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Abstract 

A mutation in the charged multivesicular body protein 2B (CHMP2B) gene, identified 

in a kindred from the Jutland region of Denmark, segregates with affected family 

members with clinical presentations of frontotemporal dementia (FTD) and is absent 

in control populations (Gydesen et al., 1987; Gydesen et al., 2002; Skibinski et al., 

2005).  The mutation is a G>C transition in the splice acceptor site of exon 6 resulting 

in two novel splice variants CHMP2BInt5 and CHMP2B10 leading to C-terminal 

truncation of the CHMP2B protein (Skibinski et al., 2005).   

 

Chmp2b knockout (Chmp2b-/-) mice and transgenic mice expressing either wild-type 

or C-terminally truncated mutant CHMP2B splice variants CHMP2BInt5 and 

CHMP2B10 were generated with the aims of examining the normal function of 

Chmp2b and the effect of mutant CHMP2B species in vivo, as well as providing 

insight into a potential common FTD mechanism of disease. 

 

Quantification of Chmp2b protein in Chmp2b-/- mice demonstrates a significant 

(85%) depletion of endogenous Chmp2b in the mouse brain.  No pathology is 

identified in the CNS or muscle tissue of these mice however, they do demonstrate 

significant motor and behavioural abnormalities.  

 

CHMP2BInt5 transgenic mice demonstrate neurodegenerative changes including 

progressive gliosis, accumulation of CHMP2B, p62 and ubiquitin inclusions which are 

negative for TDP-43 and FUS proteins, consistent with the inclusion pathology 

observed in patients with CHMP2B mutation.  Furthermore, these mice have 

reduced survival and develop progressive axonopathy characterized by axonal 

swellings and accumulation of mitochondria and vesicles likely from the endosome-

lysosome and autophagy pathway, implicating altered axonal function in disease 

pathogenesis.  

 

This thesis describes the first mouse models of FTD-3 caused by CHMP2B mutation 

and presents evidence consistent with a gain-of-function effect unique to the 

CHMP2BInt5 isoform and provides new insights into the mechanisms of CHMP2B-

induced neurodegeneration. 
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1 Introduction 

1.1 Project Overview 

Frontotemporal Dementia (FTD) is the second most common form of presenile 

dementia after Alzheimer’s disease (AD) (Neary et al., 1998).  FTD encompasses a 

heterogeneous class of neurodegenerative diseases that clinically present with 

personality change, language disorder and cognitive decline and at post-mortem 

with extensive atrophy of the frontal and temporal lobes  (Neary et al., 2005; Weder 

et al., 2007).  There is a strong genetic component in FTD so that in 25-50% of FTD 

cases there is a first degree relative diagnosed with dementia (Stevens et al., 1998; 

Chow et al., 1999; Rosso et al., 2003). 

 

In 2005 Skibinski et al. identified the potential disease gene previously linked to 

chromosome 3 that was associated with a form of FTD in a large Danish Family (FTD-

3). The mutation identified in the Charged Multivesicular Body Protein 2B (CHMP2B) 

gene results in two aberrant transcripts, CHMP2BInt5 and CHMP2BDelta10 (Skibinski et 

al., 2005), neither of which were found in any bioinformatic database.  The aim of 

this study was to generate and characterise transgenic and knock-out murine 

models that may recapitulate hallmark characteristics of human FTD-3 disease.  This 

will aid the study of both the pathology of FTD-3 and the development of potential 

drug therapies. 

1.1.1 A brief history of clinical understanding of FTD 

The concept of frontal and temporal lobar degeneration (FTLD) was originally 

introduced when a form of presenile dementia with circumscribed frontotemporal 

lobar atrophy was first reported by Arnold Pick in 1892 and later termed Pick’s 

Disease (PiD) (Pick A, 1892; Kertesz, 2004; Weder et al., 2007). However, 

characteristic histological lesions of PiD, typically well defined, spherical, argyrophilic 

(bind silver salt stains), tau-immunoreactive, neuronal intracytoplasmic inclusions 
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(NII) and ballooned neurons referred to as Pick cells were first described by Alois 

Alzheimer in 1911 (Alzheimer A, 1911; Alzheimer et al., 1995).  The term Pick’s 

disease was consequently used to differentiate the clinically and pathologically 

distinct disorder FTLD from Alzheimer’s disease (AD) (Pick A, 1892; Graff-Radford 

and Woodruff, 2007). Since this distinction several classification systems for FTLD 

have been presented with each successive classification including more disorders 

under the umbrella of FTLD (Sjogren and Andersen, 2006; Mackenzie et al., 2009; 

Josephs et al., 2011). 

 

The term frontotemporal dementia (FTD) was introduced by the Lund and 

Manchester group in 1994 to describe a specific progressive behavioural syndrome 

(Brun and et al, 1994) and superseded terms such as frontal lobe dementia, 

dementia of the frontal lobe and non-Alzheimer’s dementia (Brun and et al, 1994; 

Graff-Radford and Woodruff, 2007; Seelaar et al., 2011).  The clinical and 

pathological criteria the group developed facilitated accurate diagnosis and better 

appreciation of the prevalence of FTD, thereby aiding discrimination between the 

diagnosis of Alzheimer’s disease (AD) and FTD (Brun and et al, 1994). 

 

The criteria prepared the way for significant progress to be made in the field of FTD 

but in practice clinicians in the wider neurology community found the criteria set out 

by the Lund and Manchester consortium limiting (Neary et al., 1998). The consensus 

was that the criteria lacked guidance as to the number of clinical features required 

for diagnosis and the relative importance of each feature (Neary et al., 1998).  In 

addition other clinical syndromes determined by the hallmark distribution of 

pathology within the frontal and temporal lobes of the brain such as progressive 

aphasia and semantic dementia were not included as part of this diagnostic criteria 

(Brun and et al, 1994; Neary et al., 1998). 
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Clinical criteria published by Neary and colleagues in 1998 proposed Frontotemporal 

Lobar Degeneration (FTLD) as a blanket term encompassing the three clinical 

syndromes irrespective of underlying histology (Neary et al., 1998). They divided 

patients into three categories; frontotemporal dementia (FTD) in which behavioural 

change is by definition the dominant feature of the disease, progressive non fluent 

aphasia (PNFA), predominantly a disorder of expressive language in which patients 

have severe trouble in word retrieval in the context of preserved word 

comprehension, and semantic dementia (SD) in which the most common initial 

presentation is language abnormality including loss of memory for words or loss of 

word meanings (Neary et al., 1998). 

 

In order to further define and accommodate the need for clinicians to easily make 

prompt diagnosis of FTD, McKhann and colleagues simplified the criteria of Neary et 

al. 1998 (McKhann et al., 2001).  The McKhann criteria combines PNFA and SD 

together with FTD and proposes the following six features: (1) development of 

behavioural and cognitive deficits (2) early and progressive change in personality or 

language (3) significant impairment in social or occupational ability (4) deficits show 

a progressive course (5) presence of symptoms in the absence of delirium and (6) 

exclusion of other psychiatric disease (McKhann et al., 2001).  This demonstrates the 

vast progress that has been made since FTD was originally identified by Pick and 

Alzheimer when the only conclusive diagnosis was the presence of gross 

frontotemporal atrophy with the presence of characteristic cell pathology.   

 

Classification criteria by Neary et al (1998) and McKann et al (2001) identified a 

proportion of patients with FTD that developed parkinsonism symptoms at later 

stages of disease (Neary et al., 1998; McKhann et al., 2001) these patients were 

classified as FTD with parkinsonism linked to chromosome 17 (FTDP-17) based on 

their clinical symptoms and because the disease locus had previously been linked to 

chromosome 17 (Wilhelmsen et al., 1994; Lynch et al., 1994; Foster et al., 1997). 
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Frontotemporal dementia with motor neuron disease (FTD-MND) is an additional 

form of FTD (Neary et al., 1990; Valdmanis et al., 2007).  There is now a general 

consensus that FTD, FTD-MND and MND are diseases with clinical, pathological and 

biochemical presentation within the same clinical spectrum (Seelaar et al., 2011; 

Seilhean et al., 2011; Rohrer et al., 2011b). 

 

In recent years (2006-2011) advances in molecular pathology and genetics as well as 

improved imaging techniques coupled with refined clinical descriptions have 

contributed to enormous progress in the fields of FTD and ALS.  As a result of this 

rapid progress the general consensus prevailed that the most commonly applied 

Neary diagnostic criteria (Neary, 1990) needed to be updated and in response to 

this, experts in the field have published updated and revised nomenclature and 

nosology studies (Mackenzie et al., 2009; Mackenzie et al., 2010; Josephs et al., 

2011; Seilhean et al., 2011). 

 

In accordance with current accepted terminology, in this study the term FTD is used 

to refer to the clinical presentation of FTD syndromes and the term FTLD reserved to 

describe the pathological basis of the disease including gross pathology and 

histology (Brun and et al, 1994; Neary et al., 1998; Sampathu et al., 2006; Mackenzie 

et al., 2009; Mackenzie et al., 2010; Josephs et al., 2011; Seilhean et al., 2011). 

 

1.1.2 Frontotemporal dementia linked to chromosome 3 in a Danish family- 

Historical perspectives  

The first report of a Danish family with pre-senile dementia was published in 1987 

(Gydesen et al., 1987).  The study described a family in which 14 out of 73 family 

members were clinically symptomatic for an unspecified form of early onset 

dementia distinct from Alzheimer’s and Pick’s disease.  In this initial report of the 

family only two post-mortem brains were available; they showed cerebral atrophy 
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but no other characteristics of any known dementia syndrome of the time.  The only 

other observation noted was increased cerebral blood flow in one affected member 

of the family with early stage disease (Gydesen et al., 1987).  

 

 

 

Figure 1.1 Picture of the FTD-3 family.   

Danish Family, farmer’s wife (seated second from left) and her husband (seated third from left) 

surrounded by their 12 children (taken ~1930). 

 

This family first came to the attention of clinicians and scientists when an affected 

family member (patient III-15) approached Dr. Susan Gydesen at the Department of 

Psychiatry, University of Copenhagen, Denmark (Gydesen et al., 1987).  This original 

contact by patient III-15 initiated collaborations between Denmark and the UK to 

investigate ‘the family disease’ including clinical diagnosis, neuropsychological 

testing, neuroimaging, neuropathological analysis and molecular genetics (personal 

communications).   
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Based on the study of the family pedigree the founding affected matriarch had 

twelve children (figure 1.1) and went on to develop dementia by the age of 56 years 

(born 1876) and died twelve years later (1944).  Eight of her children also developed 

dementia later in life (Brown et al., 1991; Brown et al., 1993; Gydesen et al., 2002).  

These eight individuals also went on to have large families, from which there were 

50 at risk individuals in the third generation of this kindred and 13 of them 

developed dementia (Brown, 1998). The family now spans 6 generations with over 

450 members and 38 known affected individuals (figure 1.2). In 2005 a mutation in 

the CHMP2B gene was identified as the cause of the Danish family dementia 

(Skibinski et al., 2005). 

  

A new branch of the FTD-3 family was identified from an affected individual who had 

been adopted at birth (Lindquist et al., 2008).  Information about the course of 

disease was obtained from an unaffected half sibling who was brought up by the 

affected biological parent.  Genetic screening identified CHMP2B mutation identical 

to that of FTD-3 family in this adopted individual and another half sibling (Lindquist 

et al., 2008).  In a Belgian series of patients a novel missense mutation was identified 

in a familial FTD patient (van der Zee J. et al., 2008).  Five additional CHMP2B 

missense mutations of unknown pathogenicity have been identified in eight 

individuals with a range of FTD-MND spectrum disorders (Skibinski et al., 2005; 

Parkinson et al., 2006; Rizzu et al., 2006; Lindquist et al., 2008; Cox et al., 2010; 

Isaacs et al., 2011). 
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Figure 1.2 Danish FTD-3 pedigree  

Generations 1 to 6 of affected and unaffected male and female family members. 

 

1.2 Clinical Presentation and Classification 

FTD can be classified into three clinical syndromes depending on the early and 

predominant symptoms- behavioural variant frontotemporal dementia (bvFTD), 

progressive non-fluent aphasia (PNFA) and semantic dementia (SD)- all share an 

insidious onset with inexorably progressive characteristics but with variable rates of 

decline.  Typical clinical presentations including, lack of insight into their disease, 

emotional blunting, apathy, neglect of personal hygiene and selfishness are 

commonly associated with bvFTD but may be seen in all subtypes (Bathgate et al., 

2001; Seelaar et al., 2011).  The language variants of FTD (PNFA and SD) are 

collectively termed primary progressive aphasia (PPA) with patients exhibiting 
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progressive impairment in speech and semantic memory respectively (Bathgate et 

al., 2001; Gorno-Tempini et al., 2004; Rascovsky et al., 2007; Seelaar et al., 2011).  

Not all clinical presentations of PPA can categorically be classified as PNFA or SD. 

Such cases typically present with hesitant speech with prominent word finding 

difficulty and may be classified under the recently described term Logopenic 

Progressive Aphasia (LPA) mostly associated with atypical Alzheimer’s disease 

(Leyton et al., 2011).  

 

The symptoms demonstrated by patients are closely correlated with the distribution 

of pathology in the brain.  A combination of imaging and post-mortem studies has 

shown that in FTD patients with disinhibition symptoms the orbitofrontal cortex is 

affected with involvement of the temporal cortex (Neary et al., 2005). Functional 

imaging including studies of single photon emission computed tomography (SPECT), 

positron emission tomography (PET), and perfusion magnetic resonance imaging 

(MRI) show reduced perfusion of the frontal and temporal lobes which can be 

strikingly asymmetrical and may be considered as an additional diagnostic tool 

(Seelaar et al., 2011; Zhang et al., 2011). 

 

In addition to the main FTD syndromes (bvFTD, PNFA, SD) presented above, a 

number of other neurodegenerative diseases present with clinical symptoms, 

cellular biochemistry and genetics highly consistent with FTD and have over time 

been added to the umbrella of FTD syndromes.  The most striking of these is 

autosomal dominant familial frontotemporal dementia with parkinsonism linked to 

chromosome 17 (FTDP-17) (Foster et al., 1997).  Other neurological disorders that 

share overlapping clinical presentation, cellular biochemistry and genetics with FTD 

include progressive supranuclear palsy, (PSP), corticobasal degeneration (CBD) and 

inclusion body myopathy with Paget’s disease of the bone and FTD (IBMPFD) 

(Mackenzie et al., 2011; Rohrer et al., 2011b). 
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Frontotemporal Dementia with motor neuron disease (FTD-MND) is an additional 

neurodegenerative disease that shares significant clinicopathological similarity with 

FTD syndromes.  MND can present with significant overlap with FTD but also with 

PSP, CBD and other FTD syndromes (Mackenzie et al., 2009).  Affected individuals 

may present with characteristic FTD symptoms, preceded, followed or with 

simultaneous symptoms of motor neuron disease including muscle atrophy, 

weakness and fasiculations in the upper extremities (Lomen-Hoerth et al., 2002; 

Seelaar et al., 2007; Seelaar et al., 2010; Espay and Litvan, 2011).   

 

There is a strong genetic component to FTD-MND (Graff-Radford and Woodruff, 

2007) and families were linked to chromosome 9 (Hosler et al., 2000; Morita et al., 

2006; Vance et al., 2006; Valdmanis et al., 2007; Pearson et al., 2011).   The same 

region of chromosome 9 defined by 3.7Mb region containing only five known genes 

(Gijselinck et al., 2010; Pearson et al., 2011) was associated in several genome wide 

association studies to sporadic FTD, ALS and FTD-MND (van Es et al., 2009; 

Laaksovirta et al., 2010; Shatunov et al., 2010; Mok et al., 2012).  The genetic basis 

of chromosome 9-linked FTD/ALS has been identified as a hexanucleotide (GGGGCC) 

repeat expansion in chromosome 9 open reading frame 72 (C9orf72). The expanded 

GGGGCC repeat is found in the non-coding region of C9orf72 encoding an 

uncharacterised protein of unknown function (Renton et al., 2011; Dejesus-

Hernandez et al., 2011). 

 

1.2.1 Behavioural variant frontotemporal dementia 

The prevailing feature of bvFTD is an insidious onset of progressive behavioural and 

personality change.  In some patients the frontal cortex may be predominately 

affected with pathology bias for the right hemisphere (Seelaar et al., 2008b; Seelaar 

et al., 2010) and other patients may show bilateral frontal and temporal atrophy  

(Kipps et al., 2008; Burrell and Hodges, 2010).   Patients with FTD may exhibit lack of 

insight, apathy, loss of appropriate emotional expression and stereotyped behaviour 
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or conversely they may demonstrate loss of social inhibitions such as impulsive or 

inappropriate behaviour including hyperorality, become overactive or fatuous.  

Patients may change their dietary habits or even religious or political beliefs from 

their pre-morbid state (Neary et al., 1998; Weder et al., 2007)  

 

In patients with symptoms of apathy there is widespread frontal involvement 

extending to the dorsolateral frontal cortex, whilst patients with stereotyped 

behaviour show greater anterior temporal lobe atrophy with striatum involvement 

(Neary et al., 2005). Overall, patients with more behaviour change have greater right 

hemisphere atrophy (Neary et al., 2000a; Snowden et al., 2001; Neary et al., 2005; 

Weder et al., 2007)   

 

1.2.2 Semantic dementia 

Semantic Dementia (SD) is primarily a disorder of language dysfunction (Neary et al., 

1998; Neary et al., 2005; Weder et al., 2007) but patients may also show behavioural 

changes in the course of disease similar to bvFTD. In particular SD sufferers have a 

tendency to become egocentric and develop habitual routines. Patients can speak 

fluently with appropriate grammar and pronunciation but seem to lose the ability to 

connect meaning of words to images, for example naming pictures. 

 

They become unable to recognise the significance of faces, and matching pictures to 

words, in addition patients are often unaware of their language deterioration (Neary 

et al., 1998; Weder et al., 2007).  Deficits in non-verbal tasks including auditory and 

visual tasks are also observed (Neary et al., 1998; Weder et al., 2007).  Patients with 

SD have circumscribed atrophy of the temporal lobe with left hemisphere bias 

(Hodges et al., 1992; Sjogren and Andersen, 2006). 
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Figure 1.3 The four lobes of the brain.   

Frontal lobe (blue), parietal lobe (green), occipital lobe (red) and temporal lobe (orange), the 

cerebellum is also indicated.  Adapted from www.city.ac.uk/optometry/Biolabs/Brainlab/Brainlab.htm 

 

 

1.2.3 Primary non-fluent aphasia  

Progressive non fluent aphasia (PNFA) is a disorder of expressive language typified 

by characteristic economy of speech, dysnomia and loss of generative capacity 

(Neary et al., 2005).  Patients with PNFA present with apraxia of speech with 

changes in fluency, pronunciation or have word finding difficulty and gradually 

become mute (Neary et al., 1993; Snowden and Neary, 1993; Neary et al., 1998; 

Neary et al., 2005; Weder et al., 2007).  Object knowledge and single word 

comprehension are noted to be relatively preserved.  Behavioural changes such as 

those identified with bvFTD are less common, however  at the end stage of disease 

they may also show some behavioural changes.  This form of FTLD is associated with 

asymmetric left hemisphere atrophy (Neary et al., 1993; Snowden and Neary, 1993; 

Neary et al., 1998; Neary et al., 2005; Weder et al., 2007). 

http://www.city.ac.uk/optometry/Biolabs/Brainlab/Brainlab.htm
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1.3 FTD Clinical Variation 

1.3.1 FTDP-17 

FTDP-17 presents with classic clinical symptoms of FTD including behavioural and 

personality change with presenile dementia (Espay and Litvan, 2011). In addition 

FTDP-17 patients also co-exhibit symptoms of parkinsonism characterised by rigidity, 

bradykinesia and resting tremor.  Parkinsonism symptoms have also been reported 

to be the presenting clinical feature in some cases (Fujioka and Wszolek, 2011).  A 

number of mutations in tau and progranulin genes both on chromosome 17 have 

been identified in FTDP-17 families (Hutton et al., 1998; Cruts et al., 2005; Baba et 

al., 2007; van Swieten, 2007; Fujioka and Wszolek, 2011). 

 

1.3.2 FTD-3 

Clinical assessment has confirmed that all affected family members fulfil the clinical 

and pathological criteria for FTLD diagnosis (Neary et al., 1998; McKhann et al., 

2001; Gydesen et al., 2002).  FTD-3 is an insidious and progressive disease.  The age 

of onset in this family ranges between 48 and 67 years (mean 57 years) with a 

duration of 3-21 years. Cognitive decline and personality change, associated with 

frontal lobe pathology, is often the first sign of disease onset and may present in a 

non-uniform manner.  Individuals will either lose interest in their friends and family, 

becoming generally apathetic, or they may become aggressive compared to their 

pre-morbid state and lose their social inhibitions (Gydesen et al., 1987; Gydesen et 

al., 2002).   

 

Stereotyped behaviour is often observed in FTD-3 and can present as part of 

personality change, typical presentations include disinhibition, inappropriate 

emotional response, lack of concern for others, lack of concern for self including 

unkempt appearance, and restlessness progressing to aggressive behaviour 

(Gydesen et al., 1987; Gydesen et al., 2002).  For example, six months before 
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developing symptoms of cognitive decline case III-22 (figure 1.8) became irritable 

and was unable to manage daily grooming practices and domestic abilities.  She also 

developed repetitive questioning and repeatedly bought certain food items that she 

did not use. Other patients have been noted to develop hyperorality (placing non-

food objects in their mouth and excessive eating), which is associated with temporal 

lobe dysfunction. In addition all patients lack insight into their illness (Brown, 1998).  

Patients may also struggle with word finding that progresses to aphasia but not with 

classic features of PFNA or SD, eventually becoming mute (Gydesen et al., 2002).  

Early dyscalculia was identified in 8 and stereotyped behaviour in 11 of 22 affected 

FTD-3 family members (Isaacs et al., 2011).  

 

Motor symptoms develop approximately 5 years after initial symptom onset 

(Gydesen et al., 1987). Patients demonstrate apraxia due to frontal cortex 

dysfunction and pyramidal symptoms with parkinsonian features and dystonia 

(Gydesen et al., 1987). In FTD-3 patients, abnormal posture of head and neck due to 

muscle spasm are also common, patients become incontinent and sudden spasms 

leading to jerking of arms (myoclonus) can occur (Gydesen et al., 1987). 

Interestingly, there are reports of some patients that develop arm dystonia in which 

they have one arm permanently extended (Gydesen et al., 1987; Gydesen et al., 

2002).  None of the affected family members show clinical signs of upper motor 

neuron (UMN) or lower motor neuron (LMN) impairment and to date there are no 

neurophysiological studies or EMG data available (Isaacs et al., 2011). 

 

At end stage patients are unable to feed themselves and require round the clock 

care and may also develop problems in swallowing (Brown, 1998; Gydesen et al., 

2002; Brown et al., 2004).  Although patients demonstrate post morbid cognitive 

deficits as determined by the Queen Square Screening Test for Cognitive Deficits, 

day to day memory is maintained, thus categorically distinguishing FTD-3 from 

Alzheimer’s disease (Brown, 1998). 
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The two half siblings from the additional branch of the family also demonstrated 

clinical symptoms consistent with the affected member of the FTD-3 family.  Both 

show personality and behaviour change in their 50s including apathy, aggression and 

decline in speech with disease progression (Lindquist et al., 2008). The Belgian 

patient first showed signs of disease at 58 years of age including early onset 

progressive dysgraphia, mild disinhibition  and aphasia, but delayed recall was 

preserved (van der Zee J. et al., 2008). 

  

A screening study found CHMP2B missense mutations in approximately 10% of 

patients with progressive muscular atrophy (PMA) a form of MND affecting LMN 

(Cox et al., 2010), one missense mutation (N143S) is associated with CBD (van der 

Zee J. et al., 2008) and  another missense mutation (D148Y) with semantic dementia 

(Skibinski et al., 2005). The pathogenicity of these missense mutations is currently 

unclear (Isaacs et al., 2011). 

 

1.3.3 FTD-MND 

The term motor neuron disease (MND) encompasses a group of neurodegenerative 

diseases with progressive motor neuron loss that are ultimately terminal.  The most 

frequent clinical presentation of MND is Amyotropohic lateral sclerosis (ALS) with 

>75% of MND patients diagnosed with ALS (Ince et al., 1998; Lillo and Hodges, 

2009).  ALS is characterised by loss of both Lower Motor Neurons (LMN) in the 

anterior horn of the spinal cord and brain stem as well as the progressive loss of 

upper motor neurons (UMN) in layer V of the motor cortex. A second variant of 

MND is progressive muscular atrophy (PMA) in which only LMN degeneration occurs 

and has a clinically slower decline. Between 10-20% of MND cases are diagnosed 

with PMA (Lillo and Hodges, 2009).  
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In patients diagnosed with FTD, 5-25% of cases are preceded, accompanied, or 

followed by signs of MND (Peavy et al., 1992; Massman et al., 1996; Lomen-Hoerth 

et al., 2002; Rosso et al., 2003; Johnson et al., 2005; Seelaar et al., 2007; Lillo and 

Hodges, 2009; Lillo et al., 2010; Burrell et al., 2011).   

 

The term frontotemporal dementia with motor neuron disease (FTD-MND) was used 

by the Lund and Manchester group to describe patients originally diagnosed with 

FTD exhibiting motor neuron symptoms (Lund and Manchester group 1994).  In 

parallel ALS patients with cognitive impairment have also been classified as FTD-

MND (Massman et al., 1996; Portet et al., 2001).  In the face of mounting evidence it 

is now accepted that FTD and MND form a clinicopathological spectrum (Neary et 

al., 2000b; Lillo and Hodges, 2009; Lillo et al., 2010; Boeve, 2011; Simon-Sanchez et 

al., 2012). 

 

1.4 Epidemiology  

Population based studies have shown a wide range of estimates in the prevalence of 

FTD (Seelaar et al., 2011). In the first published FTD population study, the prevalence 

of FTD in Cambridgeshire UK was estimated to be 15 per 100,000 in 45-64 year old 

population (Ratnavalli et al., 2002).  In a population of approximately 3000, 17 

patients were identified with FTD of whom 11 were under the age of 65 years with a 

mean age of 52.8 years (Ratnavalli et al., 2002).  

 

Another study investigating the prevalence of all causes of young onset dementia 

(before the age of 65 years) in the West London catchment area in the UK reported 

a comparable prevalence of 15.4 per 100,000 for FTD as a subgroup of all causes of 

dementia (Harvey et al., 2003). In this study 12% of all dementia cases fulfilled the 

Lund-Manchester diagnostic criteria for FTD (Harvey et al., 2003).  
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The prevalence of FTD in the Zuid-Holland province of the Netherlands was 

estimated to be much lower than the UK studies at 3.6 per 100,000 in 50-59 years 

age group, increasing to  9.4 per 100,000 in 60-69 years, and 3.8 per 100,000 in the 

70-79 years age group (Rosso et al., 2003). For comparison with the Cambridge and 

West London studies the prevalence in 45-64 year age group was estimated to be 4 

per 100,000 (Rosso et al., 2003; van Swieten, 2007).  The lower prevalence reported 

in this study is likely to be due to study design.  Whereas the Cambridge study 

included all cases of dementia in their defined population, the Dutch study only 

recruited referred cases (Seelaar et al., 2011). 

 

In Rochester, Minnesota USA between 1990 and 1994 the incidence rate of FTD was 

estimated to be 2.2 per 100,000 per year in the 40-49 year age range, 3.3 per 

100,000 in the 50-59 year age range, increasing to 8.9 new cases per year per 

100,000 persons in the 60-69 age range (Knopman et al., 2004). The overall 

incidence rate was estimated to be 4.1 per 100,000 FTD cases per year in the 49-69 

year age range (Knopman et al., 2004). The authors suggested that based on 

incidence and median survival calculations, the prevalence of FTD in this small group 

would be estimated to be 53.4 cases per 100,000 persons, significantly higher than 

other published reports (Knopman et al., 2004). This significantly higher calculated 

prevalence is likely to be because this study included dementia types other than FTD 

(Knopman et al., 2004). 

 

A second study estimating the incidence of early onset dementias in the 

Cambridgeshire area served by Addenbrookes Hospital between 2000 and 2006 

found a remarkably comparable incidence rate of 3.5 new cases per year per 

100,000 persons in the 45-64 year age range (Mercy et al., 2008). Incident rates 

extrapolated from this analysis would suggest that 460 new FTD cases per year 

would be expected in the UK population aged 45-64 years of age (Mercy et al., 

2008). 
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Mean age of onset of FTLD is variable but ranges between 45-65 years of age with 

mean age varying somewhere in the 5th decade in most studies.  Age of onset in 

familial and sporadic cases is found to be comparable with slightly earlier age of 

onset associated with sporadic FTD (Ratnavalli et al., 2002; Rosso et al., 2003). 

 

Although FTD is generally considered a presenile dementia 20-25% of FTD cases are 

over the age of 65 years (Ratnavalli et al., 2002; Johnson et al., 2005; Rabinovici and 

Miller, 2010). When screening individuals over the age of 85 years from Gothenburg 

Sweden, investigators estimated a prevalence of 3.1 in 100 in their cohort, a 

surprisingly high occurrence (Gislason et al., 2003; Seelaar et al., 2011). 

 

Survival, age of onset and diagnoses vary greatly at different centres.  Centres report 

median survival of approximately 4 years from diagnosis and around 6-11 years from 

symptom onset (Hodges et al., 2003; Kertesz, 2004; Rascovsky et al., 2005; Roberson 

et al., 2005).   FTD-MND is associated with early mortality of less than 5 years, while 

in uncomplicated FTD, bvFTD has been associated with the shortest survival <9 years 

(Rabinovici and Miller, 2010).  

 

Most studies report that FTD affects men and women equally (Knopman et al., 2004; 

Seelaar et al., 2011). However, the Cambridge study reported a striking 14:3 male to 

female ratio in their population (Ratnavalli et al., 2002). Further studies based on a 

breakdown of clinical syndrome data report a male preponderance in bvFTD and SD 

and a female preponderance in PFNA (Ratnavalli et al., 2002; Hodges et al., 2003; 

Johnson et al., 2005; Rascovsky et al., 2005; Rabinovici and Miller, 2010).  

 

Variation amongst studies is likely to be due to differences in definitions used to 

diagnose patients, cohort size and post-mortem tissue available for confirmation of 

FTD, as well as genetic distribution of FTD across continents and countries. 
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1.5 Genetics 

A positive family history is identified in 30-50% of FTD cases with at least one other 

family member being affected (Chow et al., 1999; Seelaar et al., 2008b).  FTD-MND 

demonstrates the highest heritability, up to 60% in some studies (Stevens et al., 

1998; Goldman et al., 2005; Seelaar et al., 2008a; Rohrer et al., 2009b; Seelaar et al., 

2011). 

 

In 10-27% of familial cases there is an autosomal dominant mode of inheritance 

(Stevens et al., 1998; Chow et al., 1999; Goldman et al., 2005; Seelaar et al., 2008a; 

Seelaar et al., 2008b). Mutations in the microtubule associated protein tau (MAPT) 

account for 5-20% of familial cases and progranulin (GRN) mutations account for 5-

20% of familial cases and 1-5% of sporadic cases, while the recently identified 

C9orf72 expansion accounts for 21% of famililal FTD and 6% of sporadic cases in 

North American and European populations, (www.molgen.ua.ac.be/FTDMutations/, 

2012; Gijselinck et al., 2008; Seelaar et al., 2011; Josephs et al., 2011; Ferrari et al., 

2011; Rohrer et al., 2011b; Majounie et al., 2012; Rademakers et al., 2012). 

  

Other genes with rare causative mutations in FTD include TAR-DNA binding protein 

43 (TDP-43), fused in sarcoma (FUS), charged multivesicular protein 2B (CHMP2B), 

and valosin-containing protein (VCP) whose combined effect contribute to less than 

5% of familial FTD cases (Seelaar et al., 2011; Ferrari et al., 2011) 

1.5.1 CHMP2B 

The presenile dementia in the Danish family is autosomal dominant with high 

penetrance.  Linkage studies mapped the disease gene in affected family members 

to the pericentromeric region of chromosome 3 and subsequent haplotype analysis 

further reduced the critical area to a 15.5Mb region with 13 known genes on the 

long arm of chromosome 3 (figure 1.4) (Brown et al., 1995; Skibinski et al., 2005).  
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Figure 1.4 Pericentromeric region of chromosome 3 and electropherograms of mutation found in 

affected FTD3 family members.  

a) pericentromeric region of chromosome 3 harbouring CHMP2B mutation. b) Unaffected pedigree 

members show a homozygous G at mutation site and c) heterozygote G/C splice site mutation in 

affected pedigree members. 

 

Sequencing of candidate genes in the critical region uncovered only one mutation, a 

G>C transition in the splice acceptor site of exon 6 in the Charged Multivesicular 

Body Protein 2B (CHMP2B) (figure 1.4) (Skibinski et al., 2005).  This mutation 

segregated in all affected members of the family and was absent in unaffected 

family members and 120 Centre d’Etude du Polymorphisme Humain (CEPH) control 

samples and 100 control samples from the Danish population (Skibinski et al., 2005).   

 

RT-PCR amplification of CHMP2B from total RNA extracted from patient brain and 

lymphoblast cell lines revealed two novel splice variants absent in control samples.  

Sub-cloning and sequence analysis of the aberrant amplification products revealed 

that one transcript contains a 201bp intronic sequence between exon 5 and 6 

(CHMP2BInt5) (figure 1.5) resulting in a premature stop codon and a 36 amino acid 
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carboxy terminal truncation (figure 1.6) (Skibinski et al., 2005).  The second 

transcript contains a 10bp deletion at the beginning of exon 6 due to the use of a 

cryptic splice site located 10bp from the 5’ end of exon 6 (CHMP2B10) (figure 1.5).  

This frame shift mutation leads to the final 36 amino acids of CHMP2B being 

replaced with 29 nonsense-coding amino acids at the carboxy terminus (figure 1.6) 

(Skibinski et al., 2005).  Both transcripts are present in brain tissue from affected 

family members CHMP2BInt5 at ~35% and CHMP2B10 ~10% relative to the wild type 

transcript (Urwin et al., 2010b). 
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Figure 1.5 Pictorial representation of CHMP2B aberrant transcripts  

G>C splice variant in genomic sequence (* in diagram) results in aberrant transcripts CHMP2B
Int5

  and CHMP2B
10

. CHMP2B
Int5

  

includes the 201bp intron 5, which contains a premature stop codon leading to C-terminal truncation. CHMP2B
10 

 results from a 10bp 

deletion at the beginning of exon 6 due to the use of a cryptic splice site causing a frameshift mutation leading to the final 36 amino acids 

of CHMP2B being replaced with 29 nonsense coding amino acids at the carboxy terminus. 
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Figure 1.6 Multiple alignment of CHMP2B protein sequences  

CHMP2B protein sequences from selected species and CHMP2B mutant protein sequences. Yellow highlight indicates identified coding 

mutations. 
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Since the identification of the gene responsible for FTD-3, several groups have 

screened other cases of FTD for CHMP2B mutation, 

(www.molgen.ua.ac.be/FTDMutations/, 2012).  A C>T transition in exon 5 of 

CHMP2B was identified in a single familial Belgian FTD case from a group of 

Belgian patients tested (N=146) that was absent in control samples (van der Zee 

J. et al., 2006).  This missense mutation (Q165X) is predicted to induce a 

premature stop codon resulting in a C-terminal truncation (van der Zee J. et al., 

2006).  In order to eliminate the possibility that the CHMP2B mutation may not 

be the true disease mutation, but hitchhiking on the real disease gene, 

sequencing of all open reading frames within the disease haplotype was carried 

out.  No other unique variants were identified; this increases the likelihood that 

the splice site mutation reported underlies FTD-3 (Momeni et al., 2006a).   

 

Other than the FTD-3 and Belgian mutations, several CHMP2B missense 

mutations of uncertain pathogenicity have been described.  A G442T missense 

mutation resulting in a D148Y substitution in exon 5 was also reported in an 

unrelated individual with FTD that was absent in 100 control samples from CEPH 

in the original paper by Skibinski et al (2005 (Skibinski et al., 2005).   

 

 

Figure 1.7 Clustering of CHMP2B mutations identified to date. 

CHMP2B mutations clustering at C-terminal region of CHMP2B gene. Adapted from Ferarri et al 

(2011); (Ferrari et al., 2011) 

CHMP2B missense mutations have been identified in a range of FTD-MND 

spectrum syndromes.  These include the I29V mutation in the N-terminal coiled 

coil domain identified in a case of FTD-MND (Parkinson et al., 2006), a case of 
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FTD (Rizzu et al., 2006) and also in a single case with no clinical symptoms 

(Cannon et al., 2006).  Other missense mutations are T104N and Q206H in two 

PMA cases (the I29V mutation was also identified in two PMA cases in the same 

study) (Cox et al., 2010) and N143S in a CBD case (van der Zee J. et al., 2008).   

Other missense mutations include S187N identified in a single case of FTD but 

also in an individual without neurological symptoms (Ghanim et al., 2010; Ferrari 

et al., 2011),  S194L identified in a single case of FTD and not found in controls, 

T72M found in a familial FTD case, but not segregating with disease, indicating it 

is non-pathogenic, and R69Q identified in one control and no cases (Ghanim et 

al., 2010).  It is interesting that mutations concomitant with clinical presentations 

of FTD-MND spectrum syndromes are predominantly (except I29V) clustered in 

the CHMP2B C-terminal region (figure 1.7) which houses the (microtubule 

interacting and transport (MIT))-interacting motif (MIM) (figure 1.7) (Williams 

and Urbe, 2007; Urwin et al., 2009; Ferrari et al., 2011).  However, the 

pathogenicity of these missense mutations is currently unresolved.  Of note is 

the chance finding of a C556T mutation in two middle-aged children of an 

affected man from a large six-generation Afrikaner family (Momeni et al., 

2006b).  This mutation changes codon 186 (CGA>TGA) of the CHMP2B sequence 

and is predicted to result in a C-terminal truncation (Momeni et al., 2006b).  

Although the authors report that the two middle aged children with this 

mutation are unaffected, expression of this mutation in vitro is reported to result 

in phenotype comparable to the FTD-3 CHMP2B mutation (van der Zee J. et al., 

2008).  It would be useful to obtain post-mortem analysis of these two Afrikaner 

individuals in due course as FTD-3 CHMP2B mutation has a wide age of 

symptomatic onset and the possibility remains that the Afrikaner individuals are 

yet to develop clinical presentation.   

 

1.6 Neuropathology  

The heterogeneous neurological disorders grouped under the umbrella of FTD 

share common gross and cellular pathology, with each subtype demonstrating 

particular distinguishing hallmarks (Neumann et al., 2009b). 
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Gross neuropathological changes observed in FTLD are predominantly atrophy of 

the frontal and temporal lobes (Snowden et al., 2002) with sparing of the 

posterior lobes; although other major anatomical brain regions are also affected.  

The hippocampus, basal ganglia (particularly the head of the caudate nucleus), 

and striatum show atrophy and enlargement of the ventricles is also observed 

(Graff-Radford and Woodruff, 2007). There is marked sparing of the posterior 

regions of the brain in early stages of the disease, but these regions ultimately 

become involved as disease progresses to late terminal stages (Broe et al., 2003). 

 

There is considerable variation in cellular pathology across FTD syndromes (Broe 

et al., 2003).  At the cellular level FTD syndromes share some common non-

specific neurodegenerative pathology including neuronal loss, gliosis and 

inclusion bodies.  In recent years identification of novel molecular inclusions 

unique to FTD subtypes has spurred the classification of FTLD pathology based 

on presumed molecular defects (Neumann et al., 2009b). 

 

FTLD can be classified into four main groups based on the major proteins 

deposited in the brain: 1) FTLD-tau 2) FTLD-TDP and 3) FTLD-FUS and 4) FTLD-

other which incorporates FTLD with no inclusions (ni) FTLD-ni  and FTLD with 

inclusions from ubiquitin proteasome system (UPS)- FLTD-UPS (Mackenzie et al., 

2009; Mackenzie et al., 2010; Seelaar et al., 2011; Josephs et al., 2011; Rohrer et 

al., 2011b).  Pathological identity can be further sub-classified within each of 

these three groups based on inclusion morphology and distribution and tau 

isoform dominance.  Greater than 99% of FTLD cases can be classified on the 

basis of specific protein deposition with only rare cases classified as  FTLD-other 

<1% (Graff-Radford and Woodruff, 2007). 

 

At post mortem FTD tau pathology accounts for ~40% of FTLD cases (Goedert et 

al., 1989; Knopman et al., 2004); FTLD with TDP pathology generally accounts for 

~50% of cases (Josephs et al., 2004; Rohrer et al., 2011b) and  FTLD-FUS accounts 
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for approximately 5-10% of FTD cases (Knopman et al., 2004; Lashley et al., 2011; 

Rohrer et al., 2011a). 

 

1.6.1 FTLD-tau  

The microtubule associated protein tau (MAPT) is a soluble phosphoprotein 

abundantly expressed both in the central and peripheral nervous system. Tau 

plays a fundamental role in maintaining neuronal integrity and axoplasmic 

transport by promoting microtubule (MT) assembly and stability (Goedert et al., 

1989; Neumann et al., 2009b).  

 

The accumulation of intraneuronal insoluble hyperphosphorylated tau deposits is 

one of the most common observations in FTLD accounting for ~40% of cases 

(Josephs et al., 2004; Taniguchi et al., 2004; Rohrer and Warren, 2011).  This 

abnormal accumulation of tau is also a pathological characteristic in a number of 

other FTD clinical syndromes including progressive supranuclear palsy (PSP), 

corticobasal degeneration (CBD) and some cases of frontotemporal dementia 

and Parkinsonism linked to chromosome 17, collectively termed ‘tauopathies’ 

(Neumann et al., 2009b).  Tauopathies may be further sub classified based on 

both phosphorylation and isoform composition; i.e. tauopathies can be allocated 

as disorders with inclusions composed predominantly of tau containing either 3 

or 4 microtubule binding domain repeats (3R or 4R isoforms) (Mackenzie et al., 

2009).  

 

Tauopathies typically exhibit atrophy of both the frontal and temporal lobes 

(Pickering-Brown et al., 2004).  This is associated microscopically with neuronal 

loss, astrocytosis, microvacuolation and swollen neurons together with a 

spectrum of tau protein specific pathology including intraneuronal neurofibrillary 

tangle-like inclusions and pretangles, intraneuronal Pick body inclusions, 

astrocyte tangle-like inclusions and dystrophic neurites (Taniguchi et al., 2004) as 

well as glial tangles and coiled bodies found in white matter (Seelaar et al., 

2010).  Although there is considerable clinical and neuropathological overlap 
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between the FTLD-tau pathologies, each distinct type of tauopathy can be 

distinguished by the distribution, degree and morphology of tau inclusions 

(Spillantini et al., 1998; Goedert et al., 1998).  

 

1.6.2 FTLD-TDP 

In patients diagnosed with FTD, tau inclusions are not found in 50% of cases at 

post-mortem (Kertesz et al., 2000; Mackenzie and Rademakers, 2007).  Instead, 

varying degrees of ubiquitin positive rounded intraneuronal inclusions are 

present originally termed FTLD with ubiquitin inclusions (FTLD-U) (Kertesz et al., 

2000; Mackenzie and Rademakers, 2007).  In 2006 Neumann and colleagues 

identified Transactivation response (TAR) DNA binding protein with molecular 

weight 43kDa (TDP-43/TARDTBP) as the ubiquitinated protein in the vast 

majority of FTLD-U cases (Neumann et al., 2006).  Consequently cases of FTLD-U 

with TDP-43 positive staining were reassigned as FTLD-TDP (Mackenzie et al., 

2009; Mackenzie et al., 2010; Mackenzie et al., 2011).  Furthermore the 

previously recognised characteristic pattern of staining seen with ubiquitin 

antibodies could be recapitulated using TDP-43 immunohistochemistry 

(Sampathu et al., 2006; Mackenzie et al., 2006a). A harmonised classification 

system for FTLD with TDP-43 pathology has recently been established to 

supersede the original classification system described by Mackenzie and 

Sampathu for ubiquitin pathology (Mackenzie et al., 2011). 

 

The harmonised classification system identifies four distinct patterns of 

pathology identified by TDP-43 antibodies (figure 1.8) (Mackenzie et al., 2011).  

Type A pathology is characterised by numerous short dystrophic neurites (DNs) 

and oval cytoplasmic inclusions concentrated in neocortical layer 2.   A moderate 

number of lentiform neuronal intranuclear inclusions (NII) are also a common 

but inconsistent feature. Type B pathology is characterised by a moderate 

number of neuronal cytoplasmic inclusions (NCI) throughout all cortical layers, 

but with very few DNs.  Type C pathology is characterised by a predominance of 

elongated DNs in upper cortical layers with very few NCI.  Type D pathology 
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refers to inclusion body myopathy with Paget’s disease of the bone and FTD 

(IBMPFD) characterised by numerous short DN and frequent lentiform NII.  This 

pathological group is now referred to as FTLD-TDP (Mackenzie et al., 2011). 

 

 

Figure 1.8 FTLP-TDP harmonised subtype classification. 

FTLD-TDP pathology is heterogeneous with respect to the morphology and laminar distribution of 

pathological inclusions leading to the description of four distinct pathological subtypes classified 

as subytpes A-D in the harmonised classification system. Type A pathology; numerous short 

dystrophic neurites (DNs) and oval cytoplasmic inclusions concentrated in neocortical layer 2.   A 

moderate number of lentiform neuronal intranuclear inclusions (NII) are also a common but 

inconsistent feature, clinical phenotype commonly bvFTD and PNFA. Type B pathology; a 

moderate number of neuronal cytoplasmic inclusions (NCI) throughout all cortical layers, but with 

very few DNs clinical phenotype commonly bvFTD and MND with FTD.  Type C pathology; a 

predominance of elongated DNs in upper cortical layers with very few NCI, clinical phenotype 

commonly bvFTD and SD.  Type D pathology refers to inclusion body myopathy with Paget’s 

disease of the bone and FTD (IBMPFD) characterised by numerous short DN and frequent 

lentiform NII. Adopted from Neuman et al. 2009 (Neumann et al., 2009b) 

 

 

1.6.2.1 FTLD-TDP Clinical and Genetic Associations 

FTLD-TDP pathology has been identified in both sporadic and familial FTD cases 

with mutations in GRN, VCP, TARDBP and most recently C9orf72 repeat 

expansion (Renton et al., 2011; Dejesus-Hernandez et al., 2011; Rademakers et 

al., 2012).   

 

Several studies have looked at the relationship between FTD-TDP subtypes, FTD 

clinical syndromes- and the mutations in FTD-TDP associated genes GRN, VCP, 

TARDBP and C9orf72.  The majority of FTD-TDP cases are linked to GRN and 

C9orf72 repeat expansion. In one study of autosomal dominant families with 

clinical FTD and FTD-TDP pathology 53% were explained by C9orf72 repeat 
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expansion and 47% with GRN mutations- this study did not identify sporadic 

cases (Hsiung et al., 2012a).  

 

Although there is heterogeneous clinical presentation across FTD-TDP subtypes, 

an increasing body of evidence has shown that FTD-TDP B pathology is the result 

of C9orf72 repeat expansion (Sampathu et al., 2006; Josephs et al., 2011; 

Mackenzie et al., 2011; Rohrer et al., 2011b; Simon-Sanchez et al., 2012; Hsiung 

et al., 2012b)  accounting for the majority (80%) of FTD-MND  clinical syndrome, 

approximately 30% of bvFTD and 10% each of SD and PNFA based on pooled 

data from a large clinicopathological study by Josephs and colleagues (Sampathu 

et al., 2006; Josephs et al., 2011; Mackenzie et al., 2011; Rohrer et al., 2011b; 

Simon-Sanchez et al., 2012; Hsiung et al., 2012b). 

 

FTD-TDP A pathology is associated with GRN mutation, with bvFTD and PFNA as 

the main presenting clinical syndromes (van Swieten and Heutink, 2008; Rohrer 

and Warren, 2011; Mackenzie et al., 2011; Rohrer et al., 2011a).  FTD-TDP C 

pathology is found in patients with clinical pretentions of SD and bvFTD (Rohrer 

2011).  FTD-TDP D is the least frequent of the FTD-TDP subtypes associated 

primarily with IBMPFD with VCP mutation (Forman et al., 2006; Rohrer and 

Warren, 2011; Mackenzie et al., 2011; Rohrer et al., 2011a). 

 

1.6.3 FTLD-FUS 

 A number of FTLD cases with ubiquitin-positive inclusions (~10%) do not stain 

for either tau or TDP pathology (Roeber et al., 2008; Hatanpaa et al., 2008).  FUS 

mutations were first reported in familial ALS cases characterised by tau and TDP-

43 negative inclusions, but were found to be positive for FUS staining (Vance et 

al., 2009; Kwiatkowski et al., 2009).  Consequently, FUS was found to be the 

characteristic protein marker in FTD cases negative for tau and TDP-43 (Roeber 

et al., 2008) 
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1.6.4 FTLD-Other 

Less than 1% of cases remain that do not show immunoreactivity for any of the 

major FTD protein markers; tau, TDP-43 or FUS.  The term FTLD with inclusions of 

the ubiquitin proteasome system (FTLD-UPS) is reserved for cases of FTD with 

ubiquitin and p62 positive inclusions which are negative for tau, TDP-43 and FUS.  

FTD caused by CHMP2B mutation, first identified in the FTD-3 family, is the major 

FTLD-UPS subtype (Skibinski et al., 2005; Cairns et al., 2007b; Holm et al., 2009; 

Urwin et al., 2010b).  

 

Furthermore, a collaborative study identified two FTD cases that do not show 

immunoreactivity to tau, TDP-43, FUS or any ubiquitinated inclusions; that is 

there is no evidence of any known inclusions in these cases.  These cases are 

classified as FTLD with no inclusions (FTLD-ni), previously termed Dementia 

Lacking Distinctive Histology (DLDH) (Mackenzie et al., 2006b; Mackenzie et al., 

2010; Urwin et al., 2010b). 

 

1.6.5 FTD-3 Neuropathology  

Post-mortem and imaging studies of affected FTD-3 family members show gross 

global and central cortical atrophy consistently involving the frontal and 

temporal cortices (figure 1.9), the parietal lobe may also be affected but the 

cerebellum is spared (Brown, 1998; Gydesen et al., 2002; Holm et al., 2007).  MRI 

and CT scans of CHMP2B mutation carriers reveal global as well as focal atrophy 

in pre-symptomatic individuals progressing to increasing generalised atrophy 

with advancing of disease (Gydesen et al., 2002; Eskildsen et al., 2009; Rohrer et 

al., 2009a) 
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Figure 1.9 Case III-22 gross brain appearance.  

Demonstrating cerebral atrophy of a) frontal and temporal cortex and b) dilatation of 

ventricle.Scale bar = 5 cm. Adopted from Holm et al. 2007;(Holm et al., 2007) 

 

A study of recently deceased and archived post-mortem tissue from family 

members has provided new insights into the neuropathology of FTD-3 (Holm et 

al., 2007).  Chronic neurodegenerative changes were confirmed including 

spongiosis, gliosis and astrocyte infiltration seen predominantly in layer II of the 

frontal cortex with involvement of the entire thickness of the cortex to some 

degree (figure 1.10) (Holm et al., 2007).  Mild degeneration is present in the 

temporal cortex with the amygdala and hippocampus being spared with no 

hippocampal sclerosis (Holm et al., 2007).  Loss of myelin was seen coupled with 

white matter changes complementing cortical degeneration in the presence of 

astrocytosis but in the absence of macrophages (Holm et al., 2007).   

 

 

 

Figure 1.10 Gross neuropathology of FTD-3.  

Haematoxylin and eosin  (A) and glial fibrillary acidic protein (B) immunohistochemical staining 

of sections from frontal cortex of an FTD-3 patient.  Pronounced microvacuolisation and gliosis 

are the most characteristic features. Scale bar = 50 µm.  Adapted from Holm et al. 2007 (Holm et 

al., 2007). 



52 

 

Ubiquitin staining shows consistent pathology with characteristic ubiquitin 

immunoreactive (UB-IR) and p62 neuronal cytoplasmic inclusions (NCI) in the 

dentate granule cell layer of the hippocampus and to a lesser extent in the 

frontal cortex (Holm et al., 2007).  The UB-IR NCI’s are round, well defined and 

solid with only a few granular NCI seen occasionally.  In layer II of the frontal and 

temporal cortex only sparse granular UB-IR NCI were seen.  These UB-IR NCI’s 

were absent from the striatum and lower motor neurons, none of the control 

tissue showed UB-IR NCI or NII (Holm et al., 2007).  

 

Immunostaining for TDP-43 and FUS revealed that neither TDP-43 or FUS co-

localise to UB-IR NCI’s in FTD-3 patients (Holm et al., 2007; Holm et al., 2009).  In 

contrast p62 inclusions of the same number, morphology and distribution are 

seen to co-localise to UB-IR NCI (figure 1.11) (Holm et al., 2007).  In summary the 

distribution of UB-IR are cytoplasmic rather than nuclear or neuritic, they are 

found to be more abundant in the hippocampus and sparse in the cortical 

regions.  Based on these histological findings FTD-3 previously classified as FTLD-

U (Holm et al., 2007) has been reclassified under FTLD-other as an FTLD-UPS 

(Holm et al., 2007; Mackenzie et al., 2011). 

 

 

 

Figure 1.11 Ubiquitin and p62 positive inclusions in the dentate granule cell layer of FTD-3 

patient brain.   

Immunohistochemical staining for ubiquitin (A) and p62 (B) in the hippocampal dentate granule 

cells showing neuronal cytoplasmic inclusions (NCI).  Scale bar = 25 m. Adapted from Holm et 

al. (2007) (Holm et al., 2007). 
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More detailed analysis of FTD-3 pathology revealed the presence of enlarged 

vacuoles in neurons of the frontal, temporal and occipital cortex, but not in 

cerebellar neurons (Urwin et al., 2010a) consistent with the areas affected on 

imaging and neuropathology.  These vacuoles are positive for mannose-6-

phosphate receptor (M6PR) a marker of late endosomes, indicating enlarged 

aberrant late endosomes (Urwin et al., 2010a).  Furthermore, fibroblast cell lines 

derived from patients’ skin cells also demonstrate these distinctive aberrant 

endosomal vacuoles (Urwin et al., 2010a). 

 

FTD-3 brains do not demonstrate abnormal aβ, α-synuclein, neurofilament or 

prion protein staining (Holm et al., 2007).  Although some tau pathology has 

been observed in the frontal cortex of three FTD-3 brains, it is at insufficient 

levels for FTLD-tau diagnosis and is consistent with typical aging (Yancopoulou et 

al., 2003). 

 

1.7 Endosomal Sorting Complex Required for Transport 

 Proteins and Multivesicular Bodies 

CHMP2B is a subunit of the Endosomal Sorting Complex Required for Transport 

(ESCRT) III.  Four groups of ESCRT proteins have been identified: ESCRT 0, ESCRT 

I, ESCRT II and ESCRT III (Williams and Urbe, 2007).  They are a group of 

multiprotein subunits that act sequentially to enable the recruitment, sorting 

and delivery of endocytosed transmembrane proteins into intraluminal vesicles 

of morphologically distinctive endosomes known as multivesicular bodies (MVBs) 

(figure 1.12).  Early endosomes have tubulovesicular structures that constitute a 

major sorting platform and late endosomes have typical spherical characteristics 

and are able to fuse with lysosomes (Gruenberg and Stenmark, 2004).  Transition 

from early to late endosomes is thought to occur via the inward budding and 

scission (pinching off) of the endosome limiting membrane to form intraluminal 

vesicles (ILV) and the degradation of internalised material via fusion and 

expulsion of material into lysosomes.  ESCRT-III has been implicated in mediating 

the ILV scission event (Wollert et al., 2009).  The lipid and protein composition 
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changes from early to late endosomes to fusion with lysosomes.  The fusion of 

MVBs with lysosomes results in degradation of protein by lysosomal acidic 

hydrolases (Kobayashi et al., 2002; Gruenberg and Stenmark, 2004). 

 

ESCRT proteins have been implicated in an array of other cellular functions that 

require membrane scission including cytokinesis, viral budding and autophagy 

(Hurley, 2010).  It is beyond the scope of this study to discuss and do justice to 

each ESCRT function. This section will therefore focus on the role of CHMP2B and 

ESCRT-III in endosome-lysosome trafficking and autophagy and their relevance to 

neurodegeneration. 

 

 

 

Figure 1.12  Biogenesis and recycling of endosomes from plasma membrane to lysosome.  

ECV; endosomal carrier vesicles/MVB, multivesicular bodies Receptors and protein membranes 

are engulfed by early endosomes and consequently delivered to lysosomes for degradation via 

ECV/MVB. Adapted from Gruenberg et al (2004) (Gruenberg and Stenmark, 2004) 

 

1.7.1 Human homologues of yeast ESCRT III proteins 

ESCRT proteins were first identified in yeast reviewed by Hurley and Emr (2006 

(Hurley and Emr, 2006).  The human homologues of yeast ESCRT III proteins are 

the Charged Multivesicular body Proteins, also known as chromatin modifying 

proteins, (CHMP).  To date 12 ESCRT III CHMP proteins have been identified in 
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humans and are subdivided into six groups based on the six yeast orthologous 

subunits and CHMP7 which has no yeast orthologue (Horii et al., 2006).  CHMP1, 

CHMP2, CHMP3, CHMP4, CHMP6 and CHMP7 make up the core ESCRT III 

components, which are sufficient for membrane scission (Wollert and Hurley, 

2010), and CHMP1 and CHMP5 are thought to play regulatory and peripheral 

roles (Babst et al., 2002; Horii et al., 2006; Hurley, 2010).  The other ESCRT III 

subunits (which are not CHMP proteins) Did2, Ist1 and VPS60 assemble with the 

rest of the ESCRT III complex at a late stage (Nickerson et al., 2007; Hurley, 2010).  

CHMP1 and CHMP2 each have two isoforms, CHMP1A, CHMP1B and CHMP2A 

and CHMP2B respectively and CHMP4 has three isoforms, CHMP4A, CHMP4B 

and CHMP4C (Hurley, 2008; Hurley, 2010).  The bulk of ESCRT III proteins are 

localised as monomeric subunits in the cytosol; they form a heteromeric ESCRT 

III complex when they are recruited to the endosomal membrane (Babst et al., 

2002) 

 

CHMP proteins are predicted to have similar protein structures composed of a 

highly polarised 5-helix core (Muziol et al., 2006).  The first two N-terminal 

helices have a basic charge binding strongly to acidic membranes (Hurley, 2010). 

Helices 3-5 at the C-terminal region are acidic and have consistently been shown 

to autoinhibit assembly of the ESCRT III complex, by binding to the basic N-

terminus, thus maintaining the complexes in a soluble monomeric state in the 

cytosol (Zamborlini et al., 2006; Shim et al., 2007; Lata et al., 2008).  C-terminal 

truncation of subunits promotes complex assembly (Zamborlini et al., 2006; Shim 

et al., 2007).   

 

Structural data has shown that ESCRT-III subunits contain a C-terminal MIT-

interacting motif (MIM) which recruits MIT domain containing proteins such as 

the VPS4 AAA ATPase (Obita et al., 2007; Stuchell-Brereton et al., 2007).  Release 

of ESCRT complexes from the membrane requires the ATPase activity of the VPS4 

proteins and is the main thermodynamic driving force of the ESCRT cycle.  VPS4 

ATPase activity allows the ESCRT machinery to recycle through multiple rounds 

of vesicle formation and may also provide the energy necessary for protein 
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sorting and/or vesicle formation (Williams and Urbe, 2007).  The disassembly of 

the membrane-bound ESCRT III complex is required to complete the ESCRT cycle 

and replenish the cytosolic pool of ESCRT III subunits (Hurley, 2010).  ESCRT 

dysfunction is implicated in a number of human diseases including cancer, viral 

infection, in particular HIV infection, and neurodegeneration (Saksena et al., 

2009).  The focus of this study is the role of CHMPB in FTLD. 

 

1.7.2 Mutant CHMP2B Causes dendritic spine and late endosome pathology 

CHMP2B is a 213 amino acid protein containing a MIM domain at its C-terminal 

region (Skibinski et al., 2005; Hurley, 2010). 

 

Studies of CHMP2B by in situ hybridisation in mouse brain show that it is 

expressed in all layers of the adult cerebral cortex, hippocampus and cerebellum 

(Skibinski et al., 2005).  Belly and colleagues (2010) report that depletion of 

endogenous CHMP2B with shRNA led to a highly significant reduction in spine 

diameter per neuron (Belly et al., 2010).  Spine classification reveals a 50% drop 

in the average proportion of spines with mushroom morphology.  These 

observations were not associated with neuronal death but demonstrate that 

endogenous CHMP2B is necessary for healthy neuronal morphology (Belly et al., 

2010). 

 

Expressing mutant CHMP2BInt5 in mature cortical neurons results in dramatic 

retraction of dendritic trees and 50% cell loss (Lee et al., 2007; Belly et al., 2010).  

 

Confirmed familial pathogenic CHMP2B mutations identified to date (the Danish 

FTD-3 mutation and the Belgian Q165X mutation) result in C-terminal truncation 

of the wild type protein (figure 1.6).  Over-expression of Danish mutant CHMP2B 

proteins, CHMP2BInt5 and CHMP2B10 in various cell lines (PC12, COS-7, HEK-7, 

SK-N-SH, cortical neurons) produces enlarged endosomal structures (e.g. figure 

1.13) that are positive for late endosome markers, while over-expression of 

CHMP2Bwt in transfected cells show diffusely stained endosomes (Skibinski et al., 
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2005; Filimonenko et al., 2007; Lee et al., 2007; Cox et al., 2010; Belly et al., 

2010; Urwin et al., 2010a; Lee et al., 2011).  Expression of the CHMP2B Belgian 

mutation CHMP2BQ165X (C-terminal truncation mutation) in a neuroblastoma cell 

line also results in large vesicular structures positive for late endosome markers 

CD63 (van der Zee J. et al., 2008).   

 

 

 

     

Figure 1.13 CHMP2B C-terminal truncations lead to enlarged endosomes.   

PC12 cells transfected with a) CHMP2B
wt

, b) CHMP2B
Int5

, c) CHMP2B
10

 demonstrating aberrant 

endosomes adapted from Skibinksi et al (2005) (Skibinski et al., 2005) 

 

Fibroblast cell lines derived from skin biopsies of Danish FTD-3 and Belgian 

mutation patients reveal enlarged late endosomal vesicles (Urwin et al., 2010a).  

With electron microscopy these structures were seen to be enlarged vacuoles 

with aberrant membrane deformation at the periphery or intraluminal vesicles 

(ILVs) which did not fill the lumen suggesting these enlarged structures may be 

dysmorphic MVBs (figure 1.14) (Urwin et al., 2010a). 
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Figure 1.14 Enlarged aberrant endosomes in FTD-3 patient fibroblasts.  

Mutant CHMP2B causes aberrant enlarged endosomes.  FTD-3 and Control fibroblast EM; (a) 

Ultrastructural of unaffected patient fibroblasts (b and c) aberrantly formed multivesicular bodies 

(MVBs) identified in fibroblast cell lines from two FTD-3 patients and (d) in Q165X patient.  

FTD-3 patient MVBs are typically enlarged and showed unusual peripheral membrane 

deformation or sparsity of ILVs.. Aberrant structures are positive for CD63, which also surround 

normal MVBs and heavily surround lysosomes in (e) patient and control cell lines. (f) Normal 

MVB from a control cell line; normal lysosome from a control cell line; (g) abnormal 

compartments from an FTD-3 cell line. Anti-CD63, 10 nm gold.  Scale bars =25 nm. Adopted 

from Urwin et al 2010; (Urwin et al., 2010a)  

 

 

1.7.3 Mutant CHMP2B impairs the endosome-lysosome pathway 

There is considerable evidence that mutant CHMP2B impairs delivery of cargoes 

from endosomes to lysosomes.  CHMP2BInt5 alters intracellular sorting and 

degradation of endosomal cargo proteins such as glutamate receptor subunit 

NR1 and epidermal growth factor receptor (EGFR) (Lee et al., 2007).  To address 

the question of whether CHMP2B mutations impair endosome-lysosome fusion 

or the earlier step of delivery of cargoes to ILVs, cells were treated with 

fluorescently labelled epidermal growth factor (EGF-488), as EGF has been 

shown to be delivered from endosomes to lysosomes in an ESCRT-dependent 

manner (Katzmann et al., 2002).  Successful endosome-lysosome fusion was 

identified by co-localisation of the lysosomal marker LAMP-1 with EGF-488.  This 

assay showed CHMP2BInt5 impaired endosome-lysosome fusion when expressed 

in human neuroblastoma cells, and the defect was confirmed in patient 

fibroblasts (Urwin et al., 2010a).   
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Impaired endosome-lysosome fusion may be the result of CHMP2BInt5 leading to 

impaired recruitment of other endosomal proteins.  The recruitment of Rab7 is 

required for the successful fusion of endosomes to lysosomes.  Both CHMP2B 

mutants CHMP2BInt5 and CHMP2B10, show at least a third reduction in 

recruitment of Rab7 onto endosomes compared with CHMP2Bwt suggesting this 

could be a potential mechanism explaining impairment of endosome-lysosome 

fusion (Urwin et al., 2010a).   

 

 

1.7.4 Mutant CHMP2B impairs autophagy 

Autophagy, literally meaning self-digestion, is an evolutionarily conserved highly 

regulated process responsible for the degradation of long lived proteins, 

organelles, misfolded proteins and aggregates that converges onto the MVB-

lysosome pathway (Mizushima et al., 2008; Lee et al., 2009; Metcalf and Isaacs, 

2010; Lee et al., 2011).  LC3 is a widely used marker of autophagy, LC3-I is a 18kD 

cytosolic protein which, on autophagy induction, can be converted to LC3-II a 

16kD lipidated protein that binds to autophagosomes.  Therefore an increase in 

LC3-II staining indicates an increase in autophagosome formation and an 

increased LC3-I/LC3-II ratio is a good method of measuring cellular autophagy.  

The p62 protein is also a marker of autophagy and binds both LC3 and 

ubiquitinated aggregates enabling them to be degraded by autophagy (figure 

1.15) (Filimonenko et al., 2007).  Ubiquitin positive inclusions also positive for the 

autophagy marker p62 have been identified in FTD-3 patient tissue, suggesting 

that autophagy may be a likely neurodegenerative mechanism (Filimonenko et 

al., 2007; Lee et al., 2007; van der Zee J. et al., 2008; Lee et al., 2009; Metcalf and 

Isaacs, 2010; Urwin et al., 2010a). 

 

An accumulation of GFP-LC3 positive autophagosomes are seen in cortical 

neurons expressing CHMP2BInt5 (Lee et al., 2007).  Furthermore, HEK293 cells 

transfected with CHMP2BInt5 show accumulation of autophagosomes under EM 

and increased levels of LC3-II that could be prevented by application of an 
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autophagy inhibitor (Lee et al., 2007).  Furthermore, expressing a dominant 

negative form of the VPS4 AAA ATPase involved in ESCRT III disassembly 

produces similar results with the accumulation of autophagosomes and LC3-II 

increase (Lee et al., 2007). These data suggest that mutant CHMP2BInt5 causes 

failure of ESCRT III to dissociate from endosomal membranes and the 

accumulation of enlarged aberrant autophagosomes likely due to their failure to 

fuse with lysosomes (Lee et al., 2007). 

 

              

Figure 1.15 Diagrammatic representation of the autophagy pathway.   

Autophagy degradation pathway in control and ESCRT-depleted cells. In control cells, 

internalised cytoplasmic cargo are sequestered by an isolation membrane (phagophore), forming 

double-membrane autophagosomes that can fuse with MVBs, forming amphisomes. Amphisomes, 

containing both endocytic and autophagic cargo, then fuse with lysosomes, forming 

autolysosomes, where the content is degraded. Autophagosomes may also fuse directly with 

lysosomes. The ESCRT complexes are required for correct sorting and degradation of 

ubiquitinated integral membrane proteins (e.g., EGFR) and for proper MVB morphology, and 

depletion of ESCRT subunits results in the formation of aberrant MVBs (red box A). Degradation 

of autophagic cargo is also inhibited in ESCRT- depleted cells, thought to be due to inhibited 

formation of autolysosomes (red box B), although autophagosomes and amphisomes are still 

formed.  In addition, large p62 and ubiquitin-positive membrane-free aggregates accumulate in 

ESCRTdepleted cells (red box C), indicating that continuous autophagic clearance of cytoplasmic 

proteins is important to avoid accumulation of ubiquitin-positive aggregates that may cause 

neurodegeneration. Figure adapted from Filimonenko et al (2007) (Filimonenko et al., 2007) 
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Consistent with these findings depletion of ESCRT I (Tsg101) and ESCRT III (vps24) 

subunits or expression of CHMP2BInt5 in HeLa cells results in the accumulation of 

large ubiquitin, p62 and LC3 positive structures, indicating impaired autophagy 

(Filimonenko et al., 2007).  Taken together, these data provide evidence that 

CHMP2BInt5 inhibits autophagic fusion and degradation leading to a build-up of 

autophagosomes as identified by increase of LC3 and accumulation of ubiquitin 

and p62 (Filimonenko et al., 2007; Lee et al., 2009) 

 

 

1.8 Mouse Models of FTD 

Since the identification of mutations in MAPT, GRN and TDP-43 responsible for a 

proportion of FTD-ALS spectrum of disease, numerous mouse models have been 

generated expressing disease mutations in the hope of shedding light on the 

pathogenesis and mechanism of disease as well as creating potential models for 

the development of therapeutic drugs (Lewis et al., 2000; Ramsden et al., 2005; 

SantaCruz et al., 2005; Deters et al., 2008; Gotz and Ittner, 2008; Wegorzewska 

et al., 2009; Yin et al., 2010a).  With the identification of additional new 

mutations in novel genes such as the C9orf72 expansion, more mouse models 

will undoubtedly continue to be generated.  It is important to appreciate that no 

single mouse model recapitulates exactly the pathology and phenotype 

identified in human disease associated with a particular mutation; reviewed by 

Gotz and Ittner (2008) (Gotz and Ittner, 2008)  

 

The CHMP2B protein in which mutations were originally identified in the Danish 

FTD-3 family appears to have different functions to other FTD disease proteins 

discussed in this chapter.  CHMP2B belongs to the ESCRT group of proteins that 

are highly conserved across evolution in both function and structure (Hurley, 

2010).  With this in mind the literature review in this chapter will focus on mouse 

models of ESCRT subunits. 
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1.8.1 ESCRT subunit mouse models 

In vitro cell culture models have been useful in helping to unravel the potential 

functions and dysfunction of CHMP proteins in the endosome-lysosome and 

autophagy pathways.  Knockout mouse models of ESCRT subunits and autophagy 

genes largely support in vitro data (Hara et al., 2006; Komatsu et al., 2006; Shim 

et al., 2006; Lee et al., 2007).  However, knocking out ESCRT III subunits does not 

produce viable mice (Shim et al., 2006; Lee et al., 2007). 

 

To date few research articles have been published showing the effect of ESCRT III 

proteins in vivo.  In 2006 Shim et al. published the first knockout mouse model of 

an ESCRT protein.  They generated a null mutation in CHMP5 (composed of eight 

small exons) by replacing exons 3-7 with a loxP-flanked neomycin resistant 

cassette using homologous recombination.  They found that the resulting 

homozygous mice were embryonic lethal (E10).  Compared to the wild type 

embryos and after E7.5 the CHMP5 null embryos demonstrated severe 

developmental abnormalities including abnormal neural tube formation (Shim et 

al., 2006).  There were also severe abnormalities seen in the head fold and heart 

amongst other defects.  Cultured primary embryonic cells showed the 

accumulation of late endosomal MVB compartments, thought to be due to 

failure in delivering internalised contents to lysosomes (Shim et al., 2006).  A 

knockout mouse model of CHMP4B created by the random insertion of a -geo 

cassette into the last intron of CHMP4B is  embryonic lethal at E7.5-E8.5 

although no further investigations were pursued on the embryonic tissues, 

cortical cell cultures did show failure of dendritic branching (Lee et al., 2007).   

 

Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is part of the 

ESCRT 0 complex that recruits ubiquitinated receptors and proteins to 

endosomes and is essential for recruiting ESCRT I complex.  Hrs is ubiquitously 

expressed in mouse brain with higher expression found in the hippocampus, 

cerebral cortex and hypothalamus.  A greater degree of Hrs expression is 

observed in the hippocampal CA3 pyramidal neurons compared to the CA1 

neurons (Tamai et al., 2008). 
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Tamai and colleagues (2008) used Cre-lox recombination to specifically delete 

Hrs in mouse neurons, leading to a 60% reduction of neuronal Hrs expression 

(Tamai et al., 2008).  In contrast to the ESCRT III knock-out mice; these mice are 

viable at birth and no differences are noted from their wild type litter mates.  At 

5 weeks progressive accumulation of ubiquitinated proteins including aggregated 

AMPAR and NMDAR receptors as well as the autophagy associated protein p62 is 

seen, this is followed by progressive neuronal cell loss specifically in the 

pyramidal CA3 neurons of the hippocampus.  Even though ubiquitinated 

aggregated proteins are seen in all brain regions viewed (substantia nigra, 

striatum, cerebellum and hypothalamus) cell loss is localised to CA3 pyramidal 

neurons while the CA1 hippocampal region is not affected (Tamai et al., 2008).  

The CA3 pryamidal cells are found to be positive for GFAP suggesting neuronal 

damage and several TUNEL positive cells are seen in the same region 

demonstrating apoptotic cell death (Tamai et al., 2008) 

 

Hrs depleted mice also show growth retardation from 3 weeks, and distinct 

learning and locomotor impairments characteristic of a neurodegenerative 

phenotype (Tamai et al., 2008).  In the open field test, they have significantly less 

vertical rearing activity compared to their wild type littermates, although this is 

not due to muscle weakness as no difference is found in the wire hanging test or 

footprint analysis of gait.  In the forced swimming test, Hrs depleted mice also 

demonstrate significantly longer immobility duration (Tamai et al., 2008). 

 

Tamai and colleagues (2008) suggest that depletion of Hrs impairs the endosome 

dependent degradative (autophagy) pathway as the mice develop progressive 

ubiquitinated protein aggregates with age, these include the p62 protein, and 

that the lack of LC3 staining may suggest that Hrs plays a crucial role in 

autophagosome maturation (Tamai et al., 2008).  Certainly in these mice Hrs 

depletion has a significant and specific detrimental effect on CA3 pyramidal 

neurons.  This may be because this particular neuronal population which 

normally has higher Hrs expression is particularly sensitive to Hrs depletion 
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perhaps because cargos critical for their survival are dependent on Hrs sorting 

and degradation (Tamai et al., 2007; Tamai et al., 2008).   

 

It is also possible that when Hrs, which is the first step in the recruitment of 

ubiquitinated receptors and proteins to the ESCRT machinery is not available, a 

‘back log’ of ubiquitin and ubiquitinated proteins builds up leading to a more 

global neurodegenerative mechanism.  This notion is supported by data showing 

that in mice loss of autophagy genes atg7 and atg5 specifically in the CNS results 

in massive neuronal loss and accumulation of ubiquitinated protein aggregates in 

the cerebellar cortex and cerebellum (Hara et al., 2006; Komatsu et al., 2006).  

Furthermore, these mice too have significant locomotor deficiency and 

significantly reduced life span (Hara et al., 2006; Komatsu et al., 2006). 

 

1.8.2 CHMP2B mouse models 

Advances in genomic technologies have enabled a vast number of mouse models 

of many human diseases to be generated.  This of course includes murine models 

that aim to replicate human neurodegenerative diseases of genetic aetiology.  All 

the FTD-3 transgenic and knockout mouse lines described in this thesis were 

generated at the MRC Prion Unit facilities by the transgenic team as detailed in 

chapter 3 (Chmp2b knockout mice) and chapter 5 (CHMP2B transgenic mice). 

 

1.9 Project Aims 

The aims of this study have been to generate mouse models of FTD-3 which (1) 

have been depleted of endogenous mouse Chmp2b and (2) express mutant 

human CHMP2BInt5, CHMP2B10 and wild type human CHMP2B isoforms.  A 

further aim of this study has been to characterise these mouse models to gain a 

better understanding of the normal function of Chmp2b and to assess whether 

FTD-3 mutations are likely to cause disease by a loss of function or toxic gain of 

function mechanism. 
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2 MATERIALS AND METHODS 

2.1 Equipment and Reagents 

2.1.1 Equipment 

7500 Real-Time PCR system (Applied Biosciences) 

AnalySIS imaging software (Olympus). 

Bench top centrifuge 5415R (Eppendorf) 

Click boxes (Sanger Institute) 

ColorView II digital camera (Soft Imaging System)  

Compact X4 Xograph (Kodak) 

Cryostat (Bright OTF 5000) 

Electrophoresis tank (Invitrogen) 

Eppendorf benchtop centrifuge 

Gel Doc EQ UV-transilluminator (Bio-Rad) 

Gilson Pipetman P1000, P200, P100, P50, P20, P5 (VWR) 

Grip Strength Meter (Harvard Apparatus, 76007-BSRSIC) 

Heating block (Eppendorf, thermomixer) 

Hot plate (Fisher Scientific; Bibby HB502) 

Kodak Biomax MMR film (VWR 103741) 

Modified-SHIRPA equipment (made to order) 

NanoDrop ND1000 Spectrophotometer & software (Labtech)  

Nestlets 5x5 cm (Lillico Biotechnology) 

Nexus staining apparatus (Ventana Medical Systems) 

Plastic water downpipe (L 320mm x D 100mm; B&Q) 

Power pack (Invitrogen) 

Rotarod (Panlab, 760237) 

Sony DCR-DVD 106 E digital camera 

Tetrad 2 Peltier thermal cycler (BioRad) 

Water bath (Grant) 

Zeiss Axioplan microscope 
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2.1.2 Plastic and glassware 

96 Well PCR Optical plates for PCR (Abgene; AB-0600) 

Conical tubes 15ml (VWR 734-0451)  

Conical tubes 50ml (VWR 734-0453) 

Duran bottles (VWR, various sizes) 

Eppendorf microtubes 0.5ml (VWR; 211-2140) 

Eppendorf microtubes 1.5ml (VWR; 211-2130) 

PCR microtubes for PCR (BioRad; TBC-0802) 

RNAse free conical tubes 15ml (Ambion; AM2500) 

RNAse free conical tubes 15ml (Ambion; AM2502) 

RNAse free microfuge tubes 50ml (Promega; AM12300) 

RNAse free microfuge tubes 50ml (Promega; AM12300) 

TaqMan Real-Time PCR Plates (ABI; 4346906) 

 

 

2.1.3 Commercial kits 

Commercial kit Company Catalogue number 

Human CHMP2B probe 
(5’FAM-3’TAM) (20 µM) 

ABI Made to order 

Omniscript cDNA synthesis 
kit  

Qiagen 205111 

Quantitect RT PCR kit 
Including QuantiTect Probe 
PCR Master Mix, 100 ul 
UNG solution and RNase-
Free Water  

Qiagen 204343 

RNeasy mini kit  Qiagen 74104 

Rodent GAPDH RT-Kit 
including forward and 
reverse primers (20µM) and 
probe (VIC) (20µM) 

ABI 4308313 

Table 2.1 List of commercial kits  
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2.1.4 Antibodies 

Primary Antibody Species raised 
in 

Dilution Antigen 
retrieval 
method 

Antibody 
incubation 

Company Catalogue 
number  

Calbindin Anti-rabbit 1:100 MCC1 42 C 48 min Millipore AB1778 

CHMP2B- 3371 Anti-rabbit 1:400 MCC1 RT 1h Biogenes Custom 
antibody 

CHMP2BWT C-Terminal Anti-rabbit 1:1000 MW+CB 37C 1h  Abcam Ab33174 

EEA-1 Anti-rabbit 1:2000 MW+CB 37 C 1h Abcam Ab2900 

GFAP Anti-rabbit 1:1000 PRT1 37C 1h DAKO  Z0334 

IBA-1  Anti-rabbit 1:500 MCC1 RT 4h Wako 016-20001 

LAMP-1 Anti-rabbit 1:100 MW+CB 37 C 1h Abcam Ab24170 

LC-3 Anti-rabbit 1:100 MCC1 RT 4h Novus Biological NB100-2220 

M6PR Anti-rabbit 1:100 MW+EDTA 37 C 1h Cambridge 
Bioscience 

MA-066 

p62 Anti-guinea pig 1:400 MW+CB RT 6h Progen GP62-C 

Synaptophysin Anti-rabbit 1:200 MW+EDTA 37 C 44min Invitrogen 080130 

TDP-43 Anti-rabbit 1:2000 MW+CB 12h Novus Biological 10782-2-AP 

Ubiquitin Anti-mouse 1:5000 MCC2 RT 4h Santa Cruz SC8017 

Ubiquitin Anti-rabbit 1:1000 MW+CB 37C 1h Dako Z0458 

Table 2.2 Primary antibodies used in immunohistochemistry protocols 
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Primary Antibody Dilution Company Catalogue number  

N-Terminal CHMP2BWT 0762-B1 1:8000 21 Century Biochemicals Custom antibody 

N-terminal CHMP2B-3335  1:2000 Biogenes Custom antibody 

LC-3 1:1000 Novus Biological NB100-2220 

Actin 1:10000 Sigma-Aldrich A3853-200UL 

Table 2.3 primary antibodies used in western blot protocols 
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Secondary Antibody IHC 
Dilution 

Western blot 
Dilution 

Company Catalogue number 

Biotinylated anti-guinea pig  1:250 NA Dako P014102-2 

Biotinylated anti-mouse  1:1000 NA Dako E043301-2 

Biotinylated anti-rabbit  1:500 NA Dako E035301-2 

Universal secondary antibody Automated 
dosing 

Not applicable Ventana 760-4205 

Anti-rabbit HRP NA 1:2500 Jackson Immunoresearch 111035144 

Anti-mouse HRP NA 1:1000 Dako P0260 

     Table 2.4 Secondary antibodies used in immunohistochemistry and western blot protocols 
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Ancillary products Dilution Company Catalogue number 

Antibody diluent 
 

N/A Ventana 251-018 

Endogenous biotin blocking kit 
 

Neat Ventana 760-050 

MCC1 
(proprietary cell conditioning 
reagent) 

Automated 
dosing 

Ventana 950-124 

Protease 3 
(proprietary reagent) 
 

Automated 
dosing 

Ventana 760-2020 

Universal DAB detection kit Automated 

dosing 

Ventana 760-500 

  Table 2.5 Ancillary reagents used in western blotting and immunohistochemistry 

 



71 

2.1.5 Reagents 

Reagent Company Catalogue number 

10mM ATP, 10mM GTP, 10mM TTP, 
10mM CTP 

Sigma D7295 

10x PCR buffer  Sigma P2192 

1kb Plus DNA ladder  Invitrogen 10787-018 

1mol Acetic Acid Sigma 34256-1L-R 

25% EM grade gluteraldehyde Agar Scientific R1010 

Agarose DNA pure grade  Sigma 443666A 

Araldite CY212 resin Agar Scientific R1040 

Cresyl Violet Acetate Sigma C5042-10G 

DEPC treated water 1L Ambion 102884 

DePex Sigma 361254D 

Dimethyl Sulphoxide (DMSO)  Sigma D9170 

DirectPCR Ear  Viagen 402-E 

Distilled water  Sigma W1754 

Ethanol  VWR 20821.321 

Ethidium bromide 1% in dH2O  Sigma 46067 

Ficoll Sgima F4375-25G 

Isopropanol  VWR 437423R 

Laemmli sample buffer  Sigma S3401 

MegaMix Gold  Microzone 2MMG-5 

Nupage 20x Transfer buffer Invitrogen NP00061 

Nupage 4x LDS Sample buffer Invitrogen NP0007 

Osmium tetraoxide Agar Scientific R1090 

Phosphate buffer  VWR E504-500ML 

Proteinase K 500g/ml   Sigma P2308 

Protein Precipitation solution Promega A7953 

QIAzol  Qiagen 79306 

Table 2.6 Commercially purchased reagents 
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Reagent Company Catalogue number 

Random Hexamers Promega C118 

RNA later solution  Qiagen 76106 

RNAse zap Ambion AM9780 

RNAse zap wipes Ambion AM9786 

RNAsin Plus (2500U) Promega N2611 

Β-mercaptoethanol 
concentration (14.3M) 

Sigma M7522-100ML 

SeaBlue Plus2 Pre-stained 
protein standard 

Invitrogen LC5929_46528852 

Shandon Cryomatrix Thermo-Shandon Ltd SKU6769006 

SuperSignal West Pico 
Chemiluminescent 

Fisher Scientific 34080 

Tris-Glycine Protein gradient 
gels 4-20%  

Invitrogen EC60252BOX-
46528852 

Table 2.6 continued commercially purchased reagents  
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2.1.6 Prepared solutions 

1% Acidified Cresyl violet solution  

Cresyl violet    1 g 

Distilled water   100 ml  

Add 10 drops (or 0.3 ml) of acetic acid and filter 

 

 

10mM Tris-EDTA pH 8.0  

1M Tris-HCl (VWR)   500l 

0.1M EDTA (Sigma)   2.5l 

dH2O      make to 500ml 

Concentrated HCl to buffer to pH8.0 

 

 

Digestion Buffer  

1M Tris-HCl (VWR)   50ml 

0.5M EDTA (Sigma)   200ml 

5M NaCl    20ml 

dH2O      make to 1L 

Concentrated HCl to buffer to pH8.0 

Autoclave 

 

 

0.5M TAE buffer (50x concentrate) 

Tris-HCl    242g 

Glacial Acetic Acid   57.1ml 

0.5M EDTA    100ml 

Deionised H2O    make to 1L 
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0.1M Citrate Buffer pH6 

0.1M Solution A: 21.14g citric acid monohydrate 

0.1M Solution B: 29.41g trisodium citrate dehydrate 

For 1L of pH6 citrate buffer add 11.5ml of 0.1M solution A to 

88.5ml of solution B. Make up to 1L using deionised water 

 

10x Tris-EDTA pH7.8 

EDTA     5g 

Tris-Base    2.5g 

Tri-sodium citrate   3.2g 

Deionised H2O    make to 1L 

 

1.5% Agarose Gel 

Agarose DNA pure grade  7.5g 

TAE     500ml 

Ethidium bromide [1% in dH2O]  10l  

 

Orange G (azo dye) 

1M Tris HCl pH 7.8   500µl 

0.5M EDTA    100µl 

Ficoll    10g  

Sterile distilled H2O   25ml 

Mix then add: 

Orange G (added last)  50mg 

Sterile distilled H2O made up to 100ml 

Solution is heated and gently stirred on a heating block until dissolved and 

topped up to 50ml with sterile H2O. 
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2.2 Mouse Strains 

2.2.1 CHMP2B transgenic mouse colony 

The generation of CHMP2B transgenic mice up to and including the surgical 

implantation of two-cell eggs into the oviducts of pseudopregnant mice was 

performed by the MRC Prion unit transgenic team under the direction of EA.  

CHMP2B transgenic mouse colonies were generated on a CBAxC57BL/6J mixed 

genetic background as described in section 5.1.  

2.2.2 Chmp2b knockout mouse colony 

Chmp2b knockout mice were generated from commercially purchased frozen 

embryos harbouring the pGT0lxf gene trap within intron 2 of mouse Chmp2b 

gene Frozen embryos.  Resusitation and surgical implantation of embryos was 

performed by the MRC Prion unit transgenic team under the direction of EA 

Chmp2b knockout colony was generated on a 129P2/OlaHsd xC57BL/6J mixed 

genetic background as described in section 3.2.  The official nomenclature for 

these gene trap mice is Chmp2bGt(XL952)Byg.  However, for simplicity and ease of 

reference, the terminology knockout (Chmp2b-/-) is used throughout this thesis, 

while recognising that complete knockout of the Chmp2b gene was not achieved 

by this approach, as described in Chapter 3. 

 

2.3 Animal Husbandry and Ethical Approval 

Ethical approval was granted by Local Ethical Committee and all personnel 

involved in animal experimentation obtained appropriate training and Home 

Office licences.  Mice were housed in Sealsafe®1284 IVC cages [overall 

Dimensions L 365x W 207x H 140 mm; floor area: 530 cm2]  (Tecniplast; 1284L) 

containing high quality, dust free Aspen wood wool bedding (Lillico; Aspen) and 1 

inner cardboard from toilet roll for environmental enrichment at the MRC Prion 

Unit’s Biological Services Facility with a 12 hour light-dark cycle.  Mice were fed a 

diet of RM1 [wheat, barley, wheat feed, de-hulled extracted toasted soya, soya 

protein concentrate, macro minerals, soya oil, whey powder, amino acids, 
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vitamins, micro minerals] 9.5mm pellets for stock mice and RM3 [wheat, 

wheatfeed, de-hulled extracted toasted soya, barley, macro minerals, yeast, 

dextrose monohydrate, potato protein, hydrolised wheat gluten, full fat soya, 

soya oil, maize gluten meal, amino acids, vitamins, micro minerals] 9.5 mm 

pellets for breeding animals (Special Diet Services; RM1-P catalogue number 

801010 and RM3-P catalogue number  801030 respectively). 

 

2.4 Molecular Methods 

2.4.1 Primer design 

Sequences for designing primers for screening Chmp2b knockout, CHMP2B 

transgenic and wild type mice were obtained from NCBI 

(http://www.ncbi.nlm.nih.gov/) and BayGenomics (BayGenomics, 2012) 

websites.  Primers for quantitative PCR and genotyping were designed using the 

program Primer 3 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3).  Primer 

sequences are listed in table 2.1.  

2.4.1.1 Primer sequences 

Primer Application Sequence 

SalF CHMP2B transgenic 
PCR 

5’ATTGTCGACACCATGGCGTCCCTCTTCAAG

AAG-3 

F19105 CHMP2B transgenic 
PCR & RT-PCR 

5’-CACCTCTAAAAGAGCTACGGTGG-3’ 

XhoR1 CHMP2B transgenic RT-
PCR 

5’ATCTCGAGCTAATCTACTCCTAAAGCCTTGA

G-3’ 

Int2_F Chmp2b knockout PCR 5’CCATTGCCACTTGGATGTAA-3’ 

Int2_485R Chmp2b knockout PCR 5’GACGCACTTTAAGGTCACAGC-3’ 

KO_386R Chmp2b knockout PCR 5’CCATTGCCACTTGGATGTAA-3’ 

HCHMP2B_F  TaqMan PCR 5’-AAAGCTCCATCAGCTGCTC-3’ 

HCHMP2B_R TaqMan PCR 5’-TCCTAAAGCCTTGAGTTGC-3’ 

GAPDH TaqMan PCR Commercially purchased 
(ABI; 4308313) 

Table 2.7 Table of primer sequences.  

List of primer sequences used in PCR and TaqMan RT-PCR amplification 

 

http://www.ncbi.nlm.nih.gov/
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3
https://www.invitrogen.com/search/global/miniPDPAction.action;hubblesessionid=05D798F68871F8B9A3591C314D4B862B?query=4308313
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2.4.2 Tissue digestion and DNA extraction  

Tailor biopsies ear punches were taken from mice at weaning and were retained 

for DNA extraction.  Tail biopsies (0.5 cm) were taken from weaned pups by 

applying local anaesthetic (EMLA) to the tip of the tail before being biopsied 

using mouse tail guillotine.  Both ear and tail samples were stored at -20C until 

required. 

 

Samples were digested using 20l proteinase K enzyme (500g/ml) and 480ml 

digestion buffer and incubated in a water bath at 55C overnight (~16h).  The 

next day the samples were removed from the water bath and briefly vortexed; 

160l of protein precipitation buffer was added to the digested samples.  The 

samples were vortexed again for 10 minutes and incubated on ice for 6 minutes, 

followed by centrifugation at 13000 rpm for 5 min at room temperature.  DNA 

extraction using isopropanol was applied to both tail and ear tissue digests as 

follows: 

 

The supernatant from the digested samples was transferred to new labelled 

tubes and 500l of isopropanol was added.  The protein pellets were discarded.  

The samples were shaken for 20 seconds and spun again for 5 minutes at 13000 

rpm at room temperature.  The supernatant was discarded and the tubes with 

DNA pellets placed upside down on absorbent blue sheet to drain excess ethanol 

(~2 minutes).   

 

The DNA pellets were washed with 200l of 70% ethanol and spun for 5 min at 

13000 rpm at room temperature.  A 200µl Gilson pipette tip was used to aspirate 

the residual 70% ethanol, with a fresh yellow tip being used per sample to avoid 

cross-contamination.  DNA pellets were allowed to air dry for ~20 minutes.  The 

DNA pellets were re-suspended in 10mM Tris-EDTA pH8.0.  DNA samples were 

used for genotyping and real-time PCR analysis. Samples were stored at 4C in 

the short term or archived at minus 80C for long term storage.  In some cases 

the crude ear digest was used directly in PCR. 
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2.4.3 RNA extraction and reverse transcription-PCR  

RNA Extraction: 

Commercially available RNeasy mini kits (Qiagen) were used to extract total RNA 

from RNA Later  (Qiagen) stabilised or snap frozen tissue.  The only deviation 

from the kit instructions was to use Qiazol (Qiagen) extraction buffer according 

to manufacturer’s instructions in place of RNeasy mini kit RDD extraction buffer.  

The RNA concentration was measured using NanoDrop ND1000 

Spectrophotometer (Labtech).  

 

Reverse transcription-PCR:  

The master mix for cDNA synthesis was prepared as follows: 2l each of 5mM 

dNTP mix, 10x buffer from Omniscript cDNA synthesis kit (Qiagen) and random 

hexamers (Promega) plus 0.25l RNasin (Promega) RNAse inhibitor, 1l 

Omniscript enzyme and 2.75l RNAse-free water both from Omniscript cDNA 

synthesis kit (Qiagen).  For first strand cDNA synthesis RNA extracted using 

RNeasy mini kit was diluted to 0.1g/l using RNAse-free water.  For each 

reaction 10l of cDNA synthesis master mix and 10ul of RNA (0.1g/l) were 

incubated for 10 minutes at room temperature (21C), followed by 1 hour 

incubation at 37C for cDNA synthesis to occur and finally 10 minutes at 70C to 

inactivate enzymes.   

 

The single stranded cDNA (5ul) was used as template for PCR using 0.5 l of 

10M each of CHMP2B specific primers, F19105 forward primer and XhoR1 

reverse primer (table 2.7), 15l of PCR master mix and 4l of PCR water in a total 

reaction volume of 25ul.  The same thermal cycling programme and DNA gel 

electrophoresis methods were applied as described for CHMP2B transgenic PCR 

(table 2.9). 

 

2.4.4 DNA amplification by PCR  

DNA sequences of interest were amplified using crude ear digest or genomic 

DNA extracted from tail biopsies or ear punches in PCR to genotype either the 
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Chmp2b knockout line or CHMP2B transgenic lines.  All PCRs were carried out in 

either 96 well plates or PCR microtubes. 

 

2.4.4.1 Chmp2b knockout multiplex-PCR  

The Chmp2b knockout multiplex PCR master mix was prepared as follows: 6.25l 

of MegaMix gold (Microzone), 1l of forward primer (5M Int2_F), 0.5l of 

reverse primer designed against Chmp2b knockout genetrap sequence (5M 

KO_386R), 0.5l of reverse primer targeting Chmp2b intron 2 sequence (5M 

Int2_485R) and 4.25l sterile water (Sigma) were mixed in an Eppendorf tube on 

ice for each sample.  0.5l of genomic DNA (0.5-100ng/l) extracted with 

isopropanol or crude ear lysis was added.   

 

Thermal cycling conditions on Tetrad 2 Peltier thermal cyclers (BioRad) used for 

the amplification of Chmp2b knockout and wild type sequences were as detailed 

in table below (table 2.8).  PCR products were analysed using agarose gel 

electrophoresis as described below. 

 

 

Temperature (C) Time  PCR function  

(35 cycles) 

94 5 minutes Initialisation 

94 30 seconds Denaturation 

55 45 second Annealing 

72 45 seconds Elongation 

72 7 minutes Final elongation 

Table 2.8 Chmp2b knockout PCR conditions  
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2.4.4.2 CHMP2B transgenic PCR  

One common PCR recipe was used to amplify transgenic sequences for 

CHMP2BWT and both the mutant CHMP2BInt5 and CHMP2B10 sequences.  

 

The transgenic PCR master reaction mixture was prepared as follows: 2.5l of 

10x PCR Buffer (Sigma), 2l of 1.25Mm dNTPs, 1.25l DMSO, 0.25l of 20M 

SalF forward primer, 0.25l of 20M F1905 reverse primer and 18.25l sterile 

water (Sigma) with 0.5l of Taq polymerase enzyme (Sigma) were mixed in an 

Eppendorf tube on ice for each sample.   

 

For PCR using genomic DNA extracted from tail or ear biopsies 24.5l of 

transgenic PCR master mix was used with 0.5l DNA (0.5-300ng/l).  For PCR 

using crude ear lysate 23l of transgenic PCR master mix was used with 2l of 

ear lysate (DNA estimated at 80-200ng/l). 

 

Thermal cycling conditions on Tetrad 2 Peltier thermal cyclers (BioRad) used for 

the amplification of human CHMP2BWT, CHMP2Bint5 and CHMP2B10 sequences 

detailed in table 2.9.  PCR products were analysed using agarose gel 

electrophoresis as described below. 
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Temperature (C) Time  PCR function  

(30 cycles) 

94 5 minutes Initialisation 

94 30 seconds Denaturation 

55 30 second Annealing 

72 50 seconds Elongation 

72 7 minutes Final elongation 

Table 2.9 CHMP2B transgenic PCR conditions 

 

 

2.4.4.3  Gel Electrophoresis 

Agarose gel (1.5%) for DNA gel electrophoresis was made by dissolving 7.5mg of 

Ultra-Pure Agarose (Invitrogen) in 500 of 1x TAE (Invitrogen) on stirring hotplate 

(VWR).  Once dissolved, 10 µl of 1% ethidium bromide (0.1μg/ml) (Sigma) was 

added to the cooled solution.  The dissolved liquid gel was set in an agarose gel 

tray assembled with a loading well gel comb.  PCR products (10-15µl) and 1kb 

HotStarTaq DNA ladder (15µl) (Invitrogen) were loaded into wells and a current 

of 120V was passed through the agarose gel for 30-45 minutes. The resolved 

DNA bands were visualised on a Gel Doc EQ UV-transilluminator (Bio-Rad) and a 

record was printed out using a video printer (Bio-Rad).  PCR product size was 

estimated against standard commercially available 1Kb DNA marker. 

 

2.4.5 Real-time PCR (TaqMan) assay 

DNA samples extracted from tail biopsies were diluted 1/30 and DNA from ear 

samples similarly extracted were diluted 1/10 using distilled water (Sigma).   

 

PCR master mix for the Real-Time TaqMan assay was prepared as follows: To 

12.5µl of QuantiTect Mix (Qiagen), which contains reaction buffer, dNTPs, 

HotStarTaq DNA polymerase and ROX dye (normalises fluorescent signals on ABI 
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systems), 0.5µl of 10M human specific CHMP2B sequence forward primer 

(hCHMP2B_F), 0.5µl 10M human sequence specific CHMP2B reverse primer 

(hCHMP2B_R), 0.5µl 10M of CHMP2B human specific primer fluorescent 

reporter (FAM) probe, 0.25µl of each of commercially available 20M rodent 

GAPDH forward and reverse primers (ABI), 0.25µl of rodent 20M GAPDH 

fluorescent reporter (VIC) probe and1.25µl of distilled water (Sigma) was added 

per sample.  

 

For each test sample 16ul of master mix was added to Real-Time PCR optical 96-

well plates together with 9µl of DNA (25l total volume per well).  DNA samples 

were exponentially amplified using the programme detailed in table 2.10 on 

7500 Fast Real-Time PCR system (Applied Biosciences).  Potential homozygous 

mice were identified using the comparative Ct method described in section 

2.4.5.1. 
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Temperature (C) Time 

94 15 minutes 

94 15 second 

(40 repeats) 

60 60 seconds 

(40 repeats) 

72 7 minutes 

Table 2.10 TaqMan PCR conditions 

 

2.4.5.1 delta Ct method 

Cyle threshold (Ct) is a measure of the cycle number at which the fluorescence of 

a particular sample crosses a threshold set for all samples in the batch.  The 

comparative Ct method involves comparing the Ct values of the samples of 

interest with a control or calibrator such as a non-treated sample that is used as 

an internal standard.  The Ct values of both the control and the samples of 

interest are normalized to an appropriate endogenous housekeeping gene.  The 

housekeeping gene is selected on the basis that it is not expected to be affected 

by the experimental treatment.  In this study, the known hemizygote is the 

control sample and GAPDH is used as the endogenous housekeeping or 

reference gene.  

 

Standard curves were set up for each of the transgenic lines using Real-Time PCR 

method described above with the exception that the DNA used was from a 

known hemizygous offspring from a first generation mating.  The DNA 

concentration was determined using a NanoDrop ND1000 Spectrophotometer 

(Labtech) and diluted to a concentration of 250ng DNA per 9µl volume 

(27.7ng/ul).  250ng is the highest concentration point in the standard curve.  

Further concentrations were achieved by diluting the 250ng sample 1:2 
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sequentially so that the range of the standard curve per 9µl volume was as 

follows 250.0ng, 125.0ng, 62.5ng, 31.3ng, 15.6ng, 7.8ng and 3.9ng.   

 

Amplification plot and Ct values were taken from 7500 Fast-System software, an 

example of the concentration curves obtained for Tg158 is given (figure 2.1).  

Cycle threshold (Ct) values from this graph were used to determine a log-linear 

graph for CHMP2B (figure 2.2a) and GAPDH (figure 2.2b) by plotting the log of 

standard concentrations against the mean cycle threshold (mean Ct).  The R2 

values of CHMP2B (0.9964) and GAPDH (0.9991) demonstrate a highly significant 

correlation between Log concentration and mean Ct. and the slope values 

indicate GAPDH and CHMP2B are amplified with very similar efficiency (figures 

2.2a and 2.2b). 
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Figure 2.1 TaqMan Real-Time PCR assay. Typical standard curve amplification plot Green= CHMP2B amplification curves, Red= GAPDH 

amplification curves values; *water DNA negative. Five replicates were run for each sample. 
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Figure 2.2 TaqMan mean Ct standard curves exemplified by Tg158 samples.  
The equation of the graph A) GAPDH and B) CHMP2B allows determination o log concentration 

(log Q) from a measured Ct; R
2
 values demonstrate a very high correlation between mean Ct and 

LOG Q. 

 

 

The difference in Ct values between GAPDH and CHMP2B for test samples and a 

known hemizygous samples were calculated: 

 

[delta]Ct = [delta]Ct sample -  [delta]Ct reference 

 

Where, [delta] Ct sample is the Ct value for any sample normalized to the 

endogenous housekeeping gene and [delta] Ct reference is the Ct value for the 

known hemizygous sample also normalized to the endogenous housekeeping 

gene. 
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As an additional precaution and to confirm homozygosity, mice indicated to be 

homozygous by the Real-time TaqMan PCR were subjected to progeny test 

matings by breeding them to wild type mice. Homozygous mice produced 

hemizygous litters which all tested positive for CHMP2B transgene by PCR 

genotyping. At least three litters were tested for each mouse. 

 

 

2.5 Histology 

2.5.1 Snap freezing for protein analysis 

Brain tissues for protein analysis by western blotting were dissected from 

appropriate mice and cut in half mid-sagittally.  The right half of the brain was 

snap frozen by placing it in a beaker containing isopentane (BDH) cooled by 

dropping 2-3 pellets of dry ice.  The beaker was placed on dry ice and the brain 

left in the cooled isopentane for at least 2 minutes to ensure thorough freezing.  

Samples were transferred to labelled plastic bijou tubes and stored at -80C until 

required. 

 

2.5.2 Tissue for histology 

The left half of the brain was fixed in 10% buffered formal saline and embedded 

in paraffin for histology. 

 

Where required the left half of the brain was covered in a thin layer of OCT 

cryomatrix and snap frozen by placing it in a beaker of isopentane cooled with 

dry ice for 2 minutes.  Brains were mounted onto a cork disc using cryomatrix 

(Shandon Scientific) and stored in a labelled 5ml bijou container at -80C until 

required.  When required 15m sections were cut on a cryostat (Bright OTF 

5000). 
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2.5.3 Histology and immunohistochemistry 

2.5.3.1  Haematoxylin and eosin staining 

Paraffin sections (3-4µm) were dewaxed in a series of xylene changes (3 xylene 

changes at 5-minute intervals) and re-dehydrated through an ethanol:dH2O 

series: 100% ethanol 2 changes , 75% ethanol, 50% ethanol and 100% distilled 

water) and placed in haematoxylin for 1 minute, thoroughly rinsed in distilled 

water, then placed in eosin for 3-5 minutes and rinsed in distilled water. The 

samples were then dehydrated for 5 minutes in each of increasing ethanol:dH2O 

series: 50% ethanol, 75% ethanol and 100% ethanol, and then xylene and finally 

cover slipped using DePex mountant. 

 

2.5.3.2 Cresyl violet staining 

Paraffin sections (3-4µm) were dewaxed in a series of xylene changes (3 xylene 

changes at 5-minute intervals) and re-dehydrated through an ethanol:dH2O 

series: 100% ethanol 2 changes , 75% ethanol, 50% ethanol and 100% distilled 

water) and placed in 1% acidified Cresyl violet solution for 5 minutes.  Sections 

were rinsed in distilled water to obtain contrast between grey and white matter 

of the CNS ~1-3 minutes.  The samples were then dehydrated for 5 minutes in 

each of increasing ethanol:dH2O series: 50% ethanol, 75% ethanol and 100% 

ethanol, and then xylene and finally cover slipped using DePex mountant. 
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2.5.3.3  Immunohistochemistry 

 

Antigen retrieval methods 

Antigen retrieval specific to each primary antibody was applied. Antigen retrieval 

methods used were: 

 Citrate butter (CB) antigen retrieval: 0.01M citrate buffer in microwave 

(MW) at full power for 30 minutes. 

 Tris-EDTA buffer (EDTA) antigen retrieval: 0.05M Tris-EDTA in microwave 

at full power for 30 minutes 

 Protease (PRT3) antigen retrieval: Ventana commercially purchased 

protease 3 automated dosing for 15 minutes 

 Ventana proprietary mild cell conditioning treatment (MCC1) antigen 

retrieval: slides were incubated on cell conditioning solution for 15 

minutes. 

 

Immunohistochemistry was carried out using the automated Nexus staining 

apparatus (Ventana Medical Systems) according to the manufacturer's 

guidelines, using IView-DAB detection system kit (Ventana Medical Systems).  In 

brief, sections were dewaxed and re-hydrated as described in section 2.5.3.1.  

Non-specific proteins were blocked using commercial blocking reagent for 15 

minutes (Ventana Medical System) followed by application of primary antibody 

at defined temperature and duration (table 2.2.) followed by the application of 

commercial biotinylated HRP secondary antibody (table 2.4) and the signal 

visualised using purchased 3’3 diaminobenzidine (DAB) and hydrogen peroxide 

commercial kit (Ventana Medical System). 

 

Samples were dehydrated in series of ethanol as described above and cleared in 

three changes of xylene (section 2.5.3.1) and cover slipped using DePex 

mountant. 
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Photographs were obtained on a ColorView II digital camera (Soft Imaging 

System) mounted on a Zeiss Axioplan microscope and prepared for presentation 

in Adobe Photoshop. 

 

2.5.3.4 Electron microscopy 

Mice were perfused through the heart with 3% glutaraldehyde in phosphate 

buffer; their brains were removed and post-fixed in 3% glutaraldehyde overnight.  

Brains were treated with 1% osmium tetroxide for three hours at 4° C and 

embedded in Araldite CY212 resin. Ultrathin sections (70 mM) were stained with 

lead citrate and uranyl acetate and digital images taken on a Phillips CM10 

electron microscope with a Megaview III digital camera (Olympus). EM 

processing and ultrathin section cutting was performed by the Institute of 

Neurology core facility. 

 

2.5.3.5 Quantification of pathological findings 

Quantification was performed blinded on 4 mice per genotype (CHMP2BWT, 

CHMP2BInt5and non-transgenics) at 6, 12 and 18 months of age using brightfield 

images.  For p62 inclusion quantification three 40X images (21069 µm2per image) 

were taken in the thalamus and cortex and six in the corpus callosum and 

inclusions counted using the touch count tool in analySIS imaging software 

(Olympus).  

For quantification of GFAP and Iba1 staining, six 10X images (335628 µm2per 

image) were taken in the cortex and the thalamus. The same threshold for GFAP 

staining was applied to all images using Volocity image analysis software (Perkin 

Elmer) and the area covered by GFAP immunoreactivity quantified.  Activation of 

Iba1-positive microglia was performed by scoring each image from 1-4 (1 = 

ramified, 2 = reactive, 3 = ameboid and 4 = phagocytic) as previously described 

(Ahmed et al., 2010), and taking the average of all images per region.  
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Statistical testing was performed with Graphpad Prism 5 software using a two-

way ANOVA and post-hoc Bonferroni test. 

 

2.6 Western Blot 

2.6.1 Brain homogenates 

Snap frozen brain samples (section 2.5.1) were used to make 10% brain 

homogenates using 10mM phosphate buffered saline (PBS) (VWR) with protease 

inhibitors (x1 protease inhibitor tablet) (Roche) per 10ml of PBS.  Samples were 

weighed (milligrams) to 2 decimal places and the volume of homogenisation 

buffer required was calculated using the following standard formula; 

 

V=BW x 2(4.5) 

 

Where V is the required volume of PBS (ml) and BW is the weight of the brain 

(mg).  2(4.5) = An initial volume of BW x 4.5ml PBS was added to the brain and 

the brain homogenised using ribolyser beads and a Hybaid Ribolyser for 2 x 45 

seconds at speed 5.5 rpm; a second volume of BW x 4.5ml PBS was added to the 

resulting 5% brain homogenate transferred to a Bijou tube, and thoroughly 

mixed to obtain a final concentration of 10% brain homogenate. 

 

 

2.6.2 Sample preparation and western blotting 

Sample preparation:  

Homogenised brain samples (section 2.6.1) were equally divided into 2 aliquots, 

and to one aliquot, an equal volume of 2x Laemmli sample buffer (BioRad) 

containing -mercaptoethanol (50l -mecaptoethanol to 450l 2x Laemmli 

sample buffer) was added.  This sample was boiled for 3 minutes at 100C on a 

thermomixer hotplate (Eppendorf) and subsequently further divided into 
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aliquots as required.  All samples and aliquots were labelled and stored at -80C 

until required. 

 

Western blotting:  

For protein electrophoresis aliquots of brain homogenate prepared in Laemmli 

sample buffer were boiled for 1 minute at 100C on a thermomixer hotplate.  

Pre-cast Tris-glycine 4-20% gradient protein gels (Invitrogen) were loaded with 

5l of denatured brain homogenate and subjected to electrophoresis at 125V for 

1.5h in Tris-glycine-SDS buffer (National Diagnostics). 

 

Proteins were transferred from the gel onto Polyvinylidene difluoride (PVDF) 

membrane using the XCell II Blot wet transfer module (Invitrogen). 

Electroblotting was carried out at 35V for 2 hours. 

 

To visualise the proteins of interest the PVDF membrane was removed and 

washed in 10mM PBS containing 0.01% Tween 20 (PBS/T) with three wash buffer 

changes at 3-minute intervals.  Dried milk (5% Marvel) was used to block non-

specific proteins at room temperature for 1 hour. The membrane was washed 

again as described above and incubated with appropriate primary antibody at 

4C overnight or 1 hour at room temperature.  The membrane was washed 3 

times again and incubated for 1 hour at room temperature with HRP conjugated 

secondary antibody.  After a final three washes in PBS, the membrane was 

incubated with SuperSignal West Pico chemiluminesence substrate (Thermo 

Scientific) and exposed to Kodak photographic film (Sigma) for varying durations 

and developed on an automated machine (Compact X4 Xograph Imaging 

system). 
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2.7 Behavioural Phenotyping 

2.7.1 Kaplan-Meier survival analysis 

Kaplan-Meier survival analysis was performed on IBM SPSS Version 19 statistical 

programme. 

 

2.7.2 Assessors 

All assessors (SN, MF, SM, SBM) were in possession of appropriate Home Office 

licences to work with animals and were trained in performing the phenotyping 

protocols detailed in this section prior to assessing mouse test cohorts.  

Assessors were blinded to test cohort genotypes, gender and age when 

performing phenotyping assessments. 

 

2.7.3 Modified SHIRPA 

The modified SHIRPA protocol was adopted from the procedure described on the 

MRC Harwell Mammalian Genetics website (http://empress.har.mrc.ac.uk/).  The 

modified-SHIRPA protocol detailed below was used as a primary phenotyping 

screen of Chmp2b knockout mice (EMPReSS, 2008). 

 

Modified-SHIRPA was performed on a cohort of 12 month-old Chmp2b knockout 

mice; N=16 Chmp2b-/- mice; N=15 Chmp2b+/+ mice. 

 

Equipment 

One set of the modified-SHRIPA equipment listed below was kindly lent to us by 

Mr Ben Woodman from Professor G. Bates’ laboratory from the MRC 

Neurogenetics group at King’s College London and a second set was made to 

order by the works department at King’s College London Guy’s hospital site, 

generously organised by Mr Ben Woodman. The click box which emits a 20-KHz 

sound at 90dB and was used to test the auditory startle responses (pinna reflex 

test) of the mice was purchased from the Sanger Institute.  

http://empress.har.mrc.ac.uk/
http://empress.har.mrc.ac.uk/browser/?sop_id=10_002_0
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 Clear Perspex cylindrical viewing jar (14 cm diameter, 18 cm height) 

 Tripod (7.5 cm height). 

 Plastic sheet [sandpapered down to create a surface that is not smooth] 

(20 cm x 20 cm) 

 Clear Perspex arena (60 cm length, 37 cm width and 18 cm height). In the 

floor of the arena is a Perspex sheet marked with 15 squares (11 cm). A 

grid (40 cm x 20 cm) with 12 mm mesh (approximate) is secured across 

the top of the width of the box 

 Click-box (generates a brief 20 KHz tone at 90 dB) 

 Clear Perspex tube (3 cm diameter, 20 cm length) 

 Stopwatch 

 Commercially available cotton ear buds used as probe (Boots own brand) 

 Modified-SHIRPA score sheet  

 

Supplies 

 Tissues 

 Alcohol wipes for wiping down equipment between each mouse 

 

Procedure 

Modified-SHIRPA protocol assessment was carried out by three assessors (SN, 

SM, SBM). Mice were weighed using electronic laboratroy scales and their 

weights recorded to two decimal places prior to being placed in a viewing jar. 

 

 

 

http://empress.har.mrc.ac.uk/browser/?sop_id=10_002_0
http://empress.har.mrc.ac.uk/browser/?sop_id=10_002_0
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Procedure for behaviour assessed in the viewing jar: 

Refer to the score sheet (section 2.7.3) for guidance on scoring, a short 

description of each test is provided below. 

Wipe the viewing jar area clean with alcohol wipes and allow it to dry before use. 

Place the viewing jar upright on top of the plastic sheet. Remove a mouse from 

its home cage, gripping the tail between the thumb and the forefinger and place 

into the viewing jar. 

 

The following highlighted behaviours were recorded without disturbing the 

mouse.   Any incidents of bizarre behaviour, stereotypy and convulsions were 

recorded separately. 

 

Body Position: observe the mouse and identify whether it appears to be 

inactive, active or excessively active. 

Tremor: Make a note of whether or not the mouse appears to 

tremble. 

Palpebral Closure:  Study the mouse for palpebral closure. 

Coat Appearance: Look carefully at the mouse’s coat and determine how tidy 

and well groomed it is, making a note of any abnormalities 

such as piloerection. 

Whiskers:  Make a note of whether the mouse has intact or trimmed 

whiskers. 

Lacrimation: Make a note of the presence or absence of lacrimation. 

Defecation:  Make a note of whether or not the mouse defecates. 

 

Procedure for behaviour assessment in the observation arena 

Wipe the arena clean with alcohol wipes and allow it to dry before use. 

Transfer a mouse to the centre of the arena inside the viewing jar, using the 

plastic sheet underneath the jar.  Carefully remove the plastic sheet from 

underneath the viewing jar at approximately 25 cm above the arena floor 

allowing the mouse to fall into the observation arena. 
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Transfer Arousal: 

Observe the immediate reaction of the mouse to the new environment and 

make a note of whether it appears to freeze for a period longer than 5 seconds, 

freezes briefly before it begins to move, or moves immediately. 

Locomotor Activity: 

Start the stopwatch and make a note of the total number of squares the mouse 

enters with all four feet in 30 seconds. 

Gait: 

Study the gait of the mouse and determine how fluid its movement is as well as 

the extent to which the pelvis is elevated during forward motion. 

Tail Elevation: 

During forward motion, observe the position of the tail making a note of whether 

it is dragging, horizontally extended or is elevated. 

Startle Response: 

Hold the IHR click-box approximately 30 cm above the arena and emit 90 dB 

tone. Observe the response of the mouse 

Touch Escape: 

Approach the mouse from the front with a bent index finger before stroking on 

the back of the neck. Observe the response of the mouse. 

 

Procedure for behaviour assessed above the arena 

Remove the mouse from the arena and observe the following 

Positional passivity: 

Measure the immediate response to sequential handling of the mouse. Identify 

whether the mouse struggles when held by its tail (terminate further handling if 

apparent).  Identify whether the mouse struggles when held by the neck, a loose 

scruff between the forefinger and thumb (terminate further handling if 

apparent).  Identify whether the mouse struggles when lying supine (terminate 

further handling if apparent). 

Skin Colour: 

Make a note of the colour gradations of plantar surface and digits of forelimbs. 
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Trunk Curl: 

Make a note of forward curling (i.e. head to abdomen) of the mouse when held 

by the tail. 

Limb Grasping: 

Make a note of the mouse grasping its limbs when held by the tail. 

Pinna Reflex: 

Place the mouse gently on to a grid and touch the proximal part of the inner 

canthus lightly with the tip of a fine cotton probe, observing ear retraction. 

Corneal Reflex: 

Whilst the mouse is on the grid, touch the cornea lightly with the tip of a fine 

cotton probe, observing the eye-blink response. 

Contact Righting Reflex: 

Place the animal into the clear Perspex plastic tube and roll the tube slowly until 

the mouse inside it is upside down. Observe the righting reflex. 

Evidence of Biting: 

Make a note of whether or not the mouse bites during the screen. 

Vocalisation: 

Make a note of whether or not the mouse is vocal during the screen. 
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Modified-SHIRPA score sheet 

 

Behaviour recorded in viewing jar 
Body Position 
0 = Inactive 
1 = Active 
2 = Excessive activity 
 
Tremor 
0 = Absent 
1 = Closed 
 
Palpebral Closure 
1 = Eyes Open 
2 = Eyes Closed 
 
Coat Appearance 
0 = Tidy and well groomed 
1 = Irregularities such as piloerection 
 
Whiskers 
0 = Present 
1 = Absent (include any further comments) 
 
Lacrimation 
0 = Absent 
1 = Present 
 
Defecation 
0 = Present 
1 = Absent 
 
Behaviour recorded in observation arena 
Transfer Arousal 
0 = Extended freeze (over 5 seconds) 
1 = Brief freeze followed by movement 
2 = Immediate movement 
 
Locomotor Activity 
The total number of squares the mouse enters with all four feet in 30 seconds 
 
Gait 
0 = Fluid movement and approximately 3mm pelvic elevation 
1 = Lack of fluidity in movement (include comments e.g. retropulsion, more than 
3mm pelvic elevation) 
Tail Elevation 
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0 = Dragging 
1 = Horizontal Extension 
2 = Elevated/Straub Tail 
 
Startle Response 
0 = None 
1 = Preyer Reflex (backwards flick of the pinnae) 
2 = Reaction in addition to the Preyer reflex (e.g. startled response) 
 
Touch Escape 
0 = No response 
1 = Response to touch 
2 = Flees prior to touch 
 
Behaviour recorded above the arena 
Positional Passivity 
0 = Struggles when held by the tail 
1 = Struggles when held by the neck (loose scruff between the forefinger and 

thumb) 
2 = Struggles when laid supine 
3 = No struggle 
 
Skin Colour 
0 = Blanched 
1 = Pink 
2 = Bright, deep red flush 
 
Trunk Curl 
0 = Absent 
1 = Present 
 
Pinna Reflex (Ears flick) 
0 = Present 
1 = Absent 
 
Corneal Reflex 
0 = Present (blink) 
1 = Absent 
Contact Righting Reflex 
0 = Present 
1 = Absent 
 
Evidence of biting 
0 = None 
1 = biting in response to handling 
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Vocalisation 
0 = None 
1 = Vocal 
 
Additional Observations 
 
Foot tapping, splayed gait, twitching, leaning, rapid breathing, kinked tail, 
hunched back: 
 
0 = Absent 
1 = Present 
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Modified-SHIRPA record sheet 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 2.11 Modified-SHIRPA protocol used to score mouse behaviour.  

Score of 0= phenotype absent, 1= phenotype present, 2= increase in phenotype intensity relative to 

scoring 1, 3= increase in phenotype intensity relative to scoring 2. 

 
 

Mouse identifier number         

Date         

Operator         

Weight(g)         

Gender         

VIEWING JAR         

Body Position (0-2)         

Tremor (0-1)         

Defecation          

Urination          

Palpebral Closure (0-1)         

Coat Appearance (0-1)         

Whiskers (0-1)         

Lacrimation (0-1)         

Evidence of Biting (0-1)         

Vocalization (0-1)         

ARENA         

Transfer Arousal (0-2)         

LMA (No.)         

Gait (0-1)         

Tail elevation (0-2)         

Startle Response (0-2)         

Touch Escape (0-2)         

Positional Passivity (0-3)         

ABOVE ARENA         

Trunk Curl (0-1)         

Limb Grasping (0-1)         

Pinna Reflex (0-1)         

Corneal Reflex (0-1)         

RESTRAINT & OTHER         

Skin Colour (0-2)         

Contact Righting Reflex 
(0-1)         

Extra notes          
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2.7.4 Rotarod 

The rotarod protocol was adopted from that published on the MRC Harwell 

Mammalian Genetics website (http://empress.har.mrc.ac.uk/) (EMPReSS, 2008). 

 

On the day of testing whilst in their home cages; mice were placed in the testing 

room for at least 15 minutes prior to rotarod assessment to help them to 

acclimate to the testing room (acclimation phase). 

 

The test phase is composed of three trials separated by 15-minute inter-trial 

intervals (ITI).  No training period was used prior to the test phase apart from an 

initial run on the apparatus 15 minutes before the first test for the mice to 

experience the equipment. The rotarod (Panlab, 760237) was set to accelerating 

mode (4 to 40rpm in 300s).  

 

Test trial 1 (T1): Test mice were placed on the rotarod lanes while the rod 

initially rotated at 4rpm constant speed.  Once all the mice were able to walk 

forward for a few seconds at 4 rpm the accelerating mode was started and the 

rod started to accelerate from 4 rpm to 40 rpm in 300 seconds.  The latency at 

which each mouse fell off the rod (latency) was recorded.  The apparatus was 

cleaned with water and 50% ethanol and wiped dry.  A 15 min inter trial interval 

(ITI) was allowed between consecutive trials of the same mice.  Test trials 2 and 

3 (T2 and T3) were performed in exactly the same way as T1 and rotarod latency 

was recorded for each mouse in the test cohort in order of T1-ITI-T2-ITI-T3. 

 

2.7.5 Grip Strength 

The grip strength protocol was adopted from that published on the MRC Harwell 

Mammalian Genetics website (http://empress.har.mrc.ac.uk/) (EMPReSS, 2008). 

 

Commercially available Grip Strength Meter (Harvard Apparatus, 76007-BSRSIC)) 

was used. The system is supplied with a single grid which connects to the sensor. 

http://empress.har.mrc.ac.uk/
http://empress.har.mrc.ac.uk/
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The Assessor removed a single test mouse at a time from its home cage by 

gripping the base of its tail between their thumb and forefinger. 

 

Mouse forelimb and hindlimb measurement was taken by gently lowering the 

mouse over the top of the grid so that both its front and hind paws could grip the 

grid.  The mouse’s torso was kept horizontal and the mouse was pulled back 

steadily (not jerking) until its grip was released down the complete length of the 

grid. When the mouse released the grid, the maximal grip strength value of the 

animal was displayed on the apparatus screen and the value (grams) recorded.  

This procedure was repeated two further times to obtain 3 forelimb and 

hindlimb grip strength measurements G1, G2 and G3. 

The grid was cleaned with 50% ethanol and dried with tissue, before measuring 

grip strength for each test mouse. 

 

2.7.6 Burrowing 

The burrowing protocol described here was adapted from Deacon, R Nature 

Protocols (Deacon, 2006b). 

 

A sawn section from commercially purchased plastic water downpipe measuring 

320mm long and 100mm in diameter (B&Q) was adapted as the burrowing tube 

and filled with 200g of RM1 food pellets (Special Diet Services) as burrowing 

material.  One end of the tube was left open and raised 60mm above the cage 

floor by two 80mm bolts, placed 25 mm in from the end of the tube, spaced 70 

mm apart. The other end was covered by a plastic plug. 

 

The burrowing tube was placed in a mouse cage overnight together with a singly-

housed mouse 1 hour before the dark cycle.  The amount of burrowing material 

left in the burrowing tube was measured (in grams) the next day during the light 
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cycle.  The amount of food pellets burrowed was determined by subtracting the 

amount of pellets remaining the next day from the starting amount of food 

pellets (200g).  Each mouse was allowed a single practice run for 2 hours prior to 

being tested overnight. 

 

2.7.7 Nesting 

The nesting protocol described here was adapted from Deacon, R Nature 

Protocols (Deacon, 2006a). 

 

Test mice were singly-housed and commercially purchased 5x5 cm Nestlet 

squares (Lillico Biotechnology) were placed into the mouse cages 1 hour before 

the dark cycle.  Standard cage bedding (section 2.3) was available in the mouse 

cage but all forms of environmental enrichment such as inner toilet roll tubes 

were removed.   

 

The nests were scored the next day according to the scoring system 

demonstrated in figure 2.4 and table 2.12 

 

Figure 2.3 Pictorial representation of typical Nestlet scores. 

Nests are scored 1-5 (a-e respectively) based on degree of Nestlet tearing and nest formation.  

Adapted from Deacon (2006) (Deacon, 2006a). 
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Nest Score Corresponding to  
figure 2.5 

Description 

 
1 

 
a 

Nestlet not noticeably touched; 
>90% intact  
Nest structure absent 

 
2 

 
b 

Nestlet partially torn; 50-90% 
remaining intact 
Nest structure absent 

 
3 

 
c 

Nestlet is mostly torn 50-90% 
torn/shredded 
Nest structure absent 

 
4 

 
d 

Most of Nestlet is torn >90% 
torn/shredded 
Identifiable gathered flat nest 
structure  

 
5 

 
e 

Most of Nestlet is torn >90% 
torn/shredded 
Near perfect gathered concave 
nest structure with walls higher 
than the height of the mouse lying 
in the nest on its side. 

Table 2.12 Description of nest scores accompanying Figure 2.5. 

Adapted from Deacon 2006 (Deacon, 2006a). 

 
 

2.7.8 Videoing mice 

Mice were videoed in the SHIRPA observational arena with white flooring (60 cm 

length, 37 cm width and 18 cm height) to demonstrate phenotypes including 

splayed gait and foot tapping (chapter 3) using Sony DCR-DVD 106 E digital 

camera.  Video clips were edited using Adobe Premiere video editing software. 
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3 Characterising Chmp2b Knockout Mice 

3.1 Chmp2b Knockout Mice 

The autosomal dominant CHMP2B splice site mutation originally identified in the 

Danish kindred results in the formation of two aberrant transcripts termed 

CHMP2B Intron5 and CHMP2B Delta10, and therefore the loss of one normal 

CHMP2B allele (Skibinski et al., 2005).  This Chapter describes the generation and 

characterisation of Chmp2b knockout (Chmp2b-/-) mice to investigate whether 

loss of function of Chmp2b contributes to disease and to elucidate the normal 

function of Chmp2b protein. 

 

Chmp2b knockout mice were resuscitated from commercially available Chmp2b 

knockout mouse frozen embryos.  The amount of protein depletion in the 

Chmp2b knockout mice was determined using quantitative western blot analysis. 

A systematic histopathological study was undertaken to examine the brain, 

spinal cord, sciatic nerve and quadriceps muscle for the presence of pathology in 

homozygous Chmp2b knockout mice across increasing age compared to wild 

type age-matched mice. 

 

3.2 Generation of Chmp2b Knockout Mice  

Commercially available embryonic stem cells in which the pGT0Lxf gene trap 

vector was found to randomly insert within intron 2 of Chmp2b sequence (figure 

3.1) were purchased from BayGenomics California (Stryke et al., 2003; 

BayGenomics, 2012).  

 

Briefly, the targetted ES cells (genetic background 129P2/OlaHsd) were produced 

as follows: the pGT0Lxf gene trap vector which harbours a splice acceptor (SA) 

site and intron 1 of the Engrailed-2 gene followed by -geo cassette and a polyA 

(pA) sequence (figure 3.1) was electroporated into XL952 embryonic stem (ES) 

cells derived from the Sv129 mouse strain. The pGT0Lxf gene trap vector 
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randomly inserts into intronic sequence of a gene.  In this case the pGT0Lxf gene 

trap vector inserted into intron 2 of Chmp2b (figure 3.1), which was confirmed by 

RT-PCR and sequence analyses of DNA extracted from aliquots of the ES cells 

prior to generation of the Chmp2b knockout mice (Stryke et al., 2003; 

BayGenomics, 2012).  ES cells confirmed to be harbouring the gene trap vector in 

intron 2 of the Chmp2b gene were injected into blastocysts of C57BL6/J mice by 

Bay Genomics (Stryke et al., 2003). 
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Figure 3.1 Chmp2b genomic wild type and Chmp2b knockout sequence schematics.  

Schematic representation of (a) Chmp2b wild type sequence (b) pGT0lxf gene trap vector including intron 1of the Engrailed-2 gene in orange, SA is splice 

acceptor site, -geo is beta galactosidase-neomycin fusion cassette, pA is polyadenylation site and (c) Chmp2b sequence with pGT0lxf gene trap vector inserted 

within Chmp2b intron 2.  
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 Two male chimaeric mice were born, with each predicted to be over 90% 

chimaeric based on coat colour.  Both males were bred to C57BL6/J females and 

pups recovered and genotyped.  Several XL952/BL6/J F1 mice were produced 

over several litters. Sperm from male F1s was recovered and used to produce 

approximately 300 2-cell embryos by in vitro fertilisation of BL6/J eggs 

(BayGenomics, 2012).  These embryos were frozen and imported into the MRC 

Prion Unit where they were resuscitated and implanted into pseudopregnant 

mice by the MRC Prion Unit Transgenic Team.  The official nomenclature for 

these gene trap mice is Chmp2bGt(XL952)Byg.  However, for simplicity and ease of 

reference, the terminology knockout (Chmp2b-/-) is used throughout this thesis, 

while recognising that complete knockout of the Chmp2b gene was not achieved 

by this approach. 

3.2.1  Establishing Chmp2b knockout colony 

Tail biopsies were taken from the resulting pups and screened by PCR for the 

presence of the Chmp2b knockout cassette in intron 2, using PCR primers 

designed to allow discrimination of Chmp2b knockout mice from wild type mice.  

Details of the genotype-specific primers and PCR protocol are provided in 

chapter 2.  Confirmed knockout mice were mated at 6 weeks of age to C57BL/6J 

wild type mice and therefore the Chmp2b knockout colony established for use in 

this study is on a mixed 129 x C57BL/6J genetic background. 

3.2.2 Breeding scheme 

The initial mating of Chmp2b heterozygous (Chmp2b+/-) mice to wild type 

C57BL/6J mice (Chmp2b+/+) produced 50% Chmp2b heterozygous (Chmp2b+/-) 

mice and 50% Chmp2b+/+ wild type mice (figure 3.2).  To obtain Chmp2b 

homozygous (Chmp2b-/-) knockout mice, heterozygous Chmp2b (Chmp2b+/-) 

knockout mice harbouring one copy of the -geo knockout cassette were mated 

to each other (figure 3.2) so that the resulting litter would be expected to 

produce 25% Chmp2b-/-, 50% Chmp2b+/- and 25% Chmp2b+/+ offspring.  Finally, to 

establish and maintain the Chmp2b homozygous colony, Chmp2b-/- mice were 

mated to each other. 
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Figure 3.2 Chmp2b knockout colony breeding scheme.  

Mating of Chmp2b hemizygous (Chmp2b
+/-

) founder to C57BL/6J wild type (Chmp2b
+/+

) mice and 

subsequent Chmp2b heterozygous (Chmp2b
+/-

) X heterozygous (Chmp2b
+/-

) breeding to produce 

the initial Chmp2b homozygous knockout (Chmp2b
-/-

) offspring (orange). 
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3.3 Molecular Characterisation of Chmp2b Knockout Mice 

3.3.1 PCR primers and multiplex PCR 

To genotype the Chmp2b knockout mice a multiplex PCR was designed where 

two gene regions of interest could be simultaneously amplified.  As the -geo 

cassette is known to be inserted into intron 2 of the Chmp2b gene, intronic 

primers were designed at the start of intron 2 (Int2_F forward primer) and 

reverse primers either to intron 2 (Int2_485R) or to the -geo cassette in the 

Engrailed-2 gene intronic sequence (KO_386R) (figure 3.3). Because the intronic 

reverse primer (Int2_485R) is downstream of the -geo cassette it does not 

amplify with the forward primer when the cassette is present making this 

amplification product specific for the wild-type allele (figure 3.3).  

 

Therefore, in Chmp2b wild type mice, in which the -geo cassette is not inserted 

into intron 2, only a single wild type band of ~485bp is amplified.  In Chmp2b 

homozygous knockout mice, where both Chmp2b alleles have the -geo cassette 

inserted in intron 2, a single band of ~386bp is amplified.  In heterozygous mice, 

where one wild type and one knockout allele is present, both PCR products of 

~485bp and ~386pb are amplified (figure 3.4). 
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Figure 3.3 Schematic representation of primers targeting Chmp2b wild type and knockout sequence used in PCR genotyping.  

Intron 2 forward primer (Int2_F) is the common forward primer to both sequences. (a) The reverse primer (Int2_485R) enables amplification of the endogenous 

Chmp2b wild type sequence.  (b)The reverse primer (KO_386R) enables amplification of the Chmp2b knockout sequence by targeting intron 1 of the 

Engrailed-2 gene (orange) within the pGT0lxf gene trap vector. 
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Figure 3.4 Typical DNA genotyping bands for Chmp2b knockout mice.  

Chmp2b homozygous knockout (-/-), heterozygous (+/-) and wild type (+/+) bands amplified with 

the multiplex PCR used to genotype Chmp2b knockout mice.  L is 1kb DNA ladder and C is no 

DNA sterile distilled water control. Genotyping using Int2_F, Int2_485R and KO_386R primers 

amplifies Chmp2b wild type bands 485bp; Chmp2b knockout bands 386bp and in the case of 

heterozygous mice carrying both alleles both wild type 485bp and knockout 386bp bands are 

amplified.  

 

3.3.2 Chmp2b protein expression 

To determine the extent of Chmp2b protein depletion in Chmp2b knockout mice 

10% brain homogenates (N=3 Chmp2b-/- and Chmp2b+/+) were run on an SDS-

PAGE gel, western blotted and then probed with commercially purchased C-

terminal CHMP2B polyclonal antibody (Abcam) (figure 3.5). The relative level of 

Chmp2b depletion was determined using a quantitative imaging analysis (figure 

3.6). 
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Figure 3.5 Chmp2b protein blot with C-terminal CHMP2B antibody.   

10% Brain homogenates were probed with C-terminal CHMP2B antibody (Abcam). The top blot 

shows Chmp2b protein expression in Chmp2b wild type (+/+) and knockout (-/-) brain 

homogenates. The bottom blot is the same blot re-probed with anti-Actin antibody demonstrating 

equal loading.  

 

 

 

 

Figure 3.6 Quantification of Chmp2b protein depletion in 12- month-old mouse brain.   

The level of Chmp2b depletion in Chmp2b
-/-

 mice was determined from the western blot (figure 

3.5) using the Volocity program (error bars= SEM).  Quantitative analysis reveals that the 

Chmp2b
-/-

 mouse brains have 85% depletion of Chmp2b protein expression relative to Chmp2b
+/+

 

mice.  N=3 for each genotype. Chmp2b depletion is highly significant; p>*0.0005 determined 

using T-test. 
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Quantitative analysis of the western blot reveals that the Chmp2b-/- mice (N=3) 

have ~85% (p>0.0005) of their endogenous Chmp2b protein depleted compared 

to Chmp2b+/+ (N=3) (figure 3.6); Chmp2b heterozygous (Chmp2b+/-) mice (N=2) 

have ~25 % Chmp2b protein depletion (data not shown). 

  

 

3.4 Chmp2b-/- Pathology 

Histological studies of affected members of the Danish FTD-3 family show global 

frontotemporal atrophy with the amygdala and hippocampus being spared 

(Gydesen et al., 2002; Holm et al., 2007). Gliosis in the absence of macrophages 

is seen in layer II of the frontal cortex (Holm et al., 2007).  A hallmark feature of 

FTD-3 is the presence of ubiquitin and p62 cellular inclusions seen in the frontal 

cortex and hippocampus but distinctively with the absence of TDP-43 and FUS 

staining (Holm et al., 2007; Holm et al., 2009).  The presence of enlarged 

vacuoles positive for M6PR a marker of late endosomes, demonstrate enlarged 

aberrant late endosomes in neurons of the frontal, temporal and occipital cortex, 

but not in cerebellar neurons (Urwin et al., 2010a). 

 

To determine whether the Chmp2b knockout mice generated recapitulate key 

neuropathological features observed in human post-mortem brain tissue, a 

systematic histological study was undertaken to identify gross pathological 

changes in the brain, spinal cord, quadriceps muscle and the sciatic nerve.  

Furthermore, brain and spinal cord tissues were examined for gliosis, cellular or 

synaptic density loss as well as immunostaining for ubiquitin, a key marker of 

neurodegeneration and p62 a marker of autophagy and a hallmark feature of 

FTD-3.  In addition late endosome markers mannose-6-phosphate receptor 

(M6PR) and lysosomal associated membrane protein-1 (LAMP-1) and the early 

endosome marker; early endosome antigen-1 (EEA1) markers were used to 

examine whether the Chmp2b knockout mouse brains demonstrate any change 

in expression of endosome markers characteristic of FTD-3 pathology.  The 
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immunohistological expression of TDP-43, a key protein shown to be the 

ubiquitinated protein in a subset of FTLD cases reclassified as FTLD-TDP 

(Neumann et al., 2006; Mackenzie et al., 2011) but not specifically associated 

with FTD-3 pathology, was also assessed in Chmp2b knockout mouse brain.  

 

Chmp2b knockout and age-matched wild type control formalin fixed paraffin 

embedded brain and lumbar spinal cord sections  were stained with the panel of 

antibodies and histological stains (N=3 for each genotype at 12, 18 and 24 

months of age).  Detailed description of protocols can be found in chapter 2.  

Brain and spinal cord sections were viewed using light microscopy with 

consultant neuropathologist SB.  The frontal cortex, CA3 region of the 

hippocampus, cerebellum and lumbar regions of the spinal cord were 

photographed. 

 

3.4.1 Brain pathology 

The frontal cortex and hippocampus were selected as these are the regions of 

inclusion pathology in FTD-3 human disease (Holm et al., 2007; Holm et al., 

2009).  The cerebellum was chosen as an additional region of interest as the 

Chmp2b knockout mice demonstrate a lower limb gait phenotype (chapter 4) 

and that published data from Hara (2006) and Komatsu (2006) report knocking 

out autophagy genes (Atg5 and Atg 7) specifically in the central nervous system 

results in loss of Purkinje cells, shown by loss of calbindin expression in the 

cerebellum and gait phenotype (Hara et al., 2006; Komatsu et al., 2006).  

Therefore to investigate if the chmp2b knockout gait phenotype is caused by the 

loss of cerebellar neurons, calbindin expression was examined in the cerebellum. 

Optimisation of autophagosome staining with an LC-3 antibody was also 

attempted but without success, and was therefore excluded from the panel of 

antibodies used in this study.  
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3.4.1.1 Gross morphology, astrogliosis and microglial activation 

Hematoxylin and Eosin (H&E) staining is the most widely used of all histological 

staining protocols for the vast majority of tissues in both research and clinical 

laboratories due to the striking clarity with which the two dyes distinguish 

cellular matrix (cytoplasm), connective tissue and nuclei (Bancroft and Gamble, 

2002).  Hematoxylin is a cationic dye that stains basophilic components of the 

cell (Spitalnik and Witkin, 2012). Positively charged metal-hematein, complexes 

in hematoxylin, bind to the negatively charged phosphate backbone of DNA, and 

consequently stain cellular nuclei blue (Bancroft and Gamble, 2002; Merck, 

2012).   

 

Eosin is an acidic anionic red-pink dye that mainly binds negatively charged 

proteins (Spitalnik and Witkin, 2012).  It is an especially useful stain as it can 

distinguish between the cytoplasm and different types of connective tissue fibres 

and matrices by staining them different shades of red and pink with appropriate 

differentiation (Bancroft and Gamble, 2002; Merck, 2012).  It is also the most 

useful stain to combine with hematoxylin due to the contrast in colour of the two 

dyes, pink and blue respectively, demonstrating the tissues’ general histological 

architecture and gross morphology (Bancroft and Gamble, 2002; Merck, 2012).  

Accordingly, in this study H&E staining has been used to look at the general 

histological architecture and gross morphology of the mouse brain and spinal 

cord regions of interest. 

 

Glial Fibrillary Acidic Protein (GFAP) is 50kDa intracytoplasmic type III 

intermediate filament (IF) protein and a classic marker of mature astrocytes 

(Middeldorp and Hol, 2011).  The enlargement of astrocytes and extension of 

their processes as well as increased expression of GFAP is a marker of reactive 

gliosis, a cellular response associated with brain damage and aging (Middeldorp 

and Hol, 2011).  GFAP antibodies used to visualise astrocytes demonstrate cells 

with a stellate morphology, characteristic for differentiated astrocytes 

(Middeldorp and Hol, 2011). 
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GFAP mRNA and protein expression increases progressively during aging in 

humans and laboratory rodents (Goss et al., 1991; Morgan et al., 1997; Morgan 

et al., 1999).  With increasing age an increase in GFAP is observed in the 

hippocampus, frontal cortex and temporal cortex of human brains (Nichols et al., 

1993).  Astrogliosis and increase of GFAP expression is associated with 

neurodegeneration and neuronal death in a number of neurodegenerative 

diseases including ALS, Huntington’s Disease (HD), PiD, Parkinson’s disease (PD), 

and Alzheimer’s disease (AD) (Eng and Ghirnikar, 1994; Eng et al., 2000; 

Middeldorp and Hol, 2011).  The anatomical region, severity of gliosis, and age of 

onset vary between the different neurodegenerative diseases (Middeldorp and 

Hol, 2011).  In the Danish FTD-3 family astrogliosis is observed in all layers of the 

frontal cortex but the hippocampus and cerebellum are spared (Holm et al., 

2007).  The hippocampus, although spared of atrophy in Danish FTD-3 pathology, 

does contain p62-positive inclusions and is the site of extensive neuropathology 

in a number of neurodegenerative diseases including HD (Hassel et al., 2008) and 

AD (Muramori et al., 1998).  The cerebellum is involved in motor control, gait and 

balance and is also affected in a number of neurodegenerative diseases including 

the spinocerebellar ataxias (Orr, 2012).  Furthermore the CHMP2B knockout 

mice demonstrate limb and gait abnormalities (chapter 4).  In this study 

immunohistochemical (IHC) staining for GFAP has been used as a marker of 

astrogliosis.   

 

Ionized calcium binding adaptor molecule 1 (Iba1) is uniquely expressed in 

microglia (Ito et al., 1998).  In the CNS, microglia have a similar role to 

macrophages in peripheral tissue; they are highly specialised cells that are 

greatly influenced by their cellular environment and have a number of distinctive 

features including their ramified morphology and low level basal occurrence in 

the absence of pathology (Hanisch and Kettenmann, 2007; Perry et al., 2010).  In 

response to acute brain injury or chronic neurodegenerative disease, microglia 

are up-regulated resulting in ‘activated microglia’.  Activated microglia undergo a 

change in their cellular morphology which is characterised by shortened and 
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extensively branched processes and hypertrophy of the cell body (Perry et al., 

2010).   

 

The presence of activated microglia is a useful indicator of inflammatory 

pathology.  Activated microglia have been observed in a number of chronic 

neurodegenerative diseases including AD (Thangavel R, 2011), ALS and FTD 

(Brettschneider et al., 2012).  The ability to identify activated microglia using IHC 

techniques is a useful diagnostic tool (Perry et al., 2010). Accordingly, in this 

study Iba1 antibody has been used as a marker of activated microglia to identify 

any evidence for neurodegeneration and neuroinflammation. 

 

Histology panels of the frontal cortex (figures 3.7), CA3 region of the 

hippocampus (figures 3.8) and the cerebellum (figures 3.9) of Chmp2b knockout 

(Chmp2b-/-) and Chmp2b wild type (Chmp2b+/+) mice at 12, 18 and 24 months 

stained with hematoxylin and eosin (H&E), GFAP and Iba1 are shown below. 



120 

 

 

Figure 3.7 Hematoxylin & Eosin (H&E), GFAP and Iba1 staining of the frontal cortex region 

of Chmp2b wild type (Chmp2b
+/+

) and Chmp2b knockout (Chmp2b
-/-

) mice at 12, 18 and 24 

months.  

No difference is observed in the gross morphology, as assessed by H&E in the frontal cortex of  

Chmp2b
-/- 

mice at any age examined (a-c) compared with the frontal cortex of Chmp2b
+/+

 mice at 

age-matched time points (d-f).  Immunostaining with GFAP and Iba1 does not demonstrate 

increased astrogliosis or activated microglia in Chmp2b
-/- 

mice frontal cortex at any time point (g-i; 

m-o) compared to age-matched Chmp2b
+/+

 mice frontal cortex (j-l; p-r). N=3; scale bar=100µm. 
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Figure 3.8 Hematoxylin & Eosin (H&E), GFAP and Iba1 staining of the CA3 region of the 

hippocampus in Chmp2b wild type (Chmp2b
+/+

) and Chmp2b knockout (Chmp2b
-/-

) mice at 

12, 18 and 24 months.   

No difference is observed in the gross morphology, as assessed by H&E in CA3 region of  

Chmp2b
-/- 

mice at any age (a-c) compared with the same region of Chmp2b
+/+

 mice at age-matched 

time points (d-f).  Immunostaining with GFAP and Iba1 does not demonstrate increased 

astrogliosis or activated microglia in Chmp2b
-/- 

mice hippocampus at any age (g-i; m-o) compared 

to age-matched Chmp2b
+/+

 mice frontal cortex (j-l; p-r). N=3; scale bar=100µm. 
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Figure 3.9  Hematoxylin & Eosin (H&E), GFAP and Iba1 staining of the cerebellum in 

Chmp2b wild type (Chmp2b
+/+

) and Chmp2b knockout (Chmp2b
-/-

) mice at 12, 18 and 24 

months.   

No difference is observed in the gross morphology, as assessed by H&E in the cerebellum of  

Chmp2b
-/- 

mice at any age (a-c) compared with the cerebellum of Chmp2b
+/+

 mice at age matched 

time points (d-f).  Immunostaining with GFAP and Iba1 does not demonstrate increased 

astrogliosis or activated microglia in cerebellum of Chmp2b
-/- 

mice (g-i; m-o) compared to age 

matched Chmp2b
+/+

 mice (j-l; p-r). N=3; scale bar=100µm. 
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Both Chmp2b knockout and wild type mouse brains demonstrate a basal 

increase in GFAP staining with increasing age across all regions analysed (figures 

3.7, 3.8 and 3.9).  The Chmp2b knockout mice show some larger stellate 

astrocytes and denser GFAP staining in the frontal cortex (figures 3.7g-l) and 

granule cell layer of the cerebellum (figure 3.9g-l).  With increasing age from 12 

to 24 months GFAP antibody stains for increasing stellate astrocytes in the 

frontal cortex of Chmp2b knockout mice (figure 3.10g-l). These observations 

were not considered significantly different between Chmp2b knockout mice and 

wild type mice but rather due to aging.  All neuropathology was reviewed with a 

neuropathologist SB to ensure interpretation was correct.   

 

In parallel with GFAP expression, Iba1 expression shows a trend towards 

increased basal expression with age (12-24 months) in all regions viewed; this is 

likely due to the normal aging process (figures 3.7m-r, 3.8m-r and 3.9m-r).  The 

microglial cellular morphology is not considered to be consistent with 

pathological microglial activation which would be expected to show larger 

microglia with greater branching and an explicit difference when compared with 

age-matched wild type mice.  

 

In summary, no distinctive pathology is identified in gross or cellular morphology, 

astrogliosis or microglial activation in Chmp2b knockout mouse brains at any of 

the ages examined.   

 

3.4.1.2 Synaptic density and cell loss 

Synaptophysin, also known as major synaptic vesicle protein p38 is a 

transmembrane glycoprotein highly expressed in neuroendocrine cells and in 

presynaptic neurotransmitter vesicles of neurons in the brain and spinal cord 

(Wiedenmann and Franke, 1985; Jahn et al., 1985).  Even though the function of 

synaptophysin has not been fully elucidated, it is known to interact with other 

synaptic proteins including the v-SNARE vesicle-associated membrane protein 

2/synaptobrevin II (VAMP2), suggesting a role in vesicle docking and 
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neurotransmitter release (Calakos and Scheller, 1994; Washbourne et al., 1995).  

Synaptophysin has also been implicated in the recycling of synaptic vesicles by 

associating with dynamin I, a GTPase required for endocytosis (Daly and Ziff, 

2002; D'Cruz et al., 2012). 

 

As synaptophysin is extensively expressed in presynaptic nerve terminals it has 

been adopted as a marker of pre-synaptic density (Calhoun et al., 1996).  Studies 

have reported varying decrease in synaptophysin expression in AD and other 

neurodegenerative disease brains including HD with dementia and Parkinson’s 

disease (PD) with dementia (Zhan et al., 1993; Masliah et al., 1996). 

 

Calbindin-D28k (molecular mass 28kDa) is an intracellular calcium binding 

protein that is thought to be involved in trans-cellular calcium transportation and 

may modulate effects occurring in response to changes in intracellular calcium 

concentrations as well as having a role in protecting neurons from excitotoxic 

insult (Mattson et al., 1991; Slomianka et al., 2011).  It is expressed both in the 

peripheral tissues (intestines, kidney), neuroendocrine cells (adrenal glands, the 

pituitary) as well as in restricted neuronal populations such as Purkinje cells in 

the cerebellum and mossy fibres of the dentate gyrus (Iacopino et al., 1990; 

Iacopino and Christakos, 1990; Slomianka et al., 2011). 

 

In aging and neurodegenerative disease, significant decreases have been 

reported in neuronal calbindin-D mRNA and protein expression (Iacopino et al., 

1990; Iacopino and Christakos, 1990).  In the aging brain, decrease of calbindin 

expression is seen in the cerebellum, corpus striatum, and nucleus basalis but 

not in the neocortex, hippocampus, amygdala, locus ceruleus, or nucleus raphe 

dorsalis (Iacopino and Christakos, 1990).  In neurodegenerative diseases a 

decrease in calbindin mRNA and protein expression is observed in disease-

specific regions; the substantia nigra in Parkinson disease, the corpus striatum in 

Huntington’s disease, the nucleus basalis in Alzheimer’s disease and the 

hippocampus and nucleus raphe dorsalis in Parkinson’s disease and Alzheimer’s 
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diseases. However, this decrease in calbindin expression is not seen in the 

cerebellum, neocortex, amygdala, or locus ceruleus of brains affected by these 

neurodegenerative disorders (Iacopino et al., 1990; Iacopino and Christakos, 

1990). 

 

Since calbindin expression is seen to decrease specifically in brain areas 

particularly affected during aging and in each of the neurodegenerative diseases, 

it is thought that decreased calbindin expression may lead to a failure of calcium 

buffering or intraneuronal calcium homeostasis, which contributes to calcium-

mediated excitotoxic neuronal damage during aging and in the pathogenesis of 

neurodegenerative diseases (Iacopino et al., 1990; Iacopino and Christakos, 

1990). 

 

In this study we have examined the expression of synaptophysin in the Chmp2b 

knockout mouse brain (figure 3.10) to investigate whether there is a change in 

presynaptic density in these mice compared to wild type age-matched mice with 

increasing age.  We have also examined calbindin expression in the brain of 

Chmp2b knockout mice (figure 3.11) as a marker of neuronal integrity and looked 

for potential cell loss with particular interest in the Purkinje cells of the 

cerebellum with increasing age. 
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Figure 3.10  Synaptophysin staining in Chmp2b knockout (Chmp2b
-/-

) and Chmp2b wild type 

(Chmp2b
+/+

) mouse brains at 12, 18 and 24 months.   

No difference is observed in synaptophysin staining in Chmp2b
-/- 

mouse frontal cortex (a-c), CA3 

hippocampal region (g-i) or cerebellum (m-o) compared with Chmp2b
+/+

 mice  at age matched 

time points. N=3; scale bar=100µm. 
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Figure 3.11  Calbindin expression in Chmp2b knockout (Chmp2b
-/-

) and Chmp2b wild type 

(Chmp2b
+/+

) mouse cerebellum at 12, 18 and 24 months.   

No difference in calbindin expression is noted in Chmp2b
-/- 

mouse cerebellum (a-ci) in comparison 

with Chmp2b
+/+

 mouse (d-fi) at age matched time points.  High power images of cerebellar 

Purkinje cells in Chmp2b
-/- 

(cii arrow) and Chmp2b
+/+

 (fii arrow) mouse cerebellum at 24 months 

time point confirms no difference in calbindin expression is noted in Chmp2b
-/- 

 compared to 

Chmp2b
+/+

 N=3; scale bar=100µm (a-f) and bar= 20µm (cii and fii). 

 

No difference was observed in synaptophysin expression in any of the brain 

regions examined at any age in Chmp2b knockout mice compared to aged 

matched wild type control mice (figure 3.10).  Furthermore, no difference was 

observed in calbindin expression Chmp2b knockout mice compared to wild type 

age-matched control mice at any time point in any brain region.  Representative 

staining of calbindin staining in the cerebellum is shown in figure 3.11.  The 

Purkinje cell loss phenotype seen in Atg5  and Atg7 CNS knockout mice (Hara et 

al., 2006; Komatsu et al., 2007) is not observed in the Chmp2b knockout (figure 

3.13). 

 

3.4.1.3 Inclusion pathology: ubiquitin, p62 and TDP-43  

Ubiquitin is a small 8.5kDa regulatory protein composed of 76 amino acids found 

in nearly all eukaryotic cells.  It is involved in a vast array of molecular and 

cellular functions (reviewed in (Rogers et al., 2010)).   In yeast and mammals 

many plasma membrane proteins and receptors destined for degradation are 

tagged with ubiquitin and directed to either the ubiquitin proteasome system 

(UPS) or the lysosomal degradation pathway to be broken down and recycled.  



128 

 

One or more ubiquitin molecules bind selectively to proteins, a process termed 

monoubiquitination and polyubiquitination respectively.  The ubiquitin tags act 

as signals directing proteins and receptors to the proteasome system or 

lysosomal degradation pathway (reviewed in (Rogers et al., 2010)).   

 

Ubiquitin inclusions localised to the nucleus and cytoplasm are striking 

pathological features of a significant number of neurodegenerative disorders, 

including HD, PD, AD, ALS, ataxias, FTLD and FTD-3 (Holm et al., 2007; Nijholt et 

al., 2011)).  Therefore we have used ubiquitin as part of a panel of antibodies 

that are used in the diagnosis of neuropathological disorders and to investigate 

whether the depletion of Chmp2b in mice results in ubiquitin inclusions in the 

mouse brain.  

 

The p62 protein/sequestosome 1 (SQTSM1) (from here on referred to as p62) 

associates with ubiquitinated proteins and the autophagy marker microtubule 

associated light chain 3 (LC-3) protein (Pankiv et al., 2007).  The C-terminal of the 

p62 protein contains an ubiquitin association (UBA) amino acid sequence that 

interacts with ubiquitinated proteins and an LC-3 interacting region (LIR) (also 

termed the LC3 recognition sequence (LRS) to interact with LC-3 (Tanida et al., 

2004a; Tanida et al., 2004b; Ichimura et al., 2008).  Ultrastructural data show 

that p62 is localised to autophagosomes via LC-3 interaction (Komatsu et al., 

2007; Nezis et al., 2008; Komatsu and Ichimura, 2010) and that p62 associated 

with ubiquitinated proteins are transported into autophagosomes suggesting 

that p62 may act as a receptor for ubiquitinated proteins to be degraded by 

lysosomes via autophagy (Bjorkoy et al., 2005; Pankiv et al., 2007; Komatsu and 

Ichimura, 2010).  

 

As p62 is localised to autophagosomes through its interaction with LC-3 and 

constantly degraded by the autophagosome-lysosome system, disrupting 

autophagy results in the accumulation of p62 inclusions (Komatsu et al., 2007; 
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Nezis et al., 2008). Furthermore, mutations in the LRS region of p62 also result in 

inclusion formation even in the presence of functioning autophagy system.  This 

is thought to be due to p62-LRS mutant escaping efficient autophagy leading to 

its build up and inclusion formation (Ichimura et al., 2008; Komatsu and 

Ichimura, 2010). 

 

In FTD-3 human brains, p62 inclusions co-localise with ubiquitin aggregates 

(Holm et al., 2007), therefore p62 has been used as (1) a marker of pathology 

and (2) because of its localisation to autophagosomes and interaction with LC-3, 

it is also used as a surrogate marker of autophagy (Komatsu and Ichimura, 2010).  

As part of our panel of antibodies, we did attempt to optimise a number of 

commercially available LC-3 antibodies for immunohistochemistry as a marker of 

autophagosomes and autophagy but regrettably, none of the antibodies proved 

successful for IHC in formalin fixed paraffin-embedded tissue in our hands.  

The Transactivation response (TAR) DNA binding protein with molecular weight 

43kDa (TDP-43/TARDTBP) was identified by Neumann and colleagues in 2006 as 

the component of ubiquitin inclusions (Neumann et al., 2006) in most cases of 

FTLD with ubiquitin inclusions and in most cases of ALS.  TDP-43 is a highly 

conserved neuronal nuclear protein involved in numerous cellular processes and 

is ubiquitously expressed in tissues including neurons and glial cells (Buratti et 

al., 2001; Buratti et al., 2004; Mercado et al., 2005). 
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Figure 3.12 Ubiquitin, p62 and TDP-43 staining in the frontal cortex of Chmp2b wild type 

(Chmp2b
+/+

) and Chmp2b knockout (Chmp2b
-/-

) mice at 18 and 24 months of age.   

Ubiquitin and p62 inclusions are not observed in the frontal cortex of either Chmp2b
-/- 

or 

Chmp2b
+/+ 

at any age (a-h). Immunostaining with TDP-43 demonstrates normal nuclear staining 

but no pathological staining at any age (i-l). Scale bar = 20µm. 
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Figure 3.13 Ubiquitin, p62 and TDP-43 staining in the CA3 region of the hippocampus of 

Chmp2b wild type (Chmp2b
+/+

) and Chmp2b knockout (Chmp2b
-/-

) mice at 18 and 24 months.   

Ubiquitin and p62 inclusions are not observed in the CA3 region of Chmp2b
-/- 

or Chmp2b
+/+ 

at any 

age (a-h). Immunostaining with TDP-43 demonstrates normal nuclear staining but no pathological 

staining at any age (i-l). Scale bar = 20µm. 
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Figure 3.14  Ubiquitin, p62 and TDP-43 staining in the cerebellum of Chmp2b wild type 

(Chmp2b
+/+

) and Chmp2b knockout (Chmp2b
-/-

) mice at 18 and 24 months.   

Ubiquitin and p62 inclusions are not observed in the cerebellum of Chmp2b
-/- 

or Chmp2b
+/+ 

at any 

age (a-h). Immunostaining with TDP-43 demonstrates normal nuclear staining but no pathological 

staining at any age (i-l). Scale bar = 20µm. 
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Ubiquitin (figures 3.12a-b, 3.13a-b and 3.14a-b) and p62 (figures 3.12e-f, 3.13e-f 

and 3.14e-f) neuronal cytoplasmic inclusions (NCI) and nuclear inclusions (NI) are 

not observed in Chmp2b knockout brains in any region examined.  Diffuse 

cytoplasmic staining is retained and the pattern and frequency of ubiquitin and 

p62 staining likely represent normal physiological staining.  This is supported by 

the observation that the ubiquitin (figures 3.12c-d, 3.13c-d and 3.14c-d) and p62 

(figures 3.12g-h, 3.13g-h and 3.14g-h) staining patterns are also present in age-

matched wild type Chmp2b mouse brains. 

 

FTD-3 cases are found to be negative for pathologic TDP-43 staining, however as 

TDP-43 positive inclusions are found in tau negative, ubiquitin positive FTLD 

cases and that TDP-43 is associated with ubiquitin inclusions, we have included 

TDP-43 in our panel of antibodies.  In this study TDP-43 staining shows strong 

nuclear localisation in both Chmp2b knockout and wild type control mice in all 

regions viewed.  No characteristic pathologic TDP-43 staining is identified as 

reported by Sampathu and colleagues (2006) (Sampathu et al., 2006) and 

Neumann and colleagues (2006) (Neumann et al., 2006) in the Chmp2b knockout 

or wild type mice at any age examined. 

 

3.4.1.4 Endosome markers 

Mannose-6-phosphate (M6P) receptors (M6PR) are integral membrane 

glycoproteins.  Two M6P receptors are recognised; the ~46kDa cation-dependent 

M6PR (CD-M6PR) and the ~300kDa cation-independent M6PR (CI-M6PR) (Ghosh 

et al., 2003).  M6PR are multifunctional receptors involved in a vast array of 

cellular processes, one function which CI-M6PR and CD-M6PR share is that they 

bind to newly synthesized lysosomal hydrolases in the trans-Golgi network (TGN) 

and deliver them to pre-lysosomal compartments. Subsequently, lysosomal 

hydrolases are delivered through the endocytic pathway into lysosomes (Ghosh 

et al., 2003).  Hydrolases are recognised by M6PR through binding of their M6P 

recognition moieties to the receptors.  Then the ligand-receptor complex is 

packaged into molecular carriers that transport their cargo to target endosomes, 
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followed by recycling of receptors back to the TGN. M6PR sorting is directed by 

several sorting signals in the cytoplasmic tail of the receptor (Ghosh et al., 2003).   

 

Although M6PR shuttles between early endosomes, TGN, recycling endosomes, 

late endosomes and the plasma membrane and is notably absent in lysosomes, 

the steady state distribution of MPRs is predominantly within late endosomes. 

Therefore it is used as a marker of late endosomes (Ghosh et al., 2003).  

 

Enlarged endosomes positive for M6PR have been identified in human FTD-3 

brains and fibroblasts (Holm et al., 2007; Urwin et al., 2010a). In this study M6PR 

immunostaining has been used as a marker of late endosomes and to investigate 

whether the enlarged endosome phenotype identified in human tissues is also 

present in the mouse models.  The M6PR antibody (MA1-066 Cambridge 

Bioscience/Fisher Scientific) used was generated using purified bovine ~300kDa 

Cl-MPR as the immunogen and recognizes an epitope in the extracellular domain 

of CI-MPR (M6PR MA1-066 datasheet). 

 

The lysosome associated membrane protein 1 (LAMP-1) is a type I 

transmembrane protein with a large luminal domain, a transmembrane domain 

and a C-terminal cytoplasmic tail.  LAMP-1 is a 40kDa major lysosomal protein 

localised to the lysosome limiting membrane.  Post glycosylation, the mass of 

LAMP-1 glycoprotein increases to 120kDa.  Late endosome and lysosome limiting 

membranes are thought to be important in separating the potent acid 

hydrolases in lysosomes from other cellular constituents (Eskelinen, 2006).  

Lysosome associated membrane protein 2 (LAMP-2) another lysosomal 

transmembrane glycoprotein shares significant homology with LAMP-1. These 

two lysosomal membrane proteins are thought to be involved in the interaction, 

maturation and fusion of the lysosomes with each other as well as with other 

cellular compartments including endosomes, phagosomes and the plasma 

membrane in the endocytosis and phagocytosis pathways (Jager et al., 2004; 

Eskelinen et al., 2006; Saftig et al., 2008).  It is estimated that LAMP-1 and LAMP-
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2 contribute up to 50% of total lysosomal proteins (Hunziker et al., 1996) and 

that the presence of LAMP proteins is a key definition of lysosome 

compartments (Kornfeld and Mellman, 1989). 

 

Mice deficient in LAMP-1 are found to be viable and fertile and except for mild 

astrogliosis, tissues do not demonstrate explicit pathology, however an up 

regulation of LAMP-2 is observed in the kidney, spleen and heart (Andrejewski et 

al., 1999; Eskelinen, 2006).  Strikingly, LAMP-2 deficient mice show a severe 

phenotype, with 50% mortality at 20-40 days and extensive accumulation of 

autophagic vacuoles in multiple peripheral organs (Eskelinen, 2006; Saftig et al., 

2008).  These observations suggest that LAMP-2 is able to compensate for the 

loss of LAMP-1 but not vice versa.  Furthermore, double LAMP-1/LAMP-2 

deficient mice are embryonic lethal at E14.5-E16.5 and exhibit enlarged 

autophagic vacuoles (Eskelinen et al., 2004; Eskelinen, 2006). 

 

Early endosomes are a major sorting compartment from which cellular proteins 

and receptors are transported to lysosomes for degradation or recycled to the 

plasma membrane.  Early Endosome Antigen 1 (EEA1) is an evolutionarily 

conserved 180kDa protein identified on early endosomes (Raiborg et al., 2001; 

Stinton et al., 2004). 

 

EEA1 co-localizes with transferrin receptor and Rab5 (early endosome) but not 

Rab7 (late endosome) (Mu et al., 1995).  It is a hydrophilic peripheral membrane 

protein present in cytosol and membrane fractions. Immunoelectron microscopy 

reveals EEA1 is associated with tubulovesicular early endosomes (Mu et al., 

1995).  Autoantibodies to EEA1 have been associated with neurological diseases 

including Multiple Sclerosis (MS) and Lower Motor Neuron (LMN) disease (Selak 

et al., 1999). 

 

Other endosomal markers were also tested including late endosome markers 

Rab-7 and CD63, and lysosome marker LAMP-2.  However, the commercially 
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available antibodies tested did not produce reproducible staining and could not 

be suitably optimised to be included in our panel of antibodies (data not shown). 

In this study we have looked at the immunohistological expression of early 

(EEA1) and late (M6PR and LAMP-1) endosome markers to probe whether the 

depletion of Chmp2b in mice results in endosome pathology. 
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Figure 3.15 M6PR, LAMP-1 and EEA1 endosome markers in the frontal cortex of Chmp2b 

wild type (Chmp2b
+/+

) and Chmp2b knockout (Chmp2b
-/-

) mice at 12, 18 and 24 months.   

Endosome markers M6PR (a-f), LAMP-1 (g-l) and EEA1 (l-r) are seen as small punctate granular 

staining clustering in the perinuclear region and neuronal cell body of cortical neurons and neurites 

to varying intensity.  M6PR is a marker of late endosomes, LAMP-1 is associated with lysosomal 

membranes and EEA1 an established marker of early endosomes.  No difference is observed 

between Chmp2b
-/-

 and Chmp2b
+/+

 with any of the markers used. scale bar=20µm. 
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Figure 3.16  M6PR, LAMP-1 and EEA1 endosome markers in CA3 region of the 

hippocampus of Chmp2b wild type (Chmp2b
+/+

) and Chmp2b knockout (Chmp2b
-/-

) mice at 

12, 18 and 24 months. 

Endosome markers M6PR (a-f), LAMP-1 (g-l) and EEA1 (l-r) are seen as small punctate granular 

staining clustering in perinuclear and neuronal cell body regions in the molecular layer, granule 

cell layer and long mossy fibres of the hippocampus to varying intensities.  No difference is 

observed between  Chmp2b
-/-

 and Chmp2b
+/+

 with any of the markers. scale bar=20µm. 
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Figure 3.17 M6PR, LAMP-1 and EEA1 endosome markers in the cerebellum of Chmp2b 

wild type (Chmp2b
+/+

) and Chmp2b knockout (Chmp2b
-/-

) mice at 12, 18 and 24 months.   

Endosome markers M6PR (a-f), LAMP-1 (g-l) and EEA1 (l-r) are seen as small punctate granular 

staining clustering in perinuclear and neuronal cell body regions of Purkinje cells, in the cerebellar 

molecular layer and within the branches of climbing and mossy fibres.  No difference is observed 

between  Chmp2b
-/-

 and Chmp2b
+/+

 with any of the markers. scale bar=20µm. 
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The endosome and lysosome markers applied, M6PR, LAMP-1 and EEA1 staining 

are seen as small granular speck-like perinuclear staining with prominent 

localisation to the neuronal cell body. Some nuclear staining is also evident, 

however it is also noted that not all nuclei are stained.    

 

In the frontal cortex, large cortical neurons demonstrate positive staining in the 

neuronal cell body for M6PR, LAMP-1 and EEA1.  In the CA3 region of the 

hippocampus all three endosome markers are present in the molecular layer, 

granule cell layer and long mossy fibres to varying intensities.  This distribution 

likely reflects the dynamic endosomal activity in transporting and degrading 

proteins.  In a comparable manner M6PR, LAMP-1 and EEA1 are present in the 

Purkinje cells of the cerebellum, in the cerebellar molecular layer and within the 

branches of climbing and mossy fibres.  No discernible difference is noted in 

endosome or lysosome staining between Chmp2b knockout and wild type brain 

regions at any age examined.  To determine whether morphological changes 

other than gross enlargement of endosomes/lysosomes occurs, electron 

microscopic immunogold labelling would need to be applied.  

 

 

3.4.2 Lumbar spinal cord pathology 

The Chmp2b knockout mice show a distinctive predominantly lower limb 

abnormal phenotype most strikingly observed in their gait (chapter 4).  

 

Therefore the ventral horn of lumbar and thoracic spinal cord where motor 

neurons reside was examined to investigate the possible pathological basis of the 

gait abnormality identified in the Chmp2b knockout mice at 12, 18 and 24 

months in comparison to age-matched wild type mice.  Data for lumbar spinal 

cord region only is presented in this chapter. 

 

The spinal cord was dissected and fixed in 10% buffered formalin (as detailed in 

chapter 2) and subsequently the cervical, thoracic and lumbar regions were 
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dissected, embedded in paraffin and sectioned.  Figure 3.18 shows a 

representative image of the lumbar spinal cord at low power magnification (x2.5) 

demonstrating the distinctive butterfly shape of the grey matter and the 

surrounding white matter, and high power magnification (x40) showing motor 

neurons with nissl stain.   

 

In a consistent manner to examining the mouse brains, a panel of antibodies as 

described in section 3.4.1 was used to investigate the histological basis of the 

spinal cord pathology.  H&E staining was used to examine gross morphology and 

cyto-architecture of the lumbar spinal cord region (figure 3.19). GFAP was used 

to investigate the presence of astrogliosis (figure 3.20) and Iba1 was used to 

reveal activated microglia (figure 3.21).  Ubiquitin and p62 immunostaining was 

used to identify neurodegenerative inclusions and M6PR expression used as a 

marker of late endosomes (figure 3.22). 

 

 

 

Figure 3.18 Cresyl violet staining of the lumbar spinal cord at low and high magnification.   

Cresyl violet staining of the lumber region of the spinal cord shows (a) the classic butterfly shape 

with grey matter of the spinal and surrounding white matter.  The motor neurons reside within the 

ventral horn of the spinal cord- red boxed region a; and high power magnification showing motor 

neurons (b) . Scale bars a=500µm and b=20µm. 
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3.4.2.1 Gross morphology, astrogliosis and activated microglia 

Haematoxylin and Eosin staining was used to examine gross cellular morphology 

and GFAP and Iba1 staining were used to examine the presence of astrogliosis 

and activated microglia in the lumbar spinal cord of the Chmp2b knockout mice 

at 12, 18 and 24 months to determine whether the gait abnormality is the result 

of inflammatory or degenerative pathology. 

 

 

Figure 3.19 Haematoxylin and Eosin staining of lumbar spinal cord.  

Ventral horn of the lumbar spinal cord showing intensely stained lower motor neurons (a-f).  No 

difference is observed in Chmp2b
-/-

 (a-c) and Chmp2b
+/+

 (d-f) at any age examined.  Scale bar 

=20µm. 
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Figure 3.20 GFAP expression in the lumbar spinal cord.   

Ventral horn of the lumbar spinal cord reveals an increase of GFAP expression with age in both 

Chmp2b
-/-

 (a-c) and Chmp2b
+/+

 (d-f), this increase in GFAP expression is consistent with natural 

aging and not considered to be pathologic. Scale bar =100µm. 

 

 

 

Figure 3.21  Iba1 expression in the lumbar spinal cord.   

Ventral horn of the lumbar spinal cord reveals a moderate increase in Iba1 expression with age in 

both Chmp2b
-/-

 (a-c) and Chmp2b
+/+

 mice (d-f), this increase in Iba1 expression is consistent with 

natural aging and is not considered to be pathologic. Scale bar =100µm. 
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H&E staining does not reveal any distinctive pathology in the ventral horn of the 

lumbar spinal cord (figure 3.19). Furthermore, the expression of both GFAP and 

Iba1 is seen to increase with increasing age in both Chmp2b knockout and wild 

type mice (figure 3.20 and 3.21).  The increase in expression of GFAP and Iba1 in 

the spinal cord of Chmp2b knockout mice and wild type mice is not considered to 

be consistent with pathological inflammation, as advised by consultant 

neuropathologist SB, and is considered consistent with normal aging.   

 

In summary, no pathological difference is identified in gross or cellular 

morphology, astrogliosis or microglial activation in the Chmp2b knockout lumbar 

spinal cord at any age examined.   

 

3.4.2.2 Ubiquitin, p62 and M6PR 

The lumbar spinal cord was examined for the presence of ubiquitin and p62 

inclusions to investigate whether the gait phenotype correlates with inclusion 

formation typical of neurodegenerative disease.  Motor neurons in the ventral 

horn of the lumbar spinal cord in Chmp2b knockout mice do not exhibit ubiquitin 

or p62 inclusions characteristic of neurodegenerative disease at any age 

examined.   

 

M6PR expression in the lumbar spinal cord of Chmp2b knockout mice was 

examined as a marker of late endosome expression (Ghosh et al., 2003) and 

showed no difference to wildtype controls.  
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Figure 3.22 Ubiquitin, p62 and M6PR expression in the lumbar spinal cord.   

Ventral horn of the lumbar spinal cord reveals a sparse number of ubiquitin (a-f) and p62 (g-l) 

inclusions in motor neuron cell bodies and grey matter of the ventral horn. These inclusions are 

present in both Chmp2b
-/-

 and Chmp2b
+/+

 across all ages examined (a-l). M6PR expression is seen 

as punctate-granular staining most evident in the large motor neurons, no difference in M6PR 

expression is evident between Chmp2b
-/-

 and Chmp2b
+/+

 at any age  examined (m-r).  Scale bar 

=20µm. 
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3.4.3 Sciatic nerve pathology 

The sciatic nerve begins in the lower back and runs through the gluteus and 

down the lower limb. It is the longest and widest single nerve in the body, 

starting from the top of the leg to the foot on the posterior aspect.  The sciatic 

nerve supplies nearly the whole of the leg, including skin, muscles, and the back 

of the thigh right down to the foot (Drake et al., 2009). 

 

Sciatic nerve samples were processed in araldite resin and semi-thin 

(approximately 1 m) transverse sections stained with toluidine blue and 

examined under LM. 

 

In peripheral neuropathy, toluidine blue demonstrates axonal loss with typical 

features including disintegration of the myelin sheath forming oval fragments of 

myelin and cellular debris.  We examined the mouse sciatic nerve to determine 

whether the abnormal gait in the Chmp2b knockout mice may be due to 

peripheral nerve pathology degeneration. 

 

 

Figure 3.23 Toluidine blue stain of sciatic nerve transverse section at 24-month time point at 

low and high power magnification.  

Low power mouse sciatic nerve demonstrates the gross morphology of the sciatic nerve (ai and bi).  

High power reveals transverse axons with myelin sheaths (aii and bii). No distinctive difference is 

noted between Chmp2b
-/-

 and Chmp2b
+/+

 at 24 months of age.  Scale bar; ai and bi =100µm; aii 

and bii =20µm. 
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Toluidine blue staining of sciatic nerve does not reveal any distinctive pathology 

in Chmp2b knockout mice at 24 months (figure 3.23). 

 

3.4.4 Muscle pathology 

Finally, we examined the quadriceps to determine if the Chmp2b knockout mice 

have muscle pathology.  Skeletal muscles such as the quadriceps are neatly 

aligned long fibres with multiple pericellular nuclei.  Critically, skeletal muscles 

are predominantly post mitotic cells.  In the event of muscle damage these long 

muscle fibres re-enter the cell cycle and undergo mitosis in an effort to repair 

damage.  Damage in skeletal muscle is seen as regions of shorter muscle fibres 

with centrally located nuclei. 

 

H&E staining is particularly informative in skeletal muscle histology. Hematoxylin 

and eosin distinguish the muscle fibre nuclei and cytoplasm and connective 

tissue respectively with good clarity.  H&E staining was used on Chmp2b-/- and 

Chmp2b+/+ mouse quadriceps to reveal any gross pathologic changes (figure 

3.25). 

 

H&E staining did not reveal any histological changes consistent with 

inflammation, damage or degeneration in the Chmp2b-/- mouse quadriceps.  

Specifically, there is no neutrophil infiltration or centrally located nuclei in 

muscle fibres at any time point examined (figure 3.24). 
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Figure 3.24 H&E staining of quadriceps longitudinal section at 12, 18 and 24 months.  

No distinctive gross pathology is observed in the Chmp2b
-/-

 and Chmp2b
+/+

 quadriceps at any age 

examined. Scale bar= 20µm. 
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3.5 Chapter Discussion 

C-terminal truncating mutations in CHMP2B were first identified in a Danish 

family presenting with clinical symptoms of FTD and distinctive neuropathology 

at post-mortem (Gydesen et al., 2002; Skibinski et al., 2005; Holm et al., 2007).  

To evaluate whether CHMP2B mutations result in the loss of function of the 

native CHMP2B protein and to investigate the function of the native Chmp2b 

protein, Chmp2b knockout mice were generated and examined for pathology in 

the central nervous system, the sciatic nerve, representative of peripheral 

nervous tissue as well as muscle sections.  This chapter has set out the molecular 

and histological characterisation of these Chmp2b knockout mice. 

 

Chmp2b knockout mice were generated and bred to homozygosity from 

commercially purchased frozen embryos harbouring the pGT0lxf gene trap 

within intron 2 of mouse Chmp2b gene.  Consequently Chmp2b protein was 

determined to be 85% (p=.0005) depleted (figures 3.5 and 3.6) in knockout mice 

compared to wild type controls. 

 

Histological examination of mouse brain, spinal cord quadriceps muscle (H&E 

stain) and sciatic nerve (toluidine blue) did not reveal any evidence of gross 

pathology.  Immunohistochemical analysis did not find evidence for either 

astrogliosis or microglial activation associated with neuroinflammation and 

neurodegeneration.  In addition, neither p62 nor ubiquitin inclusions were 

uncovered in the brain or spinal cord associated with neurodegeneration.  Light 

microscopic immunohistochemical analysis of late endosome marker; M6PR, 

lysosome marker; LAMP-1, and early endosome marker, EEA1 did not identify 

changes resulting from Chmp2b depletion including changes associated with 

CHMP2B mutations such as enlarged endosomes as seen in cellular models of 

CHMP2B mutations (Skibinski et al., 2005; Filimonenko et al., 2007; Urwin et al., 

2010a). 
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It has previously been reported that CHMP4B/mSnf7-2  pGT0lxf gene trap 

knockout mice are embryonic lethal  (E7.5-8.5) (Lee et al., 2007) and that 

selective knockdown of mouse CHMP4B/mSnf7-2 by siRNA in mature cortical 

neurons results in dendritic retraction of cortical neurons in culture (Lee et al., 

2007; Lee et al., 2009).  Furthermore, CHMP4B/mSnf7-2 and CHMP2B form a 

complex in the ESCRT pathway demonstrating they are potentially 

interdependent in the endosome-lysosome pathway (Lee et al., 2007).  

Immunohistochemical staining of Chmp2b knockout brain sections with 

synaptophysin or calbindin did not reveal any evidence for neuronal loss even at 

advanced age of 24 months (figures 3.10 and 3.11). 

 

Histological data presented in this chapter do not identify any pathology or 

marked difference in Chmp2b knockout mice compared to age-matched Chmp2b 

wild type mice in any of the tissues or at any age examined.  Even so, Chmp2b 

knockout mice show a definite abnormal gait and rotarod deficit described in 

chapter 4.   

 

Lack of pathology demonstrated in Chmp2b knockout mice may be due to other 

ESCRT III subunits such as Chmp2a, an orthologue of Chmp2b, compensating for 

the function Chmp2b protein.  It is also important to consider that subtle 

variations not evident by light microscopic examination may have been detected 

by quantification of immunohistochemical markers, particularly synaptophysin 

and endosomal markers described.  It is plausible that 85% depletion of Chmp2b 

is insufficient to cause pathology or that pathology is sufficiently slow and not 

apparent at the oldest age examined (24 months of age), however this is unlikely 

as chapter 4 reveals, the Chmp2b knockout mice demonstrate a progressive 

neurological phenotype. 

 

The retention of 15% of Chmp2b protein may possibly be due to splicing out of 

the pGT0lxf gene trap vector in a subset of cell populations.  It is worth 

considering whether the 15% of Chmp2b protein retention is sufficient to 
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prevent an embryonic lethal phenotype, and that perhaps the Chmp2b knockout 

neurological phenotype may be developmental due to a reduction of Chmp2b 

availability during embryonic development.  

 

This chapter does not provide data to support or reject embryonic abnormality 

in Chmp2b-/- mice, however, Lee and colleagues (2007) present data 

demonstrating that the depletion of Chmp4b/msnf7-2, an ESCRT III subunit that 

complexes with CHMP2B, results in dendritic retraction in cortical neurons in 

culture (Lee et al., 2007).  Therefore, one rationale may be that the lack of 

Chmp2b availability to complex with Chmp4b hinders neuronal branching during 

embryonic development.  To address whether the neurological phenotype in the 

Chmp2b knockout mice may be developmental in origin, it would be necessary 

to perform an embryonic developmental study.  Such a study may help provide 

data as to whether Chmp2b is necessary for nervous system development and 

maturation and whether significant depletion of Chmp2b results in inefficient 

neuronal branching and synapse formation during development leading to a 

consequent neurological phenotype. 

 

The neurological phenotype demonstrated in the Chmp2b knockout mice 

(chapter 4) is principally of the hind limbs.  CHMP2B point mutations of 

unconfirmed pathogenicity have been identified in 0.9% of ALS cases (4 out of 

433 screened).  All four CHMP2B mutation cases had clinical presentations of 

pure LMN disease termed Progressive Muscular Atrophy (PMA), in the absence 

of clinical FTD presentation (Cox et al., 2010).  Although these mutations are not 

confirmed to be pathogenic the accepted relationship between FTD and ALS 

suggests it may be worth considering whether the Chmp2b knockout phenotype 

may be somehow associated with loss or impairment of motor neurons in the 

spinal cord.  To determine this, additional studies would be required for example 

a study counting motor neurons in the lumbar spinal cord.  Ubiquitin inclusions, 

gliosis and loss of LMN are hallmark features of both human and mouse models 

of ALS.  This study has presented data demonstrating that H&E, GFAP and Iba1 



152 

 

staining do not reveal gross abnormality, gliosis or microglial activation in 

Chmp2b knockout lumbar spinal cord and immunohistochemical examination 

does not reveal ubiquitin or p62 inclusions.  It is plausible that if a more sensitive 

antibody such as CD68, also a marker of microglia is applied, evidence of 

microglial activation may be revealed that perhaps Iba1 is not sufficiently 

sensitive to detect.  A similar observation has been reported by Cox and 

colleagues (2010) where in human PMA cases microglial activation was observed 

only after applying CD68 antibody (Cox et al., 2010).   

 

In summary, the Chmp2b knockout mice generated do not recapitulate key 

pathology observed in human FTD-3.  The data presented in this chapter do not 

support the hypothesis that C-terminal truncating CHMP2B mutations cause 

FTD-3 by loss of function of the native CHMP2B protein.   
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4 Phenotyping Chmp2b Knockout Mice 

An essential component of characterisation of mouse models of disease is a 

detailed behavioural assessment, which clarifies the functional consequences of 

pathologies.  Since the publication of phenotype evaluation in the first 

successfully generated transgenic mouse (overexpressing growth hormone, 

published by Richard Palmiter and colleagues in Nature in 1982) (Palmiter et al., 

1982), systematic and quantitative assessment of phenotypes of mutant, 

transgenic and knockout mice has become standard practice in evaluating how 

well such mouse models recapitulate the behavioural basis of the associated 

human disease (Crawley, 2007).   

 

Cohorts from the Chmp2b knockout mouse colony have been assessed using the 

modified-SHIRPA primary screen to assess the presence of any overt phenotype 

at 12 months of age.  Survival analysis and change in weight with age is an 

established indicator of disease which has also been investigated in Chmp2b 

knockout mice.  Further assessment of motor function using rotarod and grip 

strength analysis and social behaviour using burrowing and nesting was 

performed at 4, 5 and 6 months of age.  It has been reported that the outcome 

of such rodent activities is related to the integrity of the hippocampus and 

prefrontal cortex (Deacon and Rawlins, 2005). 

 

4.1 Modified-SHIRPA protocol 

The SHIRPA (SmithKline Beecham Pharmaceuticals; Harwell, MRC Mouse 

Genome Centre and Mammalian Genetics Unit; Imperial College School of 

Medicine at St Mary’s; Royal London Hospital, St Bartholomew’s and the Royal 

London School of Medicine; Phenotype Assessment) protocol was developed as 

a tool to standardise phenotyping assessment of mutant, transgenic and 

knockout mouse models of human disease.  The original SHIRPA protocol 

published by Rogers and colleagues (1997) (Rogers et al., 1997) described a 

procedure to characterise mouse phenotypes in three stages - termed the 
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primary, secondary and tertiary screen (Rogers et al., 1997).  The primary screen 

uses observational assessment to compile a behavioural and functional profile, 

the secondary screen comprises a comprehensive behavioural assessment 

battery and pathological and biochemical analysis and the tertiary screen is 

tailored to the analysis of neurological phenotypes and is suitable for the 

assessment of rodent neurological models of disease (Rogers et al., 1997).   

 

This first SHIRPA protocol has been validated in a number of mouse models of 

disease including the Loa mouse model of ALS (Rogers et al., 2001), the naturally 

occurring mdx mouse model of muscular dystrophy (Rafael et al., 2000), Charcot-

Marie Tooth disease type 1 (Norreel et al., 2001) cerebral malaria (Martins et al., 

2010) and developing a systematic phenotype database for ENU mice (Isaacs et 

al., 2002; Masuya et al., 2004). 

 

The modified-SHIRPA protocol used in this study to phenotype Chmp2b knockout 

mice is adopted from the MRC Harwell Mammalian Genome unit (EMPReSS, 

2008).  The modified-SHIRPA protocol scores defined mouse phenotypes 

observed in 3 stages; 1) the viewing jar, 2) the observation arena and above the 

arena and 3) restraint and additional observations.  The main difference 

between the original SHIRPA protocol published by Rogers and colleagues (1997) 

(Rogers et al., 1997) and the 2008 modified-SHIRPA protocol adopted from MRC 

Harwell Mammalian Genetics unit (EMPReSS, 2008) is the absence of 

histological, biochemical, electrophysiology, learning and memory assessments 

as part of the extended SHIRPA protocol.  The modified-SHIRPA protocol is 

therefore a more rapid and high throughput phenotypic analysis that is designed 

to allow quantitative comparison of results both over time and between groups.  

In the event of sufficient N values SHIRPA scores can be analysed using x by y Chi 

squared non-parametric analysis. However, due to insufficient N values for 

individual phenotypes statistical analysis is not viable in this study and a 

descriptive commentary is provided using percentage of mice scoring for each 

phenotype. 
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The modified-SHIRPA protocol has been used to systematically score defined and 

additional phenotypes (described in chapter 2) as a primary assessment to 

identify overt phenotypes at 12 months of age in the Chmp2b knockout mice.  

This late ‘middle aged’ time point was chosen to allow for any potential 

progressive or late onset phenotype to become apparent in the initial phenotype 

screening. 

 

4.1.1 Viewing jar 

The first screening stage of the modified-SHIRPA protocol involves placing the 

mouse in a viewing jar and scoring for phenotypes during undisturbed 

observation of the mouse.  The animal’s body position, coat appearance, 

autonomic functions including defecation and urination as well as signs of over 

grooming [whiskers] and indicators of anxiety [biting and vocalisation] are 

scored. 
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Figure 4.1 Proportion of mice exhibiting phenotypes in viewing jar. 

 Chmp2b
-/-

 mice demonstrate an increase in over-grooming whiskers [Chmp2b
-/-

 mice 25% 

compared to Chmp2b
+/+

 mice 6.7%], evidence of biting [Chmp2b
-/-

 mice 31.3% compared to 

Chmp2b
+/+

 mice 6.7%]
 
and vocalisation [Chmp2b

-/-
 mice 25% compared to Chmp2b

+/+
 mice 

6.7%].  Chmp2b
-/-

 mouse scores in other phenotypes is comparable to Chmp2b
+/+

 mice. Chmp2b
-/-

 

mice N=16; Chmp2b
+/+

 mice N=15. 

 

 

Results from the first stage of the modified-SHIRPA protocol demonstrate that a 

greater proportion of Chmp2b-/- mice demonstrate an increased grooming 

phenotype, with 25% of Chmp2b-/- mice scoring positive for over-groomed 

whiskers compared to 6.7% of Chmp2b+/+ mice (figure 4.1).  It is necessary to 

consider that over-grooming of whiskers may be due to dominant cage mice 

over-grooming the whiskers of subordinates and not necessarily due to mice 

over-grooming themselves.  Nevertheless, a 3.7 fold difference between 

Chmp2b-/- and Chmp2b+/+ mice may be of biological importance since over-

grooming due to dominant cage effect will be common to both genotypes. 
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A greater proportion of Chmp2b-/- mice (31.3%) demonstrate evidence of biting 

compared to 6.7% of Chmp2b+/+ mice.  Similarly, Chmp2b-/- mice (25%) 

demonstrate increased vocalisation phenotype compared to 6.7% of Chmp2b+/+ 

mice (figure 4.1).  A greater proportion of Chmp2b-/- mice exhibiting biting and 

vocalisation phenotypes may be an indication that Chmp2b-/- mice are more 

anxious.  Slightly more Chmp2b-/- mice demonstrate tremor and urination 

phenotypes than Chmp2b+/+ mice, however the difference is too small to draw a 

firm conclusion from the data (figure 4.1).  Scores for all other phenotypes 

measured in the viewing jar are comparable between Chmp2b-/- mice and 

Chmp2b+/+ mice (figure 4.1). 

 

4.1.2 Observation arena 

The second screening stage of the modified-SHIRPA protocol involves 

transferring the mouse from the viewing jar into the observation arena where 

mice are observed for exploratory behaviour.  The observation arena is a 

transparent rectangular Perspex box measuring L60xW37xH18 cm and 

containing at its base a white Perspex sheet marked with 15 squares (11x11 cm).  

 

Basic motor function is assessed by scoring locomotor activity, gait and tail 

elevation.  Sensory responses are assessed by scoring mouse startle response 

and touch escape.  Positional passivity scores the extent to which the mouse 

struggles when held by the tail, when loosely scruffed at the neck and when 

placed in supine position. 
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Figure 4.2 Proportion of mice exhibiting phenotypes in observation arena.   

93.8% of Chmp2b
-/-

 mice demonstrate an irregular gait phenotype compared to 26.7% of 

Chmp2b
+/+

 mice.  Other phenotypes in which Chmp2b
-/-

 mice demonstrate a modest score 

difference include positional passivity; (Chmp2b
-/-

 mice 62.5% compared to Chmp2b
+/+

 mice 

86.7%) and transfer arousal (Chmp2b
-/-

 mice 75% compared to Chmp2b
+/+

 mice 53.3%). Chmp2b
-

/-
 mice N=16, Chmp2b

+/+
 mice N=15. 

 

The most prominent phenotypic difference identified in the observation arena 

was an abnormal gait in Chmp2b-/- mice (15 out of 16 mice) (figure 4.2) but no 

significant difference was found in locomotor activity between Chmp2b-/- and 

Chmp2b+/+ mice (figure 4.3). 

 



159 

 

 

Figure 4.3 Mean locomotor activity (LMA) at 6 and 12 months of age. 

Mean locomotor activity is the number of squares crossed on the observational arena in 30 

seconds.  There is no significant difference in mean LMA between Chmp2b
-/-

 and Chmp2b
+/+

 mice 

at 12 months of age. Error bars= SEM; p=0.0973; Chmp2b
-/-

 mice N=16, Chmp2b
+/+

 mice N=15. 

 

75% of Chmp2b-/- mice demonstrate enhanced exploratory behaviour on being 

transferred to the observation arena compared to 63% of Chmp2b+/+ mice. Only 

Chmp2b-/- demonstrated an elevated tail phenotype (6.25%). Fewer Chmp2b-/- 

mice (62.5%) demonstrate a positional passivity phenotype compared to 

Chmp2b+/+ mice (86.7%) (figure 4.2), demonstrating reduced struggling in 

Chmp2b-/- mice when being handled.  In the observation arena the gait 

phenotype is the most clearly associated with Chmp2b-/- mice, although 

differences in other phenotypes are noted (transfer arousal, tail elevation, 

positional passivity). It is not possible to conclude based on these data alone that 

these phenotypes are genotype–specific. 
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After positional passivity assessment the mouse is held above the arena and 

assessed for neurological phenotypes including trunk curl and limb grasp.  Trunk 

curl and limb grasp phenotypes are indicative of neurological dysfunction, 

reviewed by Brooks and Dunnett (2009) while pinna and corneal reflex assess 

neurosensory function, reviewed by Crawley (2007) (Crawley, 2007; Brooks and 

Dunnett, 2009).  A small proportion of Chmpb2-/- mice (6.25%) demonstrate a 

limb grasp phenotype.  Notably Chmp2b-/- mice demonstrate prominently 

reduced pinna and corneal reflex compared to Chmp2b+/+ mice (figure 4.4). 

 

 

 

Figure 4.4 Proportion of mice scoring listed phenotypes above arena.   

Greater proportion of Chmp2b
-/-

 mice demonstrate an increase in limb-grasping (Chmp2b
-/-

 mice 

6.3% compared to no Chmp2b
+/+

 mice) and reduced pinna reflex (Chmp2b
-/-

 mice 6.3% compared 

to Chmp2b
+/+

 mice 13.3%)
 
and corneal reflex  (Chmp2b

-/-
 mice did not score for corneal reflex 

compared to Chmp2b
+/+

 mice 13.3%). Neither Chmp2b
-/-

 or Chmp2b
+/+

 mouse scored for trunk 

curl phenotype. Chmp2b
-/-

 mice N=16, Chmp2b
+/+

 mice N=15. 
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4.1.3 Restraint and other observations 

In the third screening part of the modified-SHIRPA protocol postural reflex is 

assessed by placing the mouse in a Perspex tube and turning the mouse so that 

it is rotated on its back.  Normal mice will automatically turn themselves over, by 

righting themselves onto four legs.  Neurological and neuromuscular dysfunction 

will affect the mouse righting reflex so that the mouse is unable to immediately 

right itself (Crawley, 2007).  It was observed that 68.7% of Chmp2b-/- mice 

demonstrated inefficient contact righting reflex, indicating potential underlying 

neurological or neuromuscular dysfunction (figure 4.5), compared with 6.7% of 

controls. 

 

 

 

Figure 4.5 Proportion of mice scoring for restraint and other observations.   

All Chmp2b
-/-

 mice demonstrate an irregular splayed gait (100%) which is not observed in 

Chmp2b
+/+

 mice.  Furthermore only Chmp2b
-/-

 mice are found to demonstrate foot tapping (56%) 

and twitching (31%).  Other observations of interest include poor contact righting reflex [Chmp2b
-

/-
 mice 68.8% compared to Chmp2b

+/+
 mice 6.7%] an irregular curled paw phenotype [Chmp2b

-/-
 

mice 75% compared to Chmp2b
+/+

 mice 6.7%]
 
and kinked tail [Chmp2b

-/-
 mice 62.5% compared 

to Chmp2b
+/+

 mice 26.7%]. Chmp2b
-/-

 mice N=16, Chmp2b
+/+

 mice N=15
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The term ‘splayed gait’ is used to describe a wide ‘waddling’ gait detected in the 

observation arena when scoring gait phenotype.  Splayed gait has been recorded 

under ‘other observations’ section of the modified-SHIRPA protocol as it is a very 

distinct observation from generic gait phenotypes, for instance, abnormal gait as 

a result of fighting scored in section 4.1.2.  Splayed gait was the most persistent 

and systematic phenotype identified in Chmp2b-/- mice; 100% of Chmp2b-/- mice 

demonstrated splayed gait; no Chmp2b+/+ mice were identified to demonstrate 

splayed gait (figure 4.5).  Other additional phenotypes of interest identified in 

Chmp2b-/- mice include ‘foot tapping’, curled paw (figure 4.6), twitching and 

kinked tail (figure 4.5 and 4.7).  Foot tapping describes repetitive tapping of the 

hind limb on the floor when initiating movement.  The curled paw describes the 

mouse holding one of its front paws in an abnormal position.  Both phenotypes 

generally occurred unilaterally. 

 

 

Figure 4.6 Curled paw phenotype.   

Image demonstrating curled paw (red arrow) phenotype identified in Chmp2b
-/- 

mice 
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Figure 4.7 Kinked tail phenotype. 

Image demonstrates kinked tail (red arrow) phenotype identified in Chmp2b
-/-

 mice 

 

4.1.3.1 Body weight 

Significant change in body weight is a reliable indicator of disease in both 

humans and mice.  If the transgene or gene depletion of interest affects appetite 

or metabolic function weight will be affected.  Genes associated with 

neurodegeneration may affect locomotor or neuromuscular dysfunction so that 

the mouse is not able to travel or rear its body to reach food (Crawley, 2007). 

 

At 18 months of age male Chmp2b-/- mice show significantly reduced mean body 

weight (32g) compared to age-matched male Chmp2b+/+ (49.5g) mice 

(**p<0.0001) (figure 4.8).  Female mice also show a reduction in mean body 

weight, 30.6g in female Chmp2b-/- compared to 41.7g in age-matched female 

Chmp2b+/+, however this difference does not reach statistical significance (figure 

4.9).  Although the weight loss in Chmp2b-/- mice occurs at an advanced age it 

may be suggestive of underlying disease associated with depletion of chmp2b 

protein. 
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Figure 4.8 Mean weight of male mice in grams of Chmp2b
-/-

 and Chmp2b
+/+

 from 4 to 18 

months of age.  

Male Chmp2b
-/-

 mice show a significant [ANOVA *p<0.0001] decrease in weight at 18 months 

compared to age-matched Chmp2b
+/+

 mice.  Error bars= SEM; Male Chmp2b
-/-

 N= 14 at 4 and 5 

months, N=15 at 6 months, N=13 at 12 months and N=7 at 18 months.  Male Chmp2b
+/+

 N= 15 at 

4 and 5 months, N=21 at 6 months, N=14 at 12 months and N=8 at 18 months. 

 

 

 

Figure 4.9 Mean weight of female mice in grams of Chmp2b
-/-

 and Chmp2b
+/+

 from 4 to 18 

months of age.   

Female Chmp2b
-/-

 mice demonstrate weight loss at 18 months, but it does not reach statistical 

significance compared to age-matched Chmp2b
+/+

 mice.  Error bars= SEM; Female Chmp2b
-/-

 N= 

13 at 4 and 5 months, N=23 at 6 months, N=14 at 12 months and N=5 at 18 months.  Female 

Chmp2b
+/+

 N= 14 at 4 and 5 months, N=25 at 6 months, N=16 at 12 months and N=12 at 18 

months. 
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4.2 Survival Analysis 

Survival analysis of Chmp2b knockout mice reveals that Chmp2b-/- mice have 

significantly reduced survival with median survival of 18 months in Chmp2b-/- 

mice and 22 months in Chmp2b+/+ mice (**p=0.0006) (figure 4.10).  This data 

taken together with the weight loss discussed in section 4.1.3.1 above (figure 4.8 

and figure 4.9) provide further indication that depletion of Chmp2b results in a 

pathological phenotype. 

 

 

 

Figure 4.10 Kaplan Meier survival analysis of Chmp2b
-/-

 and Chmp2b
+/+

 mice.   

Survival analysis demonstrates that Chmp2b
-/-

 mice have significantly reduced survival compared 

to Chmp2b
+/+

 mice.  Log Rank (Mantel-Cox analysis) ** p=0.0006.  Chmp2b
-/-

 N=97; Chmp2b
+/+

 

N=162. 
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4.3 Motor Function 

Almost all behaviour observed in mice requires movement, including gait and 

locomotion, change in body position, righting reflex, walking to food, as well as 

social behaviours such as burrowing, grooming and nesting.  Movement is 

controlled by motor function which when impaired leads to reduced or absence 

of such behaviour in mice.  For this reason standardised assessment of motor 

function is the most widely explored behavioural phenotype in neurological 

research (Brooks and Dunnett, 2009).  In this study motor function was assessed 

by using rotarod and grip strength analysis. 

 

4.3.1 Rotarod 

In this study the modified-SHIRPA battery screen has revealed that Chmp2b-/- 

mice demonstrate an irregular ‘splayed gait’ phenotype at 12 months of age.  To 

further investigate this phenotype, a cohort of Chmp2b knockout mice was 

tested using the rotarod protocol (detailed in chapter 2).  Rotarod phenotype 

analysis is a well-established means of testing motor coordination and balance 

(Crawley, 2007; Brooks and Dunnett, 2009)  

 

In brief, age-matched cohorts of male and female Chmp2b-/- and Chmp2b+/+  

mice at 4, 5 and 6 months mice were first given one practice trial on the rotarod.  

To test motor coordination and balance mice were placed on a rotarod with 

accelerating speed and timed for how long they could stay on the rotarod before 

falling off.  The latency to falling off the rotarod was recorded and the mean of 

three rotarod tests per mouse was used for analysis (figure 4.11). 
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Figure 4.11 Mean rotarod latency in Chmp2b
-/-

 and Chmp2b
+/+

 mice at 4, 5 and 6 months of 

age.  

Rotarod latency is significantly reduced in Chmp2b
-/-

 mice compared to age-matched Chmp2b
+/+

 

mice at all ages tested (ANOVA and Tukey-Kramer post hoc multiple comparison test *p<0.001). 

Multiple regression analysis reveals highly significant association between rotarod latency and 

genotype (p<0.0001) but no significant association between rotarod latency and age (p=0.4485) or 

gender (p=0.4350). Error bars = SEM; Chmp2b
-/-

 N= 28 (15 male/13 female) at 4 months, N=27 

(15 male/12 female) at 5 months and N=28 (15 male/13 female) at 6 months and Chmp2b
+/+

 N= 

29 (15 male/14 female) at 4 months, N=29 (15 male/14 female) at 5 months and N=29 (15 

male/14 female) at 6 months. 

 

 

Multiple linear regression analysis reveals there is no significant association 

between rotarod latency and gender (p=0.4350), therefore male and female 

mice can be grouped and analysed together.  There is also no significant 

association between rotarod latency and age (p=0.4485).  Multiple regression 

analysis does reveal a highly significant association between rotarod latency and 

genotype (p<0.0001).  Comparing the means of the rotarod latency using ANOVA 

shows a significant difference between rotarod latency and genotype (Chmp2b-/- 

and Chmp2b+/+ mice) (p<0.001) and Tukey-Kramer post hoc multiple 

comparisons test reveals that this significance is maintained at all ages tested: 4, 

5 and 6 months of age (figure 4.11).   
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The lack of statistically significant association between rotarod latency and age 

identified by multiple linear regression analysis and the significant difference 

between genotype and mean rotarod latency (p=0.001) at each age identified by 

ANOVA post hoc analysis suggests that the rotarod deficit in Chmp2b-/- mice is 

not progressive, meaning that the rotarod deficit does not get worse with age. 

However, a statistically significant constant poor performance in mean rotarod 

performance is present in Chmp2b-/- mice at all ages tested compared to age-

matched wild type mice (figure 4.11). 
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4.3.2 Grip strength  

In order to investigate neuromuscular defects grip strength testing was 

performed on a cohort of Chmp2b-/- mice Chmp2b+/+ mice at 4, 5 and 6 months 

of age. 

 

 

 

Figure 4.12 Mean grip strength in Chmp2b
-/-

 and Chmp2b
+/+

 mice at 4, 5 and 6 months of age.   

Mean grip strength has been adjusted for weight, therefore male and female data were pooled.  

There is no significant association between mean grip strength and genotype (multiple linear 

regression p=0.9023) and no difference in mean grip strength is identified in Chmp2b
-/-

 mice 

compared to Chmp2b
+/+

 mice at any age tested (ANOVA; p=0.0513). Multiple linear regression 

reveals a highly significant association between mean grip strength and age (p<0.00001), likely 

reflecting weakness associated with aging and not Chmp2b depletion.  Error bars = SEM; 

Chmp2b
-/-

 N= 28 (15 male/13 female) at 4 months, N=27 (15 male/12 female) at 5 months and 

N=28 (15 male/13 female) at 6 months and Chmp2b
+/+

 N= 29 (15 male/14 female) at 4 months, 

N=29 (15 male/14 female) at 5 months and N=29 (15 male/14 female) at 6 months. 

 

Multiple linear regression analysis did not identify a significant association 

between mean grip strength and genotype (p=0.9023) indicating there is no 

difference in mean grip strength between Chmp2b-/- mice and Chmp2b+/+ mice. 

This was confirmed by ANOVA analysis (p=0.0513) and can be seen in figure 

4.12.   Multiple linear regression did identify a highly significant association 

(*p<0.0001) between mean grip strength and age; this can be seen in figure 4.12 

by the decrease in mean grip strength with increasing age for both genotypes 

(figure 4.12).  Therefore this association is an age-dependent phenomenon, 
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possibly reflecting weakness associated with age and is not as a result of 

depletion of Chmp2b. 

 

4.4 Social Behaviour 

Social behaviour, the interaction of an animal with its own and other animal 

species is fundamental to the survival of all animal kind.  Virtually all behaviour 

such as reproduction, rearing of young, defining territory, nest building, hunting, 

scavenging, grooming and even death are dictated by social behaviour and 

convention (Crawley, 2007). 

 

In the wild mice are social species that develop group territories, a colony 

dependent on food availability.  A colony is founded by one dominant male and 

one or two females.  Parents and offspring share burrows and nests built by the 

adults that provide shelter and safety from predators.  Both male and female 

parents rear pups in the nest and adult offspring move away from the group nest 

and establish new colonies (Crawley, 2007).   

 

Humans too demonstrate a variety of specific social behaviour and in the event 

of neuropsychiatric and neurodegenerative disease including FTD, deterioration 

of social behaviour can be a presenting clinical symptom.  Therefore assessing 

social behaviour in mouse models of neuropsychiatric and neurodegenerative 

disease is a valuable means of assessing early indictors of disease (Deacon et al., 

2001). 

 

Burrowing and nesting are two important social behaviours in mice that can 

deteriorate with neurodegenerative diseases and were therefore investigated in 

this study.  
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4.4.1 Burrowing 

Burrowing is considered a primal behaviour necessary for building shelter to 

provide refuge from weather conditions, to store food, defence against 

predators and to rear young(Deacon, 2006b; Deacon, 2009). 

 

In this study burrowing behaviour was analysed using a method adopted from a 

published protocol by Deacon (2006) (Deacon, 2006b).  In brief; artificial burrows 

made of cylindrical plastic tubes were filled with 200g of food pellets and single 

mice assigned to each food-filled burrow.  Male and female Chmp2b-/-  (N=27) 

and Chmp2b+/+ (N=29) mice at 4, 5 and 6 months of age were individually housed 

with prepared burrows overnight and the weight of the left-over food pellets in 

the burrow was weighed the following day. The amount (weight in grams) 

burrowed was determined by subtracting starting food pellet weight (200g) from 

food pellet weight remaining the following day (detailed in chapter 2) (Deacon, 

2006b).  

 

As the data collected does not follow a normal distribution and a ceiling effect 

has been previously reported in overnight burrowing experiments (Deacon, 

2006b), a non-parametric Kruskal-Wallis ANOVA statistical analysis was used, 

revealing a significant (p<0.0001) difference in amount of food pellet burrowed 

across ages and between genotypes (figure 4.13).  Interestingly, Chmp2b+/+ mice 

demonstrate a significant (p<0.001) age-dependent deterioration in burrowing 

behaviour (figure 4.13) while in Chmp2b-/- mice the amount of food pellet 

burrowed does not decline with age.  By 5.5 months of age there is a significant 

difference (**p=0.0001) between food pellets burrowed by Chmp2b+/+ mice and 

that burrowed by Chmp2b-/- mice and this significant difference is maintained at 

6 and 6.5 months of age (figure 4.13). 
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Figure 4.13 Mean weight burrowed by Chmp2b
-/-

 and Chmp2b
+/+

 mice with increasing age.   

Burrowing behaviour declines in Chmp2b
+/+

 mice with age as analysed by Kruskal-Wallis 

ANOVA (<0.001) but there is no significant change in Chmp2b
-/-

 mice.  By 5.5 months of age a 

significant difference (Kruskal-Wallis ANOVA (**p<0.0001)) in the amount of food pellet 

burrowed develops between Chmp2b
-/-

 and Chmp2b
+/+

 mice which is maintained with increasing 

age from 5.5 to 6.5 months of age. Error bars = SEM;  Chmp2b
-/-

 N= 28 (15 male/13 female) at 4 

months, N=27 (15 male/12 female) at 5 months and N=28 (15 male/13 female) at 6 months and 

Chmp2b
+/+

 N= 29 (15 male/14 female) at 4 months, N=29 (15 male/14 female) at 5 months and 

N=29 (15 male/14 female) at 6 months. 

 

 

In scrapie sick mice burrowing significantly declines compared to non-infected 

controls with age (Deacon et al., 2001) as would be expected in 

neurodegeneration.  Notably, Chmp2b-/- mice do not demonstrate such decline 

in burrowing with age, in fact, they perform better than age-matched wild type 

control mice (figure 4.13).  The absence of gross neuropathology (chapter 3) is 

consistent with lack of deterioration in burrowing with age.  However, the 

significantly greater amount of pellets burrowed by Chmp2b-/- mice with age 

remains to be explained.   
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4.4.2 Nesting behaviour 

Nest construction is a common behaviour in animals across the animal kingdom 

primarily serving as a safe environment to rear offspring.  For small mammals 

such as mice their nests serve as more than just a nursery for the young.  Their 

nests are also used for shelter, hibernation and protection from natural 

elements.  Both male and female mice construct nests, however, female mice 

may be influenced by reproductive hormonal status, in particular, prolactin 

(Deacon, 2006a; Keisala et al., 2007). 

 

Nesting behaviour has been shown to be affected in prion infected mice 

(Cunningham et al., 2003), Dvl1 (involved in regulation of cell polarity pathway) 

knockout mice (Lijam et al., 1997) and vitamin D receptor (VDR) mutant mice 

(Keisala et al., 2007).  In this study the nesting behaviour protocol was adopted 

from a published protocol reported in Nature Protocols (Deacon, 2006a).  

Commercially available cotton Nestlets were placed in cages of individually 

housed mice at 4, 5 and 6 months of age 1 hour before the dark cycle and scored 

1-5 (figure 4.14) the following morning (detailed in chapter 2) (Deacon, 2006a). 

 

 

Figure 4.14  Nest building scoring scheme.  

Nests are scored 1-5 (a-e respectively) based on degree of Nestlet tearing and nest formation.  

Adopted from Deacon (2006) protocol (Deacon, 2006a). 

 

As in other published reports of nesting behaviour, male and female nest scores 

were analysed together as the female mice were housed in single sex cages and 

none of the female mice being tested were pregnant or lactating, therefore the 

confounding effect of prolactin status on nest building is considered negligible 

(Deacon, 2006a; Keisala et al., 2007).  Nesting data does not fit the 
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Normal/Gaussian distribution therefore non-parametric Kruskal-Wallis ANOVA 

statistical test was used to analyse the nesting behaviour data (Deacon, 2006a). 

 

A box and whisker plot of the nesting scores demonstrates spread of nesting 

scores using median, minimum (MIN), maximum (MAX) and the first quartile 

(Q1) and third quartile (Q3) of nesting scores for Chmp2b+/+ and Chmp2b-/- mice 

across 4, 5 and 6 months of age (figure 4.15).  Statistical analysis using Kruskal-

Wallis ANOVA identifies a highly significant difference in median scores 

(p<0.0001) across the nesting data and Dunn’s pairwise multiple comparison 

post hoc test identifies a significant difference in median nesting score versus 

age (p<0.001), nesting score versus genotype (p<0.001) and age versus genotype 

(p<0.001).  

 

Chmp2b+/+ mice demonstrate a constant median nesting score of 4 across ages 

examined.  However, Chmp2b-/- mice demonstrate a significantly higher median 

nesting score of 5 compared to Chmp2b+/+ mice at 4 and 5 months of age.  A 

ceiling effect is evident as Chmp2b+/+ and Chmp2b-/- mice at all ages demonstrate 

a maximum score of 5.  The median score of 5 overlaps with MAX and Q3 scores 

for Chmp2b-/- mice at 4 and 5 months of age, whereas the median score for 

Chmp2b+/+ mice is 4,  demonstrating that more Chmp2b-/- mice at these ages 

build complete nests (scoring 5) compared to age-matched wild type mice 

(figures 4.15).  By 6 months of age both Chmp2b+/+ and Chmp2b-/- mice score 

equally on median, MIN, Q1 and MAX nest scores, notably Q3 and median scores 

are equivalent (median and Q3 scores = 4 at 6 months) demonstrating that most 

mice score 4 at this age, lower than the ceiling score (figure 4.15). 
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Figure 4.15 Box and whisker plot of nesting score for Chmp2b
-/- 

and Chmp2b
+/+

 mice at 4, 5 

and 6 months of age.   

Chmp2b
+/+

 and Chmp2b
-/-

 nesting scores are significantly different (variation in median is greater 

than expected by chance alone) (Kruskal-Wallis ANOVA p<0.001).  Dunn’s pairwise multiple 

comparison post hoc test identifies a significant difference in median scores between nesting score 

versus age (p<0.001), nesting score versus genotype (*p<0.001) and age versus genotype 

(p<0.001).  Chmp2b
-/-

 N= 13 at 4, 5 and 6 months and Chmp2b
+/+

 N= 14 at 4, 5 and 6 months. 
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4.5 Discussion 

The modified-SHIRPA protocol was used as a primary phenotyping screen to 

identify overt behavioural phenotypes in Chmp2b knockout mice.  A cohort of 

12-month old Chmp2b-/- and age-matched Chmp2b+/+ mice were screened using 

the modified-SHIRPA battery of tests.   

 

This initial phenotyping screen revealed that Chmp2b-/- mice demonstrate an 

irregular gait termed here as ‘splayed gait’ as well as foot tapping, curled paw 

and kinked tail (figure 4.5) phenotypes.  Furthermore, Chmp2b-/- mice have 

significantly reduced survival (p=0.0006) (figure 4.10) and male Chmp2b-/- mice 

have significantly reduced weight (p<0.0001) at the later age of 18 months 

(figure 4.8) compared to age-matched wild type mice. 

 

Examining motor coordination and balance using rotarod test reveals that 

Chmp2b-/- mice also have significantly reduced rotarod performance (p<0.001) 

compared to age-matched Chmp2b+/+ (figure 4.11).  However, no difference in 

grip strength between genotypes is identified at any age tested (figure 4.12).   

 

It is interesting to note that impaired rotarod latency in Chmp2b-/- mice is not 

progressive across 4, 5 and 6 months of age but that impaired rotarod 

performance is consistently maintained with increasing age.  This may either be 

due to a slow rate of decline in the biological basis of rotarod performance, so 

that if mice are assessed at longer intervals i.e. at 4, 8, 12, 16 and 20 months of 

age, a progressive decline may be detected.  Alternatively, the biological basis of 

rotarod impairment, whether neurological or neuromuscular, may be 

developmental as opposed to being degenerative.  Chmp5 knockout mice display 

severe developmental abnormalities; by E8-E9 mutant embryos are severely 

disorganised with neural tube defect formation, abnormalities in head fold, 

heart formation and an apparent defect of ventral folding morphogenesis (Shim 

et al., 2006).  Furthermore, a kinked tail phenotype has previously been reported 
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in Bent tail mice, a model for X-linked neural tube defects (Klootwijk et al., 2000) 

and the spontaneous Polypodia (Ppd) mutant mouse that primarily exhibits 

ectopic, ventral/caudal limbs and associated pelvic girdle malformation, less 

penetrant kinked tail and forelimb anomalies (Lehoczky et al., 2006).  Although 

the Chmp2b-/- mice do not recapitulate precisely the kinked tail phenotype in the 

Bent tail and Ppd mice, it is worth considering embryonic developmental defects 

as a potential basis of the phenotype observed in Chmp2b-/- mice, especially in 

the absence of distinctive neuropathology (chapter 3).  It is also important to 

note that some Chmp2b+/+ mice (although fewer than Chmp2b-/- mice) were also 

observed to have kinked tails and this may simply reflect fighting between mice 

housed together resulting in damaged tails.  In this instance the greater number 

of Chmp2b-/- mice with kinked tails may simply reflect their inability to fight and 

defend themselves effectively due to lower limb dysfunction. 

 

The observed splayed gait and rotarod deficit suggest neurological or 

neuromuscular lower limb dysfunction.  Abnormal gait phenotypes have been 

reported in numerous mouse models of neurodegenerative disease including 

R6/2 mouse models of Huntington’s disease (Mangiarini et al., 1996), SCA 

(Ingram et al., 2012) ALS (Mancuso et al., 2011), Alzheimer’s and FTD reviewed 

by Gotz and Ittner (2008) (Gotz and Ittner, 2008).  Histological analysis of 

Chmp2b knockout mouse brains and spinal cord tissue did not reveal any overt 

neuropathology (chapter 3).  Even so, phenotyping data presented in this 

chapter indicates a motor phenotype in Chmp2b-/- mice from 4 months of age 

which may contribute to the observed reduced survival in these mice, thus for 

the first time, providing support that depletion of Chmp2b may contribute to the 

observed motor phenotype in FTD-3. 

 

Scrapie infected mice, Dvl1 and Vitamin D receptor (VDR) mutant mice all 

demonstrate significantly reduced nest building ability resulting from 

neuropathology, neurodevelopment, neuroendocrine and vitamin D receptor 

pathology (Lijam et al., 1997; Deacon, 2006a; Deacon, 2006c; Keisala et al., 
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2007).  Assessment of burrowing (figure 4.12) and nesting (figure 4.13) 

behaviour reveals a significant increase in these behaviours in Chmp2b-/- mice 

compared to Chmp2b+/+ mice.  Why Chmp2b-/- mice should demonstrate 

increased burrowing and nesting behaviour is not clear but may be a symptom of 

increased impulsive behaviour or anxiety symptoms.   

 

The SNAP-25 deficient Colombo mouse displays spontaneous impulsive 

hyperactivity and impaired inhibition in delayed reinforcement tasks 

recapitulating some key features of human ADHD behaviour, including obsessive 

compulsive behaviour (Wilson, 2000; Bruno et al., 2007; Russell, 2011). 

Transgenic mice expressing tau V337M also display specific effects of transgene 

expression on the ability to withhold responding in a murine version of the 5-

choice serial reaction time task, behaviour consistent with deficits in impulse 

control which is exacerbated with aging (Lambourne et al., 2007).   

 

SNAP-25 is essential for synaptic vesicle exocytosis and neurotransmitter release 

regulating membrane trafficking.  It is required presynaptically for the release of 

neurotransmitters and postsynaptically it is also involved in the translocation of 

proteins and receptor subunits to the cell membrane (Russell, 2011).  

Interestingly Chmp2b is a subunit of the ESCRT complex and SNAP-25 is a subunit 

of the SNARE complex which is intrinsically associated via ESCRT-SNARE subunit 

complex formation.  In particular Hrs, an ESCRT I subunit, is a binding partner to 

SNAP-25 and their association has been hypothesized to regulate synaptic 

vesicle exocytosis (Kwong et al., 2000) and endosome fusion (Sun et al., 2003).  It 

would be interesting to consider whether the depletion of Chmp2b as in the 

Chmp2b-/- mice might have a cascade effect on ESCRT-SNARE complex formation 

leading to neurotransmitter irregularity via synaptic vesicle deregulation, thus 

contributing to impulsive and impaired inhibition behaviour.  It is important to 

clarify that there is no data in this study to support this hypothesis and this is 

merely speculation, but may be an interesting basis for future investigations.   
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Neurotransmitters including dopamine (DA) and serotonin (SR) and their 

associated pathways have been implicated in both human and rodent behaviour 

(Viggiano et al., 2003; Fernandez and Gaspar, 2012).  Dopamine transporter 

(DAT) knockout and knockdown mice exhibit novelty induced hyperactive 

behaviour thought to be due to higher levels of brain dopamine, resulting from 

the lack of clearance of dopamine from the synaptic cleft (Viggiano et al., 2003).  

Tryptophan is a precursor to serotonin and dietary tryptophan depletion or 

supplementation results in pronounced behavioural effects, particularly in 

nesting behaviour where a reduction in nesting is reported following depletion 

of dietary tryptophan.  Interestingly, an increase in nesting behaviour was 

observed with enhanced dietary tryptophan in BALB/c and C57BL/6J mouse 

strains (Browne et al., 2012).  Chmp2b knockout mice are on a 129P2/OlaHsd x 

C57BL/6J mixed genetic background; it would therefore be interesting to 

investigate 5HT and other neurotransmitter levels in Chmp2b-/- mice on a single 

strain backcross.   

 

Considering that Chmp proteins, as part of the ESCRT complex, are important in 

endocytic neurotransmitter recycling (Shim et al., 2006; Lee et al., 2007; Urwin 

et al., 2010a) and the evidence for altered neurotransmitter regulation in a 

number of neuropsychiatric disorders  (ADHD, clinical anxiety, depression) 

(Viggiano et al., 2003; Russell, 2011; Fernandez and Gaspar, 2012), it is 

interesting to consider whether depletion of Chmp2b results in altered 

neurotransmitter physiology and therefore, behaviour. 

 

In summary, no other mouse model has been identified in the literature that 

displays the combined phenotypes identified in Chmp2b-/- mice but other models 

demonstrating single common phenotypes may be suitable starting points in 

identifying the pathological basis of Chmp2b depletion. 

 

To further tease out the age of phenotype onset, future studies would need to 

assess Chmp2b mice from a much younger age, perhaps starting as young as 4 
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weeks of age for phenotyping studies.  Rotarod is a good protocol to maintain; 

perhaps open field and aggression assessment may also shed further light on the 

gait defect and changes in aggression and impulsive behaviour in Chmp2b-/- 

mice.  No memory or novel task tests such as water maze and object recognition 

have been used in this study but these may help reveal potential cognitive 

deficits in Chmp2b-/- mice in future studies.   

 

As discussed in chapter 3 developmental, neuronal migration patterns, spinal 

cord motor neuron counts, study of neurotransmitter levels and distribution, as 

well as electrophysiological studies may help identify the pathological basis of 

the observed Chmp2b-/- phenotype.  Chmp5 knockout mice result in embryonic 

lethality and defective late endosome function and dysregulation of signal 

transduction (Shim et al., 2006).  Therefore, parallel studies with Chmp2b-/- may 

reveal that depletion of Chmp2b results in altered embryonic development, 

trafficking impairment or endosome-lysosome dysfunction important in synaptic 

integrity (Sweeney et al., 2006; Lee et al., 2007; Belly et al., 2010).  Further work 

is therefore required to determine the molecular basis of the behavioural 

deficits demonstrated in this chapter.  



181 

 

5 Characterising CHMP2B Transgenic Mice 

The Danish FTD-3 family CHMP2B mutation is a G>C transition in the splice 

acceptor site of exon 6 resulting in two novel splice variants CHMP2BInt5 and 

CHMP2B10.  CHMP2BInt5 contains the 201bp intronic sequence between exon 5 

and 6 resulting in a premature stop codon and a 36 amino acid C-terminal 

truncation.  CHMP2B10 contains a 10bp deletion at the beginning of exon 6 

resulting in a frame shift mutation leading to the final 36 amino acids of CHMP2B 

being replaced with 29 nonsense coding amino acids at the C-terminus (Skibinski 

et al., 2005).  Affected FTD-3 family members present with clinical FTD (Gydesen 

et al., 1987) and distinctive neuropathology including astrogliosis, microglial 

infiltration and ubiquitin and p62 inclusions; FTD-3 brains are negative for TDP-

43 and FUS pathological staining (Holm et al., 2007; Holm et al., 2009).  

Furthermore, an additional C-terminal truncating CHMP2B mutation was 

identified in a Belgian familial FTD case suggesting that the loss of CHMP2B C-

terminus may result in a common disease mechanism (van der Zee J. et al., 

2008). 

 

Generating transgenic mouse models based on mutations identified from human 

disease has become an established technique to confirm genetic mutations 

associated with disease and to explore and examine associated pathology and 

biochemistry and where appropriate preclinical drug trials of potential 

therapeutic agents. 

 

This chapter describes the generation, molecular characterisation and 

neuropathology associated with the CHMP2B transgenic mouse lines generated 

and sets out initial data exploring the potential basis of autophagic dysfunction 

in mutant transgenic lines.  

 

Throughout this chapter CHMP2B capitalisation is used to refer to the human 

transgene and lower case Chmp2b to mouse endogenous gene.  Italicised script 
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is used to denote human transgene DNA expressed in transgenic mice i.e. 

genotype CHMP2BInt5 and non-italicised script to denote transgene protein 

expression i.e. CHMP2BInt5. 

 

 

5.1 Generating CHMP2B Transgenic Mice 

5.1.1 CHMP2B transgene constructs  

To generate CHMP2B transgenic mouse lines expressing mutant proteins 

CHMP2BInt5 and CHMP2B10 and overexpressing the native human CHMP2B 

protein CHMP2BWT, cDNA coding sequences for each respective construct were 

subcloned into the unique SalI site of the cosmid vector designated SHaCosTet 

(CosTet vector), which comprises the hamster prion promoter with intron 1 

(HaPrP prom) and 3’UTR (figure 5.1) (Scott et al., 1989)  
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Figure 5.1 Diagrammatic representation of SHaCosTet vector (49kb) showing the 43kb NotI 

fragment used to generate CHMP2B transgenic mice. 

The 43kb NotI insert was used to generate the CHMP2B transgenic mice. HaPrP prom, Hamster 

prion promoter; ORF, (open reading frame) cDNA coding sequences of CHMP2B
Int5

, CHMP2B
10

 

or CHMP2B
WT

; NotI, SalI and XhoI digestion sites; Ha intron, Hamster PrP intron. 

 

The hamster prion promoter was specifically used as it directs expression of 

transgenes to the brain and spinal cord.  This is an important consideration as 

the aim of this study is to recapitulate the key hallmark neurodegenerative 

pathology identified in affected FTD-3 family members. 

 

In the SHaCosTet vector, intron sequences are spliced out during transcription. 

The 3’ untranslated region (3’UTR) is not translated but is important in the 

construct sequence as it contains a polyA sequence (AATAAA) that ensures 

stability of mRNA.  Once the CHMP2B cDNA constructs were successfully 

subcloned in the SHaCosTet vector, positive clones in the correct orientation 

were identified through restriction mapping and cloning fidelity was checked by 

sequencing. High quality DNA was prepared by digesting with restriction enzyme 

NotI. The digested DNA was subjected to agarose gel electrophoresis to separate 

the 6kb CosTet vector from the 43kb transgene insert (figure 5.2).  The transgene 

construct was purified using Gene Clean kit and spin columns (Stratech Scientific) 

ready for microinjection into fertilised single cell eggs. 
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Figure 5.2 A schematic representation of CHMP2B transgene constructs.  

(A) CosTet vector incorporating one of the three CHMP2B coding sequences :(A-1) CHMP2B
WT

, (A-2) CHMP2B
Int5 

and (A-3) CHMP2B
10 

 that were  subcloned into the CosTet vector. 
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Microinjected eggs were cultured overnight and the resulting two-cell eggs were 

surgically implanted into the oviducts of pseudopregnant mice.  Tail or ear 

biopsies were taken from the putative transgenics born from these transfers for 

DNA extraction and genotyping by polymerase chain reaction (PCR) as described 

in chapter 2.  Pups positive for CHMP2BInt5, CHMP2B10 or CHMP2BWT transgenes 

were designated founders and were mated at 6 weeks of age to wild type 

C57BL/6J mice.  Positive offspring were sampled for RNA expression by Reverse 

Transcription-PCR (RT-PCR) and protein expression by western blotting using 

CHMP2B antibodies.  Figure 5.3 is a flow diagram illustrating the sequence of 

steps applied to generate the CHMP2B transgenic mice. 
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Figure 5.3 Flow diagram of steps to generate CHMP2B transgenic mouse lines.  

Each of CHMP2B
Int5

, CHMP2B
10

, and CHMP2B
WT

 construct DNA was microinjected into single cell eggs obtained from superovulated female mice.  Two cell 

eggs harbouring transgene constructs were implanted into pseudopregnant mice.  The resulting pups were genotyped for transgene integration to identify founder 

mice.  Founder mice were mated to C57BL/6J mice; the pups from this mating were analysed to assess transmission and expression of the transgenes. 
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5.1.2 Summary of CHMP2B transgenic lines generated 

Of the mice identified to be positive for CHMP2BInt5, CHMP2B10 and CHMP2BWT 

transgenes, two founder mice from each line were selected and used to 

establish respective transgenic lines on which molecular characterisation studies 

were carried out.   

 

The CHMP2BWT lines, Tg167 and Tg168; CHMP2BInt5 lines, Tg153 and Tg156 and 

CHMP2B10 lines, Tg158 and Tg164 all demonstrate transgene transmission to 

offspring (section 5.2.1) and RNA expression (section 5.2.2).  The RNA expression 

data is complemented by protein expression (section 5.2.4) in both the 

CHMP2BWT and CHMP2BInt5 lines but as specific antibodies to CHMP2B10 protein 

are currently not available, protein expression in the two CHMP2B10 lines, 

Tg158 and Tg164 could not be confirmed.  The CHMP2B antibodies currently 

available cannot distinguish between endogenous Chmp2b and CHMP2B10 

proteins as there is only 10 amino acid difference between the two proteins. 

However, high levels of overexpression would still be detected by western blot 

as the total CHMP2B protein level would be expected to be higher in the 

CHMP2B10 mice when compared to non-transgenic mice.  As no clear increase 

in CHMP2B protein level was detected in the CHMP2B10 lines compared to 

endogenous Chmp2b protein even in the homozygous state, both Tg158 and 

Tg164 lines were culled.  

 

Transgenic lines Tg167 and Tg168 both overexpressed CHMP2BWT protein over 

6.6 fold compared to endogenous Chmp2b protein.  Such high levels of protein 

overexpression led to adverse effects in the mice (overgrown teeth) and 

therefore the decision was taken to utilise these lines in their heterozygous state 

only.  CHMP2BInt5 lines, Tg153 and Tg156 were both bred to homozygosity and in 

the homozygous state Tg153 was found to express CHMP2BInt5 protein at 0.9 

times endogenous Chmp2b protein expression level (section 5.2.4). 
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The transgenic lines that have been successfully established for each of the 

CHMP2B transgenes and their expression profiles are summarised in table 5-1.  

All CHMP2B transgenic mouse lines were established on a CBA x C57BL/6J 

background. 
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Table 5.1 Summary table showing characterisation profiles of CHMP2B transgenic lines.   

This table lists  the transgenic lines generated overexpressing wild type CHMP2B (CHMP2B
WT

); 

expressing CHMP2B Intron 5 mutant transgene (CHMP2B
Int5

) and CHMP2B Delta 10 mutant 

transgene (CHMP2B
10

).  The table summarises RNA and protein expression determined for each 

line and homozygous lines established from homozygous mating. 

 

Because of the vast amount of time and costs involved in the molecular and 

pathological characterisation of transgenic mouse lines, even though two lines 

were generated for each of CHMP2BInt5 and CHMP2BWT transgenes, data for only 

CHMP2BInt5 Tg153 and CHMP2BWT Tg168 are presented in this study as these are 

the two highest expressing lines for each respective transgene.  

 

Table 5-2 lists the other CHMP2B transgenic lines that were generated but 

terminated because respective founder mice were either unsuccessful in 

breeding, did not transmit the relevant transgene to their progeny or did not 

express the transgene in sufficient amounts at the RNA level.  As previously 

described CHMP2B10 transgenic lines Tg158 and Tg164 were also terminated as 

protein expression could not be conclusively established. 

Transgene Positive 

Lines 

RNA 

Expression 

Protein 

Expression 

Homozygous 

Mating 

CHMP2BWT Tg167 

Tg168 

 

 

 

 

 

 

CHMP2BInt5 Tg153 

Tg156 

 

 

 

 

  

  

CHMP2B10 Tg158 

Tg164 

 

 

? 

? 

 

 
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Table 5.2 Summary of CHMP2B transgenic lines terminated.   

This table lists the transgenic lines that were terminated for reasons listed against each line. 

CHMP2B
WT

 -Wild type CHMP2B overexpressors; CHMP2B
Int5

 -CHMP2B Intron 5 mutant lines 

and CHMP2B
10

 -CHMP2B Delta 10 mutant lines.  Mouse lines were terminated if transgene 

DNA, RNA or protein expression could not be determined in first generation offspring. 

Transgene Positive 

Lines 

Fate of Mouse Line 

 

CHMP2BWT Tg150 

Tg151 

Tg166 

Tg169 

Tg178 

Tg179 

Founder died without breeding 

No expression line terminated 

Insufficient expression line terminated 

Founder died without breeding 

Founder died without breeding 

Line culled- not breeding 

CHMP2BInt5 Tg154 

Tg155 

Low expression -line culled 

Not transmitting transgene –line culled 

CHMP2B10 Tg158 

 

Tg164 

 

Tg165 

Line culled- Protein expression could 

not be established 

Line culled 

Protein expression could not be 

established 

Line culled 

Low RNA expression line culled 
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5.2 Molecular Characterisation 

5.2.1 Genotyping CHMP2B Transgenic Mice 

DNA amplification of CHMP2B by polymerase chain reaction (PCR) was used to 

screen mice for transgenes of interest CHMP2BInt5, CHMP2B10 and CHMP2BWT.  

The same forward and reverse primers, SalF and F19105 were used to amplify all 

three transgenes.  The forward primer SalF (figure 5.4 orange arrow) targets the 

5’ region of the CHMP2B cDNA sequence and the reverse primer F19105 sits on 

the hamster prion 3’UTR region of the construct (figure 5.4). 

 

 

 

Figure 5.4 Schematic representation of primer positions on transgene construct used for 

gentoyping. 

Region of transgene construct amplified by PCR primers to genotype transgenic mice. SalF- 

forward primer and F19105 reverse primer. 

 

 

These primers were predicted to produce PCR products of 939bp when 

amplifying the CHMP2BInt5 transgene, 728bp bands when amplifying the 

CHMP2B10 transgene and 738bp when amplifying the CHMP2BWT transgene 

(figure 5.5). 
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Figure 5.5 Representative PCR DNA bands for each of the CHMP2B transgenic lines.  

CHMP2B Intron 5 mutant lines (CHMP2B
Int5

) producing 939bp DNA bands, CHMP2B Delta 10 mutant lines (CHMP2B
10

) producing 738bp DNA bands and 

CHMP2B wild type overexpressors (CHMP2B
WT

) producing 728pb  DNA bands on 1.5% agarose gel stained with ethidium bromide.  N>5 for each transgenic 

line, 1kb DNA ladders used; left to right in lanes 1, 8, 15 and 22 and water control with no DNA template lane 18 from left. NS= non-specific DNA band likely 

due to non-specific priming of mouse genomic DNA. . 
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5.2.2 RNA Expression in Transgenic Mice  

To determine transgene RNA expression in CHMP2B transgenic mice RNA was 

extracted from CHMP2BInt5, CHMP2B10 and CHMP2BWT transgenic mouse brains 

and first strand cDNA template synthesised (described in detail in chapter 2).  

Primers designed to target CHMP2B cDNA were used in a PCR:  forward primer 

SalF targets the 5’ end of the CHMP2B cDNA sequence and the reverse primer 

XhoRI targets the 3’ end of the CHMP2B cDNA sequence (figure .5.6).  

 

 

 
 

Figure 5.6 Schematic representation of primer positions on transgene construct used in RT-

PCR.   

cDNA was synthesised by RT-PCR using whole brain RNA.  The orange and black arrow indicate 

region amplified by forward primer SalF and reverse primer XhoRI respectively.  

 

The predicted DNA band sizes are 862pb for CHMP2BInt5, 652bp for CHMP2B10 

and 662bp for CHMP2BWT.  RT-PCR products from representative samples from 

each mouse line are exhibited in figure 5.7.  The RNA expression data 

demonstrates that CHMP2BInt5 transgenic lines Tg153, Tg154 and Tg156 clearly 

express CHMP2BInt5 RNA as the 862bp band is absent in the non-transgenic 

control lane. In addition, the CHMP2BInt5 band is 200bp bigger than the 

endogenous mouse Chmp2b band resulting in two distinct bands in the RT-PCR 

blot (figure 5.7).  This difference in band size is due to the 200bp intronic 

inclusion in the CHMP2BInt5 mutant allele.  In addition, data from semi-

quantitative real-time TaqMan® PCR show that RNA expression in CHMP2BInt5 

Tg153 line is increased ~3.26 (SEM +/-0.37) fold compared to Non-Tg control (AI 

personal communication). 
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CHMP2B10 transgenic lines Tg158 and Tg164 also express CHMP2B10 RNA.  As 

there is only a 10bp difference between the cDNA of CHMP2B10 and 

endogenous mouse Chmp2b, the very small difference in the RT-PCR band sizes 

cannot be adequately resolved.  However, the RT-PCR blot demonstrates a 

doublet running marginally lower in Tg158 and Tg164, which are therefore 

adjudged to express the CHMP2B10 RNA (figure 5.7).  However, these lines were 

terminated because the expression levels could not be confirmed at the protein 

level due to the lack of suitable antibodies.  In contrast, Tg165 lacking the 

doublet and also showing similar signal intensity as the non-transgenic control is 

considered to be a non-expressing line and was therefore terminated. 

 

Finally, Tg167 and Tg168 but not Tg166 are adjudged to express CHMP2BWT RNA 

(figure 5.7).  The human CHMP2BWT band is the same size as the endogenous 

mouse Chmp2b and so it is not possible to resolve these as two separate bands. 

However, as human CHMP2BWT is overexpressed, the bands in Tg167 and Tg168 

lines are seen to be brighter than non-transgenic control lines. In contrast, Tg166 

with signal intensity similar to non-transgenic control is considered to be a non-

expressing line.  Notably, RNA expression in the Tg168 line is increased ~3.20 

(SEM +/-0.04) fold compared to Non-Tg; this semi-quantitative real-time 

TaqMan® PCR data is kindly provided by AI (Ghazi-Noori et al., 2012) 
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Figure 5.7 Representative RNA bands for each of CHMP2B transgenic lines and non-transgenic control. 

Tg153, Tg154, Tg156 are CHMP2B Intron 5 mutant lines (CHMP2B
Int5

) producing 862bp DNA bands; Tg158, Tg164, Tg165 are CHMP2B Delta 10 mutant lines 

(CHMP2B
10

) producing 652bp DNA bands; Tg166, Tg167 and Tg168 are CHMP2B wild type overexpressors (CHMP2B
WT

) producing 552bp DNA bands on a 

1.5% agarose gel following PCR amplification.  1kb DNA ladders were used to size the bands seen left to right in lanes 1, 6, and 11; No RNA template water 

control showing no amplification product is seen in lane 16 from left. (Representative image of N=3 for each transgenic line). 
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5.2.3 Screening for Homozygous Mice 

A real-time TaqMan PCR assay was used to determine the zygosity of mice 

(chapter 2).  Mice that were assayed to be homozygous by Taqman were 

confirmed in progeny test matings to non-transgenic mice.  If the mice are true 

homozygotes, the offspring from the non-transgenic x homozygous matings 

would all be expected to be positive (hemizygotes) when genotyped using PCR 

amplification for CHMP2B transgenes. 

 

Figure 5.8 shows a Real-Time PCR amplification plot from Tg158 transgenic line 

as a representative example.  Zygosity for all other transgenic lines was 

determined using the same protocol and homozygotes were identified using the 

delta Ct method detailed in chapter 2 section 2.4.5.1. 
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Figure 5.8 Screen print of Real-Time TaqMan® PCR amplification plot used to identify CHMP2B transgenic homozygous mice.   

Green lines are amplification profiles for CHMP2B and red lines are plots for GAPDH amplification.  Example of representative amplification plot showing 

homozygous and heterozygous sample (a; light blue) and homozygous (b; dark blue) and no template water (star). (Representative of N=5 for each sample).  
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5.2.4 CHMP2B Protein Expression 

To determine transgene protein expression in the CHMP2B transgenic lines, 

custom made rabbit polyclonal antibodies were generated by 21 Century 

Biochemicals using CHMP2B N-terminal peptides.  Testing several bleeds from 

three different rabbits on transgenic and non-transgenic 10% mouse brain 

homogenates, western blot analysis demonstrated that two antibodies detected 

specific CHMP2B bands.  One antibody corresponding to bleed 7 produced the 

most suitable detection to CHMP2BWT protein and was designated as antibody 

0762-B7.  A second antibody, CHMP2B-3335 demonstrated specific detection of 

both CHMP2BWT and CHMP2Bint5 proteins in optimisation studies and was used 

to quantify CHMP2BWT and CHMP2BInt5 transgene protein expression. 

 

5.2.4.1  Initial detection of CHMP2BWT transgene protein  

As human and mouse wild type CHMP2B proteins have the same molecular 

weight, overexpression of human CHMP2BWT protein was determined by 

producing greater band intensity, that is increased CHMP2B protein in 

comparison to non-transgenic mice.  The predicted band size for wild type 

CHMP2B protein is 24kDa, however the band observed on Western blots is just 

below 36kDa. This may be due to the protein’s highly charged nature or due to 

glycosylation or phosphorylation of the intracellular protein. 

 

CHMP2B protein expression is demonstrated in each of the CHMP2B transgenic 

lines by western blotting 10% brain homogenates from hemizygous transgenic 

mice (figure 5.9).  The blot has been probed with 0762-B7 antibody which 

detects N-terminal amino acids 10-28 (VDDVIKEQNRELRGTQRAI) of wild type 

CHMP2B.  

 

Bands are present just below 36kDa corresponding to wild type Chmp2b protein 

for each sample except Chmp2b-/- which does not express Chmp2b protein, 

confirming specificity of the antibody.  Lanes corresponding to Tg167 and Tg168 



199 

 

(CHMP2BWT lines) show bands of much greater intensity compared to other 

transgenic lines and non-transgenic samples, confirming overexpression of 

CHMP2BWT transgene protein (figure 5.9).  The same increased band intensity is 

not observed in Tg166, also a CHMP2BWT line suggesting this line does not 

overexpress the transgene protein (figure 5.9). 

 

The actin blot (figure 5.9) shows the same blot re-probed with anti-actin 

antibody demonstrating that all the samples were loaded equally. 
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Figure 5.9 Western blot of CHMP2B lines using N-Terminal antibody 0762-B7.   

CHMP2B
WT 

lines Tg167 and Tg168 demonstrate a much stronger CHMP2B band intensity compared to Non-Tg sample confirming overexpression 

of transgenic CHMP2B relative to endogenous Chmp2b. CHMP2B
Int5

 or CHMP2B
10

 protein bands are not detected in the respective lines.  As 

expected the Chmp2b knockout (Chmp2b
-/-

) sample does not produce a Chmp2b band, further supporting the specificity of the antibody used 

(representative of N=3 for each transgenic line; 1 minute exposure). 
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5.2.4.2 Detection of CHMP2BInt5 transgene protein  

CHMP2B antibody 0762-B7 was designed to target a common N-terminal amino 

acid sequence of the CHMP2B protein so that in principle it may detect 

CHMP2BInt5, CHMP2B10 and CHMP2BWT proteins.  However, CHMP2BInt5 and 

CHMP2B10 protein bands were not initially detected (figure 5.9).  Optimisation 

of the blotting protocol was therefore performed and CHMP2BInt5 protein was 

detected for the first time by using 0762-B7 antibody at a 3 fold higher 

concentration and exposing blots to film for a longer (30 minutes) duration as 

detailed in chapter 2 (figure 5.10). 

 

Western blot of homozygous and hemizygous Tg153 (CHMP2BInt5) mouse brain 

homogenates shows the endogenous mouse chmp2b protein band present in 

Tg153 and Non-Tg samples (figure 5.10).  This blot also shows an additional band 

below the endogenous mouse Chmp2b band.  This additional band is most 

intense in the homozygous (Tg153+/+) samples, less intense in hemizygous 

(Tg153+/-) samples and absent in Non-Tg samples.  This band runs lower than 

mouse wild type endogenous Chmp2b band, below 36kDa and above 22kDa and 

is consistent with the expected size of CHMP2BInt5 protein (figure 5.10).  The 

actin blot shows samples are loaded equally (figure 5.10). 
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Figure 5.10 Initial detection of CHMP2B-Intron 5 band in Tg153 line.  

The strongest CHMP2B
Int5

 protein band is observed in Tg153+/+ homozygous samples, less intense CHMP2B
Int5

 protein band is observed in 

Tg153+/- hemizygous samples and a distinct CHMP2B
Int5

 protein band is not present in Non-Tg samples (N=2 for each genotype; 30-minute 

exposure). 
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To confirm CHMP2BInt5 protein expression in the Tg153 line and achieve a 

cleaner and more distinct CHMP2BInt5 protein band, the western blot protocol 

was further optimised and a fresh aliquot of 0762-B7 used and additional control 

samples were included in the western blot.  CHMP2BInt5 or CHMP2BWT 

transfected HEK cell lysates were used as positive and negative CHMP2BInt5 

transgene protein controls respectively.  Human FTD-3 and control brain lysates 

were also included.  Furthermore, short (10 minutes) and long (25 minutes) film 

exposure times were tested to reveal CHMP2BInt5 bands (figure 5.11). 

 

As with the first western blot (figure 5.10), figure 5.11 also shows an endogenous 

CHMP2B band in mouse and human brain samples. This blot too shows a second 

band (below 36kDa and above 22kDa) running below the endogenous Chmp2b 

band.  This protein band which is consistent with the CHMP2BInt5 band in figure 

5.10 is identified in CHMP2BInt5 Tg153 mouse brain samples in both short (10 

minutes) and long (25 minutes) film exposure blots.  Critically, this smaller band 

in the CHMP2BInt5 mouse brain samples runs at the same size as the CHMP2BInt5 

protein band from CHMP2BInt5 transfected HEK positive control cell lysates.  Of 

note, in the FTD-3 sample, this CHMP2BInt5 band is also seen in the long (25-

minute) exposure blot (figure 5.11). 
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Figure 5.11 Western blot demonstrating identification of CHMP2B
Int5

 protein in Tg153 mouse brain.  

CHMP2B
Int5 

protein band is identified in CHMP2B
Int5

 mouse brain running at the same size as HEK
Int5

 samples at both short (10 minutes) and 

long (30 minutes) exposure; CHMP2B
Int5 

protein band also observed in human FTD-3 brain homogenate, but is absent in Non-Tg, human 

control and HEK
WT

 sample (N=3 for each genotype). 
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In summary, figure 5.11 confirms that Tg153 CHMP2BInt5 transgenic mouse 

brains express CHMP2BInt5 protein and that this protein is not present in non-

transgenic (Non-Tg) brain samples, control human brain or CHMP2BWT 

transfected cells.  The actin blot shows even sample loading in mouse and 

human brain lanes (figure 5.11).  Actin bands are not present in either of the cell 

lysate lanes.  This is because transfected cells express a disproportionately 

greater amount of transfected constructs and therefore a lot less of cell lysate 

volume is loaded onto the gel, accounting for the absence of actin bands in the 

actin blot of figure 5.11. 

 

CHMP2B10 protein expression could not be detected in Tg158, Tg164 or Tg165 

CHMP2B10 lines due to lack of antibodies specific to CHMP2B10 protein.  

However, overexpression of CHMP2B10 protein, above endogenous mouse 

Chmp2b levels, would be expected to be detected by western blot.  It has 

previously been demonstrated that CHMP2B10 protein is degraded more quickly 

than CHMP2BInt5 or CHMP2BWT protein (Lee et al., 2007), which could explain the 

lack of overexpressed protein, particularly as CHMP2B10 RNA was detected. 

 

Having demonstrated CHMP2BWT transgene expression in Tg167 and Tg168 lines 

and CHMP2BInt5 transgene protein expression in Tg153 line, a consensus was 

reached to move forward using only one of each transgenic line. Therefore, for 

transgene protein quantification and histological analysis Tg168 was used as 

CHMP2BWT representative line and Tg153 as the CHMP2BInt5 representative line. 

5.2.4.3 Quantification of transgene proteins 

A significant limitation to using 0762-B7 antibody was the different antibody 

concentration and film exposure times needed to reveal CHMP2BInt5 and 

CHMP2BWT bands, making it impractical to analyse Non-Tg samples, Tg153 

CHMP2BInt5 samples and Tg168 CHMP2BWT on the same western blot for 

quantification. 
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To overcome this limitation and to quantify Tg153 CHMP2BInt5 and Tg168 

CHMP2BWT transgene protein expression, a different CHMP2B antibody 

designated CHMP2B-3335 and generated from a recombinant full-length 

CHMP2B protein immunogen was used (figure 5.12).   
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Figure 5.12 Western blot of CHMP2B lines using full-length anti-CHMP2B antibody. 

CHMP2B
WT

 samples show a strong CHMP2B protein band (CHMP2B black arrow) compared to Non-Tg samples which demonstrate only the 

endogenous mouse Chmp2b protein band.  CHMP2B
Int5

 samples demonstrate an additional protein band consistent with CHMP2B
Int5

 (red 

arrow) that is absent in all other samples. Antibody used is full-length anti-CHMP2B antibody CHMP2B-3335 (N=3 for each genotype). 
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To quantify CHMP2BInt5 and CHMP2BWT transgene protein expression, exposed 

films were scanned and analysed using the Volocity program. Transgenic 

samples were all normalised to Non-Tg samples (described in chapter 2).  

CHMP2BWT protein is expressed 6.6 fold higher than endogenous Chmp2b (p= 

0.00005*) and CHMP2BInt5 protein is expressed 0.9 fold in comparison to 

endogenous Chmp2b protein and is not considered an overexpression as 

CHMP2BInt5 mutant protein expression is almost equal to endogenous Chmp2b 

protein expression (figure 5.13). 

 

 

 

Figure 5.13 Quantification of transgenic proteins. 

Graph shows a significant (6.6 times) increase in Tg168 (CHMP2B
WT

) protein expression (p= 

0.00005).  CHMP2B Intron 5 protein expression in Tg153 (CHMP2B
Int5

) is ~0.9, almost 

equivalent to endogenous Chmp2b protein expression (N=3 for each genotype; error bars=SEM). 
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5.3 Pathology 

Having determined relative transgene expression levels for CHMP2BInt5 Tg153 

(0.9 times) and CHMP2BWT Tg168 (6.6 times) mouse lines relative to endogenous 

Chmp2b protein expression in non-transgenic lines (Non-Tg), a systematic 

histological study was carried out to examine the brain and spinal cord (lumbar 

region) of Tg153 CHMP2BInt5 (from here on referred to as CHMP2BInt5), Tg168 

CHMP2BWT (from here on referred to as CHMP2BWT) and Non-Tg mice at 6, 12 

and 18 months of age.  

 

Immunohistochemical staining for markers of neuroinflammation, inclusion 

pathology and neuronal loss have been studied to investigate whether the 

mutant CHMP2BInt5 expressed in the brain and spinal cord recapitulates the 

distinctive neuropathology reported in affected members of the FTD-3 family 

(Holm et al., 2007; Holm et al., 2009). 

 

The gross morphology of sciatic nerve samples were examined from CHMP2BInt5, 

CHMP2BWT and Non-Tg mice at the latest time point, 18 months of age, to 

investigate whether peripheral nerve pathology was present.  Finally an EM 

study was carried out on CHMP2BInt5 mouse brains compared to Non-Tg mouse 

brains to explore the ultra-structural neuropathology.  

 

5.3.1 Brain Pathology 

5.3.1.1 Astrogliosis and microglial activation 

Transgenic mouse brains were examined for evidence of astrogliosis and 

microglial activation, using two established immunohistochemical markers, Glial 

Fibrillary Acidic Protein (GFAP) and Ionized calcium binding adaptor molecule 1 

(Iba1) (Middeldorp and Hol, 2011) (described in detail in chapter 3). 
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Proliferation of GFAP-positive astrocytes is observed in an age-dependent 

progressive manner in CHMP2BInt5 brains (figure 5.14a-c).  Few proliferating 

astrocytes are observed in 6-month CHMP2BInt5 brain (figure 5.14a).  Abundant 

astrogliosis is initially identified at 12 months in CHMP2BInt5 brain (figure 5.14b).  

By 18 months astrogliosis increases in CHMP2BInt5 brains compared to both 12 

months CHMP2BInt5 brain (figure 5.14b), 18 months Non-Tg (figure 5.14f) and 

CHMP2BWT brain (figure 5.14i).  Non-Tg (figure 5.14d-f) and CHMP2BWT (figure 

5.14g-i) do not demonstrate comparable progressive astrogliosis at age-matched 

time points. 

 

Quantitative analysis of percent GFAP coverage verifies a progressive increase in 

CHMP2BInt5 (not statistically significant at 6 months in any brain region 

examined), progressing to be statistically significant in the cortex at 12 months 

(*p<0.05 figure 5.15A) and 18 months (**p<0.01 figure 5.15A) as well as in the 

thalamus at 12 months (***p<0.001 figure 5.15B) and 18 months (****p<0.0001 

figure 5.15B) compared to age- and brain region- matched Non-Tg sections 

(figure 5.15A and B respectively).  No significant changes are demonstrated in 

CHMP2BWT at any age in any brain region examined (figure 5.15A and 5.15B). 
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Figure 5.14 Progressive astrogliosis in CHMP2B
Int5

 thalamus   

Representative images from Tg153 CHMP2B
Int5

, Non-Tg and Tg168 CHMP2B
WT

 mouse thalamus 

at 6, 12 and 18 months. CHMP2B
Int5 

thalamus shows specific proliferation of GFAP positive 

astrocytes at all ages examined with a slight but non-significant increase at 6 months.  Significant 

astrogliosis is observed initially at 12 months (b) and increases at 18 months (c) demonstrating 

progressive astrogliosis. There is no significant evidence of GFAP positive astrocytes at any age 

in Non-Tg (d-f) and CHMP2B
WT

 (g-i) mouse thalamus. (N=3 for each genotype at each age; scale 

bar= 160µm). 
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Figure 5.15 Quantification of astrogliosis using GFAP coverage in the cortex and thalamus of CHMP2B
Int5

 mice.   

Astrogliosis is significantly increased in the cortex (A) and thalamus (B) of Tg153 CHMP2B
Int5

 mice at 12 and 18 months of age compared to age matched 

Non-Tg mice.  No significant changes are identified in Tg168 CHMP2B
WT

at any age.  (N=5 for each genotype at each age; error bars % SEM; *p<0.05, 

**p<0.01,***p<0.001, ****p<0.0001 obtained by two-way ANOVA and Bonferroni post-hoc test). 
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Activated Iba1-positive microglia with intensely staining cell bodies and 

thickened processes are also detected in an age-dependent progressive manner 

in CHMP2BInt5 brains (figure 5.16a-c).  Few activated microglia with extended 

processes are seen in 6 month-old CHMP2BInt5 brain (figure 5.16a).  Microglial 

activation increases at 12 (figure 5.16b) and 18 months (figure 5.16c) observed 

as increasing number of activated microglia, greater staining intensity of the cell 

bodies and activated morphology (figure 5.16a-c).  Non-Tg (figure 5.16d-f) and 

CHMP2BWT brains (figure 5.16g-i) do not exhibit comparable activated microglia 

at age-matched time points. 

 

Microglial activation can be classified according to cellular morphology.  In order 

of increasing activation, microglia are classified as ramified (normal), reactive, 

amoeboid or phagocytic (most activated state) (Ghazi-Noori et al., 2012). 

 

Non-parametric Kruskal-Wallis ANOVA statistical analysis of Iba1 scores was 

performed using this classification scheme with a score of 1 for ramified 

morphology up to 4 for phagocytic morphology.  This analysis reveals a 

significant increase in microglial activation at 6 months (*p<0.05 figure 5.17B) 12 

months (**p<0.001 figure 5.15B) and 18 months (****p<0.0001) compared to 

age matched Non-Tg brain (figure 5.15B).  No significant changes are 

demonstrated in CHMP2BWT at any age in any brain region examined (figure 

5.17A and 5.15B). 
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Figure 5.16 Progressive microglial activation in CHMP2B
Int5

 thalamus.   

Representative images from Tg153 CHMP2B
Int5

, Non-Tg and Tg168 CHMP2B
WT

 mouse thalamus 

at 6, 12 and 18 months.  CHMP2B
Int5 

thalamus shows specific activation of Iba1 positive microglia 

at all ages examined with a few at 6 months (a) and progressively increasing at 12 months (b) and 

18 months (c) demonstrating progressive microglial activation.  There are very few microglia 

demonstrating activated morphology at any age in Non-Tg (d-f) and CHMP2B
WT

 (g-i) mouse 

thalamus.  (N=3 for each genotype at each age; scale bar= 160µm). 
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Figure 5.17 Scores of progressive microglial activation in the cortex and thalamus of CHMP2B
Int5

 mice.   

Microglial activation is significantly increased in the cortex (A) of CHMP2B
Int5

 at 18 months compared to age matched Non-Tg mice and in a 

progressive age-dependent manner in CHMP2B
Int5

 thalamus (B) at 6, 12 and 18 months compared to age matched Non-Tg mice.  No significant 

changes are identified in CHMP2B
WT

 mice at any age.  (N=5 for each genotype at each age; *p<0.05, **p<0.01, ****p<0.0001 obtained using 

non-parametric Kruskal-Wallis ANOVA statistical analysis) 
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Quantitative immunohistochemical analysis of GFAP and Iba1 has revealed 

significant and age-dependent progressive astrogliosis and microglial activation 

specific to CHMP2BInt5 mouse cortex and thalamus.  Data not shown but recently 

reported by AI also demonstrates progressive astrogliosis and microglial 

activation in Tg153 CHMP2BInt5 corpus callosum representative of brain white 

matter (Ghazi-Noori et al., 2012).  Astrogliosis demonstrated in CHMP2BInt5 

mouse brain is consistent with reported FTD-3 pathology (Holm et al., 2007).  

 

5.3.1.2 Inclusion pathology 

Ubiquitin and p62 inclusions co-localise in FTD-3 human brains (Holm et al., 

2007), therefore in this study p62 has been used as (1) a marker of inclusion 

pathology and (2) because of its localisation to autophagosomes and interaction 

with LC-3 as a surrogate marker of autophagy (Komatsu and Ichimura, 2010). 

 

Ubiquitin and p62 immunostaining was performed on brain sections of 6, 12 and 

18 months old CHMP2BInt5, CHMP2BWT and Non-Tg mice.  The most distinctive 

pathology identified is the progressive age-dependent accumulation of p62 

inclusions specific to CHMP2BInt5 mouse brain in many brain regions (figure 5.18 

and 5.19).   

 

Progressive age-dependent accumulation of p62 inclusions is seen in the cortex, 

corpus callosum, thalamus (figure 5.18) and brain stem of CHMP2BInt5 mice.  At 6 

months only a few small p62 inclusions are seen (figure 5.18 g arrow), the 

number and size of p62 inclusions increases at 12 months (figure 5.18 b,e,h) and 

by 18 months p62 inclusions are abundant and include both large neuronal 

inclusions (figure 5.18 c, blue arrows) and smaller dot and thread-like inclusions 

(figure 5.18 f and i red arrows). 
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Figure 5.18 Progressive age-dependent accumulation of p62 inclusions in CHMP2B
Int5

 brain.  
Representative images from Tg153 CHMP2B

Int5
 mouse cortex, corpus callosum and thalamus at 6, 

12 and 18 months of age.  p62 neuronal inclusions (arrows) show progressive age-dependent 

accumulation, the size and density of p62 inclusions also increases in an age-dependent manner. 

(a-i) two types of inclusions are seen- neuronal inclusions (blue arrows) and dot and thread like 

inclusions (red arrows).  (N=3 for each genotype at each age; scale bar= 160µm). 
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The thalamus exhibits the greatest amount of p62 inclusions of all regions 

examined (figure 5.19 and 5.20C).  Non-Tg and CHMP2BWT brain sections do not 

exhibit p62 inclusions at any age in the thalamus (figure 5.19) or any other 

region examined including the cortex, corpus callosum or brain stem (figure 

5.30).   

 

 
 
Figure 5.19 Progressive age-dependent p62 inclusions are unique to CHMP2BI

nt5
 brain.  

Representative images from CHMP2B
Int5

, Non-Tg and CHMP2B
WT

 transgenic mice showing p62 

inclusion formation at 6, 12 and 18 months of age only in CHMP2B
Int5

 thalamus.  Very few p62 

inclusions are observed at (a) 6 months increasing in size and density at (b) 12 and (c) 18 months 

(a, b and c arrows).  p62 inclusions comparable to those seen in CHMP2BInt5 are not observed in 

age-matched Non-Tg (d-f) or CHMP2B
WT

 (g-i) brain.   (N=3 for each genotype at each age; scale 

bar= 160µm). 
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Quantitative analysis of the cortex, corpus callosum and thalamus confirms a 

statistically significant age-dependent progressive accumulation of p62 

inclusions in CHMP2BInt5 compared to Non-Tg brain (figure 5.20).  In the cortex 

(figure 5.20A) a marginal statistical significance is identified at 12 months 

(p<0.05) and 18 months (p<0.01).  In the corpus callosum (figure 5.20B) and 

thalamus (figure 5.20C) a greater statistical significance is observed at 12 and 18 

months (p<0.0001) and of all the regions analysed quantitatively, the thalamus 

demonstrates the greatest amount of p62 accumulation in CHMP2BInt5 relative 

to other brain regions at 18 months (figure 5.20). 
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Figure 5.20 Quantification of p62 inclusions in the cortex, corpus callosum and  thalamus of CHMP2B mouse lines.  

Progressive age-dependent p62 inclusion accumulation is found to be statistically significant in all regions analysed, including the cortex (A), corpus callosum (B) 

and thalamus (C) of CHMP2B
Int5

 mouse brain compared to age-matched Non-Tg and CHMP2B
WT

 mice.  p62 inclusion accumulation is only marginally significant in 

the cortex and highly significant in the corpus callosum and thalamus.  Furthermore, the thalamus demonstrates the greatest density of p62 inclusion accumulation at 

18 months.  (N=5 for each genotype at each age; *p<0.05, **p<0.01, ****p<0.0001 obtained by  two-way ANOVA and Bonferroni post-hoc test). 
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Immunostaining with anti-CHMP2B antibody demonstrates CHMP2B inclusions 

in CHMP2BInt5 thalamus at 18 months (figure 5.21a arrows) and increased 

staining in CHMP2BWT thalamus (figure 5.21c) compared to Non-Tg thalamus 

(figure 5.21b).  Ubiquitin inclusions are also detected in CHMP2BInt5 thalamus at 

18 months (figure 5.21d arrow).  Ubiquitin inclusions demonstrate a comparable 

staining pattern to p62 inclusions in CHMP2BInt5 brain, including neuronal and 

dot and thread like ubiquitin inclusions (figure 5.21d arrows). CHMP2B inclusions 

are not observed in 18 months Non-Tg or CHMP2BWT thalamus (figure 5.21b and 

c respectively). Ubiquitin inclusions are not observed either in 18 months Non-Tg 

thalamus (figure 5.21e), however intranuclear neuronal ubiquitin inclusions are 

seen in 18 months CHMP2BWT thalamus (figure 5.21f), but the size and staining 

pattern is distinct from that seen in CHMP2BInt5 thalamus, there are also far 

fewer ubiquitin inclusions in CHMP2BWT thalamus at 18 months. 

 

Accumulation of presynaptic marker synaptophysin is observed in 18-month 

CHMP2BInt5 thalamus (figure 5.21g arrow) but not age-matched CHMP2BWT or 

Non-Tg thalamus (figure 5.21h and i respectively).  Translocation of TDP-43 from 

the nucleus to the cytoplasm has been reported in FTLD-TDP cases (Sampathu et 

al., 2006).  TDP-43 staining is specifically nuclear in CHMP2BInt5, CHMP2BWT and 

Non-Tg brains and translocation from the nucleus to the cytoplasm or skein-like 

staining is not observed (figure 5.21j-l) 
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Figure 5.21 Representative CHMP2B, ubiquitin, synaptophysin and TDP-43 staining in 

CHMP2B
Int5

, Non-Tg and CHMP2B
WT

 thalamus at 18 months.   

CHMP2B-positive inclusions are detected at 18 months in CHMP2B
Int5

 thalamus (a arrows); 

CHMP2B
WT

 transgenic mice which overexpress human wild type CHMP2B show greater 

CHMP2B immunostaining (c) compared to Non-Tg brain (b). Ubiquitin inclusions are also 

observed in CHMP2B
Int5

 thalamus (d) but not Non-Tg thalamus (e).  Neuronal nuclear ubiquitin 

inclusions are seen in CHMP2B
WT

 brain (f) but these inclusions are distinct from inclusions 

observed in CHMP2B
Int5

 brain and only appear at 18 months.  Accumulation of synaptophysin, a 

marker of presynaptic terminals is observed in CHMP2B
Int5

 thalamus at 18 months (g) but not age-

matched Non-Tg (h) or CHMP2B
WT

 (i) thalamus.  Translocation of TDP-43 or skein-like staining 

typical of FTLD-TDP pathology is not observed in CHMP2B
Int5

, Non-Tg or CHMP2B
WT

.  (N=3 

for each genotype at each age; scale bar= 160µm). 
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5.3.2 Brain Ultrastructure 

Ultrastructural electron microscopic (EM) analysis demonstrated enlarged 

endosome structures consistent with dysmorphic multivesicular bodies in three 

FTD-3 patient fibroblast lines, which were absent in age-matched controls.  The 

dysmorphic structures were reported as being enlarged vacuoles positive for the 

late endosome marker CD63, with aberrant membranes or sparse interluminal 

vesicles (Urwin et al., 2010a).  To investigate whether the CHMP2B transgenic 

mice recapitulate this ultrastructural pathology and to further elucidate the 

neuropathology observed in the CHMP2BInt5 mouse brains under light 

microscopy (LM), including inclusion morphology, mouse brains were processed 

appropriately and viewed under EM.  As the thalamus was shown to be the 

region of greatest pathology in LM analysis, the focus of the EM examination was 

primarily the thalamus.  
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Figure 5.22 Electron microscopic images of CHMP2B
Int5

 and Non-Tg thalamus.    

Neuronal inclusions are observed at both 12 months (b) and 18 months (e) (arrows) in 

CHMP2B
Int5 

thalamus.  Additional pathology identified includes enlarged axons at 12 months (c) 

and 18 months (f) (arrows) .  Neuronal inclusions and enlarged axons are absent in Non-Tg mouse 

brains at both 12 months (a) and 18 months (d) (N=3 for each genotype at each age; scale bar a-c 

and e = 2µm, d and f = 5µm).  

 

Examination of CHMP2BInt5 transgenic thalamus reveals the presence of electron 

dense structures with a rough perimeter identified close to neuronal nuclei at 12 

and 18 months (figures 5.22 b and e arrows); these structures are considered to 

be consistent with the p62-positive neuronal inclusions, observed under LM.   

 

Data not shown but reported by AI demonstrates axonal pathology using 

amyloid precursor protein staining in CHMP2BInt5 transgenic mouse brain first 

evident at 6 months and progressive with age; axonal swellings are absent in 

age-matched Non-Tg brains (Ghazi-Noori et al., 2012). Consistent with this data, 

axonal swellings are also identified under EM in CHMP2BInt5 thalamus at both 12 

and 18 month (figures 5.22 c and f arrows).  The axonal swellings contain an 

accumulation of mitochondria, and vesicles likely from the endosome-lysosome 

and autophagy pathways.  Neuronal inclusions and axonal swellings are not 

observed in age matched Non-Tg brains (figures 5.22 a and d). 
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5.3.3 Spinal Cord Pathology 

5.3.3.1 Astrogliosis 

The hamster prion promoter directs CHMP2B transgene expression to the spinal 

cord as well as the brain.  To further characterise the CHMP2B transgenic mice 

and investigate the effect of the CHMP2B transgenes in the spinal cord, a 

systematic study was undertaken to examine the lumbar spinal cord for 

astrogliosis and inclusion pathology. 

 

Astrogliosis is observed in a progressive age-dependent manner in the lumbar 

spinal cord of CHMP2BInt5 mice first apparent at 12 months (figure 5.23b) and 

increasing at 18 months (figure 5.23c) indicating a chronic and progressive 

inflammatory pathology. Some variation is noted in GFAP staining in Non-Tg and 

CHMP2BWT lumbar spinal cord, reflecting inflammation that is not progressive 

with age and distinct from the progressive age-dependent inflammatory 

pathology identified in CHMP2BInt5 lumbar spinal cord (figure 5.23).  Critically 

there is greater GFAP staining at 12 months and 18 months in CHMP2BInt5 

lumbar spinal cord (figure 5.23 b and c respectively) compared to age matched 

CHMP2BWT (figure 5.23e and f) and Non-Tg (figure 5.23h and i) lumbar spinal 

cord. 
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Figure 5.23 GFAP expression in lumbar spinal cord at 6, 12 and 18 months.  

Astrogliosis is observed in an age-dependent progressive manner at 12 and18 months in 

CHMP2B
Int5

 lumbar spinal cord demonstrated by increased GFAP expression (b and c).  The same 

degree of astrogliosis depicted by the increase in GFAP is not present in age-matched CHMP2B
WT

 

or Non-Tg lumbar spinal cord. (N=3 for each genotype at each age; scale bar=100µm). 
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5.3.3.2 Inclusion pathology 

CHMP2B transgenic mouse lumbar spinal cord sections were subjected to 

immunostaining with anti-CHMP2B, ubiquitin and p62 antibodies to investigate 

whether these mice present with inclusion accumulation typical of 

neurodegenerative pathology. 

 

Neuronal CHMP2B-positive inclusions are observed in motor neurons of the 

lumbar spinal cord initially at 12 months (figure 5.24b, arrow); the size and 

number of these CHMP2B-positive inclusions increases with age so that at 18 

months larger and a greater number of CHMP2B-positive inclusions are evident 

(figure 5.24c, arrows).  Notably the CHMP2B-positive inclusions are unique to 

CHMP2BInt5 mice and not observed in age-matched CHMP2BWT (figure 5.24d-f) or 

Non-Tg (figure 5.24g-1) lumbar spinal cord. 
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Figure 5.24 CHMP2B expression in lumbar spinal cord motor neurons at 6, 12 and 18 

months.   

CHMP2B immunostaining reveals inclusions in 12 and 18 months CHMP2B
Int5

 motor neurons (b 

and c arrows) in a progressive age-dependent manner but are absent in age-matched  CHMP2B
WT

 

(e and f) and  Non-Tg (h and i) lumbar spinal cord.  CHMP2B
WT

 motor neurons (d, e and f) show 

more intense CHMP2B staining compared to Non-Tg spinal cord (g, h and i). (N=3 for each 

genotype at each age; scale bar=20µm) 
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Parallel to the CHMP2B-positive inclusions observed in the lumbar spinal cord 

motor neurons of CHMP2BInt5 mice, immunostaining with ubiquitin and p62 

reveals a corresponding age-dependent progressive accumulation of ubiquitin 

(figure 5.25) and p62 (figure 5.26) inclusions also unique to CHMP2BInt5 motor 

neurons.   

 

Small neuronal ubiquitin inclusions are first identified at 12 months (figure 

5.25b, arrow) in lumbar spinal cord motor neurons of CHMP2BInt5 mice.  The size 

and number of ubiquitin inclusions is seen to increase at 18 months (figure 

5.25c, arrows).  p62 inclusions are initially identified at 6 months (figure 5.26a, 

arrow); and are relatively larger in size at 12 months compared to ubiquitin 

inclusions at the same age (compare figure 5.25b against figure 5.26b).  The 

number of p62 inclusions increases further by 18 months (figure 5.26c, arrows).  

Ubiquitin and p62 inclusions are not identified in age-matched CHMP2BWT or 

Non-Tg spinal cord motor neurons (figure 5.25d-i and 5.26d-i respectively). 

 

Quantification of p62 inclusions (% of motor neurons containing inclusions) 

confirms a progressive age-dependent increase in p62 inclusions in CHMP2BInt5 

spinal cord motor neurons compared to Non-Tg spinal cord motor neurons; at 12 

months (p<0.001) and 18 months (p<0.0001) (figure 5.27).  This effect is not 

replicated in age-matched CHMP2BWT spinal cord motor neurons (figure 5.27) 
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Figure 5.25 Ubiquitin expression in lumbar spinal cord motor neurons at 6, 12 and 18 

months.  

Ubiquitin  inclusions are observed in 6, 12 and 18 months CHMP2B
Int5

 motor neurons (b and c 

arrows) in a progressive age-dependent manner but are absent in age-matched CHMP2B
WT

  (d,e,f) 

and Non-Tg (g, h, i) lumbar spinal cord.  (N=3 for each genotype at each age; scale bar=20µm). 
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Figure 5.26 p62 Immunostaining of the lumbar spinal cord at 6, 12 and 18 months.  

p62 inclusions are observed in 12 and 18 months CHMP2B
Int5

 motor neurons (a, b and c arrows) 

in a progressive age-dependent manner but are absent in age-matched CHMP2B
WT

  (d,e,f) and 

Non-Tg (g, h, i) lumbar spinal cord.  (N=3 for each genotype at each age; scale bar=20µm). 
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Figure 5.27 Quantification of p62 inclusions in lumbar spinal cord.  

Progressive age-dependent p62 inclusion accumulation is found to be statistically significant in 

CHMP2B
Int5

 lumbar spinal cord motor neurons compared to age-matched Non-Tg lumbar spinal 

cord motor neurons.  This effect is not replicated in CHMP2B
WT

 lumbar spinal cord motor neurons 

(N=5 for each genotype at each age; error bars % SEM ***p<0.001, ****p<0.0001 obtained by 

two-way ANOVA and Bonferroni post-hoc test). 

 

 

5.3.4 Sciatic Nerve 

The sciatic nerve from  CHMP2B transgenic mice was used to investigate any 

potential peripheral nerve pathology.  The gross morphology of sciatic nerve 

from 18 months CHMP2BInt5, CHMP2BWT and Non-Tg mice was examined under 

low and high magnification (figure 5.28).  No distinctive difference or features of 

sciatic nerve pathology were idenitifed in CHMP2BInt5 or CHMP2BWT compared to 

Non-Tg sciatic nerves (figure 5.28). 
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Figure 5.28 CHMP2B
Int5

, CHMP2B
WT

 and Non-Tg sciatic nerve transverse sections at 18 

months stained with toluidine blue.  

Low magnification mouse sciatic nerve demonstrates gross morphology of the sciatic nerve with 

numerous nerve fibres (ai, bi and ci); high magnification of the nerve fibres showing transverse 

myelinated axonal profiles (aii, bii and cii).  No distinctive difference is noted in any genotype at 

18 months. (N=3 for each genotype; scale bar= ai-ci =100µm; aii-cii =20µm). 
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5.4 Exploring the Molecular Basis of CHMP2BInt5 Pathology 

Autophagy is an intracellular bulk degradation process employed by cells to 

degrade and recycle organelles and ubiquitinated proteins from the cytoplasm.  

The molecular basis of autophagy has received much interest in the field of 

neurodegenerative research in recent years as a potential mechanistic basis for a 

number of neurodegenerative disorders (reviewed by Harris and Rubinsztein) 

(Harris and Rubinsztein, 2012).  Autophagy is initiated by the formation of 

double-membrane structures termed phagophores, which engulf portions of 

cytoplasm and cargo destined for degradation (Harris and Rubinsztein, 2012).   

 

During the second maturation stage of autophagy, LC3 is cleaved at its C-

terminus by ATG4 to form cytosolic LC3-I which is conjugated with lipid 

phosphatidylethanolamine to form LC3-II which in turn aids the closure of the 

membrane to form autophagosomes (Mizushima et al., 2003; Ravikumar et al., 

2010).  The resulting autophagosomes ultimately fuse with lysosomes, where 

their contents are degraded by lysosomal acid hydrolases (Ravikumar et al., 

2010; Harris and Rubinsztein, 2012).  

 

In section 5.3 of this chapter ‘inclusion pathology’ data demonstrating 

progressive age-dependent accumulation of ubiquitin and p62 inclusions unique 

to CHMP2BInt5 transgenic mice is presented.  These CHMP2BInt5 specific p62 

inclusions are identified in many brain regions (figure 5.30) and in motor neurons 

of the lumbar spinal cord (figure 5.26).  Furthermore quantification of inclusions 

reveals a statistically significant progressive increase of p62 with increasing age 

(figure 5.20).  Western blot data of soluble and insoluble fractions from 

CHMP2BInt5  brains reveals an increase in p62 expression only in the insoluble 

fraction and not the soluble fraction, compared to Non-Tg brain samples (figure 

5.29), very likely reflecting the accumulation of insoluble p62 inclusions (data 

kindly provided by AI) (Ghazi-Noori et al., 2012).   
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Figure 5.29 Insoluble p62 is increased in CHMP2B
Int5 

mouse brain.  

Western blot demonstrates accumulation of p62 in the insoluble CHMP2B
Int5

 brain fraction only, 

reflecting accumulation of non-soluble p62 inclusions.  Adapted from Ghazi-Noori et al 2012 

(Ghazi-Noori et al., 2012).  

 

The progressive age-dependent accumulation of p62 inclusions is of particular 

interest as p62 acts as a linker protein and presents substrates to be degraded to 

the autophagic machinery by simultaneously binding to both ubiquitinated 

proteins (via its UBA domain) and LC3-II (via its LRS/LIR region) and consequently 

p62 is degraded by autophagy itself (Tanida et al., 2004b; Pankiv et al., 2007; 

Ichimura et al., 2008). 
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Figure 5.30 p62 inclusions identified in a range of CHMP2B
Int5

 brain regions.  

p62 inclusions are present in many CHMP2B
Int5

 brain regions at 18 months of age (a, d, g and j).  

p62 inclusions are not identified in age-matched CHMP2B
WT

 (c, f, I and l) or Non-Tg brains (b, e, 

h and k). Representative images of N=3; scale bar = 160µm. 
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In an attempt to explore whether the basis of the neuropathology phenotype 

identified in the CHMP2BInt5 mouse brain is associated with autophagy 

dysregulation, LC3-II expression was quantified in 6 months  (low levels of p62 

inclusions) and 18 months (high levels of p62 inclusion formation) in mouse 

brains. 

 

Observing LC3 western blots by eye alone does not reveal a distinct difference in 

LC3-II protein expression in CHMP2BInt5 or CHMP2BWT compared to Non-Tg 

samples at either 6 months (figures 5.31) or 18 months (figure 5.32).  

Quantification of LC3-II normalised to Non-Tg in CHMP2BInt5 shows a non-

significant increase in LC3-II expression at 18 months (146.5%) compared to 6 

months (115.4%) (figure 5.33).  Even this conservative increase in LC3-II 

expression from 6 months to 18 months may potentially be suggestive of 

autophagosome accumulation.  Conversely, quantification of LC3-II in CHMP2BWT 

demonstrates a reduction in LC3-II expression at 18 months (102.9%) compared 

to 6 months (144.8%); again this is not a statistically significant change (figure 

5.33). 
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Figure 5.31 LC3 expression at 6 months in CHMP2B
Int5

, CHMP2B
WT

 and Non-Tg whole brain homogenates.   

No distinct difference is identified in LC3-II expression in CHMP2B
Int5

or CHMP2B
WT

 compared to Non-Tg samples.  Actin blot demonstrates 

equal loading across all samples (N=3 for each genotype). 
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Figure 5.32 LC3 expression at 18 months in CHMP2B
Int5

, CHMP2B
WT

 and Non-Tg whole brain homogenate.   

No distinct difference is identified in LC3-II expression in CHMP2B
Int5

or CHMP2B
WT

 compared to Non-Tg samples.  Actin blot demonstrates equal loading across 

all samples (N=3 for each genotype). 
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Figure 5.33 Quantification of LC3-II expression. 

LC3-II expression was normalised to Non-Tg LC3-II expression for CHMP2B
Int5

 and CHMP2B
WT

 at 

6 months and 18 months.  A non-significant increase in LC3-II expression is observed in 18 months 

CHMP2B
Int5

 (146.5% SEM +/- 16.9) samples compared to 6 months samples (115.4% SEM+/-12.4).  

Conversely, a reduction in LC3-II expression is observed in 18 months (102.9 SEM+/-16.1) 

CHMP2B
WT

 samples compared to 6 months (144.8 SEM±13.4) samples; this too is not statistically 

significant.  (N=3 for each genotype at each age; error bars= SEM (%); two-sample t-test). 
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5.5 Discussion 

To investigate the pathogenic basis of CHMP2B mutations in vivo, transgenic mice 

harbouring human CHMP2BInt5 and CHMP2B10 mutations and overexpressing 

human wild type CHMP2B (CHMP2BWT) were generated and analysed in 

comparison to non-transgenic mice (Non-Tg). 

 

In summary, the CHMP2BInt5 mice demonstrate brain and spinal cord pathology 

characterised by progressive age-dependent astrogliosis, microglial activation and 

inclusion formation first apparent at 6-12 months.  The progressive increase in 

astrogliosis in the cortex, thalamus and motor neurons of the lumbar spinal cord in 

CHMP2BInt5 mice at 12 and 18 months is statistically significant compared to age 

matched Non-Tg mice.  No significant astrogliosis was identified in CHMP2BWT at 

any age.   

 

Ubiquitin and p62 inclusions are identified in many brain regions and in the lumbar 

spinal cord motor neurons.  CHMP2B-positive inclusions are also identified in the 

brain and lumbar spinal cord motor neurons, however CHMP2B-positive inclusions 

first appear at 12 months at low frequency and then appear more robustly at 18 

months.  The late appearance of CHMP2B inclusions may reflect mutant 

CHMP2BInt5 protein being recruited into aggregated inclusions at a late stage of 

pathology or that the antibody used in this study to detect CHMP2BInt5 inclusions 

is not sufficiently sensitive to detect smaller inclusions or the protein 

conformation of inclusions when they first start to form. 

 

Quantification of p62 inclusions in the brain and spinal cord confirms a statistically 

significant progressive age-dependent p62 inclusion accumulation in the cortex, 

corpus callosum, thalamus and motor neurons of the lumbar spinal cord 

compared to age-matched Non-Tg mice.  This p62 inclusion accumulation is only 

marginally significant in the cortex and highly significant in the corpus callosum 
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and thalamus.  The pattern of inclusion pathology likely reflects the distribution of 

transgene expression driven by the hamster prion protein gene promoter (figure 

5.34). 

 

 

Figure 5.34 Diagrammatic representation of regions of p62 inclusion pathology in 18-month-

old CHMP2B
Int5

 mice.   

(A) areas shaded yellow demonstrate low levels of brain pathology (cortex, cerebellar white matter); 

orange greater pathology (brain stem and corpus callosum) and red areas of greatest pathology 

(thalamus and occasional brain stem axonal tracts); grey shading indicates no overt pathology.  (B) 

red dots depict inclusion pathology size and density in the lumbar spinal cord. Greatest inclusion 

pathology is identified in the grey matter and dorsal corticospinal tract and less so in the white 

matter (Ghazi-Noori et al., 2012). 

 

Additional data provided by AI demonstrates that p62 levels are increased in the 

insoluble fraction of CHMP2BInt5 brain lysates only, likely reflecting the 

accumulation of insoluble p62 aggregates in CHMP2BInt5 brain (Ghazi-Noori et al., 

2012).  The progressive inclusion pathology is unique to CHMP2BInt5 mice and not 

replicated in CHMP2BWT mice and no pathology is identified in age-matched Non-



243 

 

 

Tg mice.  Data kindly provided by AI shows that a second CHMP2BInt5 line, Tg156 

demonstrates comparable pathology (figure 5.35) to the CHMP2BInt5 Tg153 line 

described in this chapter (Ghazi-Noori et al., 2012).  This confirms that the 

pathology is caused by the CHMP2BInt5 transgene and is not due to insertional 

mutagenesis. 

 

 

 

Figure 5.35 p62 inclusion pathology in CHMP2B
Int5

 line Tg156 at 18 months.   

p62 pathology in CHMP2B
Int5

 Tg156 line is consistent with CHMP2B
Int5

 line Tg153 line described 

in section 5.3 of this chapter, confirming that pathology is the result of CHMP2B
Int5

 isoform and not 

due to insertional mutagenesis. Data provided by AI, figure adopted from Ghazi-Noori et al 2012 

(Ghazi-Noori et al., 2012)   

 

Examination of 12 and 18 months CHMP2BInt5 brain ultrastructure confirms the 

presence of neuronal inclusions and the presence of axonal swellings containing 

an accumulation of mitochondria and vesicles, likely from the endosome-lysosome 

and autophagy pathways.  Neuronal inclusions and axonal swellings are not 

observed in age-matched Non-Tg brains (section 5.3.2, figure 5.22) 

 

Examination of the sciatic nerve does not reveal any pathology; this may reflect 

the hamster prion protein promoter driving transgene expression to the brain and 

spinal cord.   

 

Expression of CHMP2BInt5 in cells results in the accumulation of ubiquitin, p62 and 

GFP-LC3 (Filimonenko et al., 2007) and expression of CHMP2BInt5 in the fly eye 

results, increased expression of LC3-II and autophagosome structures identified 

under EM (Lee et al., 2007).  The accumulation of autophagosomes may 

potentially be due to inhibition of autophagic or autophagosome degradation or 
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impaired fusion of autophagosomes with lysosomes (Harris and Rubinsztein, 

2012).  LC3-II expression in vivo in CHMP2BInt5 mouse brains shows a modest 

increase in LC3-II from 6 months (115.4% compared to Non-Tg) to 18 months 

(146.5%); this increase is not statistically significant.  Furthermore, 

autophagosome accumulation is not identified under EM examination.   

 

This disparity between CHMP2BInt5 transfected in vitro cell models and CHMP2BInt5 

expressed in vivo in CHMP2BInt5 mouse models may reflect the relative expression 

levels in in vitro and in vivo models.  Cellular systems transfected with mutant 

protein produce very high protein expression levels compared to in vivo models.  

In mouse brain CHMP2BInt5 RNA expression is 3 fold higher than endogenous 

mouse Chmp2b expression and CHMP2BInt5 protein expression is almost 

equivalent to endogenous mouse Chmp2b protein expression at 0.9 times; the 

likely lower expression in vivo does not appear to result in autophagosome 

accumulation. 

 

It is also conceivable that significant autophagosome accumulation may only be 

present in a subset of brain cells such as the thalamic or cortical neurons.  As 

whole brain lysates have been used in this study it is potentially possible that an 

effect associated with a subset of neuronal population could be masked, 

particularly as EM is only able to view a small number of neurons.  It is possible 

that CHMP2BInt5 mutant proteins may be processed more effectively in vivo for 

example aggregated proteins could be diverted to the UPS system for degradation 

to maintain physiological homeostasis or that autophagosomes only significantly 

accumulate at a much later age and 18 months may be too early to detect such 

changes. 

 

Even in the absence of data for autophagosome accumulation, ultimately the 

cumulative effect of glial and inclusion pathology as well as axonal swelling 

identified in CHMP2BInt5 mouse brain and spinal cord is lethal and CHMP2BInt5 mice 
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have significantly (p=0.001) reduced survival compared to Non-Tg mice (figure 

5.36) (data kindly provided by AI) (Ghazi-Noori et al., 2012).  

 

 

Figure 5.36 CHMP2B transgenic mice survival analysis.  

Decreased survival in CHMP2B
Int5

 mice (p=0.001), Kaplan-Meier analysis and Log Rank test. Data 

kindly provided by AI (Ghazi-Noori et al., 2012). 

 

In summary, this chapter has set out data presenting the first mouse model of 

FTD-3 associated with CHMP2BInt5 mutation.  These mice recapitulate some of the 

key neuropathological features of the human disease and will be useful models for 

further investigations into the disease and potentially testing therapeutic 

strategies and compounds. 
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6 General Discussion 

6.1 In Vivo Mouse Models of FTD-3  

This thesis has presented data for the first time demonstrating the effect of 

depleting endogenous mouse Chmp2b in an in vivo murine model and the 

significance of expression of mutant CHMP2BInt5 in transgenic mice. 

 

Frontotemporal dementia with CHMP2B mutations are a rare cause of FTD 

accounting for less than 1% of all FTD cases (Mackenzie et al., 2011), however it is 

likely that there are common mechanisms of disease associated with FTD 

pathology for example CHMP2B and progranulin have both been implicated in the 

lysosomal degradation pathway (Filimonenko et al., 2007; Hu et al., 2010; Urwin et 

al., 2010a).  Therefore studying CHMP2B depletion and CHMP2B mutant 

expression in in vivo mammalian systems is an important way of deducing both 

the normal function of Chmp2b and the effect of mutant CHMP2B species in vivo, 

as well as providing insight into a potential common FTD mechanism of disease. 

 

6.2 Chmp2b Knockout Mice 

6.2.1 Chmp2b Knockout Mice Do Not Recapitulate FTD-3 Neuropathology 

Chmp2b-/- mice do not recapitulate FTD-3 neuropathology (Holm et al., 2007; 

Urwin et al., 2010a; Ghazi-Noori et al., 2012)as described in Chapter 3 and 

furthermore, there is no evidence of an aberrant endosomal phenotype in 

Chmp2b-/- mice as reported in other Chmp knockout mice (Shim et al., 2006; Lee et 

al., 2007) or RNAi depletion of CHMP2B in hippocampal neurons (Belly et al., 

2010).  The absence of pathology may be due to the incomplete knockout of 

endogenous Chmp2b in Chmp2b-/- mice.  Chmp2b, as part of the ESCRT III complex, 

is one subunit in an intricate multi-molecular pathway.  It is therefore possible that 

other ESCRT subunits may compensate for the depleted levels of Chmp2b, with its 
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closest homologue, Chmp2a, being the prime candidate.  Indeed, it has been 

shown that CHMP2A and CHMP2B can compensate for each other in the context 

of viral budding, another ESCRT-dependent pathway.  In this context single 

CHMP2A or CHMP2B knockdowns have small effects on viral budding, but double 

knockdowns have a pronounced effect (Morita et al., 2011).  It is also possible that 

the 15% Chmp2b protein expression generated in this study may be sufficient for 

essential biological functions. 

 

Even though Chapter 3 sets out data demonstrating that Chmp2b-/- mice do not 

recapitulate FTD-3 specific pathology, it is still possible that Chmp2b-/- mice may 

have other more discrete pathology not identified in this study.  There is a 

precedence for abnormal embryonic development in Chmp knockout mice 

including neural tube defects (Shim et al., 2006; Lee et al., 2007) and Chmp2b has 

been associated with the Toll pathway in drosophila (Ahmad et al., 2009) involved 

in dorsoventralization of the drosophila embryo as a regulator of early 

morphogenetic patterning (Rock et al., 1998).  Studying Chmp2b-/- embryos and 

young pups would address whether Chmp2b depletion results in an embryonic 

neurodevelopmental phenotype.   

 

CHMP2B missense mutations have been identified in cases of progressive 

muscular atrophy (PMA); a type of lower motor neurone disease (Cox et al., 2010) 

and Chmp2b-/- mice demonstrate a distinct gait phenotype.  Although histological 

assessment of Chmp2b-/- mice has not shown pathology, performing motor neuron 

counts would be a more sensitive method of determining motor neuron loss.  

Chronic neurogenic change is a characteristic ALS symptom and 

electrophysiological tests such as EMG and nerve conduction tests are used as part 

of a battery of criteria to diagnose ALS  (de Carvalho et al., 2008).  It is possible 

that Chmp2b-/- mice may harbour electrophysiological abnormalities such as nerve 

conduction abnormalities which should be investigated in the future. 
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6.2.2 Depletion of Chmp2b Results in a Motor and Behavioural Phenotype  

6.2.2.1 Chmp2b-/- mice have reduced survival and weight loss 

The most critical indicator that depletion of Chmp2b results in a deleterious 

phenotype are demonstrated by the significantly reduced survival (p=0.0006) of 

Chmp2b-/- mice.  In addition, male Chmp2b-/- mice demonstrate significant weight 

loss at 18 months of age (p=0.001) and female mice show a trend for weight loss 

at 18 months, but this does not reach statistical significance likely due to low 

number of female Chmp2b-/- mice surviving at 18 months of age. 

 

6.2.2.2 Chmp2b-/- mice demonstrate a movement phenotype 

The initial SHIRPA phenotype assessment has shown that a greater proportion of 

Chmp2b-/- mice at 12 months of age do demonstrate gross phenotypes that are 

either absent in age-matched Chmp2b+/+ mice or are only observed in smaller 

proportions of Chmp2b+/+ mice. 

 

To further define the gross phenotypes identified from the modified-SHIRPA 

protocol, more sensitive motor and behavioural phenotyping assessments were 

performed on a cohort of Chmp2b knockout mice at 4, 5 and 6 months of age. 

 

6.2.2.3 Chmp2b-/- mice have rotarod deficits 

Chmp2b-/- mice demonstrate a statistically significant rotarod deficiency (p<0.001) 

at 4, 5 and 6 months of age compared to age matched Chmp2b+/+ mice.  The poor 

rotarod performance in Chmp2b-/- mice is not observed to be progressive between 

4 to 6 months of age, which may reflect a slowly progressive phenotype i.e. a two-

month difference is not sufficient to identify a progressive trait which would 

otherwise be detected if mice where tested at longer intervals; for example at 4, 

8, 12, 16 and 24 months of age. 
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Numerous transgenic and mutant mouse models of neurodegenerative disease 

demonstrate rotarod deficit due to impaired gait and/or poor coordination.  These 

include mouse models of polyglutamine disease including the R6/2 mice 

(Mangiarini et al., 1996), mouse models of spinocerebellar ataxia (SCA) subtypes 

(reviewed by Ingram 2012 and Orr 2012 (Ingram et al., 2012; Orr, 2012)), mouse 

models associated with mutation in the dynein complex associated with MND 

(reviewed by Kuta 2011 (Kuta, 2011)), as well as spontaneously occurring mutants 

identified in the ENU project at MRC Harwell such as the moonwalker (Mwk) mice 

that harbor a gain-of-function mutation in the Trpc3 gene encoding the non-

selective transient receptor potential cation channel, type C3 (TRPC3), resulting in 

altered TRPC3 channel gating (Becker et al., 2009). 

 

Many factors can influence mouse rotarod performance and interpreting rotarod 

deficits is not straightforward and may reflect impairment within different sites of 

the neuromuscular system.  For example, abnormalities of neuromuscular 

junctions are observed in mice expressing mutant DCTN1/P150Glued (Chevalier-

Larsen et al., 2008) and impaired growth and differentiation of Purkinje cell 

dendritic arbors as in Mwk mice (Becker et al., 2009).  It is also possible that 

deficits may be the result of neurodevelopmental abnormalities (Shim et al., 2006; 

Lee et al., 2007) such as impaired synaptic branching during development (Belly et 

al., 2010). 

 

6.2.2.4 Chmp2b-/- mice do not have grip strength deficits 

No statistically significant difference in grip strength was identified between 

Chmp2b-/- and Chmp2b+/+ mice at the ages tested.  The grip strength test is used to 

measure the neuromuscular function as maximal muscle strength of combined 

forelimbs and hind limbs.   

 

The grip strength test has been especially useful in revealing neuromuscular 

deficits in mouse models of MND.  For example the Legs at odd angles’ (Loa) 



250 

 

 

mutant mice which carry a missense point mutation in the Dync1h1 gene 

demonstrate neurological deficits in heterozygous mice including abnormal body 

posture, limb grasping and reduced grip strength (Hafezparast et al., 2003).  

 

The ‘Sprawling’ (Swl) mutant generated via radiation induced mutagenesis carries 

a 9 bp deletion within the dimerisation domain of the dynein heavy chain (Chen et 

al., 2007) resulting in neurological deficits in heterozygous mice identified by an 

unsteady gait and decrease in the grip strength of hind limbs. Neurological deficits 

results from a neuropathy of sensory neurons and degeneration of muscle 

spindles in hind limbs.  Histological analysis shows decreased number of 

proprioceptors and sensory neurons located in the dorsal root ganglion.  At the 

same time peripheral and spinal motor neurons were not affected (Kuta, 2011).  

The Wobbler mice, a mouse model of ALS carry a missense mutation in the Vps54 

gene (Schmitt-John et al., 2005).  At 4 weeks of age wobbler mice show rapid 

neuromuscular deficit progression, as demonstrated by gait abnormality and 

reduced foreleg grip-strength (Schmitt-John et al., 2005; De Paola et al., 2012). 

 

Taken together, these examples show that a primary muscle defect is not required 

for rotarod deficits.  This concept is supported by the absence of gross pathology 

in the quadriceps muscle of Chmp2b knockout mice even in the presence of the 

abnormal gait phenotype. 
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6.2.2.5 Chmp2b-/- mice show altered behaviour 

Assessment of burrowing behaviour showed a statistically significant age-

dependent decline (p<0.001) in Chmp2b+/+ mice.  Interestingly in Chmp2b-/- mice 

the amount of food pellets burrowed does not decline with age.  By 5.5 months of 

age there is a significant reduction (p=0.001) in food pellets burrowed by 

Chmp2b+/+ mice compared to Chmp2b-/- mice and this significant difference is 

sustained until 6.5 months of age.  It is important to note that the significant 

difference in burrowing between Chmp2b-/- and Chmp2b+/+ mice arises from 

Chmp2b-/- mice not replicating the decline in burrowing behaviour with age 

demonstrated by Chmp2b+/+ mice rather than  Chmp2b-/- mice increasing the 

amount of food pellets they burrow. 

 

Mice burrow spontaneously regardless of the material available, and burrowing 

has been suggested to be a rewarding activity (Deacon, 2009).  Therefore the 

difference in burrowing behaviour in Chmp2b-/- mice is interesting and may 

potentially reflect changes in CNS neurotransmitter homeostasis, trafficking or 

recycling associated with Chmp2b depletion.   Although this study does not have 

data to support this concept specifically in Chmp2b knockout mice, there are 

reports of dopamine transporter mutant mice and SNAP-25 deficient mice 

displaying impulsive hyperactivity and impaired inhibition in delayed 

reinforcement tasks, recapitulating some key features of human ADHD behaviour 

including obsessive compulsive behaviour (Wilson, 2000; Bruno et al., 2007; 

Russell, 2011).   

 

The challenge in generating successful models of disease is to an extent 

recapitulating clinical symptoms observed in human disease.  The defining clinical 

symptoms of FTD include personality change and language deficits, which at initial 

consideration may seem specific only to humans and therefore not possible to 

model in mice.  However, it has been suggested that several aspects of FTD are 

potentially amenable to mouse modelling (Roberson, 2012). 
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Progressive loss of interest in others, disinhibition and aggressive behaviour are 

examples of social dysfunction and cardinal signs of FTD.  Social interaction can be 

tested in mice using sociability tests, by quantifying interaction with cage mates 

over time and assessing social dominance which is diminished or lost in FTD 

(Roberson, 2012).  Interesting parallels of neuroanatomy and behaviour have also 

been reported with social abnormalities being mapped to the prefrontal cortex 

(Rankin et al., 2006).  Repetitive behaviour is also a core feature of FTD and 

patients develop some form of repetitive behaviour during their post morbid life 

(Miller et al., 1995).  Repetitive behaviour where the striatum is reported to be 

highly involved, is commonly observed as repetitive grooming in mice (Greer and 

Capecchi, 2002; Werner et al., 2007; Roberson, 2012; Halabi et al., 2013).  

Incidentally in this study more Chmp2b-/- mice were observed to demonstrate 

more whisker grooming than Chmp2+/+ mice in the SHIRPA experiments.  

Emotional behaviour such as fear, anger and disgust are also impaired in FTD 

correlating with atrophy of the amygdala (Ledoux, 2003; Werner et al., 2007).  

Fear response can be relatively easily tested in mice by assessing aversion to 

stimuli such as mild foot shock or hot plate avoidance (Roberson, 2012). 

 

The FTD genes and their respective proteins are highly conserved between 

humans and mice with the added finding that mouse brain architecture and 

network connections are similar to humans, mouse models provide very important 

tools for studying FTD.  FTD caused by progranulin mutations results in 

haploinsufficiency and a number of progranulin knockout mice have been 

generated to model loss of progranulin function (Gotz and Ittner, 2008; Roberson, 

2012).  Progranulin knockout lines exhibit early abnormality in social behaviour 

such as anxiety (Suzuki et al., 2009) but without noted effect on motor function or 

general health (Kayasuga et al., 2007; Yin et al., 2010b; Ghoshal et al., 2012).  

Specifically, Yin and colleagues (2010) demonstrated deficits in hippocampal 

dependent spatial learning and memory in aged (18 months) progranulin deficient 

mice using the Morris Water Maze paradigm  (Yin et al., 2010b).  This study 
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showed that these progranulin deficient mice also demonstrate depression-like 

behaviour such as being immobile for longer in forced swimming test from 4 

months of age and reduced social recognition. In the social recognition paradigm, 

test mice have reduced preference for a container containing a second ‘intruder 

mouse’ compared to an empty container.  As this recognition assessment depends 

on olfaction, the mouse’s sense of smell was tested by their preference for sesame 

oil over water; the authors reported no difference in preference between 

progranulin deficient mice and wild type mice.  Therefore it was concluded that 

the reduced preference for the container with the mouse against an empty 

container reflects social interaction abnormality (Yin et al., 2010b). 

 

Reduced levels of social engagement and cognitive deficits were also reported in 

another progranulin knockout mouse model at late middle age (Ghoshal et al., 

2012).  In this study robust differences were reported in more socially orientated 

indices of the resident-intruder test such as pawing, following and time spent 

alone.  Progranulin knockout mice interacted less frequently with young male 

intruders compared to wild type control mice.  Although no differences were 

observed in locomotor or exploratory behaviour the Morris Water Maze revealed 

mild impaired learning and memory performance likely due to cognitive deficits 

(Ghoshal et al., 2012).  A homozygous progranulin knockout line generated using a 

targeted genomic recombination approach and Cre-LoxP technology showed no 

difference to heterozygous progranulin mice until 10 months of age (Wils et al., 

2012).  From this age onwards homozygous progranulin deficient mice showed 

reduced survival, that the other two studies had not reported (Ghoshal et al., 

2012).  The differences in the phenotypes reported by the different groups likely 

reflect differences in mouse genetic background and level of progranulin 

deficiency resulting from different molecular approaches used to establish each 

respective progranulin knockout mice. 
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Interestingly, two patients with homozygous progranulin mutation causing 

complete progranulin deficiency have recently been shown to develop a clinically 

distinct neurodegenerative disease; neuronal ceroid lipofuscinosis (NCL) (Smith et 

al., 2012) suggesting that the degree of progranulin deficiency is clinically relevant 

and therefore differences between homozygous and heterozygous progranulin 

mice are likely.  Indeed a cardinal pathological feature of human NCL is 

accumulation of lipofuscin which has also been reported in an age-dependent 

manner in homozygous progranulin knockout mice by a number of groups (Ahmed 

et al., 2010; Ghoshal et al., 2012; Petkau et al., 2012; Wils et al., 2012). 

 

As discussed in section 1.6.2 progranulin mutations are characterised by the 

presence of TDP-43 protein inclusions.  In addition mutation in FTD-MND 

spectrum disorders resulting from TARDBP (gene coding TDP-43 protein) are 

missense changes in the genes glycine-rich domain(Benajiba et al., 2009; Kovacs et 

al., 2009; Barmada and Finkbeiner, 2010; Ticozzi et al., 2011).  Complete TDP-43 

knockout mouse models are embryonic lethal, while heterozygous knockouts 

display no obvious pathology and normal TDP-43 protein levels (Wu et al., 2010; 

Sephton et al., 2010; Kraemer et al., 2010).  Only Kreamer and colleagues (2010) 

reported subtle motor weakness with age (Kraemer et al., 2010) while conditional 

knockout of TARDBP at 4-6 weeks results in rapid weight loss and death within 9 

days (Chiang et al., 2010; Wu et al., 2012).  Numerous TDP-43 mouse models have 

been generated to date and reviewed elsewhere (Roberson, 2012; Tsao et al., 

2012; Rademakers and van Blitterswijk, 2013).  The first TDP-43 mouse models 

were generated using heterologous promoters to drive human TDP-43 expression 

throughout the nervous system.  These mice developed significant motor 

impairment leading to death (Wegorzewska et al., 2009; Wils et al., 2012).  While 

restricted expression of TDP-43 to the forebrain using CaMKII promoter resulted in 

neurodegeneration and behavioural deficits (Tsai et al., 2010; Igaz et al., 2011).  

Recently the entire human TDP-43 gene, driven by its own promoter has been 

expressed in mice.  Researchers report 3x TDP-43 endogenous brain levels in these 
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mouse models which develop learning, memory and motor deficits from 7 months 

of age in addition to earlier onset astrogliosis.  Interestingly, these phenotypes are 

present whether wild type or mutant TDP-43 is expressed (Swarup et al., 2011). 

 

TDP-43 protein inclusions are also a hallmark of C9orf72 FTD cases.  However, at 

time of writing there are no reports of published C9orf72 mouse models.  

However, it has been reported that C9orf72 is highly transcribed in neuronal 

populations sensitive to degeneration in FTD and ALS using transgenic mice 

harbouring a LacZ insertion (Suzuki et al., 2013). 

 

Mutations in tau were the first mutations found in FTD patients and many mouse 

models of tau have been described and recent reviews include Roberson 2012 and 

Gots 2007  (Gotz and Ittner, 2008; Roberson, 2012).  Interesting findings from 

decades of tau mouse models include the observation that tau pathology and 

neuronal death have been dissociated from function deficit phenotypes 

(Roberson, 2012).  For example, Yoshiyama and colleagues (2007) report that in 

the PS19 tauopathy mouse model, behavioural deficits and synaptic deficits are 

observed several months before tangle formation (Yoshiyama et al., 2007).  Also a 

number of groups have reported that in regulatable tau lines, even though turning 

off mutant tau expression reverses synaptic and behavioural deficits, tau 

pathology and neuronal loss continues (SantaCruz et al., 2005; Mocanu et al., 

2008; Sydow et al., 2011; Roberson, 2012).  Interesting in relation to the Chmp2b 

data, it has been reported that transgenic mice expressing tau V337M also display 

deficits in impulse control which is exacerbated with aging (Lambourne et al., 

2007).   

 

As burrowing is considered a spontaneous and rewarding activity, one might 

consider whether Chmp2b knockout mice are unable to regulate their impulse 

control and therefore continue to burrow when wild type Chmp2b counterparts 

demonstrate reduced burrowing activity.  
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Nesting behaviour too is a spontaneous and rewarding behaviour and is 

demonstrated in both male and female mice.  Chmp2b+/+ mice demonstrate a 

constant median nesting score of 4 (score range 2 to 5) from 4 to 6 months of age.  

However, Chmp2b-/- mice demonstrate a significantly higher median nesting score 

of 5 (score range 2 to 5) at 4 and 5 months of age.  By 6 months of age both 

Chmp2b+/+ and Chmp2b-/- mice have a median score of 4. 

 

In a comparable manner to the burrowing results, Chmp2b-/- mice demonstrate an 

increase in nesting behaviour compared to Chmp2b+/+ mice.  Most reports of 

nesting phenotype identified in the literature report a significant decline in nesting 

behaviour associated with neurodegeneration mouse models, including scrapie 

sick mice (Cunningham et al., 2003).  The only report identified at this time in a 

literature search showing an increase in nesting behaviour is in BALB/c and 

C57BL/6J mouse on enhanced dietary tryptophan (Browne et al., 2012).  

Tryptophan is a serotonin precursor and dietary tryptophan depletion or 

supplementation results in pronounced behavioural effects, particularly in nesting 

behaviour (Browne et al., 2012).  As previously suggested for the burrowing data 

the increase in nesting behaviour observed in Chmp2b-/- mice may be associated 

with the potential effect of Chmp2b depletion on receptor regulation, although 

this study does not provide evidence of this phenomenon and additional work is 

needed to test this hypothesis. 

 

It is interesting that an 85% depletion of Chmp2b is sufficient to produce a distinct 

motor and behavioural phenotype in Chmp2b-/-mice, without resulting in 

embryonic lethality.  Notably, other ESCRT III protein knockout mouse models 

reported to date, Chmp5 and Chmp4b knockouts are embryonic lethal (Shim et al., 

2006; Lee et al., 2007). 
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In conclusion this body of work has demonstrated evidence that depletion of 

Chmp2b in mice results in motor and behaviour deficits as well as significantly 

reduced survival, which is consistent with other mouse models of FTD discussed 

above and likely reflects broader neurodegenerative pathology.  In order to assess 

memory and learning abilities of these mice additional tests such as the Morris 

Water Maze will need to be carried out in future studies. 

 

 

6.3 CHMP2B Transgenic Mice 

Affected FTD-3 family members present with characteristic neuropathology 

including global cortical atrophy involving the frontal and temporal cortices, 

astrogliosis, microglial infiltration together with ubiquitin and p62 inclusions, 

however FTD-3 brains are negative for TDP-43 and FUS pathological staining (Holm 

et al., 2007; Holm et al., 2009). 

 

One of the aims of this thesis was to investigate whether expression of mutant 

CHMP2BInt5 and CHMP2B10 transcripts in mice recapitulates key 

neuropathological hallmarks found in post-mortem FTD-3 brains and therefore 

whether mutant CHMP2B causes disease by a gain of function mechanism. 

 

As protein overexpression was not demonstrated in CHMP2B10 mice, CHMP2B10 

lines Tg158 and Tg164, were terminated after initial molecular characterisation 

and further pathological studies were not performed on these lines. 

 

6.3.1 CHMP2BInt5 transgenic mice demonstrate progressive gliosis and 

microglial activation pathology 

CHMP2BInt5 mouse brain sections show progressive gliosis and microglial activation 

in an age-dependent progressive manner not observed in age-matched Non-Tg 

and CHMP2BWT brain sections.  A consistent pattern of age-dependent progressive 
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gliosis is also identified in the CHMP2BInt5 lumber spinal cord region.  Although 

some variation is noted in GFAP staining of the spinal cord, comparable 

progressive age-dependent gliosis is not identified in the lumber spinal cord region 

of age-matched Non-Tg and CHMP2BWT mice. 

 

Progressive gliosis including astrocyte activation is a cardinal feature of FTLD and is 

evident in both grey and white matter regions often accompanying neuronal loss 

(Brun and et al, 1994; Josephs et al., 2004; Cairns et al., 2007a).  Therefore not 

surprisingly mouse models of FTD harbouring mutant proteins or knockout models 

reproducing loss of function paradigms also demonstrate progressive gliosis and 

microglial activation (reviewed by Roberson 2012 (Roberson, 2012)).  For example 

a number of published progranulin deficient mouse (GRN-/-) lines demonstrate 

high degrees of progressive gliosis and microgliosis (reviewed by Roberson 2012 

(Roberson, 2012)).  Specifically in FTD-3, gliosis and astrocyte infiltration is present 

in layer II of the frontal cortex with involvement of the entire thickness of the 

cortex to some degree, so that progressive gliosis and microglial activation in 

CHMP2BInt5 mouse brain is consistent with FTD-3 pathology and other reported 

FTD mouse models. 

 

6.3.2 CHMP2BInt5 transgenic mice demonstrate progressive inclusion pathology 

The most striking pathology identified in CHMP2BInt5 mouse brain and lumbar 

spinal cord is the age-dependent progressive accumulation of ubiquitin, p62 and 

CHMP2B inclusions.  The presence of these inclusions unique to CHMP2BInt5 mice 

suggests that these inclusions are intrinsically linked to the presence of 

CHMP2BInt5 mutant isoform. 

 

Ubiquitin and p62-positive neuronal cytoplasmic inclusions are observed in FTD-3 

brains in the dentate granule cell layer of the hippocampus and to a lesser extent 

in the frontal cortex (Holm et al., 2007).  In CHMP2BInt5 mice p62 inclusions are 

identified in the cortex, corpus callosum, thalamus and brain stem which very 



259 

 

 

likely reflects the expression pattern of the hamster prion promoter used for 

driving CHMP2BInt5 expression as previously described (Scott et al., 1989; Asante et 

al., 2002) 

 

A fundamental characteristic of FTLD pathology is the presence of abnormal 

intracellular accumulation of disease-specific proteins on which recent FTLD 

classification is based (Mackenzie et al., 2009; Neumann et al., 2009b; Mackenzie 

et al., 2010; Rademakers et al., 2012).  Furthermore, such proteins including TDP-

43 and FUS colocalise with ubiquitin and p62 inclusions suggesting their targeting 

to UPS or autophagy pathway for degradation (Neumann et al., 2007; Mackenzie 

and Rademakers, 2007; Mackenzie et al., 2009; Neumann et al., 2009a; Neumann 

et al., 2009b; Mackenzie et al., 2010; Rademakers et al., 2012).  Consequently 

some FTD mouse models including a number of progranulin null and Vcp mutant 

mice demonstrate ubiquitinated TDP-43 protein (Roberson, 2012). 

 

Ubiquitin inclusions in FTD-3 do not colocalise to TDP-43 or FUS protein (Holm et 

al., 2009), which may indicate the presence of an as yet unidentified protein 

inclusion possibly a CHMP protein or members of the DNA/RNA binding proteins 

other than TDP-43 or FUS.  Remarkably CHMP2BInt5 mouse brains demonstrate 

CHMP2B-positive inclusions not yet reported in human FTD-3 brains.  The CHMP2B 

inclusions in CHMP2BInt5 mouse brains demonstrate a similar staining pattern and 

distribution as ubiquitin inclusions, a strong indicator that they co-localise.  The 

inability to detect CHMP2B inclusions in FTD-3 brains may be due to poor CHMP2B 

antibodies that cannot detect CHMP2B inclusions in human brains which have 

often been preserved in formalin for long durations.   

 

The transgenic mice described here are not on a Chmp2b null background and 

therefore mice retain the wild type endogenous mouse Chmp2b protein.  Both the 

endogenous mouse Chmp2b and the human mutant CHMP2BInt5 protein are 

shown to be expressed (chapter 5, figure 5.10).  It can therefore be hypothesised 
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that mutant CHMP2BInt5 protein and endogenous wild type mouse Chmp2b 

protein would potentially interact, resulting in the inclusion formation seen.  This 

may also address the absence of CHMP2B inclusions in human brains as FTD-3 

patients carry only one wild type CHMP2B allele and therefore only have half of 

the wild type protein available. 

 

6.3.3 CHMP2BInt5 mouse brain cortex ultrastructure shows inclusions and 

axonal swelling 

Ultrastructural EM examination of 12 and 18 months CHMP2BInt5 brain cortex 

confirms the presence of neuronal inclusions and further reveals the presence of 

axonal swellings containing an accumulation of mitochondria and vesicles, likely 

from the endosome-lysosome and autophagy pathways.  Neuronal inclusions and 

axonal swellings are not observed in age-matched Non-Tg brains confirming that 

the inclusions are not an age-related artefact but are transgene specific.  This 

observation may also suggest that CHMP2BInt5 transgenic mice may have impaired 

vesicular transport.  Consistent with this is the observation that Chmp4b knockout 

mice and expression of CHMP2BInt5 in cortical neurons results in autophagosome 

accumulation (Lee et al., 2009).  Furthermore, expression of the human P150Glued 

subunit of dynactin associated with MND results in distal degeneration associated 

with axonal swelling and changes in the NMJs and although axonal transport is not 

impaired, enlarged tertiary lysosomes and cytoplasmic granules are observed in 

neuronal cells, suggesting impairment in vesicular transport and degradation 

(Kuta, 2011). 

 

6.3.4 Autophagy is not up regulated in CHMP2BInt5 Transgenic Mice 

The autophagy degradation process has received much attention in the field of 

neurodegeneration.  Loss of autophagy in neurons results in inclusion 

accumulation and neurodegeneration (Hara et al., 2006; Komatsu et al., 2006) and 

upregulation of autophagy by pharmacological administration of mTOR inhibiting 
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drugs such as FK506 reduces levels of soluble huntingtin and formation of 

intracellular aggregates in vitro (Ravikumar et al., 2004) and ameliorates 

pathogenesis in TDP-43 proteinopathy mouse models (Fang Wang et al., 2013). 

 

Mutant CHMP2BInt5 leads to formation of aberrant enlarged endosomes and 

delayed EGFR degradation in cell culture and in patient fibroblasts due to impaired 

endosome-lysosome fusion (Urwin et al., 2010a). CHMP2B mutants have also been 

shown to inhibit autophagic degradation, leading to accumulation of ubiquitin, 

p62, and GFP-LC3 (Filimonenko et al., 2007).  In CHMP2BInt5 transgenic mouse 

brain homogenates, accumulation of p62 is predominantly in the insoluble 

CHMP2BInt5 brain fraction, reflecting accumulation of insoluble p62 inclusions 

(Ghazi-Noori et al., 2012).  No difference is identified in LC3-II expression in 

CHMP2BInt5 mouse whole brain homogenates compared to Non-Tg mice at 6 or 18 

months.  This suggests that autophagy is not altered in CHMP2BInt5 mouse brain, 

however it is possible that autophagy may be altered in only parts of the brain for 

example the thalamus where most pathology is identified and using whole brain 

homogenate may mask any autophagy deregulation unique to only particular 

brain regions. 

 

Post-mortem FTD-3 brain tissues demonstrate enlarged vacuoles positive for the 

late endosome marker M6PR (Urwin et al., 2010a). Furthermore, CHMP2B has 

been implicated in granulovacuolar degeneration (GVD) in PD and AD (Yamazaki et 

al., 2010; Kurashige et al., 2012).  GVD involves the accumulation of large, double 

membrane-bound bodies.  Because of the two-layer membrane morphology it has 

been proposed that the bodies are related to autophagic organelles.  Funk and 

colleagues (2011) have shown that granulovacuolar degeneration bodies (GVBs) in 

AD contain late-stage autophagic markers which colocalized strongly with 

CHMP2B and accumulate proteins at the nexus of autophagic and endocytic 

pathways, suggesting that failure to complete autolysosome formation may be an 

important correlate of GVB accumulation (Funk et al., 2011). 
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CHMP2BInt5 mice do not replicate the enlarged M6PR positive vacuoles seen in 

human FTD-3 brains or presence of GVD.  This may simply be that such process is a 

late phenotype and the pathology assessed in the mice is not sufficiently 

progressed to permit identification of these, or that light microscopy does not 

have sufficient resolution to reveal endosomal phenotype and immuno-gold EM of 

endosomal markers would reveal an endosome-autophagosome phenotype.  

Alternatively interaction between CHMP2BInt5 and CHMP2B10 proteins may be a 

factor in the formation of the vacuolar phenotype in FTD-3 brain.  This is not 

modelled in CHMP2BInt5 mice as CHMP2B10 is not co-expressed.  Another 

possibility is that a loss of function/dominant negative effect is masked by the 

presence of endogenous mouse Chmp2b protein in the transgenic lines, as loss of 

Chmp5 and Chmp4b have been reported to result in autophagosome 

accumulation (Shim et al., 2006; Lee et al., 2009). 

 

6.4 Summary  

CHMP2BInt5 mice demonstrate key neuropathological features consistent with 

human FTD-3 disease.  They demonstrate neuroinflammation characterised by 

progressive gliosis and microglial activation and p62 and ubiquitin inclusions that 

are negative for TDP-43 and FUS proteins, all cardinal features of FTD-3 

neuropathology.  In addition the mice also develop CHMP2B protein inclusions, 

axonal swelling and have reduced survival.  This neuropathology is not observed in 

Non-Tg, CHMP2BWT mice Chmp2b-/- mice, taken together these observations are 

consistent with a gain-of-function effect unique to the CHMP2BInt5 isoform. 

 

No mouse model is perfect and CHMP2BInt5 mice also have some limitations.  

Critically, the transgenic mice are not on a Chmp2b null background meaning that 

all the transgenic mice express the endogenous mouse Chmp2b in addition to the 

human wild type or mutant CHMP2B transgenic proteins.  This is likely to be 
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important as in human FTD-3 there is a loss of one wild type CHMP2B allele, in 

principle suggesting that up to 50% of CHMP2B expression may be lost.  This loss 

of expression may contribute to disease pathology and clinical presentation so 

that in CHMP2BInt5 mice, endogenous Chmp2b is compensating for some expected 

pathology.  For example it is likely that CHMP2BInt5 mice on a Chmp2b null 

background may develop earlier disease onset, more aggressive pathology as well 

as motor and behavioural phenotype.  Preliminary observation suggests 

CHMP2BInt5 mice do not have an obvious motor phenotype (personal 

communication with AI).  In addition CHMP2BInt5 mice demonstrate CHMP2B 

inclusions not seen in human FTD-3 which may reflect interaction of mutant 

CHMP2BInt5 protein with endogenous wild type mouse Chmp2b.  Moreover, 

although axonal swelling is seen under EM in CHMP2BInt5 mice, enlarged late 

endosome marker positive vacuoles are not seen again raising the possibility that 

endogenous mouse Chmp2b may play a molecular compensatory role. 

 

Chmp2b-/- mice do not reveal any overt pathology with the techniques applied; 

they do however show distinct motor coordination deficits and behavioural 

abnormalities.  This contrasting observation to the CHMP2BInt5 mice suggests loss 

of function of CHMP2B may contribute to other aspects of the disease phenotype.  

This phenomenon has been described for SCA1 knockout mice in which loss of 

Atxn1 does not lead to neuropathological changes (Matilla et al., 1998) while 

expression of the expanded CAG repeat does (Watase et al., 2002).  However, 

comparable to the observation in Chmp2b-/- mice it has been demonstrated that 

partial loss of function of Atxn1 contributes to disease phenotype, including 

behavioural changes (Lim et al., 2008; Crespo-Barreto et al., 2010).  Consistent 

with this Belly and colleagues (2010) have demonstrated that in cultured 

hippocampal neurons depletion of endogenous CHMP2B by RNAi resulted in 

morphological changes similar to those induced by mutant CHMP2B (Belly et al., 

2010) further supporting that loss of function could contribute to the disease 

phenotype. 
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Mouse models are important tools for studying neurodegenerative disorders 

because they meet the need for an experimentally manipulable system that shares 

sufficient genetic and neural similarity with humans.  Mice and humans also share 

a number of conserved genes and a high degree of chromosomal synteny as well 

as conserved patterns of gene expression across brain regions. The FTD proteins in 

particular are highly conserved between humans and mice and as 

neurodegenerative diseases target networks of connected brain regions the 

finding that mice have brain architecture and network connections that are similar 

to humans is an important advantage over non mammalian models (Roberson, 

2012). 

 

 

6.5 Future directions 

As both the Chmp2b-/- and transgenic mice are on mixed genetic background they 

need to be backcrossed onto a homogenous genetic background.  Genetic 

background can influence the performance and phenotype of animals therefore it 

would be beneficial to characterise Chmp2b knockout and CHMP2B transgenic 

mice bred on at least 2 distinct genetic backgrounds.  For example different 

genetic backgrounds may affect the behavioural phenotype observed in Chmp2b-/- 

mice.  The modifying effects of genetic background on disease associated 

phenotypes have been described using a transgenic model of amyotropic lateral 

sclerosis (ALS) (Acevedo-Arozena et al., 2011). 

 

Future work will also need to further characterise CHMP2BInt5 and Chmp2b-/- mice 

as several aspects of FTD are potentially amenable to mouse modelling.   

 

CHMP2BInt5 and Chmp2b-/- mice will also be good sources to harvest neuronal cells 

for functional studies, for example functional receptor degradation, 
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autophagosome formation, transcriptional regulation in cortical neurons and in 

vivo electrophysiological studies.  The use of primary neuronal cells has 

advantages over other in vitro paradigms as they are more physiologically relevant 

because they are neuronal cells and have stably expressed mutant CHMP2B gene 

expression at endogenous levels or Chmp2b depletion.  They will also be a good 

source to test potential therapeutic compounds. 

To date research into neurodegenerative disease including FTD has systematically 

classified clinical and neuropathological characteristics.  Neuropathologists have 

painstakingly identified regions and patterns of pathology distinct to FTLD, 

inclusion pathology and recently the subclassification of FTLD into respective 

proteinopathies and genetics has identified sporadic and familial genetic causes 

while in vivo studies have recapitulated respective genetic mutation pathologies in 

mouse and fly models and in vitro studies have attempted to shed light on the 

functional aspects of genetic dysfunction.   

 

Moving forward it is critical to direct research into examining interaction of 

neuronal cells and the neuronal systems they form and how disease associated 

mutations affect such interactions perhaps through signalling and transcription 

pathways, receptor homeostasis and reactive neuroinflammation. 

 

The overall aim is ultimately to identify effective treatment strategies for FTD 

patients.  To achieve this, experience and knowledge will need to be drawn from 

other clinical specialities, for example effective cancer treatment and 

management has evolved from extensive genetic, molecular and pathological 

research critically combined with pre-symptomatic screening.  The greatest 

challenge in FTD treatment is that by the time an individual is diagnosed, they 

would have advanced disease symptoms.  Even today conclusive diagnosis i.e. 

type of FTD proteinopathy is only possible at post-mortem, raising the need for 

therapeutic intervention that can reverse at the very least clinical symptoms and 

ideally pathology.  Treatment and management of FTD as well as other 
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neurodegenerative disorders will ultimately involve extensive research and 

development of disease biomarkers.  For genetically inherited cases screening of 

asymptomatic carriers is important as they will be the most suitable group to test 

potential therapeutic interventions that aim to halt rather than reverse disease 

progression. The development of the first mouse model of FTD-3 described in this 

thesis is the first step on this pathway to therapy. 
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