

Systematic and Statistical Uncertainties in Cosmic Ray Arrival Direction Reconstruction

Philip Wahrlich

A thesis submitted to the University of Adelaide in fulfilment of the requirements of the degree of Doctor of Philosophy

January 2013

School of Chemistry and Physics The University of Adelaide

Contents

1	Intr	roduction	15
2	Ulti	ra-High Energy Cosmic Rays	18
	2.1	Introduction	18
		2.1.1 Cosmic Ray Spectrum	19
		2.1.2 Chemical Composition	19
	2.2	Possible UHECR sources	21
		2.2.1 Bottom-up Acceleration	21
		2.2.2 Top-down Scenarios	28
	2.3	Propagation of UHECR	31
		2.3.1 Energy Losses	31
		2.3.2 Magnetic Deflection	35
3	\mathbf{Ext}	ensive Air Showers	38
	3.1	Heitler Models	38
	3.2	Cascade Theory	43
	3.3	Lateral shower development	45
	3.4	Air Shower Detectors	46
		3.4.1 Cherenkov Telescopes	46
		3.4.2 Fluorescence Detectors	46
		3.4.3 Ground Arrays	48
	3.5	Air Fluorescence Detection	50
		3.5.1 Air Fluorescence	50
		3.5.2 Cherenkov Radiation	52
4	The	e Pierre Auger Observatory	55
	4.1	Surface Detector	55
		4.1.1 Calibration	56
		4.1.2 Trigger System	58
	4.2	Fluorescence Detector	60
		4.2.1 FD Electronics and Hardware Trigger System	64
		4.2.2 Calibration	66
	4.3	HEAT	69
	4.4	AMIGA	70
	4.5	Atmospheric Monitoring	70

5	Hyb	brid Reconstruction	76
	5.1	Pulse Finding	76
	5.2	Shower-Detector Plane	78
	5.3	FD Time Fit	82
	5.4	Hybrid Time Fit	87
	5.5	Angular Resolution	89
	5.6	Longitudinal Profile Reconstruction	91
	5.7	Hybrid Event Simulation	97
		5.7.1 Air Shower Simulation	97
		5.7.2 Detector Simulation	99
6	$\mathbf{A} \mathbf{S}$	Summary of Recent Results from the Pierre Auger Observatory	106
	6.1	Arrival Directions	106
	6.2	Primary Composition	108
	6.3	Neutrino Flux Limits	108
	6.4	Photon Flux Limits	110
	6.5	Energy Spectrum	111
7	\mathbf{Svs}	tematic and Statistical Uncertainties in Hybrid Reconstruction	115
	7.1	SDP Uncertainty	115
		7.1.1 Simulating Shower Images	120
		7.1.2 Toy Model	124
		7.1.3 Conclusions and Discussion	131
	7.2	Alternative SDP Reconstruction Algorithm	140
		7.2.1 Amplitude Fitting	140
		7.2.2 Toy MC	141
		7.2.3 Implementation	143
		7.2.3.1 Flattening the Light Flux	143
		7.2.3.2 Non-pulsed Pixels	147
		7.2.3.3 Outlier Rejection	148
		7.2.3.4 Resolution from Simulated Showers	148
		7.2.4 Problems with Wide Tracks	149
		7.2.5 Discussion	149
	7.3	Global Hybrid Geometry Regression	155
		7.3.1 Weighted χ^2 Components	156
		7.3.2 Discussion	157
	7.4	Pulse Centroid Time Uncertainty	160
		7.4.1 FD Shower Geomety Reconstruction	161
		7.4.2 Determining the Pulse Centroid	162

		7.4.3	Previous Studies	2
		7.4.4	Pulse Centroid Time - Statistical Uncertainty	3
			7.4.4.1 Signal Uncertainty	3
			7.4.4.2 Signal Autocorrelation	5
			7.4.4.3 Timing Uncertainity	7
		7.4.5	Validation with FD Monocular Data	8
		7.4.6	Data Set	0
		7.4.7	Reduced χ^2 Distribution	0
		7.4.8	χ^2 Probability Distribution	1
		7.4.9	Correlation with Reconstructed Shower Parameters	2
		7.4.10	Pulse Length Dependence	5
			7.4.10.1 Pulse Finding Systematics	5
			7.4.10.2 Cleaning Cut Systematics	5
		7.4.11	Results	6
		7.4.12	Discussion	7
	7.5	Atmos	pheric Refraction	1
		7.5.1	Ray-tracing	1
		7.5.2	Atmospheric Refractive Index Profile	1
		7.5.3	Curved Ray Trajectories and SD-FD Time Synchronicity Measure-	
			ments	2
		7.5.4	Correction for SD-FD time offset measurements with Laser Shots 18	3
		7.5.5	Correction for SD-FD time offset measurements with Showers 18	4
		7.5.6	Conclusions	5
	7.6	Pixel (Chord Asymmetry	6
		7.6.1	Chord Asymmetry Estimator	7
		7.6.2	Simulation	8
		7.6.3	Discussion	9
8	Svn	chroni	sing the Hybrid Detector 19	1
-	8.1	FD-SE) time offset	2
	-	8.1.1	Calculation of $\tau_{\rm FD}$	4
		8.1.2	Calculation of $\tau_{\rm SD}$	4
		8.1.3	Besults	4
	8.2	End-to		7
		8.2.1	Weighted Least Trimmed Squares Curvature Fit	8
		8.2.2	Measuring Time Synchronisation	8
		8.2.3	Station 203: 'Celeste'	0
		8.2.4	Discussion	3
	8.3	Telesco	ppe-Telescope Time Synchronisation	4

		8.3.1	Calculating Telescope-Telescope Time Offsets	204
		8.3.2	Methodology	205
			8.3.2.1 Reconstruction and Analysis Cuts	205
		8.3.3	Discussion	206
9	Gala	actic C	Centre Point Source Search	209
	9.1	Galact	tic Centre Neutron Search	211
		9.1.1	Data Selection	211
		9.1.2	Sky Map	211
		9.1.3	Significance	213
		9.1.4	Results	213
	~			
10	Con	clusio	n	216
\mathbf{A}	App	oendix	Α	220
	A 1	~ .		
	A.1	Statist	tical Tools	220
	A.1	Statist A.1.1	Linear Least Squares Regression	220 220
	A.1	Statist A.1.1 A.1.2	tical Tools	220220222
	A.1	Statist A.1.1 A.1.2 A.1.3	tical Tools	220220222222222
	A.1	Statist A.1.1 A.1.2 A.1.3	Linear Least Squares Regression	 220 220 222 222 223
	A.1	Statist A.1.1 A.1.2 A.1.3 A.1.4	tical Tools Linear Least Squares Regression Weighted Least Squares Non-Linear Least Squares A.1.3.1 Error Estimation Diagnostics: Properties of the χ^2 minimisation	 220 220 222 222 223 224
	A.1 A.2	Statist A.1.1 A.1.2 A.1.3 A.1.4 Least	tical Tools Linear Least Squares Regression Weighted Least Squares Non-Linear Least Squares A.1.3.1 Error Estimation Diagnostics: Properties of the χ^2 minimisation Trimmed Squares	 220 220 222 222 223 224 225
	A.1 A.2 A.3	Statist A.1.1 A.1.2 A.1.3 A.1.4 Least The B	tical Tools	 220 220 222 222 223 224 225 225
	A.1 A.2 A.3	Statist A.1.1 A.1.2 A.1.3 A.1.4 Least The B A.3.1	tical Tools Linear Least Squares Regression Weighted Least Squares Non-Linear Least Squares Non-Linear Least Squares Diagnostics: Properties of the χ^2 minimisation Trimmed Squares Sootstrap Method Estimating the Variance of the ADS for Laser Shots Sootstrap Shots	 220 220 222 222 223 224 225 225 227
	A.1 A.2 A.3 A.4	Statist A.1.1 A.1.2 A.1.3 A.1.4 Least The B A.3.1 Angul	Linear Least Squares Regression	 220 220 222 222 223 224 225 225 227 228
	A.1 A.2 A.3 A.4 A.5	Statist A.1.1 A.1.2 A.1.3 A.1.4 Least The B A.3.1 Angul Standa	Linear Least Squares Regression	 220 220 222 222 223 224 225 225 227 228 229
	A.1 A.2 A.3 A.4 A.5	Statist A.1.1 A.1.2 A.1.3 A.1.4 Least The B A.3.1 Angul Standa A.5.1	Linear Least Squares Regression	 220 220 222 222 223 224 225 225 227 228 229 229

List of Figures

2.1	The all-particle differential cosmic ray spectrum.	20
2.2	The flux of low energy cosmic ray nuclei, in particles per energy-per-	
	nucleus, measured by various (mostly balloon-borne and satellite based)	
	experiments. Figure from [1].	22
2.3	The average depth of shower maximum as measured by HiRes, the Pierre	
	Auger Observatory, and the Telescope Array. Overlaid are lines repre-	
	senting the expectations from three hadronic interaction models for pro-	
	ton primaries (upper lines) and iron primaries (lower lines). Plot from	
		23
2.4	Diagram showing a cosmic ray entering and exiting a molecular cloud.	24
2.5	Diagram showing a particle moving across the edge of a region of shocked	
	gas	26
2.6	The Hillas plot.	29
2.7	$P\gamma$ total cross section.	33
2.8	Attenuation of UHECR protons.	34
2.9	Galactic magnetic field models from [3]. See text for details.	37
	0 11	
3.1	Simulation of a 10^{12} eV proton-initiated EAS using CORSIKA [4]	39
3.2	Heitler's qualitative model for an electromagnetic cascade	41
3.3	Matthews [5] describes a Heitler-type qualitative model for a hadronic	
	cascade	42
3.4	The Whipple Observatory IACT.	47
3.5	The Fly's Eye.	48
3.6	Nitrogen fluorescence spectrum from [6]	51
3.7	Energy levels for the 2P and 1N systems. Figure from [7]	51
3.8	Cherenkov radition at the Advanced Test Reactor at Idaho National Lab-	
	oratory.	53
3.9	Cherenkov radiation is emitted along the surface of a cone	54
4.1	Schematic view of an SD station	56
4.1	The layout of Auger South	57
4.3	3ToT station configurations	60
4.0 4.4	4C1 station configurations	60
4.5	T5 trigger probability from [8]	61
4.6	FD building schematic	62
47	An illustration of a Mercedes Star light collector	62 62
т. 1 4 8	The light collection efficiency of a Mercedes Star light collector from [0]	62
<u>т</u> .0 Д 0	SLT fundamental patterns	64
4.3	SET fundamental patterns.	04

4.10	An illustration of the TLT cursory SDP fit	65
4.11	T3 efficiency relative to TLT efficiency	67
4.12	T3 trigger efficiency.	67
4.13	The three HEAT telescopes are housed in separate enclosures which pivot,	
	allowing for operation in either high or low elevation modes	70
4.14	AMIGA is located near to, and in the field of view of, the Coihueco FD	
	and HEAT telescopes.	71
4.15	The CLF, with the Celeste SD station in the background.	72
4.16	FRAM and its enclosure, located about 30 m from the Los Leones site	73
5.1	An example shower track as detected by an FD camera. Colours represent	
	relative pulse timing information, hotter indicating later pulses	78
5.2	SDP normal vector convention.	82
5.3	An illustration of the shower geometry, defined in terms of the FD ob-	
	servables.	83
5.4	Diagram of a downgoing event, landing in front of the FD site	85
5.5	Diagram of a downgoing event, landing behind the FD site	86
5.6	Diagram of an upgoing event, emerging from in front the FD site	86
5.7	Diagram of an upgoing event, emerging from behind the FD site	86
5.8	The resolution of hybrid reconstruction and FD monocular reconstruction.	89
5.9	Hybrid angular resolution for simulated events.	91
5.10	Cherenkov light contributions	93
6.1	The arrival directions of 27 events which correlate with AGN from the	
	VCV catalogue [10]. \ldots \ldots \ldots \ldots \ldots \ldots \ldots	107
6.2	The mean X_{\max} and $RMS(X_{\max})$ as a function of energy from [11]	109
6.3	Single flavour UHE neutrino diffuse flux limits at 90% confidence from	
	the Pierre Auger Observatory [12].	110
6.4	The Fisher response distributions for a simulated proton and photon	
	events with energies between 10^{18} eV and $10^{18.5}$ eV	112
6.5	Photon flux upper limits at 95% confidence [13]	113
6.6	The UHECR energy spectrum from [14]	114
7.1	The empirical distribution of $\frac{\sqrt{q_i}\Omega_i}{\text{RMS}(\sqrt{q_i}\Omega_i)}$ for golden hybrid events	117
7.2	The dependence of L^2/N with the width of the track image for recorded	
	events	118
7.3	The dependence of L^2/N with the width of the track image for simulated	
7.3	The dependence of L^2/N with the width of the track image for simulated events.	119
7.3 7.4	The dependence of L^2/N with the width of the track image for simulated events	119 121

7.5	The distribution of $\operatorname{pull}_{\operatorname{SDP}_{\theta}}$ for an ensemble of simulated shower events.	
	The error bars represent the RMS of $\text{pull}_{\text{SDP}_{\theta}}$ in bins of $\text{SDP}_{\theta}^{\text{sim}}$	122
7.6	The distribution of the residuals $\Delta \text{SDP}_{\theta}$ for an ensemble of simulated	
	shower events	123
7.7	The RMS of the pull distribution of SDP_{θ} as a function of various recon-	
	structed shower parameters	125
7.8	The RMS of the pull distribution of SDP_{θ} as a function of other various	
	reconstructed shower parameters	126
7.9	An example of a simulated shower image. Pulsed pixels (red) and non-	
	pulsed pixels (black) are shown.	127
7.10	The distribution of pull _{SDP} for an ensemble of toy Monte-Carlo simulated	
	shower events. The error bars represent the RMS of pull _{SDPa} in bins of	
	SDP_{a}^{sim}	129
7.11	The distribution of the residuals $\Delta \text{SDP}_{\theta}$ for an ensemble of toy Monte-	
	Carlo simulated shower events. The error bars represent the RMS of	
	$\Delta \text{SDP}_{\theta}$ in bins of $\text{SDP}_{\theta}^{\text{sim}}$	130
7.12	An illustration showing an example of an SDP reconstruction systematic	
	error which occurs due to insufficient pixel resolution	131
7.13	The distribution of pull _{SDP} for an ensemble of toy Monte-Carlo shower	
	events	132
7.14	The distribution of the residuals $\Delta \text{SDP}_{\theta}$ for an ensemble of toy Monte-	
	Carlo simulated shower events.	133
7.15	An illustration showing the pathology of a geometry reconstruction error.	134
7.16	An example of spatial aliasing. There is a loss of information because of	
	the discrete resolution of the camera.	136
7.17	An illustration of the scheme in which the upper and lower halves of the	
	camera are horizontally offset by a half pixel width to reduce the effect	
	of aliasing.	137
7.18	An example of a problematic SDP reconstruction for a simulated event.	139
7.19	The distributions of the differences between the reconstructed SDP pa-	
	rameters (SDP ^{rec} _{θ} and SDP ^{rec} _{ϕ}) and the actual simulated SDP parameters	
	$(SDP_{\theta}^{sim} \text{ and } SDP_{\phi}^{sim})$ resulting from the amplitude weighting reconstruc-	
	tion	144
7.20	The distributions of the differences between the reconstructed SDP pa-	
	rameters (SDP ^{rec} _{θ} and SDP ^{rec} _{ϕ}) and the actual simulated SDP parameters	
	$(SDP_{\theta}^{sim} \text{ and } SDP_{\phi}^{sim})$ resulting from the amplitude fitting reconstruction	145

7.21	The distributions of the differences between the reconstructed SDP pa-	
	rameters $(SDP_{\theta}^{rec} \text{ and } SDP_{\phi}^{rec})$ and the actual simulated SDP parameters	
	$(SDP_{\theta}^{sim} \text{ and } SDP_{\phi}^{sim})$ resulting from the amplitude fitting reconstruction	
	with the actual simulated ADS known a priori.	146
7.22	The light spot falls off the edge of the camera and some light fails to be	
	detected, so the luminosity of the shower is not well known while the light	
	spot falls on the outermost pixels (red dots).	147
7.23	The resolution of the fitted SDP using amplitude fitting in the absense of	
	statistical fluctuations in the pixel signals.	150
7.24	The resolution of the fitted SDP using amplitude weighting in the absense	
	of statistical fluctuations in the pixel signals.	151
7.25	The resolution of the fitted SDP using amplitude fitting in the presence	
	of statistical fluctuations in the pixel signals.	152
7.26	The resolution of the fitted SDP using amplitude weighting in the presence	
	of statistical fluctuations in the pixel signals.	153
7.27	An example of a problematic SDP reconstruction	154
7.28	The difference between the size of the errors in the reconstructed shower	
	axis parameters for global shower axis regression and sequential shower	
	axis regression.	158
7.29	The difference between the size of the errors in the reconstructed SDP	
	vector components for global shower axis regression and sequential shower	
	axis regression.	159
7.30	Illustration of the geometrical shower reconstruction from the observables	
	of the fluorescence detector $[15]$	161
7.31	A typical ADC trace showing the pulse centroid as indicated with the	
	red dot and dashed line (its uncertainty is contained within the dot).	
	The shaded region indicates the portion of the ADC trace flagged as	
	containing the pulse	162
7.32	A typical ADC trace from an air shower event.	166
7.33	Noise correlation coefficient distributions from data taken with Coiheuco	
	(Fig. 7.33a) and HEAT (Fig. 7.33b) for consecutive samples $(\rho_{i,i+1})$, and	
	samples which are separated by one sample $(\rho_{i,i+2})$	167
7.34	The distribution of $\Delta q_i/\sigma_{q_i}$ has mean ~ 0. That the RMS of the distri-	
	bution is larger than unity is the result of statistical bias in the estimator	
	σ_{q_i}	169
7.35	The distribution of $\Delta \bar{t}/\sigma_{\bar{t}}$ is well fit by a Gaussian with mean \sim 0 and	
	standard deviation \sim 1. Therefore the error model is appropriate for	
	simulation.	169

7.36	The distribution of reduced χ^2 from timing fits without pulse length correction.	171
7.37	The pulse length dependence of the timing fit reduced χ^2 is well fit by a quadratic. The x-axis is the mean pulse length per event.	172
7.38	The distribution of reduced χ^2 from timing fits with pulse length correc-	179
7.39	The χ^2 probability distribution for all events (blue) and events with cores	173
	falling further than 2000 m of an FD site (orange).	173
7.40	The reduced χ^2 of the timing fit as a function of reconstructed χ_0 , energy, and core-eve distance	174
7.41	The distribution of reduced χ^2 for Coihueco events has unit expectation.	177
7.42	The χ^2 probability distribution for Coihueco events is approximately uni-	
	form	177
7.43	For Coihueco events, the mean reduced χ^2 is relatively independent of	
	reconstructed shower geometry parameters χ_0 and R_p	178
7.44	The distribution of reduced χ^2 for HEAT events has an almost unit ex-	
	pectation. A slight deviation from unity is not unexpected, since only	
- 15	nominal rather than measured calibration values were used.	178
7.45	The χ^2 probability distribution for 2464 HEAT events is approximately	
	flat. Note the lack of significant peaks at $P(\chi^2)=0$ and $P(\chi^2)=1$ which	
	would otherwise indicate inadequacies in now the model deals with par-	170
7 46	ticular classes of events	179
7.40	For HEAT events the mean χ^2 is relatively independent of χ_0 and R_p .	179
1.41	light amitted in the field of view of the telescope	183
7 48	Deviation from the expected light travel time if straight line light propa	105
1.40	ration is assumed	184
749	Expected SD-FD time offset correction for hybrid showers with a vertical	101
1.10	SDP measured by Los Leones with refracted light paths taken into account	184
7.50	Chords across circular and hexagonal shapes.	186
7.51	Hexagonal pixel dimensions for a pixel of width W. Also shown is a chord	
	vector Ω traversing the hexagon.	188
7.52	The time residual as a function of pixel impact parameter expected from	
	theory 7.52a and seen in simulated events 7.52b. A 6th order polynomial	
	is fitted to the simulated data for visualisation purposes only. Note the	
	similary in the shape of the impact parameter dependence in both plots.	190

8.1	SD-FD time offset measured with vertical laser shots observed from Los	
	Leones (LL), Loma Morados (LM), Loma Amarilla (LA), and Coiheuco	
	(CO)	195
8.2	SD-FD time offset measured with inclined laser shots observed from Los	
	Leones (LL), Loma Morados (LM), Loma Amarilla (LA), and Coiheuco	
	(CO)	196
8.3	An illustration showing how station timing residuals can be expressed as	
	a weighted, directed graph.	199
8.4	Time offset (a) and associated uncertainty (b) of each SD station with	
	respect to Celeste.	201
8.5	For stations within 15 km of each FD site, the distribution of time off-	
	sets with respect to Celeste are shown, along with the distribution of	
	deviations from zero	202
8.6	An example of a single-telescope reconstruction of a multi-telescope event.	206
8.7	Relative time offsets between telescopes at the Los Leones (LL) , Los Mora-	
	dos (LM), Loma Amarilla (LA), and Coihueco (CO) sites. The time off-	
	sets measured from reconstruction A (red), reconstruction B (blue), and	
	their weighted average (black) are shown.	207
9.1	The density of selected hybrid events with arrival directions pointing back	
	to a small region of the sky around the Galactic centre region. The	
	location of Sag A* is shown (cross) in the centre of the plot	212
9.2	The distribution of number of events within 1.8° of the Galactic centre,	
	generated from 300 resampled data sets. 39 recorded events are found to	
	lie within 1.8° of the Galactic centre, shown as the red line.	214
9.3	The p-values associated with various radii of circular search windows	
	about the Galactic centre	215
A.1	Millions of phone calls in Belgium, 1950-1973. Figure from [16]. Shown	
	are three fitted lines. It can be seen that the LTS regression is robust	
	against outliers	226
A.2	Semi-hexagon distribution.	227

List of Tables

5.1	Systematic energy uncertainties	96
7.1	The centroid error algorithm currently implemented in the Auger Offline	
	Framework.	163
7.2	Noise correlation coefficients for consecutive samples $(\rho_{i,i+1})$, and samples	
	which are separated by one sample $(\rho_{i,i+2})$.	168
8.1	Time offsets between those stations within 15 km of each FD site and	
	Celeste	202
8.2	Time offsets between telescopes at Los Leones.	206
8.3	Time offsets between telescopes at Los Morados.	206
8.4	Time offsets between telescopes at Loma Amarilla.	207
8.5	Time offsets between telescopes at Coiheuco.	208
A.1	Standard Geometry Cuts	229

Abstract

The Pierre Auger Observatory (PAO) was constructed to study the highest energy cosmic rays (UHECR). A hybrid of ground array and fluorescence detector, it is the largest ultra-high energy cosmic ray detector to date. As such, the PAO detects UHECR in unprecedented amounts, offering unique insights into the nature and origin of these most extraordinarily energetic particles in the universe.

In this thesis we improve the accuracy of arrival direction uncertainty estimates for reconstructed events. We validate these improved uncertainty estimators through a number of statistical techniques, involving both recorded and simulated data. Furthermore, we identify and correct a number of systematic errors which arise in algorithmic corner cases. We propose novel techniques for measuring the time synchronisation of each detector in the using recorded air shower data. We use these techniques to measure the synchronisation of each detector across the PAO surface detector and fluorescence detector. Finally, we perform a cursory search for a point source of UHECR at the Galactic centre. A slight over-density of events is measured from the direction of the Galactic centre, however this over-density is not substantial enough to indicate a departure from isotropy.

Statement of Originality

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed: Date:

Acknowledgements

I would like to express my gratitude to the people who have helped me through the journey which has culminated in this thesis.

Firstly, to my supervisor, Prof. Bruce Dawson, who has been for me both mentor and role model throughout my stay. To my co-supervisor, Prof. Roger Clay, whose honest critique has always been timely and valuable.

I would also like to acknowledge the wider Adelaide Astrophysics Group, past and present - thank you for being such a great bunch of people to share a drink with. I recall my time spent with you with much fondness.

It has been a tremendous opportunity and a satisfying learning experience for me to work on the Pierre Auger Observatory. I am indebted to all those researchers and engineers whose efforts have made this possible.

Lastly, I would like to thank my parents, Michele and Gary, for their unwavering support and encouragement.