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Abbreviations 

ASIC, acid-sensing ion channel; DMBE-MTS, methanesulfonothioic acid 3,3-dimethylbutyl 

ester; ENaC, epithelial Na+ channel; Ipeak, peak current; Isust, sustained current; MTS, methane 

thiosulfonate; MTSES, 2-sulfonatoethyl methanethiosulfonate ; MTSET, 2-
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Abstract  

Epithelial Na+ channel (ENaC)/degenerin family members are involved in 

mechanosensation, blood pressure control, pain sensation and the expression of fear. 

Several of these channel types display a form of desensitization, allowing the channel to 

limit Na+ influx during a prolonged stimulation. We used site-directed mutagenesis and 

chemical modification, functional analysis and molecular dynamics simulations to 

investigate the role of the lower palm domain of the acid-sensing ion channel 1, a 

member of the ENaC/degenerin family. The lower palm domains of this trimeric 

channel are arranged around a central vestibule, at ~20 Å above the plasma membrane. 

They are covalently linked to the transmembrane channel parts. We show that the lower 

palm domains approach each other during desensitization. Residues in the palm domain 

co-determine the pH dependence of desensitization, its kinetics, and the stability of the 

desensitized state.  Mutations of palm residues impair desensitization by preventing the 

closing movement of the palm. We identify and describe here the function of an 

important regulatory domain that likely has a conserved role in ENaC/degenerin 

channels. 
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Introduction   

The Epithelial Na+ channel (ENaC)/degenerin family of ion channels comprises among others 

the degenerins involved in touch sensation, ENaC that plays an important role in Na+ balance 

and blood pressure control, and the acid-sensing ion channels (ASICs) whose functions 

include pain sensation, the expression of fear and neurodegeneration after ischemic stroke (1-

3). ENaC/degenerin proteins form Na+-selective channels that share a common subunit 

organization (4). Functional ASICs are formed by homo- or heterotrimeric assembly of ASIC 

subunits 1a, 1b, 2a, 2b and 3. Each subunit consists of a large extracellular domain, two 

transmembrane helices and short cytoplasmic N- and C-termini. Crystal structures of the 

transmembrane and extracellular parts of chicken ASIC1 indicated a hand-like shape of the 

single subunits that are arranged back to back around the central vertical channel axis (5-8). 

Accordingly, different domains have been named as finger, thumb, knuckle, β-ball and palm, 

as illustrated in Fig. 1A. Extracellular acidification opens ASICs rapidly but only transiently. 

Within hundreds of milliseconds the channels enter the non-conducting desensitized state in 

the continued presence of the acidic pH. Desensitization protects ASIC-expressing cells from 

excessive loading with Na+ during prolonged stimulation.  

The mechanisms of ENaC/degenerin channel gating are currently only incompletely 

understood. Several studies concluded that protonation of several residues per subunit in the 

extracellular domains finger, thumb and palm is required for ASIC activation (7, 9, 10), which 

involves the opening of the gate located in the transmembrane domain (5, 11). The palm 

domain, forming a β strand-rich scaffold along the vertical axis of the protein, is the covalent 

link between the extracellular and transmembrane domains. In addition, the “β-turn” located 

in a loop between the thumb and the palm, makes hydrophobic interactions with residues of 

the outer end of the first transmembrane segment and is critical for relaying protonation of 

extracellular residues to pore opening (12). Functional studies with mutations of the palm 

residue ASIC1a-E418 had suggested that the conformation of the lower palm region may 

change during desensitization (10). 

In this study we examine the role of the lower palm of ASIC1a and its conformational 

changes during channel activity. By combining site-directed mutagenesis and chemical 

modification with functional analysis and molecular dynamics (MD) simulations we show 

that the lower palm is critically involved in desensitization and we provide evidence that it 

undergoes a closing movement during desensitization. Substitutions of palm residues affect 

both the time course of desensitization as well as the stability of the desensitized state. 
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Mutations in the palm that impair desensitization do so by preventing the conformational 

changes of the lower palm.  

 

Materials and Methods 

Site-directed mutagenesis and expression in Xenopus oocytes 

The original human ASIC1a cDNA construct was kindly provided by D. Corey (13). Mutations 

were introduced by Quikchange (Agilent, Basel, Switzerland) and verified by sequencing 

(Synergene Biotech, Zurich, Switzerland). Expression in Xenopus laevis oocytes was carried 

out as described previously (14). Complementary RNAs were synthesized in vitro. Oocytes 

were surgically removed from the ovarian tissue of female Xenopus laevis which had been 

anaesthetized by immersion in 2 g l-1 MS-222 (Sandoz, Basel, Switzerland). All experimental 

procedures on Xenopus laevis were realized according to the Swiss federal law on animal 

welfare, approved by the committee on animal experimentation. Healthy, defolliculated stage V 

and VI Xenopus oocytes were isolated and pressure-injected with 50 nl of cRNA solution and 

oocytes were kept in modified Barth solution during the expression phase.     

 

Electrophysiological analysis 

Electrophysiological measurements were carried out 18 - 48 h after cRNA injection as 

described previously (14). Macroscopic currents were recorded using two-electrode voltage-

clamp at –60 mV with a Dagan TEV-200 amplifier (Minneapolis, MN, USA), and analyzed 

with the pCLAMP data acquisition package (Molecular Devices, Silicon Valley, CA). The 

standard bath solution contained 110 mM NaCl, 2.0 mM CaCl2, 10 mM Hepes-NaOH, (or 

MES-NaOH for pH<6.8), and  pH was adjusted by NaOH to the values indicated. Oocytes 

were perfused by gravity at a rate of 5-15 ml/min. The pH activation curves were fitted to the 

Hill equation:  I = Imax/[1+(10-pH50/10-pH)nH], where Imax is the maximal current, pH50 is the pH 

of half-maximal current amplitude and nH is the Hill coefficient, using KaleidaGraph (Synergy 

software, Reading, PA, USA). Steady-state desensitization curves were fitted by an analogous 

equation. Current kinetics were fitted by a single exponential. Outside-out patches were 

obtained and measured as described previously (14). Solutions were changed with an ultra-

rapid piezo-driven system (MXPZT-300L, Siskiyou, Grants Pass, OR, USA). Data are 

presented as mean ± SEM. Differences between hASIC1a WT and mutants were analyzed by 

ANOVA followed by Dunnet post hoc test (p < 0.05). In experiments with methane 

thiosulfonate (MTS) reagents, functional parameters were measured before and after a 5-min 
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incubation with the reagent. In these experiments the paired student t-test was used to 

determine significance of the effect of MTS reagents.  

 

Molecular dynamics simulations  

The atomistic models were built using the charmm-gui web service based on the x-ray 

structure of WT chicken ASIC1 (PDB code: 2QTS) (7). The channel was embedded in a 

bilayer composed of 348 DPPC lipid molecules and solvated with ~43,000 water molecules. 

Counter-ions (Na+ and Cl-) were added to neutralize the system and mimic a salt-

concentration of ~150 mM. The system contains a total of ~197,000 atoms. Based on Poisson-

Boltzmann pKa calculations, the following residues had a pKa >7 and were thus protonated: 

E63, D78, E79, E97, E177, E238, E242, E277, E315, D351, D409, D434 (numbering of human 

ASIC1a) (10). Mutant systems (L77R, Q276R, L280R, L415R, and N416R) were constructed 

with the same procedure. In the simulation of the L280R mutant, residue E79 interacts 

directly with R280 and was thus not protonated.  

All-atom MD simulations were performed using the NAMD 2.9b2 package (15) with the 

CHARMM force field (16) for proteins (v27) and lipids (v36), and the TIP3P model for the 

water molecules. During all simulations, the SETTLE algorithm was used to constrain bond 

lengths and angles of water molecules, and the LINCS algorithm was used for all other bonds 

and angles involving hydrogen atoms, allowing an integration time step of 2 fs. Long-range 

electrostatic interactions were calculated using the Particle-Mesh-Ewald (PME) method (17) 

and short-range repulsive and attractive dispersion interactions were described with Lennard-

Jones potentials, using a cutoff length of 1.2 nm. The temperature of the system was kept 

constant using Langevin dynamics with an external heat bath at 323 K. Similarly, the pressure 

along the membrane normal (z direction) was kept constant to 1 bar. The simulation time was 

32 ns for WT, 24 ns for L77R, 20 ns for Q276R, 38 ns for L280R, 34 ns for L415R and 28 ns 

for N416R. Note that the stochastic behavior of the simulations leads to asymmetries that 

reflect the conformational space accessible to the protein. On longer simulation time-scale all 

subunits should visit the same states, but not necessarily at the same time. Molecular graphics 

were prepared using the UCSF Chimera package (18).  

 

Reagents 

The MTS reagents DMBE-MTS (methanesulfonothioic acid 3,3-dimethylbutyl ester), MTSES 

(2-sulfonatoethyl methanethiosulfonate) and MTSET (2-trimethylammonium-ethyl 

methanethiosulfonate) were obtained from Toronto Research Chemicals (Montreal, Canada), 
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and other reagents were from Sigma, Fluka (Buchs, Switzerland) or Applichem (Darmstadt, 

Germany).  

 

Results  

Palm residues pointing towards the central cavity show a low solvent accessibility in closed 

channels 

The lower palm domain is made up of a β sheet in each subunit. The β sheets of the three 

subunits are arranged around the central cavity located at ~20 Å above the extracellular end of 

the transmembrane domain, forming a funnel-like structure (Fig. 1A). Each β sheet is 

composed of four β strands with two of them (β9 and β10) stretching the entire length of the 

palm. β1 and β12 are shorter and are connected by the β1− β2 and β11- β12 linkers to β 

strands located higher up in the β-ball and the palm, respectively. The side chains of the lower 

palm β sheets point alternatingly towards the central cavity or towards the outside of the 

lower palm (Fig. 1A). 

To measure the solvent exposure of lower palm residues, they were mutated individually to 

Cys and the mutant channels were exposed to the sulfhydryl reagent MTSET that adds a 

positively charged group to Cys residues. Extracellular application of this reagent does not 

affect the function of wild type (WT) ASIC1a (10). For many mutants the modification by 

MTSET changed channel function, allowing measurement of the kinetics of sulfhydryl 

modification, as illustrated for L280C (Fig. 1B). Exposure of L280C channels to MTSET 

resulted in the appearance of a sustained current and a moderate increase of the peak current 

amplitude. An exponential fit of the time course of the appearance of the sustained current 

fraction yielded the rate of modification of residue C280 by MTSET (Fig. 1C). Similarly, 

MTSET induced various functional changes in other lower palm Cys mutants (Supplemental 

Table S1) allowing the calculation of the rate of modification by MTSET. The MTSET 

modification rate of closed channels differed importantly between residues (Fig. 1D). Fig. 1E 

shows the lower palm region in the structural model of ASIC1a (10) with the palm residues of 

one subunit colored according to the MTSET reaction rate on their Cys substitution mutants. 

The highest reaction rates were measured for residues pointing outwards, most of them 

located in the lower part of the β sheet (green and orange), followed by outwardly pointing 

residues of the upper part of β strand 12 and the β11- β12 linker (pink). The residues pointing 

into the central cavity showed all lower reaction rates, consistent with the lower solvent 

accessibility predicted from the crystal structure.  
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The lower palm domain closes during desensitization 

If the lower palm β sheets move towards each other during desensitization, the inwardly 

pointing residues should be less accessible and therefore their modification rate should be 

lower in the desensitized than in the closed state. To compare the accessibility of palm 

residues in the closed and desensitized states we applied MTSET to channels that were in 

either of these functional states. We lowered the extracellular Ca2+ concentration without 

changing the pH to switch from the closed to the desensitized state (19, 20). By keeping the 

pH constant we avoided possible artifacts due to the intrinsic pH dependence of the sulfhydryl 

reaction, unrelated to channel function. Fig. 2A shows the steady-state desensitization 

(SSDES) curve of the mutant E418C measured either in the presence of 0.1 mM or 2 mM 

Ca2+. The SSDES curve plots the fraction of available channels as a function of the 

conditioning pH and shows that at pH7.6 the E418C channels were almost completely 

desensitized in 0.1 mM Ca2+, but that no desensitization had occurred in 2 mM Ca2+ at this pH. 

Oocytes expressing E418C were exposed during 2 min at pH7.6 to an MTSET concentration 

estimated to modify 60-80% of the closed channels, in the presence of either 2 mM (closed 

channels) or 0.1 mM Ca2+ (desensitized channels, Fig. 2B). After this 2-min exposure and 

subsequent current measurement, the closed channels were exposed during 3 min to 1 mM 

MTSET (pH7.6, 2 mM Ca2+), resulting in 100% modification, and their function was again 

measured. MTSET at 0.16 mM readily modified E418C when applied to closed channels 

(upper middle trace, 2 mM Ca2+), but not when applied to desensitized channels (lower 

middle trace, 0.1 mM Ca2+, Fig. 2B). The fractional modification of E418C and other lower 

palm mutants is plotted for closed and desensitized channels in Fig. 2C. The fractional 

modification by MTSET was reduced by desensitization in all residues tested that point 

towards the central cavity (blue in Fig. 2D). The modification of some of the outwardly 

pointing residues was state-independent (orange). The D78C and to a stronger extent the 

Y417C mutant – both pointing outwards - were more rapidly modified in the desensitized 

state, suggesting that these residues (green) are less exposed in the closed state than they 

appear in the desensitized crystal structure. These observations strongly suggest that the lower 

palm undergoes a closing movement during desensitization.  

 

The movement of the lower palm determines the desensitization kinetics 

We observed that substitution of almost any of the lower palm residues affected the pH 

dependence of steady-state desensitization, the direct transition from the closed to the 

desensitized state at pH slightly below physiological values (Supplemental Table S2). This 
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illustrates the central role of the lower palm in desensitization. The pH dependence of 

activation was affected to a lesser extent (Supplemental Table S2). To examine the 

desensitization from open channels we measured the kinetics of the decay phase of the 

macroscopic currents. The V414C mutant desensitized with slower kinetics than the WT, and 

desensitization was further slowed after MTSET modification (Figure 3A). Similarly, the 

N416C mutant displayed slowed desensitization kinetics after MTSET exposure. The time 

constants of desensitization obtained from single exponential fits to the decaying phase of the 

current are plotted in Figure 3B for different other mutants. Modification of residues in the 

β11-β12 linker, as well as a “belt” of residues in the center of β9, β10 and β12 affected open-

channel desensitization (Figure 3C). Substitution of two outward facing residues accelerated 

desensitization. For most residues the substitution by Cys still allowed normal desensitization 

kinetics and a slowing or acceleration was only observed after MTSET modification (* in 

Figure 3C).  

Under a stimulation of pH≤6 the open-channel desensitization kinetics of WT ASIC1a and 

most mutants were pH-independent (Fig. 3D). Interestingly, a pH dependence was uncovered 

in some mutants, with a striking acceleration of open-channel desensitization at more acidic 

pH for N416C-MTSET and Q278C-MTSET, and a slowing at acidic pH for Q278C (Fig. 3D). 

The residue N416 is located at the upper end of β strand 12. In the desensitized structure its 

side chain points outward and forms hydrogen bonds with the β1-β2 linker (Fig. 3E-F), which 

is critical for the kinetics of open-channel desensitization (21). In the recently published 

Psalmotoxin-bound open ASIC1 structure the upper end of β12 is twisted, suggesting that 

N416 undergoes a substantial change in side chain orientation during the open-desensitized 

transition (Fig. 3E (5)). We carried out MD simulations based on the desensitized structure 

with the N416R mutant, which is chemically similar to the MTSET-modified N416C. In the 

adopted desensitized conformation the R416 side chain points diagonally outward, oriented 

towards β9 and making hydrogen bonds with the β1- β2 linker and with side chains of other 

palm residues such as E413 and E277 (Fig. 3G). This orientation towards β9 in the mutant as 

opposed to the orientation towards the side of β1 in WT is likely due to sterical constraints 

and to hydrogen bond formation with other palm residues. Moving from the orientation 

adopted in the open channel to that of the desensitized state requires a larger movement in the 

mutant, which in addition will be harder for this bulky and charged side chain, potentially 

explaining the observed slowing of desensitization. The observed acceleration of 
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desensitization of N416C-MTSET channels under acidic pH might be due to protonation of an 

acidic side chain interacting with residue 416 in the open conformation.  

Alternatively, the slowing of the current decay phase observed in several mutants might 

reflect slowing of channel opening. However, the opening time constant at pH5 of MTSET-

modified V414C and N416C, measured from outside-out patches was not different from that 

of WT (5.2 ± 1.5 and 4.4 ± 1.6 ms, respectively, compared to 4.1 ± 1.0 ms, n=3), excluding 

this possibility.  

 

Substitution of distinct lower palm residues impairs desensitization 

Wild type hASIC1a currents desensitize completely during the acidic stimulation, resulting in 

a sustained/peak current ratio (Isust/Ipeak) of < 0.01 (Fig. 3A). For some residues in the lower 

palm domain, substitution resulted in the appearance of a non-desensitizing (sustained) 

current (Fig. 4A-B). In these channels the desensitized state is less stable than in WT, and 

channels can switch between the open and the desensitized state during the acidic stimulation 

leading to the observed Isust. Substitution of the residues Q276 and Q278 of β9, L415 of the 

β11-β12 linker, and a belt of hydrophobic residues of the β sheet pointing towards the central 

vestibule (L77, I420, L280) destabilized the desensitized state (Fig. 4C). L415C showed a 

small, rapidly desensitizing peak, followed by a slowly developing sustained current (Fig. 4A, 

upper right panel). After exposure to MTSET the initial transient peak disappeared and the 

activation kinetics of the sustained current were accelerated.  

To determine for five selected residues the properties of the side chains that were important 

for desensitization, Cys mutants were exposed to the negatively charged MTSES or the non-

polar DMBE-MTS, and in addition mutations to Arg were made. I420 appeared to be able to 

accommodate many different types of side chains without a change in Isust, except for the 

positively charged MTSET (Fig. 4D). Mutation to Arg, which was made to mimic the Cys-

MTSET side chain although being smaller, induced in all mutants an Isust. The Isust fraction of 

Arg mutants was however in most mutants smaller than in the Cys-MTSET substitution. For 

L77, Q276, L280 and L415 the size of the engineered side chain was as important as its 

charge, since modification by MTSET and DMBE-MTS gave similar Isust fractions (Fig. 4D).  

 

Mutations impair desensitization by changing the conformation of the lower palm domain 

To determine the structural changes underlying the increased Isust we carried out MD 

simulations with ASIC1 WT and with the mutants L77R, Q276R, L280R and L415R. L415, 
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located in the β11-β12 linker, and L77, Q276 and L280 of the lower palm β sheet are all 

oriented towards the central cavity. Comparison of the crystal ASIC1 structures shows that at 

the level of the upper half of the lower palm  β sheets the central vestibule is wider in the 

open than in the desensitized channel (5). The conformation of the individual β sheets is 

however conserved in the open channel structure, except for an opening between the upper 

parts of β12 and β9 (Supplemental Fig. S1A). This suggests that in the open-to-desensitized 

transition the β sheets mostly move as a whole. In MD simulations we observed small 

differences to WT in the β sheet hydrogen bond pattern in L77R and L280R (Supplemental 

Fig. S1B). The L415R mutation produced in one subunit a marked separation of the upper 

parts of β1, β12 and β9.  

Figure 5A plots the radius of the cavities along the central vertical axis of the channel 

(22). In the open structure the central cavity is widest at the level of R371 and Q276 (Fig. 5B). 

At the lower end of the central cavity, at the level of L77, a narrow constriction is formed. In 

MD simulations, the radius of the central cavity was smaller in the desensitized conformation 

of the WT than in the open crystal structure, and the constriction was less pronounced (Fig. 

5A). Such a difference in the radius of the central cavity had previously been described 

between the desensitized and the open crystal structure (5). The L280R mutant showed in MD 

simulations a wider central cavity than the WT. This widening occurred at a lower level and 

over a longer part of the palm than that seen in the open channel structure (Fig. 5A). The two 

mutants L77R and Q276R displayed a constriction similar to that of the open structure. 

Q276R led in addition to a narrowing of the central cavity. Q276 and L280 are located close 

to the edges of the β sheets and point towards neighboring β sheets, as illustrated in a 

schematic view from the bottom of the palm (Fig. 5C).  L77 in contrast points towards the 

center. A side view of the palm illustrates that L77 sits at the bottom of the central cavity, 

contributing to the observed constriction, and L280 as well as Q276 are located higher up (Fig. 

5D, view from inside of the palm). The “opening” of the palm induced by the L280R 

mutation is illustrated by the aligned structures of WT and the L280R mutant in side view and 

from the bottom (Fig. 5E-F). In the MD simulation this conformational change was 

asymmetrical, moving mostly the subunit A outwardly (Fig. 5F, Supplemental Figs. S1C-D & 

S2). Inspection of the palm conformation at the end of the MD simulations showed that in the 

three mutants the acidic residues E79 and E418 were important for accommodating the 

introduced basic side chain. The L280R side chains were arranged horizontally, pointing 

towards the two Glu residues of a neighboring subunit and thereby pushing the palm open 
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(Fig. 5G). A basic side chain on the same subunit, R371, prevented R280 from folding 

upwards. The R77 side chains were oriented vertically, interacting with Glu residues of the 

same subunit (mostly E418, Fig. 5H). This placement of the side chains led to a narrowing of 

the lower part of the central vestibule. The Q276 side chain was in the WT in close proximity 

of the Glu residues of the same subunit, and of R371 of a neighboring subunit (Fig. 5D). The 

engineered Arg at position 276 formed a salt-bridge with the Glu residues of the same subunit, 

pointing more downward than in the WT (Fig. 5I). As a result of the competition of R276 

interacting with E79, and of the electrostatic repulsion, the neighboring R371 pointed upward, 

toward E413. This led to the narrowing of the constriction and of the upper half of the central 

vestibule, as documented in Fig. 5A and confirmed by contact maps and distance 

measurements at the level of L74 and E418  (Supplemental Figs. S1C-D & S2).  

 

Structural changes induced by the L415R mutation 

L415 is positioned on the β11-β12 linker, next to N416 that co-determines the kinetics of 

desensitization (Fig. 3). Its side chain orientation changes by almost 180° between the open 

and the desensitized state ((5), Fig. 6A). L415 is located close to a subunit interface and 

makes hydrophobic interactions with residues of the β9 and β10 strands of the neighboring 

subunits and to a smaller extent with the β11- β12 and β1- β2 linker of the same subunit (Fig. 

6B). In the simulation of the L415R mutant, in two out of three subunits, the R415 side chain 

pointed towards the neighboring subunit where it interacted with E254 of the β-ball (Fig. 6C). 

The R371 residue of the neighboring subunit pointed downward, coming close to E418 and 

N416, and not to E413 as in the WT. In the third subunit the R415 side chain pointed not to 

the neighboring subunit, but downwards, pushing the own β1 strand down and outward (Fig. 

6D). This disrupted the upper part of the β sheet backbone and is reminiscent of the structural 

change in the open channel structure (Fig. 6A and Supplemental Fig. S1B).  To obtain 

information on the importance of the interaction of R415 with the neighboring E254 and on 

the required side chain properties of residue 415 we have functionally analyzed the L415R-

E254Q double mutant and several single mutants of L415. Mutation of E254 to Gln in the 

background of the L415R mutant produced a channel in which the sustained current was 

retained, indicating that the electrostatic interaction between E254 and R415 is not necessary 

for the presence of the sustained current (Fig. 6E). Substitution of L415 by the small residues 

Ala, Cys or Ser resulted in a 100% Isust fraction that became smaller below a certain 

stimulation pH (Fig. 6E). This decrease in Isust occurred at more acidic pH than in L415R or 
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L415C-MTSET. Interestingly the pH dependence of activation was similarly shifted to acidic 

values when L415 was substituted by small residues, but not if the substituting side chain was 

large, hydrophilic and positively charged as Arg or Cys-MTSET (Fig. 6F). Thus, a positive 

charge at position 415 could partially prevent the acidic shift in the pH dependence of 

activation, and of the Isust decrease. The double mutant R371C L415R was non-functional but 

was transformed into a H+-gated channel after exposure to MTSET (IpH4.5 = 0.1 ± 0 μA before 

and  IpH5 = 15.5 ± 5.5 μA after MTSET exposure, n=3-5), indicating that the electrostatic 

repulsion between R415 and R371 of a neighboring subunit is important for the function and 

pH dependence of the L415R mutant.  

 

Discussion 

We show in this study that the lower palm domains of ASIC subunits move toward the central 

vertical axis during desensitization. The lower palm domain is critically involved in 

desensitization, as illustrated by our observations that mutations in this domain affect the time 

course and the extent of desensitization, as well as the pH dependence of steady-state 

desensitization. MD analyses show that mutations disrupt desensitization by preventing the 

lower palm domain from adopting the same conformation as the desensitized WT channel.  

 

Conformational changes in the lower palm during desensitization  

The MTSET modification rate of engineered Cys residues in the palm measured on closed 

channels was substantially smaller for residues oriented towards the central vestibule than for  

those pointing outward in the crystal structure of the desensitized channel. This indicates that 

the side chain orientation in the lower palm domain around the central vestibule is similar in 

the closed and the desensitized state. For residues pointing to the central vestibule the MTSET 

reaction rate decreased further when the reagent was applied to desensitized channels, 

indicating that in the desensitized conformation some of them were barely accessible. This 

strongly suggests that the lower palm domains of the three subunits move towards each other 

during the transitions from the closed to the desensitized state. Together with the MTSET 

modification experiments on closed channels it also indicates that the residues do not switch 

between inward and outward orientation during desensitization. There is evidence that, on the 

level of E418 in the wide part of the central vestibule, an important part of the closing 

movement occurs during the transition from the open to the desensitized state. First, 

intersubunit distances at the level of E79 and E418 were longer in the open than in the 

desensitized crystal structure (5). Second, mutations of E418 strongly affected desensitization 
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by sterical hindrance. Activation was however much less affected, indicating that in open 

channels the palm domains are not as close to each other as they are shown in the desensitized 

crystal structure (10). A decreased accessibility of E79 after desensitization has also been 

shown in ASIC3 (20).   

 

Palm sub-domains involved in the open-desensitized transition 

Substitution of residues in the β11-β12 linker and of a horizontal belt of residues in the β 

sheets affected the time course of open-channel desensitization. The residues of the β sheets 

involved in the desensitization time course only slowed the transition when the engineered 

Cys residue were modified by MTSET, suggesting that the slowing of desensitization was due 

to a steric hindrance and/or to electrostatic interactions in the central vestibule.   

Three residues in the β1-β2 linker are critical for the desensitization time course in ASIC1 

(21).  Recent studies have also shown that the β1-β2 and β11-β12 linkers interact with each 

other (23-25). Comparison of the desensitized and open structures of ASIC1 indicated a twist 

in the β11-β12 linker leading to a swap of the positions of the side chains L415 and N416 (5). 

These studies highlighted the importance of these two linkers for channel desensitization, and 

their requirement of free movement for proper function. In our study, substitutions of N416 

slowed desensitization, which was however complete at the end of the acidic stimulation. In 

MD simulations the N416R mutant adopted a conformation of the R416 side chain that 

required a larger conformational change for desensitization to occur than in the WT. The 

charge and the increased size of the mutant side chain likely slowed this movement further 

down, limiting the kinetics of desensitization.   

 

Effects of desensitization mutations on palm conformation 

The appearance of a sustained current after substitution of palm residues supports the 

important role of the palm domain in desensitization. In these mutants the increased 

hydrophilicity and size of the side chain caused the disruption of normal desensitization.  

MD simulations based on the desensitized structure showed that mutations that disrupted 

desensitization moved the palm away from the WT conformation. The L280R mutation 

prevented the closure of the palm and was in this respect reminiscent of the open WT 

structure. Mutation of L77 led to a narrowing of the lower part of the central vestibule. The 

Q276R mutation led to a narrowing of the upper half of the central cavity and created 
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additional intersubunit interactions and with it a tighter conformation of the β sheets around 

the central cavity.   

The constriction below the central cavity is seen in both the open and desensitized structures. 

The three subunits come in contact with each other at the level of residue L77; this is the only 

contact point along the symmetry axis in the palm domain. Residue L77 may serve as a 

pivotal point or fulcrum, through which the movements of the palm domain are transmitted to 

the pore. The outward movement of the palm domains would result, through a rotation around 

residues L77, into the outward movement of the pore domain helices without the need of 

creating a cavity throughout the palm domain. Mutation L280R appears to disrupt the contact 

point formed by residues L77, which are more distant from each other in this mutant. This 

movement is transmitted to the upper part of the pore domain, which becomes as wide as in 

the open structure (Fig. 5A), potentially explaining the observed sustained current for the 

L280R mutant. 

In one out of three subunits of the L415R mutant, the introduced Arg in the β11-β12 linker 

pointed downward, separating the upper parts of the β sheet and pushing β1 downward.  

Substitutions of L415 behaved differently from substitutions in the β sheet. First, channel 

function was extremely sensitive to changes of the L415 side chain. Second, substitutions of 

L415 strongly shifted the pH dependence of activation to more acidic values. This shift was 

abolished if substitutions were positively charged. Third, most substitutions of L415 disrupted 

desensitization only completely above a pH threshold. At more acidic pH the Isust decreased, 

indicating that a sufficiently acidic pH allowed normal desensitization. The pH dependence of 

activation and of the disappearance of the Isust was in these substitutions highly correlated 

with the presence of a positive charge at position 415. The presence of R371 was required for 

the function of the L415R mutant, indicating that the disrupting effect of the substitution is 

reduced by electrostatic interactions between R415 and R371. Together this suggests that 

L415 mutations disrupt desensitization by a mechanism that is profoundly different from that 

of substitutions of β sheet residues, which activated normally but displayed impaired 

desensitization. The effects of L415 mutations are closer linked to activation and may induce 

a different type of opening, as has been demonstrated for mutations of the degenerin site, a 

regulatory site in the ASIC pore (26).  
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Desensitization as a conserved feature in ENaC/degenerin channels 

Other ENaC/degenerin channels than ASICs have been shown to desensitize or to display a 

transition similar to desensitization. ENaC is regulated by Na+ self-inhibition in a similar way 

as protons induce desensitization in ASICs (27, 28).  The degenerin current induced by a 

constant mechanical force is transient (1).  FMRFamide-gated Na+ channels which are 

members of the ENaC/degenerin channel family also display a desensitizing current (29). The 

palm is together with the β-ball the most highly conserved domain between ASICs and ENaC 

(30). Together this suggests that the palm may have a conserved role in desensitization or 

desensitization-like mechanisms in ENaC/degenerin channels.  

 

Conclusion 

The palm domain is involved in linking the pH sensors to the ASIC channel gate. We show 

here that the lower palm controls desensitization. Upon extracellular acidification the lower 

palm β sheets undergo a closing movement that stabilizes the desensitized state. For complete 

and stable desensitization, the lower palm domains must be able to complete the closing 

movement. The knowledge of the mechanisms of desensitization and the identification of the 

residues involved in ASIC are valuable for the understanding of ENaC/degenerin channels 

and for the development of drugs targeting these channels.  
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Figure legends 

Fig. 1. Accessibility of lower palm residues to MTSET. A, hASIC1a model, illustrating the 

different domains in one of the three subunits (left panel). The lower palm domain is shown as 

a structural representation (middle panel) or as a schematic representation (right panel), with 

outward-facing residues shown in blue, inward-facing residues (i.e. residues oriented towards 

the central vestibule) in red. B, Measurement of the time course of reaction of MTSET on 

hASIC1a L280C expressed in Xenopus oocytes, voltage-clamped to -60 mV. Once every 

minute the extracellular solution was changed for 5 s from the conditioning pH solution (7.2) 

to 5.5 to activate ASICs. 0.4 mM MTSET was included in the pH7.2 solution as indicated by 

the horizontal bar, and the extent of channel modification is reflected by the increase in 

sustained current. C, The sustained/peak current amplitude fraction Isust/Ipeak is plotted as a 

function of time for the experiment shown in panel B. The solid line represents an exponential 

fit, yielding a rate of modification of 0.65 min-1. For B and C, the time point 0 refers to the 
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start of MTSET perfusion. D, MTSET reaction rates in mM-1 min-1 for application to the 

closed state are plotted (n=3-10), see Supplemental Table S1 for conditions. Mutants are 

indicated in the color of their orientation, red (inward facing), blue (outward), black (others). 

The bars are colored as indicated in E. E, Graphical interpretation of data, showing the 

residues on one of the three subunits, colored according to the MTSET reaction rate on the 

Cys mutant. 

 

Fig. 2. State-dependent accessibility of lower palm residues to MTSET. A, Steady-state 

desensitization (SSDES) curve of the mutant E418C at either 0.1 (○) or 2 mM Ca2+ (●) in the 

conditioning solution. The two vertical arrows illustrate the two conditions at pH7.6 used for 

the experiment described in B, closed, black upward arrow, and desensitized, grey downward 

arrow. B, Illustration of the MTSET accessibility testing to closed (upper traces, pH7.6, 2 mM 

Ca2+) or desensitized E418C (lower traces, pH7.6, 0.1 mM Ca2+). C, The fractional 

modification by MTSET applied during 2 min to closed or desensitized channels (as 

illustrated in B, calculated as modification after 2 min of incubation in test conditions / 

modification after additional 3 min 1 mM MTSET exposure to closed channels) is plotted 

(n=3-6), see Supplemental Table S1 for conditions. The fractional modification was different 

between the closed and desensitized state for all mutants except Y282C and E421C (p<0.01, 

t-test). Mutants are indicated in the color of their orientation, red (inward facing), blue 

(outward), black (others). The bars are colored as indicated in D. D, Graphical interpretation 

of data, showing the residues colored in blue, orange or green if the reaction rate was higher, 

equal or lower in the closed as compared to  the desensitized state.  

 

Fig. 3. Time course of open-channel desensitization. A, Representative traces of WT, 

V414C and N416C hASIC1a, obtained before and after MTSET modification. B, The time 

constant of open-channel desensitization was determined from single exponential fits to the 

decaying phase of the current trace induced by pH5 (n=3-21). *, different from WT (p<0.05, 

ANOVA followed by Dunnett’s post test). Mutants are indicated in the color of their 

orientation, red (inward facing), blue (outward), black (others).  C, Graphical interpretation of 

the data, showing the residues whose substitution changed the time course of open-channel 

desensitization. D, For WT and selected mutants the time constant of open-channel 

desensitization is plotted at different stimulation pH (n=3-21). The inset shows representative 

current traces of N416C-MTSET at different stimulation pH. E, Structural alignment of WT 

ASIC1 of the open structure 4FZ1 (green) and the desensitized structure (blue). N416 is 



21 
 

shown in orange F, Situation around N416 in the MD simulation of WT. G, Situation around 

R416 in the MD simulation of the N416R mutant. In all structural images the numbering of 

residues is according to human ASIC1a. 

 

Fig. 4. Appearance of a sustained current in palm mutants. A, Representative current 

traces of mutants Q278C and L415C before (top) and after MTSET exposure (1 mM, 5 min; 

bottom). B, The sustained current fraction (Isust/Ipeak) measured at pH5 is plotted for Cys 

mutants before (open bars) and after exposure to MTSET (filled bars), n=3-15. *, different 

from WT (p<0.05 ANOVA, Dunnett’s post test). Mutants are indicated in the color of their 

orientation, red (inward facing), blue (outward), black (others). For L415C the small peak-like 

deflection was not considered as peak for calculating the ratio. The mutant Y417C displayed a 

small sustained current. Exposure to MTSET decreased the peak current amplitude by 17 ± 2 

- fold but did not affect the Isust (n=9), resulting in the high Isust/Ipeak ratio observed.  

C, Graphical interpretation of the data. Residues whose substitution resulted in Isust > 0.1 at 

pH5 and was significantly different from WT Isust are shown; orange, Isust/Ipeak >0.1 in Cys 

mutant or Cys-MTSET; green, Isust/Ipeak >0.3 in Cys mutant or Cys-MTSET. D, Role of side 

chain properties of desensitization mutants. The sustained current fraction is plotted for the 

mutation to Arg, and to Cys before and after modification by MTSET (positively charged), 

MTSES (negatively charged) and a non-charged hydrophobic reagent (DMBE-MTS), n=3-12. 

Data are from stimulation pH4.5, except for L415C-MTSET and L415R, average of Isust 

obtained at pH4 and pH5. 

 

Fig. 5. Molecular dynamics analysis of desensitization mutants.  A, Radius of the solvent-

accessible cavities and pores along the central vertical channel axis, calculated with the 

HOLE software (22). “Channel axis” refers to the position along the vertical axis as indicated 

in B. Calculations were made from MD simulations of WT and the indicated mutants obtained 

as average over 200 frames, and from the open crystal structure of Psalmotoxin-bound ASIC1 

at pH7.25 (PDB number 4FZ1 (5)). B, Mapping of the solvent-accessible pathway, shown for 

the desensitized structure (PDB 2QTS).  C, Schematic view of the channel seen from the 

bottom, showing three β strands per subunit and highlighting the orientation of residues L77 

(turquoise), Q276 (orange) and L280 (green) in the desensitized WT structure. D, G-I, Detail 

views taken at the end of the MD simulations. Subunits are shown in different colors and the 

residues L77 in turquoise, Q276 in orange and L280 in green. Note that the views are from the 

inside of the central vestibule.  D, View of WT, showing the positions and the environment of 
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L77, Q276 and L280. E, F, Structure alignment of WT (blue) and the mutant L280R (yellow) 

obtained at the end of the MD simulations. E, Side view (subunit A). F, View from bottom.  

The red arrows highlight the main differences between the mutant and WT. The letters in (F) 

indicate the subunits, with subunit A shifted outward. G-I, Detail view of the L280R mutant 

(G), the L77R mutant (H) and the Q276R mutant (I). In all structural images the numbering 

of residues is according to human ASIC1a. 

 

Fig. 6. The mutation L415R induces strong conformational changes in the lower palm 

domain. A, Alignment of the closed and desensitized ASIC1 crystal structure.  Green, open; 

Blue, desensitized; L415 is shown in orange. B-D, The structures correspond to 

conformations adopted at the end of the MD simulation, seen from the outside. The residue at 

position 415 is shown in orange. B, Environment of L415 in the WT. C, Environment of the 

R415 side chain in the L415R mutant, as observed in two of three subunits in the MD 

simulation. R415 interacts by hydrogen bonds with E254 of a neighboring subunit. D, 

Environment of R415 in the L415R mutant, as observed in one subunit. The R415 side chain 

points downwards, changing the conformation of the lower palm β sheet of the same subunit. 

E, pH dependence of Isust of L415 substitutions, n=3-39; F, pH dependence of activation of 

L415 substitutions, n=4-39. In all structural images the numbering of residues is according to 

human ASIC1a. 
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Mutant conditioning stimulation observed change

pH pH after MTSET cause 2 mM Calcium 0.1 mM Calcium with MTSET

WT 7.19 ± 0.00 7.48 ± 0.00

L77C 7.4 5 Isust 

D78C 7.4 6 I ↑ pH50 shift 7.15 ± 0.01 7.50 ± 0.00 7.3

E79C 7.4 5.5 I ↓ 7.31 ± 0.01 7.61 ± 0.00 7.5

Q276C 7.2 5 Isust ↑ 6.83 ± 0.00 7.04 ± 0.02 6.9

Q278C 7.2 6.7 I ↑ pH50 shift 6.90 ± 0.02 7.17 ± 0.01 7.0

L280C 7.2 5.5 Isust, I ↑ 7.00 ± 0.00 7.23 ± 0.00 7.1

Y282C 7.4 5 I ↓ 7.09 ± 0.01 7.55 ± 0.01 7.4

T370C* 7.2 5 I ↑ pHDes50 shift 7.26 ± 0.01 7.53 ± 0.00 7.4

R371C* 7.1 5.5 I ↑ pHDes50 shift 7.19 ± 0.01 7.51 ± 0.00 7.3

E413C 7.2 6.2 I ↓ pH50 shift 6.87 ± 0.01 7.13 ± 0.00 7.0

V414C 7.4 6.5 I ↓ pH50 shift 7.13 ± 0.02 7.32 ± 0.01 7.3

L415C 7.4 5 I ↑ pH50 shift

N416C 7.2 6.5 I ↓ pH50 shift 6.88 ± 0.01 7.22 ± 0.00 7.1

Y417C 7.4 5.5 I ↓ 7.47 ± 0.01 7.88 ± 0.06 7.6

E418C* 7.4 5 I ↓ pHDes50 shift 7.47 ± 0.01 7.82 ± 0.00 7.6

T419C* 7.1 6 I ↑ pHDes50 shift 7.18 ± 0.01 7.51 ± 0.00 7.4

I420C 7.4 5 Isust 7.09 ± 0.01 7.39 ± 0.00 7.2

E421C 7.4 5 I ↓ 7.17 ± 0.01 7.45 ± 0.00 7.3

MTSET kinetics to closed channels state-dependent accessibility

pHDes50 at pHDes50 at incubation pH

The left part of the table describes the conditions for the MTSET kinetics experiments of Fig. 1 while 

the right part describes the conditions in the state-dependent accessibility experiments (Fig. 2).  I ↑, 

current increase; I↓, current decrease; Isust, sustained current; pH50, pH of half-maximal activation; 

pHDes50, pH of half-maximal steady-state desensitization; incubation pH with MTSET, pH at which 

the 2-min incubation with MTSET was carried out (Fig. 2), n=4-63. *, For the mutants T70C, 

R371C, E418C and T419C MTSET was applied to channels that were partially desensitized in the 

initial measurements of the time course of modification. Modification induced a right shift in the 

steady-state desensitization curve and thereby increased the current. The rate constants determined 

were 17.8 ± 2.8 mM
-1

 min
-1

 (T370C), 1.2 ± 0.0 mM
-1

 min
-1

 (R371C), 2.3 ± 0.4 mM
-1

 min
-1

 (E418C) 

and 42.6 ± 3.6 mM
-1

 min
-1

 (T419C). To provide MTSET modification rates to closed channels for 

these four mutants, protocols as described in Fig. 2B were used and MTSET was applied for 2 min at 

a pH at which the mutants were in the closed state. The concentration of MTSET was chosen to 

produce a 55-75% modification. From the fractional modification and the assumption of single 

exponential modification kinetics the modification rate was calculated. This modification rate is 

presented for these four mutants in Fig. 1D. 

 

Supplemental Table S1. Conditions for MTSET kinetics and state-dependent accessibility 

experiments  



Mutant pHDes50

WT 6.26 ± 0.01 6.25 ± 0.03 7.19 ± 0.00 7.16 ± 0.01

V74C 6.15 ± 0.05 6.22 ± 0.04 7.33 ± 0.02
*

7.32 ± 0.00
*

T75C 5.86 ± 0.03
*

5.84 ± 0.03
*

7.16 ± 0.01 7.16 ± 0.01

K76C 6.22 ± 0.03 6.52 ± 0.03
*

7.21 ± 0.01 7.14 ± 0.01

L77C 6.18 ± 0.03 6.12 ± 0.05
*

7.16 ± 0.01 7.31 ± 0.01
*

D78C 6.03 ± 0.02
*

5.95 ± 0.04
*

7.15 ± 0.01
*

7.18 ± 0.02

E79C 6.12 ± 0.03
*

6.22 ± 0.03 7.31 ± 0.01
*

6.71 ± 0.00
*

V80C 6.18 ± 0.04 6.12 ± 0.06 7.14 ± 0.00
*

7.09 ± 0.01
*

Q276C 6.26 ± 0.05 6.12 ± 0.03
*

6.83 ± 0.00
*

6.58 ± 0.01
*

Q278C 6.37 ± 0.08 6.44 ± 0.04
*

6.90 ± 0.02
*

6.82 ± 0.01
*

R279C 5.71 ± 0.08
*

5.54 ± 0.10
*

7.51 ± 0.01
*

7.48 ± 0.02
*

L280C 6.18 ± 0.02 6.46 ± 0.03
*

7.00 ± 0.00
*

6.86 ± 0.16
*

I281C 6.29 ± 0.03 6.13 ± 0.02
*

7.09 ± 0.01
*

7.10 ± 0.00
*

Y282C 6.11 ± 0.07 6.02 ± 0.07
*

7.09 ± 0.01
*

7.09 ± 0.01
*

L369C 6.41 ± 0.04 6.24 ± 0.04 7.10 ± 0.01
*

6.98 ± 0.00
*

T370C 6.20 ± 0.02 6.21 ± 0.05 7.26 ± 0.01
*

7.09 ± 0.00
*

R371C 6.21 ± 0.05 6.25 ± 0.03 7.19 ± 0.01 7.04 ± 0.01
*

V414C 6.36 ± 0.04 6.25 ± 0.02 7.13 ± 0.02
*

6.77 ± 0.03
*

L415C 4.13 ± 0.03
*

6.14 ± 0.06 6.65 ± 0.09
*

N416C 6.23 ± 0.06 6.05 ± 0.02
*

6.88 ± 0.01
*

6.58 ± 0.07
*

Y417C 5.84 ± 0.08
*

5.83 ± 0.25
*

7.47 ± 0.01
*

7.53 ± 0.04
*

T419C 6.24 ± 0.02 6.30 ± 0.01 7.18 ± 0.01 7.08 ± 0.01
*

I420C 5.99 ± 0.02
*

6.12 ± 0.02
*

7.09 ± 0.01
*

6.56 ± 0.06
*

E421C 6.27 ± 0.03 6.19 ± 0.03 7.17 ± 0.01 7.16 ± 0.02

Q422C 6.07 ± 0.05
*

6.08 ± 0.04 7.24 ± 0.01
*

7.22 ± 0.02

N.D.

Cys-MTSET

pH50 pH50 pHDes50

Cys Cys-MTSET Cys

Supplementary Table S2. pH dependence of mutants 

The pH of half-maximal activation pH50, as well as the pH of half-maximal steady-state 

desensitization pHDes50 are plotted for the mutants indicated, before (Cys) and after exposure 

to MTSET (Cys-MTSET, n=3-63). *, different from WT, p<0.05; N.D., not determined.. 
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Supplementary Figure S1. Conservation of  sheet structure and intersubunit distance 

changes in mutants analyzed by MD simulations. A, illustration of the palm  sheet structure 

with indication of hydrogen bonds of the WT structure in the MD simulation (left) and the WT 

open structure (PDB 4FZ1) (right). Differences are highlighted with a red arrow. B, Illustration 

of the palm  sheet with indication of differences to WT in L77R, L280R and one of the three 

subunits of L415R. Differences to WT are indicated with red arrows. C, mean values of the 

intersubunit distance between L74 C atoms, measured in simulations with WT and different 

mutants. D, intersubunit distance between E418 C atoms, measured in simulations with WT 

and different mutants. For C and D, the mean values over the complete duration of the simulation 

are shown, between subunits A and B, B and C or C and A, as indicated.  
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Supplementary Figure S2. Distance comparison with contact maps in mutants L77R, Q276R, L280R, L415R and N416R. Distances between the center of mass of 
the indicated residues were calculated for WT and the mutants L77R, Q276R and L280R, as an average from different time points of the MD simulation. These distances 
in each of the mutants were then compared to the distances in WT. Distances that were bigger in the mutant are indicated in red in the contact map, distances that were 
smaller in the mutant are indicated in blue. The intensity of the color is proportional to the difference in distance. Distances were measured in three different layers of the 
lower palm domain, separated into “bottom”, “center” and “top”. The amino acid residues according to the human ASIC1a WT are indicated; A, B and C stand for the three 
subunits.    




