gut hormones and their role in regulating energy and glucose 

homeostasis has dramatically increased over the past few years. Consequently, 

strategies aimed at modulating circulating gut hormone concentrations or targeting 

their receptors is being developed as pharmacotherapies to treat obesity and/or DM.   

 

1.5.1. Ghrelin 

Ghrelin is a 28 amino acid peptide secreted from the gastric fundus’ P/D1 cells and 

can also be found in the -cells of the islets (Arnes et al., 2012). This orexigenic 

hormone is released in response to hunger. Levels peak prior to a meal and are at its 

lowest post-prandially. It was discovered in 1999 by Kojima and co-workers. 

Ghrelin is transcribed from a 177 amino acid precursor to act on its GPCR; growth 

hormone secretagogue receptor (GHSR) (Kojima et al., 1999). Primarily, the peptide 

is synthesised as a unacylated protein and becomes bioactive once acylated by 

ghrelin O-acyltransferase (GOAT) (Zhao et al., 2010). To date, this is the only 

identifiable peripheral orexigen. Ghrelin has also been found to have a role in 

proliferation and anti-apoptotic effects on pancreatic β-cells (Granata et al., 2007). 

Studies have also suggested that body weight and ghrelin are negatively associated. 

Hence, obese adults have a blunted ghrelin response in comparison to lean controls 

(Stock et al., 2005).  

Development of mutant mice have allowed for an understanding of an in vivo role 

for ghrelin in energy and glucose homeostasis. Ghr
-/-

 mice showed no difference in 

appetite or body weight when compared to Ghr
+/+ 

mice, suggesting that ghrelin may 

not be involved in energy homeostasis (De Smet et al., 2006). Sun and co-workers 

developed mutant mice with disruption in ghrelin and GHSR signalling. Using these 

mice they showed that the primary role of ghrelin in the adult mouse might not be 

involved in energy control but instead be to balance glucose sensing (Sun et al., 

2004). This was further supported by the Goat null mouse phenotype (Zhao et al., 

2010). However, theories have been proposed to suggest ghrelin may have other 



 38 

receptor targets other than GHSR and/or GHSR may have another endogenous 

ligand (Uchida et al., 2013). Thus, the variability of the different phenotypes from 

the different transgenic models makes it difficult to confirm ghrelin’s regulatory 

pathway. Though these studies may be inconsistent, all this data suggests 

collectively a role for ghrelin’s regulatory pathway in energy and glucose 

homeostasis does exist. 

 

1.5.2. Glucose-dependent insulinotropic peptide (GIP) 

After the stomach, post-prandial nutrients come into contact with and stimulate 

duodenal K-cells to release the first incretin hormone; glucose-dependent 

insulinotropic peptide (GIP). The incretin effect is the augmented response produced 

by enteral glucose stimulation versus the comparable glucose load placed by an 

intravenous administration to promote insulin release (Creutzfeldt, 1979). GIP is a 

42 amino acid peptide encoded by the GIP gene from a 153 amino acid precursor. 

Once released into circulation, it is rapidly deactivated by an aminopeptidase; 

dipeptidyl peptidase-4 (DPP-4) (Drucker and Nauck, 2006). DPP-4 is an enzyme that 

removes the dipeptide from the terminal of any peptide containing either an alanine 

or proline at position 2. Hence, GIPs half-life is short; 7 minutes in healthy 

individuals and becomes reduced to less than 5 minutes in diabetic patients (Deacon 

et al., 2000). By comparison rats have 2 minutes of GIP bioactivity.  

Bioactive GIP has a vital role in potentiating GSIS (Drucker, 2007b). GIP regulates 

this effect by acting on its receptor (GIPR) to increase islet -cell cAMP levels 

whilst inhibiting the KATP channels. Collectively, these effects mediate the release of 

insulin. GIP triggers an increase in anti-apoptotic protein levels, in vitro (Trumper et 

al., 2001). Many studies have examined the role of GIP action in energy and glucose 

homeostasis (Irwin and Flatt, 2009). These studies have highlighted the importance 

of GIP action and have shown when endogenous GIP is redundant; the incretin effect 

is lost (Tseng et al., 1999, Miyawaki et al., 1999, Baggio et al., 2000). GIP promotes 

an increase in glucagon levels and dose-dependently stimulates a rise in somatostatin 

(Szecowka et al., 1982). Additionally, GIP appears to function as a promoter of 

lipoprotein lipase activity in adipocytes and is potently stimulated by fat. This has 
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been demonstrated in Gipr KO mice, which have a decrease in fat stores and are 

resistant to diet-induced obesity (DIO), but have increased insulin sensitivity in 

comparison to their controls (Miyawaki et al., 1999).  

GIPR antagonists administered in ob/ob mice have been shown to (1) cause a 

reduction in weight gain with an improvement in glycaemia as well as (2) an 

increase in insulin release and sensitivity independent of food intake and weight 

changes in WT mice (Green et al., 2004). Taken together, the collated data suggests 

endogenous GIP acts in the adipocytes to increase energy storage as well as inhibit 

insulin action. On the other hand, GIPR activation on the -cells promotes an 

improvement in insulin release. Consequently, it remains difficult to suggest whether 

stimulation or blockade of GIP signalling could be a method to combat diabesity.  

 

1.5.3. Glucagon-like peptide-1 (GLP-1) 

The second incretin hormone to be released post-prandially is glucagon-like peptide-

1 (GLP-1), a peptide produced by the lower gut (Lamont et al., 2012). Its precursor; 

the proglucagon gene is expressed in the GI tract, pancreas and CNS (Ellingsgaard et 

al., 2011). In the pancreas, processing yields glucagon, and gut post-translational 

cleavage leads to GLP-1, GLP-2, with the remaining region being cleaved to other 

inactive fragments and oxyntomodulin (OXM) (Drucker, 2002) (Figure 1.5). GLP-1 

circulates as either GLP-1 7-36 amide or GLP-1 7-37, with the predominant form in 

humans being GLP-1 7-36 amide. GLP-1 is released and most abundantly found in 

circulation post meal. However, its biological activity is less than 2 minutes due to 

degradation by DPP-4 (Hansen et al., 1999). GLP-1s function includes -cell 

proliferation, increasing insulin synthesis and secretion both via and independently 

of cAMP and PKA activation. GLP-1 also increases -cell function by stimulating 

an increase in Kir6.2 and SUR-1 expression via its GLP-1R (McClenaghan et al., 

2006). Moreover, it also prevents the down-regulation of KATP channels in the 

presence of high levels of glucose (Drucker, 2007a). GLP-1 antisera, GLP-1R 

antagonism and Glp-1r KO mice have all shown the importance of GLP-1s 

glucoregulatory function (Baggio and Drucker, 2007). All these studies have 
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collectively suggested impaired endogenous GLP-1 signalling causes defective 

endogenous glucose tolerance.  

Flamez and co-workers have also shown glycaemia disruptions occur in Glp-1r
-/-

 

mice, as well as an enhanced rise in cAMP and Ca
2+

 suggested to be due to an 

increase in GIP sensitivity (Flamez et al., 1999). Another Glp-1r KO mouse 

displayed fasting hyperglycaemia and abnormal glucose tolerance after an oral and 

i.p. glucose challenge (Scrocchi et al., 1996). This work confirms that GLP-1 action 

on GSIS can be mediated independently of the route glucose enters the system.  

In addition, GLP-1 appears to have a tonic inhibitory effect on islet -cells at basal 

levels (Schirra et al., 1998). Gcgr
-/-

 have an increase in plasma GLP-1 levels (Gelling 

et al., 2003). A previous study found glucagon to potentially have affinity for the 

GLP-1R on β-cells (Moens et al., 1998). Furthermore, glucagon has also been shown 

to have capacity as a substrate for DPP-4, since like GLP-1, it is a post-translational 

product of proglucagon (Hinke et al., 2000, Pospisilik et al., 2001). Whether DPP-4 

regulates endogenous glucagon remains unknown. Furthermore, Ali and co-workers 

constructed a double Gcgr/Glp-1r KO mouse which displayed an increase in GIP 

sensitivity (Ali et al., 2011). Further work by another group using GIPR antagonism 

in mice with deletion in the Glp-1r gene showed an increase in blood glucose and 

reduction in GSIS after an glucose challenge, in vivo  It was postulated that exendin 

(9-39) may have the potential to antagonise the GIPR and thus disrupt GIP action 

(Wheeler et al., 1995). However, this was disproved by Baggio and group, who 

demonstrated that exendin (9-39) lost its effect on glucose excursions in the Glp-1r 

KO mice (Baggio et al., 2000). This also confirmed the antagonist’s specificity for 

the GLP-1R. 

Interestingly, GLP-1/R insulinotropic signalling is preserved in T2DM. Given these, 

current treatment of T2DM includes the use of GLP-1 analogues. These exogenous 

synthetics effectively lower glucose in T2DM patients, although these effects are 

dependent on glucose. Hence, there are limited hypoglycaemic events (Reid, 2012). 

Exogenous GLP-1 administration at physiological levels fails to produce a change in 

feeding behaviour, only when given at supra-physiological levels does it evoke an 
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anorectic response in humans. The GLP-1 analogues provide the incremental 

increase in GLP-1 levels and promote weight-loss in patients with T2DM. GLP-1 

has a crucial role in neogenesis and this has been extensively studied. STZ-induced 

pancreatic destruction causes an up-regulation of the Glp-1 gene (Nie et al., 2000). 

Furthermore, the neogenic properties of GLP-1 can be seen in the improvement of 

islet morphology in rodents treated with GLP-1R agonists. Conversely, DPP-4 

inhibition appears to have no effect on islet morphology in DM models. This 

suggests that GLP-1R signalling may be therapeutically better at controlling 

glycaemia and improving islet health. 
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Figure 1.5: Figure illustrating the processing of the proglucagon precursor 

to its tissue-specific post-translational processing products. (Drucker, 2002). 
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1.5.4. Peptide YY (PYY) 

Peptide YY (PYY) is a linear 36 amino acid peptide, which contains a tyrosine 

residue on either side of the terminals. The tyrosine is abbreviated to the letter Y, 

hence the name peptide YY. Initial isolation of this peptide occurred from porcine 

small intestinal extracts (Tatemoto and Mutt, 1980) which later led to the discovery 

of NPY and pancreatic polypeptide (PP) from the brains and pancreas, respectively 

(Tatemoto et al., 1982). Tatemoto et al. also found that the sequences and structure 

between these three peptides were homologous and therefore termed them as the 

Polypeptide family (Figure 1.6).  

The PreproPYY gene is co-expressed in the pancreatic -cells and in particular the 

ileal L-cells with proglucagon products glucagon and GLP-1 respectively 

(Kreymann et al., 1991). Once processed, the mature PYY 1-36 is formed. Post-

prandially, this form of PYY is converted to the predominant circulating PYY form 

(3-36) that has known appetite-inhibiting effects (Batterham et al., 2002, Batterham 

and Bloom, 2003, Batterham et al., 2003). The removal of the first two amino acids 

from the N-terminus of PYY 1-36 (proline-tyrosine) is catalysed by the same DPP-4 

enzyme that degrades the incretin hormones (Figure 1.7). Unlike the incretins, the 

degradation of PYY changes the conformational structure of the peptide interfering 

with receptor affinity and thus, changing the biological function of the peptide. 
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Figure 1.6: Comparison of sequence homology between PYY, NPY and PP. Different colours represent individual amino acids with 

homology between peptides linked by bars. 
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Figure 1.7: Figure illustrating the processing of the proPYY precursor to 

different bioactive isoforms of PYY. (Keire et al., 2002, Michael Conlon, 2002). 
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The target receptors for the polypeptide family belong to the GPCR superfamily and are 

known as the Y-receptors. The Y-receptors to date, have been identified as Y1R, Y2R, 

Y3R, Y4R, Y5R and Y6R, however, only Y1R, Y2R, Y4R, and Y5R are thought to 

regulate body weight and are expressed on various cells and organs (Michel et al., 

1998). Y-receptors display varying affinities to PYY, NPY and PP (Ballantyne, 2006b). 

The Y1R and Y4R receptor bind to the C- and N-terminals on the peptides, whereas, 

Y2R and to a lesser degree Y5R only bind to the C-terminus, hence the PYY 3-36 is an 

Y2R > Y5R receptor specific ligand. Whereas, PYY 1-36 which has both terminals 

intact, is a ligand for Y1R & Y5R > Y4R. PP on the other hand is a Y4R-specific and 

preferred ligand and NPY acts at Y1R and Y5R (Ballantyne, 2006b).  

Transgenic models targeting the YRs have provided useful information and the tools to 

study the individual pathways that regulate energy and glucose homeostasis. Many 

transgenic models have been developed to assess the implications of YR subtypes on 

energy balance. Global Y1r KO mice appear to develop late-onset obesity and HI in the 

absence of hyperphagia (Burcelin et al., 2001). Germ-line Y2r KO and global Y4r null 

mice both display a decrease in body weight and overall adiposity (Sainsbury et al., 

2002a, Sainsbury et al., 2002b). However, Y5r KO mice appear to develop mild obesity 

with increases in food intake and body fat (Marsh et al., 1998). 

PYY is mainly expressed in endocrine L-cells of the lower GI tract (terminal ileum and 

colon) as well as the stomach, intestine, and pancreas (Boey et al., 2008). The peptide 

can also be found in the brain including the brainstem (Glavas et al., 2008), and is 

known to mediates its effects on feeding behaviour in the hedonic centres (OFC) 

(Batterham et al., 2007), and various hypothalamic nuclei. PYY 3-36 levels post-

prandially rise (to 67% of total PYY) and fall (to 37% of total) during fasting. Grandt 

and co-workers identified 60% of total murine circulating PYY as the full-length 

peptide, with the remaining accounting for the truncated form (Grandt et al., 1992). On 

the other hand, the ratio of human PYY 1-36: 3-36 was found to be relatively equal. The 

distribution of PYY varies greatly throughout the GI tract (Ballantyne, 2006a). The 

stomach has levels <3.4 pmol/g, with the duodenum and proximal jejunum expressing 



 47 

<17.1 pmol/g and 65.4 pmol/g in the distal jejunum. The most abundant area appeared 

to be the terminal ileum (100 pmol/g). PYY has only been detected in the mucosal layer 

of the GI tract.  

PYY has been well-documented for its role in the regulation of feeding (Karra et al., 

2009). PYY 1-36 is known to cause an increase in food intake, primarily occurring at 

the Y1R and PYY 3-36 is known to produce satiety and increases in energy expenditure 

at the Y2R. PYY inhibits a number of functions, including insulin secretion, gastric 

secretion and emptying, GI motility, pancreatic and gut secretion, stimulates water and 

salt absorption into the colon and promotes vasoconstriction to the vessels of the GI tract 

and pancreas (Karra et al., 2009, Liu et al., 1997, Karcz-Socha et al., 2011). 

In humans, protein consumption is the most potent macronutrient simulating PYY 

release & satiety in both obese and normal-weight individuals. In mice, increased 

dietary protein caused a reduction in adiposity, and food intake with an increase in 

plasma PYY (Batterham et al., 2006). Circulating PYY has a key satiety role in feeding 

behaviour as discussed above and has been well characterised for its involvement in 

energy balance (Batterham and Bloom, 2003, Batterham et al., 2002). On the other 

hand, pancreatic islet PYY appears to demonstrate a fundamental role in glucose 

homeostasis; however to what extent, still remains unknown (Boey et al., 2007, Boey et 

al., 2006b).  
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1.6. Hyperinsulinaemic hypoglycaemia (HH)  

Primary importance of gut hormone action in maintaining glucose balance and 

alterations in their physiology in the T2DM state has been of great interest to many 

biochemists. Indeed, there are different approaches to treatment including GLP-1R 

agonists and DPP-4 inhibitors which exert their effects through the incretins and PYY. 

However, more recently, the implication of these peptides in hyperinsulinaemic 

hypoglycaemia (HH) is harbouring interest. HH is a condition caused by the 

dysregulation of -cell secretion of insulin producing a hypoglycaemic state (Arya et al., 

2013).  

 

1.6.1. Weight loss surgery-induced HH 

Islet adaptation to insulin resistance is critical to prevent the onset of T2DM. At present 

there is a vast array of drugs available to treat diabetes including insulin sensitizers 

(bigunaides) that promote an increase in tissue glucose uptake from the circulation as 

well as insulin secretagogues (sulphonylureas) which regulate insulin release from the 

islet -cells. However these drugs are known to induce hypoglycaemic events, hence the 

use of DPP-4 inhibitors (gliptins) are becoming the drug of choice when treating T2DM 

as it works in line with normal physiology. Since gut GLP-1 release is only promoted by 

enteral stimulation and an autocrine negative feedback exists by GLP-1 on L-cells (le 

Roux and Bloom, 2005, Näslund et al., 1999), hence, serious hypoglycaemic events are 

not anticipated or noted.  

Apart from the glycaemia control, the drug effects on body weight and lipid profiling 

have shown promise. However, limited drugs are available for the treatment of obesity 

and are ineffective in bringing individuals to a near-normal weight. So, more obese 

patients are opting for bariatric surgery for quick and effective results (Chandarana and 

Batterham, 2012). One such procedure is the gastric bypass surgery (GBP) which is 

regarded as the ‘gold standard’ weight-loss procedure in particular for those with 



 49 

T2DM. It is effective in decreasing 80% of excess weight and resolves insulin resistance 

immediately post-surgery and prior to significant weight reduction. However, the reason 

for such drastic changes is still questioned. GBP reduces the stomach volume and is 

anastomosed to the mid-gut (jejenum) bypassing the in situ proximal GI tract. This 

results in decreased gastric content and limits food intake as well as absorption of 

nutrients to facilitate weight loss. A few clinical studies have shown that the GBP leads 

to an increase in post-prandial GLP-1 and PYY levels post-surgery and prior to noted 

weight loss (Peterli et al., 2009, Olivan et al., 2009). To explain for such changes in gut 

hormones post GBP, two theories have been proposed (Rubino et al., 2006). The first 

hypothesises that the bypass of the upper gut eliminates an ‘anti-incretin’ component 

which promotes an improvement in glycaemic control. Alternatively the second theory 

suggests that an increase in undigested nutrients stimulates the distal enteroendocrine L-

cells and promotes a surge in GLP-1 and PYY levels. Further preclinical work using 

rodent models of GBP have allowed for the understanding of gut hormones in energy 

and glucose metabolism (Chambers et al., 2011). GBP performed in DIO rats improved 

glucose tolerance and insulin sensitivity. However, exendin (9-39) administration in 

these rats dampened the GBP-mediated improvement in glucose tolerance. Moreover, 

obese Pyy KO mice that underwent the GBP surgery did not display a significant 

reduction in body weight (Chandarana et al., 2011). These studies together support a key 

role of gut hormones in mediating weight and glycaemic balance.        

Despite these encouraging effects of GBP on obesity-induced co-morbidities and 

mortality, the frequency of HH cases as a complication of such a procedure is mounting 

(Service et al., 2005, Patti et al., 2005). At the same time, it was suggested that if these 

incidents were investigated in more detail, a novel understanding could be sought for the 

treatment of T2DM (Cummings, 2005).   

Post-prandial HH in GBP-induced nesidioblastosis suggests an enteral stimulus for the  

glucose impairment (Service et al., 2005). Two theories for this phenomenon exist, the 

first suggests GBP-induced HH was because of diabesity (i.e. obesity-induced HI) and 

the second line of thought is that the GBP foregut and/or hindgut peptides cause changes 
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in the function of the enteroinsular axis (Marsk et al., 2010). However, to date no studies 

have researched this further. A GBP-HH case report supports the notion that HH is not a 

result of islet dysfunction or an obesity-induced effect since most of the pancreas had 

been removed and the GBP was not reported to be reversed (Qintar et al., 2012). 

Furthermore, in the absence of stimulation in normal WT mice, a pancreatectomy model 

(Ppx) which has 90% removal of the pancreas has shown regeneration of pancreatic 

tissue (De León et al., 2003). This effect was thought to be mediated by GLP-1. 

Moreover, studies using GLP-1 and its analogue (exendin-4) induced a differentiation of 

pancreatic exocrine tumours to endocrine glucagon- and insulin-producing cells, in vitro 

(Zhou et al., 1999). Whereas, GLP-1R antagonism of Sur-1 null islets promoted 

hyperglycaemia in the absence of glucose in vitro and independent of body weight 

changes in vivo (De Leon et al., 2008) which is what is required in patients who have 

undergone weight-loss surgery. GIPR antagonism has also shown potential in mediating 

suppression in HH, in vitro and in vivo (Ravn et al., 2013). It was historically reported 

that GIP dose-dependently increases somatostatin secretion, in vitro (Szecowka et al., 

1982). On the other hand, a case was reported in which it was described that SST 

mimetics suppress incretins and HH. However, the SSTR subtype that promotes these 

effects remains unknown (Sato et al., 2013). Overall, these reports indicate towards a 

potential of incretin receptor antagonism as candidates for therapy in GBP-HH persons. 

Therefore, investigations into the physiological involvement of gut hormones in HH will 

provide novel insights in the regulation of the enteroinsular axis.  

Other forms of HH exist, which have been researched for many years and can provide 

the unique model to study this disease in the absence of confounding factors such as 

obesity. One such condition is the congenital form of HH. 
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1.6.2. Congenital forms of HH 

Congenital hyperinsulinism (CHI) is the most common cause of transient and permanent 

hypoglycaemia in neonates and because of this, the disorder could potentially be life 

threatening causing neurological damage and requires quick and effective treatment and 

management (Hussain, 2011) (Table 1.2). This disorder is rare and has an incidence of 

around 1:50,000 births in the general population (Senniappan et al., 2013). 

Hypoglycaemia in infants is characterised as a blood glucose concentration < 3.5 mM. 

Infants require constant feeding to stabilise the hypoglycaemia. Congenital genetic 

dysregulation of insulin function represents the most frequent type of permanent 

hypoglycaemia. Currently eight gene mutations have been identified to be associated 

with CHI. These genes encode for glucokinase (GCK), glutamate dehydrogenase 

(GLUD1), 3-hydroxylacyl-CoA dehydrogenase (HADH), hepatocyte nuclear factor-4 α 

(HNF4α), monocarboxylate transproter-1 (MCT-1), UCP-2 and the two subunits: SUR-1 

and Kir6.2; that make up the KATP channels (Table 1.3). These have all been described at 

length for their implications in HH (De Leon and Stanley, 2007).  

Defects in the KATP channels are one of the most common causes of CHI (KATPHI)  

(Hussain, 2011). Therefore, this thesis will focus on KATPHI. KATP channels are 

comprised of two subunits; the Kir6.2 ion channels and SUR-1 (Inagaki et al., 1995). 

Both these subunits are sensitive to the ADP/ATP nucleotide ratio and work together to 

promote cell depolarisation and eventually insulin secretion. Mutations in the 

KCNJ11/ABCC8 genes are known to cause defects in trafficking of these subunits to the 

plasma membrane, thus causing KATPHI (De Leon and Stanley, 2007).  
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Table 1.2: Aetiology of hypoglycaemia in neonates. (De Leon and Stanley, 2007). 

Transient hypoglycaemia:  

 Impaired gluconeogenesis and ketogenesis in neonate 

 Maternal factors: maternal DM, glucose administration during labour or birth or 

prescription to hypoglycaemic drugs 

 

Prolonged hypoglycaemia: 

 Perinatal stress-induced HI 

 Beckwith-Weidemann syndrome 

 Hypopituitarism 

 

Permanent hypoglycaemia: 

 CHI: genetic mutations in GCK, GLUD1, HADH, HNF4α, SLC16A1, UCP2, 

ABCC8 and KCNJ11 

 Impaired counter-regulatory hormones: hypopituitarism, adrenal insufficiency 

 Gluconeogenesis or glycogenolysis enzyme defects 

 Fatty oxidation disorders 
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Table 1.3: Key genes involved CHI. (Senniappan et al., 2013). 

Gene (mutation type) Protein Reference 

1. GCK (Dominant) Glucokinase (Christesen et al., 

2008) 

2. GLUD1 (Dominant) Glutamate dehydrogenase (Xu et al., 2013) 

3. HADH (Dominant) 3-hydroxylacyl-Co A 

dehydrogenase 

(Kapoor et al., 2010) 

4. HNF4α (Dominant) Hepatocyte nuclear factor-4 α (Kapoor et al., 2010) 

5. UCP2 (Dominant) Uncoupling protein-2 (González-Barroso et 

al., 2008) 

6. SLC16A1 

(Dominant) 

Monocarboxylate transproter-1 (Pullen et al., 2012) 

7. ABCC8 and 

8. KCNJ11 (Dominant) 

KATP channels two subunits: 

SUR-1 and Kir6.2 

(James et al., 2009) 

 

 

Histologically, there are two types of KATPHI; focal (F-CHI) and diffuse disease (D-

CHI). F-CHI is sporadically inherited but D-CHI can be autosomally recessive or 

dominantly inherited (Senniappan et al., 2013). Due to these factors, management of 

the two types of KATPHI are very different. F-CHI only requires a lesionectomy 

(potentially curing the patient), whereas, D-CHI require medical therapy often with 

diazoxide; a KATP channel activator. However, some D-CHI patients are diazoxide-

unresponsive; they are treated with alternative drugs including glucagon as well as 

somatostatin analogues (octreotide and lanreotide) to counteract the unregulated HH. 

If all these avenues fail, a near-total pancreatectomy is performed. This usually risks 

DM and possible pancreatic exocrine insufficiency (Senniappan et al., 2013). Hence, 

it is very important to understand the mechanisms that cause the dysregulation of 

insulin function so that patient care and management is most effective. Such invasive 
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treatments are limited to the failure of drug therapy so more research is actively 

required.   

Though no reports have been published in determining the circulating levels of 

somatostatin and little is known of glucagon in HH individuals, these appear to play 

a clear role in reducing the surge in insulin and its action since they are commonly 

used in the management of HH. More research is required to ensure the action and 

signalling of these drugs is not limited.  

The mouse model for KATP mutation is the Sur-1 null mouse which presents with 

mild CHI. Sur-1 deletion causes a defective glucagon secretory response, in vivo 

(Shiota et al., 2002). Clinical presentations of CHI are also known to be induced by 

protein ingestion and amino acid-stimulated insulin release (Fourtner et al., 2006). 

More recently, the role of gut hormones in HH has become of interest to KATPHI 

researchers due to the implications seen in bariatric surgery. It was demonstrated in 

both WT and Sur-1 KO mice that the GLP-1R antagonist; exendin (9-39) induces a 

decrease in plasma insulin levels coupled with a rise in blood glucose (De Leon et 

al., 2008). This finding was subsequently confirmed in the Glp-1r KO mice. 

Furthermore, this group reported an improvement in glucose tolerance in KATPHI 

persons after exendin (9-39) administration in the absence of changing plasma GLP-

1 concentrations (Calabria et al., 2012). Hence, suppression of the incretins 

signalling/function appears to be important in reducing HH. At present it remains 

unknown as to the mechanism of such observations. Moreover, there are currently no 

reports on the effects of PYY which is known to mediate GLP-1 action in the liver 

(Chandarana et al., 2013).  
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1.7. Rationale of study 

A biochemical correlation between obesity and T2DM exists. Gut hormone-targeted 

therapy appears to be the way forward when trying to develop effective treatments 

for diabesity. However, many studies have been contradictory. GIP is known to 

promote fat storage  and glucagon secretion as well improve glucose tolerance. On 

the other hand, GLP-1 produces an increase in circulating insulin and improves 

glycaemic control in DM patients (Drucker, 2007b). However due to its rapid 

inactivation by the ubiquitously expressed enzyme DPP-4 current therapy for T2DM 

includes the use of DPP-4 inhibitors to block the enzymes inhibitory action on both 

incretins. It remains unknown if DPP-4 inhibition leads to an increase in adiposity by 

GIP action. Additionally, this enzyme also interacts with PYY. The DPP-4 inhibition 

would stimulate changes to the PYY isoform, hence a change in physiological 

function on energy and glucose balance.  

The current available data illustrates the importance of PYY in glucose and energy 

homeostasis and implicates intra-islet PYY as a physiological regulator in this 

balance. This is supported by findings including the inhibition of insulin secretion in 

mouse islets by exogenous PYY 1-36 (Chandarana et al., 2013, Chandarana, 2009). 

In addition, blocking of PYY with antisera (Karlsson and Ahren, 1996), global Pyy 

KO (Boey et al., 2006b) or global Y1r KO (Burcelin et al., 2001) in mice have all 

shown a potentiation of insulin release . However, the obese phenotype of the Pyy 

KO mouse doesn’t agree with HI (Batterham et al., 2006). Together, all this data 

suggests intra-islet PYY 1-36 action at the Y1R may cause the inhibition of GSIS. 

DPP-4 changes the biological activity of PYY by converting it to a Y2R-specific 

ligand and thus, promotes a reduction in inhibition on insulin release, post-prandially 

(Figure 1.8).  

Naslund and group have shown that GLP-1 has a negative feedback on PYY 

(Näslund et al., 1999). Recently a published article has reported that PYY 3-36 via 

Y2Rs mediate the GLP-1 glucoregulatory action in the hepatoportal system 

(Chandarana et al., 2013). Hence the use of DPP-4 inhibitors could be potentially 

counter-regulatory with regard to glucose control. On one hand, DPP-4 inhibition 
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would promote a prolonging of active GLP-1 action on the enteroinsular axis and on 

the other, PYY 3-36 would be inactivated and thus inhibit the enteroheptic action of 

GLP-1. Therefore it would appear DPP-4 inhibition switches GLP-1s site of action 

but the consequences of such a change remains elusive. Additionally, there would be 

an increase in intra-islet PYY 1-36 which could induce a suppression of GSIS 

(Burcelin et al., 2001, Boey et al., 2006b) and also have the potential to promote 

hunger (Burcelin et al., 2001). The duality of DPP-4 activity in the inhibition and 

activation of the different gut hormones and its consequential effects on energy and 

glucose homeostasis are important towards an understanding of tackling obesity and 

glucose dysregulation. 

 

 

 

Figure 1.8: Possible regulatory pathways of intra-islet PYY. Intra-islet PYY 1-36 

inhibits glucose-stimulated insulin secretion via an unknown YR. DPP-4 changes the 

biological activity of PYY by converting it to a Y2R-specific ligand and therefore 

promotes an unknown effect on glucose homeostasis. 
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As described at length, obese and T2DM individuals are known to have a blunted 

level of PYY (Batterham et al., 2003, le Roux et al., 2006). Moreover, low levels of 

circulating PYY has been implicated in the predisposition of obesity and T2DM 

(Boey et al., 2006a). Incretin hormones are also known to have a role glucose 

homeostasis (Drucker, 2007b). GIP and GLP-1 are implicated in the pathogenesis of 

obesity and diabetes. GIP responses are attenuated in T2DM. On the other hand, 

GLP-1 activity is preserved in T2DM and thus is has been thoroughly researched for 

its potential as a therapeutic target.  

The GBP surgery is primarily the weight loss surgical option for T2DM obese 

individuals. This invasive procedure re-routes the GI tract, so that the area from 

where GIP is synthesised and secreted is bypassed and food is passed further into the 

lower gut where GLP-1 and PYY are co-released. Results from the procedure 

include the resolution of T2DM and improved glycaemia to a healthy range even 

prior to body weight changes (Chandarana and Batterham, 2012). Whilst the 

mechanism of action still remains ambiguous it has been hypothesised to be due to 

GLP-1 and PYY hyperfunction (hindgut theory). However, there has been a surge in 

the number of nesidioblastoma diagnoses as a result of GBP which induce HH 

(Service et al., 2005) assumed to be due to the hyperfunction of GLP-1. Support for 

this theory is the Sur-1
-/- 

mice which when given exendin (9-39) displays 

hyperglycaemia (De Leon et al., 2008). This phenotype is similar to the Glp-1r KO 

mice (Baggio et al., 2000). Jointly, all this data suggests that suppression of GLP-1R 

signalling may be a therapeutic target for the treatment of HH (Figure 1.9). Finally, 

the knowledge of how GBP-induces HH will allow for the pre-surgical identification 

of bariatric patients that are at risk of this complication, thus improving the doctors 

ability to make an educated decision about the patients surgical options. As well as 

understand how the implicated pathways can be manipulated in insulin resistance 

and hyperglycaemia.  
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Figure 1.9: Schematic representation of reported pathways that potentially promote islet β-cell regeneration and secretion. DPP-4 

stimulates the production of GLP-1 action via PYY and its Y2R. GLP-1 acts on its receptor to promote β-cell neogenesis, proliferation, increases 

in insulin synthesis and secretion and prevents β-cell apoptosis and glucagon release. The GLP-1R compound; exendin (9-39) antagonises this 

regulatory pathway. Post-prandially, GIP acts on the GIPR to promote insulin and glucagon secretion (Baggio et al., 2000, Chandarana et al., 

2013). 

 

Circulation 
 
 
 
 
 
 
 
 
 

  

Enterohepatic axis 
 

  
  
  
  
  
  
  

Enteroinsular axis 
 

  
  
  
  
  
  
  

PYY 3-36 

DPP-4 

Y2R 

GLP-1 

GIP 

β-cell: 
Neogenesis 
Proliferation 
Reduced apoptosis 

Increased insulin 

secretion and synthesis 

α-cell: Increased 

glucagon 

secretion 

Exendin (9-39) 



 59 

The work of this thesis discusses the data generated and reviews the interpretation of 

these findings in relation to published studies. Overall it aims to improve our 

understanding of gut hormones in the role and regulation of energy and glucose 

homeostasis. 

 

1.8. Objectives of thesis 

 To characterise the intra-islet PYY system, 

 To investigate the in vivo role of intra-islet PYY on energy and glucose 

homeostasis, 

 To characterise the role of gut hormones in HH. 
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Chapter 2 

 

Methodology 
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2. Methodology 

2.1. Materials 

Supplies such as pipette tips, various solvents and reagents were obtained from Sigma 

Aldrich (Sigma Aldrich, Dorset, UK), Invitrogen (Invitrogen, Paisley, UK) or VWR 

(VWR, Lutterworth, UK) unless stated otherwise.  

2.2. Patients 

2.2.1. Ethics 

Ethical approval was obtained from National Research Ethics (NRES) Committee 

(Reference: 05/Q0508/84). Institutional approval was obtained from Great Ormond 

Street Hospital for Children NHS Foundation Trust, the Research and Development 

Office. Study information and patient leaflets were provided to the family and a detailed 

discussion was held prior to obtaining informed consent.  

2.2.2. Patient recruitment  

Great Ormond Street Hospital (GOSH) is a referral centre for the diagnosis and 

management of children who present with all complexities of HI. Once the patient 

arrives, they are diagnosed by blood sample collection during hypoglycaemia and 

simultaneous measurement of glucose and insulin. Patients are managed on medication 

and sometimes, surgery. Distinguishing between the histological-type of KATPHI disease 

makes the management of the patient easier. KATPHI patients, who do not respond to 

medications, undergo a PET scan to determine whether they have a focal lesion, in the 

absence of this diagnosis, it is assumed the patient has diffuse disease. Thereafter, 

surgery for focal (removal of lesion) or diffuse (near total pancreatectomy) takes place. 

All patients that undergo pancreatectomy have their biopsies checked by GOSH 

pathologists to confirm the type of KATPHI and to confirm that all pathological tissue has 

been removed. KATPHI patients are recruited into the study in a prospective manner. All 
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subjects are recruited prior to histological diagnosis. Thereafter, they were removed 

from the study if they were not in line of the criteria. Exclusion criteria for this are use 

of anti-reflux medications and oral feed-dependency with the inability to achieve a 

minimum 3-hour fast to baseline reading for the hypoglycaemia screening. 

2.2.3. Patient blood collection 

Blood is collected from the KATPHI patient prior to- and the end of a hypoglycaemia 

screen through a cannula by a specialist CHI nurse/doctor. Patients are fasted for a 

minimum of 3 hours and medication weaned off 48 hours prior to study. During the 

hypoglycaemia screen, the patient’s i.v. dextrose (20-40%) is slowly decreased and 

blood sample taken by a qualified HI specialist nurse. Blood was collected into chilled 

syringes and immediately transferred to ethylenediaminetetraacetic acid (EDTA) 

vaccutainers (BD, Oxford, UK) containing DPP-4 inhibitor (10 μl/ml blood: Millipore, 

Watford, UK) and aprotinin (Trasylol 5000 KIU/ml blood: Bayer, Newbury, UK). 

Blood samples were collected and processed according to the manufacturers’ 

instructions for the measurement of hormones using commercially available assays.  

2.2.4. Patient tissue collection 

After consent from KATPHI patient’s guardians, pancreatectomised tissue was either 

taken for quantitative expression analysis or for histological examination by the GOSH 

Histopathology Lab. For gene expression studies, tissue was placed in 5 ml RNAse 

inhibitor (RNAlater, Invitrogen, UK) until extraction of RNA. For histological analysis, 

pancreatic tissue were placed in 70% formalin and fixed according to section 2.7. 

2.3. Animals 

All animals were housed in the registered biological services unit (BSU) facility 

University College London with breeding, handling and experimental procedures being 

in accordance with Home Office Animals Scientific Procedures Act (1986) and the UCL 

Animal Users Ethics Committee (Project Licence No.70/7151 and 70/6648). The 
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animals were kept in a specific-pathogen free (SPF) barrier facility and maintained 

under a controlled environment (temperature 21 +/-1°C, 12 hour light/dark cycle, lights 

on at 07.00) with free access to water and food (RM1 diet SDS UK Ltd) unless stated 

otherwise.  

2.3.1. C57BL/6 mice   

C57BL/6 mice were obtained from Charles River (Charles River, USA) and 

acclimatised for one week prior to any experimentation. Mice were housed appropriately 

for each specific study carried out at the ages stated for each experiment.  

2.3.2 Pyy mice 

Previously published Pyy KO (Pyy 
-/-

), Pyy lox 
+/+

 (Pyy floxed) and Pyy WT (Pyy 
+/+

) 

mice were used for appropriate studies (Batterham et al., 2006). Breeding and 

genotyping of the animals were carried out in-house. Pyy null mice have no expression 

of PYY mRNA and protein. These mice have also been reported to be hyperphagic and 

obese. The floxed Pyy mice showed no difference in PYY levels and expression, body 

weight or feeding behaviour when compared to the Pyy WT mice (Batterham et al., 

2006). 

2.3.3 PdxPyy mice 

PdxCre (pancreatic duodenal homeobox-1 promoter driven cre recombinase) transgenic 

mice were generated and generously donated as a gift by Professor Pedro Herrera 

(Herrera, 2000). PdxCre mice and the Pyy heterozygous floxed mice were crossed to 

produce the PdxPyy KO (Pdxcre
+
 Pyy lox 

-/-
) and their control littermate mice; PdxPyy 

WT (Pdxcre
+
 Pyy 

+/+
). 
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2.3.4 YfpPyyCre mice 

ROSA26YFP-reporter mice were crossed with PyyCre (promoter driven cre 

recombinase) mice generating PyyYfp transgenic mice. These mice express yellow 

fluorescent protein (YFP) within PYY-expressing cells within the gut, pancreatic-islets 

as well as other Pyy-expressing cells (Gelegen et al., 2012). 

2.4. Genotyping 

2.4.1 Ear clipping 

At weaning (postnatal day 21-28), 2 mm ear or tail biopsies were taken from mice using 

ear clips or scissors (Kent Scientific, Connecticut, USA) in order to confirm the 

genotype of mice. DNA was subsequently extracted as described in section 2.4.2 to 

determine the genotype of each mouse using polymerase chain reaction (PCR) as 

described in section 2.4.3. 

2.4.2 DNA extraction 

150 μl of tail lysis buffer was added to  each tissue sample. The sample was incubated at 

100 °C for 10 minutes in a heat block and cooled before 5 μl of proteinase K (20 mg/ml) 

was added, pulse spun and incubated at 55 °C for approximately 2 hours. The samples 

were then heated for 10 minutes at 100 °C and finally spun at 13,000 rpm for 5 minutes 

to settle debris. 1 μl supernatant was then used as template DNA for PCR amplification 

as described in section 2.4.3. 

2.4.3 Polymerase chain reaction (PCR) 

Genotyping PCR was performed using 1 μl of DNA template. PCR primers 

(Eurogentec, Southampton, UK) and conditions are shown in Table 2.1. Pdx genotyping 

was done with LoxP and Pdx PCR to detect the floxed and/or the WT gene in the 

presence or absence of the PdxCre gene. The Pyy mice were genotyped with the LoxP 

and Pyy GN PCR to detect the WT or KO amplicons, respectively. PCR products were 
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visualized using a UV transilluminator (Bio-Rad Laboratories Ltd) following 

electrophoresis at 95 mV for 100 minutes. The gel was prepared as a 2 % w/v agarose 

gel using 1x Tris-acetate- EDTA (TAE) and stained with 0.02 % v/v ethidium bromide. 
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Table 2.1: Genotyping primers and PCR conditions. F: Forward primer, R: Reverse Primer, LoxP: Floxed gene, GN or KO: gene 

deletion, Pdx: PdxCre gene, WT: wild-type gene. 

PCR Allele Primer sequence 
Product size 

(bp) 

Tm 

(
o
C) 

Cycles 
Extension 

(seconds) 

LoxP 
WT 

F: 5’ GACCTCGGTGTTTAATGGG 3’ 

R: 5’ GAGTTTAAGGTCCAGGAG 3’ 

326 
60 30 30 

Floxed 350 

Pdx 

Pdx 

 

F: 5’ CGGTGAACGTGCAAAACAGG 3’ 

R: 5’ AGGACACATTGTGCCAAAGG 3’ 

 

750 

60 30 30 

IL2 

(control) 

 

F: 5’ TAGGCCACAGAATTGAAAGATCT 3’ 

R: 5’ GTAGGTGGAAATTCTAGCATCATCC 3’ 

 

324 

Pyy GN KO 

 

F: 5’ GACCTCGGTGTTTAATGGG 3’ 

R: 5’ ATCTCCTGTCCCTTGTAGCC 3’ 

 

300 60 30 30 

YFP 

YFP  

F: 5’ AAAGTCGCTCTGAGTTGTTAT 3’ 

F: 5’ GCGAAGAGTTTGTCCTCAACC 3’ 

R: 5’ GGAGCGGGAGAAATGGATATG 3’ 

 

250 

60 40 30 

WT 550 

Cre Cre F: 5’ GCGGTCTGGCAGTAAAAACTATC 3’ 

R: 5’ GTAAAACAGCATTGCTGTCACTT 3’ 
100 60 30 30 
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2.5 Gene expression measurements 

To minimize destruction of RNA by environmental RNases, all equipment was cleaned 

with an RNase inhibitor (RNaseZap; Ambion, Huntingdon, UK) and only nuclease-free 

filter pipette tips were used during RNA isolation. Instruments were autoclaved before 

use. 

2.5.1. Islet isolation 

Mice were killed by cervical dislocation and a laparotomy was performed. The pancreas 

was perfused with 2 ml of ice-cold pancreatic digestion solution and immediately 

dissected out and placed in a 15 ml falcon tube containing 2.5 ml of ice-cold pancreatic 

digestion solution. After 16 minutes of incubation at 37 C in a water bath, the sample 

was placed on ice and 20 ml of ice-cold quenching buffer was added and the tube was 

shaken vigorously to dissociate exocrine tissue from the islets. The digest was poured 

through a 500 µm mesh well in and then centrifuged at 200 rcf for 1 minute at 4 C. The 

supernatant was discarded and the pellet was resuspended in 20 ml of quenching buffer. 

The centrifugation step was repeated two more times, and after the last spin the pellet 

was resuspended in 30 ml of Ficoll-Paque and the sample vortexed. 10 ml of ice-cold 

quenching buffer was added followed by centrifugation at 1100 rcf for 22 minutes at 10 

C. The islets in the Ficoll layer were collected and passed through a 40 m cell strainer 

and were washed with ice-cold 1x PBS (phosphate buffered saline) and RNA 

immediately extracted from freshly isolated islets (as described in section 2.5.2.). 

2.5.2. Islet RNA extraction 

Due to the low yield of RNA that can be extracted from islets isolated from mice 

(Chapter 4, Table 4.1), a different method was utilized. Islets were collected following 

isolation described previously and centrifuged for 1 minute at 13,000 rpm at 4 C. The 

supernatant was removed from the islet pellet and RNA was extracted using the RNeasy 

mini kit (Qiagen, Crawley, UK). 350 µls of the homogenising buffer supplied with the 

kit was added to the islet pellet and passed through a 20-gauge syringe and then a 33-
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gauge needle, 10 times each. 350 µl of 70 % ethanol was added to the lysate and mixed 

by pipetting. This mixture was transferred to a spin column attached to a 2 ml collection 

tube and centrifuged at 10,000 rpm for 15 seconds at 4 C. The flow through was 

discarded and the spin column washed with buffers provided in the kit. The spin column 

was placed in a clean eppendorff and 30 μl of nuclease-free water (NFW)  (Ambion, 

Huntingdon, UK) was added to the column to elute RNA. The final RNA sample was 

either placed on ice for further analysis or stored at –80 °C for long-term storage. 

2.5.3. Whole tissue RNA extraction 

According to manufacturer’s instructions, whole tissue RNA extraction was performed 

using TRIzol reagent. Tissues were homogenized in 1 ml TRIzol followed by the 

addition of 200 μl of chloroform. The mixture was vortexed and incubated at room 

temperature for 5 minutes before being centrifuged at 13,000 rpm for 15 minutes at 4 C. 

The RNA-containing aqueous phase was transferred to a new eppendorff tube and 500 µl 

of chilled isopropanol was added and the sample vortexed. The tubes were incubated at 

room temperature for 20 minutes, and then centrifuged at 13,000 rpm for a further 30 

minutes at 4 C. The supernatant was aspirated and discarded without disturbing the 

RNA pellet and 500 µl of 70 % ice-cold ethanol was added to the tubes, vortexed and 

centrifuged at 8000 rpm for 5 minutes at 4 C. The supernatant was discarded and pellet 

air-dried for 5-10 minutes. The RNA pellet was resuspended in NFW and incubated for 

10-15 minutes at 55-60 C. The final RNA sample was either placed on ice for further 

analysis or stored at –80 °C for long-term storage. 

2.5.4. RNA purification  

Additional precautions were taken to purify RNA, by removing DNA contaminants 

using a DNA-free kit (Ambion, UK). 10 µl of DNase chelating reagent was added and 

vortexed over 2 minutes. This was followed by centrifugation of the samples at 13,000 

rpm at 4 C. The supernatant was removed without disturbing the DNA pellet. These 

DNA-free samples were then used to measure the RNA integrity number (RIN) using 
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the Agilent 2100 bioanalyzer (Figure 2.1). 1 μl of RNA was loaded into a RNA Nano 

LabChip where the degradation products and the RNA quality were determined. An 

algorithm assigns a number from 1 to 10, with 10 extrapolating intact RNA. A RIN 

value of >8 was deemed statistically significant (validated in-house), hence only 

samples with a RIN of more than 8 were used (See Chapter 4: Table 4.1). 
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Figure 2.1: RNA integrity number measurement by the Agilent bioanalyser. Intact RNA is indicated by two bands on (A) and two 

peaks on the electropherogram (B). The blue and red arrows show the 18s and 28s (ribosomal) RNAs, respectively. FU- fluorescence 

units, s-size. 

 

 

 

 

 

 

 

 

 

rRNA Ratio [28s/18s]: 2.040185   

RNA Integrity Number (RIN): 9.8 AU   

Concentration of RNA: 89 ng/l 

 

A B 
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2.5.5 Quantification of RNA 

1 μl from total RNA was quantified using the NanoDrop Bioanalyzer ND1000 

(NanoDrop; Labtech, Ringmer, UK). DNA contaminants are measured by the ratio of 

A260/A280. A ratio value of 2 equates to pure RNA, hence, a value of 1.80-2.20 was 

found to be suitable for synthesis of cDNA. 

2.5.6. cDNA synthesis 

Following isolation, reverse transcription of RNA template to make cDNA was done 

using a TaqMan Retrotranscription kit (Applied Biosystems, Warrington, UK). Each 

reaction was set up as follows: 3.0 μl 10x reverse transcription buffer, 1.2 μl 25X dNTP 

(deoxyribonucleotide phosphate) mix, 3.0 μl random hexamers, 1.5 μl reverse 

transcriptase, 6.3 μl NFW, 15.0 μl (0.5 µg) RNA template. Samples were heated to 25 

°C for 10 minutes, 37 °C for 120 minutes and then 85 °C for 5 minutes. The cDNA 

template was kept at 4 °C until further analysis. 

2.5.7 Quantitative Real-Time PCR (qRTPCR) 

Gene expression measurements were performed in duplicates unless otherwise stated. 

Each reaction replicate contained 1 μl of cDNA template (0.5 µg), 5 μl TaqMan PCR 

master mix, 2 μl of 20X primer of each respective proprietary FAM/TAMRA probe 

(Table 2.2) and 2 μl NFW. Tubes are vortexed and pulse spun at 13,000 rpm before 

loading 10 μl into respective wells of a 384-well clear optical reaction plate and sealed 

with an optical adhesive cover (Applied Biosystems, Warrington, UK) and centrifuged 

at 1,000 rpm for 1 minute before loading into the ABI Prism 7900 HT Thermocycler. 
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qRTPCR cycle: 

Temperature Time 

50 °C, 2 minutes 

95 °C 10 minutes 

95 °C 

60 °C 

15 seconds 

1 minute               

72 °C 5 minutes 

 

 

In order to normalise mRNA levels, genes of interest were evaluated in proportion to a 

stable, unchanging housekeeping gene. The Ct value for each sample was automatically 

computed using SDS software (Applied Biosystems, Warrington, UK). The Ct value 

of each target was compared to the Ct value of the housekeeper to normalise the gene 

expression and show direct difference between groups in arbitrary units (AU). 

 

 

cycle 40 

times 
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Gene     Symbol Product number  Amplicon 

          Size (bp) 

Peptide YY    Pyy  Mm00520715-m1 61 

  PYY  Hs00373890_g1** 150 

Glucose-dependent insulinotropic  GIP  Hs00175030_m1 78 

Peptide             

Cholecystokinin   Cck  Mm00446170_m1 79 

Ghrelin    Ghr  Mm00439093_m1 61 

Glucagon Like Peptide-1*  Glp-1  Mm00553234_m1 63 

Glucagon Like Peptide-1 receptor  GLP-1R Hs00157705_m1 78 

Dipeptidyl Peptidase -4  DPP4  Hs00175210_m1 90 

Neuropeptide Y receptor Y1   Npy1r  Mm01348999_m1 121 

     NPY1R  Hs007020150_s1** 120 

Neuropeptide Y receptor Y2  Npy2r  Mm01218209_m1 86 

     NPY2R  Hs01921296_s1** 143 

Neuropeptide Y receptor Y4  Npy4r  Mm01220859_m1 109 

     PPY1R  Hs00275980_s1** 95 

Neuropeptide Y receptor Y5   Npy5r  Mm00443855_m1 148 

     NPY5R  Hs01883189_s1** 149 

Neuropeptide Y receptor Y6   NPY6R  Hs00246222_s1** 98 

Insulin     Ins2  Mm00731595_gH** 99 

Glucagon    Gcg  Mm01269055_m1 62 

     GCG  Hs01026189_g1** 64 

Somatostation    Sst  Mm00436671_m1 86 

     SST  Hs00356144_m1 86 

Ubiquitin C    Ubc  Mm02525934_g1** 176 

Glyceraldehyde-3- phosphate  Gapdh  Mm 99999915_g1** 109 

dehydrogenase 

Hypoxanthine guanine  Hprt  Mm446968_m1 65 

phosphoribosyl transferase 

18s ribosomal RNA    Rn18s  Mm03928990_g1** 86 

β Actin     ACTB  Hs99999903_m1 171 

 

Table 2.2: Probes used for TaqMan gene expression analysis. Probes used for 

qRTPCR, gene symbol, product number and amplicon size. *Glp-1 referred to as 

enteroglucagon gene, **primer does not span intron/exon boundaries and detects 

gDNA. Hs-human gene and Mm-mouse gene. 
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2.6. In vivo metabolic studies 

2.6.1. Acute feeding studies 

16-hour fasted mice were given a pre-weighed amount of chow. At 1, 2, 4, 8, and 24 

hours post fast, food remaining in the cage dispenser and mouse body weight were 

weighed using a GW 600 balance (ATP Instrumentations, Ltd., Ashby-De-la-Zouche, 

UK) recording to the nearest 0.1g. 

2.6.2. Chronic feeding studies 

Body weight and food intake were measured once a week between 09.30-11.00 hours 

from weaning until age stated.  

2.6.3. Fasting blood glucose measurement 

Mice were fasted for 16 hours and blood glucose levels were measured from the tail 

vein, after application of local anaesthesia (Cryogesic, UK) with a glucometer (Bayer, 

UK). 

2.6.4. Intraperitoneal glucose tolerance test (IPGTT) 

Mice were fasted for 16 hours and injected intraperitoneally (i.p.) with a bolus of 1 g/kg 

of glucose (relative to body weight (BW) w/v). Blood glucose was measured before and 

at t = 15, 30, 60, 90 and 120 minutes after injection.       

2.6.5. Oral glucose tolerance test (OGTT) 

Mice were treated as stated in 2.6.4 and glucose was administered by oral gavage. 



 

75 

2.6.6. Oral glucose-stimulated insulin secretion (OGSIS) measurement 

During the OGTT, blood was collected in starstedt tubes at time points indicated. The 

blood was kept on ice until processing. To process, blood was spun at 10,000 rpm for 15 

minutes at 4 ⁰C and 10 µl of serum was collected in tubes before assessment of plasma 

insulin was determined by ELISA, described in section 2.8.2.  

 

2.7. Pancreatic immunohistochemistry (IHC) and morphological 

analysis 

2.7.1. Preparation of pancreata 

I. Murine 

Mice were killed by cervical dislocation and laparotomy performed. The pancreata were 

quickly dissected out, immediately spread and pinned to cork boards, which were 

rapidly placed into jars containing 10% neutral buffered formalin (NBF). Tissues were 

fixed in formalin for up to 24 hours, rinsed well with tap water and stored in 70% 

alcohol (all at room temperature). 

II. Human 

Patients diagnosed with KATPHI who are non-responsive to drug therapy are 

pancreatectomised. All tissues were checked by Histopathologists (GOSH, NHS Trust). 

The normal areas from focal KATPHI pancreatic tissue were used as controls. All tissues 

fixed in formalin for up to 24 hours, rinsed well with tap water and stored in 70 % 

alcohol (all at room temperature). 
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2.7.2. Tissue processing for paraffin embedding 

Tissues were processed as described below. Steps 1 to 9 were performed at room 

temperature and 9-11 at 60 ⁰C. Each step was 30 minutes. After processing, the tissues 

were embedded in paraffin and cooled on ice. 

1) 70 % ethanol 

2) 80 % ethanol 

3) 95 % ethanol I 

4) 95 % ethanol II 

5) 100% ethanol I 

6) 100% ethanol II 

7) Xylene I 

8) Xylene II 

9) Paraffin wax I 

10) Paraffin wax II 

11) Paraffin wax III 

 

2.7.3. Sectioning and de-paraffinisation 

Paraffin embedded tissues were sliced with a microtome using a Finesse 325 retraction 

microtome (Thermo Shandon, Loughborough, UK) and low-profile disposable Tissue-

Tek AccuEdge blades (VWR, Lutterworth, UK) to obtain 5 μm sections. The sections 

were float mounted on to positively charged Swiss glass slides and dried at room temp 

overnight. Dried slides were baked at 60 ⁰C for 2 hours. Deparaffinisation of the 

sections was performed as described below: 

1) Xylene I, 5 minutes 

2) Xylene II, 5 minute 

3) Xylene III 5 minutes 

4) 100 % ethanol I, 1 minute  

5) 100 % ethanol II, 1 minute 

6) 95 % ethanol, 1 minute 
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7) 70 % ethanol, 1 minute 

8) ddH2O, 5 minutes 

 

2.7.4. Immunostaining for fluorescent detection 

Following deparaffinisation, sections were placed in a heat-induced antigen retrieval 

solution (Dako, UK) for 3 minutes. Followed by cooling of the slides in 1 X PBS at 

room temperature. Thereafter, the slides were incubated at room temperature for 30 min 

with appropriate blocking solution. Blocking solution was removed and the sections 

were placed in a hydration chamber and incubated overnight at 4 ⁰C with a primary 

antibody (or antibody cocktail in co-localisation experiments, Table 2.3). 

Next day the sections were washed with PBS for 5 minutes at room temperature. The 

sections were incubated at room temperature in darkness for 30 minutes with secondary 

antibody conjugated to an Alexa Fluor dye (1:200), and washed with PBS for 15 

minutes. Lastly, the sections were mounted with 4', 6-diamidino-2-phenylindole (DAPI) 

mounting media (Vector Laboratories, UK) and visualised using either a fluorescent or a 

confocal microscope (Zeiss, UK). 

2.7.5. Pancreatic immunofluorescent images and morphometric analysis 

Immunostained pancreatic images were taken with a Zeiss LSM 710 inverted confocal 

microscope with x10, x20 (dry) or x40, x63 and x100 (oil) objective lens. For 

morphometric measurements, pancreatic sections were taken 50 µm apart and captured 

on an Olympus fluorescent microscope (Olympus, Southend-on-sea, UK). Fluorescent 

filters were used at 405 nm for DAPI, 488 nm for FITC and between 555-594 nm for 

TRITC at the magnification stated. Immunofluorescence was measured using ImageJ 

software and results were expressed as a percentage of total pancreatic area. 
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Primary: 

Antibody Supplier 
Catalogue 

Number 
Raised in 

Cross-

reactivity 
Working Dilution 

Anti-PYY Acris EUD5201 Guinea Pig H, R 1:750- R, 1:50-H 

Anti- insulin Dako A0564 Guinea Pig R 1:6000-R 

Anti- insulin Cell Signalling 4590S Rabbit H, R 1:100-R, 1:25-H 

Anti- proinsulin Novus bio NBP1-50246 Rabbit H, R 1:4000-R 

Anti-glucagon Abcam A0565 Rabbit H, R 1:50-H & R 

Anti-somatostatin Millipore AB5494 Rabbit H, R 1:500-R, 1:50-H 

Biotinylated-DPP-4 R&D Systems BAF954 Goat R 1:10-R 

Biotinylated-DPP-4 R&D Systems AF1180 Goat H 1:10-H 

Anti-Y1R Abcam AB73897 Rabbit R 1:2 

Anti-Ki67 BOND PA0118 Mouse H, R Ready-to-use 

Secondary: 

Antibody Supplier Catalogue Number 

 
Raised in 

Working 

Dilution 

Goat anti-guinea pig Alexa Fluor 

Molecular Probes 488/555 
Invitrogen, 

USA 

A-11073 

A-21435 
Goat 

1:200 

1:200 

Goat anti-rabbit Alexa Fluor 

Molecular Probes 488/594 
Invitrogen, 

USA 

A-11034 

A-11012 
Goat 

1:200 

1:200 

Streptavidin Alexa Fluor Molecular 

Probe 488 

Invitrogen, 

USA 
S-11223 N/A 1:200 

Table 2.3: IHC antibodies. Table summarising the supplier, host species and working 

dilution of antibodies used for IHC. H-Human, R-Rodent. 
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2.7.6. Haematoxylin and eosin staining 

Sectioning of pancreata tissue was carried out as previously described. A Leica 

autostainer was used to deparaffinise and stain the sections as described below, 

followed by mounting with vectashield mounting media (Vectashield, USA): 

1) Xylene I, 3 minutes 

2) Xylene II, 3 minutes 

3) Xylene III, 3 minutes 

4) 100 % ethanol I, 3 minutes 

5) 100 % ethanol II, 3 minutes 

6) 95 % ethanol, 2 minutes 

7) 70 % ethanol, 2 minutes 

8) ddH2O I, 2 minutes 

9) ddH2O II, 2 minutes 

10) Haematoxylin, 1 minute 

11) ddH2O, 2 minutes 

12) Clarifier, 30 seconds 

13) ddH2O, 2 minutes 

14) Blueing, 1 minute 

15) ddH2O, 2 minutes 

16) 95 % ethanol, 1 minute 

17) Eosin, 10 seconds 

18) 100 % ethanol I, 1 minute 

19) 100 % ethanol II, 1 minute 

20) 100 % ethanol III, 2 minutes 

21) Xylene I, 1 minute 

22) Xylene II, 1 minute 

23) Xylene III, 1 minute 

24) Xylene IV, 1 minute 
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2.8. Assays 

Assays were used to quantify the circulating concentration of peptides or hormones 

of interest from studies. Each assay was carried out in accordance with the 

manufacturer’s guidelines in duplicates (Millipore, Watford, UK). 

Kit 
Immunoassay 

type 
Catalogue Number 

Human PYY (3-36) Specific RIA RIA PYY-67HK 

Human Total GIP ELISA EZHGIP-54K 

Multispecies Active GLP-1 ELISA EGLP-35K 

Rodent Insulin ELISA EZRMI-13K 

Table 2.4: Immunoassays used for quantification of circulating hormones. Table 

summarising the assay kit, type and catalogue number for the quantification of 

circulating hormones of interest.  

 

 

2.8.1.    Radioimmunoassay (RIA) 

The kit was used as per the manufacturer’s guidelines with reactions being carried 

out in duplicates. 300 μls of assay buffer was added to tubes for non-specific binding 

(NSB), 200 μls added to the reference tubes (Bo), and the remaining tubes had 100 

μls assay buffer added to them. 100 μl of either a standard or quality control samples 

supplied with the kit of known concentration and was also added to separately 

labelled tubes in duplicates. 100 µl of the unknown samples were added to the 

remaining tubes. 100 μl of the antibody was added, each tube was vortexed, covered 

and incubated 20 – 24 hours at 4 °C. Thereafter, 100 μl of the radioactively labelled 

(
125

I) tracer was added to all tubes and two tubes labelled ‘total count’ (TC). Tubes 

were again vortexed, covered and incubated for a further 20 – 24 hours at 4 °C. 

Finally, 1ml of precipitating reagent was added to all tubes except TC tubes. The 

tubes were vortexed and incubated for 40 minutes at 4 °C. Later on, all tubes with 

the exception of TC tubes were centrifuged at 10,000 rpm for 40 minutes at 4 °C. 

The supernatant was decanted from these tubes immediately after centrifugation. The 

radioactivity remaining in each test tube was then quantified with a gamma emission 

counter (Packard Cobra, MN, USA).  

http://www.millipore.com/catalogue/item/pyy-67hk
http://www.millipore.com/catalogue/item/pyy-67hk
http://www.millipore.com/catalogue/item/EZHGIP-54K
http://www.millipore.com/catalogue/item/EGLP-35K
http://www.millipore.com/catalogue/item/EZRMI-13K
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2.8.2. Enzyme-linked immunoassay (ELISA) 

The ELISA assays feature the capturing of a specific protein in samples by 

antibodies. Firstly, the sample is added to a microtitre plate which contain the 

antibodies and any unbound material is washed off. The detection conjugate is then 

added to the bound material, producing a chemical reaction which is either 

fluorescently or spectrophotometrically quantified. Results are interpolated from a 

reference curve which is generated in the same assay by known standard 

concentrations. All samples were performed in duplicates as per the manufacturer’s 

instructions. 

2.9. Statistical analysis of data 

All data is presented as mean ± standard error of mean (SEM) unless otherwise 

stated. Statistical interpretation for body length, gonadal fat mass, gene expression 

and immunostaining analysis were assessed by unpaired Student’s t-test. For 3 or 

more variables, one-way analysis of variance (ANOVA) was used. For studies 

assessed over time such as body weight, feeding studies, GTTs and GSIS, analysis 

was carried out by repeated- measures ANOVA (RM-ANOVA) followed by Fishers 

post-hoc multiple comparison test. Area under curve (AUC) was determined by the 

trapezoidal method and compared by unpaired Student’s t-test. Differences in plasma 

hormones and metabolite concentrations of KATPHI subjects were assessed by paired 

Student’s t-test. Correlation analyses were examined by Pearsons correlation. Raw 

data was organised and collected in Microsoft Excel and GraphPad Prism 6. Further 

analysis and preparation for graphical presentation was carried out in GraphPad 

Prism 6. For all results significance was set at p < 0.05. 
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Chapter 3 

 

Characterisation of the intra-islet 

PYY system
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3. Characterisation of the intra-islet PYY system 

3.1. Introduction  

The islets of Langerhans are composed as complex multicellular structures forming the 

endocrine portion of the pancreas. Insulin-producing -cells make up the largest islet-

cell subtype at around 70-80% of the islet (Elayat et al., 1995). Glucagon-producing -

cells account for 15-20% of the islet with somatostatin-producing -cells, PP-producing 

PP-cells and ghrelin-producing -cells accounting for the remaining minority. PYY is 

expressed in the pancreatic islets of Langerhans in rodents (Ekblad and Sundler, 2002) 

and humans (Ali-Rachedi et al., 1983). In particular PYY is expressed in the -, - and 

PP-cells post-natally (Ali-Rachedi et al., 1983, Nieuwenhuizen et al., 1994, Jackerott et 

al., 1996, Myrsén-Axcrona et al., 1997), with some data also suggesting that co-

localization occurs prenatally with -cells (Upchurch et al., 1994). Furthermore, PYY is 

found to be the earliest detectable peptide to appear during ontogeny in the 

enteroendocrine cells (Upchurch et al., 1996) and islets (Upchurch et al., 1994). It 

appears to share lineage with all five islet-cell subtypes (Upchurch et al., 1994, Arnes et 

al., 2012), with the highest expression occurring in the embryonic pancreas, falling 

dramatically post-birth and continuing to reduce through adulthood (Upchurch et al., 

1994). The physiological consequences of PYY as an early appearing bioactive peptide 

(during development in the intra-islet cells) are still not fully understood.    

Isolated islets placed in media containing PYY have been shown to inhibit stimulated 

insulin secretion (Bottcher et al., 1989, Bottcher et al., 1993). DPP-4, a ubiquitously 

expressed enzyme cleaves PYY 1-36, a bioactive form (that acts on all YRs), to the 

Y2R-selective isoform; PYY 3-36. Nieuwenhuizen et. al., (Nieuwenhuizen et al., 1994) 

have also shown PYY’s inhibitory effect on GSIS, in vitro, mediated by a reduction in 

cAMP. Chandarana et. al., (Chandarana, 2009) presented studies in which they showed 

that PYY 1-36 supplemented with DPP-4 inhibitor result in a significant increase in 

GSIS when compared to isolated islets placed in media containing PYY 1-36 alone. 

They additionally showed that PYY 3-36 in the presence or absence of DPP-4 inhibitor 
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did not cause a change to GSIS, in vitro. Thereafter, a study using transgenic mice 

ablated PYY in PYY-expressing tissues including the pancreatic islets (Sam et al., 

2012). In this report, the resultant Pyy null mouse (PYY-DTR) was given PYY 3-36 to 

assess if the loss of islet content could be rescued, and found no difference in the 

pharmacologically-treated versus the vehicle-treated mice. Moreover, STZ-treated mice 

and the PYY-DTR mice were both given a PYY 1-36 analogue. Both mice strains 

displayed a reduction in -cell death. In vivo, transgenic Y1r and Pyy null mice display 

an increase in insulin release (Burcelin et al., 2001, Boey et al., 2006b). Taken together, 

these reports suggest very distinct roles for these two molecular species of PYY on 

glucose homeostasis. This implies that islet PYY 1-36 inhibits GSIS possibly via the 

Y1R. However, studies so far have failed to confirm this and the physiological role and 

regulation of this population of islet PYY still remains largely unknown. 
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3.3. Hypothesis 

‘PYY 1-36 is the bioactive isoform within the intra-islet system’ 

 

3.4. Aims: 

 To establish and optimise a murine islet isolation protocol for extraction of RNA 

for gene expression. 

 To confirm the presence of islet Pyy and Dpp-4 from isolated islets of C57BL/6 

mice. 

 To determine the Yr subtype gene expression in isolated islets from C57BL/6 

mice. 

 To evaluate the localisation and distribution of PYY, DPP-4 and Y1R in islet 

cell subtypes of the WT mouse using IHC. 

 To evaluate the gene expression of Ins, Gcg and Sst in the Pyy mice. 

 To evaluate the expression changes of -, - and -cell area in the Pyy and 

PdxPyy mice using IHC. 

 

3.5. Study design: 

An islet isolation protocol was established and optimised (Liao, 2012). In addition, the 

presence or absence of Yr-subtypes from C57BL/6 (WT) islets was determined. 

Thereafter, distribution of DPP-4 and PYY expression in the different islet cell subtypes 

and the expression of Y1R with insulin and DPP-4 was evaluated using IHC in 

C57BL/6 mice. Finally, changes in gene and protein expression of insulin, glucagon and 

somatostatin were measured in the Pyy and PdxPyy mice.   
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3.5. Results 

3.5.1. Establishing and optimising an islet isolation protocol in mice 

The pancreas is made up of the exocrine cells and endocrine islets. The islets contain 

signalling factors and hormones that are involved in glucose homeostasis. Hence, to 

assess the response of various conditions and factors on the islet PYY system, islets 

were isolated successfully and repetitively to ensure accuracy and reproducibility. 

Initially, to acquire islets, separation from the remaining pancreatic tissue was done by 

perfusion of a collagenase buffer via the common bile duct. 

Figure 3.1 shows the anatomical positioning of various tissues with respect to the 

pancreas. The ampulla of Vater or hepatopancreatic ampulla (circle) is formed by the 

merging of the pancreatic duct and the common bile duct and is specifically located at 

the junction with the duodenum. Pancreatic secretions are carried from the pancreas and 

passed through these pathways into the gut (the enteroinsular axis). Using these 

networks, a collagenase buffer was administered along the common bile duct through 

the incision of the ampulla. 

Once successful perfusion of the pancreas had taken place, fractions of various cells 

were centrifuged off until a floating layer of islets in a Ficoll gradient remained. A pellet 

containing mostly exocrine and undissociated islets formed at the bottom of the tube 

(Figure 3.2A). A fraction containing islets are passed through a 40 m strainer and then 

plated before islets were isolated by handpicking (Figure 3.2B-D). The healthy islets are 

generally then either (1) incubated overnight and used for static incubation studies to 

assess the intra-islet physiology when incubated in a given test buffer and/or (2) taken to 

extract RNA immediately and perform qRTPCR to assess gene expression. 
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Figure 3.1: Successful pancreatic perfusion with collagenase buffer to yield isolated 

islets. (A) Anatomical view of abdominal tissue with respect to the pancreas. (B) 

Difference seen when successful perfusion occurs in the pancreas. Red arrow indicates 

spleen. (C-E) Images showing various stages of perfusion. Circle shows site of needle 

insertion: ampulla. Black arrow indicates the common bile duct. Representative line = 1 

cm.  
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Figure 3.2: Islet isolation from collagenase perfused whole pancreata. (A) Isolated 

islets gather in the Ficoll gradient layer seen after centrifugation. (B) Cell fraction 

pipetted from layer after passing through 40m cell strainer. (C-D) Handpicked isolated 

islets prior to RNA isolation. Red arrows indicate exocrine pancreas, lysed islets etc. 

Blue arrows indicate islets that are isolated and RNA extracted. Representative line = 

200 µm.  
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3.5.2. Optimising the qRTPCR protocol to determine the Yr subtypes present in 

isolated pancreatic islets from C57BL/6 mice 

Gene expression of Pyy, Dpp-4 and Yr in the isolated islet was evaluated in C57BL/6 

mice to direct our studies into determining the islet PYY isoforms and target receptors. 

As previously described, PYY 1-36 is an endogenous ligand for all YRs; however PYY 

3-36 has specific Y2R affinity. Studies were performed with the assistance of Dr J. Way 

and Ms D. Danger. 

3.5.2.1. RNA extraction: 

To assess the protocol validity and enquire about the possible RNA yield from isolated 

islets, RNA was isolated from a pool of 2 mice. Extraction was successful using the 

RNeasy mini kit, and yield was both high (98 ng/µl) and almost completely intact (RIN- 

9.8 AU). Hence, it was considered that sufficient RNA could be extracted from 

individual mice. Thereafter, islets were individually isolated from another six mice and 

RNA extracted successfully (Table 3.1). 

Date of RNA 

isolation 

 

Tissue 

 

RNA conc. 

(ng/μl) 

Absorbance 

(A260/A280) 

 

RIN (AU) 

30/11/2011 Islets* 98.0 2.13 9.8 

01/12/2011 (i) Islets 20.1 2.12 >8 

(ii) Islets 83.6 2.09 >8 

(iii) Islets 60.1 2.09 >8 

(iv) Islets 33.0 2.18 >8 

(v) Islets 20.5 2.13 >8 

(vi) Islets 23.7 2.17 >8 

 

Table 3.1: RNA extraction of isolated islets from wild type mice using Qiagen 

RNeasy kit. Quantification and integrity of RNA was determined by Nanodrop 

photospectrometry and electropherogram. N = 8. *pool of 2 mice. RIN: RNA integrity 

number. 
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3.5.2.2. Reverse transcription: 

cDNA was synthesised from the islet RNA. RT reactions performed were successful; 

however, since the RNA concentrations of the samples were sometimes low, we used 

0.6 -1.0 mg of RNA template for RT to get a minimum of 10 ng/µl per sample of cDNA 

template required for the qRTPCR reactions.  

3.5.2.3. qRTPCR 

Expression levels for Yr subtypes were quantified by qRTPCR. Commercially available 

brain and intestine cDNA (Zyagen, USA) were used as positive control tissues for Y1, 

Y2, Y4 and Y5 receptors expression. All probes were confirmed to be expressed in 

control tissue, and this ensured the probes were active and qRTPCR protocol was 

successful (Chapter 2, Table 2.2).  

 

Gapdh was strongly expressed in all tissues, with stable patterns of within-tissue 

expression, hence it was deemed suitable as a housekeeping gene. Ct values were 

recorded for the different probe sets after 40 PCR cycles. ΔCt was calculated which was 

used to normalise abundance of the gene of interest relative to the housekeeping gene 

(average abundance of target/average abundance of Gapdh). Values that remained 

undetected after the 40 cycles were deemed as unexpressed. Isolated islets were 

retrieved and RNA extracted by methods previously described. The qRTPCR probes 

were initially assessed using brain tissue cDNA.  
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3.5.2.4. Determining islet Yr subtype expression  

Previous data have made suggestions of the YR subtype mediating intra-islet PYY’s 

inhibition on insulin. But have thus far failed to confirm this.  

Thereafter, we detected Y1r expression in cDNA from whole pancreas and isolated islets 

in the WT mice. On the other hand, Y4r mRNA was only found to be present in whole 

pancreas, but was absent in all islet samples after 40 PCR cycles. Y2r and Y5r 

expression were undetectable from both whole pancreas and isolated islets. Y4r 

expression (0.0071AU) was almost six-fold higher than Y1r expression (0.0012AU) in 

the whole pancreas of the WT mice (Figure 3.3A). In isolated islets, of all the YR-

subtypes, Y1r gene expression was the only receptor that was detectable (Figure 3.3B). 

 

          

Figure 3.3: Differences in Yr expression of the whole pancreas and isolated islets. 

Expression of Yr in A) whole pancreas and B) the endocrine islets. Y1r expression 

(purple) in islets and pancreas, Y4r expression (black) in pancreas N = 8 for islet 

samples & n = 1 for pancreas from C57BL/6 mice. Data shown as mean of triplicates + 

SEM.  
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3.5.3. Evaluating the intra-islet localisation of PYY and DPP-4 in normal WT 

mouse pancreata using IHC 

The pancreatic endocrine islets consist of five islet-cell subtypes. Insulin was used as a 

marker for -cells, which are located in the core of the islets. Glucagon was used as an 

-cell marker, and somatostatin as a -cell marker. Both of these cell subtypes are found 

on the mantle/periphery of the islets. Other cell types include the PP- cells, and the -

cells. Of the five cell-subtypes, we assessed distribution of PYY, DPP-4 and Y1R 

expression in the -, - and -cells.  

 

3.5.3.1. Confirmation of islet PYY expression using transgenic reporter mice 

PYY protein expression was confirmed and validated in the YfpPyy mouse. YFP was 

predominantly expressed in the lower gut and islets consistent with the localisation of 

PYY (Figure 3.4). 
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Figure 3.4: Validation of PYY protein expression using a transgenic reporter line. (i) The ROSA26 promoter drives the 

expression of the yellow fluorescent reporter gene (Yfp) located upstream of the floxed (orange triangles) stop cassette (green).  

Expression of the PyyCre within the same cell population produces a recombination that removes the stop cassette and thus, activates 

the expression of the ROSA26-driven Yfp gene. This allows for the identification of cells that express Pyy and in which Cre has 

functioned. (ii) Representative pancreas and gut sections showing YfpPyy in green (bars: 100 µm) within (A) Islets (B) stomach, (C) 

proximal duodenum, (D) jejenum, (E) distal ileum, (F) ascending colon and (G) descending colon. DAPI blue nuclear staining 

(Gelegen et al., 2012).   
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3.5.3.2. IHC antibody optimisation & controls 

Using immunostaining, normal islet-cell subtype distribution was confirmed. Primary 

and secondary antibody dilution factors were determined for all antibodies (Chapter 2, 

Table 2.3). Staining distribution was assessed to evaluate correct staining of the 

antibodies. Insulin was found to stain the core of the islet, whereas the glucagon and 

somatostatin staining localised on the mantle of the islet. Thus, localisation of islet cell 

subtypes appeared to stain as expected (Figures 3.5). IHC imaging was conducted with 

the assistance of Dr E. Kleymenova. 

 

 

 

Figure 3.5: Confirmation of normal islet cell staining in WT mice. Representative 

image showing islet immunostaining in WT mice (A) using glucagon as an -cell 

marker (green) and insulin as a marker for -cells (red). (B) -cell marker insulin (red) 

was co-stained with somatostatin as marker for islet -cells (green). Nuclei are labelled 

with DAPI (blue). Magnification x 20. N = 8 mice per group, 6 sections per mouse. 

Reference line: 20 µm. 

B A 
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3.5.3.3. Assessing PYY antibody cross-reactivity with homologous sequences 

It has previously been reported that PYY antibodies are non-specific and cross-react 

with NPY (Glavas et al., 2008). To validate the PYY antibody, we used our transgenic 

Pyy KO mice that have the global Pyy gene deleted with complete absence of the PYY 

protein (Batterham et al., 2006). The Pyy KO showed no staining for islet PYY; hence 

we conclude that the antibody did not cross-react with NPY (Whim, 2011) or any other 

homologous sequence within the pancreas (Figure 3.6).    

  

 

 

 

 

 

 

 

Figure 3.6: Absence of PYY staining in Pyy KO mice. Representative image showing 

islet immunostaining for (A) PYY (green) and (B) Proinsulin (red) in the Pyy KO mice. 

Nuclei are labelled with DAPI (blue). Magnification x 40. N = 8 mice per group, 6 

sections per mouse. Reference line: 20 µm. 
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3.5.3.4. The DPP-4 antibody 

DPP-4 can be found in circulation and is expressed on the endothelial lining of blood 

vessels. DPP-4 expression was primarily confirmed to the cell surface of islets with 

some cytoplasmic staining also (Figure 3.7).  

 

 

Figure 3.7: Validation of DPP-4 antibody in WT mice. Representative image 

showing immunostaining for (A) DPP-4 (green), blood vessels-immunoreactivity 

indicated by arrows (x 40). (B) Islet DPP-4 immunostaining in green at higher 

magnification (x 63). Nuclei are labelled with DAPI (blue). N = 8 mice per group, 6 

sections per mouse. Reference line: 10 µm. (For more detailed images, see 

supplementary data supplied; appendix II A1-A2). 

B A 
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3.5.3.5. Assessing the distribution and localisation of PYY and DPP-4 within 

different islet cell subtypes in WT mouse pancreata.  

3.5.3.5.1. PYY localisation in -, - and -cells. 

To determine if PYY was localised to the -cells, 5 µm pancreata sections from WT 

mice were immunostained for insulin in red and PYY in green. As expected, we found 

that PYY was not co-localised with insulin (Figure 3.8A-C). PYY was found to be 

present in glucagon positive cells (Figure 3.9A-D). However, PYY was found 

predominantly, but not exclusively co-localised with somatostatin positive cells, i.e. the 

-cells (Figure 3.9E-H).  

 

 

 

 

 

 

 

 

Figure 3.8: PYY is not localised in the -cells. Representative image showing islet 

immunostaining in WT mice for (A) PYY (green) and (B) insulin (red). (C) Merging of 

the immunostaining. Nuclei are labelled with DAPI (blue). Magnification x 40. N = 8 

mice per group, 6 sections per mouse. Reference line: 10 µm. 
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Figure 3.9: Islet PYY is present in the - and -cells in WT mice. Islet immunostaining in WT mice for (A) glucagon -cells 

(green), (B) PYY positive cells (red), (C-D) Merging of the immunostaining.  (E) PYY cells (green) and (F) somatostatin -cells (red). 

(G-H) Merging of the immunostaining. Nuclei stained in DAPI (blue). Magnification x 40, and inset magnification x 63. N = 8 mice 

per group, 6 sections per mouse. Reference line: 10 µm. 
 

 

   
A C B 

D 
GCG 

PYY 

DAPI 

E G F 

H PYY 

SST 

DAPI 

H 

G F E 



99 

3.5.3.5.2. DPP-4 localisation in -, -, - and PYY positive cells 

DPP-4 expression was localised to islet cell surfaces. DPP-4 appeared to be distributed 

on insulin positive -cells (Figure 3.10A), and on a small population of glucagon 

positive cells (Figure 3.10B). However, the enzyme could not be found on somatostatin 

positive cells (Figure 3.10C). DPP-4 was also located on one population of PYY 

positive cells, but was absent on another PYY positive cell population in the WT mice 

(Figure 3.10D). 
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Figure 3.10: DPP-4 is localised on α-, β- and PYY positive cells but not with 
somatostatin in WT mice	
  Islet immunostaining for DPP-4 (green) co-stained with (A) 
insulin (red), (B) glucagon (red), (C) somatostatin (red) and (D) PYY (red) in WT mice. 
Nuclei are labelled with DAPI (blue). Arrow indicates PYY positive cells absent of 
DPP-4 staining. Magnification x 20 and x 40. N = 8 mice per group, 6 sections per 
mouse. Reference line: 10 µm. (For more detailed images, see supplementary data; 
appendix II A3-A8). 
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3.5.3.6. Confirming the expression of the Y1R on β- and DPP-4 positive cells in 

WT mouse pancreata.  

To determine if the Y1R was localised to the β-cells, 5 µm pancreata sections from WT 

mice were immunostained for insulin in red and Y1R in green. As expected, we found 

that Y1R was localised to the cell surface of insulin-positive β-cells (Figure 3.11A). In 

addition, Y1R was co-localised to DPP-4 positive cells (Figure 3.11B).  

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Y1R is localised on β-cells and DPP-4 positive cells in WT mice. Islet 
immunostaining in WT mice for (A) Y1R (green) co-stained with insulin (red) and (B) 
Y1R (green) co-stained with DPP-4 (green). Nuclei are labelled with DAPI (blue). 
Magnification x 40. N = 3 mice per group, 4 sections per mouse. Reference line: 10 µm. 
(For more detailed images, see supplementary data; appendix II A9-A10). 
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3.5.4. Evaluating the effect of pancreatic-specific & global Pyy deletion on islet 

morphology and expression 

To assess changes in islet morphology of the pancreatic-specific and global Pyy KO 

mice, we stained pancreatic sections with the widely popular haematoxylin and eosin 

stain (H&E). H&E staining is routinely used to in pathological assessments for detection 

in changes of morphological tissue structure. The protocol involved applying an 

aluminium ion and haematoxylin complex, haemalum. This produced a blue nuclear 

staining. Eosin was then used to counterstain other cellular structures in various shades 

of red. 

 

3.5.4.1. Morphological islet changes in the PdxPyy and Pyy mice 

The Pyy KO and the PdxPyy KO mouse displayed an increased number of islet nuclei 

when compared to their respective controls (Figure 3.12). 
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Figure 3.12: Changes in morphological structure the Pyy transgenic mice. 

Representative haematoxylin eosin (H&E) stained sections of islets in the PdxPyy 

KO and Pyy KO with their littermate control mice aged 12-14 weeks. Black arrows 

represent islet cell nuclear staining. White arrows represent acinar cells. 

Magnification x 20. N = 3-8 mice per group, 4 sections per mouse. Reference line: 

25 µm. 

 

 

 

Pyy WT  

PdxPyy WT  

Pyy KO 

PdxPyy KO  



104 

3.5.4.2. Assessment to detect changes in pancreatic cell area expression of the 

Pyy KO mouse using IHC and qRTPCR 

To determine the islet phenotype of the Pyy KO mice; we assessed the expression of 

islet genes and proteins in male 16-18 week old mice.  

 

3.5.4.2.1. Pyy KO: Pancreatic insulin mRNA and -cell area 

No differences in pancreatic islet Ins expression (WT: 12.88  0.34 vs. KO: 13.50  

0.36 AU) or -cell area (WT: 0.0041  0.00006 % vs. KO: 0.0041  0.00004 % total 

area) was found between the Pyy WT and KO mouse (Figure 3.13). 

 

3.5.4.2.2. Pyy KO: Pancreatic glucagon mRNA and -cell area 

There were no differences in pancreatic islet Gcg expression in the Pyy mice (WT: 

12.89  0.65 vs. KO: 11.67  0.71 AU). However, there was a reduction in -cell 

area of Pyy KO mice (WT: 0.0013  0.00002 % vs. KO: 0.0012  0.00001 % total 

area) (Figure 3.14). 

 

3.5.4.2.3. Pyy KO: Pancreatic somatostatin mRNA and -cell area 

When evaluating the Sst gene expression there was no change between the groups 

(WT: 17.94  0.59 vs. KO: 18.05  0.38 AU). Whereas, there was a difference in -

cell area of the Pyy mice (WT: 0.00014  0.000005 % vs. KO: 0.00030  0.00006 % 

total area) (Figure 3.15). 
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Figure 3.13: Global Pyy deletion has no effect on Ins gene expression or -cell area. (A) Expression of Ins mRNA in whole pancreatic tissue 

samples of the Pyy WT and KO mice. B) Pancreatic β-cell area expression in the Pyy mice. C) Representative immunostained images of 

pancreatic islets of the Pyy WT and KO mice (DPP-4 green, insulin: red & nucleus: DAPI blue). Magnification x 40. Reference line: 20 µm. 

Gene expression: data shown as mean of duplicates + SEM, n= 9-11 mice per group. Pancreatic islet cell area: data shown as mean + SEM, n = 2 

mice per group, 2 sections per mouse. 
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Figure 3.14: Global Pyy deletion leads to a reduction in -cell area. (A) Expression of Gcg mRNA in whole pancreatic tissue samples of the 

Pyy WT and KO mice. B) Pancreatic α-cell area expression in the Pyy mice. C) Representative immunostained images of pancreatic islets of the 

Pyy WT and KO mice (GCG green, insulin: red & nucleus: DAPI blue). Magnification x 40. Reference line: 20 µm. Gene expression: data 

shown as mean of duplicates + SEM, n= 9-11 mice per group. Pancreatic islet cell area: data shown as mean + SEM, n = 2 mice per group, 2 

sections per mouse. 
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Figure 3.15: Global Pyy deletion leads to an increase in -cell area. (A) Expression of Sst mRNA in whole pancreatic tissue samples of the 

Pyy WT and KO mice. B) Pancreatic -cell area expression in the Pyy mice. C) Representative immunostained images of pancreatic islets of the 

Pyy WT and KO mice (SST green, insulin: red & nucleus: DAPI blue). Magnification x 40. Reference line: 20 µm. Gene expression: data shown 

as mean of duplicates + SEM, n= 9-11 mice per group. Pancreatic islet cell area: data shown as mean + SEM, n = 2 mice per group, 2 sections 

per mouse.  
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3.5.4.3. Morphometric assessment of islet-cell area in the PdxPyy KO mouse 

using IHC  

To determine and compare the islet phenotype of the PdxPyy KO mouse to the PdxPyy 

WT mice, we assessed the islet cell morphometry, since no differences in islet gene 

expression was found amongst the Pyy mice. PdxPyy male mice aged 12-16 weeks were 

investigated. 

3.5.4.3.1. PdxPyy KO: Changes in pancreatic -cell area 

No differences in pancreatic islet -cell area were found between the PdxPyy WT and 

KO mice (WT: 0.0067  0.00009 vs. KO: 0.0065  0.00001 % total area) (Figure 3.16). 
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Figure 3.16: PdxPyy deletion has no effect on -cell area. (A) Representative 

immunostained images of pancreatic islets of the PdxPyy WT and KO mice (DPP-4 

green, insulin: red & nucleus: DAPI blue). Magnification x 40. Reference line: 20 µm. 

B) Pancreatic β-cell area expression in the PdxPyy WT and KO mice. Data shown as 

mean + SEM, n = 2 mice per group, 2 sections per mouse. 
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3.5.4.3.2. PdxPyy KO: Changes in pancreatic -cell area 

Like the Pyy KO mice, the PdxPyy null mice also showed a reduction in -cell area 

when compared to the control mice (WT: 0.0016  0.00007 vs. KO: 0.0014  

0.00006 % total area) (Figure 3.17). 
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Figure 3.17: PdxPyy deletion results in a reduction in -cell area. (A) 

Representative immunostained images of pancreatic islets of the PdxPyy WT and 

KO mice (GCG green, insulin: red & nucleus: DAPI blue). Magnification x 40. 

Reference line: 20 µm. B) Pancreatic α-cell area expression in the PdxPyy mice. 

Data shown as mean + SEM, n = 2 mice per group, 2 sections per mouse.  
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3.5.4.3.3. PdxPyy KO: Changes in pancreatic -cell area 

Surprisingly, we found an increase in -cell area of the PdxPyy KO mice compared 

to the WT controls (WT: 0.00019  0.000002 vs. KO: 0.00022  0.000001 % total 

area) (Figure 3.18). 
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Figure 3.18: PdxPyy deletion results in an increase in -cell area. (A) 

Representative immunostained images of pancreatic islets of the PdxPyy WT and 

KO mice (SST green, insulin: red & nucleus: DAPI blue). Magnification x 40. 

Reference line: 20 µm. B) Pancreatic δ-cell area expression in the PdxPyy WT and 

KO mice. Data shown as mean + SEM, n = 2 mice per group, 2 sections per mouse.  
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3.6. Summary 

Previous research and literature has highlighted a role for intra-islet PYY in glucose 

homeostasis, in vivo and in vitro. However, to date no studies have researched the intra-

islet PYY system in-depth. Therefore, we pursued to characterise islet PYY and 

demonstrate the importance it has in mediating insulin control.   

3.6.1. Islet isolation for gene expression analysis 

Beginning with the optimisation of a murine islet isolation protocol, we subsequently 

evaluated the expression of islet Yrs. Y2r and Y5r were unexpressed in the pancreas. Y1r 

and Y4r were identified as the only two PYY receptors present in the pancreas, with Y4r 

expression almost six-fold higher than Y1r expression. RNA extracted from isolated 

islets was then checked for Y1- and Y4r expression. Islets only expressed Y1r mRNA in 

all 8 tissues samples (Ct <36). 

3.6.2. Pancreatic localisation of PYY, DPP-4 and Y1R in the WT mouse 

Confirmation of PYY protein expression was verified in the pancreatic islets using the 

YfpPyy reporter mouse. Antibodies were sourced from literature searches and 

corroborated to the correct immunostaining patterns of the islets. Using Pyy KO mice, 

we confirmed the specific staining of the PYY antibody. Next we assessed the 

distribution of PYY to specific cell-subtypes in the WT mouse. The -cell 

predominantly expressed PYY. The next most abundant PYY positive cells co-localised 

with DPP-4. The -cells stained the least for PYY. Unlike PYY, DPP-4 mainly co-

localised with the -cells. Some DPP-4 expression was localised to the -cells but 

immunostaining for the enzyme was completely absent from the -cells.  

To understand whether PYY mediated its effects on insulin directly, we assessed the 

localisation of Y1R on -cells or with DPP-4 positive cells. We found that Y1R was 

localised with both these proteins. However, since the Y1R antibody was inefficiently 
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weak during immunostaining, we were unable to assess if it co-localised with the other 

antibodies.  

3.6.3. Determining changes in pancreatic expression in the Pyy transgenic mouse 

lines 

Using H&E staining, we were able to detect islet morphological differences in both the 

Pyy transgenic mouse lines. Both Pyy KO and PdxPyy KO mice showed an increase in 

islet cell nuclei when compared to their respective controls. Moreover, changes in 

pancreatic Ins, Gcg and Sst gene expression as well as -, - and -cell area were 

measured in the both groups of the Pyy transgenic mice. Global Pyy KO mice showed 

no difference in pancreatic islet hormone mRNA levels compared to the Pyy WT mice. 

Additionally, -cell area also remained unchanged by the deletion of Pyy in the Pyy 

mice. However, Pyy deletion caused a decrease in -cell and increase in -cell area. 

Subsequently, morphometric analysis of the PdxPyy mice was evaluated. Like the Pyy 

KO mice, the PdxPyy KO mice also showed no difference in -cell area, as well as 

reduced -cell area and an increase in -cell area. 

3.6.4. Conclusion 

In conclusion, the data presented in this chapter is consistent with the intra-islet PYY 

mediating an inhibitory effect on insulin via the Y1R, and DPP-4 appears to regulate 

this action by converting it into an inactive form in the islets (PYY 3-36). Deletion of 

islet PYY appears to contribute to fall in -cell area with an increase in -cell area in 

both the Pyy transgenic mouse models, suggesting a role for PYY in the development of 

at least - and -cells. Collectively, these findings highlight the importance of PYY in 

islet development and function, and concurs with previous published data (Boey et al., 

2006a, Batterham et al., 2006, Chandarana, 2009, Chandarana et al., 2013). However, 

more pharmacological and genetics studies are needed to understand this further. 
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Chapter 4 

 

Investigating the in vivo role of intra-

islet PYY in energy and glucose 

homeostasis
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4. Investigating the in vivo role of intra-islet PYY in energy 

and glucose homeostasis  

4.1. Introduction 

PYY has been the focus of research in the past decade for its role in body weight 

regulation. Post-prandially, gut PYY reduces appetite by activating the anorectic 

hypothalamic homeostatic neurons and inhibiting the feeding-stimulating sites. 

However, prior to these findings, studies demonstrated the presence of PYY in islets and 

a role for PYY in regulating insulin secretion (Bottcher et al., 1989, Bottcher et al., 

1993, Upchurch et al., 1994, Myrsén-Axcrona et al., 1997, Nieuwenhuizen et al., 1994). 

Subsequently, many studies followed which all aimed at understanding the 

physiological role of pancreatic PYY. 

The first of a series of studies aimed at unravelling an in vivo role for PYY in energy 

and glucose homeostasis constructed a transgenic Pyy null mouse (Boey et al., 2006b). 

This mouse was absent of the Pyy gene and thus, of either isoform of PYY. The reported 

KO mouse was obese, hyperphagic but surprisingly HI post- GTT. This was 

accompanied by another Pyy KO mouse which reported a similar findings (Batterham et 

al., 2006). The obese phenotype of this mouse was reversed by administration of 

exogenous PYY 3-36 (Batterham et al., 2006). The following year, Boey and colleagues 

generated  an overexpressing PYY mutant mouse which appeared to be protected from 

DIO but the investigators failed to assess the glucose tolerance in these mice. Moreover, 

when the mice were crossed with leptin deficient ob/ob mice they appeared to have a 

significant reduction in body weight gain and adiposity but this did not ameliorate the 

obese phenotype (Boey et al., 2007). A few years later, a PYY transgenic model was 

developed that deleted PYY in the adult mouse. This mouse was created that allowed 

deletion of PYY cells by diphtheria toxin. The resultant adult PYY KO mouse presented 

with hyperglycaemia attributed to a loss of -cells and a disruption in islet morphology. 

The disturbance in islet phenotype was reduced after a long-acting PYY 1-36 analogue 

was administered (Sam et al., 2012). However, the systemic diphtheria toxin 
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administration deletes PYY in the gut, brainstem and pancreas so this mouse does not 

give insights into the role of pancreatic PYY. In addition, this approach destroys the 

cells and thus hormones that are co-localised with PYY. Subsequently, another report 

using a similar technology as Sam et al.’s produced an adult-onset PYY overexpressing 

mouse using tamoxifen. These mice displayed a reduction in fasting-induced food 

intake, an increase in respiratory exchange ratio, an increase in lipogenic activity and a 

trend towards a reduction in OGSIS (Shi et al., 2012). Furthermore, Pyy null mice fail to 

exhibit the improvement in glucose tolerance, post-bariatric surgery as seen in the 

control mice (Chandarana et al., 2011).   

Data from chapter 3 coupled with previously published findings clearly suggest that 

PYY has a vital role in energy and glucose homeostasis, which is mediated by an 

alteration in insulin release. In particular, the global Pyy KO mouse, which despite 

having an obese phenotype shows a potentiation of GSIS (Batterham et al., 2006, Boey 

et al., 2006b). However, all these studies fail to determine the physiological role of intra-

islet PYY independently of gut PYY action and the significance of this cell population 

still remains unclear.  

Several reports have suggested a role of PYY in body weight and glucose balance (Boey 

et al., 2006b, Batterham et al., 2006, Batterham et al., 2002). The Pyy KO mice to date 

have exhibited global deletion and thus Pyy deletion throughout the GI tract, pancreas 

and brain. However, it is not known how much of a role intra-islet PYY may play in 

mediating these effects. To investigate the in vivo role of intra-islet PYY we generated a 

transgenic mouse with a pancreatic- specific promoter driven excision of the Pyy gene in 

the islets (PdxPyy KO). Thus, this mouse will enable us to potentially distinguish the 

role of the endocrine pancreas from GI and brain PYY and clarify the in vivo role of 

intra-islet PYY in energy and glucose balance. 
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4.2. Hypothesis 

‘Intra-islet PYY deletion mediates an improvement in glucose tolerance caused by 

hyperinsulinaemia’ 

4.3. Aims: 

 To investigate the effects of pancreatic-specific Pyy deletion (PdxPyy KO) on 

food intake, body weight and adiposity, in vivo. 

 To undertake a detailed in vivo glucose phenotyping of the PdxPyy KO mice and 

their wild-type littermate control mice. 

 To assess the effects of Pdx-mediated Pyy deletion on neuro- and 

enteroendocrine mRNA levels that may contribute to the observed phenotypes. 

 

4.4. Study Design:  

PdxCre mice were crossed with Pyy floxed
+/-

 to produce the PdxPyy KO mice (Gannon 

et al., 2000, Herrera, 2000). Since Cre recombinase alone has been shown to alter 

glucose tolerance we used PdxCre+ Pyy WT (PdxPyy WT) mice as controls (Fex et al., 

2007). Using genotyping PCR, the targeted Pdx-mediated Pyy gene deletion was 

confirmed. Confirmation of islet PYY protein deletion was carried out by IHC. A 

detailed in vivo phenotype of these mice was investigated in both sexes. Changes in 

acute and chronic feeding and body weight of the PdxPyy mice were assessed from 

weaning. Additionally, an IPGTT, OGTT in both sexes, and OGSIS were carried out on 

16-18 week old PdxPyy male mice. Body length and gonadal fat mass were determined. 

Furthermore, brainstem, ileal and colonic expression of Pyy were measured. Finally, 

duodenal Cck & Pyy, stomach ghrelin, ileal and colonic proglucagon mRNA expression 

was quantified by qRTPCR.  
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4.5. Results 

4.5.1. Constructing the Pdx-specific Pyy null mouse 

4.5.1.1. Confirmation of Pdx-specific Pyy gene deletion in the PdxPyy KO mouse 

using genotyping PCR. 

The Pdx-1 promoter is highly expressed during pancreatic, stomach antrum and 

duodenal murine ontogeny. Mouse PdxPyy WT and KO were produced by the Cre/loxP 

system (Gannon et al., 2000, Herrera, 2000) (Figure 4.1). Central and peripheral tissues 

were taken from PdxPyy KO mice and their littermate controls to assess genotype 

(Figure 4.2). As described previously, DNA was extracted from the sample and deletion 

was confirmed to the pancreas and duodenum only. The interleukin-2 (IL2) gene was 

used an internal control for the confirmation of DNA extraction.  
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Figure 4.1: PdxPyy mouse targeting strategy. Construction of the PdxPyy mice after recombination and deletion of the flanked LoxP 

Pyy gene. Cre-mediated deletion of the Pyy-coding region was confirmed using primers D1 and D2. The 326 bp product represents the 

presence of the WT allele, with the 350 bp demonstrating the floxed Pyy gene both obtained using the D1 and D2 primers. The 750 bp 

product indicates the Pdx cre gene with the presence of the IL2 allele (324 bp) acting as an internal positive control for the presence of 

genomic DNA. Representative genotyping of LoxP and PdxCre PCR used to detect alleles of interest. N = 5 mice per group. 

Heterozygote (Het), homozygous (Homo), wild type (WT), flanked LoxP sites (flox). 
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Figure 4.2: Evidence for the deletion of Pyy in the PdxPyy KO mouse. Representative genotyping PCR indicating the deletion of 

the Pyy gene in the duodenum and pancreas of the PdxPyy KO versus PdxPyy WT mice. C = cortex, Hy = Hypothalamus, BS = 

Brainstem, H = Heart, Lu = Lungs, L = Liver, K = Kidneys, M = Skeletal Muscle, F = Gonadal fat, Sp = Spleen, P = Pancreas, S = 

Stomach, D = Duodenum, J = Jejenum, I = Ileum, Co = Colon, + and - = controls. N = 10 mice per group. 
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4.5.1.2. Evaluating the protein expression of PYY in pancreatic islets of the 

PdxPyy mice. 

We evaluated whether we could detect PYY protein in the PdxPyy mice. Using insulin 

as a marker for islet localisation, we found PYY immunopositive cells in the PdxPyy 

WT mouse and confirmed PYY protein deletion in the PdxPyy KO mouse (Figures 

4.3A-B). 

 

 

 

 

 

 
 

Figure 4.3: Assessment of Pdx-regulated PYY protein expression in the pancreas of 

the PdxPyy mice. Islet immunostaining for PYY (red), insulin (green) and nuclear 

staining in DAPI (blue) in A) PdxPyy WT and B) PdxPyy KO mice. N = 2 mice per 

group, 2 sections per pancreas, x 20 magnification, line represents: 20 µm. 
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4.5.2. In vivo evaluation of the physiological characteristics of intra-islet Pyy 

deletion on energy and glucose homeostasis 

To assess the physiological role of islet PYY action in the appropriate regulation of 

appetite and body weight, we analysed cumulative food intake and weight gain in both 

male and female PdxPyy KO mice and their littermate controls.  

 

4.5.2.1. Evaluating the effects of Pdx-mediated deletion of Pyy on food intake  

Singly-housed mice were fed ad libitum chow and food weight per cage was recorded 

weekly and thus, food intake was calculated per week. Cumulative weekly food intake 

from weaning until the end of the study remained unchanged in both male and females 

(Figures 4.4A & C). However, when the PdxPyy KO mice were fasted for 16 hours and 

refed ad libitum, the male PdxPyy KO mice showed a significant decrease in cumulative 

acute food intake at 2h (1.0 ± 0.1 g, p= 0.02), 4h (1.2 ± 0.1 g, p= 0.01), 6h (1.6 ± 0.1 g, 

p= 0.02), and 8h hours (2.0 ± 0.2 g, p= 0.05) post-refeed when compared to WT controls 

(2h= 1.4 ± 0.1 g, 4h= 1.7 ± 0.1 g, 6h= 2.2 ± 0.1 g & 8h= 2.5 ± 0.2 g). However, 

eventually both groups were eating the same amount of food by 24 hours (WT= 5.8 ± 

0.3 g & KO= 5.4 ± 0.4 g) (Figure 4.4B). The female mice showed no difference in acute 

feeding behaviour (Figure 4.4D).   
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Figure 4.4: Assessment of food intake in the PdxPyy mice. Cumulative food intake in 

the: A) Male PdxPyy mice: blue. B) Female PdxPyy mice: red. N = 10 mice per group. 

Data represented as mean ± SEM. * p < 0.05, ** p < 0.01. 
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4.5.2.2. Evaluating the effects of Pdx-mediated deletion of Pyy on body weight 

Deletion of Pyy in the PdxPyy mice of both sexes resulted in a significant reduction in 

weight gain during the study period when compared to the PdxPyy WT controls in both 

male and female mice. Male PdxPyy KO mice were significantly lighter from 8 weeks 

of age (p <0.05: Figure 4.5A), whereas, female PdxPyy KO mice were lighter from 

weaning (p <0.01: Figure 4.5C). This difference at weaning implies that pancreatic Pyy 

deletion affects growth, this will assessed further in section 4.5.2.3.     

 

After a 16-hour fast, male PdxPyy WT mice weighed significantly less when fasted than 

when fed ad libitum (p <0.001), as did the PdxPyy KO mice (p <0.01). The male fasted 

or fed WT mice weighed more than the null mice (p <0.0.5: Figure 4.5B). On the other 

hand, female PdxPyy KO mice only significantly weighed more fed than fasted (p 

<0.05: Figure 4.5D).  
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Figure 4.5: Body weight phenotype of the PdxPyy mice. Cumulative body weight gain 

in the: A) Male PdxPyy mice: blue. B) Female PdxPyy mice: red. Fasted or fed body 

weight in: C) Male PdxPyy mice: blue/green. D) Female PdxPyy mice: red/black. N = 

15-25 mice per group. Data represented as mean ± SEM. *p<0.05, **p<0.01, ***p 

<0.001 between genotypes. p < 0.05, p < 0.01, between the fasted or fed groups. 
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4.5.2.3. Evaluating the effects of Pdx-mediated deletion of Pyy on factors that 

may contribute to the observed body weight phenotype. 

To ensure that the body weight difference was not due to somatic growth, in mice aged 

16-18 weeks, we measured the length of the mouse (from nose to anus). The WT mice 

body lengths were not significantly different from the KO mice of both sexes (Male 

WT= 10.74 ± 0.08 cms versus KO= 10.48 ± 0.13 cms and female WT= 10.08 ± 0.17 

cms versus KO= 9.9 ± 0.09 cms) (Figures 4.6A & B).  Fat mass from the gonads was 

removed and weighed in 16-18 week old mice. Male PdxPyy WT mice fat mass was 

0.48  0.03 g and the null mice showed a reduction in gonadal fat (0.36  0.04 g, p 

<0.001: Figure 4.6C-D). In female mice this difference was not apparent (Figure 4.6E).  
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Figure 4.6: PdxPyy KO mice show decreased adiposity. A&B) Body length in the male (blue) and female (red) PdxPyy mice. C) 

Representative image of the PdxPyy mouse body size. D-E) Gonadal fat mass in the male (blue) and female (red) PdxPyy mice. F) 

Ventral representative image of fat pads of the PdxPyy mice. N = 8-10 mice per group aged 16-18 weeks. Data represented as mean + 

SEM. ***p < 0.001.  
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4.5.2.4. Evaluating the effects of Pdx-mediated deletion of Pyy on glucose 

homeostasis. 

Glucose homeostasis was assessed in 18-20 week old PdxPyy mice (body weights: 

males: WT: 28.4 ± 0.7 g, KO: 25.1 ± 0.9 g, p <0.01. Females: WT: 18.5 ± 0.5 g, KO: 

20.4 ± 1.3 g).  The glucose tolerance in these mice was done by performing an IPGTT, 

OGTT and an OGSIS. For the GTTs, a bolus i.p. injection or oral gavage with glucose 

(1g/kg body weight) was administered in age- and sex-matched PdxPyy KO mice and 

their controls. Blood was taken to measure glucose levels from the tail vein before and 

after the injection. For the GSIS, additional blood was taken for measurement of 

circulating insulin levels. 

Fasted blood glucose of the PdxPyy WT mice was not significantly different from the 

KO mice in both male (WT: 3.0  0.2 mM vs. KO: 3.0  0.3 mM: Figure 4.7A) and 

female mice (WT: 3.5  0.4 mM vs KO: 2.9  0.2 mM: Figure 4.7B). 

 

I. IPGTT 

From the IPGTT, the PdxPyy KO mice showed a significant reduction in blood glucose 

levels at t90 and t120 post-injection in the males and t120 in females (Male t90: WT: 

16.7  2.1 mM, KO: 8.6  1.5 mM,  p =0.009, male t120: WT: 12.7  2.0 mM, KO: 5.2 

 0.5 mM p <0.005: Figure 4.7C, female t90: WT: 5.0  0.3 mM, KO: 3.1  0.3 mM p 

<0.002: Figure 4.7D). In addition, the AUC60-120 IPGTT was significantly lower in the 

male PdxPyy KO mice (551.6  87.4 mM/min) compared to the controls (968.8  119.5 

mM/min p <0.05) (Figure 4.7E). The female PdxPyy KO mice showed insignificantly 

reduced AUC90-120 IPGTT (119.1  11.6 mM/min) compared to the controls (162.4  

17.2 mM/min, p =0.059) (Figure 4.7F). 
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Figure 4.7: Assessment of IPGTT in the PdxPyy mice. Glucose homeostasis was assessed in age- and sex-matched PdxPyy mice. 

Glucose (1g/kg body weight) was injected i.p. and blood samples collected for measurement of blood glucose at time points indicated. 

Fasted blood glucose in A) males and B) females. Time course of IPGTT in C) males and D) females. AUC IPGTT in E) males and F) 

females. Data is shown as mean ± SEM of duplicates. N = 6-12 per group, * p < 0.05, ** p < 0.01. 
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II. OGTT and OGSIS 

From the OGTT, the PdxPyy KO mice showed a significant reduction in blood glucose 

levels at t30 in male mice (15.8  1.5 mM vs. WT: 20.9  1.8 mM, p =0.04: Figure 

4.8A). In female mice however, there was no difference in the OGTT response between 

the groups (Figure 4.8B). In addition, the AUC30-120 OGTT was significantly lower in 

the male PdxPyy KO mice compared to the controls (WT: 1487.2  159.9 mM/min vs. 

KO: 972.2  83.3 mM/min: Figure 4.8C). Again, there was no difference in the AUC 

OGTT of the female different PdxPyy mouse groups (Figure 4.8D). Blood was also 

taken at the times indicated in the OGSIS for assessment of insulin release and measured 

by ELISA. At t15, PdxPyy KO mice significantly secreted more insulin (WT: 0.20  

0.04 ng/ml vs. KO: 0.31  0.02 ng/ml, p =0.04), with the AUC0-30 OGSIS showing a 

significant increase in the PdxPyy KO mouse (p =0.027) (Figures 4.8E-F). 
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Figure 4.8: Assessment of OGTT and OGSIS in the PdxPyy mice. Glucose 

homeostasis administered orally and blood samples collected for measurement of blood 

glucose and GSIS at time points indicated. Time course of OGTT in A) males and B) 

females. AUC OGTT in C) males and D) females. E) Time course of OGSIS in males. 

F) AUC0-30 OGSIS. Data is shown as mean ± SEM of duplicates. N = 5-9 per group, * p 

< 0.05, ** p < 0.01. 
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4.5.3. Investigating the possible compensatory factors that may contribute to the 

observed energy and glucose homeostatic phenotypes of the PdxPyy KO mouse 

4.5.3.1. Assessing the hormonal changes that may contribute to the PdxPyy KO 

phenotype: PYY expressing sites.  

Apart from the pancreas, PYY is found expressed in the gut which has known post-

prandial anorectic action (Batterham et al., 2002, Batterham and Bloom, 2003, 

Batterham et al., 2003). However, PYY is also located in the brainstem but the 

physiological role of this set of cells remains unknown (Glavas et al., 2008, Gelegen et 

al., 2012). To determine if changes in gut and brainstem Pyy may be involved in the 

observed phenotypes, we measured Pyy gene expression from these tissues of the 

PdxPyy mice. Whole tissue qRTPCR were performed on the brainstem, ileum, and 

colon. Brainstem, ileal and colonic Pyy expression was not different between the groups 

(Figure 4.9).  

 

 

 

 

Figure 4.9: Assessment of Pyy mRNA in the PdxPyy mice. Whole tissue Pyy 

expression was measured by qRTPCR in A) Brainstem, B) Ileum and C) Colonic tissue. 

Results were normalized to Ubc. Filled bars: PdxPyy WT and patterned bars: PdxPyy 

KO. Data is shown as mean + SEM of duplicates. N= 4-7 per group.   
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4.5.3.2. Assessing the duodenal hormonal changes that may contribute to the 

PdxPyy KO phenotype.  

To assess if the Pdx-directed deletion of Pyy affected duodenal expression of Pyy, 

we measured for changes in mRNA levels. There was no significant difference in 

duodenal Pyy expression between the PdxPyy WT (0.071 ± 0.005 AU) and PdxPyy 

KO mice (0.074 ± 0.02 AU) (Figure 4.10A). Cholesystokinin (CCK), a duodenal 

anorectic peptide was also assessed to determine whether the Pdx-targeting strategy 

was possibly causing compensation for the loss of the Pyy gene. Cck mRNA was 

measured by real-time qRTPCR and remained unchanged between 16-18 week old 

ad libitum fed PdxPyy KO mice and their control littermates (Figure 4.10B).  

 

 

 

 

 

 

Figure 4.10: Assessment of duodenal gut hormone gene expression. Whole tissue 

gene expression was measured from the duodenum for A) Pyy expression and B) 

Cck in the PdxPyy mice. Results were normalized to Ubc. Filled bars: PdxPyy WT 

and patterned bars: PdxPyy KO. Data is shown as mean + SEM of duplicates. N=4-7 

per group.  
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4.5.3.3. Assessing the gut hormone changes that may contribute to the PdxPyy 

KO phenotype.  

In addition to the duodenum, other gut hormones were assessed; stomach ghrelin, 

ileal and colonic proglucagon gene expression were measured. There was no 

difference between the 16-18 week old ad libitum fed PdxPyy KO and the control 

mice (Figure 4.11). 

 

 

 

 

 

 

Figure 4.11: Assessment of gut hormone gene expression in the male PdxPyy 

mice. Whole tissue gut hormone expression was measured by qRTPCR: A) Stomach 

ghrelin, B) Ileum and C) Colonic proglucagon mRNA in the PdxPyy mice. Results 

were normalized to Ubc. Filled bars: PdxPyy WT and open bars: PdxPyy KO. Data is 

shown as mean + SEM of duplicates. N= 4-7 per group.   
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4.6. Summary 

4.6.1. Analysis of Pdx-specific deletion of Pyy 

To understand the specific in vivo role of islet PYY, a transgenic mouse was created; 

PdxPyy KO. PdxCre meditated recombination of the floxed Pyy gene was successful 

causing the deletion of the gene and protein. Duodenal Pyy mRNA levels remain 

unchanged in the PdxPyy KO mice in comparison to the control ad libitum fed mice. 

This work suggests a role for pancreatic PYY in the regulation of body weight and 

glucose metabolism.  

4.6.2. PdxPyy deletion effects on body weight and appetite regulation 

Deletion of pancreatic PYY resulted in no change to weekly cumulative food intake, 

but a significant reduction in food intake at a few time points post a fast-re-feed 

challenge in male mice. Additionally, there was also a reduction in cumulative body 

weight gain in both male and female PdxPyy KO mice compared to the PdxPyy WT 

from weaning to the end of the study.  

To ensure the body weight phenotype was not a result of a difference in somatic 

growth, as was seen in the global Pyy
-/-

 mouse (Boey et al., 2006b), we measured the 

length of the mice and found that PdxPyy KO and WT mice were of a similar body 

length in both male and females. Gonadal fat mass was also measured to see if this 

was contributing to the observed phenotype. Only male PdxPyy KO mice showed 

significantly less fat than the WT mice, this phenotype was not apparent in the 

female groups.  

4.6.3. PdxPyy deletion and glucose homeostasis 

The oral GTT challenge resulted in HI and a reduction in blood glucose in the 

PdxPyy null mouse. We also carried out an IPGTT to see whether the response was 

lost in absence of enteral stimulation and found a significant reduction in blood 

glucose levels but this was observed at a later time. Moreover, in vivo GSIS was 

markedly increased, with a reduction in blood glucose.  
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4.6.4. PdxPyy deletion and the gut 

To assess whether there are compensatory changes to gut hormones as a result of the 

PdxPyy deletion, we initially measured Pyy mRNA in the brainstem (Glavas et al., 

2008, Gelegen et al., 2012) and lower gut (Batterham et al., 2002, Batterham and 

Bloom, 2003). Subsequently, using qRTPCR Pyy expression from peripheral and 

central sites was quantified. This was followed by gut ghrelin, Cck and 

enteroglucagon measurements. This was undertaken to assess whether other gut 

hormones were contributing to the in vivo effects observed in these mice. However, 

no changes were observed in the gut hormone gene expression of the PdxPyy KO 

mice. 

4.6.5. Conclusion 

In summary, this chapter demonstrates that PYY-mediated systems are important for 

the regulation of body weight and glucose homeostasis. In particular, Pdx-specific 

deletion of Pyy led to the successful deletion of islet PYY protein and results in an 

exaggerated GSIS causally linked to a lean phenotype and decreases in adiposity. 
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Chapter 5 

 

Characterising the role of gut 

hormones in hyperinsulinaemic 

hypoglycaemia
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5. Characterising the role of gut hormones in 

hyperinsulinaemic hypoglycaemia 

5.1. Introduction 

Nesidioblastosis in adults or congenital forms of HH is characterised by persistent 

hypoglycaemia due to unregulated secretion of insulin from the pancreatic β-cells. 

Historically adult-onset nesidioblastosis has been rare and was mainly found due to the 

occurrence of non-insulinoma pancreatogenous hypoglycaemia syndrome (NIPHS) 

(Jabri and Bayard, 2004). Though the cause appears to be unknown, as of late there 

appears to be a surge in the frequency of cases. Increasing evidence has suggested this to 

be a result of the GBP weight-loss surgery (Service et al., 2005). At present, two 

theories exist for the reasoning behind nesidioblastoma formation as a complication of 

GBP surgery. The first suggests that obesity induces HI and islet hyperfunction. The 

second hypothesis is that HI is a consequence of GBP (Service et al., 2005, Cummings, 

2005). However, support against the first hypothesis is that individuals with insulinomas 

are not morbidly obese and obese persons have normal islet cell morphology (Service et 

al., 2005). Due to such theories, a deeper understanding for the functional mechanisms 

purporting that bariatric surgery causes nesidioblastosis is becoming of great interest to 

diabetes research.  

Many individuals who have undergone GBP have presented with the dumping 

syndrome. Reports have proposed this to be because of an increase in peripheral GLP-1 

due to the rapid transit of nutrients to the distal gut (Miholic et al., 1991). GLP-1 is 

known to promote β-cell proliferation, neogenesis and inhibit apoptosis. Furthermore, a 

case study highlighted the persistence of post-prandial HH episodes in a person who 

previously had undergone a GBP. The individual required a subtotal pancreatectomy. 

However, 6 months post-surgery and apparent remission, HH returned and the person 

was managed on drugs (Qintar et al., 2012). Hence this case supports the theory that 

GBP has possibly either bypassed the proximal gut hormone(s) (such as GIP: foregut 

theory) and/or overstimulated the distal GI peptide(s) (such as GLP-1 and PYY: hindgut 
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theory) to induce exaggerated HI. This in turn would potentially mediate hypoglycaemia 

and nesidioblastosis. Moreover, DPP-4 regulates these gut hormones and thus, GBP 

may also be altering the biological activity of DPP-4 on these substrates. Furthermore 

DPP-4 inhibition is currently employed to promote the incretin effect in T2DM. 

Ultimately, if GLP-1 and other DPP-4 gut hormone substrates are factors involved in 

this condition, then it brings into question (1) the current practice of GBP as well as (2) 

the use of GLP-1R agonists and DPP-4 inhibitors as therapeutic treatments of obesity 

and T2DM.  

Nesidioblastosis has also been reported in neonates (Rahier et al., 2000). It is more 

commonly referred to and accepted as CHI. CHI incidence is around 1 in 50,000 births 

of the general population and can be transient or persistent. In most cases, defects in the 

KATP channels (channelopathies) cause the congenital form of HH; KATPHI (Senniappan 

et al., 2013). Treatments of such cases usually require constant feeding and 

pharmacotherapy. In medically-unresponsive HH situations, surgical removal of the 

pancreas is required. The overall effect is to reduce insulin secretion and function as 

well as prevent brain damage that occurs as a result of recurring hypoglycaemia. 

However, the surgery has complications and often leads to pancreatic exocrine 

insufficiency and DM (Arya et al., 2013).  

Gene deletion of Sur-1 results in fasted hypoglycaemia and is similar to the human 

KATPHI condition (De Leon et al., 2008). WT mice treated with the GLP-1R antagonist 

exendin (9-39) have shown an increase in fasting blood glucose (De León et al., 2003). 

Therefore Sur-1 null animals were treated with the exendin (9-39) or vehicle and blood 

glucose measured. The KO mice treated with exendin (9-39) had an increase in fasting 

blood glucose when compared to vehicle-treated KO mice. These changes were in the 

absence of body weight, glucose tolerance and insulin sensitivity adjustments (De Leon 

et al., 2008). This was followed by a pilot clinical study by the group. They infused the 

GLP-1R antagonist in patients with KATPHI and aimed to reduce HH (Calabria et al., 

2012). They found a glucose increasing effect and insulin decreased without altering 

circulating glucagon or GLP-1 levels. Overall these studies implicate and support the 
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hypothesis that GLP-1 activity plays an important role in HH and thus, may have the 

potential as a therapeutic target for the treatment of this disease. However, these studies 

have also failed to assess if other gut hormone are involved in the pathophysiology of 

HH.           

Collectively the data supports the theories that gut hormone changes promote HH as a 

result of KATPHI or due to GBP-induced nesidioblastosis. However, the mechanism of 

this effect remains unknown. Taken together, the interaction between the incretins, PYY 

and DPP-4 needs to be examined more closely if (1) we are to gain full therapeutic 

benefit and (2) avoid possible adverse effects of current drug treatments for HH.   
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5.2. Hypothesis 

‘Hyperinsulinaemic hypoglycaemia promotes changes in DPP-4 and its gut hormone 

substrates’ 

5.3. Aims: 

 To determine changes in expression of pancreatic genes involved in energy and 

glucose balance. 

 To characterise the distribution and localisation of islet PYY and DPP-4 in 

healthy pancreatic samples. 

 To determine the proliferating islet-cell subtypes in the KATPHI pancreas. 

 To assess circulating gut hormone changes in patients with KATPHI at HH. 

 To evaluate correlations between metabolites analysed in patient with KATPHI. 

 

5.4. Study Design: 

Using gene expression analysis, we determined changes in mRNA of pancreatic genes 

that may contribute to the KATPHI phenotype of six KATPHI patients against two non- 

KATPHI controls. The localisation of PYY and DPP-4 expression in different islet cell 

subtypes were evaluated in eight healthy pancreata using IHC. Thereafter, we aimed to 

identify the proliferating islet-cell subtype in three KATPHI pancreatic tissues. In 

addition, five KATPHI patients were recruited and studied consecutively. All patients 

underwent a controlled hypoglycaemia screen (reducing i.v. glucose with no feeds) and 

blood was collected at normoglycaemia and at hypoglycaemia. Plasma glucose was 

measured by YSI and plasma insulin using RIAs. Active GLP-1 and total GIP were 

measured using ELISAs and active PYY was measured by RIAs. Finally correlation 

analysis was carried out in five KATPHI patients. 
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5.5. Results 

5.5.1. Assessing the changes in expression of pancreatic genes involved in energy 

and glucose balance.  

To begin we wanted to find possible gene contributors to the HH seen in KATPHI. 

Hence, we analysed the pancreatic gene expression of six KATPHI patients and compared 

them with two non- KATPHI controls. mRNA analysis of KATPHI patients showed an 

increase in DPP-4 expression (control: 5.04 ± 0.39 AU versus KATPHI: 6.13 ± 0.11 AU) 

and a trend towards a down-regulation of PYY expression (control: 5.32 ± 0.01 AU 

versus KATPHI: 4.85 ± 0.08 AU, p = 0.09) when compared to control tissue. Y1R gene 

expression was also down-regulated but this was insignificant (control: 5.69 ± 0.35 AU 

versus KATPHI: 4.80 ± 0.34 AU, p = 0.31). Additionally, SST expression appeared to be 

significantly upregulated in KATPHI (control: 9.18 ± 0.94 AU versus KATPHI: 10.13 ± 

0.04 AU). No changes were observed in the GLP-1R, GIP, GCG and in any pancreatic 

PYY YR subtypes (p >0.05) (Figure 5.1).      

 

 

Figure 5.1: Gene expression results from pancreatic tissue samples of control and 

KATPHI patients. Gene expression of RNA isolated from KATPHI pancreata and control 

donors. N = 6 KATPHI and 2 control. Data shown as + SEM as % of control gene 

expression *p <0.05. Data reproduced from work carried out by Dr S. Senniappan, with 

permission. 
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5.5.2. Characterising the distribution and localisation of islet PYY and DPP-4 in 

normal healthy pancreas from children. 

Primary and secondary antibodies (Chapter 2: Table 2.3) were used as previously 

described. Eight pancreata samples were obtained from healthy normal pancreatic tissue. 

This was following analysis and confirmation by the Histopathology Team at GOSH. 

Using immunofluorescent IHC, protein localisation of PYY and DPP-4 was determined. 

 

5.5.2.1. PYY localisation in α-, β-, and δ-cells. 

To determine if PYY was localised and was similar anatomically to the murine model; 5 

µm pancreata sections from normal healthy and KATPHI patients were immunostained 

for individual cell-markers and PYY. As expected, we found that PYY was not co-

localised with insulin (Figure 5.2A). PYY was found to be co-localised with glucagon in 

α-cells (Figure 5.2B). However, PYY was also absent from somatostatin δ-cells (Figure 

5.2C).  

 

5.5.2.2. DPP-4 localisation in α-, β-, and δ-cells. 

DPP-4 expression appeared to be distributed in and on insulin positive β-cells (Figure 

5.3), as well as with glucagon in α-cells (Figure 5.4). A small population of δ-cells were 

also positive for the expression of DPP-4 (Figure 5.5). However, DPP-4 was absent 

from PYY positive cell populations in normal healthy pancreatic islets (Figure 5.6). 
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Figure 5.2: PYY is only localised to the human α-cells. Representative islet immunostaining in healthy children: (A) PYY (red) and 

insulin (blue) (B) Glucagon (green) and PYY (red). (C) Somatostatin (purple) and PYY (red). Yellow arrow indicates co-localisation 

of proteins. N = 8 with 2 sections per subject. Magnification x 20. Reference line: 50 µm. 
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Figure 5.3: DPP-4 is localised in and on β-cells with insulin in healthy children pancreatic tissue. Representative islet 

immunostaining in healthy children: for insulin (red), DPP-4 (green) Red arrow indicates insulin only positive staining; green arrow 

indicates DPP-4 only positive staining with yellow arrow indicating co-localisation of the two proteins. N = 8 subjects, 2 sections per 

subject. Magnification x 63. Reference line: 10 µm. 
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Figure 5.4: DPP-4 is localised in and on α-cells with glucagon in healthy children pancreatic tissue. Representative islet 

immunostaining in healthy children: for glucagon (red), DPP-4 (green). Green arrow indicates DPP-4 only positive staining with 

yellow arrow indicating co-localisation of the two proteins. N = 8 subjects, 2 sections per subject. Magnification x 20. Reference line: 

20 µm. 

Merge GCG DPP-4 
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Figure 5.5: DPP-4 is localised in and on a few δ-cells with somatostatin in healthy children pancreatic tissue. Representative 

islet immunostaining in healthy children: for somatostatin (red), DPP-4 (green). Image inset indicating co-localisation of the two 

proteins. N = 8 subjects, 2 sections per subject. Magnification x 20. Reference line: 20 µm. 
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Figure 5.6: DPP-4 is not co-localised with PYY cells in healthy children pancreatic tissue. Representative islet immunostaining in 

healthy children: for PYY (red), DPP-4 (blue). N = 8 subjects, 2 sections per subject. Magnification x 20. Reference line: 25 µm. 

 

PYY DPP-4 PYY 

DPP-4 



 

 148 

5.5.3. Evaluating pancreatic changes in patients with KATPHI. 

5.5.3.1. Morphological changes in patients with KATPHI. 

Normal healthy pancreas was used as control and compared to KATPHI pancreas, which 

were obtained with consent from patients who have a near total pancreatectomy. 

Sections were cut and mounted on superfrost slides and H&E stained for visualisation of 

pancreata architecture. KATPHI pancreas generally had normal morphology and 

distribution of exocrine and endocrine cells however; they appeared to show 

characteristically large islet nuclei when compared to healthy pancreatic tissue (Figure 

5.7).  

 

 

 

 

 

 

 

 

Figure 5.7: Normal and KATPHI pancreatic architecture. Representative images of 

haematoxylin & eosin (H&E) stained sections of pancreas in (A & C) normal and (B & 

D) KATPHI. Blue arrows indicate islet cell nuclear staining and black arrows indicate 

acinar cells (exocrine). (A & B) Magnification x 20, (C & D) magnification x 40. N = 8 

subjects per group, 6 sections per patient. Reference line: 100 µm. 

Normal 
A B 

C D 
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5.5.3.2. Proliferative changes in patients with KATPHI.  

KATPHI and control pancreata were sectioned at 5 µm depth and stained for Ki67; a 

marker used to show proliferation. KATPHI pancreas showed an increased number of 

Ki67 nuclear immunostaining when compared to healthy pancreatic tissue (Figure 5.8). 

Performed with the assistance of GOSH histopathology lab. 

 

 

 

  

 

 

Figure 5.8: KATPHI promotes islet-cell proliferation. Representative immunostained 

sections of pancreas in normal and KATPHI using automated Leica stainer for Ki67 

proliferation marker. Black arrow indicates the islet cell nuclear staining absent of Ki67 

staining (brown). Blue arrows indicate Ki67+ acinar nuclear cell staining. Red arrow 

represents Ki67+ islet cell nuclear staining. Magnification x 40. N = 8 subjects per 

group, 2 sections per subject. Reference line: 50 µm. 

 

Normal KATPHI 
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5.5.3.3. Assessment to detect islet expression changes in patients with KATPHI. 

Using IHC, we tried to determine the islet cell subtypes that may be proliferating and 

hence, contribute to the observed phenotype of these patients using Ki67 as a marker for 

proliferation. 

 

KATPHI tissue appeared to show islet -cell proliferation (Figure 5.9), which was absent for 

-cells (Figure 5.10). Islet -cell showed positive immunostaining for the proliferative 

marker, Ki67 (Figure 5.11). In addition, PYY and DPP-4 expression were assessed against 

the proliferative marker. PYY positive cells showed no proliferation (Figure 5.12). 

Whereas, DPP-4 positive cells were clearly also expressing Ki67 (Figure 5.13). 
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Figure 5.9: KATPHI promotes -cell proliferation. Representative immunostained sections of pancreas in (A) normal and (B) KATPHI 

using automated Leica stainer for Ki67 proliferation marker. Immunofluorescent staining for insulin in red. Yellow arrows represent the 

islet cell nuclear staining positive for Ki67 staining (brown). DAPI stains nuclei blue. Magnification x 20 & x 40. N = 3 subjects per group, 

2 sections per subject. Reference line: 50 µm.           
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Figure 5.10: KATPHI is absent in -cell proliferation. Representative 

immunostained sections of pancreas in (A) normal and (B) KATPHI using automated 

Leica stainer for Ki67 proliferation marker. Immunofluorescent staining for 

glucagon in green. Yellow arrows indicate the islet cell nuclear staining positive for 

Ki67 staining (brown). DAPI stains nuclei blue. Magnification x 20 & x 40. N = 3 

subjects per group, 2 sections per subject. Reference line: 50 µm. 
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Figure 5.11: KATPHI promotes -cell proliferation. Representative immunostained sections of pancreas in (A) normal and (B) KATPHI using 

automated Leica stainer for Ki67 proliferation marker. Immunofluorescent staining for somatostatin in green. Yellow arrows indicate the islet 

cell nuclear staining positive for Ki67 staining (brown). Magnification x 20 and x 40. N = 3 subjects per group, 2 sections per subject. Reference 

line: 50 µm. 
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Figure 5.12: KATPHI does not promote PYY-positive cell proliferation. Representative immunostained sections of pancreas in (A) normal 

and (B) KATPHI using automated Leica stainer for Ki67 proliferation marker. Immunofluorescent staining for PYY in red. Yellow arrows 

represent the islet cell nuclear staining positive for Ki67 staining (brown). Red arrow represents Ki67+ islet cell nuclear staining. Magnification 

x 20 and x 40. N = 3 subjects per group, 2 sections per subject. Reference line: 50 µm. 
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Figure 5.13: KATPHI causes DPP-4-cells to proliferate. Representative immunostained sections of pancreas in (A) normal and (B) KATPHI 

using automated Leica stainer for Ki67 proliferation marker. Immunofluorescent staining for DPP-4 in green. Yellow arrows represent the islet 

cell nuclear staining positive for Ki67 staining (brown). DAPI stains nuclei blue. Magnification x 20 & x 40. N = 3 subjects per group, 2 sections 

per subject. Reference line: 50 µm. 
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5.5.4. Changes in plasma gut hormone levels in patients with KATPHI. 

Five patients were recruited for this study with consent obtained from 

parents/guardians. Since pancreatic DPP-4 was significantly increased in KATPHI 

patients, we analysed the gut hormone substrates that may be affected.  

 

5.5.4.1. Recruitment and biochemical characteristics of KATPHI patients 

The age of the patients was 4.8 ± 1.6 weeks (mean ± SD) weeks and body weight 4.5 

± 0.6 kgs. The mean plasma insulin levels were 18.6 ± 8.6 mU/L at normoglycaemia 

and decreased to 10.9 ± 2.9 mU/L (p =0.289) at hypoglycaemia. Plasma glucose 

levels significantly decreased from 6.1 ± 1.0 to 2.4 ± 0.2 mmol/L (p =0.02) (Table 

5.1). 

 

5.5.4.2. Assessing circulating gut hormone levels in patients with KATPHI 

Circulating gut hormone peptides were measured using commercially available 

assays and corrected for body weight. Circulating active PYY levels decreased from 

223.7 ± 63.6 to 215.3 ± 52.1 pg/ml/kg (p =0.772) at hypoglycaemia from 

euglycaemia. Plasma levels of active GLP-1 insignificantly increased at 

hypoglycaemia (1.5 ± 0.5 to 0.8 ± 0.5 pM/kg (p =0.514). Total GIP levels fell from 

28.1 ± 9.8 to 19.5 ± 7.4 pg/ml/kg (p =0.083) at hypoglycaemia (Figure 5.14).  

 

5.5.4.3. Assessing correlations between circulating metabolites in patients 

with KATPHI at normoglycaemia and at hypoglycaemia 

The difference between hypoglycaemia and baseline (normoglycaemia) were 

determined for each metabolite and then corrected for body weight. Correlation 

analysis was carried out using these values and relationship between plasma 

metabolites evaluated. No correlation existed amongst any of the metabolites except 

GLP-1 and PYY (Figure 5.15). 
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  Patient Information 

   AI DT RD JE LA 

 
Gestational weight at 
delivery 

 3.0kgs 
 

4.5kgs 
 

3.2kgs 
 

4.3kgs 
 

2.1kgs 
 

 Age of presentation Birth Birth Birth Birth Birth 

 Current age (weeks) 2 2 2 8 5 

 Histology Diffuse Diffuse Transient HI Diffuse Unknown 

 
Genetics 
 

 Homozygous ABCC8 
mutation 

Maternal heterozygous 
ABCC8 mutation 

ABCC8/KCJN11 
mutation negative 

Unknown-Awaiting 
results 

 ABCC8/KCJN11 
mutation negative 

 Sex Male Male Male Female Female 

 Weight 3.1kgs 4.5kgs 3.18kgs 5.6kgs 2.86kgs 

 Treatment 
 

  
  

Sirolimus,  Octreotide  
 Omeprazole, 
Domperidone 

Rantidine 

Diazoxide 
Chlorothiazide 

120ml/kg/day 25% 
dextrose 

Continue to monitor 
annually  

  
  

16mls/hr 40% dextrose 
 
 
 

10ml/hr 30% dextrose 
 
  
  

 

 

 Pre-screen preparation Fasted 4 hours Fasted 6 hours Fasted 5.5hrs Fasted 4 hours Fasted 3.5 hours 

N
o

rm
a

l 
 

BM (mM) 7.5 4.9 4.7 9.7 3.8 

Glucose (mM) 6.7 6.7 4.2 9.2 3.9 

Insulin (mU/L) 7.9 7.9 10.7 52.7 14 

H
y
p

o
 BM (mM) 3.1 2.6 2.7 2.4 2.7 

Glucose (mM) 2.0 2.0 2.8 2.8 2.5 

Insulin (mU/L) 9.3 9.3 2.7 20.4 12.6 

 

NOTES 
 
 

 
  

 Consanguineous 
parents  

 Diazoxide-unresponsive 

 Gastro-oesophageal 
reflux 

 Right Hydrocele 
 
  

 Shoulder dystocia  

 Lethargic at birth 

 IV dextrose given at 
birth  

 Cardiac murmur: further 
investigation proved 
negative 
 

 Polycythaemia at birth  

 Eventually diagnosed 
as transient HI 

 Diazoxide-unresponsive 
 
 
 
 
 
 
 

 Diazoxide-unresponsive 

 Gastro-oesophageal 
reflux: resolved 

 Cardiac murmur 
 
 
 
 

 

 

 

 

 

Table 5.1: KATPHI patient details. Five patients presenting with KATPHI were recruited to the study and underwent a hypoglycaemia screen. Data 

presented from patient notes. Hypo- hypoglycaemia.   
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Figure 5.14: Assessment of circulating DPP-4-regulated gut hormones in 

patients with KATPHI. Box represents the interquartile range. Horizontal lines 

within boxes represent medians. Whiskers extend the range of gut hormone values 

and shown as ± SEM. N= 4-5 paired values. 

p = 0.792 

p = 0.083 

p = 0.514 
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Figure 5.15: Correlation analysis 

between circulating metabolite 

levels in patients with KATPHI. 

Values taken from the difference 

between normoglycaemia and 

hypoglycaemic state. Correlating 

relationship between: PYY and (A) 

GLP-1 or (B) GIP or (C) insulin or (D) 

serum glucose. Correlating 

relationship between: GLP-1 and (E) 

GIP or (F) insulin or (G) serum 

glucose. Correlating relationship 

between: GIP and (H) insulin or (I) 

serum glucose. N= 3-5 paired values. 

R
2 

= +1 represents positive correlation, 

r
2 

= 0 represents no correlation, r
2 

= -1 

represents negative correlation. P < 

0.05 is deemed significant.  
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5.6. Summary  

Chapter 5 reveals the significance of DPP-4 in mediating gut peptides in HH and 

potentially highlights an undervalued regulator of HI. Understanding the role of 

DPP-4 and its gut hormone substrate may aid in manipulating regulatory pathways in 

nesidioblastosis-induced HH. Overall, this data provides a mechanistic 

understanding of current drug treatments and the potential of therapeutic strategies in 

combating metabolic disorders. 

5.6.1. mRNA analysis of pancreatic genes involved in energy and glucose 

homeostasis 

Genes involved in appetite and glucose metabolism were analysed in pancreatic 

tissue of KATPHI and control subjects. Pancreatic DPP-4 and SST gene expression 

were significantly up-regulated in KATPHI tissue with a trend for a reduction in PYY 

mRNA levels. These findings provide evidence of candidate genes involved in the 

pathology of KATPHI, which have not previously been shown. 

5.6.2. PYY and DPP-4 localisation and expression in the healthy pancreas 

Using IHC, PYY localisation was determined. Unlike the mouse, the healthy human 

pancreas largely expressed PYY to an unknown islet cell, with small amounts being 

expressed with glucagon in -cells. PYY was absent from both - and -cells as well 

as DPP-4 positive cells. On the other hand, in all tissue samples assessed, DPP-4 was 

expressed in the three islet cell-subtypes: -, - and -cells. 

5.6.3. Changes in islet hormone expression of KATPHI patients 

Islets from KATPHI tissue were assessed for morphological changes that may 

contribute to the islet phenotype. KATPHI resulted in more proliferative cellular 

nuclei of both endocrine and exocrine portions of the pancreas. Since Ki67 was 

markedly increased in KATPHI pancreatic tissue, we attempted to determine the 

identification of the islet-cell subtype that appeared to be proliferating in the 

endocrine areas. In KATPHI samples, -, - and DPP-4 positive cells all 
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immunostained for Ki67. In contrast, - and PYY positive cells were absent for the 

proliferating marker.   

5.6.4. Role of gut hormones in KATPHI 

Since DPP-4 mediates gut hormone action and the gene expression suggested the 

DPP-4 is up-regulated, we assumed there was a possibility that circulating gut 

hormones may have changed as a result. Plasma PYY and GLP-1 both remained 

unchanged at hypoglycaemia, however, there was trend for a reduction in GIP levels. 

Correlation analysis unsurprisingly revealed a positive relationship between PYY 

and GLP-1. No other correlations existed between circulating metabolites analysed 

except between the co-localised active GLP-1 and active PYY.  

5.6.5. Conclusion 

Pancreatic DPP-4, SST and PYY genes as well as plasma GIP all appear to play a 

potential role in KATPHI. Moreover, DPP-4 regulates a number of gut hormones; 

PYY, GLP-1 and GIP and all of these hormones have been implicated to have role in 

glucose homeostasis, but limited data is available to suggest a role in KATPHI. The 

IHC reveals that DPP-4 positive cells are proliferating; hence all findings imply a 

role of DPP-4 activity in HH pathogenesis. This chapter provides the basis for 

further investigations into assessing the role of gut hormones in HH. 
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Chapter 6 

 

Discussion and conclusions 
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6. Discussion 

6.1. Chapter 3: Characterisation of the intra-islet PYY system 

The hormones released from the enteroinsular axis play a key role in appetite 

control, glucose regulation and interact to regulate homeostasis of food intake and 

energy expenditure. These effects are known to be mediated through the action of 

gut hormones (Murphy and Bloom, 2006). One such gut hormone is PYY. PYY is 

secreted post-prandially from L-cells in the distal GI tract (Ballantyne, 2006). 

Enzymatic activity by DPP-4 changes the isoform from the full length protein; PYY 

1-36 to PYY 3-36, and this truncated isoform has well known and established 

anorectic effects acting on the Y2R (Batterham et al., 2002, Batterham and Bloom, 

2003, Batterham et al., 2006). However, PYY is also found to be expressed in the 

pancreatic islets of Langerhans with evidence suggesting a role of islet PYY in 

glucose homeostasis (Boey et al., 2006b, Boey et al., 2007, Sam et al., 2012, Shi et 

al., 2012, Zhang et al., 2012). But the physiological role and regulation of this 

population of islet PYY cells still remain largely unknown. 

PYY exerts its action via the YRs; a group of GPCRs. PYY has been previously 

shown to inhibit insulin secretion in vitro (Bertrand et al., 1992). However, it is not 

known which receptor mediates this process. Hence, a murine islet isolation protocol 

was established (Liao, 2012). After the islet isolation protocol was optimized, Yr 

expression was confirmed by qRTPCR analysis. On investigation Y4r was confined 

to the exocrine pancreas since the expression of the receptor was present abundantly 

in pancreatic tissue but absent from islet RNA. The ratio of Y4r:Y1r expression was 

high in the whole pancreas possibly, due to the fact that endocrine islets account for 

only 1-2% of total pancreatic volume. The PP-preferential Y4R is known to have a 

role in exocrine secretion (Park et al., 1993), so it comes as no surprise that this 

receptor subtype is located in the pancreatic exocrine portion. However, currently no 

commercially available Y4R compounds exist so little is known of this receptor.  

Unlike Chandarana et al., who found both Y1r and Y4r mRNA in the pancreatic 

endocrine tissues, we found Y1r as the only PYY receptor-subtype expressed in islets 



 164 

in our studies (Chandarana et al., 2013). There is a possible difference in methods 

used. Whilst handpicking islets and dissociation of isolated islets from the exocrine 

tissue is difficult, we ensured we handpicked the islets three times, each time placing 

these into new dishes and washing to remove any unwanted exocrine debris that we 

found can pass through the cell strainers. This enabled us to pick islets clear of 

unwanted tissue. This could explain the difference between the two findings. 

Therefore it is possible that exocrine tissue attached to the islets was amplified and 

hence, the detections of the Y4r transcript by Chandarana and co-workers. 

PYY 1-36-mediated reduction in insulin release is assumed to have been via the Y1R 

insolated murine islets, but this has not been confirmed to date (Sam et al., 2012, 

Chandarana et al., 2013). These findings are supported by the in vivo phenotype of 

the global Y1r KO mouse which displays a potentiation of GSIS with post-prandial 

HI (Burcelin et al., 2001). Similarly, NPY, an endogenous Y1R ligand has also been 

shown to inhibit GSIS, in vitro. In vivo, Npy
-/- 

mice display enhanced nutrient-

stimulated HI (Imai et al., 2007). Moreover, Morgan et al. reportedly removed 

NPY’s GSIS inhibition by co-incubation with a Y1R antagonist, in vitro (Morgan et 

al., 1998). On the other hand, the PYY 3-36 isoform does not appear to produce a 

change to insulin secretion, in vitro or ß-cell content in vivo (Chandarana, 2009, Sam 

et al., 2012, Chandarana et al., 2013). This is further supported by the absence of Y2r 

gene expression (Chandarana et al., 2009, Chandarana et al., 2013) and suggests that 

islet PYY 1-36, Y1R and DPP-4 are important physiological regulators of glucose 

homeostasis. However, further work is required to establish if the deletion of islet 

Pyy will alter the expression of islet Y1r and Dpp-4 mRNA. In addition, 

investigations into the use of Y1R compounds on insulin and other islet hormones, 

such as glucagon and somatostatin release need further exploration to understand if 

this effect is mediated directly or on a secondary basis. 

To physiologically understand the islet PYY system, it was important to assess the 

anatomical distribution of PYY expressing cells within islets. Using IHC, we 

confirmed the absence of PYY from -cells and found co-expression of PYY within 

a small population of glucagon in -cells in WT mice (Upchurch et al., 1994, 

Myrsén-Axcrona et al., 1997). - and -cells both expressed DPP-4 on their cell-
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surfaces this has previously not be shown (Poulsen et al., 1993, Grondin et al., 

1999). Understandably, the enzyme that regulates PYYs activity on -cells secretion 

will be located on PYY responsive cells. So far we have reported some novel 

observations; PYY was predominantly expressed with somatostatin in -cells. This 

cell population also appeared to be absent of DPP-4 expression. A second cell 

population stained abundantly for PYY and expresses DPP-4 in and on the cell-

surface. However, the identification of this cell subtype requires further analysis. 

Perhaps the two PYY cell populations, i.e. the -cell PYY and the unidentified PYY 

positive cell which shows co-expression of DPP-4, suggests PYY may be an 

intracellular signalling molecule or that PYY may be regulated differently in the two 

islet-cells and potentially have different roles within the islet system.   

PYY exerts its insulinotropic effects through its YRs and as previously demonstrated 

Y1r was the only receptor to be expressed in the isolated islets. If the effect of PYY 

on insulin secretion is direct than we would expect Y1R to be present on responsive 

cells. Consequently, we used IHC to localise Y1R expression on -cells. The Y1R 

was expressed on insulin positive cells, however, due to antibody inefficiency, we 

were unable to assess if Y1R was expressed on any other islet-cell subtype. 

However, we were able to assess and find DPP-4 co-expression with Y1R. 

Physiologically, prolonging PYYs action on the -cell via Y1R could be seen as 

detrimental; hence it is understandable that DPP-4 would ensure a rapid removal of 

PYY 1-36 effects on inhibiting insulin secretion. Y1R-immunostaining has been 

found on PYY-positive cells (Jackerott et al., 1996). Hence, it is possible that PYY is 

an autocrine regulator via the Y1R and thus, would explain the close proximity of 

DPP-4 to remove this effect. 

The islet phenotype of the PYY transgenic mouse models; global Pyy KO and the 

PdxPyy null mouse were evaluated to shed light on the published in vivo and in vitro 

glucose phenotypes (Boey et al., 2006b, Chandarana, 2009). Initially, histological 

examination on both the transgenic mouse groups revealed hyperplasia in the islets 

of the Pyy- and PdxPyy null mice with respect to their controls. However, further 

work with the use of proliferating markers such as bromodeoxyuridine (BrdU) or 

Ki67 could confirm this and further characterise this phenotype. 



 166 

Evaluation of the gene expression in the global Pyy mice was performed to shed light 

on the in vivo glucose phenotype reported (Boey et al., 2006b). No changes in 

pancreatic Ins, Gcg or Sst were found in the Pyy null mice in comparison to their 

littermate controls. Subsequently work analysing the pancreatic morphometry was 

carried out in both the Pyy and PdxPyy mice. Global and pancreatic-specific Pyy 

deletion led to a significant reduction in pancreatic α-cell area, an increase in δ-cell 

volume. However no changes were found in β-cell area in the pancreas of the KO 

mice of both groups compared to their respective controls. Work previously carried 

out by Upchurch and co-workers suggested a role for PYY in development and 

differentiation of specialised colonic enteroendocrine cells (Upchurch et. al, 1996). 

PYY has been identified as one of the earliest peptides to be detected during 

development. Additionally, they showed PYY co-expression in all the colonic cells 

prior to differentiation. Common precursor cells of the lower intestine were 

confirmed to all arise from a PYY-producing endocrine progenitor. However, once 

these cells differentiate they were rarely expressing PYY or dividing (Jackerott et al., 

1996).  

This PYY lineage relationship was also explored in the pancreatic endocrine cells 

(Upchurch et al., 1994, Myrsén-Axcrona et al., 1997, Liu et al., 2006). Here they 

examined the co-expression of PYY with different islet cell subtypes. It was revealed 

that embryonically, PYY co-expresses with all islet hormones including insulin as 

cell clusters. Eventually, the insulin positive cells differentiate from the PYY cells 

and remained like this post-natally and through adulthood. Both these findings led to 

the theory that PYY is a possible developmental differentiation endocrine regulator 

and are made up of one lineage branch. On the contrary, a study ablating Pyy found 

normal development of endocrine cells, yet this mouse model appeared to have also 

deleted the closely located Pp gene (Schonhoff et al., 2005). Sam et al. also deleted 

PYY cells in the adult mouse and this resulted in β-cell loss (Sam et al., 2012). This 

phenotype is rescued by a PYY1-36 analogue. Hence, it is suggests Y1R activation 

causes anti-apoptotic effects in ß-cells, which could be compensated for by islet 

NPY (Y1R ligand) in our mice. In addition, itt remains to be seen whether the 

targeting strategy used in Sam et al.’s mice may have destroyed gap junctions, which 

are known to be important in islet cell-cell communication (Rocheleau et al., 2006). 
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Additionally, both these reports fail to assess the impact of Pyy deletion on other 

islet hormones. 

Limited data exist regarding the role of PYY on glucagon and somatostatin 

secretion. Bertrand et al. have produced data in which they showed no effect of PYY 

on glucagon secretion, in vitro (Bertrand et al., 1992). Though the data from this 

thesis could not confirm or disprove this, we did find PYY to regulate the α- and δ-

cells, ex vivo. One possible explanation is that over time the islet isolation protocol 

has evolved and been manipulated to provide better islet yields and quality as shown 

in this chapter (Li et al., 2009, Liao, 2012). However it is essential to get high-

quality islets and ensure reproducibility of isolation from mice. During evaluation of 

the islet isolation protocol, quality and yield of islets were found to be impacted by 

various conditions including the method of collagenase administration, the 

concentration of collagenase used, the temperature and the duration of digestion. 

Since both islet-cell subtypes are located on the mantle of the islet complexes it is 

possible that damage due to digestion by Bertrand and co-workers have led to the 

absence of the glucagon effect. Additionally, it is also plausible that PYY’s effect in 

our mice is due to PYY’s role in the development of other islet hormones as 

previously explained. 

Since both Pyy- and PdxPyy KO mice have shown enhanced GSIS in vivo, it comes 

as a surprise that pancreatic Ins and β-cell area remain unaltered with respect to 

control mice. Moreover, the loss of α-cell mass in both Pyy transgenic KO mice may 

be the possible explanantion to the exaggerated GSIS phenotype, in vivo. In the 

glucose intolerant- HI state GLP-1R activity is retained but GIPR action is lost 

which jointly leads to a reduction in glucagon levels (Nauck et al., 1993). 

Conversely, T1DM; where the β-cells are destroyed by autoimmunity, lose their 

capability to synthesize endogenous insulin are also known to have post-prandial 

hyperglucagonaemia (Brown et al., 2008). These studies highlight a clear link 

between the deregulation of glucagon function and insulin signaling. Furthermore 

the increase in δ-cell area of both the Pyy and PdxPyy null mice implies that this 

could also be a reason for the difference in pancreatic glucagon expression. In 

support of this finding is the phenotype of the Sst KO mice which lose their glucose-
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dependent suppression of glucagon release (Hauge-Evans et al., 2009). Hence, there 

is a possibility of an augmented somatostatin inhibition on glucagon seen in the 

global- and Pdx- Pyy KO mice and thus promotes a reduction in glucagon cell 

content. However, as yet, no studies have undertaken investigations into assessing 

the effects of various conditions on the secretion of islet PYY. Therefore, a novel 

PYY detection system requires setting up and optimisation to see whether PYY 

release could be measured, in vitro. In doing so, a study to understand and provide an 

insight into the intra-islet PYY system regulation can be devised and can eventually 

identify a novel pathway(s) that islet PYY regulates in a functional approach and to 

complement the data we have produced.  

In light of all this evidence, it is possible that loss of PYY, and thus, its loss of 

function in developmental regulation may result in the changes of some 

insulinotropic inhibitory hormones (such as glucagon and somatostatin that it co-

expresses with during postnatal differentiation). In addition, these hormones may 

contribute to the nutrient-stimulated HI, in vivo seen in the global Pyy KO mouse 

and the PdxPyy KO mouse (Boey et al., 2006b, Chandarana, 2009). Investigations 

using isolated islets from Pyy KO mice incubated with exogenous PYY would 

contribute to confirm if PYY affects somatostatin and/or glucagon release or 

synthesis to be measured by static incubation studies and qRTPCR. In doing this, 

novel mechanisms could be uncovered in the regulation of the intra-islet PYY 

system. 

In conclusion, chapter 3 has provided the basis on which the intra-islet PYY system 

can be investigated further for a role in islet function. Islet DPP-4 also appears to be 

a major regulator in this system, possibly initiating the removal of insulin inhibition 

produced by PYY 1-36s action and converting it to the islet inactive form; PYY 3-

36. The GSIS inhibition appears to be mediated at the Y1R located directly on the -

cells with DPP-4. Moreover, the in vivo data has revealed that deletion of the Pyy 

gene in the islets leads to an augmented GSIS by an indirect change in the insulin-

inhibitory hormones; glucagon and somatostatin. More functional work is needed to 

understand how intra-islet PYY regulates pancreatic endocrine function. Finally, this 

chapter evidently supports the historical data of a possibility of PYY in regulating 
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the development and differentiation of other specialised islet cells and their hormone 

gene expression.  

 



 170 

6.2. Chapter 4: Investigating the in vivo role of the intra-islet PYY 

in energy and glucose homeostasis. 

Literature to date and the data produced in chapter 3 together demonstrate that PYY 

may have a role in islet function and thus glucose and energy control. Many studies 

have used transgenic models to understand the in vivo role of pancreatic PYY. 

However, they have failed to differentiate between the effects of gut and pancreatic 

PYY. In this thesis we generated data from the first pancreatic-specific Pyy KO 

mouse. Using this mouse model we were able to physiologically understand the 

specific role of islet PYY, in vivo.  

To begin, we evaluated the feeding phenotype of the PdxPyy mice and found no 

difference in weekly cumulative food intake between the groups. The potential 

reason for this could be that our study was underpowered as the effect may be far too 

small to determine by the means we used. It has been suggested that the use of more 

mice is necessary to accurately measure food intake (Speakman, 2010). Further work 

using weight-matched controls or pair-feeding could provide a better way to 

understand if pancreatic PYY mediates feeding behaviour. Since this was not 

possible, we continued to investigate if changes in acute feeding patterns were 

present. We identified that the PdxPyy KO mice were eating less at a number of time 

points. Furthermore, PdxPyy
-/-

 animals weighed less than their littermate controls, in 

vivo, in both the male and female groups. As a result, we hypothesised that a post-

prandial factor was acutely being released that inhibited  an orexigenic factor and 

given that Pdx deletes in the antrum of the stomach this may have reduced ghrelin. 

However, as ghrelin levels remained unchanged in the PdxPyy null animals it 

appears not to be the case. On the other hand, the factor could have promoted more 

satiation in the PdxPyy null group. It was therefore postulated that the factor(s) may 

be a pancreatic endocrine influence on the nutrient-stimulated insulin release, since 

gut hormone mRNA levels were unchanged in the KO group. 

Apart from hypoglycaemia, sympathetic and parasympathetic nervous stimulation 

activates the α-cell granules to be released (Ahren et al., 1999) but there are 

limitations to the understanding of factors that influence α-cell secretion. PYY has 
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been found to be co-stored with glucagon in α-cell granules (Bottcher et al., 1989). 

Thus far it has been thought that these two peptides’ activity on β-cell is in a 

paracrine manner (Nieuwenhuizen et al., 1994). PYY is reported to do this through 

the secondary GPCR messenger: cAMP. Therefore, PYYs inhibitory effect is reliant 

on the inhibition of both the production and effect of cAMP, independent of 

cytosolic Ca
2+

 (Nieuwenhuizen et al., 1994). Surprisingly, glucagon acts on β-cell 

GCGRs to stimulate tonic insulin release (Ahren et al., 1999). This dual inhibitory 

and stimulatory action by the α-cells to regulate insulin function is yet to be 

determined. On the other hand, in parallel to β-cells, δ-cell somatostatin release is 

also activated by glucose and parasympathetic nerve activation. Conversely, 

sympathetic stimulation leads to inhibition of somatostatin secretion (Ahren et al., 

1999). Whilst somatostatin is known to inhibit insulin, islet somatostatin has been 

shown to inhibit intra-islet glucagon secretion via SSTR2, independently of its 

effects on insulin (Cejvan et al., 2003). Overall, the intra-islet system appears to 

work in a local (paracrine) fashion.   

Alternatively, other changes may also arise from the gut. To assess if the PdxPyy 

deletion resulted in compensatory changes of duodenal CCK, mRNA levels were 

measured. Cck gene expression was unaltered in the fed state of the mouse lacking 

the PdxPyy gene. However, the expression may need confirming in the fasted state to 

confirm no compensatory changes by the Pdx-targeted strategy. Additionally, Pyy 

expression in the brainstem and GI tract was assessed to ensure that other areas were 

not counterbalancing the effects of the transgenesis. These PYY synthesis sites 

showed no alteration in gene expression but this requires further clarification in the 

fasted state and different time points since gut hormones are dynamic depending on 

feeding status. Finally, mRNA levels of other gut hormones known to have an effect 

in energy and glucose metabolism are known were assessed. Gut ghrelin and 

enteroglucagon expression were unchanged in the KO mice. In light of all this data it 

appears that the effect of the intra-islet Pyy deletion did not affect peripheral sites of 

PYY. Hence the observed changes were possibly due to alterations in local islet 

function. More research into examining the effects of pancreatic Pyy deletion on 

other islet hormones expression and plasma concentrations (such as PP involved in 

body weight regulation and glucose metabolism) are required.  
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Overall, our in vivo investigations found male mice to have a more pronounced 

difference in their phenotypes which was mostly absent in the female animals. Our 

studies concur with Boey et al.’s findings that reported gender differences in their 

studies (Boey et al., 2006b). Their male Pyy KO mice also exhibited a more 

pronounced phenotype. They attributed this result to an increased level of circulating 

testosterone. Moreover, other researchers have also found gender differences in 

studies when assessing PYY (Kim et al., 2005, Jackson et al., 2010, Wong et al., 

2012). In particular, oestrogen is hypothesised to blunt Y1R activation in studies 

assessing hindlimb blood flow (Jackson et al., 2010). Since we were unable to 

determine if this was the case in our mice, we are unable to comment on whether the 

phenotypic differences were due to sex hormone differences. Further analysis could 

aid in confirming the findings of these reports. 

As previously discussed, the PdxPyy KO mice displayed an exaggerated HI response 

to nutrient-stimulation in vivo and in vitro (Chandarana, 2009). This is similar to the 

reported phenotype of the Pyy KO mouse (Boey et al., 2006b). However, the 

PdxPyy
-/-

 mice also show an increase in glucose disposal. These findings could be 

attributed to the elevated post-prandial plasma insulin concentrations found in the 

PdxPyy null mice. Insulin is known to act as an anorectic hormone, travelling to the 

hypothalamus and stimulating the inhibitory feeding centres (Gerozissis, 2004). In 

addition, high circulating insulin levels have been suggested to contribute to the 

promotion of leptin secretion from the adipose tissue. This would result in a 

reduction in body weight and adiposity which is the phenotype we observed in our 

mice (Barr et al., 1997).  However, we were unable to measure leptin levels in either 

the plasma or white adipose tissue (WAT). Assessment into leptin concentrations of 

the PdxPyy mice would require investigation to confirm if leptin is involved in the 

body weight difference of the PdxPyy animals. In addition, differences in body 

weight composition could be assessed by echoMRI analysis of the animals. This 

would allow the identification of lean to fat mass ratio and provide the factor that is 

contributing to the differences in body weight. PYY overexpressing transgenic 

animals have been reported to show changes in hypothalamo-pituitary-somatotrophin 

(HPS) hormones and accordingly a theory was proposed that PYY may play a role in 

somatic growth (Boey et al., 2008). We therefore crudely assessed if changes in 



 173 

somatic growth were contributing to differences in body weight. However, no 

change was found between groups in both male and female animals. To gain a better 

understanding for the role of PYY in growth, further work looking into circulating 

levels of IGF could be assessed. Another hypothesis is that the obese phenotype of 

the Pyy KO mouse was due to the deletion of the circulating anorectic isoform of 

PYY (PYY 3-36) (Batterham et al., 2006). This isoform is also known to activate the 

improvement in glucose tolerance by Y2R in the hepatoportal system (Chandarana et 

al., 2013a). Consequently, the loss of this bioactive circulating isoform causes 

obesity and glucose intolerance which is observed in the Pyy KO mice (Boey et al., 

2006b, Batterham et al., 2006). To investigate this hypothesis, further work is 

required to assess the concentrations of peripheral PYY in the PdxPyy mice in the 

hepatoportal system.  

In conclusion of chapter 4, differences in body weight phenotypes of the Pyy- and 

PdxPyy KO mice indicate towards a differential role of intra-islet PYY and gut-

derived PYY in energy and glucose homeostasis. It appears like enteroendocrine 

PYY; islet PYY may mediate body weight and appetite effects. PYY deletion 

consequently promotes exaggerated post-prandial insulin release by the regulation of 

other pancreatic hormones in a paracrine manner. In light of these findings, islet 

PYY may be a marker which may act as an important surrogate to assess an 

individual’s susceptibility to HI (Figure 6.1). 
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Figure 6.1: Potential regulatory pathways of the 

intra-islet PYY system. Intra-islet PYY 1-36 inhibits 

GSIS via the Y1R. DPP-4 changes the biological 

activity of PYY by converting it to an islet inactive 

isoform. Overall, this promotes a reduction in the 

inhibition of nutrient-stimulated insulin release.  
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6.3. Chapter 5: Characterising the role of gut hormones in 

hyperinsulinaemic hypoglycaemia 

Whilst DPP-4 and its gut hormone substrates have been extensively researched in the 

past decade, the physiological roles of these regulators in glucose homeostatic 

processes are not fully understood. Traditionally it was viewed that congenital 

mutations in the genes that encoded for the KATP channel subunits caused most cases 

of HH. However, recently nesidioblastosis-induced HH has been reported in many 

cases as a complication of weight-loss GBP surgery. But it still remains elusive as to 

how the bypass procedure may cause physiological dysregulation of the pancreata 

and thus promotes hypoglycaemia (Service et al., 2005, Vella and Service, 2007, 

Singh and Vella, 2012). To our knowledge, apart from GLP-1s effects in HH, other 

DPP-4 gut hormones substrates have not yet been investigated or examined  (De 

León et al., 2003, De Leon et al., 2008, Calabria et al., 2012). Hence studies in this 

thesis aimed to characterise a role for DPP-4 and its gut hormone substrates in HH to 

elucidate a role for these regulators in this condition. 

The gene expression data from chapter 5 has shown there to be a potential role for 

pancreatic PYY in HI, since there was the trend for a reduction in pancreatic PYY 

from KATPHI tissue. Low levels of serum PYY have been previously found to be 

indicative of the predisposition to insulin resistance in first-degree relatives of 

T2DM persons (Boey et al., 2006a). However, this action appears to be mediated by 

gut PYY and not pancreatic PYY (Chandarana et al., 2013a). Hence, we measured 

plasma PYY levels to see if changes could be observed at hypoglycaemia, but no 

difference was found. This suggests two things; (1) pancreatic PYY has a role in HI 

independently of enteroendocrine PYY and (2) the reducing trend of pancreatic PYY 

mRNA seen in HH persons could be due to the increase in pancreatic DPP-4 gene 

expression. This would in turn lead to a reduction in islet PYY and thus cause an 

overall decrease in Y1R-activated inhibition on GSIS. The lack of significance in the 

expression data may be potentially due to the study lacking statistical power. 

Nonetheless crucial roles for pancreatic PYY and DPP-4 have been identified in HH. 

To date a lack of research in identifying the localisation of pancreatic PYY or its 

regulatory enzyme in the human pancreas limits what is known about their role in 
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glucose metabolism since most work carried out to date has been focussed on animal 

models (Upchurch et al., 1994, Myrsén-Axcrona et al., 1997, Hinke et al., 2000, 

Schonhoff et al., 2005). Therefore, the distribution of PYY and DPP-4 expression in 

the pancreatic endocrine system was assessed in humans. PYY was found localised 

to the -cells only (Boey et al., 2007). This finding could in part explain why there 

was probably an absence of a correlation/association between PYY and the 

metabolites analysed. On the other hand, GLP-1 is co-expressed with PYY in ileal L-

cells; and thus explains the significant positive correlation when analysed in the 

study.  

Subsequently, DPP-4 expression was evaluated in the control human tissue. DPP-4 

immunoreactivity has been previously localised to porcine -cells granules but as yet 

no other species have been assessed (Poulsen et al., 1993, Grondin et al., 1999). We 

therefore investigated and confirmed DPP-4 expression to the -, β- and δ-cells in 

normal human pancreatic samples. Thereafter islet phenotyping of KATPHI samples 

were evaluated for an insight into the histological characteristics of the disease. As 

already known, KATPHI tissue samples have more proliferating pancreatic cells than 

the control tissue (Alexandrescu et al., 2010). Therefore, we identified the 

proliferating pancreatic endocrine cells as β-, δ- and DPP-4 positive cells. Given this 

result, it comes as no surprise that DPP-4 mRNA was significantly increased in 

KATPHI patients.  

Moreover, SST gene expression was also significantly increased in KATPHI persons 

which complements the IHC data. Currently, no reports have clearly substantiated a 

role for somatostatin dysfunction in the pathogenesis of HH. Treatment for the HH 

condition include the use of somatostatin mimetics (Yorifuji et al., 2013). However, 

the mechanism of somatostatin analogue action for the success in suppressing HI 

remains unknown. Interestingly, this result is similar to the global and Pdx- Pyy KO 

mouse islet phenotype discussed earlier in the thesis. Hypothetically, there is a 

possible link between pancreatic PYY and somatostatin in promoting HI. The 

proliferating δ-cells are in-line with the mRNA data that implicates KATPHI to induce 

an up-regulation of the SST gene and also confirms it as a likely regulator of HH. 

Nonetheless more detailed studies of somatostatin physiology are needed to unravel 
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its function in glucose metabolism. Overall, it appears that pancreatic somatostatin, 

PYY and DPP-4 all have a role in HH. However, to gain a better understanding 

further work is required.  

DPP-4 rapidly inactivates the incretin gut hormones and terminates their biological 

function. Post-prandially, the incretins stimulate GSIS and PROINS gene 

transcription via their respective receptors located on β-cells (Baggio et al., 2000) 

and promote a change in plasma glucagon levels (Drucker, 2002). Principally GIP 

acts to induce glucose-dependent insulin release post-meal (Drucker, 2007). To 

unravel a glucoregulatory function of the incretins, investigations into GLP-1/R and 

GIP/R signalling in WT and transgenic mice have been carried out (Baggio et al., 

2000). Gipr KO mice exhibit defective glucose clearance despite having normal 

fasting blood glucose and tolerance in response to an IPGTT, in vivo (Miyawaki et 

al., 1999). Additionally, GIPR blockade by antisera promotes hyperglycaemia also in 

the presence of normal fasting glucose (Baggio et al., 2000). Together all this data 

supports GIPs role as a glucose-dependent, classical ‘incretin’, which requires 

enteral stimulation to promote its glucoregulatory effects (Irwin et al., 2010). While 

GIP has been well-studied in its effects in T2DM, there is no data on its role in HH. 

Hence, we aimed at determining if a link existed. At hypoglycaemia (reducing i.v. 

dextrose) KATPHI subjects showed a trend for a reduction in plasma GIP levels. A 

possible explanation for this finding could be a result of reducing plasma glucose in 

absence of enteral stimulation. These two main factors are required for GIPs incretin 

response. Another explanation is HI may be caused by a reduction in the levels of 

plasma GIP which is seen in persons who have undergone weight-loss surgery 

(Guidone et al., 2006).  

Medically-unresponsive HH persons require a pancreatectomy to prevent recurrent 

hypoglycaemia. However, complications of such invasive treatment include; (1) 

insulin-dependence and (2) reoccurrence of HH as a result of re-routing GI tract by 

the GBP procedure. Currently, there is no literature except case reports assessing 

how the GBP promotes recurrent HH and nesidioblastosis even after pancreatectomy 

(Qintar et al., 2012). Hence an understanding in how gut hormones regulate this 

glucose dysfunction needs further evaluation. On the other hand, a mouse model 
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displaying the features in the pathophysiology of KATPHI was constructed in 1996 

(Scrocchi et al., 1996). In this mouse, the gene that encodes for the KATP subunit Sur-

1 was deleted and this resulted in mild fasting HH and post-prandial hyperglycaemia. 

From the data in chapter 5, we found that the topography of the human pancreas is 

dissimilar to the mouse (chapter 3). Hence, it is possible the pancreatic anatomical 

variation is the explanation for the differences in the hypoglycaemia phenotype of 

the Sur-1 KO mice versus those seen in KATPHI subjects. Despite these differences, 

it is widely accepted that this model allows the development of an understanding of 

KATPHI pathophysiology. Using acetylcholine and GLP-1, Doliba and co-workers 

restored glucose-sensing in Sur-1 KO islets, in vitro (Doliba et al., 2004). GLP-1 

action in the hepatoportal system causes an increase glucose clearance by peripheral 

tissue independently of insulin action. This function appeared to require GLP-1R 

activation which is lost in Glp-1r KO mice and on the administration of exendin (9-

39) (Chandarana et al., 2013a). Thus, GLP-1R signalling may therefore have a role 

in HH (Service et al., 2005).  

For many years, rodent models have been employed to evaluate the capability of 

pancreatic regeneration (Bonner-Weir, 2000). In particular the partial 

pancreatectomy model (Ppx) has shown at 8 weeks post-surgery there is an induction 

to restore both endocrine and exocrine portions (42% of β-cell volume and 27% of 

total weight of sham-control mice) (Brockenbrough et al., 1988, Bonner-Weir et al., 

1983). GLP-1 is known for its role in islet β-cell neogenesis, and regeneration 

(Drucker, 2007). But due to its rapid inactivation by DPP-4, GLP-1R has limited 

capacity. Hence, exendin-4 (a DPP-4 resistant, long acting GLP-1R agonist) was was 

used. Administration of exendin-4 for 10 days post-operatively in the Ppx mice 

resulted in an attenuation of Ppx-induced hyperglycaemia and promoted β-cell 

neogenesis and proliferation (Bonner-Weir et al., 1983, Brockenbrough et al., 1988, 

Xu et al., 1999, Bonner-Weir, 2000). On the other hand DPP-4 inhibitors do not 

appear to be involved in islet cell neogenesis. This has been shown in STZ-induced 

DM rats treated with DPP-4 inhibitors appear to show no reversal or improvement in 

pancreatic morphology (Pospisilik et al., 2003). Additionally, Exendin-4 

overexpressing mice have normal glucose tolerance thought to be a result of the 

down-regulation of endogenous GLP-1R (Baggio et al., 2000). To test this 
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hypothesis, Glp-1r KO were given a Ppx and at 5 weeks post-pancreatectomy, WT 

mice recovered from the Ppx-induced changes in glucose excursions (De León et al., 

2003). However, this effect was absent in the transgenic Ppx group. Clearly this data 

demonstrates that under GLP-1/R action, pancreatic endocrine cells have the 

capacity to redevelop. Conversely, a truncated form of exendin-4; exendin (9-39) is a 

potent GLP-1R antagonist. A single injection of exendin (9-39) given to mice 

promoted a reduction in plasma insulin and an increase in fasting glucose levels 

(Baggio et al., 2000). With chronic administration, the effect continued without 

altering pancreatic insulin expression levels. This was one of the first studies 

identifying a role for GLP-1/R antagonism in the inhibition of HH.  

Individually, GLP-1R and GIPR antagonism induce hyperglycaemia and potently 

reduce GSIS in the +/+ mouse (Baggio et al., 2000). Subsequent research has shown 

that GLP-1R agonists such as exendin-4 have fewer incidences of hypoglycaemic 

events since the drug works in line with the incretin effect and is currently prescribed 

for T2DM. On the other hand, GLP-1R antagonism has shown promise to increase 

blood glucose and lower GSIS (Baggio et al., 2000, De Leon et al., 2008, Calabria et 

al., 2012). It is therefore being researched for its capabilities in improving the effects 

of HH seen in patients with KATPHI and potentially other conditions that induced HH 

such as nesidioblastosis. STZ-induced islet destruction has also shown an increase in 

both islet and circulating GLP-1 levels; hypothetically this is as a response to 

counteract the islet damage (Nie et al., 2000). Treatment in these rodents with GLP-1 

analogues has been shown to improve islet architecture and function (Drucker and 

Nauck, 2006). However, all these studies have failed to assess whether GIP (another 

hormone involved in β-cell function) may be involved in the observed effects. 

During HI, the KATPHI subjects appeared to show no change to circulating GLP-1 

levels which confirms previous reports (De León et al., 2003). It could be plausible 

that GLP-1 concentrations in KATPHI patients at hypoglycaemia or on treatment with 

GLP-1R antagonist were potentially missed since measurements were made from 

systemic blood. As it appears that the hepatoportal system may have been the site to 

take for accurate GLP-1 measurements (Chandarana et al., 2013a). 
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In conclusion of chapter 5, we found proliferation of β- and δ-cells as well as the co-

localised DPP-4 protein in KATPHI pancreatic tissues. These subjects also have an 

increase in pancreatic DPP-4 potentially promoting a reducing trend for pancreatic 

PYY gene expression. Pancreatic reduction in PYY appears to mediate an increase in 

pancreatic SST mRNA as seen in the PdxPyy KO mice. Furthermore, it appears that a 

reduction in plasma GIP concentration (possibly due to a lack of glucose-mediated 

enteral stimulation) causes or exaggerates hypoglycaemia in KATPHI individuals. 
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6.4. Overall conclusion 

It appears that the impact of PYY in the pancreas has been under-recognised. The 

full contribution of intra-islet PYY to the problem of obesity and/or diabetes is 

unknown but it may be substantial. Thus it is important to study and establish a role 

of pancreatic PYY in energy and glucose balance, independently of gut or brain PYY 

effects.  

Hence, we constructed a Pdx-specific Pyy null mouse and studied it against its 

littermate controls and the global Pyy KO mice. Pancreatic deletion of Pyy led to 

abnormal islet-cell development and thus caused an indirect dysregulation of post-

prandial insulin secretion. The loss of pancreatic Pyy results in alterations in the 

expression of other pancreatic hormones analysed. Both the transgenic Pyy mouse 

models analysed have post-prandial HI potentially due to changes in other islet 

hormones. The difference in body weight phenotypes and glucose disposal suggest a 

role of gut PYY in mediating a difference in appetite and energy expenditure. It is 

well-established that circulating PYYs anorectic action and glycaemia control is 

produced by the activity of truncated PYY 3-36 (Batterham et al., 2002, Batterham 

and Bloom, 2003, Batterham et al., 2003, Chandarana et al., 2013a). Hence, it is 

thought that the enzyme DPP-4 has the potential of improving the satiety and 

glucose tolerance effects. However, DPP-4 also appears to be a major regulator in 

this system, possibly initiating the removal of insulin inhibition produced by islet 

PYY 1-36 action. In conclusion to chapters 3 and 4, more work is needed to 

understand if DPP-4 inhibitor use may limit pharmacological therapeutic 

effectiveness and/or produce undesired side effects which are indicated by the 

current findings. 

In summary of chapters 3 & 4, intra-islet PYY 1-36 appears to activate Y1R and 

mediate the inhibition of insulin secretion. Additionally pancreatic PYY 

demonstrates a role in the development of α- and δ-cells which also has the potential 

to indirectly regulate insulin release. Thus, Pdx- expressing PYY inhibition may be a 

target for weight-loss and improved glycaemic control.  
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Overall, chapter 5 suggests that hypoglycaemia may potentially be a result of 

changes in pancreatic insulinotropic genes which includes DPP-4, PYY and SST. 

Plasma GIP concentrations are lower in these persons. Thus there may be potential 

for GIPR-based compounds to be developed for the therapy of conditions that have 

hypoglycaemia. But further research is needed to develop a deeper understanding.  

Overall, data collated from this thesis concludes that gut hormones play an important 

role in energy and glucose homeostasis. 
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Appendix I: Solutions 

Tail lysis buffer (per 100ml): 67 mM Tris-HCl pH 8.8, 16.6 mM (NH4)2SO4, 

6.7 mM MgCl2, 0.5 % v/v Triton X-100, 1 % v/v beta mercaptoethanol 

 

2X KRB stock solution: 136 mM NaCl, 4.7 mM KCl, 1.2 mM KH2PO4, 5 mM 

NaHCO3, 1.2 mM MgSO4 (7H2O) 

 

Quenching buffer (1x KRB): 2x KRB stock solution, 10 mM Hepes, 1 mM 

CaCl2, 2 mM D-glucose, pH to 7.4 and filter the solution 

 

Pancreatic digestion solution: filtered 1x KRB solution (pH 7.4) with 100 

units/ml penicillin + 100 µg/ml streptomycin and 0.225 mg/ml Liberase RI (Roche, 

West Sussex, UK) (2.5 mg/ml stock solution) 

 

Antigen-retrieval solution: 10% Dako antigen retrieval solution concentrate 

(Dako, Cambridgeshire, UK) in 1x PBS (v/v) 

 

Blocking solution: (1) for unconjugated primary antibodies: 10% normal goat 

serum in 1x PBS (v/v) and (2) for the biotin-conjugated antibodies: incubation with 

2 drops of avidin for 10 minutes, followed by 2 drops of biotin for 10 minutes and 

finally 0.1% Dako serum-free protein block in 1x PBS (v/v). 
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Appendix II: Supplementary IHC images for Chapter 3 

Representative z-stacked IHC images of C57BL/6 male mice aged 10-12 weeks:  

Islet immunostaining of:  

(A1) DPP-4 (green) and DAPI (blue) x 100.  

(A2) DPP-4 (green) and DAPI (blue) x 63.  

(A3) DPP-4 (green), Ins (red) and DAPI (blue) x 20.  

(A4) DPP-4 (green), Ins (red) and DAPI (blue) x 100.  

(A5) DPP-4 (green), GCG (red) and DAPI (blue) x 40.  

(A6) DPP-4 (green), GCG (red) and DAPI (blue) x 100.  

(A7) DPP-4 (green), SST (red) and DAPI (blue) x 40.  

(A8) DPP-4 (green), PYY (red) and DAPI (blue) x 40.  

(A9) Y1R (green), Ins (red) and DAPI (blue) x 40.  

(A10) DPP-4 (green), Y1R (red) and DAPI (blue) x 40.  

 

(Image quality best with RealPlayer Software) 
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Appendix III: Presentations, Awards & Publications	
  	
   

PRESENTATIONS 

1. S. A. Rahman. Obesity: Why is it such a ‘BIG’ issue in our society? St Marys Hospital 
Physiotherapy Department, London, UK. January 2011. 

2. S. A. Rahman. Investigating the Role and Regulation of Intra-islet Peptide YY. 
GlaxoSmithKline, North Carolina, USA. December 2011. 

3. S. A. Rahman. Division of Medicine Seminar series: Investigating the Physiological 
Role and Regulation of Intra-islet Peptide YY. University College London, UK. May 
2012. 

4. M-J Brassill, SA Rahman, A Boyde, RL Batterham, GR Williams, JHD Bassett. 
Peptide YY regulates bone mineral content and strength. Society for Endocrinology 
BES 2013. Harrogate, UK. March 2013 

 

POSTER PRESENTATIONS 

1. S. A. Rahman, Efthimia Karra and Khalid Hussain. Characterising the role and 
regulation of dipeptidyl peptidase-4 in congenital hyperinsulinism. UCL Division of 
Medicine PhD Student Summer Meeting. University College London, UK. June 2013. 

2. S. A. Rahman, Efthimia Karra and Khalid Hussain. Characterising the role and 
regulation of dipeptidyl peptidase-4 in congenital hyperinsulinism. 9th Joint Meeting of 
Paediatric Endocrinology, Milan, Italy. 21 September 2013. 

3. Azizun Nessa, Alison Thomas, Qadeer H. Aziz, Steve Harmer, Amanda Heslegrave, 
Chela James, Ved B. Arya, Sofia Rahman, Maha Sherif, Sarah E. Flanagan, Ritika R. 
Kapoor, Sian S. Ellard, Andrew Tinker, Khalid Hussain. Understanding the molecular 
basis of congenital hyperinsulinism due to autosomal dominant ABCC8 and KCNJ11 
mutation. 9th Joint Meeting of Paediatric Endocrinology, Milan, Italy. 21 September 
2013. 

4. Ved Bhushan Arya, Syeda Alam, Senthil Senniappan, Azizun Nessa, Sofia Rahman, 
Maha Sherif, Sarah E. Flanagan, Sian Ellard, Khalid Hussain.  Long-term endocrine 
and exocrine outcome of medically unresponsive diffuse congenital hyperinsulinism 
managed with near-total pancreatectomy: 18-years’ experience. 9th Joint Meeting of 
Paediatric Endocrinology, Milan, Italy. 21 September 2013. 

5. Maha Mohamed Sherif, Ibtisam Hadeed, Azizun Nessa, Sofia A. Rahman, Ved B. 
Arya, Senthil Senniappan, Mehul Dattani, Khalid Hussain. Two families with diabetes 
mellitus and sensorineural deafness. 9th Joint Meeting of Paediatric Endocrinology, 
Milan, Italy. 21 September 2013. 

6. S. A. Rahman, Efthimia Karra and Khalid Hussain. Characterising the role and 
regulation of dipeptidyl peptidase-4 in congenital hyperinsulinism. Institute of Child 
Health Postgraduate Poster Competition. 20 November 2013. 

 

AWARDS 

1. SfE Career Development worskshop, residential course, Oxfordshire, UK (Oct 2013). 

2. UCL Institute of Child Health Conference grant September 2013 (£250). 

3. BES travel grant December 2008- 2010, 2012-2013 (£500) and December 2011 (£750). 

4. 3-month GSK international internship, Research Triangle Park, North Carolina, USA 

(2011).
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Appendix IV: Publications 

1. Hameed, Saira., Dhillo, Waljit S., Patterson, Michael., Bloom, Stephen R., 

Rashid, Sofia., Bassett, J.H. Duncan., Williams, Graham R. & Gardiner. 

James V. (2009). The central regulation of food intake and energy 

expenditure by thyroid hormones. Hot Thyroidology E-book, pages 1-31. 

2. Karra, E., O. G. Daly, A. I. Choudhury, A. Yousseif, S. Millership, M. T. 

Neary, W. R. Scott, K. Chandarana, S. Manning, M. E. Hess, H. Iwakura, T. 

Akamizu, Q. Millet, C. Gelegen, M. E. Drew, S. Rahman, J. J. Emmanuel, 

S. C. R. Williams, U. U. Ruther, J. C. Bruning, D. J. Withers, F. O. Zelaya 

and R. L. Batterham (2013). "A link between FTO, ghrelin, and impaired 

brain food-cue responsivity." The Journal of Clinical Investigation 123(8): 

3539-3551. 

3. Ved Bhushan Arya*, Sofia Rahman*, Senthil Senniappan, Sarah E. 

Flanagan, Sian Ellard and Khalid Hussain. HNF4A Mutation: Switch from 

Hyperinsulinaemic Hypoglycaemia to Maturity Onset Diabetes of Young and 

Incretin Response. * Joint first authors. Diabetic Medicine. 2013 Dec 3. doi: 

10.1111/dme.12369. [Epub ahead of print]. 

4. A Yousseif. E Karra, S Rahman & RL Batterham 2014. ‘Obesity’ in PE 

Harria & PG Bouloux (Second Edition), Endocrinology in Clinical Practice. 

Taylor & Francis Publishing. London, UK, pp. 491-509. 
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