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Abstract

Recommender systems aim to identify interesting items (e.g. movies, books, websites) for a given user,

based on their previously expressed preferences. As recommender systems grow in popularity, a notable

divergence emerges between research practices and the reality of deployed systems: when recommen-

dation algorithms are designed, they are evaluated in a relatively static context, mainly concerned about

a predefined error measure. This approach disregards the fact that a recommender system exists in an

environment where there are a number of factors that the system needs to satisfy, some of these factors

are dynamic and can only be tackled over time.

Thus, this thesis intends to study recommender systems from a goal-oriented point of view, where

we define the recommendation goals, their associated measures and build the system accordingly. We

first start with the argument that a single fixed measure, which is used to evaluate the system’s perfor-

mance, might not be able to capture the multidimensional quality of a recommender system. Different

contexts require different performance measures. We propose a unified error minimisation framework

that flexibly covers various (directional) risk preferences. We then extend this by simultaneously opti-

mising multiple goals, i.e., not only considering the predicted preference scores (e.g. ratings) but also

dealing with additional operational or resource related requirements such as the availability, profitability

or usefulness of a recommended item. We demonstrate multiple objectives through another example

where a number of requirements, namely, diversity, novelty and serendipity are optimised simultane-

ously. At the end of the thesis, we deal with time-dependent goals. To achieve complex goals such as

keeping the recommender model up-to-date over time, we consider a number of external requirements.

Generally, these requirements arise from the physical nature of the system, such as available computa-

tional resources or available storage space. Modelling such a system over time requires describing the

system dynamics as a combination of the underlying recommender model and its users’ behaviour. We

propose to solve this problem by applying the principles of Modern Control Theory to construct and

maintain a stable and robust recommender system for dynamically evolving environments. The con-

ducted experiments on real datasets demonstrate that all the proposed approaches are able to cope with

multiple objectives in various settings. These approaches offer solutions to a variety of scenarios that

recommender systems might face.
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Chapter 1

Introduction

1.1 Problem Statement
Collaborative Filtering (CF) algorithms have become the mainstream approach to building recommender

systems [AT05]. The popularity of CF stems from its ability to explore preference correlations between

users and items; it uses a wide range of statistical approaches to identify items (movies, music, books,

etc.) of interest to the user based on their historical preferences. In the research domain, this problem

is often formalised as a prediction problem: predicting unknown user ratings based on a set of observed

preferences [BK07, HKV08]. However, as recommender systems grow in popularity, a notable diver-

gence emerges between research practices and the reality of deployed systems.

In practice, there are certain expectations on what constitutes to a good recommender system. For

example, as a user, one would expect their ideal recommender system to match what they would watch,

buy or listen given that they had enough time to go thought all the items in the catalogue and select the

suitable ones. In addition, one would expect the system to do the discovery for them and recommend

something unexpected that they would never find, yet still appealing. By contrast, as an organisation,

one would require a recommender system to generate more revenue, by expecting that it would primary

satisfy user needs as well as additional requirements that are not directly connected to user satisfaction,

such as operating cost and increased revenue.

When CF algorithms are designed, they are evaluated in a relatively static context, mainly con-

cerned with a predefined error measure. This approach disregards the fact that a recommender system

exists in an environment where there are a number of requirements that the system needs to satisfy;

some of these requirements are dynamic and can only be tackled over time. In the literature [RRS11],

recommender systems are often modelled as a snapshot at certain points in time, which ignores dynamic

aspects of the system, such as how user behaviour affects recommendation quality and performance.

1.2 Approach
This thesis takes a different approach. We study recommender systems from a goal-oriented point of

view. This is essentially a top-down approach where we model recommender systems as a means to

satisfy certain objectives. These objectives can be grouped into two distinct yet interconnected classes;

system and user perspectives.
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Goal(s) 
User or 
System 

External or 
Internal 

Time 
dependency 

Measures 

Figure 1.1: A Goal Driven Approach to Building Recommender Systems

• We define the system point of view as a collection of criteria that consider system related objectives

as priorities; this includes factors such as maximising the profit margin on the recommended items,

reducing cost on delivering content, etc.

• The user centred approach aims to improve user satisfaction, which has many facets depending on

how user satisfaction is defined. For instance, generic user satisfaction can be understood as a need

to receive quality recommendation, which itself might be user dependent. Quality recommenda-

tion includes factors such as satisfying contextual goals (e.g. matching recommendation with

user’s mood, location, etc), providing recommendation that is novel and diverse (when needed) to

the user.

A single measure that is used to evaluate the system’s performance might not be able to capture this

multidimensional quality of the recommender system. Thus, when this is applied to the design of new

algorithms, it is assumed that improving a single measure should not be a goal of the system. Instead,

it is more important to investigate how new algorithms affect various measures and find the optimal

solution that satisfies all the pre-defined goals of such a system. Therefore, first we need to identify

various objectives of the recommender systems, justify the need of them, and then design the algorithm

accordingly.

We consider the temporal nature of certain user and system goals as the next step in the process.

We extend our work to examine how these objectives can be optimised over a period of time. Figure 1.1

summarises the approach:

1. The top-level goal is defined as an informal description of what the algorithm is expected to

achieve. This can be decomposed into more specific sub-goals if necessary.

2. The goal can be classified into user-centred or system-centred goals, depending on whether the

algorithm focuses on user or system satisfaction or a mixture of these two goals (see Section

1.3.2). It is studied in this work whether focusing on system satisfaction would help improving

user satisfaction and vice versa (see Chapter 4 for more discussion).

3. Depending on the type of optimisation used, the goal can be external or internal. If the goal is dealt

with outside of the recommender system algorithm (i.e. the algorithm is treated as a black box), it
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Recommender system 

Internal goal 
External goal External goal 

data data prediction prediction 

Figure 1.2: Internal and External Goals.

is classified external. If the goal is embedded into the algorithm, it is an internal goal. Figure 1.2

illustrates how internal and external goals can be integrated into a recommender system. It shows

that external goals can be used to manipulate the incoming data of the systems (pre-filtering) as

well as changing the prediction values (post-filtering), whereas internal goals are used within the

recommender algorithm.

4. It is also beneficial to investigate whether the goal is time dependent (i.e. observing a state of the

recommender system over a period would change the outcome of the algorithm for a particular

goal).

1.3 Underlying Assumptions

1.3.1 Performance Measures

The use of accuracy as a performance metric is well grounded; previous user studies, such as the one

conducted by Swearingen and Sinha [SS01], indicate that recommendation accuracy is a primary factor

behind user satisfaction with recommendation systems. This has led to a focus on improving accu-

racy in recommendation algorithms; state-of-the-art systems score very high on these performance met-

rics [HKV08]. However, this is not to say that a single measure accuracy alone guarantees satisfactory

recommendations. Therefore, the main assumption we make is that an improvement on a given metric

that aims to measure certain aspects of the system results in an improvement in the user or system satis-

faction of the same aspect. This assumption states that given that a metric has been chosen appropriately,

it measures the aspect of the algorithm that is designed to measure and it relates back to the real world

by being proportional to user or system satisfaction. For example, if we aim capture the biggest part of

generic user satisfaction, we select generic performance measures such as the Root Mean Squared Error

(RMSE) for that.

This assumption is critical, since, to some extent this connection is not that straightforward. As

[CGN+11] shows, notable difference emerges between perceived quality of the recommender system

(measured by user studies) and statistical quality (measured by predefined performance metrics). Such

differences are appealing, but they are out of the scope of this work.

1.3.2 User-Centric and System-Centric Performance

By definition, user satisfaction and system satisfaction might be opposite to each other to some extent.

In other words, if the algorithm is built to improve user satisfaction it might inevitably hurt system

satisfaction and vice versa. For example, if a music content provider wants to increase the profit it makes

on recommendations, it would recommend items that have higher profit margin out of the items that are
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Figure 1.3: User versus System Perspective. The direction of the arrows illustrates the divergence of

user and system related metric from the general metric as well as with relation to each other. Opposing

system-user goals represent scenarios where improving user performance measures would hurt system

performance measures and vice versa, whereas complementing system-user goals might improve the

performance of both types of measures (i.e. measures that defined to capture system and user experi-

ence).

still desirable to the user (based on the prediction provided by the algorithm), this would increase the

short term profit. However, this might affect user satisfaction in the long term, because users might lose

trust in the recommendation service and stop using it. This would lead to our proposition that focusing

on one or the other perspective is inevitably a balancing act where the direction and the intensity of

deviation from a central (and general) error measure is crucial (illustrated in Figure 1.3 (a)). In other

cases, the difference might be more subtle. For example, improving the effectiveness of the algorithm

to incorporate new feedback faster might improve user satisfaction and system satisfaction at the same

time. It would decrease computational complexity (thus it would be cheaper to compute predictions) and

it might improve prediction accuracy (given that the algorithm has more information to work with) over

time (illustrated in Figure 1.3 (b)). Therefore, it is important to make assumptions on the effects that

certain goals have on other aspects of the system, and explore the optimal balance based on the goals

and the anticipated outcome.

1.3.3 General Error versus Specialised Errors

Figure 1.3 implicitly states that improving some aspects of the system might hurt the general performance

of the algorithm. For example, most of the state-of-the-art collaborative filtering algorithms are built to

optimise RMSE, which we defined as the general metric of the algorithm. For example, following the

goal-driven approach, we might like to improve diversity to boost user satisfaction. In order to evaluate

the approach, we can define a metric that would measure diversity of the provided recommender list.

Optimising a model based on a diversity measure might result in a lower RMSE (the general measure),

simply because RMSE does not measure diversity. Therefore, we suggest that it is good practice to have

a general and a number of specialised metrics to be able to balance between generalised and specialised

performance.
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Table 1.1: Goal Driven Optimisation (Static Perspective) (Chapter 3 and 4)

User Perspective System Perspective

Internal goals Directional Errors

(provide quality recommendation)

(Chapter 3) [JW10a]

Novelty and Serendipity

(promote serendipitous items)

(Section 4.4) [ZSQJ12]

External goals Diversification/Long Tail Items Stock control

(promote diverse items) (promote items that are in stock)

(Section 4.3.1) [JW10b] (Section 4.3.1) [JW10b]

Optimised content delivery

(pre-cache liked items)

(Section 4.2)

Table 1.2: Goal Driven Optimisation (Temporal Perspective) (Chapter 5)

User Perspective System Perspective

Internal goals Optimal Control Theory Optimal Control Theory

(provide quality recommendation) (maximise profit over time)

(Section 6.2.1 - future work) (Section 6.2.1 - future work)

External goals Balanced Control Theory Balanced Control Theory

(stabilise performance over time) (stabilise resources over time)

(Chapter 5) [JWL12] (Chapter 5) [JWL12]

1.4 Contributions
The contribution of this thesis is to build a number of algorithms following the steps outlined above. The

examples aim to show that systematically mapping goals into metrics in order to design collaborative

filtering algorithms is more effective and produces more focused algorithms that are aligned with prac-

tical objectives. Table 1.1 and 1.2 summarise the aim of the research presented here. These objectives

are grouped together based on the criteria described in Section 1.2. As the table shows, we cover most

of the goals defined in Figure 1.1.

The following publications and patents form the main part of this thesis:

1. T. Jambor and J. Wang. Goal-driven collaborative filtering - a directional error based approach. In

Proceedings of 32nd European Conference on Information Retrieval, 2010.

2. T. Jambor and J. Wang. Optimising multiple objectives in collaborative filtering. In Proceedings

of the ACM conference on Recommender systems, ACM, 2010.

3. T. Jambor, J. Wang, and N. Lathia. Using control theory for stable and efficient recommender
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systems. In Proceedings of the 21th international conference on World Wide Web. ACM, 2012.

4. Y. C. Zhang, D. O Seaghdha, D. Quercia, and T. Jambor. Auralist: introducing serendipity into

music recommendation. In Proceedings of the international conference on Web Search and Data

Mining. ACM, 2012.

Pending patents applications are included to illustrate the practical applications of the methods presented

in this work:

1. T. Jambor, J. Wang and I. Kegel. Recommender Control System, Apparatus, Method and Related

Aspects. European Patent Application 12250046.5, 2012

2. T. Jambor, J. Wang and I. Kegel. Recommender System Set Top Box, Apparatus, Method and

Related Aspects. European Patent Application 12250021.1, 2012

1.5 Structure
The rest of the thesis is organised as follows.

• Chapter 2 introduces the main ideas and challenges in this domain, mainly focusing on existing

algorithms and their potential extensions. We also investigate related work on how to model the

temporal aspects of CF algorithms.

• In Chapter 3, we propose a flexible optimisation framework that can adapt to individual recom-

mendation goals. We introduce a Directional Error Function to capture the cost (risk) of each

individual prediction. The Directional Error Function aims to improve user satisfaction by fo-

cusing on predicting the most important items correctly: this goal is optimised internally in the

recommender system algorithm.

• In Chapter 4, we start with an example where the external system objectives are proportional to

the performance of the recommender algorithm. Therefore, we aim to discover the relationship

between the given objectives and the system performance in order to examine how the system

performance (general measures) might affect additional, specialised measures. This is illustrated

through an example of system-focused cost based content delivery (in Section 4.2) where the goal

is optimised externally. This is followed by Section 4.3 where a general optimisation framework

is introduced which not only considers the predicted preference scores (e.g. ratings) but also deals

with additional operational or resource related recommendation goals. In essence this optimisation

framework solves the problem outside of the recommender system algorithm, therefore these ap-

proaches are classed as external goals. In relation to user needs, we illustrate that this optimisation

framework can integrate additional user goals such increasing the diversity of the provided recom-

mender list. The system perspective is also considered in this framework, where we show how to

optimise external recommendations goals in order to balance between these external factors and

accuracy measures. In Section 4.4, we consider novelty, diversity and serendipity as internal user

oriented goals to be optimised along with the general performance of the system.
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• In Chapter 5, we study the time dimension of the objectives, by modelling the temporal per-

formance of the system and other objectives. This approach is used to gain control of certain

objectives over time. Here we illustrate user-focused goals by concentrating on performance, and

system-focused goals on resource management.

• In Chapter 6, we conclude this work and present a number of ideas and direction towards which

this work can be extended.



Chapter 2

Background

This chapter covers the related work that was used as the basis of the work presented in this thesis. As

this work borrows methods and approaches from multiple disciplines, this chapter covers a wide range

of relevant topics. Recommender systems form the backbone of the thesis; therefore, this chapter mainly

focuses on the state-of-the-art algorithms and research challenges of recommender systems, including

the main approaches to rating based predictions and their anticipated problems. We also touch on ideas

in relation to recommender systems that include machine learning, probability theory and control theory.

2.1 Data
The amount of data produced across the globe has been increasing exponentially and will continue to

grow at an accelerated rate for the foreseeable future. At companies across all industries, servers are

overflowing with usage logs, message streams, transaction records, sensor data, business operations

records and mobile device data. In addition, user interaction across social networks such as Twitter and

Facebook produce a large amount of unstructured data. It is a challenge in the industry to make sense

of the data and use it to its full extent. Recommender systems are at the forefront of this trend as the

predictive ability that the algorithms offer can generate useful insights of the data. However, depending

on the way the data is generated and collected, the algorithms have to make certain assumptions to

interpret and predict from the data. In this chapter, we give a short overview of the literature on how the

data influences the choice of the algorithm as well as the way the algorithm is evaluated. We discuss

the relationship between the way users express preferences and the interpretation of these preferences.

Furthermore, we introduce approaches on how additional data sources can be used to enrich feedback

datasets.

2.1.1 Explicit Rating Datasets

The bulk of the collaborative filtering research is conducted on rating datasets. In essence, it is generated

for users’ feedback on certain information items. An early example of this is the GroupLens project

[KMM+97, RIS+94], where users were invited to rate news articles on a rating scale of one to five.

Later, this approach was used with a wide variety of items (e.g. movies, music, products). The main

characteristic of these datasets is that they contain an explicitly expressed preference of a particular user

towards a particular item. Obviously, this preference can only be expressed after the user consumed the
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item (e.g. watched a movie). These datasets normally contain timestamps which indicates when the

event happened, however this might not correlate with the actual consumption of the item, as the time

the item was rated can be different from the actual consumption time depending on the way the data

was collected. Depending how the data is collected, some datasets might be skewed towards negative or

positive ratings. For example, customers might have more incentives for complaining about failed goods,

rather than give good feedback on high quality product, conversely, users might remember only the good

movies they watched if they have to bulk rate a list of movies when they start using a recommendation

service (a registration procedure that is widely used to gather information about new users). Either way,

the distribution of the ratings on individual level, as well as, across the whole population should be taken

into account as it would effect the performance of the algorithms [AZ12].

2.1.2 Implicit Feedback Datasets

In many occasions, explicit feedback is not available, instead an implicit indication of preference can be

collected. This kind of feedback is widely available, as this does not require the user to make additional

effort and rate the item, instead a number of different user behaviour can be interpreted as a (mostly weak)

indication of preference [OK98], this can include purchase history, browsing history, search patterns,

etc. This type of data reflects a better representation of time, as it is likely that items are consumed after

purchased. However, in terms of other signals, implicit datasets contain less information than rating

dataset. For instance, the indication of preference only contains the initial interest of the user towards the

items, as we only know that the user was interested in the item at the time they purchased or clicked it,

but there is no information on the opinion of the user after the item was consumed. In addition, implicit

feedback datasets contain consumed items only of a particular service provider or seller, so that in the

dataset only positive preference feedbacks are available, which assumes that the non-observed points are

a mixture of negative feedbacks and missing values. In the case of rating datasets, the user profile is

more complete and it is reasonable to assume that most of the items which are not rated are likely to

be unknown to the user. As missing values are not always negative ones, a better representation of the

problem is to store values in terms of their relationship to other items as introduced in [RFGST09]. Here,

items that have received feedbacks are certainly better than items which have not received any feedback,

however, between items that do not have feedbacks (or have feedbacks), the relationship is unknown.

2.1.3 Explicit and Implicit Feedback

There is a trade-off between quantity and quality when comparing explicit and implicit feedbacks. Ex-

plicit feedback is more precise in terms capturing preferences while implicit feedback data is less abun-

dant in quality, but it is widely available in vast quantities as it is more practical to capture. In [JSK10],

the characteristics of implicit and explicit datasets were explored in the context of music listening, it

is discussed that a user might only provide positive explicit feedback on a music item after extensive

listening, which suggests that items that receive feedback from the user have made some sort of impact

(either positive or negative) on the user. However, in [PA11], it is shown that there is a strong correla-

tion between implicit and explicit feedbacks in music listening; it is found that the amount of time the

user listens to a music item would increase the explicit rating of the item. It is also shown that the time



21 2.1. Data

elapsed since the user interacted with music item, have a significant effect on the rating. However, other

global effects such as popularity do not influence the explicit rating.

2.1.4 Noise in Data

It is frequently assumed that user feedback represents the true cognitive state of the user; hence, the feed-

back is used as the ground truth in evaluating algorithms. This assumption was challenged in [APO09],

where the inconsistency in users feedback strategy was examined. It was found that a significant part

of the error in rating-based recommender system algorithms is due to the noise of this inconsistency. In

addition, it was demonstrated in [APTO09] that asking users to re-rate items they had previously rated

could reduce errors in prediction by as much as 14%. Items that were likely to be noisy are selected to

be re-rated in order to highlight items that would increase accuracy for the user.

2.1.5 Content Information

In addition to feedback from the user, additional information can be used to enrich the dataset, content

information can be extracted from a wide range of choices. When information has no structure (e.g. text),

an additional pre-processing is required to extract structured information from the data, this part of the

process usually uses techniques from Information Retrieval [vR79, BYRN99]. This information is used

to build a profile of each item in the dataset, an item profile includes certain attributes and characteristic

on an item [PB07], for example in the case of music items it can contain the genre, artist and album

of the track. The user profile is constructed to represent the relationship with the items from sources

described above (i.e. implicit or explicit datasets), or can be extracted from unstructured information

(e.g. text comments) to enhance the decision making process [RIS+94]. Content information might be

useful to enhance exciting systems but it is argued in [PT09] that content information alone is of little

value when it comes to predicting movie ratings compared to the improvement observed when adding

additional feedback from the user.

2.1.6 Social Information

Another emerging type of data that is widely available online is users’ social information due to the

prevalence of Web 2.0 social networking sites. Essentially, this social information contains activities

that can be extracted from user profiles of social network sites; this might include status updates, tweets,

Facebook likes, etc. This information can be used to build user profiles selecting information that might

be useful to predict users’ taste. In addition, social network sites can provide a graph of related users,

which is also valuable to infer user-user relationships to understand the similarities between users’ taste

and social trust [BKM07] that influences one’s taste. In addition, users’ membership in certain groups

[YCZ11] can also be valuable to infer characteristic of the user associated with the group they belong.

This based on the assumption that users use their social network to obtain information (hence, connected

users might have similar taste) and use their trust network to filter this information which represents the

degree in their similarities [WBS08]. However, the extent that this holds is highly dependent on the actual

datasets, for example, social ties are much weaker on Twitter than on Facebook [MTP10]. Therefore,

the connection between users, the flow of information and trust should be interpreted differently.
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2.2 Algorithms
Recommender system algorithms grew out of the need to reduce the inevitable information overload of

the information age and provide personal content based on preferences that the user expressed towards

certain items in the past. Known recommender systems provide either content-based recommendations in

which a user is recommended items similar to the ones a user has preferred in the past, or collaborative

filtering recommendations in which a user is recommended items that people with similar tastes and

preferences have liked in the past, or adopt a hybrid-approach which combines collaborative filtering

and content-based methods. Context-aware algorithms provide an additional dimension to the basic

recommendation approach by considering factors such as time, mood or location.

Recommender systems are widely used in e-commerce where they are proven to boost sales by

helping the user to discover new products; recommender systems are increasingly used to improve the

quality of service and user satisfaction [LR04]. In addition, recommender systems might enable users

to discover items that are hard to find, thus they can increase the exposure of more diverse items. There

are services that are marketed and built on personalised content (e.g. Netflix), this trend can be observed

across the web, as many content providers personalise their content as part of the service.

2.2.1 Collaborative Filtering

One of the most popular techniques that are used for recommender systems is collaborative filtering

[HKBR99, SFHS07]. The term was first coined in [GNOT92]. Its aim was to develop an automatic

filtering system for electronic mail, called Tapestry. The basic idea of collaborative filtering is that users

who tend to have similar preferences in the past are likely to have similar preferences in the future, and

the more similar they are, the more likely they would agree with each other. In other words, collaborative

filtering algorithms assume that users who like the same items would have the same interest and this

shared interest in relatively constant so that people-to-people correlations can be extracted from the data

[SKR01]. This assumption enables the system to build coherent communities based on shared taste and

behaviour. These feedback profiling methods use the opinions of users to help individuals to identify

content of interest from a large set of choices, which otherwise would be problematic to find. They

return a set of recommended items that are assumed not to be known to the user before, but match to

their taste. This match is expressed by a rating value that represents the extent that the target user would

like the target item. Most of the studies in collaborative filtering concentrate on predicting these ratings.

The task is to make these predictions as accurate as possible. These collaborative filtering techniques can

be divided into three main categories; model based, memory based approaches and matrix factorisation

methods. Within matrix factorisation methods, a special case that is concerned with implicit feedback

models is also discussed.

Memory-Based Approaches

Memory-based approaches are the most widely adopted ones. In these approaches, all user ratings are

indexed and stored into memory. In the rating prediction phase, similar users or (and) items are sorted

based on the observed ratings. Relying on the ratings of these similar users or (and) items, a prediction of

an item rating for a test user can be generated. Examples of memory-based collaborative filtering include
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user-based methods [HKBR99], item-based methods [DK04] and combined methods [WdVR06]. User-

based filtering techniques [WdVR06] concentrate on finding similar users to the active user. First, a

set of nearest neighbours of the target user are computed. This is performed by computing correlations

or similarities between user records and the active user. The preference prediction is calculated by the

weighted-averaging of ratings from similar users. The major problem with this approach is the bottleneck

problem, the complexity of the system increases as the number of users grows which could reach an

unmanageable number of connections to compute in large commercial systems. Item-based collaborative

filtering [SKKR01] aims to find items which are similar to a particular user’s preferences. This algorithm

attempts to find similar items that are co-rated (or visited) by different users similarly. This is done by

performing similarity calculation between items. Thus, item-based algorithms avoid the bottleneck in

user-user computations by first considering the relationships among items. Moreover, it is argued that

item similarity is more constant than user similarly; therefore, this information can be pre-computed

and updated periodically, which makes this approach more suitable for real-time recommendation. This

makes item-based approaches attractive for real-world solutions [LSY03, AT05]. It has been shown

[AT05] that hybrid recommender systems are more efficient than systems based purely on item-based

or user-based collaborative filtering. Furthermore, data sparsity is considered one of the main reasons

why these systems perform poorly. A hybrid system has been proposed by [WdVR06] where user-based

and item-based collaborative filtering approaches are unified using probabilistic fusion framework, it is

showed that this system performs better even with sparse data.

Model-Based Approaches

Model-based collaborative filtering algorithms provide item recommendation by first developing a model

of user ratings. They use the training samples to generate an abstraction which is then used to predict

ratings for items that are unknown to the user. [SMH07] In this regard, many probabilistic models have

been proposed. For example, a method called personality diagnosis [PHLG00] computes the probability

that users belong to a particular personality type, as well as, the probability that certain personality types

like new items. The method treats each user as a separate cluster and assumes that a Gaussian noise

is applied to all ratings. Other probabilistic approaches [BHK98] attempted to model item correlation

using a Bayesian Network model, in which the conditional probabilities between items are maintained.

Some researchers have tried mixture models, explicitly assuming some hidden variables embedded in

the rating data. Examples include the Bayesian-clustering and vector-similarity methods [BHK98]. As

always, these methods require some assumptions about the underlying data structures and the resulting

models solve the data sparsity problem to a certain extent.

Latent models [Can02], similar to matrix factorisation methods discussed below, aim to explain

observed preferences with a smaller number of preference patterns, which are assumed to be able to

generalise the data generation process. Early methods include neural networks [SMH07], probabilistic

Latent Semantic Models [Hof01, Hof04]. Topic models are also used to predict ratings, for example

Chen et al [CCL+09] presented a comparison between Latent District Allocation (LDA) and association

rule mining for the purpose of community recommendation. Another approach introduced in [HCRC11]
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uses LDA to extract latent factors from sparse data, so that each user and item is described by a set of

topics which are used as a basis of prediction.

Matrix Factorisation Methods

Alternatively, collaborative filtering can be considered as a matrix factorisation problem; it has emerged

as the clear favourite in the Netflix competition [Kor08, KBV09, RS05]. The main reason of their suc-

cess may be due to the fact that the objective function can be formulated in a way to directly optimise

certain performance measures (e.g. RMSE). Moreover, these approaches can incorporate a number of

methods into the learning that makes matrix factorisation approaches applicable in a wide range of situ-

ations. In general, the approach aims to characterise both items and users by vectors of factors inferred

from item-rating patterns. In other words, matrix factorisation methods aim to discover latent features

that explain observed ratings through dimensionality reduction. Strictly speaking, matrix factorisation

methods are categorised as model-based, because they rely on a model learnt from the data, but some of

the method presented in this section also has memory-based characteristics, as they incorporate memory

stored ratings into prediction.

One of the most popular matrix factorisation algorithms applied to collaborative filtering uses Simon

Funk’s approach [Fun06]. The objective function of the Singular Value Decomposition (SVD) algorithm

as defined in [KBV09]

argmin
q,d

∑
u,i

(ru,i − qTi du)2 + λ(||qi||2 + ||du||2) (2.1)

where ru,i represents the observed rating, du and qi are f dimensional vectors (du, qi ∈ Rf ). These two

vectors represent the user and the item latent features respectively. f is a parameter of the model which

defines the extent of the dimensionality reduction applied to the observed user-item matrix.

The most popular solution to SVD [WKS08] uses gradient descent to infer the latent features for

each user (du,f ) and item (qi,f ). This can be done by taking the partial derivative of the squared distances

between the known entries and their predictions (e2) with respect to each du,f and qi,f . So that for each

feature we compute

d′u,f = du,f + λ ∗ ∂e2

∂du,f

q′i,f = qi,f + λ ∗ ∂e2

∂qi,f

(2.2)

After simplification and additional regularisation the final equations are as follows

d′u,f = du,f + λ ∗ (e ∗ qi,f − γ ∗ du,f )

q′i,f = qi,f + λ ∗ (e ∗ du,f − γ ∗ qi,f )
(2.3)

The approximation is found such that it minimises the sum of the squared distances between the known

entries and their predictions. The algorithm produces two matrices, user and item matrix, where each

row vector represents the user and the item in the latent space. After the matrices are learnt the prediction

is calculated by the dot product of the target user’s and target item’s feature vectors so that

r̂ui = qTi du (2.4)
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There are a number of variations of this approach, for instance, a faster implementation was presented in

[Pat07], where instead of learning the user and the item vectors, the user is modelled as a function of the

items the user rated. This approach reduced the computational complexity from O(NF +MF ), which

is the standard SVD, toO(MF ), whereN is the number of users, M is the number of items and F is the

number of features. Another matrix factorisation method was presented in [ZWSP08], essentially this

approach aims solve the same objective function introduced in Equation 2.1, instead of using the gradient

descendent solution, it solves the problem using Alternating Least Squares [LH74, GZ79] approach. This

approach alternates between fixing the user and the item matrix and solving it for each row vector in the

non-fixed matrix given the fixed matrix and the preference vector (which lists all the observed ratings).

The advantage of this approach is that all the user/item vectors can be computed independently, so that

the computation can be parallelised which makes it ideal to use it on larger datasets. Matrix factorisation

was also combined with neighbourhood models in [Kor08] resulting in a SVD++ algorithm that allows

neighbourhood and latent factor models to enrich each other. In addition this method allows to exploit

both implicit and explicit feedback by directly incorporating both types of feedback (if available) into

the objective function. An interesting insight of this approach is that using the same data as both implicit

and explicit (i.e. binarising the explicit data) might add an additional aspect to the optimisation, that is

expressed by the effect of rating an item (implicit) rather than the actual rating (explicit). In effect, this

different aspect of the data might help to improve the overall performance of the system. Another similar

approach was presented in [TPNT07] combines the latent factors based on user and item neighbourhoods

computed using standard similarity measures where the user neighbourhood was defined between the

latent feature vectors rather than the actual user profile. This approach provides a scalable solution as

it separates the matrix factorisation phrase from the similarity computation phrase, enabling to compute

the similarity offline. Matrix factorisation methods were extended in [Ren10] to combine the advantages

of polynomial regression models and factorisation models. This approach has the advantage to take real

valued feature vectors as inputs and produce real valued predictions taking advantage of polynomial

regression models such as Support Vector Machines (SVM) [STC00] to incorporate various features into

the prediction. As opposed to SVMs, factorisation machines model all interactions between variables

by the usage of factorisation parameters which helps to reduce the sparsity problem that is usual in the

domain of recommender systems. The advantage of this approach is that it can take different types of

data, in the form of feature vectors, and it is not restricted to certain kinds of inputs like the approaches

introduce above.

Implicit Feedback Models

In [HKV08], implicit datasets were considered for matrix factorisation. As mentioned above, implicit

feedback represents different types of data, with a different set of assumptions behind it. One of the draw-

backs of implicit datasets that they do not contain negative examples of preference. To overcome this,

the model considers missing ratings as an implication of dislike, since the model needs negative training

samples to learn what the user might dislike. This enables the model to learn negative preferences on

the missing ratings and positive preferences on the observed ratings. Moreover, another variable was



26 2.2. Algorithms

introduced in this model which was used inject confidence associated with the observed and unobserved

ratings, so that each data point can be assigned with a confidence value to incorporate additional infor-

mation into the model (e.g. view counts). In this way, it is possible to smooth the noise that is introduced

by considering missing ratings as dislikes by reducing the confidence on the unobserved ratings.

2.2.2 Content-Based Filtering

Strictly speaking, collaborative filtering techniques produce recommendations based on, and only based

on, knowledge of users’ relationships to items. These techniques require no knowledge of the properties

of the items themselves. Another category of recommender systems takes into account domain specific

knowledge to generate prediction. In other words, content-based recommendation algorithms try to

recommend items similar to those the user has liked in the past, whereas in collaborative recommendation

one identifies users whose taste is similar to those of the target user and recommends items accordingly.

Content-based [PB07] recommender systems deal with domain specific knowledge in order to build on

semi-structured information (e.g. the genre of the movie, the location of the user) and infer relationships

between these structures. The best way to integrate the extra pieces of information into the system is to

consider recommendation as a learning problem as describes in [BHC98]. For example, the function can

take a movie-item pair and classifies it into two categories (liked/disliked), or it can be considered as a

regression problem where the system learns a set of parameters for each user with respect to the items in

the user’s profile (using linear regression as the simplest case). Given the learnt parameters of the user

and the features of the item, a prediction score can be produced for each item that is unknown to the user.

Attempts were made to combine content-based filtering and collaborative filtering, the simplest ap-

proach is described in [BS97] where user profiles were created based on content analysis of the items and

these profiles were used as an input to collaborative filtering algorithms. Another attempt was presented

in [PPL01] to combine the two approaches within a generative probabilistic model. In this case a three-

way co-occurrence model was used where it was assumed that the user interest could be represented

as a set of latent topics, which were generated from user and item content information. A probabilistic

approach to combine content-based recommendation with collaborative filtering information was pre-

sented in [SHG09]. It models users and items as feature vectors, which is similar to the approach used

for SVD, but the way these feature vectors are learned is different. The process is modelled as a combi-

nation of Expectation Propagation [Min01] and Variational Message Passing [WB06], where the model

parameters are assumed to be independent Gaussian distributions.

2.2.3 Context-Aware Algorithms

Context-aware approaches [Che05] aim to take into account that users might prefer different sorts of

treatment in different situations. For example given the time of day, the mood of the user or the location,

the system might tailor the approach adapted to the users’ needs in the given context. These different

goals have been recognised by researchers and practitioners in many disciplines, including e-commerce

personalisation, information retrieval, ubiquitous and mobile computing, data mining, marketing, and

management. In recommender systems, contextual information might help to improve the quality of

the recommendation if the user behaviour tends to change in a different context (which is the case most
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of the time). For example, users might prefer to listen to different types of music depending on the

time of the day, the weather and the location of the user. If contextual information is available, the

recommendation list can be modified accordingly. In order to achieve this, two different approaches

have been developed. Contextual information can be used to filter the recommendation list using current

context information and specify current user interest in order to search the most appropriate content. For

example, location-aware social-event recommendation can be obtained by providing a list restricted by

the location of the user [QLC+10], other approaches for tourist [VSPK04] and location based [PHC07]

scenarios have been proposed. The second approach attempts to model and learn user preferences by

observing the interactions of the users with the systems or by obtaining preference feedback from the

user on various previously recommended items. This enables the system to model context-sensitive

preferences in order to provide recommendation. Factorisation Machines (FMs), can also be applied to

context-aware rating predictions as this model can generate feature vectors for context of categorical,

set categorical and real-valued domains, this makes FMs well suited for context-aware recommendation

[RGFST11].

2.2.4 Different Types of Data

Most recommender system algorithms are based on models of user interests that are built on the as-

sumption that the data comes from either explicit feedback (e.g. ratings, votes) or implicit feedback (e.g.

clicks, purchases). As mentioned above, explicit feedbacks are more precise but more difficult to collect

from users as the rating mechanisms has to be built into the user interface where the user is prompted

to give feedback on items presented to them. Implicit feedbacks are much easier to collect though less

accurate in reflecting user preferences [LXZY10].

Implicit feedback can be mined from viewing logs and purchase data, where a number of assump-

tions has to be made on how to “translate” observed behaviour captured by the logs into preference

scores. For example, server logs collected by the content providers are very often used to mine user

behaviour. A number of rule based approaches are in place that compute preference score per user basis

from server logs. For example, in [GE00], users’ favourite TV programmes are inferred from server logs

as a combination of duration and time coupled with a number rules as to how to deal with channel hop-

ping behaviour, fast forwarding, pausing live TV content, etc. This approach can be refined for different

types of datasets taking into account what sort of information is captured in the logs and how it might

represent user behaviour.

If both types of user feedback are present, it has been shown that combining different types of

feedback can improve accuracy [LXZY10]. In [Kor11] a number of scenarios are presented to combine

these two types of data. If explicit feedback is captured implicit feedback can be also inferred from data

just by processing the corresponding server logs (as described above) and, as the simplest case, injecting

implicit ratings as simple weights into the model.
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2.3 Evaluation

Traditionally, recommendation quality is measured using one of a number of accuracy metrics, which

assess how well the predictive output of a system matches a proportion of known, withheld items for

each user. Examples of error based accuracy metrics include Root Mean Squared Error (RMSE) and

Mean Absolute Error (MAE) which were widely used in Data Science competitions such as the Netflix

Prize [BBKV09]. This approach can quantify how the algorithm performs across all available test sam-

ples, which is a good indication of performance is that aim of the recommendation is to produce good

prediction across all items. On the other hand, researchers also argued that understanding collaborative

filtering as a rating prediction problem has some significant drawbacks. In many practical scenarios,

such as the Amazon’s book recommender system [LSY03], a better view of the task is of generating a

top-N list of items that the user is most likely to like [WRdVR08, Kar01, Har03, SLH10]. The simple

reason behind it is that users only check the correctness of the prediction at the top positions of the rec-

ommended list; they are not interested in items that would be predicted uninteresting to them, therefore

low on the ranking list.

Ranking lists are considered a more accessible approach to present a list of items to the user for

browsing as it enables the user to produce a number of different forms of feedback actions [Ama12].

For example, as reported in [Ama12], after Netflix launched an instant streaming service in 2007, the

way of using recommendation has changed (one reason why the company has not adopted the winning

algorithms). Users had more freedom to explore and sample a few videos before choosing one, while the

system could gather more viewing statistics and feedbacks such as whether a video was watched fully or

only partially and make recommendation decisions based on them.

Ranking based approaches are evaluated by the use of Information Retrieval (IR) measures, such

as precision, recall, normalised Discounted Cumulative Gain (nDCG) [JK02], Mean Average Precision

(MAP), etc. Each measure empathises different qualities of the ranked list and able to measure different

aspects of the performance [HKTR04]. Despite the fact that the aim of evaluation is to propose subjective

and easy repeatable results, the multiple ways evaluation can be set up, especially if it is evaluated using

rank based measures, can significantly affect the results. This effect was investigated in [BCC11], where

different experimental setups and their corresponding results were compared. The authors examined

whether the assumption on missing item in the test set, where there is no ground truth available, and

missing items in the training set, where there is no training data available would affect the evaluation

results. It is found that there is a big difference in the performance of the system depending on which

evaluation method is employed. This suggests that using error based measures might produce a more

standard score that is easier to compare across different algorithms without understanding the small

details of the evaluation methods employed. On the other hand, error based metrics might not measure

useful qualities of the system, since it uniformly measures items across the samples, which might not

reflect the way users value recommendations; for example more value might be gained from predicting

the top items correctly (for more discussion see Chapter 3).
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2.4 Challenges and Extensions

2.4.1 Cold Start Problem

One of the key challenge in collaborative filtering is to effectively predict preferences for new users,

a problem generally referred to as the user cold start problem [Ahn08, SPUP02]. Content features of

users (e.g. age, gender) and items (e.g. genre) can be utilised to solve the problem and reducing the

amount of data required to make accurate predictions [GM08, PC09]. For example, in [GDF+10] latent

features were constructed from content information of users and items. These features were plugged

into a matrix factorisation algorithm to provide recommendation for either new users or new items. If

the user’s demographic data is not available, a simplest method to tackle the problem is to interview the

user to provide additional information (e.g. favourite genre) or ask the user to rate a set of items in order

to provide enough data for the recommendation engine. Essentially, the advances made in this domain

all built on the “interview” idea and the goal is to come up with a set of items for a new user to rate. They

can be selected based on measures such as popularity, entropy and coverage [RAC+02, RKR08], or on

a concrete optimisation goal that is in line with the main algorithm [GKL10]. In [ZYZ11], a functional

matrix factorisation model was proposed. The algorithm integrates matrix factorisation for collaborative

filtering and decision-tree based interview into one unified framework by modelling latent profiles as a

function of user responses to the interview questions and selecting the best item by solving the objective

function at each node. A similar method was presented in [GKL11] where the decision tree and matrix

factorisation are learnt in two separate steps. Active learning is also deployed in order to identify the

most informative set of training examples (items) through minimum interactions with the users with

respect to some selection criteria, such as the expected value of information [HY08b, JS04, ME95]. All

these methods aim to discover more about the user by going through an interview process and then using

the result of the interview (in this case the user profile) for prediction. Asking users specifically to give

ratings is, however, still time-consuming and sometimes a hurdle for a user to overcome even if the effort

has been kept minimal.

2.4.2 Temporal Dynamics

One of the primary aims of recommender systems is to capture the dynamics of user preferences in order

to make usable recommendation for unknown items in the future. This change in taste is a reaction to the

constantly evolving culture that is expressed through music and arts. In the simplest case, this change

in taste can be modelled by frequently updating the recommender system to learn on the latest feedback

of the users. However, temporal dynamics can be explicitly modelled and integrated into the predictive

model. The temporal dynamics of any recommender system is the combination of two intersecting

components. On the one hand, the preferences of the system’s users may be subject to change, as they are

affected by seasonal trends or discover new content. Evolution of preferences can be modelled as decay,

so that, in the longer term, parts of users’ profiles can expire [TH08]. Koren [Kor10] also examined this

problem, distinguishing between the transient and long term patterns of user rating behaviours, so that

only the relevant components of rating data can be taken into account when predicting preferences. In

this way, recommender systems can retain separate models of the core and temporary taste of any user.
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Then, the core taste could be used in a longer period of time while the temporary taste can expire if the

user becomes interested in items that do not match her previous temporary taste. In particular, we note

that the above studies focus on user preference shift as a means toward improving prediction accuracy.

The flip side of the recommendation temporal dynamics relates to any temporal changes subsumed

by the recommender system itself as time progresses and the system is updated. Current recommender

systems address the fact that users continue to rate items over time by iteratively re-training their prefer-

ence models. Modelling and evaluating the performance of recommender systems from the perspective

of accuracy, diversity, and robustness over time was addressed in [Lat10, LHCA10]. The central tenet

here is that the regular, iterative update of recommender systems can be both simulated and levied to

improve various facets of the recommendations that users receive, which include temporal diversity.

A middle ground between purely static and dynamic approaches to CF is the use of online learning

algorithms. For example, the authors in [RST08] proposed online regularised factorisation models that

did not require time-consuming batch-training. An active learning approach was proposed to identify the

most informative set of training examples through minimum interactions with the target user [HY08a].

The purpose here was to quickly address the problem of cold-start items and users.

2.4.3 Controlled Dynamic Systems

Control theory stems from research relating to guiding the behaviour of dynamical systems; notable

examples include dealing with network traffic [FLTW89]. At the broadest level, control systems require

three components: (a) a system which produces an output in a dynamic context (e.g., a recommender

system), (b) a measure of the quality of the output (such as the RMSE on the recommendations) and (c)

a mechanism to adapt or tune the system’s parameters according to the measured quality of the output.

The control system binds these three components together into a closed loop; in doing so, it provides a

means for feedback relating to the system’s performance to be input into the system itself.

Researchers have found that control theory can accurately model the behaviour of software systems

and it provides a set of analytical tools that can predict, with high accuracy, the behaviour of a real

system. In [ZC11], control theory was used to monitor system growth and control whether the system

needs to perform an update. Based on the amount of new data entering the system, it calculated the loss in

accuracy if the system was not updated, and decided whether the benefit of preforming an update would

outweigh the computational cost associated with the update, based on a predefined tolerable performance

loss. This approach assumes that the rate of data growth is a linear function of the performance loss over

time. The disadvantage of this is that the system can only rely on a simplified relationship between the

data flowing into the system and the performance (which might not be linear and also include additional

factors) and cannot directly control the disturbance introduced by the dynamics of the recommender

system as the actual output of the system is not known to the controller. In [PGH+02], researchers

presented a workflow, based on classical control theory, to design a feedback control system for an email

server to maintain a reference queue length. They used a statistical model to estimate system dynamics,

this was followed by a controller design phase to analyse the system response. They found that the

analysis predicted to behaviour of the real system with high accuracy. Control theory has also been
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applied to reputation systems, where the aim was to identify and reduce the impact of malicious peers on

recommendation. In [MWZ+06], a feedback controller was used to adjust users’ recommendation trust

based on the accuracy of their rating.

2.4.4 Popularity and Long Tail Items

In economy, Anderson [And08] introduced the concept of long tail selling pattern, it shows that retailers

sell relatively large quantities from a small number of popular items and sell a large number of items

which are not that popular in smaller quantities. Given that every individual has a unique taste; it is

highly unlikely that this taste can be satisfied through mass media, which means popular items might

only meet a small part of the populations’ taste. The reason why popular items get popular despite

that can be explained by the nature of mass media, people tend to be exposed to multimedia items that

are widely available and usually heavily advertised. Therefore, mass media pulls together people who

would not normally find themselves together. However, this trend is likely to change. The cost of

delivering multimedia content is getting smaller which will enable businesses to target each customer

individually and satisfy their personal taste. This trend would likely result in an increase in selling larger

quantities of currently unpopular items. As mentioned earlier recommender systems are to close the gap

between the vast range of choices and the limited time of the user to explore this content. Ideally, this

would entail that recommender systems recommend items that are interesting to the user, which satisfies

as many aspect of their individual taste as possible. This is an obvious assumption, but many argue

[LHCA10, PT08, SFHS07] that current recommender systems do not fulfil this task. The reason is that

current recommender systems choose the easy way; they recommend items that are easy to get right

which is the best strategy to improve general performance. However, this approach usually leaves the

user with items that are either known or do not appeal to them. Therefore, it might be preferable from

the user point of view to increase the number of items recommended from the long tail (i.e. provide a

more diverse choice of items). One of the problem researchers faced in this respect is that fewer rating

in the long tail might result in a higher risk of getting the prediction wrong. One approach to overcome

this is presented in [PT08], where the item set was divided into head and tail and only the items in the

tail were used for a method called Clustered Tail. This method used a number of derived variables (both

user and item related) and built a model on each cluster in the tail. However, the disadvantage of this

approach is that separating the head and the tail of the item set assumes that they are not interconnected

at the highest level. A more sensible approach would be to artificially promote items that are in the long

tail, given that they are disadvantaged by items that are more popular.

In the study of Information Retrieval, a wide range of work consider the importance of diversity in

ranking. This aims to reduce the risk of returning documents from a single topic, which is problematic

in cases where the query is ambiguous. In other words, diversification is to maximise both the relevance

and diversity of the result page, given a query that is ambiguous or underspecified. The basic idea of

these methods is to penalize redundancy by lowering an item’s rank if it is similar to the items already

ranked [CK06]. In [ZGVGA07], diversification is achieved by the usage of absorbing random walks,

which turns ranked items into absorbing states in order to prevent redundant items from receiving a
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high rank. In [THW+11], diversification was framed as an optimisation problem where the aim was

to maximise an objective function which utilizes the submodular property. Alternatively, diversification

can be considered as a means of managing uncertainty and risk in the ranked list [WZ09].

2.4.5 Social Recommendation

The increasing popularity of social media sites (e.g. Facebook, Twitter) paved a way for to enrich tra-

ditional collaborative filtering algorithms with social data which can be used to improve product recom-

mendation as well as reduce the increasing information overload on social media sites. In this overview,

we only concentrate on the recommender system side of the topic.

Social networks provide useful information of users’ social graph including their trust network

which might influence one’s taste. In [JE09, JE10] this network was incorporated into solving cold-start

problems and reducing sparsity in the user-item matrix. In [MKL09], the authors interpreted one users

final rating decision as the balance between this user’s own taste and his/her trusted users taste, and an en-

semble probabilistic matrix factorisation method is proposed to implement this intuition. In [MZL+11],

another social recommendation approach is proposed by adding the social regularisation term to the ma-

trix factorisation objective function. In this method, the additional social regularisation term ensures that

the distance of the latent feature vectors of two friends will become closer if these two friends share

similar taste. In [MA07], a trust-aware method for recommender system is proposed. In this work, the

collaborative filtering process is replaced by the reputation of users, which is computed by propagating

trust. The degrees of trust are calculated to replace the similarity value between two users. The experi-

ments on a large social recommendation dataset show that this work increases the coverage (number of

ratings that are predictable) while not decreasing the accuracy (the error of predictions).In [MZL+11],

two Social Regularisation methods have been proposed by constraining the matrix factorisation objective

function with user social regularisation terms. Different with previous methods, the proposed methods

are very general; they not only work with user trust relationships, but also perform well with user social

friend relationships. The experimental analysis indicates that the proposed framework outperforms other

state-of-the-art methods.

2.5 Summary
This section aimed to provide an overview the main areas of research in recommender systems. As it

was illustrated the main body of algorithmic research concentrates on directly improving a pre-defined

measure. This might be the direct result of the Netflix competition where the success of the algorithm

was measured by RMSE as a result many researches concentrated on improving their algorithms on that

measure. Table 2.1 summarises papers reviewed in this section that aimed to improve collaborative filter-

ing algorithms. It shows that most of the papers were concentrating on improving the general accuracy

in some sense and measuring the performance gain by a uniform squared error (either RMSE or MAE).

In addition, many of the papers that were concentrating on specific aspects of recommender systems

measured the success of the approach using the same general accuracy measures. This is understandable

in a sense that it allows papers to be easily compared and validated, but this approach misses the op-
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Table 2.1: Main recommender goals identified in the chapter that aimed to improve prediction accuracy

in general or concentrated on specific aspects of the system.

Algorithmic improvements

Objective Reference Performance Measure

KNN [BK07] RMSE

SVD [Pat07] RMSE

Item based [SKKR01] MAE

Combining SVD and KNN [Kor08] RMSE, Top-K list

Top-K accuracy [Kar01] Hit-Rate

Top-K accuracy [LY08] NDCG

Specific recommendation goals

Objective Reference Performance Measure

Diversification [ZMKL05] Precision, Recall

Long tail items [PT08] RMSE

Content information [SHG09] MAE

Temporal dynamics [LHC09] RMSE

Cold start problem [Ahn08] MAE

portunity to validate the results on more problem specific evaluation methods that would help capturing

improvements in the direction that it was intended to improve. Therefore, we argue that the success of

specific approaches that aim to capture specialised aspects of a recommender system is not necessarily

proportional to the improvement of a uniformly measured performance metric. In addition, the aim of

improving recommender systems should always be directed towards specific goals as opposed to im-

proving general performance, because recommender systems in general always have to balance between

certain recommendation goals (i.e. user or/and system defined goals) that could not be captured by a

single (general) measure.



Chapter 3

Directional Error Based Approach

In this chapter, we introduce a Directional Error Function to capture the cost (risk) of individual predic-

tions which can be based on specified performance measures at hand. This is the first example of goal

driven design where where the goal is identified first and the performance is measured using specialised

metrics. In the literature, a common experimental setup in the modelling phase is to minimize, either

explicitly or implicitly, the (expected) error between the predicted ratings and the true user ratings, while

in the evaluation phase, the resulting model is again assessed by that error. In this chapter, we argue that

defining an error function that is fixed across rating scales is somehow limited, and different applications

may have different recommendation goals thus error functions. For example, in some cases, we might

be more concerned about the highly predicted items than the ones with low ratings (precision minded),

while in other cases, we want to make sure not to miss any highly rated items (recall minded). Addi-

tionally, some applications might require to produce a top-N recommendation list, where the rank-based

performance measure becomes valid. To address this issue, we propose an approach that focuses on these

specialised recommendation goals and modify the model based on these requirement. By adjusting the

objective function of the recommender system (using an internal approach - as described in Figure 1.2),

we aim to improve the quality of the recommendation, focusing on types of errors that are important to

the user.

3.1 Problem Statement
As argued above, improving performance on a single measure might not be a good strategy to improve

user satisfaction. One example of that is the Netflix competition where the success of the contestant

algorithms was validated by RMSE (Root Mean Squared Error), which measures the difference between

ratings predicted by a recommendation algorithm and ratings observed from the users. It is defined as

the square root of the mean squared error:
√
E
(
(r̂ − r)2

)
, where E denotes the expectation, r is the

observed rating and r̂ is the predicted value. In [HKTR04], researchers have already systematically

examined many performance measures and their implications for collaborative filtering.

The RMSE metric measures recommendation error across different rating scales and the error cri-

terion is uniform over all the items. RMSE squares the error before submitting it, which puts more

emphasis on large errors. Naturally, large errors can occur at the end of the rating scales. To see this,



35 3.1. Problem Statement

1.5

2

2.5

0

0.5

1

1.5

2

2.5

1 2 3 4 5

40

50

60

70

0

10

20

30

40

50

60

70

1 2 3 4 5

(a) (b)

The expected value of RMSE per rating. Percentage of RMSE improvement over random recommendation.

Figure 3.1: Basic RMSE Statistics: measured at the ordinal level.

suppose we have a recommendation algorithm which predicts the rating of an item randomly from rating

1 to 5. Figure 3.1(a) shows that it is more likely to get higher error at both ends of the rating scale if a

random algorithm is used.

Thus, the question arises whether RMSE should be adapted as the measure of user satisfaction. It

measures the error across the system even for items that are not that important for users to be correctly

predicted. In other words, the system might not want to penalise predictions that are not important for

the user. If the user is only interested in receiving relevant recommendations, RMSE as a measure is

not appropriate. Even if the user is interested in items that he or she would dislike, it is questionable

whether the middle range of the rating spectrum is interesting to the user at all. If we take rating three

out of five as the middle range of predicted values, which range cannot help to explain why an item was

recommended, neither can it explain why the item was not recommended.

Another issue may also arise if one directly optimises RMSE. This is due to the fact that the training

samples are not uniformly distributed across rating scales. To demonstrate this, Figure 3.1(b) shows

RMSE improvement in percentage over random recommendation by using a common recommendation

algorithm (in this case an SVD-based approach is used to optimise the metric [KBV09]). Since users are

likely to rate items that they liked, in most cases, they give them a rating of four. So the algorithm has

more data to minimise the error at that range, which results in a higher improvements rate for rating four.

Improving accuracy on items that the user would like may be desirable from a user point of view,

but if the prediction falls into the middle range the error does not matter as much as if the prediction

falls into the lower range. It is similar with items that are rated low; reducing the error rate is more

desirable as the error rate increases since the item gets a higher prediction. In addition to that, highly

accurate predictions on uninteresting items (perhaps rated 3 out of 5) can drown out poor performance on

highly/lowly ranked items. Therefore, depending on the rating we need to pay attention to the direction

of the offset between the rating and the prediction. Figure 3.2(b) shows that the SVD algorithm tends to

over predict items in the middle range. Additionally, it is more likely to over predict lower rated items

than under predict higher rated items.

Hence, a distinction can be made between items that are appealing to the user and items that are

neutral. Within the interesting category we can differentiate between liked and disliked items. To decide

which one is the most important, let us consider two different types of recommendations. Since the
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performance of a recommender system should be evaluated with respect to a specific task, it is useful to

define the two main tasks that a typical recommender system fulfils. If the output of the recommender

system is the first n items, then RMSE is not an appropriate objective to optimise, since it is not essential

to measure the system performance on items that do not fall into the first n good items. As long as the

system correctly identified that these items do not fall into the n good items the accuracy is irrelevant.

Users might be interested in exploring movies, looking through the database or checking particular

movies. In this case everything matters, because users are interested in the justification on how movies

are made. Clearly, in both scenarios we can differentiate between two separate kinds of risks. First, the

risk of recommending something that is not relevant to the users, second, the risk of not recommending

something that is relevant to the users. These are two kinds of errors that should be separated when it

comes to measuring the error rate. For example, assume that the system predicts a movie four, and the

user watches that movie, which he or she would have rated only three. This is clearly different from

the case where the system rates a movie three, which would have been rated four, if the user took the

time and watched it. Since the error of the algorithm in the second scenario would never be found out,

because the user would never watch a movie that is rated three, from a user point of view this error would

be hidden. Therefore, a system that makes hidden errors would not be considered better by the user than

a system that makes errors illustrated in the first scenario.

We introduce two new concepts here: taste boundaries and the direction of taste. Taste boundary

could be defined as the interval that is between liked and disliked items. In a rating scale from one to

five, this boundary would be three. Direction would represent whether the predicted rating is towards

the taste boundary or not, at one level, on another level it would represent whether the error is large
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Table 3.1: The two dimensional weighting function, where p is the predicted value of the item and r is

the ground truth.

r = 1, 2 r = 3 r = 4, 5

p <= 2.5 w1 w2 w3

2.5 < p <= 3.5 w4 w5 w6

p > 3.5 w7 w8 w9

enough to cross the taste boundary or not. In other words, the algorithm would consider whether the user

would like the item when it is not the case and vice versa. These boundaries are illustrated in the matrix

shown in Figure 3.3. It shows that we would like to minimise errors where the prediction is correct and

as we go further from the correct prediction, we take higher risk depending on the direction (the risk is

illustrated by the size of the arrows). Figure 3.3 can also be applied to a ranking problem since higher

predicted items represent higher risk. For example in ranking an error should be penalised more if an

item is ranked higher than if it happens the other way around.

3.2 Optimising the Weighted Errors
Based on the discussion above, more risk should be penalised given a specified recommendation goal.

Also, risk is directional as shown in Figure 3.3. Previous recommender systems considered the absolute

value of the error, taking equally into account negative distance and positive distance from the ground

truth. Here, an optimisation framework is to be proposed that would differentiate between negative

and positive distance between the prediction and the ground truth rating, assigning a higher penalty for

positive distance than negative distance. To achieve this, a weight for each type of error is assigned. As

shown in Figure 3.3, the weights are two dimensional, depending on both the prediction and the ground

truth. To demonstrate the optimisation framework, an incremental SVD (Singular Value Decomposition)

factorisation method is adopted [KBV09], which is defined as follows:

argmin
q,p

∑
u,i

w(ru,i − qTi pu)2 + λ(||qi||2 + ||pu||2) (3.1)

where q and p are the model parameters. This algorithm factors the matrix using only user and item

pairs where ru,i is known. As mentioned earlier weight w is introduced to control the magnitude on how

conservative the system is to be in a given rating sector.

The system learns the model by fitting the previously observed rating. In order to avoid overfitting

the second half of the equation regularises the learning parameters and the constant λ is set to control the

extent of regularisation. Stochastic gradient descent is used to optimise the equation [KBV09] introduced

by [Fun06]

p′u,f = pu,f + λ ∗ (w ∗ eu,i ∗ qi,f − γ ∗ pu,f )

q′i,f = qi,f + λ ∗ (w ∗ eu,i ∗ pu,f − γ ∗ qi,f )
(3.2)

where γ represents the learning rate and eu,i = qTi pu.



38 3.3. Experiment Setup

• Train SVDTraining set

(60%)

• Optimise weightsValidation set

(20%)

• Test the best set of 
weights

Test set

(20%)

Figure 3.4: Two-Level Optimisation

The next question is how to obtain the optimal weighting w given a recommendation goal. Nor-

mally, a recommendation goal can be defined by a performance metric. For example, if the output is a

ranked recommendation list, rank-based metrics such as NDCG [JK02] might be suitable. However, as

explained above, the aim of this work is not to rely solely on generic performance measures, but examine

the system through multiple performance measures that are in line with the defined goal. Therefore, we

adopt a Genetic algorithm [Mic96] to obtain the optimal weights. Genetic algorithms are search algo-

rithms that work via the process of natural selection. They begin with a sample set of potential solutions

which then evolves toward a set of more optimal solutions. Within the sample set, solutions that are poor

tend to die out while better solutions remain in the population, thus introducing more solutions into the

set. The genetic algorithm does its best when there is a smooth slope of fitness over the problem space

towards the optimum solution. This approach requires a two-level optimisation illustrated in Figure 3.4.

3.3 Experiment Setup
The relationships between the taste boundaries and the CF performance were empirically investigated

using the MovieLens 100k dataset [Gro06]. This publicly available dataset consists of 100,000 ratings

for 1682 movies by 943 users. The dataset was divided into three parts (Figure 3.4) making sure that

ratings from any given user are in all of the sets. Every user in the dataset rated at least 20 movies and the

movies from each user distributed randomly when the dataset was divided. This is an important criterion

since the performance measures that are discussed below consider users as a point of evaluation. The

result is cross-validated using a five-fold cross-validation method and the outcomes are averaged.

The algorithm measures system effectiveness based on two assumptions. First, the recommendation

was considered as a ranking problem. Second, risk was defined in nine different sectors (Figure 3.3)

which can be adjusted based on the desired outcome of the system. Even if the goal is to measure the

effectiveness of the system across all users and items, from a user point of view there are items that

are more important than others. If recommendation is considered as a ranking problem, it is sensible

to optimise the algorithm using some of the following measures from IR. Therefore, two main concepts

from IR should be defined in the domain of recommendations. Relevance shows whether an item is

relevant to the query issued. However, the query is hidden in a recommender system, since it is defined

by the user’s preference which is usually not expressed explicitly. Here, we assume that users would
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watch a movie if it was rated four or five on a five point scale (relevant), but we acknowledge that this

might be different for individual users. Therefore, relevance is defined on a binary scale. Movies that are

rated four or five are considered relevant, the rest of the movies are considered non-relevant. Retrieved

items represent a list of items that are presented to the user. This concept might be beneficial if the task

of the system is to return the first-N relevant items. In order to reach the desired effect we evaluated

the system using measures from IR. For a given user the algorithm ranks unseen movies such that the

movies he or she likes most are suggested first. The following performance measures are used in this

experiment.

The Mean Reciprocal Rank (MRR) [vR79] is the reciprocal rank of the first relevant item in rec-

ommended list, averaged for all users in the dataset. As this measure only takes into account the rank of

the first relevant item, the algorithm would achieve a high score if the most relevant item for the user is

predicted correctly.

Mean Average Precision (MAP) [vR79] obtains the precision score after each relevant document

is retrieved. The mean of this score is calculated for all users to obtain the MAP score. The algorithm

would achieve a higher score if it improved the precision in the retrieved list. So in this case all the

documents that are retrieved count toward the score.

Normalised Discounted Cumulative Gain (NDCG) [vR79] measures the gain based on the items

position in the recommended list. This measure was introduced in [JK00]. It penalises the system

if it returns highly relevant documents lower in the ranking list but penalises less if the lower end of

the ranking list was retrieved incorrectly. NDCG is normalised by the perfect permutation of all the

documents in the set. One of the problems if it is applied to recommendation is that the average number

of ratings per user is relatively low, so that the recommender system would likely to return all the items

that are relevant to the users (based on their rating history). Thus, the aspect of picking the relevant

elements from a big dataset is lost here. Therefore, all users are evaluated on a fixed number of items

which is set. So most of the time all the considered items are retrieved. Thus, there is no penalty on

having the wrong elements within the retrieved documents; the penalty can only arise from the wrong

order. In this experiment we used the formula defined in [VB06].

Since we used a small set, it was also important to define the best solution to the problem and use

a measure that is relative to the best solution. This is particularly important for MRR. As mentioned

above, in collaborative filtering, the algorithm is tested in a relatively small set compared to sets used in

IR. Therefore, it is more likely that the algorithm is tested on users where all the items are non-relevant.

So the algorithm does not have a chance to return relevant documents from a set where there are not

any relevant documents. This would decrease the performance of the algorithm. Therefore, in this

experiment the algorithm disregards users where there are no relevant documents in the test set. This is

a reasonable assumption, because if the algorithm runs on the whole database it is very likely that there

would be at least one item that is relevant to the user.
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Table 3.2: Baseline SVD
r = 1, 2 r = 3 r = 4, 5

p <= 2.5 0.05175 0.01935 0.0106

2.5 < p <= 3.5 0.0904 0.1461 0.1391

p > 3.5 0.02995 0.10125 0.4115

Table 3.3: SVD with Weights where w7 > w8 > w4

r = 1, 2 r = 3 r = 4, 5

p <= 2.5 0.0759 0.04075 0.0264

2.5 < p <= 3.5 0.0837 0.16765 0.23815

p > 3.5 0.0125 0.0583 0.29665

3.4 Results
Introducing weight for the error would penalise unwanted categories, therefore, the recommender prefers

to have higher error rate in categories that are not penalised. For example if an item’s rating was predicted

five by the baseline recommender with the ground truth of one, the weighted recommender in Table 3.3

would more likely to predict the rating less than three instead, reducing the error, but increasing the error

on items that are not that important (e.g. items where the ground truth is three).

The first experiment aimed to demonstrate that introducing weight in different sectors would reduce

the number of items that fell into those sectors. We introduced weights in sectors where the algorithm

would make a higher prediction than the ground truth (w4, w7, w8) and set the magnitude of the weight

in the order of risk illustrated in Figure 3.3. Table 3.3 shows that the probability that an item would fall

into those sectors is reduced. However, this is a trade-off since it reduces the number of items in the

sector (items that are rated five and predicted five). On the positive side, it increases the accuracy in the

middle and lower range.

In the second experiment weights are set to one by default at points where the prediction should be

the most accurate as defined by Figure 3.3. In this case, only weights that fall into the interval where

prediction were higher than ground truth considered (w4, w7, w8). The rationale behind this choice is

that the combination of this force (enabling the algorithm to modify only these weights) and the measure

would result in an optimal solution for the user where higher rated items are considered more important

and items that are over predicted are penalised. Table 3.4 shows the result of the four performance

measures that are used in our experiment. The first column indicates the score that is computed using

the optimal weights and the second column is the baseline score (without weights). This shows that

weights in fact improved the algorithm. The samples in the table were tested and found statistically

significant (p < 0.05). The reason why this method would provide a more robust recommendation from

the user point of view is that it reorganises the ranking in a way that it would take into account our initial

criteria defined by the weights and re-ranks the list accordingly. The advantage of the second approach

is that it dynamically chooses the parameters for a given measure, however, as we will discuss below the
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Table 3.4: Experimental Results

Measure(Test) Baseline(Test)

MAP 0.450 0.447

MRR 0.899 0.889

NDCG@10 0.726 0.720

NDCG@5 0.574 0.570

NDCG@3 0.450 0.447
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Figure 3.5: Prediction Improvement Across Taste Boundaries

measures do not cover all the possibilities given in our initial criteria. In contrast, the first approach can

be tuned to reach a result that satisfies these criteria, but it cannot reach an optimal solution for all users.

Essentially this approach aims to minimise the error for the predefined sectors which inevitably

results in the increase of error in other sectors. Figure 3.5(a) shows the probability that true ratings are

correctly predicted within our predefined taste boundary by the optimised versus the baseline approach

using the weights obtained in the second experiment (Table 3.4). As expected the baseline approach pre-

dicts higher ratings better than our optimised approach, since the optimised approach does not penalise

this type of error (high ratings predicted less), whereas there is some improvement in the lower range

where the error was aimed to be reduced. This approach takes the low risk approach, therefore, it hurts

the performance at the higher range of the spectrum where it is less risky to predict something less, in

exchange it reduces the error for items that are rated low. This means that it is less likely that users get

items that are not relevant to them (Figure 3.5(b)).

It is also important to investigate how the improvement of this evaluation metrics can be translated

into improvement in user experience. Using MRR as a measure would reduce the probability that an

irrelevant item would be presented to the user at the first position in the list. That implies that it would

reduce the chance that lower rated items are rated higher for all items and it would also reduce the

chance that higher rated items rated lower given that they are relevant items. The only place where it

does not fit to our initial specification is that it does not differentiate between item and item within the

irrelevant category. Therefore, there is not any difference in the score if an item rated one or an item

rated three was ranked higher. Therefore, parameter w4 does not add anything extra to this measure

since it only penalises low rated (one or two) items being predicted as uninteresting items. The same
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applies to NDCG; however, it is a more subtle measure so it is able to differentiate between the orders of

the items in the ranked list. Therefore, an NDCG score can tell us how well relevant items are ranked,

which would be an optimal solution for the user.

3.5 Possible extensions: Difficult and Popular Items
The main reason to identify the direction of the error was to assign some importance to items with

respect to the deviance between their ground truth and predicted rating. This is based on the perception

of what is important to users who expect good quality recommendations only on items that are of interest

to them. There are other qualities of items that can be captured as a posterior knowledge which would

affect the quality of the recommendation. Some of these features of the items can affect recommendation

on a global level (as opposed to the user level we considered earlier in this chapter) such as popularity

or difficulty to predict score (for a simplest case that can be based on the variance of the item ratings).

These qualities of the items can determine whether the item can be accurately predicted as well as

whether the items is important to be predicted correctly. For example, in order to improve the accuracy

of a recommender systems for most of the users, items that are frequently rated should be predicted

correctly; another strategy is to concentrate on highly rated items instead. In other scenarios, new items

that have not received many ratings but has a potential to become popular should be emphasised and

predicted correctly. This illustrates that on a global level the importance (e.g. popularity) of the items

would help to focus on them in order to improve the accuracy of the overall system.

3.5.1 Selective learning

After identifying important items the prediction error on them should be reduced: boosting techniques

can help to identify weak learners and improve the performance on these learners by creating a single

strong learner. One example of boosting is Adaboost that was first introduced in [SF96], where it was

used to generate a highly accurate hypothesis by combining many weak hypotheses, each of which with

only moderate accuracy. This extension would consist of applying boosting techniques to a simple SVD

algorithm [KBV09], sampling a subset of the whole dataset and concentrating on items that are likely to

be predicted wrong. Our initial assumption is that this approach would have two main advantages. First,

it would improve the accuracy of the algorithm; which is the basic property of boosting. In addition, it

would provide a way to scale an SVD algorithm by enabling to divide the task into small segments which

could be used to distribute the task. This part could be scaled using the MapReduce framework [DG08].

This approach would also provide the necessary framework to incorporate directional based errors into a

more general framework, since the data can be sampled based on the direction of the error made by the

baseline algorithm or the distance between items can be based on this direction.

It is important to identify the qualities of the items that tend to be easily predicted, depending on the

model these qualities include the frequency, the mean and the variance rating of the items and users in the

dataset. We show that popularity can be defined as a combination of these qualities. In order to tackle the

problem we need to investigate them separately. The frequency of an item has two very distinct effects

of recommendation, first, there are items that received fewer ratings, because they are not popular, also
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(a) Popularity is measured by the average rating of the item. (b) Popularity is measured by the frequency of votes.
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(c) Popularity is measured by the variance of the ratings.

Figure 3.6: Popularity of Items against the Error Rate (RMSE) for a number of popular algorithms.

there are items which has less ratings because they are new, so it is important to differentiate between

these two. This quality is also important in the phrase of evaluation since the frequency of the item in

the training set is proportional to the frequency in the test set given that the data was divided randomly.

In the case of RMSE that means that number of test points for a given items are propositional to the

number of training points, therefore, emphasizing items that have rated many times is the best way to

achieve high performance (Figure 3.6 (b)). The average rating of the item is clearly a good indication

of popularity. Figure 3.6 (a) shows that neighbourhood-based models are sensitive to the mean of the

item whereas latent factor based models provide a more stable prediction. The reason for that is due

to the fact that neighbourhood-based models capture localised relationships whereas latent factor-based

models capture a different level of structure that is more global.

In addition, modelling the correlation between items and users can affect the quality of the recom-

mendation. For example, user-based recommender systems have a higher error rate at higher ranking

positions. This can be explained by the way different algorithms deal with neighbourhoods and the

nature of the data. It is usually the case that the data consist of more users than items, so it is easier

to find meaningful correlation between items than users. Furthermore, item correlation based on little

information is more meaningful that user correlation. For instance, if we take try to define correlation

based on only one rating; surely, if a user agrees on one item with other users, we cannot say that he or
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Table 3.5: Average Mean and Average Variance per User

Mean Variance

Item-based 3.5961 0.3317

User-based 200 3.6136 0.3774

User-based 500 3.5639 0.2673

SVD 3.5610 0.3354

Observed ratings 3.5827 1.0648

she will agree on a different one. In contrast, if a users rated two different movies similarly that is a more

reliable source to conclude that those movies are similar, because similarity between items is more static

than between users and probably the similarity between two items can be expressed by less common

ratings than a similarity between two users. This suggests that items similarity is more expressive and

reliable than user similarly. User similarity involves more dimensions in terms of taste and depends on

the particular items, so a single number might not be able to express user similarity, especially if it is

based on little information.

The other factor that can be further investigated is the effect of the variance on recommendation.

Variance shows the extent users agree on an item, which is a good indication whether an item is easy or

difficult to predict. Table 3.5 shows that the predicted mean and the variance of different models vary

and generally less than the real variance for the same data. This is due to the fact that each model is

confident predicting items that have low variance (Figure 3.6 (c)). So that item that have higher variance

are predicted towards their mean, which is responsible for the higher error and the increased variance for

the prediction. This clearly suggests that personalisation does not work for items that have high variance.

This observation can also be the reason why recommender systems tend to promote popular items which

generally have lower variance (discussed later in Chapter 4).

Therefore, the aim is to improve accuracy for the following three distinct features: items and users

with a small number of ratings, which is referred to as the cold-start problem (Section 2.4.1), items and

users that have lower mean (the issue was identified in Section 3.1) and items and users that have high

variance as suggested in the previous paragraph, but it is also a part of the bigger picture discussed in

Section 4.3.2.

3.6 Conclusion
We introduced the first example of goal driven design in this chapter. The approach presented here puts

an emphasis on the risk of making an incorrect recommendation and identifying items accordingly. The

algorithm aims to optimise its performance on those items. This approach can be fine-tuned further by

considering how the items would be presented to the user. Depending on the goal certain specialised

metrics can be favoured. For example if a user would like to have just one item recommended, the

algorithm is best optimised by MRR, or if the user would like to have more items recommended it

would be better to optimise it by NDCG. In addition, different strategies depending on user needs could
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be identified and the risk preference can be switched accordingly altering the recommendations. The

choice of parameters can be tailored to users need penalizing sectors that are more important to predict

correctly to a specific user. For example, calculating the mean of all the ratings for a particular user

would suggest where the taste boundaries lie, so it can be determined for each user. On a global level

(across all users), strategies such as concentrating on popular items (defined by their average rating or

their frequency of ratings) would help to increase the quality of recommendation for all the users, but

concentrating on items that are hard to predict (e.g. items that have a high variance of ratings) would

help to reduce the overall error of the system.

As it was discussed above all the measures only care about relevant items, but for our purposes it is

also important to minimise error on disliked items (rated one or two). Thus, we would like to measure

how the algorithm performs on both sides of the rating scale. In both cases, the middle range (items rated

three) would be considered non-relevant. These two scores could be combined taking the high rated list

more into account than the low rated one.

It is a widely discussed topic that accuracy alone is not a sufficient to measure whether a recom-

mender system provides an effective and satisfying experience [HKTR04]. It is also important to note

that a data is not homogeneous. In terms of prediction, we can differentiate between easy and difficult

items as well as easy and difficult users.

Here, the direction of errors was considered only for items and applied uniformly for all users, in

a similar fashion users can differ from each other in terms of risk preferences which could be defined

for each user and the direction of errors per user could be modelled accordingly. In this way, we would

introduce another layer to the model that considers risk preferences per items first and above this level

per user, so that the particular penalty for an item would be defined by the risk preference of the user

whom the item will be recommended. Risk preference could be mined for the user profile, for example

depending on previous rating strategy or how diverse items the user rated previously.



Chapter 4

Optimising Multiple Objectives

In the previous chapter, we focused on some aspects of the main performance measure with respect to a

certain user-centred goal, the main focus of this chapter is to investigate this further and understand how

multiple goals and their specialised metrics can be framed. We illustrate a multiple goal optimization

approach that not only considers the predicted preference scores (e.g. ratings) but also deals with addi-

tional operational or resource related recommendation goals, based on the goal driven design outlined

in Section 1.2. We start the chapter with an example of goal driven approach where the objectives are

directly connected to the performance of the system. Here we study whether it is feasible to use rec-

ommender systems to optimize digital content delivery, by predicting which items would be requested

and pre-caching them near the target user. This problem is framed as an external system centric goal.

In the second part of the chapter, this is extended to multiple goals where the objectives might not be

directly linked to the general performance of the system. Using this framework we demonstrate through

realistic examples how to expand existing rating prediction algorithms by biasing the recommendation

depending on other goals such as the availability, profitability or usefulness of an item. In the last part

of the chapter we set to improve diverse, novel and serendipitous recommendations at the same time, at

a slight cost to accuracy, using an internal optimisation approach. To some extent, these goals might be

complementing with each other so that the combination of the goals, measured by specialised metrics,

would provide the best user experience.

4.1 Problem Statement

To build a practical recommender system, providing items that fit to the target user’s taste (recommen-

dation accuracy) is not the only concern. Users’ satisfaction also relies on the utility of obtaining rec-

ommendations to accomplish a certain information seeking task. Additionally, in a practical operational

environment there might be other factors that can affect the effectiveness of the whole system. For exam-

ple, many recommendation algorithms use, either explicitly or implicitly, the Root Mean Square Error

measure as the objective function [Kor08, KBV09] - a typical case is the Netflix competition. To reduce

the error, the algorithm has to focus on the popular items (in the training phase), because that strategy

would minimise the overall error of the system. As a result the algorithm is more likely to recommend

mainstream items which might be already known to the user. However, recommending these items is



47 4.2. Cost-Based Objectives

likely to be less useful than suggesting “long tail”, more disputable yet preferable, items. Such useful-

ness also depends on how “alternative” a user’s preference might be. Thus, the offset of a user’s taste

from the mainstream has to be defined. It is certain that Root Mean Square Error alone cannot address

this problem.

From the system’s perspective, the organisation that is operating the recommender system expects

that the system could help their users discover their products or services effectively. By the same token,

other factors such as users’ feedback, available resources, bandwidth and profit can also influence the

productivity and performance of a recommender system. For example, recommending items that are not

immediately available would be frustrating for both the user and the system. Arguably, these factors can

be as important as the recommendation itself, so they should be taken into account and embedded into

the system.

A recommender system can only be successful in a competitive environment if it is able to optimise

multiple goals without the necessity of redesigning the whole algorithm. This motivated us to conduct

a formal study on how to formulate the recommendation construction problem when multiple objectives

are considered. To achieve this, the problem is formulated using constrained linear optimisation tech-

niques [BV04]. Our idea can be simplified as follows: items were assigned to a utility score which is

related to the rating of the item; the higher the predicted rating is, the more the utility score increases.

However, most importantly, the utility also depends on the predefined operational objectives. The ra-

tionale of using constrained optimisation is that it can naturally specify accuracy as the main objective

and other operational objectives as constraints, then optimise them in a unified framework. Two realistic

situations are to be given to show how easily multiple factors can be added to this framework depending

on the exact specification of the system. The first scenario is concerned with improving the quality of

the recommendation by reducing the likelihood that popular items would be recommended to users with

less popular taste, the second scenario concentrates on introducing constraints that can deal with other

operational and business related factors.

While considering recommendation as a ranking problem, recommendation accuracy is not the first

thing to consider. Instead, an operational/resource related recommendation framework is proposed in

order to incorporate multiple objectives. Similar to [Wan09, WZ09, CT09], constrained optimisation

techniques are applied. However, the purpose of the specific algorithm is quite different. In [Wan09,

WZ09], diversification is modelled by applying portfolio theory in stock markets. In [CT09], robust

query expansion is introduced by exploring the risk and reward trade-off. Here, a simple linear relevance

objective is proposed, and the emphasis is on to design constraints to specify additional objectives.

4.2 Cost-Based Objectives
In this chapter, we aim to introduce an approach to incorporate certain factors in the algorithm in order

to bias the recommendation based on external goals of the system. This approach assumes that users

make their choices based on what is recommended to them. However, in a simpler case the outcome

of the prediction can be used to make decisions in order to achieve certain objectives. In order to study

this, we have to separate two interconnected effects that would influence the system: to what extent a
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recommender system would be able to predict user behaviour (i.e. how would the user behave in the

future) and to what extent a recommender system can influence user behaviour (i.e. proactively shaping

the behaviour of the user). In this section, we are focusing on the former through an example of content

delivery and the rest of the chapter will be concerned with the latter. In essence, the former one is just the

study of what aspects of the recommender system can be correlated with satisfying certain objectives,

whereas the latter would partly attempt to answer a more complex question on the balancing act between

satisfying generic and external objectives of the system. From a different point of view, the former

can represent scenarios where the system’s performance might be proportional to the defined objective,

whereas for the latter would be concerned with (partly) opposing objectives. As mentioned above, the

rest of this section focuses on the first problem through a practical example of digital content delivery.

4.2.1 Digital Content Delivery

Video traffic continues to increase its share as more content becomes available online. Apart from watch-

ing videos online it is also used for paid video on demand (VOD) services. IPTV service providers often

require a significant amount of bandwidth to deliver content to the set-top box at an acceptable quality,

which reduces the capacity available to the household for other purposes. Furthermore, additional costs

are often incurred to guarantee the quality of service for real-time content streaming, which means that

delivering digital content in real time is more expensive than pre-caching it beforehand. This motivated

us to study whether it is feasible to use recommender systems to optimise digital content delivery by

predicting which items would be on demand by a particular household and pre-caching them closer to

the target user. We defined this approach as an external system-focused goal based on the criteria defined

in Figure 1.1 and Section 1.2. We present a preliminary study in this section to show how to evaluate cur-

rent recommender algorithms in this domain and understand whether it is feasible to use recommender

systems as a predictor of pre-caching techniques given based on the performance of the recommender

system and the cost associated with the delivery. The aim is to identify which aspects of the current

recommender systems are important, and how they could be improved to satisfy the requirements for

pre-caching. The work is divided into three main parts. First, a preliminary study of the dataset was

conducted in order to understand how it could be used to provide efficient recommendations. Second,

the implementation of an implicit recommender algorithm was carried out. The optimisation problem of

the content delivery approach was also defined and it was evaluated empirically on the available dataset.

4.2.2 Baseline Algorithm

Most of the commercial systems only have access to binary data (which consists of implicit feedback

only) as the only data that can be collected is purchase history or click-through data. We considered

implicit feedback recommender systems as the baseline algorithm. The model that we used is based on

the approach that is outlined in [JW10a], that is user-item pairs are weighted more if we know more

about them. In other words, we would like to reduce the error on items that we are confident about, so

the algorithm would fit the model to these items. Mathematically this can be expressed as follows, based

on the widely used SVD (Singular Value Decomposition) matrix factorisation algorithm [AT05]
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q̂, d̂ = argmin
q,d

∑
u,i

wu,i(ru,i − qTi du)2 + λ(||qi||2 + ||du||2) (4.1)

where wu,i is the weight assigned to the error associated with the prediction (pu,i = qTi du) for a partic-

ular user u and item i that is measured as a deviation from the observed rating ru,i. Here we estimate an

f dimensional vector for each user (du) and each item (qi).

As we applied this to a binary dataset in this chapter, we needed to take into account zero preference

values as an indication of disinterest. Because the model could not be optimised using a standard SVD

solution [Kor08], instead it has to be solved on the whole user-item matrix S rather than only on the

observed values. To achieve this we adopt an approach described in [HKV08] where the optimisation

problem is solved by alternating between fixing the user-factors and the item-factors, so that the function

becomes an alternating least-square optimisation process that can be solved in O(|S|f2 + |M |f3) while

it iterates through all items (qi), similarly it can be solved in O(|S|f2 + |U |f3) while the algorithm

calculates user vectors (du) where f is a number of features, M is the item matrix (that contains the

item (qi) vectors) and U represents the user matrix (with the user (du) vectors). We use the Tikhonov

regularisation to solve this model [GHO99]

minimise||Ax− b||22 + λ||x||22 =

xT (ATA+ λI)−1AT b
(4.2)

This problem has the following analytical solution:

x = (ATA+ λI)−1AT b (4.3)

Here, A can be replaced by U or M respectively to calculate qi and du, b is to be substituted with the

observed rating vector per user and per item (including the unobserved zero values).

4.2.3 Extended Model

We interpretedwu,i (Equation 4.1) based on the unique features of the dataset (described in Section 4.2.5)

that was used in this chapter. In the case of our approach, we have two different types of indication for

preference. The user might purchase or watch the item, which is a strong indication of preference. In

that case, we set wu,i to one, which was increased exponentially if the user watched an item more than

once. Another case, when the user only previewed the item (i.e. watched a trailer), we understood it that

the user was potentially interested in that item. We calculate this as expressed below

wu,i = λP (pu|pr, u) + (1− λ)P (pu|pr, i) (4.4)

where we obtain the probability that item i was purchased (pu) or watched given that it was previewed

(pr) earlier, this was repeated the same way for the user u. The user probabilities represent the likelihood

that the target user would watch the content after they previewed it. These two values can be calculated

from historical data to get the item specific and user specific viewing behaviour.
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4.2.4 Personalised Content Delivery

Personalised content delivery aims to use recommender algorithms to predict user preference and use this

information to deliver content before an item is watched. We set to investigate whether this technique can

be used in practice to provide a better user experience and potentially save costs by pre-caching assets

on the set-top box or storing it on a server close to the target user. There are numerous advantages of this

approach. First, if all the criteria were met it would save delivery cost for the content provider, which

inevitably reduces peak-time network traffic as a side effect. It would also increase customer satisfaction

by enabling customers with slow connections to watch content instantly.

The algorithm described in this section is to be used to choose a set of items that are predicted to

be watched by each customer and pre-cache them on the set-top box. In order to evaluate the system we

divided the approach into two separate prediction problems that are associated with two different errors.

The first step of the prediction is to estimate the number of items that are to be watched by the target

user in order to define the number of items that are potentially cached on the set-top box (i.e. users who

do not watch anything would not need caching). This can be personalised based on historical data or

non-personalised based on the overall trend of the users. This factor is important as that would enable

the system to cache the exact number of items which would minimise the overall cost. The second step is

the actual recommendation problem. This prediction problem includes the baseline recommender system

described in Section 4.2.2. The main problem to tackle here is to provide a low-risk recommendation.

In other words, the system should identify users/items which are easier to predict and only provide

recommendation if it is more likely to be correct. Users who are easier to predict include users with

more historical data and less diverse choices in the past. Items that are easier to predict include items

that users watch regularly (series, soap operas etc.), and items that are popular or expected to be popular.

4.2.5 Empirical Study

Dataset

This research was carried out using an anonymised dataset from an IPTV service provider with around

500,000 customers. The dataset contains four months of viewing logs, from July to October 2010.

The dataset consists of 56.1 million viewing records for 240,000 users and 14,000 items. The views

only indicate that the item in question was purchased to watch, watched as a part of a subscription

package or pre-viewed (e.g. watched a trailer of the item). This dataset was sub-sampled, in the final

experiment 25% of the users were used (64,000 users and 14,000 items). We used five different samples

to cross validate the results. It is also important to note that despite that the dataset has 14,000 items;

some of the items might only be available to watch/purchase for a shorter period. We were provided

with a list that defined the availability of the items in the dataset; this information was used to pre-

filter the recommendation list to make sure that only those items that were available at the time of the

recommendation were used to test the performance of the system.

As time is an important factor in this model, we evaluated the performance of the system during

a given period of time. The dataset was divided into a training set and test set; such that the first three

months (July to September) were used for training the model and the last month (October) was used for
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Figure 4.1: Performance of the Baseline Algorithm (October 2010)

testing.

Evaluation

In this section, we define the theoretical threshold of the performance that should be achieved in order

to make the system effective at saving costs and improving user experience. This threshold depends on

two different methods of delivery and their cost respectively. We define two content delivery methods

that are based on operational content delivery networks: we define best effort (BE) delivery as a method

which does not provide any quality of service guarantees, and assured forwarding (AF) which priori-

tises traffic to ensure a certain quality of service when delivering real-time streams. An asset pre-cached

using Best Effort delivery could potentially save the additional cost of Assured Forwarding, if it was

subsequently watched by the user. In order to assess whether the performance of the system can stay be-

low this threshold both of the prediction strategies (caching and prediction strategy) should be evaluated

simultaneously.

To generalise the pre-caching problem explained above we formulated the problem as follows.

Given that there are two different ways of delivering items, assured forwarding and best effort, we have

two different values of costs associated with the system, therefore, the overall cost can be defined as

follows

cost = cbe ∗ nbe + caf ∗ naf (4.5)

All the items (or volume) that were delivered by each method (nbe and naf ), multiplied by the cost

associated with the delivery (cbe and caf ).

Performance Error

It is also important to measure the performance of the recommender system. We mainly used precision,

a widely used rank-based IR metrics [SM86], in this case it is defined as follows

precisionu =
hu,be
nu,be

(4.6)

where hu,be is the number (or volume) of items that are pre-cached and watched by the user, nu,be

is the number (or volume) of items that are pre-cached. We chose precision as the main measure of

performance as it measures the ratio between items that are watched from the pre-cached item pool,

which ratio is crucial in terms of the cost associated with the delivery of the items. We also defined recall
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as

recallu =
hu,be
relu

(4.7)

where hu,be is the number (or volume) of items that are pre-cached and watched by the user, relu is the

number (or volume) of items that are watched by the user. In other words, the overall performance of the

systems is defined as the hits the delivered items normalised by the number of relevant items. Figure 4.1

shows the performance of the baseline algorithm using precision and recall.

The lower bound of the performance that is needed to make the system profitable can be calculated

as

precisionu ≥
cbe
caf

(4.8)

which is the ratio between the costs of the two different delivery methods can be interpreted as a lower

bound of the performance to save cost. In other words, the price difference between BE and AF delivery

would allow some error in the algorithms, because the saving that can be made by delivering content

using a cheaper method would allow the method to deliver some (potentially) non-relevant items. The

higher the price difference, the more inaccurate the algorithm can be. For example if AF would cost

two times of BE, for every two items that is cached only one is enough to be relevant (i.e. precision

equals to 0.5) so that the cost of delivering two items half price (BE) (out of which one might not be

relevant) would equal to delivering one relevant item using a more expensive method (AF). Note that

there is a slight incompatibility between measuring the performance per item, and the ratio between the

two delivery methods in volume (e.g. in gigabytes).

Estimated Assets Watched Error

Figure 4.1 shows that the system has a very low precision with relatively high recall, this is due to the fact

that the dataset is very sparse, so most of the users do not have any relevant items (hence the precision is

zero for these users), but if there are relevant items present, the system can produce a good recall. This

calls for an effective way to detect users that would not view any items, and only produce only caching

for users who would likely to use the system. Therefore, we define the maximum number of items (or

the volume of the overall downloads) that can be safely downloaded for a given user for any time period

as follows

nu,be ≤
caf ∗ vu
cbe

(4.9)

where caf represents the cost of using real time streaming, cbe is the cost of pre-cached delivery and vu

represents the number of items the user will watch for a given period. As mentioned earlier vu needs to

be predicted to calculate the upper limit of the downloads. In order to measure this, we can define the

maximum number of items that is cost effective to download (based on the price difference between the

two delivery methods) for each item watched:

nu,be ≤
caf
cbe

(4.10)

Time Based Simulation

In order to simulate the working of a real system, we designed a time based simulation to evaluate the

performance of the algorithm. We evaluated the system for a month. Each day (at midnight), every user
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Figure 4.2: The ratio between cached and viewed items per user. Given the pricing structure, the system

can cache maximum 1.2 items for each viewed one.

received a recommended list from the baseline algorithm. This was pre-filtered to make sure that the

items that were provided were available for viewing (i.e. each item might be available for a certain time

period depending on the licence between the producer and the content provider). Then it was checked

whether these items were already on the set-top box, if not then the system cached the items. Each day,

it also removed items that were not available anymore. This list was then evaluated based on the actual

viewing of the user during the day.

4.2.6 Results

We chose values for cbe and caf such that the ratio between them was 1.2 (indicating that assured for-

warding is 20% more costly than best effort), which was considered representative at the time the exper-

iments were carried out. As an example, we set the price of assured forwarding delivery to 0.6 unit per

gigabyte and best effort delivery to 0.5 unit per gigabyte.

The system used viewing history to predict the number of items to download. In this initial exper-

iment we enabled the system to download one item for each user at the beginning of the test period and

more later if the user profile suggested that the user would watch more items. We employed a simple

approach that is based on the historical data, which determined how many items the user would watch.

Figure 4.2 shows the average number of cached items for each viewed item per user (Equation 4.10).

Based on this particular pricing structure, this could be increased until caching 1.2 gigabyte data for each

watched gigabyte. In other words, the system could cache 1.2 gigabyte of data for each possible gigabyte

watch using the BE method on the cheaper price, which would make the cost of the service cheaper if

the cashed items are actually watched. However, here we decided to have a more conservative caching

strategy in order to ensure that items that are cached would be more likely to be watched (i.e. the system

should only cache items that are more likely to be relevant).

The second step was to assess the performance of the recommender algorithm. Figure 4.3 shows

how many items (in gigabyte) were watched from the items the system cached for the period of one

month (Equation 4.6). The line labelled ’all’ represents the overall performance of the system; the
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Figure 4.4: Overall Cost. In this example the price was set to 0.6 unit per gigabyte for AF and 0.5 unit

per gigabyte for BE.

remaining lines depict the performance based on the profile size of the user. For readability, we only

plotted those profile sizes that outperform the overall value. The best value in this case would be one

which means each item that was downloaded was also viewed. In order to make the system profitable

using the current pricing structure this value should be higher than 0.83 (Equation 4.8). In addition, if

the price difference between assured forwarding and best effort increases sufficiently, so that the ratio

(Equation 4.8) is lower than the performance (Figure 4.3), the system could become profitable using the

current setup.

The reason why this precision is increasing over time (even if the performance of the system de-

creases in this case) is that there are more items accumulated on the box which increase the performance

over time. This is especially noticeable for users which have higher profiles (i.e. over 500 items). Since

the performance of the system did not exceed the threshold that is needed to save cost, it is expected

that the overall cost of the system using predictive caching would be higher than using purely assured

forwarding. Figure 4.4 shows the delivery cost for the October 2010, the difference between the two

lines is less if the system achieves higher precision (Figure 4.3), for example on the 17th of October.
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The next step towards personalised content delivery is to look at the actual user profiles and manage

according to the risk the target user poses. The simplest approach is to use the prediction value provided

by the recommender algorithm as an indication of risk and only cache items if they reached a certain

threshold. This could be used to avoid caching items if they are predicted low, but still positioned high in

the ranking list. This would reduce the risk of increasing the number of items cached, which is a trade-

off between providing only items that are very likely to be predicted relevant and items that positioned

lower in the ranking list.

Reducing peak time traffic

The other important factor this approach has on system dynamics is that predicted items can be delivered

off-peak time, which would reduce the traffic that is especially high at peak time. Figure 4.5 depicts the

percentage of the network traffic reduced using the approach described above. It shows that predictive

caching can reduce traffic by up to 2%. Even at peak time, when the traffic volume increases substantially

(which is around 7pm during the week and 3pm at the weekends), it achieved over 1% reduction. The

reduction of the traffic is proportional to the performance of the system, so further improvement can be

achieved by improving the overall performance of the algorithm.

4.2.7 Possible Extensions

As described above the problem can be broken down to two separate prediction problems. First, it is

important to predict how many items the user will watch in the future, this problem was approached

by defining a heuristic method that is based on users’ history and cached items accordingly. As Figure

4.2 shows this resulted in a performance that is within the cost saving threshold. However, this could

be improved by predicting not only how many items will be watched but also when these items will

be watched, so that recommendation can be made closer to the time they are watched based on more

information which would improve performance. The other important factor is to define a reliable way to

measure predictability based on users’ profiles, where this approach could work, so that the system could

assess whether the target user is easy to predict and apply the approach accordingly. This threshold can

be adjusted based on how much space the algorithm has depending on the current price of delivery (i.e.
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the error rate that is acceptable to make personalised content delivery profitable).

4.2.8 Complementing Objectives

In this section, we presented an example where external system objectives are proportional to the per-

formance of the recommender algorithm. This assumes that maximising the general performance of the

system would also satisfy the given objectives. In this case, the aim was to discover the relationship be-

tween the given objectives and the system performance, as the performance of the system might provide

a good indication of the performance of the external objectives. This is simply the case, because improv-

ing the performance of the system would reduce false positives, which are responsible for increasing the

cost of delivery.

4.3 External Multiple Objectives
We continue our discussion by focusing on objectives which might not be directly linked to the general

performance of the system. Single objectives that are studied here might reduce the general performance.

In addition, satisfying multiple objectives could be viewed as a balancing act between the objectives

(which can be measured using specific performance metrics) and the general system performance. To

formulate this view, first we introduce a general framework. Let us begin with the notation. Suppose

that we obtain a rating prediction for each item that can potentially be recommended to the user. The

predicted ratings of the items can be conveniently denoted as a row vector r̂ = {r̂1, ..., r̂nu}, where nu

is the number of the candidate items for user u. Normally nu equals the number of all unseen items for

user u.

Conventional systems would already do recommendation by ranking items based on their predicted

ratings. Here, however, to distinguish between rating prediction and recommendation utilities, we now,

for each of the items, assign a positive weight to describe its importance or utility on the recommendation

list. Mathematically, we have a row vector w = {w1, ..., wnu}. The weight is normalised so that: 1) The

summation of its elements equals 1, i.e. 1Tw = 1, where 1 is a nu-dimensional vector whose elements

are all 1, and 2) the weights are positive, i.e. w � 0, where � represents the inequality for all elements

in the vector.

Higher weights represent higher importance on the ranking list. Clearly, an item that has a higher

predicted rating would have a higher chance to be recommended, thus a higher weight. The question is

how to find the weights by considering not only the predicted ratings but also the constraints enforced to

the items. To achieve this, we consider the following optimisation problem:

maximisew wT r̂

subject to: 1Tw = 1

w � 0

Additional constraints of w

(4.11)

By casting the problem as a simple linear optimisation problem [BV04], we naturally extend the system

towards multiple goals; each goal will be considered as a constraint and defined in the following sections.
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Figure 4.6: The Distribution of Popular Items against Rank Position

4.3.1 Case Studies

We continue our development by introducing two basic scenarios that are designed to illustrate the im-

portance of optimising multiple objectives. We aimed to create scenarios that might be useful in practice

and can be generalised to be able to apply them to a wide range of problems.

User Case - Promoting the Long Tail

One of the shortcomings of current recommendation systems is that they promote already popular items.

We argue that this can partly be explained by the fact that most of the users prefer popular items, but it

is also the result of that it is more likely to get the recommendation right if popular items receive a high

prediction from the algorithm. Thus, higher rated items might be recommended higher on the ranking

list over all users. To show this we obtained the first one hundred popular items and computed the

probability of those items occurring at each ranking position. We measured popularity by the average

rating (Figure 4.6 (a)) given that items received a sufficient number of votes and also by the variance

(Figure 4.6 (b)) such as that lower variance implies popularity. The latter assumption is based on the
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observation that users’ opinion tend to be similar on popular items, hence the low variance. Figure 4.6

(a) and (b) show that some of the widely used algorithms (user-based, item-based and SVD) tend to

follow this pattern and recommend items higher if they are popular compared to a random sample. For

example the probability that an item is ranked at the first position on the ranking list given that it is

popular is 12% (mean) and 8.2% (variance) using the SVD algorithm (Figure 4.6 (a) and (b)), whereas

it is only 1.5% (mean) and 0.9% (variance) from a random sample. Furthermore, these popular items

(Figure 4.6 (a)) were recommended 2730 times at position one. This means that 45% of all users have

one of these items recommended at the highest position and all the users in the dataset have at least one

of these items on their top three recommendation list (these statistics was obtained from the MovieLens

1m dataset). To avoid this, it is important to determine the extent to which users are likely to be interested

in popular items, so the recommender system could provide recommendations accordingly. Ideally, the

algorithm would keep providing popular item for users who are interested in these items and it would

provide alternative choices for users who are more likely to be interested in exploring less popular items.

Thus, we aim to illustrate how we can propagate items that can be found in the long tail and match those

items to users accordingly.

One simple approach that would help to decide whether the user is interested in popular items is

to compute a value that would differentiate between items that are popular (based on the observation

depicted on Figure 4.6 (a) and (b)) and items that are less popular, yet still interesting for the user. This

can be expressed mathematically as follows:

mi =
1

µi(σi + 1)2 (4.12)

where the score of an item is the reciprocal of the mean (µi) and the variance (σi). One is added to the

variance in order to avoid division by zero. We also decided to square the variance to emphasise higher

values to reflect the disagreement among users which was intended to be the most important part in this

formula. In this way, we can identify items with fairly high mean and fairly high variance, because there

is no consensus on those items, they might be interesting for the user. Therefore, mi is lower if we have

disputed items with fairly high popularity and it is higher for items where users agreed on whether it
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is good or bad. This relationship is illustrated in Figure 4.7 where we plotted the outcome of mi with

respect to mean and variance. It shows that we get the lowest mi values when we have high variance

combined with high mean, which are the disputed items that can be found in the long tail.

In order to measure the extent to which users are interested in disputed items, we used the same

approach described above for all items that the user rated relevant

mu =
1

nl

nl∑
i=1

1

µi(σi + 1)2 (4.13)

where nl is the number of relevant items rated by the user.

An extra constraint is added to the original equation which would ensure that users who have main-

stream taste get popular items recommended (which would happen by default) and users who are inter-

ested in items in the long tail would get their taste satisfied, as well. The Long Tail Constraint (LTC)

that is defined in Equation 4.12 and 4.13 can be added as an inequality constraint to our optimisation

problem as

maximisew wT r̂

subject to: mTw ≤ βmu

1Tw = 1

w � 0

(4.14)

where m = {m1, ...,mnu} is a row vector that contains the corresponding mi values (Equation 4.12)

for all items returned by the recommender engine for the given user and β is a parameter set to control

the extent of users’ alternative taste.

System Case - Resource Constraint

This constraint is aimed to illustrate how we can embed other external factors into the system that are not

directly related to recommendation. At the abstract level this can include all the operational factors such

as profit margin of items, the currently available bandwidth to supply digital content etc. The scenario

that we present below is the availability of items in stock during recommendation. This might be useful

for companies who supply hard copies of items, which cannot be produced instantly. For example,

DVD rental companies like Lovefilm (UK) or Netflix (US) could only recommend items that are in

stock, which would reduce the probability that users choose movies that cannot be provided. Another

application of this approach might be that digital television service providers (e.g. BT Vision) could

recommend items that are already stored locally or on a server close to the target machine which would

reduce network traffic at peak times.

We embed this into a probabilistic framework that would provide a more flexible interpretation of

the problem than simple stock level values. It would be modelled as a stochastic process where the

outcome depends on whether the user chooses to consume products or use services. For each user we

have a row vector p = {p1,u,t, ..., pnu,u,t}, that is ranked from 1 to nu based on the initial predictions

provided by the recommender engine where pi,u,t represents the accumulated probability that user u

chooses item i. Every time an item is shown to the user the probability that the user will choose the item

increases:
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pi,u,t(ei,u,t|ri,u,t) ∝
1

log2(ki,u + 1)
(4.15)

Here, ki,u represents the ranking position for item i on the ranking list of user u. This probability

value depends on the position it occupied when it was presented (i.e. the higher its rank was, the most

probable that it was chosen). It also depends the accumulated probability values (pi,v,t−1), that is the

probability that the item was chosen when the item was presented to other users (v) in the past (t− 1).

pi,u,t(ei,u,t|ri,u,t, pi,t−1) =

=

 pi,v,t−1 + pi,u,t(ei,u,t|ri,u,t) if ei,v,t−1 = 0

pi,v,t−1 + pi,u,t(ei,u,t|ri,u,t)− 1 if ei,v,t−1 = 1

(4.16)

An event ei,u,t occurs when the cumulative probability pi for an item exceeds one. In this case, it

means that the user chooses to consume item i. We also introduce threshold c that would ensure that

items whose pi value is below the threshold would not be affected by the constraint. Therefore, let us

also define s = {s1,u,t, ..., snu,u,t} as a row vector where si,u,t represents the cut-off probability value

that will be passed to the algorithm.

si,u,t =

 0 if pi,u,t ≤ c

si,u,t if pi,u,t > c
(4.17)

In other words, c is set to control the threshold from which the system starts re-ranking items, which

depends on our choice of what we consider as a cut-off point in the model. For example if we want to

make sure that si,u,t does not reach one (which will useful for the simulation discussed later) we need

to set a threshold that would give enough space to the model to re-rank items as they approach one.

The reason for introducing this threshold is to make sure that items which have low si,u,t values are not

penalised, since our model finds the optimal ranking order based on the si,u,t value of each item, and the

relative distance between the si,u,t values of the items. We express this as an inequality constraint

s×w ≺ su (4.18)

where we have a row vector w = {w1, ..., wnu} that represents the weights that determine the extent to

which items will be re-ranked and s = {s1,u,t, ..., snu,u,t} is a row vector that contains the corresponding

si,u,t values (Equation 4.17) of all items returned by the recommender engine for the given user. Also,

symbol ≺ represents the inequality for all elements in the vector and symbol × is the operator for

element-wise vector multiplication (i.e. x× y = {x1 ∗ y1, ..., xn ∗ yn}). Now using vector s we define

su for each user as follows:

su =
1∑nu

i=1
1

si,u,t

(4.19)

The Resource Constraint defined in Equation 4.18 is used to extend the optimisation problem. This
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inequality constraint would ensure that the system will recommend items that are more likely in stock:

maximisew wT r̂

subject to: s×w ≺ su

1Tw = 1

w � 0

(4.20)

One of the drawbacks of Equation 4.19 is if higher ranked items are out of stock, the algorithm

starts to rank lower rated items higher, which might hurt the performance of the system. So the if we

have an item which is predicted five (out of five) and an item that is predicted one, we might prefer not

to place the second item higher than the first one even if the first one is out of stock. Therefore, we

introduce another parameter α that could be set to control the extent the algorithm to re-rank lower rated

items. We modify Equation 4.19 as follows:

slb =
1∑nu

i=1
1

si,u,t

shb =
1∑nl

i=1
1

si,u,t

su = slb + α(shb − slb)

(4.21)

where nu is the number of items returned by the recommender for the given user and nl is a number of

items that are predicted relevant for the same user.

Varying α from zero to one would help to fine-tune the system, giving priority to performance

(α = 1) where only items that are predicted relevant re-ranked or prioritizing stock availability depending

on particular needs. In other words, decreasing α simply increases the number of potential items which

are taken into consideration during the process of re-ranking.

4.3.2 Experiments

We empirically investigated the performance of extending the system with the constraints discussed

above. The experiments were conducted with the MovieLens 1m dataset. This publicly available dataset

consists of 1 million ratings for 3900 movies by 6040 users. We divided the dataset into test (40%) and

training (60%) sets making sure that ratings from any given user are in both of the sets. Every user in the

dataset rated at least 20 movies and movies from each user are distributed randomly when the dataset was

divided. This is an important criterion since the performance measures that are discussed below consider

users as a point of evaluation. The results were cross-validated using a five-fold cross-validation method

and the outcomes were averaged.

For each scenario, we aimed to illustrate the performance of the particular constraint following the

approach introduced in [JW10a], so that first we considered the performance based on the expectation of

what aspect(s) of the system would be improved. Most of the time it is trivial and easy to measure (e.g.

increasing the gross profit), but sometimes it is not that straightforward (e.g. providing a wider variety of

items for the user). In addition to that, we assumed that the aspects in question cannot be measured using

a general evaluation metric and they likely hurt the performance of the system. Therefore, we also used

other generic evaluation metrics which were set to measure the performance of the system as a whole.
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We considered the outcome of the recommendation as a top-N list, because, in most cases, this

is the way the system presents recommended items to the user. Therefore, the best way to measure

such performance is to use various IR metrics. One of the evaluation metrics we used was Normalised

Discounted Cumulative Gain (NDCG) [vR79] that measures the gain based on the position of the items

on the recommended list. This measure was introduced in [JK00]. It penalises the system if it returns

highly relevant documents lower in the ranking list but penalises less if the lower end of the ranking list

was retrieved incorrectly. NDCG is normalised by the perfect permutation of all the documents in the set.

The other measure we used was Precision, which is simply the fraction of retrieved documents that are

relevant to the given user. We have worked with binary relevance, that is we considered an item relevant

if it was rated four or five (on a rating scale of one to five) and non-relevant otherwise. In a similar

fashion, an item was considered predicted relevant if its rating was predicted over 3.5 and non-relevant

otherwise.

User Case - Promoting the Long Tail

As explained above the aim of this approach is to promote less popular items to users who might be

interested in these items without sacrificing accuracy. Since this interest is highly subjective and hard to

measure, there is no straightforward way to show that our approach works correctly. As the aim was to

promote items that are in the long tail, one approach to measure performance is to monitor the probability

whether popular items get recommended higher than randomly selected items. This approach can only

provide a satisfactory proof if we accept that our test set contains users who are indeed interested in

alternative choices, because satisfying those users would result a decrease in the probability that popular

items ranked higher if the model works correctly. However, the extent of this reduction might depend

on the number of users whose taste is not popular. In the following experiments, we set to explore the

effects of this constraint on the quality of the recommendation combining the result with diversification

to produce more personalised outcomes.

The initial reason why we needed diversification was that we aimed to promote items which are

disputable with fairly high mean and variance (see Equation 4.12). This would inevitably result in

higher risk of making the recommendation wrong. Therefore, adding diversification to the equation,

which would promote disputable items that differ from each other (with higher covariance), might reduce

performance loss. This was studied in portfolio theory of document ranking [WZ09] and query expansion

[CT08], where it was argued that diversification might reduce the risk of expanding such a system without

losing on performance by ranking results based on risk and reward. Thus, we extended Equation 4.14 as

follows

minimisew −wT r̂ + λwTΣw

subject to: mTw ≤ βmu

1Tw = 1

w � 0

(4.22)

where Σ is the nu×nu covariance matrix for the candidate items and λ is the parameter that can control
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Figure 4.8: The Distribution of Popular Items (High Mean) against Ranking Position

Table 4.1: Performance of the Long Tail Constraint (LTC) and Diversification (Div.).

Baseline LTC LTC and

(SVD) Div. (λ = 6)

NDCG@10 0.8808 0.8780 0.8715

P@10 0.8204 0.8207 0.8177

MRR 0.9518 0.9453 0.9349

the extent of diversification. It is important to note that this addition made our objective function non-

linear, so the function was casted as a convex optimisation problem for this part of the experiment.

The other problem was how to obtain the covariance matrix Σ. First, we approached the calculation

using a simple unbiased estimator, taking users previously expressed preferences as the observed values.

However, for our applications this estimate was not acceptable because the estimated covariance matrix

was not guaranteed to be positive semi-definite. Therefore, we obtained two rectangular matrices from

the original user-by-itemmatrix using Singular Value Decomposition factorisation (O = UDV T ). The

obtained matrix V was used to estimate the covariance matrix for Equation 4.22.

We also ran some initial experiment to explore whether diversification would be enough to produce

alternative choices for the user. One of the important initial findings was that diversification alone does

not reduce the probability that popular items are ranked higher, simply because popular items can be

diversified among themselves. It is the constraint that we introduced in Equation 4.14 that promotes items

from the long tail and diversification distributes it over the top positions. However, using the constraint

without diversification new items that come from the long tail would more likely to be promoted very

high on the ranking list, but with the combination of diversification the curve gets smoother. This can be

observed in Figure 4.8 where we plotted the probability of the ranking position of the first one hundred

most popular items (in the same way as in Figure 4.6 (a)) concentrating on the first ten positions (β is set

to one in this experiment). As Figure 4.8 shows that the Long Tail Constraint successfully reduced the

probability that items get recommended in ranking position one and two, but it increased the probability

for ranking position three and four. This happens because the algorithm places long tail items at the top
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Figure 4.9: The Distribution of User Ratings for Aladdin and Dirty Dancing

Table 4.2: Top 10 recommendation list using the Long Tail Constraint (LTC) and Diversification (Div.)

against the baseline. The performance improved by 78% for NDCG@10 and 50% for Precision@10.

Baseline (SVD) LTC and Div.

1 Aladdin(Animation) Dirty Dancing(Musical)

2 Grease(Musical) Princess Bride(Adventure)

3 The Prince of Egypt(Musical) Dead Poets Society(Drama)

4 The Little Mermaid(Musical) Top Gun(Action)

5 Immortal Beloved(Drama) The Goonies(Adventure)

6 Miracle on 34th Street(Drama) Corrina, Corrina(Comedy)

7 Dragonheart(Fantasy) Titanic(Drama)

8 Peter Pan(Musical) Willow(Action)

9 Homeward Bound(Adventure) First Knight(Adventure)

10 Dead Poets Society(Drama) Dune(Fantasy)

and the items that were there before are ranked lower accordingly. This is where diversification can help

to distribute those items evenly. As a result, only 32% of the users had a popular item in the first position

of their recommended list (compared to 45% of the baseline algorithm) and 85% of them on their top

three list (compared to all the users of the baseline algorithm). In terms of performance Table 4.1 shows

that we only have a minor performance loss between the baseline and our combined version, which is

1.05% for NDCG@10, 0.3% for Precision@10 and 1.7% for Mean Reciprocal Rank. The samples in

Table 4.1 were tested and found statistically significant (p < 0.05).

Furthermore, it is important to highlight that the Long Tail Constraint is very likely to produce a

completely different top-10 list which contains new items that would not have been there otherwise.

Table 4.2 consists of a randomly selected user’s top-10 recommendation lists comparing the baseline

algorithm with the Long Tail Constraint (keep it in mind that this dataset was collected in 2000). There

are two main things to note here. First, using the Long Tail Constraint we are able to provide a different

range of movies that might be not that popular. In addition, a wider range of genre is present on the

list. Figure 4.9 (a) and (b) show the rating distribution for the two items that are ranked number one by

the baseline algorithm and the Long Tail Constraint. They show that Dirty Dancing has a much higher
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variance that Aladdin, yet still a fairy high mean, this suggest that there is less agreement among users

on whether Dirty Dancing is a good movie which would suggest that Dirty Dancing might be a good

candidate as an alternative choice for adequate users.

In this case the variance of Dirty Dancing can be accounted for the fact that this movie is aimed for

a female audience and high variance arises from a gender related factor, that divides the audience, but

high variance can also arise due to other factors such as political orientation, controversy etc. Despite

the differences they all share one thing in common, that is higher variance is the result of that users are

divided which would occur with items that are worthy of such a division. Therefore, we consider this as

one of the distinguishing features of items that can be found in the long tail.

In the case described above ranking Dirty Dancing high was a good decision, the item turned to be

a good alternative choice for this user, since we know that the user marked it relevant. Despite that, the

baseline algorithm ranked it to the 22nd position. However, the question arises if we can always decide

with high confidence whether high variance implies that an item is relevant to the user given that the

user is interested in such items. For example, a politically controversial movie that has high variance can

only be recommended to users who are interested political controversy. The reason why the algorithm

is able to decide is that we apply the combination of two main forces. The main algorithm that predicts

whether the user’s taste is close to the target item (in our example, romantic movies) and the Long Tail

Constraint picks out movies from potentially relevant items that can offer a good alternative to the extent

that is determined by the user’s interest in such items.

System Case - Resource Constraint

In order to stimulate the scenario that concerns the availability of recommended items (as described in

Section 4.3.1), we designed a simulation that reflects a real-world environment. In fact, we only aimed

to create a semi-realistic simulation, since we aimed to model the effects of our constraint on the perfor-

mance of a recommender system separating it from other factors. Therefore, we made a basic assumption

that users base their decisions to borrow/buy items purely on recommendations. This set-up would model

the relationship between the constraint we introduced and the quality of the recommendation but ignore

the part of the users’ decision making process that is independent of recommendation.

We set up the simulation as follows. We stimulated time by using time ticks, each time tick rep-

resented a day. We modelled a day as a cluster that groups together a decision of certain number of

users to choose (or not choose) and item. At each time tick we presented a list of items to a number of

randomly selected users from our user base. The number of users we selected varied over the simulation

with an average of one hundred. We assigned a probability of choosing an item from the first ten items

that are presented to the user assuming that this probability depends on the rank of the item on the list

as described in Equation 4.15 and 4.16 based on the assumption that the rank of the items reflects the

true preference of the user. The probability for each ranking position was calculated using Equation 4.15

where the function is normalised for the top ten items on the ranking list, modelling users’ interested as

a cumulative function as described in [JK02]. Since we had approximately one hundred users who used

the system each day with the overall probability of taking one item per user, this meant that maximum
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Figure 4.10: Stock Simulation (Resource Constraint)

one hundred items could be borrowed a day. The simulation ran for 50 days and we monitored how the

current stock could deal with the demand.

We operated this in an imaginary warehouse that can store 5000 items. We kept the number of items

low in the warehouse to model a situation that would be not feasible without introducing restrictions on

the recommendation (e.g. many items would run out of stock after a couple of days). In order to make

our system more effective we stored more copies of items that were popular (i.e. higher rated), but at

least one copy of each item. As items were recommended more, the probability that they would be taken

out increased. After an item was taken, the recommender took into account that we had less items in

stock, and modified the recommendation accordingly, promoting items that were available. To make the

simulation more realistic, we assumed that if an item was out of stock and there was demand for that

item, the user put the item on her waiting list (which is the way how DVD rental companies operate) and

after it had returned from another user the item would be supplied to users who had already requested it.

Updating the stock availability of items in real-time might be problematic to implement in practice
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Figure 4.11: The Waiting List Size with respect to Parameter c as defined in Equation 4.17

Table 4.3: Performance Loss Over 50 Days

c = 0 c = 0.4 c = 0.8 c = 1.2 c = 1.6

NDCG@3(mean) 12.3% 4.32% 1.03% 0.43% 0.13%

NDCG@3(max) 14.7% 5.12% 1.34% 0.56% 0.50%

P@10(mean) 6.42% 3.37% 0.86% 0.06% 0.03%

P@10(max) 8.42% 3.91% 1.11% 0.24% 0.18%

[Mul06], since it is not practical to do real-time computing and distribute the data over the network in a

larger system, instead most of the data is pre-computed and distributed over the system periodically. We

took this into account, so during the simulation the algorithm updated the probability (as described in

Equation 4.16) of all the items only once a day, at the end of each day.

We found that the best way of monitoring the effectiveness of our algorithm was to keep track of

the number of items that were on users’ waiting lists, since that would give a good indication of how

long users had to wait for an item. Therefore, if we had less items on the waiting list, that meant we had

less items that ran out of stock, so users were more satisfied with the service in general.

We plotted the waiting list size over 20 days (Figure 4.11) (the trend after 20 days remained the

same) and the corresponding performance metrics NDCG@3 and Precision@10 for 50 days (Figure 4.10

(a) and(b)). We omitted the result of c = 1.6 on Figure 4.10, because the performance difference between

c = 1.4 and c = 1.6 was so small that it could not be visualised on the graph. The performance was

measured across all users who used the system up until the present point (e.g. the latest recommender

list provided for each user was taken into account for the score). This ensured that the tendency rather

than the daily fluctuation of the system was measured. We tested whether the results were statistically

significant using a five-fold cross validation method. As Figure 4.11 shows if we just run the simulation

without re-ranking the results (baseline) we would end up with a big waiting list very soon, since the

demand for particular items is constant. However, if our constraint (Equation 4.20) is used then we were

able to keep the waiting list at bay. Note that we did not include c = 0.4 and c = 0.8 on Figure 4.11

because they resulted in a waiting list size identical to c = 0. In terms of performance if we always
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re-ranked the results (c = 0) we had a significant performance loss (see Table 4.3) which represents

the lower bound of the loss. If we set the threshold higher, the performance improved significantly

(Figure 4.10 (a) and (b) and Table 4.3) resulting in a very small performance loss for c = 1.2 and

c = 1.6. As mentioned above the simulation was cross-validated and all the improvements from the

lowest c value (including the baseline) were found statistically significant.

As Figure 4.11 shows if we do not control the stock level, the waiting list gets out of control soon.

However, we acknowledge that this is an artificial situation as in practice there might be various methods

that could help keeping the waiting list in control. For example, the stock level can be increased as the

demand grows, but the advantage of our method is that we can find the optimal cost/performance ratio

that would help to run a system more efficiently. Besides, the system can respond immediately to demand

whereas increasing the stock level might take more time. It is also important to note that this approach

could bias the recommender to an extent when recommendation is based only on stock levels, therefore

regularisation is needed. One way to regularise the system is to enable the algorithm to increase stock

level if the demand for particular items is high. This approach with the combination of the constraint

could offer an optimal solution in an ever changing environment.

We also investigated the effect of α (Equation 4.21) on the waiting list size. However, with the

current setting where we have more copies of popular items and the stock level is updated daily. We

did not expect that enabling to re-rank all the recommended items would reduce the waiting list size,

since it enables to recommend items which we have less copies of, therefore, it is more likely that those

items would run out of stock earlier. Thus, we slightly modified the experimental setting, so that we only

allowed to have one copy of each item (operating with 3900 items). Figure 4.12 depicts the effect of α on

the waiting list size. Setting α to zero (all the items recommended for the user are re-ranked) reduced the

waiting list size with an average of 10.45% over 50 days. In terms of performance loss we witnessed a

fairly big drop that is an average 2.10% for NDCG@3 with the maximum value of 2.99% and an average

5.58% drop for Precision@10 with the maximum value of 7.01%. It is important to emphasise that this

drop was expected since we enabled to use items that were not predicted relevant which increased the

risk of ranking potentially non-relevant items higher.

The real importance of α also depends on whether the system is able to provide enough relevant

items for recommendation. For example, α would not make any difference if all the items that are

presented to the user are predicted relevant, which is very likely in practice, because the number of items

that form the possible basis of the prediction is the whole set (i.e. all the items in the system), whereas in

our case it is just the number of items that can be found in a test set for any given user. Therefore, setting

α to less than 1 could only be used useful in practice when the system is designed to present a longer list

to the user, where it is likely that the list would contain items that are predicted non-relevant, too.

It might be questionable why one would want to enable ranking items higher when they are pre-

dicted non-relevant increasing the risk that users receive non-relevant items, but there are some scenarios

when this would be the only way to go. For example, if the user wants an item instantly (e.g. using

a video on demand service) and for some reason the demand for some of the items is very high, it is
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Figure 4.12: The Waiting List Size with respect to Parameter α

crucial to enable re-ranking lower rated items. Otherwise, the system would not be able to recommend

any items and the user would scroll down the list and choose from lower rated items anyway. In other

cases α could be set dynamically depending on how high the demand is at a given moment.

Despite that, we focused on a very specific scenario in this section, it is important to emphasise

that this approach can be applied to any other resource related optimisation problems. For example if

a company wants to penalise items that have lower profit margins, si,u,t (Equation 4.17) can represent

the buying price/selling price ratio of a product for a given user and we can set the threshold to penalise

items that exceed this ratio.

4.4 Internal Multiple Objectives
In this section, we introduce another approach to multiple objectives. Based on the principles introduced

in Section 1.3.3, we aim to define a system that balances between the desired goals of accuracy, diversity,

novelty and serendipity. We introduce an approach that attempts to balance and improve all four factors

simultaneously with an internal optimisation approach. Using a collection of novel algorithms inspired

by principles of ’serendipitous discovery’, we demonstrate a method of successfully injecting serendipity,

novelty and diversity into recommendations whilst limiting the impact on accuracy.

Instead of using convex optimisation introduced above, this approach applies hybrid rank-

interpolation to combine the output of three constituent algorithms in four different combinations: first,

it employs solely a new item-based collaborative filtering algorithm based on Latent Dirichlet Alloca-

tion [BNJ03], the Community-Aware version combines it with a new algorithm that promotes artists

with “diverse” listening fan base, the Bubble-Aware version combines the core algorithm with a new

Declustering algorithm that identifies and counteracts a user’s “music bubble” and the full version is the

combination of all three algorithms together.

The approach is evaluated using a comprehensive set of metrics that simultaneously assess accuracy,

diversity, novelty and serendipity in user recommendation results. This approach is an attempt to separate
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factors that constitute to each goal of the system and measure them separately, in order to investigate

how optimising each goal would affect the performance of the system as a whole. We find that the

core algorithm produces recommendations that are as accurate as those produced by the state-of-the

art Implicit SVD algorithm [HKV08], and that both the Community-Aware and Bubble-Aware versions

substantially improve all three qualities of diversity, novelty and serendipity with differing trade-offs in

accuracy.

4.4.1 Proposed Approaches

Basic Auralist

Basic Auralist is an item-based recommender system that employs Latent Dirichlet Allocation as a tech-

nique for computing item features. We call this approach Artist-based LDA. LDA has been used tradi-

tionally in topic-modelling, being a fully generative model for document production [BNJ03]. Under this

framework, words within a large document set can be clustered into topics based upon co-occurrence,

each topic being a probabilistic distribution over word tokens. A “topic composition vector” can then be

determined for each document, indicating the estimated level of influence each “topic” would have if the

document were to be generated using the LDA model. Both topic clustering and document composition

can be computed stochastically using the Gibbs Sampling algorithm in an unsupervised manner over a

training dataset.

This approach applies Gibbs Sampling to the unary preferences of the Last.fm dataset. Traditionally,

recommender systems aim to model user-item relationships simultaneously, here we attempt to separate

these relationships and model user-artist relationships as follows. The Artist-based LDA model treats

artists as documents and preferring users as words, producing a fixed-length topic composition vector

for each item. Topics in the Artist-Based model represent user-communities, clustering together users

with similar preferences. Topic vectors thus represent the distribution of the listener base of an artist,

and can be used to characterise them. We define a new LDA Similarity metric as the (real-valued) cosine

similarity between artist topic vectors:

LDASim(i, j) =

∑
t∈T

Li,t × Lj,t√∑
t∈T

(Li,t)2
√∑
t∈T

(Lj,t)2

where Li,t, the LDA item-topic matrix, represents the composition proportion assigned to topic t for

item i. This similarity metric can be used directly for item-based recommendation: artists can be ranked

by the sum-total of their similarity with items in a user’s existing history [LSY03]:

Basic(u, i) =
∑
h∈Hu

LDASim(i, h)

This produces a ranking list for each user u, with the most similar items awarded the smallest percentage

ranks.

Hybrid Versions

To increase the novelty, diversity, and serendipity of the recommendations, we combine the core rec-

ommendation with two new algorithms. The first is called Listener Diversity and aims to prioritise for
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recommendation artists with particularly diverse listener communities, encouraging users to explore be-

yond a given niche. The second algorithm is called Declustering and aims to determine a user’s clusters

that are within the normal behaviour of the user and then recommend artists outside established cluster

groups.

We combine the different algorithms by merging their individual rank outputs. One way of doing so

is to produce a hybrid score for each item (artist) [ZMKL05]. Intuitively, the hybrid ranking score of an

item i can be taken as a linear interpolation of the percentage [0,1) rank the item has in the output of each

of the contributing algorithms. A set of interpolation coefficients λa over a set of algorithms A controls

the influence of each individual algorithm. In the case of the generalised Full Auralist recommender, we

have three λ coefficients governing an algorithm setA that includes Artist-based LDA, Listener Diversity

and Declustering.

Hybrid(u, i) =
∑
a∈A

λa(ranka,u,i)

The final recommendation output consists of the item list sorted by the hybrid rank score. The combi-

nation of these algorithms allows an accuracy-focused Basic Auralist to be combined with small pro-

portions of diversity or serendipity promoting algorithms, in order to improve the overall balance of

qualities.

Community-Aware Auralist

Community-Aware recommendation introduces the Listener Diversity metric for artists, which is used to

produce a ranked list of the most diverse artists. This list is blended with the core algorithm to promote

more diverse artists in recommendation.

We recall that for the Artist LDA model is formed are formed over a group of users that can represent

the artist. Such a representation offers us a unique perspective on the demographics of listeners, not

visible when observing the raw vector of preferences. Certain artists, whilst popular in their own right,

might have a listener base concentrated in only a few user communities, whereas the listeners of another

artist might be more widely distributed.

Given that a LDA topic vector is a probability distribution summing to 1, we use the entropy of such

a distribution to measure uniformity. A distribution focused on only a few outcomes will score a less

negative entropy; a more evenly and widely distributed event will produce a greater negative entropy.

We thus introduce the Listener Diversity of an artist i as the entropy over its topic distribution:

Listener Diversity(i) = −
∑
t∈T

Li,t log2(Li,t)

This approach would emphasise users that can appeal to different user community, thus the diversity

of these users is measured through their user base. These users might be ideal candidates to be offered

in the context of serendipitous recommendation where we seek to expand a user’s music taste beyond

that of his comfort zone. A strategy for this would be to highlight more diverse artists that include user

established music communities, but also introduce elements that the user may be unfamiliar with. This

balance can be achieved by interpolating the output of a Listener Diversity-sorted list with that of a
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conventional accuracy-focused algorithm, as follows:

Community(u, i) = (1− λ)rankBasic,u,i + λrankDiversity,i

Analysis of Listener Diversity’s relationship with other factors shows that Listener Diversity tends to bias

towards globally popular artists. This should be unsurprising; as such artists might gain more exposure

and attract a naturally wider fan base. This is compensated by discounting an artist’s original Listener

Diversity with a popularity-diversity regression function, highlighting artists that are diverse for their

popularity level (popularity being the number Ci of the artist’s unique listeners). The resulting adjusted

Listener Diversity is:

Listener Diversity′(i) = Listener Diversity(i)− Offsetpop(i) (4.23)

Bubble-Aware Auralist

As a counterpart to Listener Diversity, we introduce a graph-based algorithm termed Declustering.

Declustering produces a ranked list of the least “clustered” “clustered items for a user and is interpolated

with core algorithm:

Bubble(u, i) = (1− λ)rankBasic,u,i + λrankDeclustering,u,i

We compute Declustering scores over what we call the “Artist Graph”. Formally, this is a graph G =

(N,E) where each node i ∈ N is an artist and edges (i, j, weight) ∈ E are drawn between artists that

have non-zero similarity, according to a similarity metric weight = sim(i, j). The similarity here is

defined as the cosine similarly between artist topic vectors.

The Declustering algorithm aims to identify nodes that lie on the edge of clusters in a user’s graph,

in order to discredit artists with higher activity with regard to the target user, whilst still maintaining

overall similarity. In this way we hope to help users expand their music taste, literally pushing the

boundaries of the region their behaviour occupies in the feature-space. This recommendation strategy

is motivated by concepts of social network theory such as clustering and brokerage [EK10] and has

been previously used by Celma et al. [CH08, CC08] to investigate the long-tail properties of music

recommendation in terms of network links.

We found that the Last.fm dataset has a power-law distribution of node degrees, suggesting it may

have “small-world” properties [WS98]. This implies a graph structure similar to that of a social network,

with nodes being clustered around a series of high-degree hubs. Therefore, we employ a metric com-

monly used in social-network analysis to measure how clustered nodes in a network are. We selected

this metric for its simplicity and low computational complexity. The clustering coefficient of a node i is

defined as:

Clustering(i)=
2×|{(j, k)∈Eu|j, k∈neighbours(i)}|
|neighbours(i)|×(|neighbours(i)|−1)

(4.24)

where neighbours(i) is the set of nodes that are neighbours of item i in the local preference graph. The

clustering coefficient of a node measures the proportion of possible interconnections that exist amongst

neighbours of a node. A node with a high clustering coefficient is surrounded by tightly interconnected
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nodes whereas a node with a lower clustering coefficient might have neighbours split between multiple

clusters or lie on the edge of an existing cluster.

The Declustering algorithm considers in turn all the prospective recommendations for a user. Fol-

lowing the approach used in item-based recommender systems [SKKR01], the algorithm temporarily

adds each possible item to the graph and computes the clustering coefficient of that node with respect

to the existing elements of the user’s local preference graph. The output of the algorithm is an ordered

list of the artists positioned outside of clusters in the candidate set, which can be interpolated with a

conventional recommender to apply counter-clustering flavour to recommendation items.

4.4.2 Evaluation

As discussed in Section 2.3, recommender systems are often evaluated using conventional error measures

such as RMSE or MAE. Here we aim to explore alternative ways of evaluating the system in order to gain

more understanding of certain, undiscovered aspects the recommender algorithm in question. Therefore,

we introduce a number of additional performance metrics to capture the quality of diversity, novelty and

serendipity in recommender systems, comparing them with two conventional rank based performance

metrics - average Rank (which measures the average percentage rank of withheld items in the user’s

history) and Top-20 Recall [MRS08].

Diversity

Diversity in recommender systems refers to how different the recommended objects are with respect to

each other. Contrary to popular belief, recommender systems by itself would not improve diversity, as

recommender systems naturally bias towards popular items [FH09]. This goes against general tendency

of human nature that we enjoy and require diversity in music, depending a number of factors that are

unique for each individual. In fact, it has been shown that users will actively choose less-preferred items

in an effort to improve the variety of consumption [RKK99, ZMKL05]. We measure diversity through

the Intra-List Similarity metric introduced by Ziegler et al. [ZMKL05], using (binary) cosine similarity

to judge the similarity between items.

Intra-ListSimilarity =
1

|S|
∑
u∈S

∑
i,j∈Ru,20

CosSim(i, j) (4.25)

Intra-List Similarity essentially sums the pairwise similarity of all items in a set (simplified in our

case due to a symmetric similarity measure). A recommendation list with groups of very similar items

will score a high intra-list similarity compared to a list that has more dispersed and diverse recommen-

dations.

Novelty

Novelty can be seen as the ability of a recommender to introduce users to items that they have not

previously experienced before in real life. By definition, this is problematic in terms of evaluation as

the aim is to capture what users would find interesting that is not in their profile, but still relevant to

them. In other words, a recommendation that is accurate but not novel will include items that the user

enjoys, but already knows of. A limited proportion of such recommendations has been shown [SS01]
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to have a positive, trust-building impact on user satisfaction, but it can also be seen that to be useful a

recommender needs to suggest previously unknown items. We measure novelty with a metric previously

introduced by Zhuo and Kuscik [ZKL+10]:

Novelty =
1

|S|
∑
u∈S

∑
i∈Ru,20

1

20 log2 popi
(4.26)

where popi measures the global popularity of an item (fraction of all preferences with respect to the

preferences expressed towards the target item). This novelty metric quantifies the average information

content of recommendation events – higher values mean that more globally unknown items are being

recommended. Given the assumption that the likelihood a user has experienced an item is proportional

to its global popularity, this serves an approximation of true novelty.

Serendipity

Serendipity represents the unusualness or surprise of recommendations. Unlike novelty, serendipity en-

compasses the semantic content of items, and can be imagined as the distance between recommended

items and their expected contents. A serendipitous system will challenge users to expand their tastes

and provide more interesting recommendations, qualities that can help improve recommendation sat-

isfaction [SS01]. We assess serendipity through a new Unserendipity metric, which uses CosSim to

measure the average similarity between items in a user’s history Hu and new recommendations. Lower

values indicate that recommendations deviate from a user’s traditional behaviour, and hence are more

surprising:

Unserendipity =
∑
u∈S

1

|S||Hu|
∑
h∈Hu

∑
i∈Ru,20

CosSim(i, h)

20
(4.27)

4.4.3 Experiments

Basic Auralist Recommendation

We evaluate the effectiveness of Artist-LDA recommendation method against the state-of-the art Im-

plicit SVD method introduced by Hu, Koren and Valinsky [HKV08]. This model enables us to inject a

confidence level along with each observation. We thus incorporate the implicit artist play-count as a con-

fidence weight in the matrix factorisation cost function. Metrics are computed over random subsamples

of 35k users; larger samples only marginally improve performance. 20% of each user’s preferences were

randomly withheld as a training sample. An improvement of this evaluation method would be to separate

the training and test set based on a cut-off time (rather than randomly), so that the test set would be posi-

tioned after the training set in the time dimension. In addition, we bootstrap the LDA topic training step

with the full 360k user dataset, in order to improve the performance of the model (since Gibbs Sampling

runs relatively quickly even on large user samples, compared to other model-based techniques).

Our experimental results are reported in Table 4.4 and show that Basic Auralist produces

the most overall accurate rankings for user histories (Rank = 0.0194) whilst Implicit SVD pro-

duces the highest Top-20 Recall scores (0.174). Both algorithms score comparatively in diversity

(Intra-List Similarity), whereas Implicit SVD has improved serendipity and Basic Auralist has

slightly improved novelty.
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Rank Top-20 Intra-list Novelty Unserendipity
Recall Similarity

Basic Auralist 0.019 ±0.0004 0.157 ±0.004 14.4 ±0.2 11.8 ±0.06 0.060 ±0.0004

Implicit SVD 0.039 ± 0.0008 0.174 ±0.002 14.7 ±0.1 10.9 ±0.03 0.046 ±0.0002

Community-aware(λ=0.05) 0.023 ±0.02 0.030 ±0.0009 3.4 ±0.06 17.2 ±0.1 0.047 ±0.0003

Bubble-aware(λ=0.2) 0.021 ±0.0002 0.029 ±0.0006 3.4 ±0.05 14.2 ±0.1 0.035 ±0.0002

Full Auralist 0.025 0.008 1.54 17.3 0.039

Table 4.4: Performance Results for Basic Auralist, the State-of-the-Art Implicit SVD, and Full Auralist
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Figure 4.13: Accuracy Performance of Community-Aware Auralist and Bubble-Aware Auralist

The combination of accuracy scores seems to indicate that Implicit SVD does a better job of includ-

ing items in the Top-20 list. However, it may be argued that for the use-case of serendipitous recommen-

dation, a high recall is not necessary; recall indicates that similar, already known items are being placed

in the Top-20 list, displacing the recommendation of novel items. Interestingly, of the items Implicit

SVD does recommend, the registered Unserendipity is somewhat lower, implying that the generalisa-

tion of matrix factorisation does result in some less obvious recommendations as well. We exceed this

serendipity value with later versions of Auralist.

Hybrid Versions of Auralist

Figure 4.13 and 4.14 show the performance results for Community-Aware and Bubble-Aware Auralist.

Table 4.4 also includes their performance at points of interest along the λ curve (note at λ=0, both

algorithms reduce to Basic Auralist). Given that both hybrid versions of Auralist attempt to bias towards

serendipitous recommendations at the expense of more “easily accurate” items, it should be unsurprising

that both exhibit an accuracy-serendipity trade-off. More interestingly, both methods increase novelty

and diversity, and do so at different rates.

As the Listener Diversity interpolation increases, Community-Aware Auralist’s rapid improvements

in non-accuracy scores (Figures 4.14(a), 4.14(b), 4.14(c)) are tracked by decays in recall (Figure 4.13(b))

and to a lesser extent Rank (Figure 4.13(a)), tailing off at higher proportions. Community-Aware Aural-

ist hence represents a direct trade-off between accuracy and non-accuracy performance, with the most
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Figure 4.14: Diversity, Novelty, and Serendipity Performance of Community-Aware Auralist and Bubble-

Aware Auralist

activity occurring in the 0 < λ < 0.05 range of Figures 4.13 and 4.14. Compared with the other graphs,

Community-Aware Auralist maintains a consistently sizable lead over Bubble-Aware Auralist in terms of

novelty (Figure 4.14(b)), likely due to the popularity correction Offsetpop we introduced in Section 4.4.1.

As with Community-Aware Auralist, the Bubble-Aware Auralist’s performance curves for serendip-

ity, novelty and diversity track that of Top-20 Recall. Unlike Community-Aware Auralist, however,

Bubble-Aware Auralist’s Rank decays at a much slower rate, and the performance curves possess

sigmoid-like qualities, experiencing the greatest rate of change after about λ = 0.1 and diminishing

returns afterwards. We propose that this is the point when the Declustering algorithm is able to success-

fully overcome the bias towards recommendations embedded within preference clusters and is able to

successfully recommend cluster-bordering items. The nature of the Rank curve indicates that the bulk

of this benefit can be achieved without an overwhelming effect on the overall accuracy, suggesting that

Bubble-Aware Auralist may be able to supply a good balance between serendipity, diversity and novelty

against accuracy.

Bubble-Aware Auralist manages to surpass Community-Aware Auralist in terms of serendipity rel-

atively quickly (λ ∼ 0.15), continuing to improve even after Community-Aware Auralist’s performance

begins to plateau. This suggests that the serendipity improvement is not merely incidental (i.e., from
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declining accuracy), and is actively being promoted by Declustering.

To sum up, these findings indicate that Community-Aware Auralist is best used at smaller interpo-

lations (0–0.05) as a roughly even trade between accuracy and non-accuracy qualities and as a broad

stroke in changing the focus of a recommender. They also suggest that using Bubble-Aware Aural-

ist during the peak rate of change (Figure 4.13(a)) can improve non-accuracy qualities at very little

cost. At λ = 0.2, a mere 0.7% increase in average history rank is accompanied by a 77% decrease

in Intra-List Similarity, 20% increase in novelty and a 42% decrease in measured unserendipity.

Overall, both methods prove to be able to improve diversity, novelty and serendipity.

4.5 Conclusion
In this section, we defined a new way of approaching multiple goals in recommender systems and in-

vestigated through a series of examples how to balance between satisfying the goals and other (general)

accuracy measures. We presented three main cases above, as follows

1. In the first part of the chapter, we presented a preliminary study on cost based external objectives

through an example of digital content delivery using recommender systems. This approach de-

scribed a system where the objectives were directly connected to the performance of the system.

As it was outlined above this is essentially a two-step prediction problem. The optimal solution

of the problem not only comes from minimising the error on both of the problems but it is also

a trade-off between increasing the number of items cached and reducing the risk of getting the

recommendation incorrect, which means minimising the error on items that are ranked lower for

the user. We defined this problem as a special case of multiple objectives where the additional

objective of the system is proportional to the main performance of the system.

2. In the second part of this chapter, we introduced an external convex optimisation framework to

incorporate multiple goals into the recommender system. In this case, the objectives were oppos-

ing to each other, where an optimal balance had to be found in order to satisfy the objectives to

a certain extent. We studied this problem through two distinct use cases. We investigated how

demand affects the availability of items in an online shopping environment and offered a solution

that can help to fine-tune the trade-off between cost and performance. We also studied the rela-

tionship between items in the long tail (i.e. less popular items) and improving the diversity of the

recommended list, an idea that was further expended in the last part of the chapter (Section 4.4).

Areas that are worth further investigation are the following. It is important to understand how

parameter β (Equation 4.14) affects the quality of recommendation. This would provide a more

precise interpretation of the relationship between the offset of users’ taste from the mainstream and

items in the long tail. Furthermore, it is of interest to identify and generalise more features that

can be used to describe items in the long tail, for example items that can be potentially interesting

for a small group of people or items that are new to the system. To gain more understanding of

the framework, a real-life evaluation is needed to test the performance in a constantly changing

environment.
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3. In the last part, we introduced a framework where we aimed to improve diverse, novel and

serendipitous recommendations at the same time, at a slight cost to accuracy, using an internal

optimisation approach. This combined the effect of goals which might complement each other -

in this case they all aimed to increase user experience. We described a series of metrics designed

to assess both accuracy and the three additional qualities of diversity, novelty and serendipity.

This approach is fundamentally different from the convex optimisation approach as the additional

goals are investigated thought interpolation where we made an assumption that the specialised

algorithms (Community-Aware Auralist and the Bubble-Aware Auralist) would enhance certain

objectives (in this case diversity, novelty and serendipity) and interpolation would find the best

balance between generalised and specialised accuracy.



Chapter 5

Using Control Theory for Stable and Efficient

Recommender Systems

In the previous chapter, we focused on user and system centred goals that were solved either internally

within the recommender system or outside the algorithm, treating recommender systems as a black box.

In this chapter, we take the orthogonal dimension of is these goals and add the time dimension for user

and system focused goals that are solved externally. Modelling a system over time requires to describe

the dynamics as a combination of the underlying recommender model and the its users’ behaviour. We

propose to solve this problem by applying the principles of modern control theory to construct and

maintain a stable and robust recommender system for dynamically evolving environments. In particular,

we introduce a design principle by focusing on the dynamic relationship between the recommender

system’s performance and the number of new training samples the system requires. This enables us

to automate the control over factors such as the system’s update frequency. The approach illustrates a

user-centric objective that concentrates on stable performance and a system-centric goal that deals with

resource management.

5.1 Problem Statement

In the research literature, CF algorithms are evaluated in a relatively static context: datasets are exam-

ined using traditional machine learning methodologies to produce cross-validated results, by randomly

splitting the data into training and test sets. In practice, these systems will experience a continuous influx

of new ratings: the deployment scenario is dynamic and continuously subject to change [Kle06]. Recent

work has delved into this domain and examined the differences that emerge between the two contexts

[Bur10, Lat10]. In particular, CF algorithms produce up-to-date recommendations by being regularly

re-trained (e.g., daily) in order to incorporate new ratings into the model of user preferences. Given

that state-of-the-art CF algorithms are, in general, expensive to update, because of the limited resources

available as well as the computation required to train the model. Thus, system developers have to make

a critical decision: they must decide when and how frequently to update their systems. In doing so, they

must balance between the benefit of a recently re-trained algorithm (which will produce recommenda-

tions based on the latest user ratings) and the cost that the business incurs from re-training. This problem
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Figure 5.1: The Effect on Performance by Reducing the Update Time of the System

is often solved by iteratively re-training at a pre-defined interval [Mul06].

The point is further illustrated in Figure 5.1 (a) and (b). The figure depicts the performance dy-

namics of the Movielens 1m dataset [Gro06] (described in Section 4.3.2) for a period of 20 months and

the Yahoo! Music Dataset (KDD Cup’11) [DKKW12] for a period of one day, the day was randomly

picked from one of the busiest days in the dataset with around 200 thousand new ratings entering the

system. Figure 5.1 (a) shows that training only every fourth month results in a substantial performance

loss compared to training every month. We can clarify that similar pattern emerges on Figure 5.1 (b)

which shows that training only once a day (at midnight) results in a substantial performance loss com-

pared to training three times a day. This loss is more pronounced during the busiest times (afternoon

hours). In addition, as new users enter the system, these users cannot receive reliable recommendations

until the system is re-trained on the new data points. This further deteriorates the performance [Ahn08]

and subsequently the system may not be able to provide accurate recommendations for those new users.

This trend can be observed between any time interval as long as new data enters the system, because the

additional information would more likely to help improving the performance.

In this work, we propose a control-theoretic approach to designing recommender systems. We pro-

pose a new methodology on how to design and manage a complex recommender system in order to

maintain the trade-off between the effectiveness and efficiency of the system by applying modern con-

trol theory [Oga01]. We demonstrate that modern control theory has the potential to provide the required

mathematical tools to both analyse and model the stability and robustness (resistance to error and dis-

turbance) of a recommender system over time. We validate our approach by examining the dynamic

relationship between the recommender system’s performance and the number of new training samples

the system requires. We show that control theory would allow us to design the recommender system and

its feedback loop to effectively mitigate the effects of any forces (such as noise in the data) that may

arise during operation that would otherwise negatively affect the recommender system’s performance

over time. We further discuss how, after defining the system dynamics this way, the control loop can be

replaced with other signals, such as controlling the computational effort over time and the system’s up-
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Figure 5.3: A Mass Attached to a Spring and Damper: y(t) is the displacement. The damping coefficient

is represented by r in this case, where the spring constant is k. F (t) in the diagram denotes an external

force. In our case, y(t) is the performance value while F (t) = s(t) number of new training samples.

date frequency. We believe that, by grounding the operation of recommender systems in control theory,

this work not only contributes to the growing body of research addressing temporal dynamics in rec-

ommender systems, but will also be of significant interests to the wider research areas such as dynamic

information retrieval and filtering.

5.2 A Feedback Control Approach

In this section, we present an adaptive temporal recommendation architecture derived from control the-

ory. As we showed in Figure 5.1, recommendation performance varies according to how often its under-

lying model is trained, while also being heavily influenced by any external disturbances or changes in

the dynamics of the process (thus the fluctuation in the performance). On one hand, if we stop training

the model, the performance will decrease; on the other hand, training the model each time new data is

received will be computationally expensive. It is thus of great interest to investigate techniques that can

dynamically control and maintain the required performance level in order to make full use of the com-

putational resources available, by balancing the trade-off between the effectiveness and efficiency. The

proposed mechanism uses the principle of feedback to make the output of the system’s dynamic process

follow a desired reference value, regardless of any external disturbances or changes in the dynamics of

the process. The key feature of this architecture is a feedback control loop (illustrated in Figure 5.2)

where the control function generates an input of the dynamical system that is adequate to maintain per-
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formance, this input signal is realised and entered into the system by the actuator. Then, the output of

the dynamical system is monitored and fed back to the controller in order to compare it to the reference

value, compute the error and generate the next control input.

We describe the general idea of feedback control by comparing a recommender system to a simple

physical system: a weight attached to a wall with a spring and damper, as illustrated in Figure 5.3. This

simple system has one input, F (t), which represents how much force has been applied to pull the weight

from the wall. The output, y(t), is how much the weight will be displaced from its the current position.

If we try to keep the weight from the wall at a certain (stable) distance, we need to balance a number

of factors. While there is an inherent relation between the input and output, the amount of movement

over time will also be affected by the strengths of the spring and damper, which both exert different

forces on the system. In effect, we have a system where the relation between an input and output value

is dependent not only on the input itself, but a number of other implicit factors that are built into the

system. A recommender system follows a similar pattern: the output (performance) relates to the input

(training data) along with a variety of hidden factors in the system. In order to control the output, we,

therefore, need to approximate this function: we do so by observing the system over time. The system

keeps monitoring the performance and feeds the estimated performance measure back to a controller.

The controller then reacts accordingly by modifying the input in order to maintain a particular stable

outcome. Note that the motivation of this approach is to maintain instead of optimise the system. It is

suggested in [JW10b] that there are multiple objectives that a recommender system needs to fulfil; some

of them might directly contradict with the performance of the system. This approach would enable us

to directly define and control any aspect of a live system, given that the input-output relationship of the

dynamical system can be defined.

In the following sections, we formalise how this metaphor of a controller can be actualised and

implemented in a recommender system. We take two distinct steps in designing this system. First, we

consider the recommendation accuracy as a stochastic yet controllable variable, and develop a mathe-

matical description of the underlying dynamic process that can be controlled. Such a description allows

practitioners to analyse their system with a wide range of analytical techniques that are available from

control theory. Then, we use these techniques to define and estimate the best controller strategy to

generate the control of the system. We describe the two components in the following subsections.

5.2.1 Modelling Performance Dynamics

We denote the performance of a recommender system as y(t), where t represents time. Without loss of

generality, we assume lower values of y(t) indicate better performance. We assume that performance

can be observed directly by monitoring user feedback and comparing it to the prediction provided by the

model (see Section 5.3). The number of new training samples is denoted as s(t), and we consider this to

be an input signal to the dynamical system.

A top down approach to model a system’s temporal dynamics is to consider the physical laws that

govern the system. For instance, Newton’s second law of motion says that an object with massm subject

to a force F (t) undergoes an acceleration v′(t) that has the same direction as the force, and its magnitude
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is directly proportional to the force and inversely proportional to the mass, i.e., F (t) = mv′(t). By taking

the analogy, we consider that the change rate of the performance is proportional to the number of new

training samples entering the system (y′(t) ≈ s(t)). To approximate this, we assume that the number of

new training samples is also proportional to the current performance of the system (y(t) ≈ s(t)). This

can also be interpreted as the need to have a certain number of new training samples to maintain the

performance of the system. As a result, the dynamics of the performance can be approximated by the

following simple differential equation:

ry′(t) + ky(t) ≈ s(t) (5.1)

where y′(t) (change rate of the system performance) is the derivative of y(t). It is interesting to see

that the above equation is similar to a mechanical system illustrated in Figure 5.3. ky(t) ≈ s(t) is the

analogy to Hooke’s law of elasticity that the extension of a spring is in direct proportion with the load

applied to it, while ry′(t) ≈ s(t) follows a damping force. We thus have two parameters r and k, which

need to be estimated from the performance dynamics of the recommender system. To estimate them, we

rewrite the dynamical model in a form of discrete time:

y(t+ 1) =
r

r + ∆tk
y(t) +

∆t

r + ∆tk
s(t) + ε(t) (5.2)

where ∆t denotes the unit of time interval. In addition, we tackle the uncertainty in the system by adding

random disturbance ε(t) at time t. Equation (5.2) is in fact a linear regression system. For simplicity, this

model can also be written in matrix notation when drawing the observation over a time period t ∈ [0, T ]:

y = YT θ + ε (5.3)

where y = (y(1), ..., y(t), ..., y(T ))T , θ =
(

r
r+k∆t ,

∆t
r+k∆t

)T
, and

Y =

 y(0) ... y(t) ... y(T − 1)

s(0) ... s(t) ... s(T − 1)


Linear systems have been well studied in many research fields. One of the standard solutions to obtain

the parameters is to employ the Maximum Likelihood (ML) estimation from the observation over a

time period t ∈ [0, T ]. We assume that the error ε has a multivariate normal distribution with mean 0

and variance matrix δ2I, where I is a column vector of size T and its elements are all ones. Then the

log-likelihood function of the parameters is

L(θ, δ2|Y) = ln
( 1

(2π)T/2|δI|1/2
e−

(x−YT θ)T (x−YT θ))

2δ2I

)
(5.4)

Differentiating this expression with respect to θ we find the ML estimates of the parameter θ, thus k and

r: ( r̂

r̂ + k̂
,

1

r̂ + k̂

)
= argmax

θ
L(θ, δ2|Y) = (YYT )−1Yy (5.5)

where we set ∆t ≡ 1 to sample the data per day. A problem still remains: we need to choose input s(t)

to increase the accuracy and robustness of the parameter estimation. We introduce a flexible way to add
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disturbance by using the log-normal random walk model [BDM01, Ein56]. We estimate the mean (µ)

and standard deviation (σ) from the input data and simulate an additional time series that has the same

mean and variance. Let us define s(t) as the time series of the input values over a predefined time period

[0, T ]. The modified input s(t) becomes as follows:

ds(t) = µs(t)dt+ σs(t)dW (t) (5.6)

where W (t) is the Wiener process

dW(t) = ε
√
dt and ξ is the noise N(0, 1) (5.7)

Essentially, this approach randomises the time series depending on the standard deviation of the intended

input. The advantage of this approach is that setting σ to zero we get the exponential curve that represents

the natural way of data growth [Lat10].

In summary, we use the Maximum Likelihood estimation (Equation 5.5) and the lognormal random

walk (generating the input) to obtain the parameters r and k for a given time series that represents the

dynamics between the input and the output of the system. The detailed experiments to estimate parameter

r and k can be found in Section 5.3.1.

5.2.2 Feedback Controller

The next question is how to design the input signal s(t) so that the performance y(t) will stay as stable

as possible. That is if y(t) deteriorates from the desired value, how do we change input s(t) to quickly

alter the systems dynamics and bring y(t) back to the desired value? This is done by constructing a

closed loop system. In a closed loop system, the output is fed back and compared with a reference value

yr(t). The error signal, denoted as e(t) = yr(t) − y(t), will be sent to a controller (the process is

illustrated in Figure 5.4). Upon receiving the error feedback signal, the controller then calculates how

much modification is needed for s(t) at this moment. In other words, the feedback on how the system is

actually performing allows the controller to dynamically compensate for disturbances to the system and

produce a response in the system that perfectly matches the user’s wishes. Our discussion here is limited

to the situation where the state of the system, in this case the recommendation performance, can be

observed. In practice, this is possible as we can measure the recommendation performance periodically

by looking at users’ feedback or construct a validation set over time. The approach is further explained
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in Section 5.3. the PID (Proportional-Integral-Derivative) controller [ACL05]. It not only captures the

linear relationship between the error signal and input s(t), but also covers both the derivative and the

integral of the error signal. Formally, we have:

s(t) ≡ Ce(t) +B

t∑
0

e(t)∆t+D
e(t)− e(t− 1)

∆t
(5.8)

where the nonlinear relationship is represented by three parameters. The signal (s(t)) that the controller

produces is the combination of the proportional gain (denoted as C) times the magnitude of the error, the

integral gain (denoted as B) times the integral of the error and the derivative gain (denoted as D) times

the derivative of the error. The conversion of the integration from continuous to discrete time is done

by the backward Euler method [Oga87]. The PID controller is the combination of the three basic types

of controllers, each adding an extra layer to the system. The proportional controller makes a change to

the output that is proportional to the current error value. The integral term accelerates the movement of

the process towards the set-point and eliminates the residual error that occurs with a pure proportional

controller. The derivative term slows the rate of change of the controller output. In practice, not all

elements are needed. For example, in some cases, one can find that D is not required and set to zero. In

a nutshell, the above equation feedbacks the error and uses it as the outer force to change the dynamics

of the performance. As explained in the previous section we rewrite this dynamic equation in a form of

discrete time with uniform sampling (∆t ≡ 1), combining it with Equation 5.1 gives:

r̂
(
y(t)− y(t− 1)

)
+ k̂(y(t))

≈Ce(t) +B

t∑
0

e(t) +D
(
e(t)− e(t− 1)

)
(5.9)

where parameter r̂ and k̂ are obtained using the Maximum Likelihood estimation introduced in Equa-

tion 5.5. Tuning the three parameters (C, B and D) offline is needed in order to guarantee the desired

performance. In control theory, the system is usually modelled by transforming the discrete time signal

into the frequency domain using the z-transform. A popular technique to obtain the controller’s param-

eters in z domain is called the Ziegler-Nichols method. In this work, we adopt this method along with a

number of software tools and manual tuning. We refer to [Oga01] for the detailed z domain analysis and

the underlying mechanism to obtain the three parameters while we primary focus on the design pattern

of the system.

5.2.3 Feedback Control versus Relevance Feedback

An interesting discussion is to link the proposed feedback control of recommender systems to the rel-

evance feedback techniques in information retrieval [Roc71, RL03, UY06], despite the fact that their

motivations are different. Relevance feedback is used as a technique to improve retrieval performance

(e.g., Mean Average Precision) by “correcting” the retrieval model when new relevance judgements

come. Its use is quite often limited to one or two iterations, partially because it is practically difficult

to obtain a user’s feedback over many iterations. Furthermore, in relevance feedback, it is also hard to

control the feedback, as there is no established way to detect when the equilibrium (competing influences

are balanced) is reached and how to reach it.
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e(t) = yr(t)− y(t), s(t) = Ce(t)

y(t) = F (s(t) + n(t))b(t) = H(y(t)) (5.10)

where n(t) denotes a noisy signal injected into the system as illustrated in Figure 5.4. C and F are the

parameters for the controller and the system, respectively. Combining those gives:

y(t) =F
(
C
(
yr(t)− y(t)

)
+ n(t)

)
(5.11)

=FCyr(t)− FCy(t) + F (t)n(t)

Finally, we obtain the ratio between the IR system performance y(t) and its pre-defined reference yr(t)

as

y(t)

yr(t)
=
CFyr(t) + Fn(t)

(1 + FC)
=

1

1/FC + 1
+

1/C

1/FC + 1

n(t)

yr(t)
≈ 1 +

1

C

n(t)

yr(t)
(5.12)

where the approximation holds when FC � 1. The first term suggests that if feedback control is

adopted, the system performance will be close to the reference value regardless of the errors in the

system’s parameters as long as FC � 1. Moreover, the second term indicates that any disturbance

n(t) is attenuated by a factor of 1/C. Thus, the feedback control is robust to noise and disturbance. As

suggested in Equation 5.11, the intuition of having such protection is due to the fact that although F

implies the noise n(t) causes y(t) to increase, an error is immediately created. It is amplified by FC

to create an output of FC opposite and nearly equal to Fn(t). As a result, it returns y(t) close to its

original value.

5.3 Designing a Controlled Recommender System
In this section, a series of experiments were conducted in order to evaluate the performance of the pro-

posed control-theoretical approach of recommender systems. Without loss of generality, the empirical

study focused on the relationship between the input (the number of training samples) and the output

(recommendation accuracy). We chose this relationship, because the input and the output generalise the

recommender system’s dynamics best, therefore, with minimal modification it is applicable to a wide

range of scenarios (see Section 5.4). Other inputs and outputs can be obtained by following the same

design principle and steps presented here (for further suggestions see Section 5.5). The experiments

were conducted by emulating the real use of recommendation systems with the widely used MovieLens

1m dataset (described in Section 4.3.2). The benefits of such an evaluation setup compared to using an

operational recommendation engine are two-fold: first, it allows us to flexibly test various scenarios, and

make the individual experiments targeted and focused; second, using public datasets allows others to

easily replicate and compare the results, and validate our conclusions. Three widely used recommen-

dation algorithms; the user-based, the item-based and the SVD method were used as the basis of rating

prediction. As no significant difference was found among them in terms of controllability, we only report

the results obtained using the popular SVD algorithm [Fun06].
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Figure 5.5: Parameter Estimation (MovieLens 1m): The parameters introduced in Equation 5.5 were

learned on set (c) and tested on (a) and (b).

The design principle was evaluated in several stages by building a dynamical recommender system

step by step and sampling the rating data over time. Specifically, to prevent overfitting, the rating data

was randomly divided into three sets; training, test and hold-out set. We fed the data into the system

incrementally, so that each day during the predefined period of 30 days we randomly added a pre-

specified number of training samples to the training set based on the requirements set by our feedback

model and re-trained the recommender system using all the data in the training set. We then estimated

the recommendation accuracy using the available user feedback data from the next day. This process

was repeated each day, adding all the tested data points to the hold-out set, which was then used to pick

the required number of data samples for the next cycle of training.

We started with the parameter estimation of performance dynamics based on historical data. It was

then followed by the system analysis that aimed to identify the controller’s characteristics and choose the

right parameters before deploying the system. With the right parameters, we then evaluated the chosen

controllers with real data and simulated scenarios. A potential drawback of such a controlled evaluation

configuration might be its lack of testing the robustness of the system against any unseen environment

noise. We thus provided additional experiments to test how well the system handles sudden changes over

time. Finally, we tested how this approach can be applied to balance the trade-off between computational
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Table 5.1: The R2 Performance of the Three Input Datasets from which r and k were estimated (Equa-

tion 5.5): The set marked in bold was used to estimate the parameters which was then tested on the

remaining two sets. We used the row coloured grey for the further experiments.

Standard

Increase Stable Decrease Mean deviation

0.9863 0.6699 0.3974 0.6845 0.2947

0.9723 0.9439 0.9176 0.9446 0.0274

0.9702 0.9421 0.9314 0.9479 0.0200

(a) Input without noise

Standard

Increase Stable Decrease Mean deviation

0.9869 0.8852 0.7766 0.8829 0.1251

0.9646 0.9078 0.8726 0.915 0.0464

0.8945 0.9008 0.8840 0.8931 0.0084

(b) Input with noise (see Equation (5.6))

cost and performance requirements.

5.3.1 Parameter Estimations

System Dynamics

In order to design a suitable controller, first we need to understand the dynamics of the system by ob-

taining the parameters that describe the recommender systems dynamics (introduced in Equation 5.1).

The dynamics of the system is needed for the controller design to simulate the feedback loop system

(that includes the recommender system and the controller). Without an accurate description of the sys-

tem dynamics, it is not possible to predict the system behaviour and obtain a suitable controller. To

estimate the parameters using the approach proposed in Section 5.2.1, we devised three scenarios that

the recommender system might encounter. The first one covers the situation when the data is growing

exponentially which is the case where many new users start using the system. The second is concerned

with the situation where growth flattens after some initial growth, whereas the third one simulates the

decrease of the training data. This last scenario was to cover the possibility that the controller might

reduce the performance of the system.

Figure 5.5 illustrates the relationship between the number of new samples and output the recom-

mendation accuracy measured by RMSE. The parameters were estimated using Equation (5.5) on one

of the scenarios and tested on the remaining ones to predict the accuracy of the system. The random

walk technique (described in Section 5.2.1) was used to generate the input sequences (how the influx

of new ratings evolves over time). They were estimated from the data to represent the natural way of

data growth. Adding noise to the signal helped us model various input combinations. The input was put

through our recommender model to generate the performance over a period of 30 days.
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A key question for parameter estimation is how to construct an input sequence such that the predic-

tion of output from an unseen input sequence would be as accurate as possible. We measured how well

the prediction fits to the observed data using the coefficient of determination [Ham94]

R2 = 1−
( T∑
t=0

(yh(t)− y(t))2/

T∑
t=0

(y(t)− ȳ)2
)

(5.13)

where R2 ∈ [0, 1], yh is the predicted output, y is the observed output and ȳ represents the mean of

the observed output over a time period t ∈ [0, T ]. This measure is widely used in statistical models to

measure the prediction of future outcomes; the higher the value is, the better it fits to the data. Table 5.1

shows that the most robust parameters across all the three scenarios were obtained by estimating them on

the data shown in Figure 5.5 (c) (the 6th row in Table 5.1) as it generates the smallest standard deviation

across the three scenarios. This also suggests that adding noise using the random walk model helps

improving the robustness of the estimation. As illustrated in Figure 5.5(a) and (b), the model produced

consistent predictions despite the fact that the data was noisy, therefore, the parameters were robust to

be used for the next steps in the controller design.

Step Response and the Feedback Controls

Having obtained the system dynamics of recommender model, we then studied what kind of con-

troller best suits our predefined control objectives and obtain the parameters defined in Equation (5.8).

We evaluated four kind of controllers including a Proportional (P), a Proportional-Derivative (PD), a

Proportional-Integral (PI) and a Proportional-Integral-Derivative (PID) controller. To quickly test our

ideas, we used a standard PID design tool provided in the Control System Toolbox in Matlab [AH06].

In a nutshell, this tool simulates the behaviour of the dynamical system given the internal dynamics of

the recommender system and the controller. It obtains the initial parameters using heuristic approaches,

such as the Ziegler-Nichols tuning method [ZN93] to satisfy certain initial requirements: they include

closed-loop stability, adequate performance and robustness. Then, this initial design can be fine-tuned

manually to achieve the specific requirements for the given system. For details of the method, we refer

to [Oga01], while staying focused on finding an ideal controller that has the characteristics that satisfies

our requirements.

Four measures were used to obtain an insight into the stability and the sensitivity of a feedback

controller before employing it in the system. Step response is defined as the time behaviour of the output

of a general system when its input suddenly changes from zero to one in a very short time; Rise time

refers to the time required the output to reach 90% of the reference value. For example if the reference

value is set to one and the current output of the system is zero (regardless of the metric used to quantify

the output), rise time shows how fast the system can reach 0.9. Essentially, this value indicates how

fast the system can respond to a change in the rate of influx of ratings. However, fast rise time might

cause the output to exceed the desired value: this is called the overshoot of the signal. In some cases, for

example when we aim to control the computation of the system, it is desired to keep overshoot as low as

possible. Since the system might require more computation than it is available which can cause server

overflow. We also measured how long it takes the feedback system to remain within a specified error
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Table 5.2: The General Characteristics of the Estimated Recommendation Controllers: The time mea-

sured by seconds corresponds to days in our experiments (e.g. one training cycle).

Type Rise Time Settling Time Overshoot

(sec) (sec) (%)

P-I 1 2 0

P-II 5 10 0

PD-I 0 2 9.84

PD-II 1 5 8.21

PI-I 0 8 3.24

PI-II 0 10 36.8

PID-I 0 4 8.41

PID-II 0 10 15.7

band (settling time). The error band is defined to be ±1% of the target value. In some cases, the system

stabilises at a different value that is required; thus steady-state error is defined as the difference between

the output and the target value after the output has reached the steady state.

A recommender system requires a controller with a fairly fast response time, that is the controller

should react to changes as fast as possible. Ideally, this would be less five training cycles given the fact

that a training cycle in practice can be as long as a day. This should also be accompanied by a fast settling

time and a small steady-state error. These requirements would ensure that the system converges to the

reference value quickly which is important in order to gain control of the system in a reasonable time

frame. Figure 5.6 depicts the step response of the four controllers, whereas the main characteristics are

also summarised in Table 5.2. For each of the controllers, we have two configurations, one of them was

set to be “fast” (in terms of rise time) (mark I), and the other one is designed to be “slow” (mark II) with

a maximum settling time of ten training cycles. The slower controllers are generally more stable and

less likely to overshoot, which might be desirable in some scenarios, for example if the computational

resources are scarce.

Figure 5.6 shows that all the controllers reach the desired output and remain stable. However,

controllers that include an integral part (such as PID and PI) were slower to settle, and overshot the target

considerably. This may be due to the fact that the integral controllers are intended to reduce that residual

error over time by accumulating the errors. In addition, this becomes an important issue as, compared to

physical systems, recommender systems might not always have the required number of training samples

available which affects accumulated error over time. We thus introduce a linear discounted output to add

it to the integral controller as follows

yi(t) =

 y(t) + 1
r+k (si(t)− s(t)) if si(t) > s(t)

y(t) if si(t) ≤ s(t)
(5.14)

where yi(t) represents the modified output (performance) discounted by the difference between the re-
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(f) PD-II
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(h) PID-II

Figure 5.6: Step Response (MovieLens 1m): The first point represents the rise time of the system (90%

of the target value) and the second point marks when the system reaches steady state. The first and the

second rows show the fast controllers with 2-5 sec response time, the third and fourth rows have the

slower controllers with 5-10 sec response time.

quired input (si(t)) (defined by the controller) and the actual input (s(t)). This compensates the discrep-

ancy between the required and the available training samples. Essentially, the influence from the integral

part is discounted when the required number of training samples is not available.

By contrast, we observe that the derivative term helped to increase the response time of the feedback

system. The PD controller was faster than the P controller, but it settled at the same time. In this regard,

the PD controller possesses more suitable characteristics of controlling a feedback recommender system

in this case.

5.3.2 Controlled Recommendation

Having learned the parameters and understood the general characteristics, we are now ready to deploy

the controlled recommender systems and evaluate their performance by replacing the simulated system

dynamics with a real recommender system. We first studied the initialisation. We picked three different

reference values (0.95, 0.90, 0.86). Without any control and the use of all the available data: they can

be reached in 4, 9 and 18 days respectively, given the rate of data growth in the dataset. We ran the

experiments with the four controllers discussed above to see how the system behaves with respect to the

change of the reference value. This is executed by adding the controllers analytically obtained in the

previous section to the real system and compare the behaviour of the system predicted by the analysis to

the behaviour of the real system.

The five-fold cross-validated results are shown in Figure 5.7. First, we observe that all the con-

trollers can stabilise the system to the reference value. The behaviour of the system was consistent with

our understanding of the offline step response analysis. The analysis also correctly predicted which con-

trollers tend to overshoot, but the extent of the overshoot was less than it was anticipated. This was due
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Figure 5.7: The Characteristics to Reach Certain Reference Values (0.95, 0.90, 0.86) per Controller

(MovieLens 1m): The controllers in the first row converge faster whereas the controllers in the second

row are are slower but more stable.

to the fact that the rate of performance improvement slows as the data grows. The rate of overshooting

therefore decreased when the system approached a lower reference value (better performance). The PD

controller (Fig 5.7(c)) overshot the target, but it was faster to settle with much smaller steady state error.

We also observed that the PID controllers (Figure 5.7 (d) and (h)) had a relatively big steady state error,

mainly due to the integral part of the controller which accumulated the residual error over time.

Our observations were further quantified in Table 5.3 by introducing the following metrics. Settling

time was measured as the time spent to settle within ± 1% of the target value. We also monitored the

stability and the steady state error of the system. To measure stability of the performance over time,

we define SD-SS, which measures the error from the mean; to measure the error, we define RMSE-SS

as the root mean squared error from the reference value (note that we also used RMSE to measure the

recommendation accuracy). Both SD-SS and RMSE-SS were calculated from the point where the system

settles. The results show that all the controllers (except the P-II) have relatively small errors. The best

controllers in terms of error (RMSE-SS) were the PD-I, PID-I and PID-II controller which are marked

grey in the table. The differences between the three best controllers (in terms of RMSE-SS) were not

statistically different, but their values were statistically different from the other controllers.

We also observed that that the slowest controller was the P-II (which did not even reach the refer-

ence value). It was followed by the PD-II, and the rest of the controllers produced similar results (not

statistically different). This differs from Table 5.2, where the setting time varied significantly. In the case

of the PI-I controller, it had a long predicted settling time in Table 5.2, but we observed in Figure 5.7(c)

that it reached the target value fast and it stayed slightly below the reference value. We believe this

may be due to the fact that in practice (as in the simulation) the change of the reference value is much

smaller than the theoretical change in step response. Thus, the settling happens faster in the simulation.
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Table 5.3: The Speed, Precision, Stability and Overshoot of the Controllers for Reference Value 0.86:

The best performing controllers in terms of error are coloured grey.

Type Settling RMSE-SS SD-SS Overshoot

Time (error) (stability) (%)

P-I 18.6 0.00637 0.00479 0.35632

P-II 23 0.01049 0.00346 0

PD-I 19.8 0.00495 0.00448 0.49484

PD-II 20.8 0.00599 0.00377 0.18454

PI-I 18.8 0.00597 0.00620 1.14088

PI-II 18.6 0.00556 0.00479 0.49416

PID-I 19.2 0.00449 0.00460 0.83654

PID-II 18.6 0.00452 0.00455 0.72810
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Figure 5.8: Reaction to Reference Change (MovieLens 1m)

In addition, fewer overshoots were observed in the simulation than in step response. This is mainly due

to the fact that increasing recommendation accuracy becomes more difficult as accuracy increases (the

non-linear relationship between the input and output in Equation 5.1). In terms of stability, as predicted,

the slower controllers (mark II) were more stable their faster counterparts.

Table 5.4 (a) extends the experiments by considering the reference value change from RSME 0.90

to 0.925 (Figure 5.8). To further evaluate the reaction of system the with respect to unexpected changes,

we introduced disturbance within the underlying recommender model (SVD algorithm). We ran the

experiments with the same settings as before, but in day 15 we un-tuned the parameters of the SVD

model, in order to simulate an extreme version of disturbance in the model. This change has a sudden

effect on the overall recommendation accuracy. The controllers did stabilise the system by compensating

the number of new training samples. Table 5.4 (b) summarises the results of the experiment.

In Table 5.4(a) and (b), the top performing controllers were marked grey and they were statistically



94 5.4. Evaluation

Table 5.4: The Speed, Precision, Stability and Overshoot of the Controllers: The best performing con-

trollers in terms error are marked grey.

(a) Reference change from RSME 0.90 to 0.925

Type Settling RMSE-SS SD-SS Overshoot

Time (error) (stability) (%)

P-I 18.2 0.00473 0.00476 0.68955

P-II 20 0.00689 0.00529 0.50125

PD-I 18 0.00448 0.00463 0.93336

PD-II 18.8 0.00549 0.00559 0.98527

PI-I 17.6 0.00807 0.00629 1.82811

PI-II 20.6 0.01376 0.00751 2.50716

PID-I 17.8 0.00641 0.00540 1.32989

PID-II 17.8 0.00914 0.00592 1.86331
(b) Untunning the parameters of the used recommendation predictor (SVD algorithm)

Type Settling RMSE-SS SD-SS Overshoot

Time (error) (stability) (%)

P-I 18.5 0.00569 0.00520 0.74247

P-II 25.4 0.00763 0.00325 0.00513

PD-I 18.5 0.00499 0.00503 0.85006

PD-II 20.7 0.00547 0.00489 0.46552

PI-I 17.9 0.00580 0.00543 1.25541

PI-II 17.8 0.00489 0.00505 1.04460

PID-I 18.3 0.00546 0.00499 1.22198

PID-II 17.6 0.00552 0.00518 1.27250

significant from the other ones. It is interesting to see that the PD controllers still performed consistently

well in these two experiments, suggesting that the PD controllers are the best for our recommender

system. We also observed that the controllers (the PI and the PID controllers) with an integral part were

unstable in our system, thus not recommended. The integral part performed well when the system was

required to improve the recommendation accuracy rapidly (Table 3 and Table 4(b)), but performed poorly

when the performance was to be reduced (e.g., Table 4(a)).

5.4 Evaluation

5.4.1 Computation Cost and Update Frequency

One of the benefits of the proposed feedback control is the ability of handling the trade-off between

computational complexity and performance1. This would enable recommendation providers to have a

principled tool to control the system and predict the resources needed for a predefined quality of service

1It should be emphasised that an alternative formulation is needed to obtain the optimal control signals by directly optimising

the specific goal (either the computation costs or recommendation accuracy). We leave this formulation for future work.
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(c) Performance loss over baseline

Figure 5.9: Computation versus Performance (MovieLens 1m): The baseline approach has no controller

employed. This is compared to keeping the performance at 0.86 and 0.90 respectively with the PD-I

controller

even if the near future usage of the system is unknown. Computing recommendations is expensive, par-

ticularly for a large-scale system. The feedback controller can be fine-tuned to achieve the best level of

recommendation performance given limited resources. In addition, by fixing the required computational

resources needed to train the model, it is possible to predict the update frequency of the system, given

the resources available. As the fixed computational complexity would determine how long it would take

to train the model using the available resources. We can also produce highly regular updates independent

from the rate the new samples enter the system. To achieve this, two main characteristics of the system

should be considered. First, it is critical to reduce the overshoot, as overshooting the target performance

could threaten the stability of the system. Second, it is desirable to have the fastest response time so that

it would minimise performance loss.

We evaluated the ability with the PD-II controller as it has been proved to be the best in the previous

experiments. Figure 5.9 (a) depicts the computational efforts (measured in CPU time) for the baseline

(no controller) and for the PD-II controller with two reference values (0.86 and 0.90), respectively. As il-

lustrated, once the required performance has reached, the computational cost becomes stable. Figure 5.9

(b) and (c) further demonstrate this by plotting the computational gain (i.e., reduced computational ef-

fort) versus performance loss over the baseline. Setting the reference to 0.86 can save up to 15% in
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computation while the accuracy is reduced only by less than 1%. This difference becomes more obvious

if we set the reference to 0.90, where the computational effort can be reduced by up to 55% while the

performance loss is not more than 6.2%. This ratio is due to the fact that performance improvement

slows down as the number of training samples increases (modelled in Equation (5.1)). Moreover, the

PD-II controller has 0.5% - 1.0 % overshoot predicted by the analysis and the preliminary experiments,

this would guarantee that the system stays stable over time and would not go over the predefined com-

putational cost. Therefore, this approach would enable practitioners to use the system to its full extent

without risking the overall system stability (by going over the resources available). By controlling the

computational effort, we can make accurate predictions of how many times the system can be updated

so that the system can provide fresh recommendations when it is required. If we set the reference value

to 0.90 (using less training samples), we can provide 3200 updates a day (with our resources it takes 27

seconds to update the model). However, we could only provide 2400 updates with the reference value

0.86 in which case we use more training samples to train.

It is important to note that this approach shows the upper bound of the performance loss, as we

chose to randomly subsample the data, but by using simple selection strategies (e.g. always train with

the latest data), it would substantially reduce the performance loss. In addition, the approach can easily

be tailored to produce incremental updates or updates per user instead of considering the whole data as

long as the system dynamics is learnt on the appropriate inputs/outputs.

5.5 Discussion
There are a number of shortcomings of this method that can be addressed by extending a model towards

a more fine-tuned way of controller design. We chose to represent the system with one single state

(performance) and consequently one controller in this approach. The reason behind this is that we

concentrated on understanding the controllability of the system dynamics, and evaluated how a control-

theory oriented approach can model system dynamics. This approach can be easily extended and broken

down to control each individual user and item or any other way that is convenient in practice.

Instead of controlling the update frequency, we can extend this approach to provide a prediction

of when the system needs to be retrained given the worst performance acceptable. As the controller

described in the previous section produces a signal of how many training samples are needed to converge

to the reference value at a given time, this value can be used to compute the next time the system needs

retraining. As shown earlier, the performance of recommender system decreases if it is not retrained

periodically, this rate of decrease can be used to calculate the next time our system reaches the pre-

defined reference performance. We define this as the deterioration rate per sample and can be estimated

from historical data. It shows how long it would take the recommender system to return to its initial

performance after adding one sample. In other words, if we know that we need to remove a number of

samples to reach the reference value immediately, this would be a good indication of how long it would

take for the recommender system the converge to the reference value without removing any samples.

It is important to note that breaking down the performance of the system to days or even hours

shows that the system dynamics is sensitive to a number of factors. These include how much the system
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knows about the user and the item in question, the temporal change in taste of the user, how obscure or

mainstream the item is. This work has not directly provided answers to these questions, but the study

about the impact from the number of training sample provides a guideline and design pattern as to how

to deal with those factors. If we are able to identify all the factors that constitute to the system dynamics,

we might be able to stabilise them over time by designing a control loop for each individual factor, or

considering them as disturbance or noise.

5.6 Conclusion
In this chapter, we showed how Modern Control Theory can help us design and analyse dynamical

recommender system goals. By proposing to use a simple spring and damper model to deal with the

performance dynamics and deploying it with PID controllers, we have achieved a stable control of the

recommender system over time. Not only providing a flexible method to handle the trade-off between

computational cost and performance, this approach also provides a way to identify and analyse the

characteristics of the dynamics, and provides principled tools to achieve the desired objectives.

There are other fruitful opportunities in this research direction. An interesting study would be to

consider what types of input signals might be useful to keep the performance steady. For instance, it is

worth exploring the control strategies with active learning, that defines which samples should be added

to the training set to maximise performance. Instead of choosing randomly from the availably samples

the controller can follow pre-defined strategies, e.g., the data points could be selected based on their age,

the estimated difficulty of the user/item etc. These factors would provide further practical solutions to

manipulate the performance of the system.

The idea is also useful to apply to other online services as they all inherently exist in a time-

dependent context [Kle06]. Similar dynamics occurs in a web page content [ATDE09] and revisita-

tion habits [ATD09]: control theory could be used to respond to the flow of information to control the

outcome of the dynamical system. Controlling the reference of the recommender system based on the

parameters of the model.



Chapter 6

Conclusion and Future Plan

This thesis presented a goal-driven recommender system design, where the focus of the system moved

from general accuracy measures toward goal focused algorithms. The consequences of this shift were

outlined in the thesis, which includes more specific accuracy metrics that can cover the goal of the

system, and a number of approaches that modify the objective function of the system to adjust to specific

goals. This includes the differentiation between user or system focused approaches and internal or

external objective function design. In this work, we provided examples to illustrate this approach for

each of the categories identified. Further in this section, we identify the shortcomings of this approach

and present a number extensions that are applicable within this framework.

6.1 Thesis Contribution

In order to evaluate the applicability of a goal-driven system, each approach was broken down to the

following categories. At large, these steps correspond to the general work-flow of data mining, with an

additional step on the analysis of the aim of the system (Figure 6.1). The following steps we employed

for each part of this thesis.

6.1.1 Analysis

The overall purpose of this step was to determine whether it was feasible to detect patterns and relation-

ships across the dataset. This step aimed to clarify the predetermined goal of the system by exploring

whether the pattern we suspected was actually there, also to investigate whether the data met the require-

ments of the potential predictive models (e.g. linearity between features).

6.1.2 Goal Selection

Based on the data and the patterns we found, we determined the type of goals that were possible with this

kind of data. We focused on problems that were identified in the literature or by the industrial partner

of this work. It is important to note that the first and the second steps are interchangeable depending on

the approach and the focus of the work. Furthermore, they are likely to be iteratively or simultaneously

defined, depending on the nature of the problem and the data.
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Figure 6.1: General Workflow to Building Goal-Driven Systems

6.1.3 Methodology

The methodology employed in this work was also driven by the goal of the system. This included the

selection of the evaluation methods in line with the goal. For external approaches, we modularised

the system and evaluated each component separately. For internal approaches, we designed various

evaluation metrics to measure the effect of the components on the whole system. In addition, for temporal

evaluation, we defined the partitioning of the data in a temporal fashion. For example, we simulated the

system in a way the data arrived originally and trained the models at the time and frequency they were

usually trained in practice (e.g. once a day at midnight).

6.1.4 Algorithms

The main contribution of the thesis was the algorithm design. As mentioned above, goal-driven design

shifted the focus of the development towards more practical metrics and algorithm design. This affected

the choices of the algorithms in terms of their potential fit to the problem. This way we employed the

’fit the algorithm to the data’ approach. We developed a number of algorithms for specific goals, and an

approach to combine them together (for certain external algorithms).

6.1.5 Datasets

Experiments that were used in the thesis were in line with the rigorous experimental design used in

collaborative filtering research [HKTR04]. In this work, we mainly used the MovieLens dataset, but

also conducted some initial experiments on the Netflix dataset [BL07], both are publicly available. The

results in Section 4.2 were investigated using customer data from a large digital TV content provider.

This offered a different angle to the problems, since it was collected from a slightly different domain

(i.e. IPTV) and represented different customer behaviour (e.g. the indication of likes and dislikes were

expressed differently).

6.2 Future work
This section contains a collection of ideas which we identified as possible extensions of this of this work.

This can be divided into two main areas; extension on the algorithms to cover the scenarios defined in
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Section 1.3.2 and extensions on the evaluation methodology.

6.2.1 Algorithmic Extensions

Diversity and Serendipity

The exact nature of the connection between diversification and long tail items has not been studied in

detail yet. It was discussed in Chapter 4 that diversification alone does not necessarily guarantee that

items from the long tail would be recommended, since it might only distribute items that are already

popular. We ran a simple experiment in Section 4.3.1 that showed that the combination of diversification

and the Long Tail Constraint would provide a better result in reducing popular items in the top positions

on the recommended list. However, the exact nature and the relationship between diversification and

items in the long tail are still to be explored.

Diversifying one’s recommendation goes against users’ incentives, as users prefer listening to fa-

miliar items. The main problem that arises in this setting is to persuade users to pick items that might

be unfamiliar to them (e.g. serendipitous items). We could approach this by nudging users towards

serendipitous items using the well-studied anchoring effect [Ari09]. Anchoring effect is a cognitive bias

that describes the common human tendency to rely on one trait or piece of information when making

decisions. In other words, users tend to pick items that are comparable to other items, so that the value

of the picked item can be assessed (in relation to the anchor).

This can be further explored in the domain IPTV recommender systems. We identified two different

levels where this approach can be applied to such a system in practice. The potential of the subscription

pack can be maximised by diversifying the possible content available within a pack, thus, increasing

the overall value of it. Another approach is to apply it outside the subscribed pack, which might en-

courage customer to subscribe to other packs. This is riskier compared to the previous level, since the

recommendation is based on a new group of items (i.e. different genre) which would be mined from

the current subscription details. This decision might be supported by the user’s viewing history from the

freely available content and live television broadcast.

Optimal Control Theory

The Optimal Control Theory approach, as the name suggests, deals with finding optimal policies for a

given system over a period of time. This is a useful extension of the approach introduced in Chapter 5, as

most of the scenarios discussed there can be reinterpreted as an optimisation problem. Instead of keeping

the objectives of the systems close to a pre-defined reference value, we can to optimise them for a given

time period. Recommender systems are normally optimised at a given time in order to provide the best

performance after the actual time of the training. However, it is shown that the available samples might

not be equally useful to maximise the performance of the system, as some of the samples might give false

information due to noise in the data [APO09], therefore, the underlying model generalises incorrectly if

it is based only on these pieces of information. This can be interpreted as a one-off generalisation that

might not be useful to capture user behaviour. Based on this assumption, this extension would identify

ratings that affect the performance of the system over a longer period of time, and remove samples that
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are not useful for generalisation in a longer term. Thus, we assume that a recommender system might

not need all the training samples to maximise performance (i.e. there are some samples that actually hurt

performance). It is time dependent when to inject the samples in the system and when to remove them.

The approach would control from when and how long training samples stay in the system. This can

be viewed as the means to describe the system performance (the objective that needs to be optimised)

and gain control over it through discovering how certain training samples affect performance. In order

to complete this work, we need to investigate the relationship between the performance of the system

and the decision to include certain training samples. The simplest approach to it is to define a number

of features that characterise a data point. This can include the age of the sample, how likely that this

rating is consistent with the user’s and the item’s profile, the derivation from the expected rating strategy

of the user and the item, etc. These features can be calculated from historical data (prior knowledge)

or estimated based on our assumption and observations of the underlying psychological processes that

describe how a user rates an item. After the features are estimated, we can compute whether they are

predictive to obtain the performance of the system. Then this relationship might be used to describe the

system dynamics. The system dynamics can then be modelled over time and solved to obtain the optimal

decision that minimises the system performance for a given time period.

6.2.2 Online Evaluation Methodology

One of the assumptions we made in this thesis was that the performance metrics we defined to measure

certain aspect of the recommender system captured what it was intended to measure. In reality, there

might be some discrepancy between what a metric is indented to capture and what it actually captures.

Mainly because the process of defining such measures is based on our assumptions and understanding

of what aspects of the problem would be sufficient to monitor in order to evaluate our goals.

Furthermore, we make another assumption during the evaluation process. That is we evaluate on

a simulated “future” status of the system that might not have existed if our models were in place. As

offline evaluation methods hold parts of the data as test samples, assuming that the alterations we made

by presenting our models to the users would not affect generate the same training samples. For example,

we introduce a model that would provide novel recommendation to users, we assume that it would not

affect the user feedback that happens after the model is introduced. In this way, the alteration that the

model introduces in user behaviour might not be captured just by measuring how it would perform on

the training sample.

Therefore, it is important to explore how these two assumptions would result in the performance

of the system with respect to the relation between perceived and observed coverage of the measures as

well as how these altered models affect user behaviour. The only way to explore these complex relations

is by evaluating goal driven models through a series of online experiments where both assumptions are

tested. This is more important for user-oriented goals where above problems are less clear and harder to

simulate.
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6.3 Goal Driven Design in the Data Driven World
As explained above, the underlying philosophy in this thesis was to shift the focus towards concentrating

on the goals that the recommender system was to fulfil, and keeping these principles in mind at each step

of the process. This is increasing important as the volume and variety of the data that is available to use

for predictions is exploding. As a result, many turn to the data to explain patterns and use their initial

findings to model certain problems. Data driven thinking would benefit from our goal-driven approach

as it prioritises the goal (that would emerge as a result of data driven thinking) as opposed to prioritising

on certain error measures. This is important in order to take full advantage of new sources of data and

effectively incorporate findings that emerge from the data.



Appendix A

Stability of a Controlled System

The controllers is in charge of processing the error from the plant and turning it into a signal that would

decide on two things, whether the model will be re-trained or alternatively it could adjust some of the

parameters of the model that are defined to capture instant temporal change.

There are numerous advantages of this method, one of them is to separate certain aspects of the

system and understand how they contribute to the final prediction value. Another one is that we can

find an optimal solution to when the system needs updating after training. This is the trade-off between

loosing performance after some time and other practical factors (e.g., the computational complexity of

the algorithm, getting the updates from the user).

Moreover, the feedback control is more efficient in dealing with the disturbance. Mathematically,

let us look at the block diagram representation, shown in Figure 5.4 (b).

e(t) = yr(t)− y(t)

s(t) = G1(e(t)) (A.1)

y(t) = G2(s(t) + n(t))

where n(t) denotes a noisy signal injected to the system. Converting them into the frequency domain

using the z-transform gives

E(z) = Yr(z)− Y (z)

S(z) = G1(z)E(z)

Y (z) = G2(z)(S(z) +N(z)) (A.2)

We thus have:

Y (z) =G2(z)
(
G1(z)

(
Yr(z)− Y (z)

)
+N(z)

)
(A.3)

=G1(z)G2(z)Yr(z)−G1(z)G2(z)Y (z) +G2(z)N(z)

Finally, we obtain the output Y (z) as

Y (z) =
G1(z)G2(z)Yr(z) +G2(z)N(z)

(1 +G1(z)G2(z))

=
G1(z)G2(z)

1 +G1(z)G2(z)
Yr(z) +

G2(z)

1 +G1(z)G2(z)
N(z) (A.4)
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This equation says any disturbance N(z) is attenuated by G2(z)
1+G1(z)G2(z) . If G1(z)G2(z) is 100,

then only 1% of G2(z)N(z) is allowed to affect Y (z). Even if G1(z)G2(z) is only 10, then only 10%

of G2(z)N(z) gets through, which is a lot better than no protection at all. In other words, if G2(z)N(z)

causes Y (z) to decrease, an error is immediately created. That is amplified by G1(z)G2(z) to create

an output of G1(z)G2(z) opposite and nearly equal to G2(z)N(z), thereby returning Y (z) close to its

original value. Thus, the feedback control is robust to the noise and disturbance.

Secondly, the feedback also protects the system against internal parameters. To see this, let us set

N(z) = 0, and calculate the ratio between output and input:

Y (z)

Yr(z)
=

G1(z)G2(z)

(1 +G1(z)G2(z))
(A.5)

If G1(z)G2(z) has a nominal value of 100, Y (z)/Yr(z) = 100/101 = 0.99, close to the desired closed-

loop gain of 1.00. Now let G1(z)G2(z) drop by 50%. Then Y (z)/Yr(z) = 50/51 = 0.98. So a 50% drop

in G1(z)G2(z) caused only a 1% drop in closed-loop performance. Even if G1(z)G2(z) dropped by a

factor of 10, to a gain of 10, still Y (z)/Yr(z) = 10/11 = 0.91, an 8% decrease. In general, so long as

G1(z)G2(z) > 1.0, then G1(z)G2(z)/(1 +G1(z)G2(z)) will be close to 1.0.
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PID Controller Derivation

Based on Equation (5.9), the transform function between the input and output can be obtained as follows:

Time domain: s(t)=Ce(t)+B

t∑
t=0

e(t)+D
(
e(t)− e(t− 1)

)
Freq. domain: S(z)=CE(z)+BE(z)

z

z − 1
+DE(z)

z − 1

z

Freq. domain: G1(z)≡ S(z)

E(z)
=C+B

z

z − 1
+D

z − 1

z
(B.1)

where z is the variable in the frequency domain (usually a complex number). G1 represents the con-

troller’s gain. From the performance dynamics, we equally have

Time domain: s(t) = r
(
y(t)− y(t− 1)

)
+ ky(t)

Freq. domain: S(z) = r(1− z−1)Y (z) + kY (z)

Freq. domain: G2(z) ≡ Y (z)

S(z)
=

z

z(r + k)− 1
(B.2)

where G2 represents the system dynamics. Combing G1 and G2 obtains the transfer function of the

closed-loop system:

Y (z)

Yr(z)
=

G1(z)G2(z)

1 +G1(z)G2(z)
(B.3)

where the transfer function Y (z)/Yr(z) is expressed as a ratio of two polynomials in z, and is a function

of both the system parameters and controller’s parameters. The roots of the numerator are called its

zeros, whereas the roots of the denominator are its poles. One of the popular techniques to obtain the

controller’s parameters is called Root Locus design, which is a graphical technique that plots the traces

of poles of a closed-loop system on the s plane as its controller parameters change. By defining the

required property of the transfer function, one can estimate the controller’s parameters accordingly.
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