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Abstract

The Pierre Auger Observatory (PAO) was constructed to study the highest energy cosmic
rays (UHECR). A hybrid of ground array and fluorescence detector, it is the largest
ultra-high energy cosmic ray detector to date. As such, the PAO detects UHECR in
unprecedented amounts, offering unique insights into the nature and origin of these most
extraordinarily energetic particles in the universe.

In this thesis we improve the accuracy of arrival direction uncertainty estimates for
reconstructed events. We validate these improved uncertainty estimators through a num-
ber of statistical techniques, involving both recorded and simulated data. Furthermore,
we identify and correct a number of systematic errors which arise in algorithmic corner
cases. We propose novel techniques for measuring the time synchronisation of each de-
tector in the using recorded air shower data. We use these techniques to measure the
synchronisation of each detector across the PAO surface detector and fluorescence detec-
tor. Finally, we perform a cursory search for a point source of UHECR at the Galactic
centre. A slight over-density of events is measured from the direction of the Galactic
centre, however this over-density is not substantial enough to indicate a departure from

isotropy.
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