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Summary 

More than 50% of the world's population harbor Helicobacter pylori in their stomach mucosa. 

The chronic gastric infection is associated with several diseases including peptic ulcer disease and 

gastric carcinoma. 

One of the most thoroughly studied virulence factors produced by H. pylori is the 

Vacuolating Cytotoxin A (VacA). All isolated H. pylori strains possess the vacA gene, although 

significant sequence diversity was noticed in vacA genes across H. pylori isolates. VacA protein 

is produced and secreted as an 88 kD mature toxin. The protein binds to the host cells and is 

internalized. Inside the host cells, it causes “vacuole”-like membrane vesicles in the cytoplasm of 

gastric epithelial cells. Besides vacuolation, VacA exerts various other effects on target cells. 

VacA also forms membrane-embedded pores at the inner-mitochondrial membrane, resulting in 

mitochondrial dysfunction by cytochrome c release and apoptosis induction. VacA suppresses 

nuclear translocation of nuclear factor of activated T-cells (NFAT) resulting in down regulation 

of interleukin-2 (IL2) gene transcription to efficiently block proliferation of T-cells. 

The aim of this work was to understand the effects of VacA on intracellular calcium signalling in 

T-lymphocytes by considering the fact that VacA inhibits the Ca
2+

-calmodulin-dependent 

phosphatase calcineurin and induces cell cycle arrest. However, the exact mechanism how VacA 

exerts this response in T-cells is not known. 

Therefore, in this thesis various cell lines were used to study the effects of VacA on calcium 

influx. Calcium influx was found to be affected in the presence of VacA protein in the human 

Jurkat E6.1 T-cell line and primary human CD
4+

 T-cells activated by phorbol myristate acetate 

(PMA). Once inside T-cells, it could be shown that VacA suppresses the increase of the cytosolic 

free calcium concentration after stimulation by the calcium ionophore ionomycin and 

thapsigargin. Ionomycin forms pores in the cytoplasmic membrane, whereas thapsigargin blocks 

the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) and thereby causes depletion 

of the endoplasmic reticulum (ER) calcium store. In contrast, a VacA mutant, which was 

constructed by deletion of the hydrophobic region (amino acids 6-27), was unable to induce 

vacuolation activity and to block Ca
2+

 influx. 
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A major result of this work was to demonstrate that one of the main components of store operated 

calcium entry (SOCE), the ER localized calcium sensor protein STIM1, is a target of VacA. 

Using co-localization studies and yeast two-hybrid (YTH) assays, it was found that VacA 

localizes to the lumen of the ER where it binds to the cEF-hand domain of STIM1. Furthermore, 

these data show that VacA strongly reduced the movements of the STIM1 towards the plasma 

membrane localized calcium channel ORAI1 after Ca
2+

 store depletion by thapsigargin. A YTH 

screen identified cEF-hand domain of STIM1 as the target of VacA to inhibit calcium influx. 

The results obtained in this work showing involvement of VacA in the modulation of intracellular 

calcium signalling will provide new insights that are required to understand how VacA inhibits T-

cell proliferation and signalling. 
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Zusammenfassung 

Mehr als 50% der Weltbevölkerung tragen Helicobacter pylori in ihrem Magenepithel. H. pylori 

kolonisiert dauerhaft die Magenschleimhaut und ist mit verschiedenen Erkrankungen wie Magen- 

oder Zwölffingerdarmgeschwüren sowie Magenkrebs assoziiert. 

Einer der am besten untersuchten Virulenzfaktoren von H. pylori ist das vakuolisierende 

Cytotoxin VacA. Alle H. pylori-Isolate haben ein vacA-Gen, wobei allerdings deutliche 

Sequenzvariationen zwischen verschiedenen Stämmen auftreten. Das VacA-Protein wird als 

Vorläuferprotein produziert und als reifes Toxin von 88 kDa sekretiert. Das reife Protein bindet 

an Wirtszellen und wird von diesen internalisiert. In der Zielzelle verursacht es die Bildung 

vakuolenartiger Membranvesikel im Zytoplasma. Unabhängig von dieser Vakuolisierung hat 

VacA verschiedene weitere Effekte auf Zielzellen. So bildet es Poren in der inneren 

Mitochondrienmembran, die zu einer Mitochondrien-Fehlfunktion mit Cytochrom c-Freisetzung 

und Apoptose-Induktion führen. VacA unterdrückt auch die Translokation des 

Transkriptionsfaktors NFAT (Nuclear Factor of Activated T-cells) in den Zellkern und damit die 

Transkription des Interleukin-2 (IL-2)-Gens, was zu einer effizienten Hemmung der T-Zell-

Proliferation führt. 

Ziel dieser Arbeit war die Untersuchung des Einflusses von VacA auf die intrazelluläre Calcium-

Signalübertragung in T-Zellen vor dem Hintergrund, dass VacA die Calcium/Calmodulin-

abhängige Phosphatase Calcineurin inhibiert und einen Stopp des Zellzyklus induziert. Der 

genaue Mechanismus dieser Antwort in T-Zellen ist allerdings nicht bekannt. 

In dieser Arbeit wurden verschiedene Zelllinien zur Untersuchung des Effekts von VacA auf den 

Calciumeinstrom verwendet. Es konnte nachgewiesen werden, dass der Calciumeinstrom in der 

humanen T-Zelllinie Jurkat E6.1 und in primären humanen CD
4+

 T-Zellen nach Aktivierung mit 

Phorbol-Myristat-Acetat (PMA) durch VacA beeinträchtigt wird. VacA supprimiert auch den 

Anstieg der freien Calcium-Konzentration im Cytosol nach Stimulierung mit den Calcium-

Ionophoren Ionomycin und Thapsigargin. Ionomycin bildet Poren in der Cytoplasmamembran, 

während Thapsigargin die ATPase SERCA (sarcoplasmic/endoplasmic reticulum calcium 

ATPase) blockiert und dadurch eine Calcium-Depletion im endoplasmatischen Reticulum (ER) 

verursacht. Im Gegensatz zu VacA war eine rekombinante VacA-Variante, die durch Deletion 
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einer hydrophoben Region (Aminosäuren 6-27) hergestellt wurde, nicht in der Lage, eine 

Vakuolisierung zu indúzieren und den Calciumeinstrom zu blockieren. 

Ein wichtiges Ergebnis dieser Arbeit war es zu zeigen dass eine der Hauptkomponenten der 

Calciumaufnahme (Store-Operated Calcium Entry, SOCE), das ER-lokalisierte Calcium-

Sensorprotein STIM1, als Zielmolekül für VacA dient. Mittels Kolokalisationsstudien und einem 

Yeast Two-Hybrid-Verfahren (YTH) konnte gezeigt werden, dass VacA im ER-Lumen lokalisiert 

ist und mit der calciumbindenden (EF-hand) –Domäne von STIM1 interagiert. Der Transport von 

STIM1 zur Plasmamembran und zu dem dort lokalisierten Calciumkanal ORAI1 ist nach 

Calciumdepletion mit Thapsigargin in Gegenwart von VacA deutlich reduziert. Mittels eines 

YTH Screens konnte die EF-hand-Domäne von STIM1 als Interaktionspartner von VacA 

identifiziert werden. 

Die im Rahmen dieser Arbeit beobachtete Aktivität von VacA bei der Modulation der 

intrazellulären Calcium-Signaltransduktion liefert damit neue Erkenntnisse, die für ein genaueres 

Verständnis der durch VacA hervorgerufenen Inhibition der T-Zell-Proliferation und 

Signaltransduktion notwendig sind. 
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 Introduction 1.

The human gastric pathogen Helicobacter pylori causes chronic gastritis, and plays an important 

role in peptic ulcer diseases, gastric carcinoma, and gastric lymphoma in the human stomach. 

Therefore, H. pylori was classified as a type 1 carcinogen by the World Health Organization 

(WHO) in 1994. The relationship between H. pylori and the human host has developed already 

about 60.000–80.000 years ago. This very intimate relationship did not primarily evolve in order 

to damage the host, but rather to coexist and establish a persistent infection of the bacterium over 

many years. 

The deleterious effects caused by H. pylori infections are mainly due to the host's response to the 

bacterium, which can mediate significant harm to the host. Thus, persistence and colonization of 

the microorganism in a particular site within the host may induce harmful effects on the host. 

 Helicobacter pylori 1.1

 History and discovery  1.1.1

In 1982, Helicobacter pylori was first discovered by Dr. Barry Marshall and Dr. Robin Warren of 

Royal Perth Hospital in Perth, Australia. They noted the appearance of spiral shaped bacteria 

overlaying the mucus of inflamed gastric mucosa. Dr. Marshall and Dr. Warren were able to 

culture H. pylori from 11 patients with gastritis. 

However, already about 100 years ago, a Polish clinical researcher, Walery Jaworski described 

the presence of spiral-shaped microorganisms in the stomach mucosa of humans. These 

microorganisms were placed in the Campylobacter species, which share so many characteristics 

to H. pylori. Thus, H. pylori was previously named Campylobacter pyloridis, which was then 

changed to Campylobacter pylori. Based on specific morphologic, structural and genetic features, 

H. pylori is now placed in a new genus. The genus Helicobacter consists of over 20 recognised 

species (Fox, 2002). 

 Microbiology 1.1.2

H. pylori is a Gram-negative, motile, spiral shaped, curved rod with 2-6 unipolar sheathed 

flagella, a microaerophilic and fastidious microorganism, which expresses enzymes such as 

oxidase, catalase, and urease (Konturek, Gillessen, Konturek, & Domschke, 1995; Konturek et 
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al., 2001; Mendz, Shepley, Hazell, & Smith, 1997; O'Toole, Lane, & Porwollik, 2000). The 

enzyme urease is important for survival and colonization of H. pylori in the human stomach. 

H. pylori can transform from its normal helical bacillary morphology to a coccoid form, which 

allows H. pylori to adapt to the hostile environment of the human stomach. However, the coccoid 

form can not be cultured in vitro (Kusters, Gerrits, Van Strijp, & Vandenbroucke-Grauls, 1997). 

The genome sequence analysis of H. pylori from unrelated strains shows that the size of the 

H. pylori genome is approximately 1.7 Mbp (Alm & Trust, 1999). H. pylori is genetically 

heterogeneous, which is possibly an adaptation of the bacterium to the gastric conditions of its 

host and a distinct pattern of host-mediated immune response to H. pylori infections (Kuipers et 

al., 2000). H. pylori shows a wide range of genetic diversity at the nucleotide level by several 

mechanisms, which includes mutation and transcriptional and translational phase variation 

(Achtman & Suerbaum, 2000; Falush et al., 2001). The phase variation leads to phenotypic 

diversity in several H. pylori virulence genes, including outer memebrane protein encoding genes 

and lipopolysaccharide biosynthetic enzymes (Appelmelk et al., 1999; de Jonge et al., 2004; 

Mahdavi et al., 2002). 

 Epidemiology and infection 1.1.3

More than half of the world's population is infected with H. pylori. However the prevalence of 

H. pylori shows a varying geographical distribution. The infection rates in emerging countries 

and developing countries are much higher (more than 80%) and infections appear to be more 

rapidly spread than in developed countries (Mitchell et al., 1992; Pounder & Ng, 1995) (Figure 1-

1). H. pylori infection is usually acquired at a young age (al-Moagel et al., 1990; Malaty, 2007). 

In contrast, the prevalence of H. pylori in developed countries is normally much lower (40%), and 

is also considerably lower in children than in adults (Crew & Neugut, 2006). H. pylori acquisition 

seems to be more frequent in children than in adults (Feldman, Eccersley, & Hardie, 1998), which 

suggests that the increase in prevalence of H. pylori with age is mainly due to a birth cohort effect 

rather than a new infection. Interestingly, prevalence of H. pylori is related with socioeconomic 

status. Individuals having high family income levels, hygienic housing conditions and widespread 

use of antimicrobials for treatment are less infected with H. pylori. Therefore, these may be the 

reasons for the significantly lower prevalence of H. pylori in developed regions. 
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Figure 1-1 Worldwide prevalence of H. pylori infection. 

Infection rates in percent. H. pylori infection is highly prevalent in Africa, Asia, and South America.  

Besides geographical distribution, also racial differences contribute to the diversity in the 

prevalence of H. pylori (Graham et al., 1991; Hyams et al., 1995; Malaty, Evans, Evans, & 

Graham, 1992; Replogle, Glaser, Hiatt, & Parsonnet, 1995; Smoak, Kelley, & Taylor, 1994). This 

variability in the prevalence of H. pylori may also be explained by differences in ethinicity or 

genetic predisposition to infections (Brown, 2000).  

Infection by H. pylori may cause digestive tract diseases including peptic ulcer, gastric cancer, 

and gastric MALT lymphoma. Spontaneous clearance of the infection is rare. Only one out of 5-6 

infected individuals develop peptic ulcer disease in their lifetime, while < 1% develops gastric 

cancer. The prevalence of H. pylori infection and its associated diseases is declining in developed 

countries, but remains very common in developing countries, which includes most of the world's 

population. The majority of severe gastric illnesses are linked to H. pylori infection (Go, 2002). 

The epidemiology and transmission pathways of H. pylori infection are important for the 

understanding of this common worldwide infection (Taylor & Blaser, 1991). The transmission of 

H. pylori remains unclear, but two different pathways have been suggested: faecal-oral and oral-

oral (Feldman, Eccersley, & Hardie, 1998). Different transmission routes may be predominant in 

different geographical areas. In developed countries, in which sanitary procedures such as water 

treatment are well managed, transmission is rare. The clustering of H. pylori infection occurs 
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within families supporting an oral-oral transmission pathway (Brenner, Rothenbacher, Bode, 

Dieudonne, & Adler, 1999). The source of H. pylori could be saliva and dental plaques, since 

H. pylori organisms have been isolated from these locations (Ferguson et al., 1993). Studies from 

developing countries with low socio-economic status and poor management of drinking water 

suggest that environmental factors are more important than the oral-oral transmission route in 

H. pylori spread (Hopkins et al., 1993). 

The most commonly recommended treatment in international guidelines for the eradication of 

H. pylori is the standard triple therapy consisting of two antibiotics and a proton pump inhibitor 

to prevent acid production in the stomach mucosa (Chan, Zhou, Ng, & Tam, 2001). 

 Pathogenesis and virulence determinants  1.1.4

H. pylori has developed various strategies which allows it to perfectly adopt to the human host. 

(Bik et al., 2006). H. pylori possesses the enzyme urease, which hydrolyses urea into NH3 and 

CO2. This breakdown of urea is catalyzed by urease facilitating H. pylori to maintain a neutral pH 

in the microenvironment of the gastric lumen. 

Most H. pylori reside within the apical surface of the mucus layer of the gastric mucosa although 

some H. pylori bind to the gastric epithelial cells. H. pylori expresses several putative outer 

membrane proteins (OMPs) consisting of two major families called the hop and hor gene 

families. The major OMPs of these families are AlpA, AlpB, BabA, SabA and OipA. AlpA and 

AlpB are associated with adhesion and cytokine induction (Lu et al., 2007). BabA is another 

adhesion molecule. BabA is encoded by highly conserved strain specific genes babA1 and babA2. 

Only babA2 is functionally active. BabB is one homologous allele of BabA, which differs from 

babA2 mainly in the central region. This central region determines the binding specificity of 

H. pylori. The functional BabA2 adhesin binds the Lewis histo-blood-group antigen Le
b
 on 

gastric epithelial cells. H. pylori strains which encode babA2 have an increased risk of gastric 

cancer induction (Gerhard et al., 1999; Solnick, Hansen, Salama, Boonjakuakul, & Syvanen, 

2004). In addition to BabA, H. pylori also encodes adhesion molecules SabA and OipA. SabA 

binds the sialyl-Lewis
x
 (FUT4) antigen, which is a tumor antigen and a marker for gastric 

dysplasia in chronic gastric inflammation (Mahdavi et al., 2002). OipA is a differentially 

expressed OMP. The expression of OipA is linked to the induction of chronic inflammation and 

injury, which is coregulated by the expression of proinflammatory cytokines IL-8, IL-6, 

RANTES (CCL5) and effector proteins such as metalloproteinase1 (MMP1) or intestinal 
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collagenase (Yamaoka et al., 2002). OipA interacts directly with epithelial cells to trigger β-

catenin expression (Dossumbekova et al., 2006). Thus, the presence of these OMPs facilitates the 

attachment of H. pylori to the gastric epithelial cell surface and allows the bacteria to colonize the 

gastric mucosa effectively and to deliver the major virulence factors such as CagA and VacA. 

H. pylori CagA (cytoxin-associated gene A) is an effector protein encoded by the cag 

pathogenicity island (cagPAI). The size of the CagA protein is 121-145 kDa. It has been shown 

that cagPAI positive strains are predominantly associated with peptic ulceration, gastric 

adenocarcinoma or distal gastric cancer as compared to cagPAI negative strains (Peek & Blaser, 

2002). The cagPAI, which contains 30 genes on a 40 kb segment of DNA, encodes proteins that 

form a type IV secretion system (T4SS) to act as a “molecular syringe”. When H. pylori attaches 

to the epithelial cell, CagA is translocated into the cell through the T4SS and phosphorylated 

(Odenbreit et al., 2000). The CagA protein leads to gastric epithelial cell proliferation and 

carcinoma development and attenuates apoptosis in vivo. Therefore, the CagA molecule is 

considered a bacteria-derived oncoprotein (Mimuro et al., 2007). 

Various putative cell surface receptors have been identified for CagA translocation. Studies 

suggest that CagA is translocated through integrin α5β1 as a cell surface receptor to gastric 

epithelial cells. CagL, which is a T4SS-pilus-localized protein, facilitates CagA translocation by 

utilizing integrin α5β1 and subsequently activating host cell kinases, such as focal adhesion kinase 

(FAK) and SRC kinases (Kwok et al., 2007). Additional Cag proteins (CagI and CagY) bind 

integrin β1 and induce conformational changes, which leads to CagA translocation (Jimenez-Soto 

et al., 2009). Once injected into the epithelial cell, CagA undergoes tyrosine phosphorylation by 

SRC and ABL kinases at repeating Glu-Pro-Ile-Tyr-Ala sequences, called EPIYA motifs 

(Selbach, Moese, Hauck, Meyer, & Backert, 2002; Stein et al., 2002). 

The EPIYA motif shows genetic variations, which occur in four distinct segments, the EPIYA -A, 

-B, -C, and –D segments (Backert, Moese, Selbach, Brinkmann, & Meyer, 2001). Intracellular 

phosphorylated CagA then interacts with SH2 domain containing proteins, such as the tyrosine 

phosphatase SHP-2, SRC tyrosine kinase (SCK) and the adaptor protein Crk. This leads to 

cytoskeleton reorganization and cell elongation (Higashi et al., 2002). Besides cell elongation, 

phosphorylated CagA induces MAP kinase signalling causing abnormal cell cycle progression, 

cell proliferation and movement of the gastric epithelial cells. On the other hand, the 

nonphosphorylated CagA interacts with the epithelial tight junction scaffolding protein zonulin 

(ZO-1) (Amieva et al., 2003), cadherin\beta-cathenin and the kinase PAR1 (Murata-Kamiya et 
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al., 2007), causing disruption of tight and adherent junctions leading to the induction of 

proinflammatory cytokines and loss of cell polarity. Altogether, these effects may support the 

formation of gastric carcinogenesis. 

Besides CagA, another major virulence determinant and a key toxin produced by H. pylori is the 

Vacuolating Cytotoxin A (VacA). In addition to CagA, VacA is important for initial colonization 

and subsequent persistence in the gastric environment. Interestingly, VacA shows various 

deleterious effects on epithelial as well as immune cells. Therefore, VacA is considered a 

multifunctional toxin. 

  The versatility of Vacuolating Cytotoxin A 1.1.5

H. pylori VacA was first described as an effective toxin in broth culture supernatant, which led to 

the formation of massive vacuoles in diverse cultured epithelial cell lines (Leunk, Johnson, 

David, Kraft, & Morgan, 1988). After the discovery of its natural toxic activity, it was purified 

and named the Vacuolating Cytotoxin A (Cover & Blaser, 1992). Following the purification and 

characterization of VacA and its gene (Cover, Tummuru, Cao, Thompson, & Blaser, 1994; 

Phadnis, Ilver, Janzon, Normark, & Westblom, 1994; Schmitt & Haas, 1994), the role of 

H. pylori VacA has been intensively studied. 

The vacA gene seems to be present in all H. pylori strains with a high level of allelic diversity. 

The vacA gene shows diversity in vacuolating activity of the bacterial culture filtrate among 

different strains (Cover & Blaser, 1992; Leunk et al., 1988). Mutations of VacA resulting in the 

diversity in the vacuolating activity among H. pylori strains were identified. These mutations 

include internal duplication, large deletions, 1-bp insertions, and non-sense mutations (Ito et al., 

1998). 

This high level of sequence diversity is found in the three variable regions: the signal sequence 

region (s-region), the intermediate region (i-region) and the mid region (m-region) (Figure 1-2). 

There are two types of alleles of the s-region and m-region, which are classified as s1 or s2 and 

m1 or m2 (Atherton et al., 1995). The s2 type contains an additional N-terminal hydrophobic 

amino acid region. The VacA proteins of s2 type do not cause cell vacuolation (McClain et al., 

2001). The specificity for cellular receptors is based on the difference of 140 amino acids 

between the m1 and m2 vacA genotypes (Ji et al., 2000). It has been observed that the s1m1 allele 

combination has the highest level of virulence, resulting in the highest risk of developing gastric 

cancer (Atherton et al., 1995; Gerhard et al., 1999; Louw et al., 2001). The newly identified i1 
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allele has a strong correlation with the production of CagA. This suggests that the i-region plays a 

vital role in more severe outcomes of chronic H. pylori infections (Chung et al., 2010). 

 

Figure 1-2 H. pylori vacA gene structure. 

VacA is a polymorphic gene, which shows allelic variation through homologous recombination. The vacA gene 

shows sequence diversity at three regions, which are the signal sequence region (s1 and s2), the intermediate region 

(i1, i2 and i3) and the mid region (m1 and m2). 

Depending on the strain, the vacA gene encodes a protoxin of about 145 kDa. This protoxin 

consists of a signal sequence, a passenger domain and an autotransporter domain (Figure 1-3). 

 

Figure 1-3 H. pylori VacA protein structure. 

The amino-terminal signal sequence region is cleaved from protoxin across the inner bacterial membrane. The VacA 

protein secretes about 88 kDa mature toxin, is then transported to the extracellular space via the autotransporter 

mechanism. The secreted toxin spontaneously forms flower-shaped dodecameric oligomers of 900 kDa. 
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The VacA autotransporter acts as a type V secretion system. The passenger domain contains p33 

and p55 subunits, which are processed and cleaved from the autotransporter domain during 

secretion into the extracellular space. This results in the formation of the mature VacA toxin of 88 

kDa. The two subunits of the mature toxin reperesent functional domains of VacA. The clevage 

between p33 and p55 subunits has been shown in vitro (Lupetti et al., 1996), but there has been 

no cleavage detected in vivo (Ricci et al., 1997). The p33 subunit contains a hydrophobic region 

(amino acids 6-27), which is involved in membrane insertion and pore formation (McClain et al., 

2003; Vinion-Dubiel et al., 1999). The crystal structure of p55 domain shows a right handed 

parallel beta-helix (Gangwer et al., 2007). The p55 subunit mediates VacA binding to the host 

cells. The two putative domains are able to interact with each other to form complexes. It has 

been observed that the mixture of p33 and p55 proteins exhibits enhanced binding as compared to 

the p55 subunit alone to the plasma membrane of mammalian cells. In addition to the binding, the 

two domains together play an important role in internalization and cytotoxic activity. Therefore, it 

has been suggested that both the p33 and p55 domains are required for binding and internalization 

of VacA and both domains together contribute to the functionality of the mature toxin including 

vacuolating cytotoxic activity. The mature toxin of VacA can assemble into water soluble 

oligomeric forms, which resemble a flower-like configuration (Cover, Hanson, & Heuser, 1997). 

This oligomeric form of VacA is able to insert into planar lipid bilayers to form anion-selective 

membrane channels (Tombola et al., 1999). VacA undergoes structural changes in response to 

acidic pH. These changes increase cellular activity and resistance to proteolysis by pepsin (de 

Bernard et al., 1995). In vivo studies on H. pylori VacA suggest that VacA, which is secreted by 

H. pylori in the stomach, is fully active independent of mild acidic pH of gastric lumen. However, 

highly purified VacA is poorly active and needs to be acid activated. 
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 The host 1.2

H. pylori colonizes in the human stomach. The stomach is located between the esophagus and the 

duodenum. The human stomach consists of four main sections, each of which consists of different 

cells and has different functions. These sections are called the cardia, the fundus, the body or the 

corpus and the pylorus (Figure 1-4A). The cardia is the part of the stomach where all the contents 

of the esophagus empty into the stomach. The fundus is formed by the upper curvature of the 

corpus. The main central region of the stomach consists of the body or corpus area, whereas the 

lower part of the stomach, the pylorus, facilitates emptying of the stomach contents into the 

duodenum. 

The wall of the stomach is composed of four layers from inside to outside, the mucosa, the 

submucosa, the muscularis externa, and the serosa. The gastric glands are of three kinds: cardiac, 

fundic and pyloric. The shapes of the gastric glands are tubular and form a basement membrane, 

which consists of transparent endothelial cells lined by the epithelium. 

The anatomically divided four regions have distinct histological features. The cardia 

predominantly contains mucus-secreting glands, called cardiac glands. They are fewer in number 

and occur close to the cardiac orifice (surrounding the entrance of the esophagus). The gastric pits 

in the cardiac region are shorter. The fundus and the body are two major histological regions. The 

fundus consists of straight and parallel tubular glands. These are known as chief cells and parietal 

cells. The chief cells are open, short columnar or polyhedral and form a very fine channel, which 

is altered by epithelium. Parietal cells are located between the chief cells and the basement 

membrane. They are oval and studded throughout the tube at intervals. The base of the gastric pit 

in the fundic region also contains gastrin producing enteroendocrine cells (Figure 1-4B). 
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Figure 1-4 Anatomy of the stomach and histology of the gastric mucosa. 

A. Anatomically divided four regions of the human stomach: cardia, fundus, corpus and pylorus. 

B. Histology of the gastric pit in antrum and fundic region. 

The pyloric region of the stomach consists of the pyloric glands, which are branched and open 

into deep irregular shaped pits. They are composed of mucus secreting cells. Mucus produced and 

secreted by pyloric glands lubricates and protects the entrance to the duodenum. The base of the 

gastric pit consists of scattered 'G' cells. 
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H. pylori resides in this gastric environment causing numerous changes and elicits various 

physiological and immunological responses. 

 H. pylori survival in the human host  1.2.1

The human stomach has to cope with many microorganisms everyday by ingestion, but most of 

them cannot colonize the stomach. To colonize the stomach, a microorganism has to survive in 

the acidic pH of the stomach lumen and requires flagella to dive into the mucus attached to the 

epithelial cell layer (Amieva & El-Omar, 2008). The mucus secreting cells continuously produce 

mucus and remove it towards the luminal side. 

H. pylori is able to grow in this tough environment of the stomach. The colonization of H. pylori 

is achieved by a combination of specific pathogenicity factors. During the infection, H. pylori 

synthesizes the enzyme urease, which allows the bacterium to survive in the acidic environment 

by buffering the pH of its immediate surroundings. The shape of the bacterium (helical) and the 

motion of flagella facilitate crossing the thick layer of the mucus lining and allow it to reach the 

apical domain of gastric epithelial cells, where H. pylori binds with specific adhesins. H. pylori is 

able to inject the CagA protein (encoded by the Cytotoxin-associated gene A) into the host cells 

by a type IV secretion system (cag-T4SS). In addition, the bacteria produce and secrete a 

cytotoxin, the vacuolating cytotoxin (VacA). 

The cag-T4SS triggers IL-8 secretion priming an inflammatory response with recruitment of 

neutrophil granulocytes and lymphocytes (Backert & Selbach, 2008). This promotes cell 

proliferation, scattering and migration and further induces the release of reactive oxygen 

intermediates (ROI). The released ROI together with the toxic activity of VacA leads to the tissue 

damage, which is deeply enhanced by loosening of the protective mucus layer and acid 

permeation. 
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 Calcium signalling  1.3

 Calcium signalling in general 1.3.1

Ca
2+

 is a divalent cation, which is used by cells as an intracellular signal. Once inside the cell, 

Ca
2+

 controls many cellular processes including metabolism, cell proliferation, transcription, 

growth, secretion, muscle contraction, cell division and cell death. In the resting conditions of the 

cell, the Ca
2+

 concentration is tightly regulated in the range of 100 nM, however when the cell is 

activated the Ca
2+ 

level rises to 1000 nM. Calcium signalling is divided into four basic functional 

processes. In the first process, Ca
2+

 is triggered by a stimulus, resulting in the activation of 

calcium mobilizing singals. Second, these signals activate various ON mechanisms that bring 

Ca
2+ 

into the cytoplasm. Third, the ON mechanisms facilitate Ca
2+ 

to acts as a secondary 

messenger to stimulate various Ca
2+

 sensitive processes. Finally, the resting stage is restored by 

the OFF mechanisms, through pumps and exchangers (Figure 1-5). 

 

Figure 1-5  Ca
2+

 signalling network: the ON/OFF mechanisms. 

Stimuli generate Ca
2+ 

mobilizing signals, which act on various ON mechanisms to trigger the increase of the 

intracellular Ca
2+ 

concentration. The elevated Ca
2+ 

concentration influences various Ca
2+

 sensitive processes. The 

response is terminated by OFF mechanisms, resulting in the resting Ca
2+ 

level to be restored. 

 Calcium ion channels  1.3.1.1

The Ca
2+ 

entry into the cells occurs through numerous channels. These channels are located either 

on the plasma membrane or in intracellular compartments. These channels co-ordinate the 

operation of Ca
2+ 

influx to maintain the cellular calcium homeostasis. Depending upon their 

mechanism of action, these channels are divided into voltage-dependent calcium channels 



INTRODUCTION 

 

13 

 

(VDCC), ligand gated ion channels (LGIC), transient receptor potential cation channels (TRPC) 

and calcium release activated channels (CRAC) (Figure 1-6). 

 

Figure 1-6 Calcium ion channels at cell membrane and the intracellular compartments. 

The ion channels, which display selective permeability to Ca
2+

, are located within the plasma membrane and many 

intracellular organelles such as the endoplasmic reticulum (ER). Many ions pass through the pore, which may be 

open or closed in response to various stimuli. On the plasma membrane, there are voltage-dependent calcium 

channels (VDCC), ligand gated ion channels (LGICs), transient receptor potential channels (TRPC) and calcium 

release-activated calcium (CRAC) channels. Ca
2+

 channels on the intracellular compartments are inositol 

trisphosphate receptor (InsP3R) and ryanodine receptors (RyRs). 

 Volatage-dependent calcium channels  1.3.1.1.1

Voltage-dependent calcium channels (VDCC) are transmembrane ion channels located in the 

plasma membrane. During the resting membrane potential, VDCCs are normally closed. 

However, these channels are activated through changes in the electric potential difference by 

depolarization on the site of the channel. VDCCs function in muscle cells and neurons. 
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 Ligand gated ion channels (LGICs) 1.3.1.1.2

Ligand gated ion channels (LGICs) are also transmembrane ion channels. LGICs are a type of 

channel-linked receptor. LGICs are open and closed upon binding of a chemical messenger such 

as an endogenous ligand, which binds to a site distinct from the ion conduction pore. Ligands 

which can bind extracellularly are glutamate and GABA (gamma-aminobutyric acid). However, 

the intracellular ligands on Ca
2+

-activated potassium channels are Ca
2+

. It is very important to 

note that ligands itself do not transport across the membrane, but upon binding, cause drastic 

changes in the permeability of the channel, which is specific to ions. It is observed that upon 

activation, LGICs allow passing of 10
7
 ions per second across the plasma membrane (Ackerman 

& Clapham, 1997). 

 Transient receptor potential (TRP) channels  1.3.1.1.3

Transient receptor potential (TRP) channels are Ca
2+

 permeable cation channels, which have a 

polymodal activation property. TRPCs generate a transmembrane flux of cations along 

electrochemical gradients. TRPCs mediate downstream of cellular signal amplification processes 

through calcium permeation and membrane depolarization by multiple stimuli. The activation of 

TRPC occurs by direct activation or by receptor or ligand activation. TRPC have broadly defined 

roles as a cellular sensor (Clapham, 2003). 

 Calcium release-activated calcium (CRAC) channels 1.3.1.1.4

Ca
2+ 

entry in immune cells occurs through highly selective channels, which are known as calcium 

release-activated calcium (CRAC) channels. CRAC channels are well defined examples of store-

operated calcium channels (SOC). These channels open in response to the endoplasmic reticulum 

(ER) Ca
2+ 

store depletion. The ER localized protein STIM1 senses the depletion of Ca
2+ 

store, 

which leads to the opening of the pore subunit of the CRAC channel protein ORAI1, resulting in 

an increase of Ca
2+ 

influx. Therefore, the intracellular Ca
2+

 level is elevated. 

 Calcium signalling in T-cells 1.3.2

Ca
2+ 

signalling is mandatory for many biological T-cell activities including cytokine secretion 

and cell proliferation, both of which are crucial to the immune response. In Th2 lymphocytes, 

Ca
2+ 

mediates the production of interleukin 4 (IL-4), interleukin 5 (IL-5) and interleukin 13 (IL-

13). Upon T-cell receptor induction, the production of inositol trisphosphate (IP3) is stimulated, 
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which binds to the IP3 receptor on the ER, resulting in the release of Ca
2+ 

from intracellular Ca
2+ 

stores. 

 T-cell receptor signalling 1.3.2.1

T-cell receptor (TCR) activation induces the recruitment of adaptor molecules and tyrosine 

kinases, which form a signalling platform for the activation of downstream signalling pathways 

resulting in cell proliferation and cytokine production (Smith-Garvin, Koretzky, & Jordan, 2009; 

Yokosuka & Saito, 2010). In the key step, TCR activation ultimately leads to tyrosine 

phosphorylation of phospholipase C-γ (PLC-γ) and leads to an increased intracellular Ca
2+

 

concentration (Weiss, Imboden, Shoback, & Stobo, 1984). PLC-γ further hydrolyzes 

phosphatidylinositol 4, 5-bisphosphate (PtdIns (4, 5)P2 or PIP2) to diacylglycerol (DAG) and 

inositol 1,4,5-trisphosphate (InsP3 or IP3). IP3 binds to IP3 receptors (IP3R) on the ER and 

induces Ca
2+ 

release from the ER to the cytoplasm. (Figure 1-7 A). 

 Store-operated calcium channels 1.3.2.2

One of the most widespread and essential routes for Ca
2+

 entry across the cell membrane in T-

cells are store-operated calcium (SOC) channels (Spassova et al., 2004). Ca
2+

 entry in T-cells 

leads to secretion, gene expression and cell growth (Berridge, Bootman, & Roderick, 2003). Ca
2+ 

signals are a combination of Ca
2+

 entry across the plasma membrane and Ca
2+

 release from 

intracellular Ca
2+

 stores, predominantly from the ER. It has been shown that Ca
2+

 store depletion 

activates Ca
2+

 entry into the cytosol (Muallem, Khademazad, & Sachs, 1990; Takemura & 

Putney, 1989), which is completely independent of TCR activation and does not require 

production of Ins(1,4,5)P3 (Takemura, Hughes, Thastrup, & Putney, 1989), but an ionophore 

thapsigargin regulates Ca
2+

 entry across membranes (Figure 1-7 B). Thus in 1990, J.W. Putney 

proposed a model explaining that the activation of Ca
2+ 

channels across the plasma membrane is a 

direct consequence of Ca
2+ 

store depletion. The process is referred as store-operated calcium
 
entry 

(SOCE) (Putney, 1990). These channels, which are activated in response to the depletion of 

intracellular Ca
2+

 are referred to calcium release-activated calcium
 
(CRAC) channels or store-

operated calcium channels  

There are two essential components of SOCE, the ORAI calcium release-activated calcium 

modulator 1 (ORAI1) and the stromal interacting molecule 1 (STIM1). The ORAI1 protein was 

identified as a SOCE channel by three genome-wide-analyses in S2 cells (Vig et al., 2006; Zhang 
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et al., 2006). The gene encoding ORAI1 was identified by linkage analysis in which a mutation 

occurred in individuals with a rare immunodeficiency, resulting in T-cells displaying a defective 

SOCE (Feske et al., 2006). 

The role of STIM1 in SOCE was discovered by two studies performing RNA interference (RNAi) 

screening. In the first study, Ca
2+ 

responses in Drosophila melanogaster S2 cells were examined, 

and a single D. melanogaster STIM1 protein was identified (Roos et al., 2005). In the other 

study, a pair of human STIM1 proteins in HeLa cells was identified (Liou et al., 2005). The 

STIM1 protein is predominantly localized in the ER (Hewavitharana et al., 2008; Manji et al., 

2000). Under resting conditions, STIM1 is distributed throughout the ER. STIM1 undergoes rapid 

redistribution and moves towards plasma membrane junctions within a few seconds following 

store depletion (Wu, Buchanan, Luik, & Lewis, 2006). These proteins sense Ca
2+

 via the N-

terminal domain, consisting of an EF-hand motif Ca
2+

-binding site, located in the lumen of the 

ER (Stathopulos, Li, Plevin, Ames, & Ikura, 2006), which triggers this rapid oligomerization of 

STIM1. The C-terminal region consists of a CRAC activation domain (CAD) (Park et al., 2009), 

which mediates coupling with ORAI1. The junction where STIM1 move towards the plasma 

membrane is called puncta, where STIM1 is localized towards ORAI1, that activates CRAC/SOC 

channels. Once the CRAC channels are activated and open, the Ca
2+ 

influx is increased, which 

leads to an increase in intracellular Ca
2+ 

concentration (Figure 1-7 B). 
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Figure 1-7 Calcium signalling in T-cells. 

A.  Under normal resting conditions, the intracellular Ca
2+ 

concentration is constant.  

B.  Ligand binding to T-cell receptor (TCR) initiates the activation of tyrosine kinases, which activate 

phospholipase C-γ (PLC-γ). The activated PLC-γ cleaves phosphatidylinositol 4, 5-bisphosphate (PtdIns (4, 5)P 

in inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). The InsP3 binds to IP3 receptor (IP3 R) on the 

endoplasmic reticulum (ER). IP3R opens intracellular calcium channel. In another mechanism, Ca
2+ 

depletion 

may also be induced by thapsigargin, which blocks the SERCA pump, resulting in inhibition of Ca
2+

 store 

refilling. In this process, when a T-cell releases Ca
2+ 

from the ER, Ca
2+ 

depletion is sensed
 
by STIM1, which 
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induces clustering of STIM1. The clustering happens close to the plasma membrane, where it regulates calcium 

channels by activating the CRAC channel protein ORAI1. 
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 Aim of this study 1.4

H. pylori colonization and persistence in the human stomach lead to the development of various 

gastroduodenal diseases. A lifelong infection by H. pylori modulates both the immune response 

and host cellular processes. One among many virulence factors of H. pylori important in this 

process is the Vacuolating Cytotoxin A (VacA). 

VacA contributes to H. pylori colonization in the stomach and exhibits a high level of 

multifunctionality. VacA is able to intoxicate a wide range of cells in the host including gastric 

epithelial cells and various immune cells. 

Despite the well-documented effect on epithelial cells, the effect of VacA on immune cells, 

particularly T-cells, has been demonstrated. VacA inhibits production of IL-2 and downregulates 

surface expression of the IL-2 receptor by inhibiting the activation of nuclear factor of activated 

T-cells (NFAT) in T-cells. The mechanism of inhibition of NFAT activation involves the 

blocking of Ca
2+

 influx into the cells from the extracellular environment, thereby inhibiting the 

activity of the Ca
2+

 calmodulin dependent phosphatase calcineurin. Moreover, VacA intoxication 

is reported to inhibit proliferation of activated T-cells and to induce mitochondrial depolarization, 

ATP depletion and cell cycle arrest.  

However, the effect of VacA on T-cells involving the blocking of Ca
2+

 influx is poorly studied. 

The specific aim of this study is to identify the mechanism by which VacA is able to block Ca
2+

 

influx in T-cells. This will help to understand the biological effect of VacA on T-cells in detail 

and characterize further the modulatory properties of H. pylori VacA in the human host. 
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 Materials and Methods 2.

 Materials  2.1

 Bacterial strains  2.1.1

 Helicobacter pylori strains 2.1.1.1

 Table 2-1 Helicobacter pylori strains 

Name/Strain Genotype and Reference 

60190  VacA wild type s1m1 strain for production of VacA (Atherton et al., 

1995) 

H. pylori 

AV452 

60190 VacA Δ6-27 mutant strain (Vinion-Dubiel et al., 1999) 

P12 Clinical isolate from the Department of Medicine Microbiology and 

Immunology, University of Hamburg (Schmitt & Haas, 1994) 

P12 ΔVacA P12 strain with deletion of VacA 

 Escherichia coli strains 2.1.1.2

Table 2-2 Escherichia coli strains 

Name/Strain Genotype and Reference 

DH5α F-, ϕ80lacZΔM15 Δ(lacZYA-argF)U169, deoR, recA 1, endA 1, hsdR 

17(rK-, mK+), supE 44, thi -1, λ- gyrA 96, relA 1 (Hanahan, 1983) 

DB 3.1  F- gyrA462 endA1 glnV44 Δ(sr1-recA) mcrB mrr hsdS20 (rB
-
, mB

-
) 

ara14 galK2 lacY1 proA2 rpsL20(Sm
r
) xyl5 Δleu mtl1 
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 Yeast strains (Saccharomyces cerevisiae) 2.1.1.3

 Saccharomyces cerevisiae strains 2.1.1.3.1

Table 2-3 Saccharomyces cerevisiae strains 

Name Strain Genotype and Reference  

UJY 13 CG1945 Ade
-
, Leu

-
, His

-
, haploid, Mating Type a + pUJ 94 

UJY 14 Y187 Ade
-
, Trp

-
, His

-
, haploid, Mating Type α + pUJ 95 

UJY 15 CG1945 Ade
-
, Leu

-
, His

-
, haploid, Mating Type a + pUJ 77 

UJY 16 CG1945 Ade
-
, Leu

-
, His

-
, haploid, Mating Type a + pUJ 81 

UJY 17 CG1945 Ade
-
, Leu

-
, His

-
, haploid, Mating Type a + pUJ 78 

UJY 18 CG1945 Ade
-
, Leu

-
, His

-
, haploid, Mating Type a + pUJ 79 

UJY 19 CG1945 Ade
-
, Leu

-
, His

-
, haploid, Mating Type a + pUJ 82 

UJY 20 Y187 Ade
-
, Trp

-
, His

-
, haploid, Mating Type α + pUJ 87 

UJY 21 Y187 Ade
-
, Trp

-
, His

-
, haploid, Mating Type α + pUJ 88 

UJY 22 Y187 Ade
-
, Trp

-
, His

-
, haploid, Mating Type α + pUJ 89 

UJY 23 Y187 Ade
-
, Trp

-
, His

-
, haploid, Mating Type α + pUJ 92 

UJY 24 Y187 Ade
-
, Trp

-
, His

-
, haploid, Mating Type α + pUJ 93 

UJY 25 CG1945 Ade
-
, Leu

-
, His

-
, haploid, Mating Type a + pUJ 96 

UJY 26 Y187 Ade
-
, Trp

-
, His

-
, haploid, Mating Type α + pUJ 98 

UJY 27 CG1945 Ade
-
, Leu

-
, His

-
, haploid, Mating Type a + pUJ 97 

UJY 28 Y187 Ade
-
, Trp

-
, His

-
, haploid, Mating Type α + pUJ 99 

UJY 29 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pGADT7; pUJ 95 

UJY 30 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 94; pGBKT7 

UJY 31  CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 77; pUJ 95 

UJY 32 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 78; pUJ 95 
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UJY 33 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 79; pUJ 95 

UJY 34 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 81; pUJ 95 

UJY 35 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 82; pUJ 95 

UJY 36 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 83; pUJ 95 

UJY 37 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 84; pUJ 95 

UJY 38 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 77; pGBKT7 

UJY 39 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 78; pGBKT7 

UJY 40 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 79; pGBKT7 

UJY 41 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 81; pGBKT7 

UJY 42 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 82; pGBKT7 

UJY 43 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 83; pGBKT7 

UJY 44 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 84; pGBKT7 

UJY 45 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 94; pUJ 87 

UJY 46 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 94; pUJ 88 

UJY 47 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 94; pUJ 89 

UJY 48 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 94; pUJ 92 

UJY 49 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 94; pUJ 93 

UJY 50 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 94; pUJ 85 

UJY 51 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pUJ 94; pUJ 86 

UJY 52 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pGADT7; pUJ 87 

UJY 53 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pGADT7; pUJ 88 

UJY 54 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pGADT7; pUJ 89 

UJY 55 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pGADT7; pUJ 92 

UJY 56 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pGADT7; pUJ 93 

UJY 57 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pGADT7; pUJ 85 
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UJY 58 CG1945; Y187 Ade
-
, His

-
, diploid, Type aα + pGADT7; pUJ 86 

 Cell lines 2.1.2

Table 2-4 Eukaryotic cell lines 

Name/cell line  Description 

HEK-293 Human embryonic kidney cell line 

HEK-293 eGFP-myc-ORAI1 HEK-293 cells stably expressing eGFP-myc-ORAI1 

HEK-293 mCherry-STIM1 HEK-293 cells stably expressing mCherry-STIM1 

HEK-293 mCherry-STIM1 

His tag 

HEK-293 cells stably expressing mCherry-STIM1 

Jurkat E6.1 Human T-cell line (ATCC TIB-152) 

Human Primary CD
4+

 T-cells Human T-cells 

 Plasmids and vectors 2.1.3

Table 2-5 Plasmids and vectors  

Plasmid/Vector Description 

pEGFPN-1 Vector for fusion of EGFP to the C-terminus of a partner protein. The 

MCS is between the immediate early promoter of CMV and EGFP 

coding sequence. 

pDONR
TM

207 Recombination plasmid for gateway cloning containing ccdB cassette, 

attP1 and attP2 sequence for the recombination with attB1, and attB2 

sequence, pUC ori (Invitrogen, Karlsruhe). 

pGADT7 μ ori2, pUC ori, PADH1, PT7, SV40 NLS, GAL4-AD, TADH1, LEU2, 

AmpR (Clontech, California, USA) 

pGBKT7 μ ori2, pUC ori, orif1, PADH1, PT7, GAL4-BD, TADH1&T7, TRP1, 

KanR (Clontech, California, USA) 

pUj 1  mCherry-STIM1 

pUj 2  ORAI1 before 1
st
 transmembrane domain 1 
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pUj 3 ORAI1 before 1
st
 transmembrane domain 2 

pUj 4 ORAI1 after 4
th

 transmembrane domain 

pUj 5  mCherry-STIM1ΔCAD 

pUj 11  mCherry-STIM1 with His-tag 

pSp 24 pDONR
TM

207 with sequence for VacA having attL1 and attL2 sites for 

yeast two-hybrid assay 

pUj 77  pGADT7 with sequence for EF-SAM domain of STIM1 having attB1 

and attB2 sites for yeast two-hybrid assay 

pUj 78  pGADT7 with sequence for SAM domain of STIM1 having attB1 and 

attB2 sites for yeast two-hybrid assay 

pUj 79  pGADT7 with sequence for CAD domain of STIM1 having attB1 and 

attB2 sites for yeast two-hybrid assay 

pUj 81 pGADT7 with sequence for ORAI1 aa 48-91 having attB1 and attB2 

sites for yeast two-hybrid assay 

pUj 82  pGADT7 with sequence for ORAI1 aa 255-301 having attB1 and attB2 

sites for yeast two-hybrid assay 

pUj 83 pGADT7 with sequence for cEF domain of STIM1 having attB1 and 

attB2 sites for yeast two-hybrid assay 

pUj 84 pGADT7 with sequence for hEF domain of STIM1 having attB1 and 

attB2 sites for yeast two-hybrid assay 

pUj 85 pGBKT7 with sequence for cEF domain of STIM1 having attB1 and 

attB2 sites for yeast two-hybrid assay 

pUj 86 pGBKT7 with sequence for hEF domain of STIM1 having attB1 and 

attB2 sites for yeast two-hybrid assay 

pUj 87  pGBKT7 with sequence for EF-SAM domain of STIM1 having attB1 

and attB2 sites for yeast two-hybrid assay 

pUj 88  pGBKT7 with sequence for SAM domain of STIM1 having attB1 and 
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attB2 sites for yeast two-hybrid assay 

pUj 89  pGBKT7 with sequence for CAD domain of STIM1 having attB1 and 

attB2 sites for yeast two-hybrid assay 

pUj 92  pGBKT7 with sequence for ORAI1 aa 48-91 having attB1 and attB2 

sites for yeast two-hybrid assay 

pUj 93  pGBKT7 with sequence for ORAI1 aa 255-301 having attB1 and attB2 

sites for yeast two-hybrid assay 

pUj 94  pGADT7 with sequence for VacA having attB1 and attB2 sites for yeast 

two-hybrid assay 

pUj 95  pGBKT7 with sequence for VacA having attB1 and attB2 sites for yeast 

two-hybrid assay 

SPE 151  eGFP-myc-ORAI1 

 Oligonucleotides 2.1.4

The oligonucleotides were purchased from Biomers (Ulm, Germany). Table 2-6 shows the 

sequences (from 5'to 3'), the intended use, as well as interfaces or any other modifications of the 

oligonucleotides. 

Table 2-6 Oligonucleotides sequence (5' to 3') and their description 

Name Sequence 5’- 3’ Description 

Uj 5 gat cag atc tgc gcg gaa 

ccc cta ttt 

Sense primer with the sequence of BglII-

Kanamycin/neomycin resistance gene  for pEGFP-

N1 vector 

Uj 6 gat cag atc tgg tct cgg 

tgg ggt at 

Antisense primer with the seuquence of BglII- 

Kanamycin/neomycin resistance gene for pEGFP-N1 

vector 

Uj 7 ggc cgg tac cca tca tca 

tca tca cca tat ggt gag 

caa ggg cga 

Sense primer with the sequence of Kpn1-His tag for 

mCherry-STIM1 vector 

Uj 8 gat cgg tac cct tgt aca Sense primer with the sequence of Kpn1 for 
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gct cgt cca tgc c mCherry-STIM1 vector 

Uj 9 atg ggc cgg tac cca tca 

tca tca tca cca tat ggt 

gag caa ggg cga 

Sense primer with the sequence of atg-kpn1- His tag 

for  mCherry-STIM1 vector  

Uj 21 aaa aag cag gct ccg 

cca tga gtg agg atg aga 

aac tca gc 

Sense primer with the sequence of attB1 

recombination sites for the amplification of EF hand- 

SAM domain at aa 58 of STIM1   

Uj 22 aga aag ctg ggt cta aaa 

gag cac tgt atc cag agc 

Antisense primer with the sequence of attB2 

recombination sites for the amplification of EF hand- 

SAM domain at aa 200 of STIM1 

Uj 23 acg cct cga gca tat ggt 

gga tgc cag ggt tgt tg 

Antisense primer with the sequence of Xho1- Nde1 

for the amplifaication of CAD domain of STIM1 

Uj 24 atg cgt gga tgc cag ggt 

tgt tg 

Sense primer for amplification of CAD domain of 

STIM1  

Uj 25 cga tgc tga gct ctt aag 

cgt agc tag cga aac g 

Antisense primer with the sequence of Sac1 for for 

amplification of p58 domain of VacA 60190 

Uj 26 aaa aag cag gct ccg 

cca tga att gga ccg tgg 

atg agg tg 

Sense primer with the sequence of attB1 

recombination sites for the amplification of SAM 

domain at aa 131 of STIM1  

Uj 27 aga aag ctg ggt cta ttc 

tga tga ctt cca tgc ctt 

Antisense primer with the sequence of attB2 

recombination sites for the amplification of cEF hand 

and hEF hand domain at aa 128 of STIM1  

Uj 28 aga aag ctg ggt cta gag 

gtc ttc cct cag gaa ctc 

Antisense primer with the sequence of attB2 

recombination sites for the amplification of cEF hand 

domain at aa 96 of STIM1  

Uj 29 aaa aag cag gct ccg cc 

atg aat tac cat gac cca 

aca gtg 

Sense primer with the sequence of attB1 

recombination sites for the amplification of hEF hand 

domain at aa 97 of STIM1  

Sp 183 aaa aag cag gct ccg Sense primer with the sequence of attB1 
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cca tgt ccg ccg tca cct 

acc c 

recombination sites for the amplification of N-

terminal region at aa 48 of ORAI1 

SP 184 aga aag ctg ggt cta ccg 

gct gga ggc ttt aag c 

Antisense primer with the sequence of attB2 

recombination sites for the amplification of N-

terminal region at aa 91 of ORAI1 

Sp 185 aaa aag cag gct ccg cc 

atg gtc cac ttc tac cgc 

tca ctg 

Sense primer with the sequence of attB1 

recombination sites for the amplification of C-

terminal region at aa 255 of ORAI1 

Sp 186 aga aag ctg ggt cta ggc 

ata gtg gct gcc g 

Antisense primer with the sequence of attB2 

recombination sites for the amplification of C-

terminal region at aa 301 of ORAI1 

Sp 187 ggg gac aag ttt gta caa 

aaa agc agg ct 

Sense primer with the sequence of attB-external 

Sp 188 ggg gac cac ttt gta caa 

gaa agc tgg gt 

Antisense primer with the sequence of attB-external 
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 Broth or culture media  2.1.5

 Broth or culture media for bacteria 2.1.5.1

Table 2-7 Culture media and nutrients for bacteria 

Culture 

media/nutrients 

 Production and source  

LB liquid medium 20 g/l Lennox medium (Gibco/Invitrogen, Carlsbad, USA), 

autoclaved 

LB-plates 32 g/l Lennox-L-Agar (Gibco/Invitrogen, Carlsbad, USA), 

autoclaved 

Brucella-Broth (BB) 28 g/l Brucella Broth (Falcon BD, Franklin Lakes, USA), 

autoclaved 

Serum plates 36 g/l GC-Agar-Base (Oxoid, Darmstadt, Germany), autoclaved 

and subsequently added 10 ml/l Vitamin-Mix, 80 ml/l Horse 

serum, 10 mg/l Vancomycin, 5 mg/l Trimethoprim, 1 mg/l 

Nystatin 

Vitamin mix 100 g/l α-D-Glucose, 10 g/l L-Glutamin, 26 g/l L-Cystein, 0.1 g/l 

Cocarboxylase, 20 mg/l Fe(III)-Nitrate, 333 mg/l Thiamine, 13 

mg/l p- aminobenzoic acid, 0.25 g/l 

Nicotinamidadeninindinucleotid (NAD), 10 mg/l Vitamin B12, 

1.1 g/l L-Cystine, 1 g/l Adenine, 30 mg/l Guanine, 0.15 g/l L-

Arginine, 0.5 g/l Uracil 

 Inhibitors and media supplements 2.1.6

Table 2-8 Inhibitors and media supplements 

Media supplements Solvents Working concentrations 

Ampicillin (Sigma-Aldrich, St. Louis, USA) H2O 100 μg/ml 

Chloramphenicol (Merck, Darmstadt, Germany) Ethanol 30 μg/ml (E. coli) 

6 μg/ml (H. pylori) 
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Gentamycin (Sigma-Aldrich, St. Louis, USA) H2O 10 μg/ml (E. coli) 

Nystatin (Merck, Darmstadt, Germany) H2O 440 μl/l (H. pylori) 

Trimethoprim (Sigma-Aldrich, St. Louis, USA) H2O 5 μg/ml 

Vancomycin (Sigma-Aldrich, St. Louis, USA) H2O 10 μg/ml 

 Cell culture medium and buffers 2.1.7

A different medium is necessary for each cell line. 

Table 2-9 Cell culture media  

Name  Description  

Cell Media High Glucose DMEM, RPMI-1640 (Invitrogen/GIBCO BRL), 10X 

MEM 

Antibiotic Penicillin/Streptomycin and Gentamicin (Invitrogen/GIBCO BRL)  

Selective G418 (Geneticin) and Hygromicin B (Paa laboratories), Puromycin 

(SIGMA-Aldrich) and Zeocin (Invitrogen/GIBCO BRL).  

Supplements  Fetal Calf Serum and L-Glutamine (Invitrogen/GIBCO BRL). Fetal 

Bovine Serum Superior (Biochrom), 7.5% Sodium Bicarbonate (GIBCO)  

Others Trypsin-EDTA (TE), Dulbecco PBS (+Ca, +Mg) and Dulbecco PBS (-

Ca,-Mg) (Invitrogen/GIBCO BRL), DMSO and EDTA (Sigma-Aldrich).  

 Enzymes and proteins 2.1.8

Table 2-10 Enzymes and proteins with their respective sources 

Enzyme/Protein  Firms 

Gateway
®

 BPII Clonase
®

 Enzyme Mix  Invitrogen, Carlsbad, USA 

Gateway
®

 LR Clonase
®
 Enzyme Mix  Invitrogen, Carlsbad, USA 

DNase I  Roche, Grenzach-Wyhlen, Germany 

Takara-Taq-Polymerase  TaKaRa Bio Inc., Otsu, Japan 

Expand High Fidelity Taq-Polymerase  Roche, Grenzach-Wyhlen, Germany 
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Fetal calf serum (FCS)  PAA, Pasching, Austria 

Horse serum Carlsbad, USA 

Bovine serum albumin (BSA) Sigma-Aldrich, St. Louis, USA 

Trypsin-EDTA solution  Invitrogen/Gibco, Carlsbad, USA 

Restriction enzymes Roche, Grenzach-Wyhlen and NEB, Germany 

 Molecular markers 2.1.9

Table 2-11 Molecular markers and their sources 

Molecular markers   Sources 

DNA gel electrophoresis GeneRuler
TM

 1 kb DNA Ladder (MBI Fermentas, St. 

Leon-Roth, Germany) 

DNA gel electrophoresis O’GeneRuler
TM

 Low Range DNA Ladder, ready to use 

(MBI Fermentas, St. Leon-Roth, Germany) 

Polyacrylamide gel 

electrophoresis 

Prestained High Range 161-0373 (Bio-Rad, Hercules, 

USA) 

Polyacrylamide gel 

electrophoresis 

Prestained Protein Molecular Weight Marker, SM0441 

(MBI Fermentas, St. Leon-Roth, Germany) 

 Chemicals and reagents 2.1.10

BBL Brucella Broth (BD Falcon), Fluoroprep (BioMeriux), Coomasie Brilliant Blue G250 

(Biomol), Acrylamide/Methylenbisacrylamide 30% (29:1), X-Gal (Roth), Streptomycin, 

Trimethoprim, Vancomycin, Nystatin, Ampicillin, Phorbol-12-myristat-13-acetate (PMA), 5-

Bromo-4-chloro-3-indolylphosphate (BCIP), Ionomycin, Guanidine-HCL, Ethidium Bromide, 

Leupeptin, Sodium orthovanadate, Glutaraldehyde, Pepstatin, Triton X-100, Tween 20, DMSO, 

Dansylcadaverine, Methyl-β Cyclodextrin (Heptakis), Ammonium chloride (Sigma-Aldrich), 

Chloramphenicol (Serva), Kanamycin, Phenylmethylsulfonyl fluoride (PMSF) (Merck), GC 

Agar, LB Agar, LB broth (Oxoid), Brucella Broth (BD BBL™), Precision Plus Protein Standards 

All Blue (BioRad), L-glutamine (Gibco
®
), Trypsin, G-418 sulfate (PAA), Tetracycline (Sigma-

Aldrich), Hygromycin B (Invitrogen), Blasticidin (Invitrogen), Doxycycline (Sigma-Aldrich), 

Sodium bicarbonate (Gibco
®
), HEPES (Gibco

®
), Glucose (Roth), Sodium pyruvate (Gibco

®
), 
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FCS (tetracycline free) (Clontech), Calcium/Magnesium free PBS (Gibco
®

), LB broth 

(Invitrogen), Glycerol (Roth), Coomassie Brilliant Blue G250 (Roth), Phosphoric Acid (Roth), 

Acrylamide (Roth), SDS (Schwarz/Mann Biotech) Coomassie destaining solution (Roth), 

Methanol (Sigma-Aldrich), Acetic Acid (Roth), Coomassie Brilliant Blue R250 (Merck), 

Ammonium chloride (NH4Cl) (FLUKA Chemika), HCl (Roth), Biocoll separating solution 1.077 

(Biochrom AG), Heparin (Merck), Lithium Acetate (Sigma-Aldrich) and PMSF (Sigma-Aldrich, 

St. Louis, USA). 

All other organic and inorganic chemicals were from Merck, Roth and Sigma-Aldrich. Other 

specific reagents are listed with the methods. 

 Cosumables and equipments 2.1.11

 Consumables 2.1.11.1

X-Ray film (Fuji, A. Hastenstein), Dialysis membranes (Medicell), Dialysis membranes for small 

volumes (Pierce), ELISA Maxisorp plates (Nunc), Cell scrappers (Falcon), FACS tubes (Becton 

Dickinson), Freezing Tubes 2 ml (Nalgene), PVDF membrane (Bio-Rad), High Range Protein 

Marker (Bio-Rad), Cell culture treated plates (Corning), 0.2 μm- Sterilefilters (Millipore), Cell 

culture treated bottles (75 cm
2
 and 175 cm

2
) (BD Falcon), Filter paper (Whatman), Cell culture 

inserts 3 μm pores (Corning), Parafine pellets (Fluka), 75 cm
2
 cell culture flask (BD Biosciences), 

BD Falcon™ (BD Biosciences), Neubauer Chamber (BLAUBRAND®), Micro Beads and 

Column LS (Miltenyi Biotec). 

 Equipments 2.1.11.2

Thermo Scientific Heraeus
®
 Megafuge 3.0R, Freezer -70 Thermo Scientific, Microscope-Hund 

Wetzlar, PAGE-Mini Gel System, Voltage Units PowerPac 300, PowerPac 1000 (Bio-Rad), 

Incubator (Binder), Incubator Ultima (Revco), Microincubator MI22C (Scholzen), Gel 

documentation System (Bio-Rad), Absorbance Reader Sunrise (TECAN systems), 

Spectrophotometer DR/2000 (Hach), Agarose Gel Electrophoresis chamber (Bio-Rad), 

Centrifuge Biofuge 15 R and Megafuge 3.0R (Heraeus), Centrifuge Mikro 20 (Hettich), Magnetic 

Stirrer MR 3001 (Heidolph), Medical Film Processor FPM-100A (Fijifilm), Microscope DM IRB 

(Leica), Live cell imaging Microscope (Perkin-Elmer) and TCS Software (LEICA), PCR 

Thermocycler (ThermoHybaid), PCR Thermocycler Microcycler Personal (Eppendorf), Pipette 

Transferpette-8 (20-200 μl and 0.5-10 μl) (Brand), Scales (Fischer Biotech), pH Meter (WTW), 
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Sterile Hood (BDK), Vacuum Centrifuge Speed-Vac DNA 110 (Savant), Vortex Gene 2 

(Scientific Industries), Water Bath (GFL) and MidiMACS™ Separator (Miltenyi Biotech). 

 Computer programmes 2.1.12

Dnaman 6, CLC DNA workbench 6, GraphPad prism 5, Image J, Volocity software and Endnote 

programme. 

 Methods  2.2

 Work with Bacteria 2.2.1

 Growth and cultivation of E. coli  2.2.1.1

Escherichia coli was grown on LB-agar for selection of transformants. All complemented with 

their respective antibiotic and/or inducer. 

Medium LB Agar 32 g/l Lennox-L Agar 

LB Media 20 g/l Lennox-L Medium 

Antibiotics Ampicillin 100 mg/l, Chloramphenicol 30 g/l, Kanamycin 50 mg/l 

 Freezing of E.coli 2.2.1.2

Bacteria were grown overnight in LB broth and 750 µl of overnight grown culture were mixed 

with 750 μl of a sterile 70% (v/v) glycerol solution, the bacteria were frozen in -70°C storage. 

 Growth and cultivation of H. pylori 2.2.1.3

H. pylori was grown on a GC agar plate containing serum and appropriate antibiotics for 24 h and 

passaged again for next 3 day. The bacterial culture was then used for preparation of liquid 

cultures. Liquid cultures were prepared in Brucella medium as required and supplemented with 

cholesterol (1:250, Gibco) and appropriate antibiotics. The growth conditions for H. pylori were 

at 37°C in an atmosphere composed of 85% N2, 10% CO2 and 5% O2. In the case of growth in 

serum free media, bacteria were grown minimum two passages before using them in the 

experiments. 
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 Freezing of H. pylori  2.2.1.4

Bacteria were grown on GC agar plates and mixed with 1.5 ml freezing medium containing 10% 

FCS, 20% Glycerol and 70% Brucella Broth. The medium is sterile filtered before use. The 

bacteria were stored in -70°C storage. 

 Determination of optical density of bacteria 2.2.1.5

Optical density (OD) of bacteria was measured after making suspension of bacterial culture from 

an agar plate in a desired medium or 1× PBS. The suspension was then resuspended in an aliquot 

of a taken liquid culture. The determination of the optical density was carried out by appropriate 

dilution in plastic cuvettes in a spectrophotometer at a wavelength of λ=550 nm (OD550) against 

the respective blank. 

 Production of chemical competent E. coli cells  2.2.1.6

Chemical competent bacterial cells were produced by the rubidium chloride method. In this 

method, an overnight culture of E. coli were inoculated in 100 ml of LB liquid medium and 

grown up to an OD550 of 0.5 to 0.6 at 37°C in a shaking incubator (180 rpm). The cultivated 

culture was chilled on ice for 30 min and centrifuged at 4000 rpm for 15 min at 4°C. The cell 

pallet was resuspended in 40 ml of  TFB I buffer (30 mM potassium acetate CH3COOH, 100 mM 

RbCl, 10 mM CaCl2, 50 mM MnCl2, 15% (v/v) glycerol, pH 5.2 adjusted with 0.2 M CH3COOH, 

sterilized). After 5 min incubation on ice, cells were again centrifuged. The sedimented cells were 

then resuspended in 4 ml of TFB buffer II (10 mM MOPS, 75 mM CaCl2, 10 mM RbCl, 15% 

(v/v) glycerol, pH 6.5 with KOH, sterilized). Cells were aliquoted to 50 μl and frozen in liquid 

nitrogen. The cells were further stored at -70°C. 

 Transformation of chemical competent cells 2.2.1.7

An aliquot of previously stored (at -70°C) chemical competent E. coli bacteria was defrosted 

slowly in ice. DNA (500 ng) was added to the bacteria for 30 min in ice. The bacteria were then 

incubated at 42°C for 45s, immediately in ice cooled and added 1 ml warm LB media. Then 

bacteria were incubated for one h at 37°C, pulse centrifuged, supernatant discarded and pallet 

resuspended in 50 μl LB media. Bacteria were then plated onto LB agar plates containing the 

antibiotics in the concentrations needed. 
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 Work with yeast 2.2.2

 Growth and cultivation of Saccharomyces cerevisiae 2.2.2.1

Saccharomyces cerevisiae was cultivated on yeast extract-peptone-dextrose medium (YPD 

medium) and minimal medium (SD-base). For liquid cultures, yeasts were cultivated in an 

appropriate medium without the addition of agar at 30°C aerobically in a shaking incubator (180 

rpm). The selection and expression of yeasts were performed on minimal medium lacking amino 

acid (leucine or tryptophan). Glycerol stocks were created for strain maintenance after mixing 

600 µl of a good grown liquid culture with 500 µl 80% glycerol (sterile) and were stored at -

70°C. 

 Determination of the optical density of yeasts 2.2.2.2

Optical density of Saccharomyces cerevisiae was determined using a cell suspension with 

appropriate dilutions in the plastic cuvette. The optical density at 600 nm (OD600) was determined 

in spectrophotometer against the corresponding blank. 

 Preparation of yeast competent cells 2.2.2.3

To prepare competent yeasts, 30 ml overnight culture was inoculated into the 150 ml of YPD 

medium. The cells were grown at 30°C for 4.5 h upto an OD600 of 0.6. The culture was 

centrifuged at 4°C with 1000 xg for 5 min. After centrifugation, the cell pallet was washed in 30 

ml of H2O and resuspend in freshly prepared sterile 1 ml 1x TE/LiAc. The yeast suspension was 

aliquoted in 100 µl each and stored in liquid nitrogen frozen at -70°C. 

1x TE/LiAc  1 ml of 10x TE buffer and 1ml of 10x Lithium acetate. 

10 x TE buffer 0.1 M Tris-HCl, 10 mM EDTA, adjust pH to 7.5, and autoclave. 

10x LiAc 1 M Lithium acetate (Sigma), adjust pH to 7.5 with dilute acetic acid, and 

autoclave. 

 Transformation of yeast competent cells (Geitz protocol) 2.2.2.4

The transformation of competent yeast strains for the yeast two-hybrid assay was carried out by 

heat shock method. For this purpose, 1 µg of plasmid DNA was added to an aliquot of given 

competent yeast and mix. After mixing, 0.6 ml sterile PEG/LiAc solution was added to the cells 
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and incubated at 30°C for 30 min with shaking (200 rpm). After shaking, DMSO to 10% (70 μl) 

was added and mix gently by inversion and heat shock at 42°C for 15 min was performed. The 

cells were chilled on ice for 2 min. The cells were harvested by centrifugation (2700 xg, 2 min) 

and resuspended the pallet in 0.5 ml 1x TE buffer. An aliquot of 200 μl of the mixture was 

applied to the corresponding selective agar plates and incubated aerobically for 3-6 days. 

1x PEG/LiAc solution  8 ml of 50% PEG, 1 ml of 10x TE buffer and 1ml of 10x Lithium 

acetate, 50% PEG (Sigma), autoclave. 

 Production of diploid yeast strains (Uetz et al., 2006) 2.2.2.5

Yeast cells can be haploid as well as diploid. For the generation of diploid yeast strains, the 

"mating" was performed between Saccharomyces cerevisiae type a (CG1945 strain) and type α 

(Y187 strain). After mating, the yeast cells contain both mating types (type a and type α). In the 

first step, the haploid strain of S. cerevisiae was transformed with corresponding expression 

plasmids in "prey" (pGADT7) or "bait" (pGBKT7) vectors. The "prey" plasmid is transformed 

into the strain CG1945 and used for the genes coding for the leucine biosynthesis, whereas the 

"bait" plasmid was transformed into the strain Y187 that contains genes for tryptophan 

biosynthesis. The haploid expression plasmid-carrying S.cerevisiae strain is selected on minimal 

medium in which corresponding amino acid is missing. For the mating, 5 ml of  the generated 

haploid strains of S. cerevisiae mating type a and α were combined in rich medium agar plate and 

incubated for 24 h at 30°C. Subsequently, for the selection of diploid yeast cells, the cells were 

inoculated to double selective drop out medium lacking Leucine and Tryptophan (SD -Leu/Trp). 

After selection of diploid S. cerevisiae strains, the liquid culture was passaged in three times in a 

double selective dropout medium before culture for further experimentation or was used for strain 

maintenance. 

 Test for protein-protein interaction in Saccharomyces cerevisiae (Busler et 2.2.2.6

al., 2006) 

The interaction of proteins in the yeast cells (encoded with prey and bait plasmids) was tested on 

triple selective drop out medium for the histidine auxotrophic S. cerevisiae strains. In addition to 

the leucine and tryptophan, the triple selective dropout medium was also lacking histidine (SD -

Leu/Trp/His). A protein-protein interaction between prey and bait was determined by 

reconstitution of the Gal4 transcription factor when the activation (prey) and DNA binding 
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domain (bait) come together to induce histidine biosynthesis. Therefore, the growth on the triple 

selective dropout medium is possible. For the protein-protein interaction test, the generated 

diploid yeast strains were incubated into the liquid medium (SD -Leu/Trp) for 2 to 3 days. After 

the incubation, the yeast suspension was diluted upto 10
5
 dilutions with an OD660 of 0.26/100 μl 

dilution and plated on SD -Leu/Trp and SD -Leu/Trp/His agar plates with 10 μl per dilution (in 3 

parallels). The plates were then incubated at 30°C in incubator and grown for 3 to 6 days. The 

viability of the diploid S. cerevisiae strains were determined by yeast growth on SD -Leu/Trp and 

the interaction was confirmed by yeast growth on SD-Leu/Trp/His. 

 Work with DNA 2.2.3

 Primer design for yeast plasmid cloning 2.2.3.1

Primers (forward and reverse) were designed by software Dnaman 6. The internal forward primer 

used comprises 12 bp of attB1, a transational consensus sequence (KOZAK) with start codon and 

18-25 bp of the respective 5’ specific ORF sequence. The internal reverse primer contains 12 bp 

of attB2 sites, a stop codon and 18-25 bp of the 3’ end of respective ORF sequence 

complementary to the coding region. 

 Polymerase Chain Reaction 2.2.3.2

The specific DNA sequence  was amplified by  polymerase Chain Reaction (PCR) (Mullis et al., 

1986). The in vitro method for the specific amplification of selected gene segment requires two 

oligonucleotides (18-25 bp). In the first step of PCR, the double-strand DNA template is 

denaturated by heat to the complementary single-stranded DNA (template). After denaturation, 

two oligonucleotides bind in the region to be amplified (anneling). DNA polymerase (Takara Taq 

polymerase, Promega) binds to the template at the starting region for extension (elongation) along 

with two oligonucleotides. This process takes place by a catalytic reaction in the reaction buffer 

containing deoxyribonucleotide triphosphates (dNTPs). For amplification of the DNA, the DNA 

fragments produced by each elongation step are again denatured and amplified. The 3'-5' 

proofreading function of the polymerase ensures a low error probability of the amplified DNA 

fragments. 

Plasmid DNA (1:10 dilution) was used as a template for all PCR reactions. The PCR reactions 

were performed in a total volume of 25 µl containing 0.25 µl of 100 ng/µl template DNA, 100 

pmol each of oligonucleotide per 20 nmol dATP/dGTP/dTTP/dCTP, 2.5 mM MgCl2, and 2 U 
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Taq polymerase. The duration of the elongation step was determined by the length of the gene to 

be amplified (1000 bp/min). The duration of the time cycles and temperature for the particular 

application is shown in table 2-12. The amplified PCR product was determined and purified by 

agarose gel electrophoresis (See 2.2.3.4). 

Table 2-12 PCR protocol 

The PCR reaction was performed with variation of the annealing temperature, elongation temperature (Takara: 68°C) 

and time as indicated. 

Step  Reaction temperature Time Cycles 

Primary denaturation 94°C 5 min 1x 

Denaturation 94°C 30 s 30x 

Annealing 48-55°C 1 min 

Elongation 68°C 1 min/1000 bp 

Final elongation 68°C 10 min 1x 

 Purification and quantitative estimation of DNA concentration 2.2.3.3

The purity and concentration of DNA was determined by measuring the UV absorbance by Nano 

Drop 1000 Spectrophotometer (Nano Drop Technologies) at optical density of 260 and 280 nm. 

The concentration of the DNA was calculated using the formula. The purity of the DNA was 

determined using the OD260/OD280 ratio. 

DNA concentration (µg/ml) = (OD260) x (dilution factor) x (50 µg DNA/ml)/ (1 OD260 unit) 

For transfection experiments, highly purified and concentrated DNA was used. For this purpose 

the concentrated DNA is further purified by Phenol–chloroform extraction method. This method 

is widely used for removing the impurity e.g. protein for isolation of DNA. In the method, 

phenol/chloroform (50%/ 50%; v/v) was used for extraction. After vortexing, the mixture was 

centrifuged at 13000 rpm for 10 min at room temperature. The upper phase was collected in a 

new tube and 3 M sodium acetate was added to 1/10 of the volume collected. 100%  ethanol were 

added and mixed. The solution was further centrifuged at 13000 rpm at 4°C for 5 min. 

Supernatent was removed carefully. The pallet was washed with 70% ethanol and centrifuged at 

13000 rpm at 4°C for 1 min. Ethanol was pipette out and pallet was dried. Pallet was dissolved in 

50 μl TE buffer and used further for transfection experiments. 
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 DNA gel electrophoresis 2.2.3.4

DNA fragments were loaded on horizontal 1-2% agarose gels in 1× TAE buffer (40 mM Tris, 20 

mM Acetic acid, 1 mM EDTA). The fragments were separated for 50 min at 70 V. Before loading 

to the agarose gels, DNA samples were mixed with ¼ volume of GEBS buffer (20% (v/v) 

glycerol, 50 mM EDTA, 0.05% (w/v) bromophenol blue, 0.5% (w/v) N-Lauryl sarcosyl). The 

DNA fragment sizes were determined with the help of the standard-DNA marker. After 

separation, the DNA fragments in agarose gels were detected after being stained with ethidium 

bromide solution (1 mg/l). The detection was performed under UV exposure at 260 nm using a 

video system (Molecular Imager Gel Doc XR System, Bio-Rad). 

 Extraction and isolation of DNA from agarose gel 2.2.3.5

The DNA fragments obtained by PCR were separated on 1% agarose gels and the correct size 

was determined by 0.1% methylene blue staining solution (1 g/l of methylene blue). The correct 

size was cut out from the gel using a sharp razor blade. The DNA fragments were extracted from 

the gel by a Gel Band Purification Kit according to manufacturer's instructions (GE Healthcare). 

The DNA was eluted by adding 50 μl sterile distilled water. 

 Isolation of plasmid DNA of E. coli by QIAGEN Miniprep 2.2.3.5.1

For the preparation of plasmid DNA, transformed bacteria were grown overnight at 37°C in TB 

media under constant shaking. TB components were sterile mixed short before inoculation in a 

proportion 1:10 (Solution 2: Solution 1). After growth, bacteria were centrifuged at 4000 rpm for 

20 min at 4°C, and the supernatant discarded. Using the mini (midi or maxi) prep kit from 

QIAGEN with some modifications, DNA was obtained. Shortly, for 250 ml culture pallet, the 

Maxi-prep kit (QIAGEN) was used. Pallet resuspended in 10 ml buffer P1, then added 10 ml of 

buffer P2 and neutralizing with buffer N3. Separation of debris from DNA suspension at 4000 

rpm for 40 min followed the collection of supernatant and addition of this one onto a pre-

equilibrated column with QBT buffer. After the binding occurs, the column was washed 3 times 

with wash buffer and the DNA collected from the column using TE buffer as elution solution. 

DNA concentrations were estimated at OD260. 

P1 Buffer  50 mM Tris HCl pH 8.0, 10 mM EDTA, 100 μg/ml RNAse 

P2 Buffer  200 mM NaOH, 1% SDS 
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N3 Buffer  30 M Potassium acetate; adjust pH with Glacial acetic acid to pH 5.5 

QBT Buffer  750 mM NaCl, 50 mM MOPS pH 7; 15% Isopropanol, 0.15% Triton X-100 

Wash Buffer  1 M NaCl, 50 mM MOPS pH 7.0, 15% v/v Isopropanol 

 DNA restriction 2.2.3.6

The restriction of DNA was performed using restriction enzymes (Roche and NEB, Schwalbach) 

and their corresponding buffer. The selected incubation temperature and time for various 

restriction enzymes were used according to manufacture’s protocol. After restriction, purification 

of the DNA was performed with the illustra GFX PCR DNA and Gel Band purification kit. For 

plasmid DNA, restriction was performed in a total volume of 10 μl. About 2-5 U of appropriate 

enzymes were used for the hydrolysis of about 0.1-0.5 μg of DNA at 37°C for 1.5 h. For making 

a vector, the enzyme mixture was taken in a volume of 40-50 10 μl (10-15 U of enzyme) and 

incubated for 4 h. After incubation, the enzymes were deactivated by adding GEBS (¼ of the 

total volume) and DNA bands were purified using the illustra GFX PCR DNA and Gel Band 

Purification Kit. 

 Ligation 2.2.3.7

Ligation of DNA fragments were performed in a mixture of 0.8 µl of T4 DNA ligase and 1.2 µl 

of 10x ligation buffer (Roche Applied Science) having a total volume of 12 µl. The ratio of cut 

plasmid and DNA fragment was 1:3 respectively. The ligation mixture was incubated for 4 h at 

16°C or overnight at 4°C. After ligation, 5 µl of the ligation mixture was used for transformation 

in E. coli. 

 Colony PCR  2.2.3.8

For quick checking of E.coli clones “colony PCR” was performed. The respective cells were 

taken with pipette tip and dissolved in 14.75 µl of water. PCR was performed according to 

standard protocol. 

 Gateway cloning 2.2.3.9

Gateway 
®
 cloning is a very efficient cloning technology developed by Invitrogen. This method is 

based upon sequence-specific recombination system of the bacteriophage lambda, and enables 

rapid and highly efficient integration of DNA sequences into different vector systems. For this 
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purpose, DNA fragments are amplified with "attachement sites" (attB1 and attB2) in two steps by 

“nested”-PCR and are inserted into a donor vector with attachement sites (attP1 and attP2) by 

reaction called BP Clonase ™. This reaction generates an entry vector with attachement sites 

(attL1 and attL2). A recombination reaction is then carried out between attL sites of an entry 

vector and attR sites of a destination vector to create an expression vector by reaction LR 

Clonase™. 

The Gateway
 ®

 cloning technology was used in this work to test for protein-protein interaction by 

yeast two-hybrid (Y2H) assay. For this purposes, the genes encoding these proteins were inserted 

into the vectors of the Matchmaker system (Clontech, California, USA), pGADT7 and pGBKT7. 

 “nested”-PCR 2.2.3.9.1

The first step of two-stage "nested"-PCR was performed with one set of oligonucleotides, an 

internal forward and reverse sequence with attB sites and contain a gene sequence to be cloned. 

The PCR reaction was performed in a total volume of 50 µl containing 1 µl Template DNA, 10 

pmol of each oligonucleotide, 7 nmol of dNTP, 1.5 mM to 3 mM MgCl2 and 2 U Taq 

polymerase. In table 2-13, the reaction cycles and conditions are listed for the first step of the 

"nested"-PCR. 
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Table 2-13 Protocol for "nested"-PCR step-I 

The first stage of the "nested" PCR reaction was performed with following variations in temperature and time for 

each step. 

Step  Reaction temperature Time Cycles 

Primary denaturation 94°C 5 min 1 x 

Denaturation 94°C 45 s 30 x 

Annealing 56°C 30 s 

Elongation 68°C 1 min 30 s 

Final elongation 68°C 5 min 1 x 

The second step of the "nested" PCR was performed using gene specific amplified product 

obtained from the first PCR reaction and used as template. For this purpose, a set of external 

forward and reverse oligonucleotides were used for all experiments, Since all templates contain 

regions of the attB sites (Table 2-5). The second step of the "nested"-PCR completes the 

amplification of specific recombination sites, attB1 and attB2. The PCR reaction is performed in 

a total volume of 50 µl containing 10 µl of the first step PCR reaction product as Template DNA, 

16 pmol of each oligonucleotide, 7 nmol of each dNTP, 1.5 mM to 3 mM MgCl2 and 2 U Taq 

polymerase. Reaction cycles and duration for the second step of the "nested" PCR is shown in 

table 2-14.  

Table 2-14 Protocol for "nested"-PCR step-II 

The second stage of the "nested" PCR reaction was performed with following variations in temperature and time for 

each step. 

Step  Reaction temperature Time Cycles 

Primary denaturation 94°C 3 min 1 x 

Denaturation 94°C 45 s 25 x 

Annealing 54°C 30 s 

Elongation 68°C 1 min  

Final elongation 68°C 3 min 1 x 
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PCR amplified products obtained from second step are analysed by agarose gel electrophoresis 

and the right PCR-products are subsequently used for BP Clonase
TM

-reaction  

 BP Clonase™-Reaction 2.2.3.9.2

BP reaction was performed according to the manufacturer’s protocol using Gateway
®

 BP 

Clonase™ enzyme mix (Invitrogen). The BP Clonase ™ enzyme mix contains the Lambda 

integrase recombination proteins, and the E. coli protein subunits "Integration Host Factors" 

(IHF). The attachement sites attP1 and attP2 flanking donor vector consists of a chloramphenicol 

resistance and the ccdB gene. By the recombination of B and P "attachement sites", the gene of 

interest is exchanged with the chloramphenicol resistance and ccdB gene cassette (Figure 2-1). 

After this reaction, a vector is formed containing the integrated DNA fragment flanked by new 

"attachement sites" (attL1 and attL2). This entry vector is transformed into E. coli, and the viable 

clones were tested for chloramphenicol sensitivity and gentamycin resistance. Plasmids were 

verified by restriction analysis with appropriate restriction enzymes. 

 

Figure 2-1 BP Clonase™-Reaction. 

BP recombination reaction is mediated between attB-flanked DNA fragment (gene) and attP- flanked ccdB cassette 

of donor vector to generate an entry clone. 
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 LR Clonase™-Reaction 2.2.3.9.4

The LR reaction was performed according to the manufacturer's protocol using Gateway
®

 LR 

Clonase™ Enzyme Mix (Invitrogen). The vectors for LR reaction were yeast two-hybrid (YTH) 

plasmids, pGADT7 and pGBKT7 (Clontech). These vectors contain attR sites and gateway 

cassette (GW) that is flanked by gene cassette of entry clone to generate expression clone (Uetz et 

al., 2006) (Figure 2-2). 

 

Figure 2-2 LR Clonase™-Reaction. 

LR recombination reaction occurrs between an entry clone containing attL- flanking gene and a destination vector 

containing attR-flanking gateway cassette to generate an expression clone. 

 DNA sequencing 2.2.3.10

DNA sequencing was performed by companies MWG-Biotech (Ebersberg, Germany) and GATC 

(Kempten, Germany). Oligonucleotides were selected using standard or specific primers for the 

corresponding DNA sequence. The analysis of sequences was performed in the DNAMAN 

program (Lynnon software). 
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 Work with cell culture 2.2.4

 Cell counting with Neubauer counting chamber 2.2.4.1

To determine the viable cell numbers, the cell counting was done in the Neubauer 

Counting chamber. The viable cells were counted in four quadrants of the Neubauer 

Counting chamber and the mean value calculated. To count the number of viable cells per ml, the 

mean value is multiplied by dilution factor and the chamber’s factor (10
4
). 

 Cultivation of adherent cells 2.2.4.2

 Cultivation of HEK-293 cells  2.2.4.2.1

HEK-293 cells were cultured in 75 cm
2
 cell culture flask (Thermo Fisher Scientific, 

Langenselbold) in 12 ml DMEM supplemented with 10% FCS and 2 mM L-glutamine at 37°C 

and 5% CO2. Before the cells form a confluent lawn, they were used for trypsinization. They 

were firstly washed with Calcium/Magnesium free PBS to remove the serum and incubated with 

3 ml of pre warmed trypsin/EDTA solution for 3 min at 37°C and 5% CO2. Cells were observed 

under inverted microscope. Once the monolayer of cells were detached from the bottom of the 

cell culture flask, a single cell suspension obtained by adding 5 ml of DMEM medium containing 

10% heat inactivated FCS. The cell suspension was transferred into 15 ml sterile falcon tube and 

spins the cells down at 1100 rpm for 10 min. The pallet was resuspended with DMEM containing 

10% FCS and 2 mM L-glutamine. The cell number was determined using a Neubauer Chamber 

and cells were seeded in ratio of 1:3 to make the final concentration of ~2 x 10
5
 cells/ml. Rest of 

the suspension used for experiments.. 

 Cultivation of HEK-293 cells expressing mCherry-STIM1  2.2.4.2.2

HEK-293 cells expressing mCherry-STIM1 were cultured in 75 cm
2
 cell culture flask (Thermo 

Fisher Scientific, Langenselbold) in 12 ml DMEM supplemented with 10% FCS, 2 mM L-

glutamine and G-418 sulfate (antibiotic selection) 100 µg/ml at 37°C and 5% CO2. When the 

cells were viable, they rinse down by adding complete medium to detach. Cells were seeded in 

ratio of 1:5 every third day. 
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 Cultivation of HEK-293 cells expressing eGFP-myc-ORAI1  2.2.4.2.3

HEK-293 cells expressing eGFP-myc-ORAI1 were cultured in 75 cm
2
 cell culture flask (Thermo 

Fisher Scientific, Langenselbold) in 12 ml DMEM supplemented with 10% FCS (tetracycline 

free), 50 µg/ml Hygromycin B, 15 µg/ml Blasticidin S and 2 mM L-glutamine at 37°C and 5% 

CO2. When the cells were viable, 1 µg/ml doxycycline or tetracycline added to the flask for 

selection. The cells were rinse down by adding complete medium to detach from bottom of the 

flask. Cells were seeded in ratio of 1:5 every third day.  

 Cultivation of suspension cells  2.2.4.3

 Cultivation of Jurkat E6.1 cells  2.2.4.3.1

Jurkat E6.1 cells were cultured in 75 cm
2
 cell culture flask (Thermo Fisher Scientific, 

Langenselbold) in 12 ml RPMI 1640 supplemented with 10% FCS, 10 mM HEPES, 1 mM 

sodium pyruvate, 4.5 g/l Glucose, 1.5 g/l Sodium bicarbonate, and 2 mM L-glutamine at 37°C 

and 5% CO2. The cell suspension was transferred into 15 ml sterile falcon tube and spins the cells 

down at 1100 rpm for 5 min. The pallet was resuspended with fresh culture medium. The cells 

were every third day with 1:5 passaged. 

 Transfection of adherent cells 2.2.4.4

 Generation of Flp-In™ T-REx designed HEK-293 cells stably expressing 2.2.4.4.1

eGFP-myc-ORAI1  

Flp-In™ T-REx system was used to generate HEK-293 cells stably expressing eGFP-myc-

ORAI1 according to manufactures protocol. Two plasmids, the pOG44 and pcDNA™5/FRT/TO 

vector containing eGFP-myc-ORAI1, were cotransfected into the HEK-293 cells. A homolougous 

recombination event occurs between the Flp recombinase expressed from pOG44 and the FRT 

sites (integrated into the genome and on pcDNA™5/FRT/TO). The Flp-In™ T-REx™ generated 

HEK-293 cells expressing eGFP-myc-ORAI1 were selected with Blasticidin and Hygromycin 

resistance and eGFP-myc-ORAI1 expression was induced by 1 µg/ml doxycycline or 

tetracycline. 
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 Generation of HEK-293 cell stably expressing mCherry-STIM1  2.2.4.4.2

HEK-293 cells stably expressing mCherry-STIM1 were generated by transfection with a 

mCherry-STIM1-encoding plasmid carrying the neo gene. Cells were transfected by using 

lipofectamine 2000 according to manufactures protocol. After transfection, cells were treated 

with G418 sulfate with varying concentrations. Cell death occurs rapidly allowing the selection of 

HEK-293 cells with mCherry-STIM1. Cells were then passed in fresh DMEM medium 

containing G418 sulphate (100 µg/ml). After few days, only few HEK-293 cells survived which 

had incorporated the mCherry-STIM1 plasmid carrying the neo gene. The survived HEK-293 

carrying mCherry-STIM1 plasmids were transfered in fresh DMEM medium containing G418 

sulphate (100 µg/ml) and  were used for further experiments. 

 Isolation of human CD4+ T-lymphocytes  2.2.4.5

Human CD
4+ 

T-lymphocytes were isolated by positive selection with the MACS technology. The 

purified PBLC were obtained in the cell density of 1x 10
7
 cells per 80 µl of MACS buffer. In the 

cell density of 1x 10
7
, 20 μl of MACS CD

4+ 
Micro Beads (Miltenyi Biotec) was added and the 

cells were incubated for 15 min at 4°C and shaked every 5 min. The cells were then washed with 

20 ml MACS buffer, resuspended in 1 ml MACS buffer and applied to MACS buffer equilibrated 

column LS, combined with MidiMACS™ Separator. The column was then washed with 2 times 4 

ml each MACS buffer. The Column was then removed from MidiMACS™ Separator to elute the 

cells with 3 ml MACS buffer. The cells were centrifuged at 200 xg for 5 min and resuspended in 

10 ml RPMI supplemented with 10% FCS. Cells were seeded with cell density of 1x 10
6
 cells

 
/ml. 

MACS buffer  PBS, 0.5% BSA, 2 mM EDTA 

 Lymphocyte purification from normal human peripheral blood 2.2.4.6

PBLC (peripheral blood lymphocytes) were isolated by density gradient centrifugation from 

human blood. Firstly, freshly prepared blood was collected from a human volunteer and 

heparinized (1:100). The collected blood was diluted with 3 volumes of PBS. The diluted blood 

(whole volume 37.5 ml) was added gently to 12.5 ml Biocoll separating solution of density 1.077 

(Biochrom AG). After centrifugation (400 ×g, 30 min, without brake, Thermo Scientific 

Heraeus
®
 Megafuge 3.0R) at the interface between blood and Biocoll, layer of lymphocytes, 

monocytes and platelets were collected. Washed the cells once with 50 ml PBS/2 mM EDTA 
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(4°C). For the separation of the platelets, cells were washed twice with PBS/2 mM EDTA and 

centrifuged at 300 ×g. 

 Calcium assay  2.2.4.7

Fluo-4 NW calcium assay solution was prepared by mixing component A (Fluo-4 NW dye mix), 

component B (probenecid) and component C (1X HBSS, 20 mM HEPES) according to 

manufactures protocol. After mixing all the components, solution was kept at 4°C for 30 min. 

Cells were incubated in black, clear bottom, sterile 96 well Poly-D-Lysine coated plate. Cells 

were then used for experiment and Fluo-4 NW calcium assay solution was loaded for 1 h prior to 

fluorescence measurement. Cells were evaluated by fluorescence measurement (excitation at 494 

nm and emission at 516 nm) in a fluorescence microplate reader (FLUOstar OPTIMA). 

  Cryopreservation of cells  2.2.4.8

Cryopreservation of cells was done by storage in liquid nitrogen. Cells were preserved in 

cryovials (Thermo Fisher Scientific, Langenselbold) in a cell density of 5 x 10
5
 cells in 1 ml of 

freezing medium. 

 Cell thawing 2.2.4.9

For the cultivation cryopreserved cells, the freezing medium containing cells were thawed at 

37°C and then immediately mixed with 10 ml of prewarmed cell culture medium to dilute 

harmful DMSO concentration. Thawed cells were palleted at 800 xg for 5 min. Thereafter, cells 

were washed three times with 10-20 ml. Cell pallet was resuspended with the culture medium 

after centrifugation at 500 xg for 5 min. 

 Microscopy 2.2.4.10

 Live cell imaging  2.2.4.10.1

HEK cells (0.5 x 10
6
 cells/ml) expressing mCherry-STIM1 or eGFP-myc-ORAI1 or both were 

incubated in DMEM medium with 1 µg/ml acid activated VacA labelled with Alexa 
647

 for 4 h at 

37°C and 5% CO2. Cells were washed carefully once with 1 ml PBS. After washing with PBS, 

cells were carefully resuspended in DMEM medium and live cell imaging was performed. eGFP 

expression was analysed by Excitation/Emission at 488/509 nm, mCherry at 587/610 nm and 

Alexa 
647

 dye at 652/668 nm. 



MATERIALS AND METHODS 

 

48 

 

 Work with Protein  2.2.5

 Protein estimation by Bradford assay 2.2.5.1

To determine the protein concentration of a sample, 100 µl of the suspension (Diluted in defined 

volume of PBS with 1 ml Bradford Reagent (Bradford, 1976) was added and mixed. After 15 min 

incubation at room temperature in the dark, the absorbance of the sample at 595 nm measured 

against zero value in Spectrophotometer. For Standard calibration curve known concentration of 

BSA (100 mg/ml) was measured.  

Bradford Reagent  0.01% Coomassie Brilliant Blue G250, 5% Ethanol, 8.5% Phosphoric Acid 

 Ammonium sulphate precipitation and concentration of VacA from culture 2.2.5.2

supernatent 

The H. pylori strains 60190 were grown in Brucella broth medium with cholesterol (1:250, 

Gibco) under microaerophilic conditions (10% CO2/ 85% N2/ 5% O2) at 37°C. The bacterial 

suspension was centrifuged at 6000 rpm for 20 min at 4°C. The supernatant was then sterile 

filtered. A saturated ammonium sulfate solution ((NH4)2SO4 saturated) was added to the proteins 

and were precipitated overnight at 4°C with gentle stirring. Subsequently, the proteins 

precipitated at 13000 rpm for 30 min (4°C) were palleted and resuspended in 15-30 ml PBS. To 

ensure a sufficient solubility, the proteins were incubated overnight at 4°C. For the subsequent 

gel-filtration, the volume having a filtration unit (Amicon Ultra Centrifugal Filter 100 kD cut-off 

size, Millipore) was concentrated to 4 ml. The separation of proteins was carried out according to 

their size by gel filtration.  

The gel filtration of proteins were performed using a Sephacryl S300 16/60-column. For the 

chromatography, either a FPLC or HPLC method with 100 mM NaCl, 50 mM NaPO4 (pH 7.4) 

was used as running buffer. 

 Acid activation of VacA 2.2.5.3

The required concentrations of purified VacA 2 µg and 0.25 µg for the respective experiment in 

the eppendorf tube were taken. The volume of 0.25 fold of 0.3 M HCl into the required 

concentration of purified VacA was added and incubated at 37ºC for 20 min. After incubation, the 

volume of 0.25 fold of 0.3 M NaOH (the same volume as HCl to neutralize the effect of acid) was 

added immediately before mixing to the cells.  
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 Cell vacuolating activity induced by VacA 2.2.5.4

Cells (0.5 x 10
6
 cells/ml) were incubated with various concentrations of acid activated VacA for 3 

h at 37°C in 5% CO2. Ammonium chloride (NH4Cl) was then added at the final concentration of 

2 mM and incubated further for 1 h. Cell vacuolation was quantified by neutral red uptake assay. 

Cells were washed once with 1 ml ice cold PBS and incubated in RPMI medium containing 10% 

FCS and 0.008% neutral red for 10 min at room temperature. After washing twice with 1 ml each 

with PBS containing 0.5% BSA, cells were lysed with 70% ethanol and 0.37% HCl, and 

transferred into 96-well plates. Neutral red was determined photometrically at a wavelength of 

534 nm (reference: 405 nm) and was quantified in Absorbance reader (Sunrise). 

 Detection of protein in SDS polyacrylamide gel electrophoresis 2.2.5.5

SDS polyacrylamide gel electrophoresis was performed with Mini-Protein IIITM using Bio-Rad 

system with 10% gels (80 x 50 x 1 mm). The separating gel (10% gel) was prepared, mixed and 

poured between the glass plates and covered with distilled water. After polymerisation for 30 

min, the distilled water was removed. The stacking gel (5% gel) was then poured and the 10 wells 

comb was inserted. The samples were loaded on the gel along with the protein marker. The 

separation was done for 15 min at 80 V and 1 h at 120 V.  

10% Separation gel:  4.95 ml Acrylamide/Bisacrylamide (37.5:1), 3.75 ml 1.5 M Tris pH 8.8, 

75 μl 10% SDS, 6.15 ml Distilled water, 75 μl 10% APS and 7.5 μl 

TEMED 

5% Stacking gel:  1.35 ml Acrylamide/Bisacrylamide (37.5:1), 0.625 ml 1 M Tris pH 6.8, 25 

μl 10% SDS, 1.53 ml Distilled water, 12.5 μl 10% APS and 2.5 μl 

TEMED 

Electrophoresis buffer (10 x) (1L):  50 mM Tris, 84 mM Glycine and 0.1% SDS 

 Staining of proteins by Coomassie Blue 2.2.5.6

The separated proteins from the sample in Acrylamide-SDS gel was submerged into 50 ml of 

coomassie staining solution for 30 min on rotating shaker. The Acrylamide-SDS gel was washed 

3 times with 50 ml coomassie destaining solution for 30 min each on rotating shaker. Once the 

bands were visualized and detected, the gel was finally washed with distilled water and dried for 

45 min at 80°C in a Gel dryer. 
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Staining Solution:  0.5% (w/v) Coomassie Brilliant Blue R250, 50% (v/v) Methanol, 10% 

(v/v) Acetic Acid  

Destaining Solution:  20% (v/v) Methanol, 10% (v/v) Acetic Acid 

 Fluorescent staining of VacA  2.2.5.7

The purified VacA was labelled (by covalent binding) with fluorescent Alexa Fluor 488 dye, 

Alexa Fluor 555 dye or Alexa Fluor 647 dye (molecular probes). The purified VacA to be 

labelled was taken in eppendorf and stained according to manufacture’s protocol 

(Invitrogen/Molecular probes). After labelling, they were dialysed with PBS for overnight and 

later for 4 h at 4°C. The labelled VacA were store at -20°C until its use. 

 Statistical analysis 2.2.6

All values were mean +/- standard deviation of at least three independent experiments. Statistical 

significance was determined by Student's t-test or Mann-Whitney U-test and was indicated for the 

corresponding experiment.  
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 Results 3.

 Growth of H. pylori and purification of VacA 3.1

 Growth of H. pylori in solid and liquid culture  3.1.1

H. pylori 60190 strain, which produces the VacA protein was grown on GC agar plates in the 

CO2 incubator or anaerobic chambers with 5% O2 and 10% CO2 in a microaerobic atmosphere for 

24 h. The bacteria were transferred into Brucella broth supplemented with cholesterol, nystatin, 

trimethoprim and vancomycin. The effect of cholesterol on H. pylori growth and purification of 

VacA were shown in this study (Jimenez-Soto et al., 2012). Supplementation of Brucella Broth 

with cholesterol resulted in a better growth of bacteria and a longer exponential phase of H. pylori 

especially after long-term growth (>40 h) (Figure 3-1).  

 

Figure 3-1 Growth curve of H. pylori 60190 in liquid culture. 

The growth of H. pylori strain 60190 was evaluated by OD550 measurement of liquid culture in Brucella broth 

media without any supplement, with serum and with cholesterol complementation. 

 H. pylori 60190 VacA protein precipitation and purification through Gel filtration 3.1.2

The VacA protein isolatated from strain H. pylori 60190 was used in this study. H. pylori 60190 

strain is type s1m1, which produces relatively high amount of VacA. H. pylori 60190 was grown 

in solid and liquid culture. The proteins in the culture supernatent were precipitated using 

ammonium sulfate. VacA was purified from precipitated proteins using gel filtration 

chromatography (Sephacryl S300) column, as described in the materials and methods. The 
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purified VacA fractions were seperated by SDS- PAGE and analyzed by Coomassie Brilliant 

Blue staining (Figure 3-2 A). 

A VacA mutant (VacA Δ6-27 designated here as VacA M) protein was also used for AGS cell 

infection experiments. The VacA M- producing mutant H. pylori strain was constructed by 

deletion of the strong hydrophobic region near the amino-terminus (amino acids 6-27) resulting in 

loss of vacuolation activity of the toxin. The VacA M protein is comparatively less ion-selective 

and forms slower ion-conductive channels. The purification procedure for both VacA WT and 

VacA M were compared by SDS-PAGE and analyzed by Coomassie Brilliant Blue staining 

(Figure 3-2 B). 

 

Figure 3-2 Purified VacA protein after Gel filteration and comparison of the sizes of VacA proteins purified 

from culture supernatent of H. pylori 60190 VacA WT and VacA M strain. 

(A) The protein in culture supernatent of H. pylori 60190 is precipitated by ammonium sulphate (44%) and purified 

through gel filteration chromatography. VacA wild type protein purified fractions were analyzed by SDS-PAGE 

(10%) after staining with Coomassie Brilliant Blue. (B) The purified VacA WT and VacA M proteins are loaded on 

SDS- PAGE (10%). The sizes of both proteins were compared after staining with Coomassie Brilliant Blue. The size 

of VacA WT is slightly larger as compared to VacA M. 

 Quantification of VacA induced cell vacuolation in human Jurkat E6.1 T-cell 3.2

line  

In order to check the activity of VacA, the purified VacA (both VacA WT and VacA M) was 

tested by using the vacuolation assay. Normally, the purified VacA is poorly active and needs to 

be acid activated by 0.3 M HCl and the acid is neutralized by 0.3 M NaOH (see methods; 

2.2.5.3).  
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The human Jurkat E6.1 T-cell line used in our lab is derived from Jurkat FHCRC (Fred 

Hutchinson Cancer Research Center, Seattle, WA) cell lines. Human Jurkat E6.1 T-cells produce 

large amounts of IL-2, human alpha interferon after stimulation with phorbol 12-myristate 13-

acetate (PMA) or anti-CD3/CD28 antibodies. 

The Jurkat E6.1 are cells growing in suspension and they are pseudo diploid. The cells are 

maintained in culture in RPMI 1640 containing 2 mM Glutamine and 10% Foetal Bovine Serum 

(FBS). Upon resuscitation, single cells can be observed, but during culture most cells grow as 

aggregates. 

In order to check the activity of VacA by vacuolation assay, Jurkat E6.1 T-cells (0.5 x 10
6
 

cells/ml) were incubated for 4 h at 37°C and 5% CO2 with different concentrations of acid 

activated VacA (VacA WT and VacA M). A final concentration of 2 mM NH4Cl was added and 

further incubated for 1 h at 37°C and 5% CO2. The cell vacuolation was determined by 

quantification of neutral red staining of cells. The cells were centrifuged and washed. These cells 

were incubated with 0.008% neutral red in RPMI medium supplemented with 10% FCS for 10 

min at room temperature. The cells were then washed 2 times with 1 ml PBS containing 0.5% 

BSA. The neutral red was extracted by 70% ethanol and 0.37% HCl and immediately transferred 

into 96-well plates. The neutral red was at a wavelength of 534 nm (reference: 405 nm) 

photometrically quantified (Figure 3-3). 

 

Figure 3-3 Neutral red uptake assay of Jurkat E6.1 cells  

Jurkat E6.1 were treated with different concentrations (0.25 µg/ml and 1 µg/ml) of acid activated VacA (VacA WT 

and VacA M). The vacuolation assay was determined by neutral red uptake (NRU). The amount of neutral red in the 

vacuoles was quantified (NRU: "neutral red units") at a wavelength of 534 nm (reference: 405 nm). The dark black 

bar indicates a control value with no VacA corresponding 1-NRU. The values of red and blue bars show induction of 
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vacuoles as x fold to 1-NRU of VacA WT and VacA M respectively. Data shows the mean values and standard 

deviation from three independent experiments. Statistical significance was evaluated using a t-Test. *P<0.05. 

 VacA inhibits the increase of cytosolic free Ca2+ in response to stimulation 3.3

by ionomycin and thapsigargin in T-lymphocytes 

H. pylori VacA binds to the receptor on the surface of target cells and is internalized. Once inside 

the cell, VacA alters the cytosolic calcium concentration thereby allowing the toxin to modulate 

cell function. The involvement of VacA in calcium influx in RBL-2H3 cells was previously 

described (de Bernard et al., 2005). Our in vitro investigations reveal that VacA suppresses the 

increase of the cytosolic free calcium concentration after stimulation by the calcium ionophore 

ionomycin and thapsigargin.  

 Effect of VacA on increase of cytosolic free Ca2+ concentration in human Jurkat 3.3.1

E6.1 T-cell line  

 H. pylori VacA inhibits calcium influx in human Jurkat E6.1 T-cell line after 3.3.1.1

stimulation by ionomycin  

Ionomycin is an effective calcium ionophore (Liu & Hermann, 1978). Ionomycin raises the 

intracellular level of calcium (Ca
2+

). In order to increase the calcium influx, ionomycin acts as a 

Ca
2+

 carrier across the membrane. This increase of Ca
2+ 

influx is achieved by direct stimulation of 

store-regulated cation entry across biological membranes (Morgan & Jacob, 1994). At the 

micromolar level, ionomycin is able to activate Ca
2+

/Calmodulin dependent protein kinases 

(CaMK) including CaMKII and CaMKIV to stimulate gene expression (Lobo, Zanjani, Ho, 

Chatila, & Fuleihan, 1999). Ionomycin induces hydrolysis of phosphoinositides and activates 

PKC to mediate T-cell activation in human cells (Chatila, Silverman, Miller, & Geha, 1989). 

To measure the intracellular level of calcium, Fluo-4 NW calcium assay was used. Fluo-4 NW is 

a fluorescent Ca
2+

 indicator with high sensitivity and high fluorescence. Its fluorescence is 

increased upon binding of Ca
2+

 in the cytoplasm of the cells. Fluo-4 is an acetoxymethyl (AM) 

ester, which is cell membrane permeable. When cells are incubated with the dye, the dye is taken 

up by cells. Once inside the cells, Fluo-4 AM is hydrolyzed by intracellular esterases resulting in 

the negatively charged membrane impermeable form which is capable of binding Ca
2+

 and emits 

fluorescence (Figure 3-4). 
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Several Ca
2+

 chelators were used to inhibit Ca
2+ 

influx by binding extracellular as well as 

intracellular free Ca
2+ 

for our experiments. EDTA and EGTA act as powerful chelating agents, 

which bind to divalent cations such as Ca
2+

 or Mg
2+

 with EGTA having a higher affinity than 

EDTA. Both are impermeable to the membranes, therefore, a combination of EDTA-EGTA were 

used to inhibit Ca
2+ 

influx by binding extracellular free Ca
2+

. In contrast to EDTA-EGTA, 

BAPTA AM was used to bind intracellular free Ca
2+

. BAPTA AM is a membrane permeable 

intracellular calcium chelator. Once inside the cell, BAPTA AM is cleaved by intracellular 

esterases and binds Ca
2+

 in the cytoplasm of the cells (Figure 3-4). 

The effect of VacA was measured in the human Jurkat E6.1 T-cell line and primary human CD
4+ 

T-cells in the presence and absence of calcium chelators. 

 

Figure 3-4 Mechanism of action of Ca
2+

 ionophores and inhibitors 

Ionomycin is an effective calcium ionophore. Ionomycin increases Ca
2+

 influx by acting as a Ca
2+

 carrier and 

stimulates store regulated cation entry across the membrane. Thapsigargin is a membrane permeable enzyme. 

Thapsigargin blocks the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) and thereby causes 

depletion of the ER calcium store. This results in an increase of cytoplasmic Ca
2+

 concentration and an increase in 

Ca
2+

 influx. A combination of EDTA-EGTA inhibits Ca
2+

 influx by binding extracellular free Ca
2+

. BAPTA AM is a 

membrane permeable Ca
2+

 chelator, which binds to cytoplasmic free Ca
2+

 upon cleavage by intracellular esterases. 
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In the first approach to evaluate the effect of VacA on ionomycin stimulated Jurkat E6.1 cells, the 

cells (1.75 x 10
6
 cells/ml) were pre-incubated with purified acid activated VacA WT and VacA M 

for 3 h at 37°C and 5% CO2 and then were loaded with Fluo-4 NW calcium assay dye and 

incubated for further 1 h at 37°C and 5% CO2. 

For this purpose, Jurkat E6.1 cells were pre-incubated with VacA WT and VacA M at two 

different concentrations (2 µg/ml and 0.25 µg/ml). In order to sequester extracellular Ca
2+

, a 

combination of EDTA-EGTA (final concentration 2 mM and 500 µM, respectively) was used. 

BAPTA AM was used at the final concentration of 50 µM to sequester intracellular Ca
2+

. 

Additionally, EDTA-EGTA and BAPTA AM both together were used to sequester all free Ca
2+

. 

After 4 h of incubation, Jurkat E6.1 cells were evaluated by fluorescence measurement (excitation 

at 494 nm and emission at 516 nm) in a fluorescence micro plate reader (FLUOstar OPTIMA). 

In the first step, the baseline fluorescence of resting cells (before stimulation) was measured for 

10 cycles. Addition of ionomycin at the final concentration 0.5 µM to the cells led to Ca
2+

 influx, 

showing the highest peaks of measured fluorescence in this experiment. Treatment of the cells 

with EDTA-EGTA before ionomycin stimulation greatly reduced this Ca
2+

 influx by chelating 

extracellular Ca
2+

. BAPTA AM pretreated cells showed an increased level of intracellular Ca
2+

 

after stimulation because BAPTA AM only binds intracellular Ca
2+

, but does not prevent Ca
2+

 

influx into the cell. Administration of both EDTA-EGTA and BAPTA AM at the same time 

completely abolished Ca
2+

 influx after ionomycin stimulation and showed the lowest fluorescence 

signal in this experiment (Figure 3-5 A). 

A slight reduction of calcium influx induced by ionomycin was observed when the cells were pre-

incubated with VacA WT and VacA M as compared to cells without VacA treatment. The effect 

of VacA WT and VacA M on calcium influx was consistent even after 35 min and 60 min of 

ionomycin stimulation (Figure 3-5 B&C). 

The two different concentrations (2 µg/ml and 0.25 µg/ml) of VacA WT and VacA M were 

tested. Both VacA WT and VacA M had an effect on the increase of calcium influx with 

concentrations as low as 0.25 µg/ml. As noticed in figure 3-5 B&C, the effect of VacA WT and 

VacA M was similar. Ionomycin acts as a Ca
2+

 carrier across the membrane suggesting both type 

of VacA may inhibit calcium influx extracellularly. The negative control measurements were 

taken with the cells treated with EDTA-EGTA, BAPTA AM and EDTA-EGTA & BAPTA AM 
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with and without stimulation by ionomycin. The cells with only stimulation by ionomycin were 

taken as positive control (Figure 3-5 A, B&C).  

 

Figure 3-5 Measurement of Ca
2+

 influx stimulated by ionomycin and the effect of VacA on the increase of 

the cytosolic free Ca
2+

 concentration in Jurkat E6.1 cells. 

(A) Each line in the graph displays fluorescence intensity measurements for 60 min in Jurkat E6.1 cells loaded with 

Fluo-4 NW. Ten baseline fluorescence measurements were taken prior to stimulation with 0.5 µM ionomycin. The 

time point of ionomycin stimulation is indicated by a black vertical arrow. Measurements were performed in the 

presence of EDTA-EGTA (final concentration 2 mM and 500 µM, respectively), BAPTA AM (50 µM), EDTA-

EGTA and BAPTA AM, VacA WT and VacA M. The cells were pre-incubated with both VacA WT and VacA M at 

two different concentrations (2 µg/ml and 0.25 µg/ml) indicated in red and blue, respectively. (B) The degree of 

inhibition of calcium influx by VacA WT and VacA M at 35 min depicted as bar graphs. (C) Bars represent the 

average measurement obtained at 60 min. The horizontal arrows indicate the order of pre-incubation to stimulation. 
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Each graph was compiled from data obtained in three independent experiments. Error bars are standard deviations. 

Statistical significance was evaluated using a t-Test. *P<0.05, # No significance. 

In addition to the above experiments, the effect of VacA WT and VacA M on the increase of  

Ca
2+

 influx stimulated by ionomycin was also measured in cells which were treated (before 

stimulation) with EDTA-EGTA, BAPTA AM and ionomycin.  

In order to measure the effect of VacA on Ca
2+

 influx, Jurkat E6.1 cells were incubated for 4 h 

with VacA and then treated with EDTA-EGTA and ionomycin, prior to measuring the baseline 

fluorescence. 

No increase of Ca
2+

 influx stimulated by ionomycin was observed, when the cells were pre-

incubated with VacA WT and VacA M and were treated with EDTA-EGTA and ionomycin 

(Figure 3-6A).  

This suggests that EDTA-EGTA alone is able to bind all extracellular Ca
2+

, thereby not allowing 

ionomycin to induce Ca
2+

 influx. It was also noticed that a later treatment with ionomycin does 

not increase Ca
2+

 influx after stimulation by ionomycin for measurement. 

Furthermore, it was confirmed that when cells were pre-incubated with VacA WT and VacA M 

and treated with BAPTA AM and ionomycin, baseline Ca
2+

 levels were elevated. This was due to 

the effect of ionomycin before measurement, where BAPTA AM was not able to block the 

calcium influx caused by ionomycin treatment (Figure 3-6 B) as noticed earlier. No significant 

difference was observed between VacA WT and VacA M effects on calcium influx in these 

experiments. 

As a further control experiment, it was necessary to confirm that no increase of calcium influx 

occurs when the cells were pre-incubated with VacA WT and VacA M and treated with EDTA-

EGTA, BAPTA AM and ionomycin. As expected, ionomycin stimulation of VacA WT and VacA 

M pre-incubated cells was not observed (Figure 3-6 C). This effect was caused by EDTA-EGTA 

alone and not by BAPTA AM. 
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Figure 3-6 Measurement of Ca
2+

 influx evoked by ionomycin and the effect of VacA on the increase of the 

cytosolic free calcium concentration in Jurkat E6.1 cells. 

Each line in the graph displays fluorescence intensity measurements in Jurkat E6.1 cells loaded with Fluo-4 NW. The 

cells were pre-incubated with VacA WT and VacA M (indicated in red and blue, respectively). (A) The cells were 

then treated with EDTA-EGTA and ionomycin. (B) The cells were then treated with BAPTA AM and ionomycin. 

(C) The cells were then treated with BAPTA AM, EDTA-EGTA and ionomycin. The cells were stimulated by 0.5 

µM ionomycin (black vertical arrow) after measuring the baseline fluorescence. The horizontal arrows indicate the 

order of pre-incubation to treatment and stimulation. Each graph was compiled from data obtained in three 

independent experiments. 
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In addition to the above experiments, no effect on the calcium influx of VacA WT and VacA M 

pre-incubated cells together with BAPTA AM was measured (Figure 3-7 A). Elevated baseline 

Ca
2+

 influx was measured in the VacA WT and VacA M pre-incubated cells treated with 

ionomycin. However, no significant difference regarding the effect on Ca
2+

 influx between VacA 

WT and VacA M was observed (Figure 3-7 B). 

 

 

Figure 3-7 Measurement of Ca
2+

 influx evoked by ionomycin and the effect of VacA on the increase of the 

cytosolic free calcium concentration in Jurkat E6.1 cells. 

Each line in the graph displays fluorescence intensity measurements in Jurkat E6.1 cells loaded with Fluo-4 NW. The 

cells were pre-incubated with VacA WT and VacA M (indicated in red and blue, respectively). (A) The cells were 

then treated with BAPTA AM.  (B) The cells were then treated with ionomycin. The cells were stimulated by 0.5 µM 

ionomycin (black vertical arrow) after measuring the baseline fluorescence. The horizontal arrows indicate the order 

of pre-incubation to treatment and stimulation. Each graph was compiled from data obtained in three independent 

experiments. 
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 H. pylori VacA inhibits the increase of cytosolic free Ca2+ in human Jurkat 3.3.1.2

E6.1 T-cell line after stimulation by thapsigargin  

We wanted to see whether VacA WT and VacA M had a similar effect on calcium influx and increase 

of cytosolic free Ca2+ stimulated by thapsigargin, so we performed similar experiments with 

thapsigargin and measured the fluorescence. We thought to use thapsigargin in our experiments 

because of its specificity in increase of cytosolic free Ca
2+

 by endoplasmic reticulum (ER) Ca
2+

 

store depletion (Lytton, Westlin, & Hanley, 1991). Thapsigargin is a potent inhibitor of a class of 

enzymes known as SERCA (Sarco/endoplasmic reticulum calcium ATPase) (Rogers, Inesi, 

Wade, & Lederer, 1995). It is a tumor promoter in mammalian cells (Hakii et al., 1986). 

Thapsigargin raises the cytoplasmic calcium concentration by blocking the SERCA pump causing 

calcium stores to become depleted. Store depletion consequently activates plasma membrane 

calcium channels, allowing an influx of calcium into the cytosol. 

In order to evaluate the effect of VacA on Jurkat E6.1 cells stimulated by thapsigargin, the cells 

(1.75 x 10
6
 cells/ml) were pre-incubated with purified acid activated VacA WT and VacA M (2 

µg/ml and 0.25 µg/ml) for 3 h and then were loaded with Fluo-4 NW calcium assay dye for 

further 1 h in at 37°C and 5% CO2. The cells were then evaluated by fluorescence measurement 

for excitation at 494 nm and emission at 516 nm in fluorescence micro plate reader. The 

experiments were conducted as described in 3.3.1.1. 

In the first step, the baseline fluorescence was measured for 10 cycles. Thapsigargin at a final 

concentration of 1 µM was then added to the cells. The effect of thapsigargin treatment of Jurkat 

E6.1 cells can be seen in figure 3-8 A, B and C. A strong reduction of the increase of cytosolic 

free Ca
2+

 was observed when the cells were pre-incubated with VacA WT. The effect of VacA 

WT was statistically significant even with a low concentration of VacA WT (0.25 µg/ml), 

however in the case of VacA M (Figure 3-8 A), a significant but comparatively lesser reduction 

was observed. The effect of VacA WT to inhibit the increase of cytosolic free Ca
2+

 was consistent 

even after 35 min and 60 min after thapsigargin stimulation (Figure 3-5 B&C). 

In order to inhibit the Ca
2+

 influx into the cells, a mixture of EDTA-EGTA (final concentration 2 

mM and 500 µM, respectively) and BAPTA AM (50 µM) were added and the control 

measurements were taken. 
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Figure 3-8 Measurement of Ca
2+

 influx evoked by thapsigargin and the effect of VacA on the increase of 

the cytosolic free calcium concentration in Jurkat E6.1 cells. 

(A) Each line in the graph displays fluorescence intensity measurements over the period of 100 min in Jurkat E6.1 

cells loaded with Fluo-4 NW. Ten baseline fluorescence measurements were taken prior to stimulation with 1 µM 

thapsigargin. The time point of thapsigargin stimulation is indicated by a black vertical arrow. Measurements were 

performed in the presence of EDTA-EGTA (final concentration 2 mM and 500 µM, respectively), BAPTA AM (50 

µM), EDTA-EGTA and BAPTA AM, VacA WT and VacA M. The cells were pre-incubated with both VacA WT 

and VacA M at two different concentrations (2 µg/ml and 0.25 µg/ml) indicated in red and blue, respectively. (B) 

The degree of inhibition in the increase of the cytosolic free Ca
2+

 by VacA WT and VacA M at 35 min depicted as 

bar graphs. (C) Bars represent the averaged measurement obtained at 60 min. The horizontal arrows indicate the 

order of pre-incubation to stimulation. Each graph was compiled from data obtained in three independent 

experiments. Error bars are standard deviations. Statistical significance was evaluated using a t-Test. *P<0.05, 

**P<0.01. 
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As observed in figure 3-8, VacA WT and VacA M have a significant effect on the increase of 

cytosolic free Ca
2+

 after stimulation by thapsigargin. This effect of VacA WT is much higher than 

VacA M, which seems to have similar effect as BAPTA AM on the cells. This suggests that the 

high concentration of 2 µg/ml of VacA WT is able to block up to 40% of the increase of cytosolic 

free Ca
2+

 in Jurkat E6.1 cells. 

Since, thapsigargin acts intracellularly, it could be interesting to see if extracellular calcium was 

first blocked by EDTA-EGTA and then treated by thapsigargin in the cells with pre-incubated 

VacA. The cells were then stimulated by thapsigargin after measuring the baseline fluorescence. 

As expected, EDTA-EGTA was able to block calcium influx by chelating extracellular Ca
2+ 

completely causing no increase of cytosolic free Ca
2+

 to be measured  and therefore VacA 

inhibition on increase of calcium influx was not observed (Figure 3-9 A, B&C). 

 

Figure 3-9 Fluorescence measurement of Ca
2+

 influx evoked by thapsigargin and the effect of VacA on the 

increase of the cytosolic free calcium concentration in Jurkat E6.1 cells treated with EDTA-EGTA and 

thapsigargin. 

(A) Each line in the graph displays fluorescence intensity measurements in Jurkat E6.1 cells loaded with Fluo-4 NW. 

The cells were pre-incubated with VacA WT and VacA M (indicated in red and blue, respectively) and treated with 

EDTA-EGTA and thapsigargin. The cells were then stimulated by 1 µM thapsigargin (black vertical arrow) after 

measuring the baseline fluorescence. (B) The degree of inhibition on the increase of the cytosolic free Ca
2+

 by VacA 

WT and VacA M at 35 min depicted as bar graphs. (C) Bars represent the averaged measurement obtained at 60 min. 

The horizontal arrows indicate the order of pre-incubation to treatment and stimulation. Each graph was compiled 
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from data obtained in three independent experiments. Error bars are standard deviations. Statistical significance was 

evaluated using a t-Test. *P<0.05. 

Similarly to the previous experiments using EDTA-EGTA, now BAPTA AM was used to 

sequester only cytosolic free Ca
2+

 in cells that had been pre-incubated with VacA and further 

treated by thapsigargin and after measuring the baseline fluorescence and then again stimulated 

by thapsigargin. As observed in figure 3-10, VacA and BAPTA AM were not able to block Ca
2+

 

influx completely as compared to VacA and EDTA-EGTA in previous experiments.  

Since increase of free Ca
2+

 in the cytoplasm by thapsigargin occurs via intracellular  stores and a 

Ca
2+

 influx from the extracellular milieu was not abolished, in this experiment the measured 

fluorescence was increased after stimulation by thapsigargin even though BAPTA AM previously 

bound all cytosolic free Ca
2+

. However, BAPTA AM could not block the influx of extracellular 

free Ca
2+

. In addition, we can show that only VacA WT and BAPTA AM, but not VacA M and 

BAPTA AM were able to inhibit significantly the increase of cytosolic free Ca
2+

 by the influx of 

free Ca
2+ 

from the extracellular milieu (Figure 3-10 A, B&C). 

 

 

Figure 3-10 Fluorescence measurement evoked by thapsigargin and the effect of VacA on the increase of the 

cytosolic free calcium concentration in Jurkat E6.1 cells treated with BAPTA AM and thapsigargin. 
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(A) Each line in the graph displays fluorescence intensity measurements in Jurkat E6.1 cells loaded with Fluo-4 NW. 

The cells were pre-incubated with VacA WT and VacA M (indicated in red and blue, respectively) and treated with 

BAPTA AM and thapsigargin. The cells were then stimulated by 1 µM thapsigargin (black vertical arrow) after 

measuring the baseline fluorescence. (B) The degree of inhibition in the increase of the cytosolic free Ca
2+

 by VacA 

WT and VacA M at 35 min depicted as bar graphs. (C) Bars represent the averaged measurement obtained at 60 min. 

The horizontal arrows indicate the order of pre-incubation to treatment and stimulation. Each graph was compiled 

from data obtained in three independent experiments. Error bars are standard deviations. Statistical significance was 

evaluated using a t-Test. *P<0.05, # No significance. 

 

Knowing that VacA WT inhibits  the increase of the cytosolic free Ca
2+

 concentration and not the 

Ca
2+

 efflux from the ER as a result of stimulation by thapsigargin, it was important to confirm 

this in Jurkat E6.1 cells pre-incubated with VacA WT and VacA M and then treated with EDTA-

EGTA, BAPTA AM and thapsigargin. After measuring the baseline fluorescence, the cells were 

then again stimulated by 1 µM thapsigargin. As expected, the increase of the cytosolic free Ca
2+

 

concentration and Ca
2+

 influx were completely blocked, and no rise in fluorescence was measured 

(Figure 3-11 A, B&C). This effect of chelating free Ca
2+

 was due to EDTA-EGTA extracellularly 

and BAPTA AM intracellularly, therefore the effect of VacA was not seen. 

 

Figure 3-11 Fluorescence measurement evoked by thapsigargin and the effect of VacA on the increase of the 

cytosolic free calcium concentration in Jurkat E6.1 cells treated with EDTA-EGTA, BAPTA AM and 

thapsigargin. 
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(A) Each line in the graph displays fluorescence intensity measurements in Jurkat E6.1 cells loaded with Fluo-4 NW. 

The cells were pre-incubated with VacA WT and VacA M (indicated in red and blue, respectively) and treated with 

EDTA-EGTA BAPTA AM and thapsigargin. The cells were then stimulated by 1 µM thapsigargin (black vertical 

arrow) after measuring the baseline fluorescence. (B) The degree of inhibition in the increase of the cytosolic free 

Ca
2+

 by VacA WT and VacA M at 35 min depicted as bar graphs. (C) Bars represent the averaged measurement 

obtained at 60 min. The horizontal arrows indicate the order of pre-incubation to treatment and stimulation. Each 

graph was compiled from data obtained in three independent experiments. Error bars are standard deviations. 

Statistical significance was evaluated using a t-Test. *P<0.05. 

The next step was to confirm this in Jurkat E6.1 cells that were pre-incubated with VacA WT and 

VacA M and treated with BAPTA AM without thapsigargin. The cells were then stimulated by 1 

µM thapsigargin after measuring the baseline fluorescence. A strong and significant reducing 

effect by VacA WT together with BAPTA AM on the increase of the cytosolic free Ca
2+

 

concentration was observed (Figure 3-12 A). The effect of VacA WT and BAPTA AM was 

consistent even after 35 min and 60 min after thapsigargin stimulation (Figure 3-12 B&C). 

 

Figure 3-12 Fluorescence measurement evoked by thapsigargin and the effect of VacA on the increase of the 

cytosolic free calcium concentration in Jurkat E6.1 cells treated with BAPTA AM.  

(A) Each line in the graph displays fluorescence intensity measurements in Jurkat E6.1 cells loaded with Fluo-4 NW. 

The cells were pre-incubated with VacA WT and VacA M (indicated in red and blue, respectively) and treated with 

BAPTA AM. The cells were then stimulated by 1 µM thapsigargin (black vertical arrow) after measuring the 

baseline fluorescence. (B) The degree of inhibition in the increase of the cytosolic free Ca
2+

 by VacA WT and VacA 

M at 35 min depicted as bar graphs. (C) Bars represent the averaged measurement obtained at 60 min. The horizontal 
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arrows indicate the order of pre-incubation to treatment and stimulation. Each graph was compiled from data 

obtained in three independent experiments. Error bars are standard deviations. Statistical significance was evaluated 

using a t-Test. *P<0.05, **P<0.01, # No significance. 

It was also important to confirm the effect of VacA WT on the increase of cytosolic free Ca
2+

 in 

Jurkat E6.1 cells when the cells were pre-incubated with VacA WT and treated with thapsigargin. 

Once the cells were stimulated by 1 µM thapsigargin after measuring the baseline fluorescence 

(Figure 3-13 A), the effect of VacA WT as compared to VacA M to inhibit the increase of 

cytosolic free Ca
2+ 

was high and significant with thapsigargin treatment (Figure 3-13 B&C). 

  

 

Figure 3-13 Fluorescence measurement of Ca
2+

 influx in the effect of VacA on the increase of the cytosolic 

free calcium concentration in Jurkat E6.1 cells treated with two times thapsigargin.  

(A) Each line in the graph displays fluorescence intensity measurements in Jurkat E6.1 cells loaded with Fluo-4 NW. 

The cells were pre-incubated with VacA WT and VacA M (indicated in red and blue, respectively) and treated with 

thapsigargin. The cells were then stimulated by 1 µM thapsigargin (black vertical arrow) after measuring the baseline 

fluorescence. (B) The degree of inhibition in the increase of the cytosolic free Ca
2+

 by VacA WT and VacA M at 35 

min depicted as bar graphs. (C) Bars represent the averaged measurement obtained at 60 min. The horizontal arrows 

indicate the order of pre-incubation to treatment and stimulation. Each graph was compiled from data obtained in 

three independent experiments. Error bars are standard deviations. Statistical significance was evaluated using a t-

Test. *P<0.05, # No significance.  
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 Effect of VacA on increase of cytosolic free Ca2+ concentration in human CD4+ T-3.3.2

cells 

H. pylori VacA inhibits calcium influx and the increase of cytosolic free Ca
2+

 concentration in 

Jurkat E6.1 cells after stimulation by ionomycin and thapsigargin. Most important, VacA WT but 

not VacA M largely affected the increase of cytosolic free Ca
2+

 concentration stimulated by 

thapsigargin (Figure 3-8). It was also observed that this effect of VacA WT as compared to VacA 

M was much higher and significant after subsequent thapsigargin treatment (Figure 3-13).  

An important question was now whether there is a similar effect of VacA WT and VacA M on 

calcium influx evoked by ionomycin and increase of cytosolic free Ca
2+

 concentration stimulated 

by thapsigargin in PMA activated CD
4+

 T-cells with similar experimental conditions as described 

in 3.3.1.1 with Jurkat E6.1 cells.  

 H. pylori VacA inhibits calcium influx in human CD4+ T-cells after 3.3.2.1

stimulation by ionomycin  

Therefore the intracellular calcium in CD
4+

 T-cells was measured using the Fluo-4 NW calcium 

assay. The same Ca
2+

 chelators were used to inhibit Ca
2+ 

influx by binding extracellular as well as 

intracellular free Ca
2+ 

for the experiments as described with Jurkat E6.1 cells (see 3.3.1.1). The 

effect of VacA was measured in primary human CD
4+ 

T-cells after activation by PMA. 

Firstly, fresh prepared human blood was collected and PBLC (peripheral blood lymphocytes) 

were isolated by density gradient centrifugation (see 2.2.4.6). Primary human CD
4+ 

T-cells were 

isolated by positive selection with the MACS technology as described in 2.2.4.5. 

The primary human CD
4+ 

T-cells were then seeded with a cell density of 1x 10
6 

cells/ml. Cells 

were activated by 2 nM PMA for 1 h and then used for experiments. Similar to the previous 

experiments with Jurkat E6.1 cells as described in 3.3.1.1, the primary human CD
4+  

T-cells were 

pre-incubated with purified acid-activated VacA WT and VacA M with concentrations of 2 µg/ml 

or 0.25 µg/ml for 3 h at 37°C and 5% CO2 and then were loaded with Fluo-4 NW calcium assay 

dye and incubated for another h at 37°C and 5% CO2. After 4 h of total incubation, cells were 

evaluated by fluorescence measurement (excitation at 494 nm and emission at 516 nm) in a 

fluorescence microplate reader (FLUOstar OPTIMA). The baseline fluorescence of resting cells 

(before stimulation) was measured for 10 cycles and then cells were stimulated by ionomycin at a 

final concentration of 0.5 µM.  
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A significant reduction of calcium influx induced by ionomycin was observed when the cells 

were pre-incubated with VacA WT (2 µg/ml) (Figure 3-14 A). This effect was consistent even 

after 100 min of ionomycin stimulation. No significant reduction of calcium influx was observed 

in cells pre-incubated with VacA M (Figure 3-14 B&C). 

 

 

Figure 3-14 Measurement of Ca
2+

 influx evoked by ionomycin and the effect of VacA on Ca
2+

 influx in 

CD
4+ 

T-cells.  

(A) Each line in the graph displays fluorescence intensity measurements over the period of 100 min in CD
4+

 T-cells. 

After ten baseline fluorescence measurements, 0.5 µM ionomycin was added to the cells. The time point of 

ionomycin stimulation is indicated by a black vertical arrow. For control measurements EDTA-EGTA, BAPTA AM, 

and EDTA-EGTA and BAPTA AM were added to the cells. The cells were pre-incubated with both VacA WT and 

VacA M at two different concentrations (2 µg/ml and 0.25 µg/ml) indicated in red and blue, respectively. (B) The 

degree of inhibition of calcium influx by VacA WT and VacA M at 58 min depicted as bar graphs. (C) Bars represent 
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the average measurement obtained at 100 min. The horizontal arrows indicate the order of pre-incubation to 

stimulation. Each graph was compiled from data obtained in three independent experiments. Error bars are standard 

deviations. Statistical significance was evaluated using a t-Test. *P<0.05, **P<0.01, # No significance. 

 H. pylori VacA inhibits the increase of cytosolic free Ca2+ in CD4+ T-cells 3.3.2.2

after stimulation by thapsigargin  

As seen in figure 3-8 in Jurkat E6.1 cells, VacA WT had a much higher and significant effect on 

the increase of cytosolic free Ca
2+

 concentration than VacA M after stimulation by thapsigargin. 

To test whether VacA WT and VacA M have similar effects in CD4
+
 T-cells after stimulation by 

thapsigargin, similar experimental conditions with CD4
+
 T-cells were applied. 

Therefore, we first activated CD4
+
 T-cells by 2 nM PMA for 1 h. After activation, cells were pre-

incubated with purified acid activated VacA WT and VacA M (2 µg/ml and 0.25 µg/ml) as 

described in 3.3.1.2. Furthermore, CD4
+
 T-cells were also treated with EDTA-EGTA and 

BAPTA AM alone, as well as stimulated by thapsigargin as control. After measuring the baseline 

fluorescence, a final concentration of 1 µM thapsigargin was added to the cells. The cells were 

then evaluated for the effect of VacA on the increase of cytosolic free Ca
2+

 after stimulation by 

thapsigargin. 

The effect of thapsigargin treatment of CD4
+
 T-cells can be seen in figure 3-15 A, B and C.  

VacA WT caused a strong significant reduction of the increase of cytosolic free Ca
2+

 

concentration in PMA activated CD4
+
 T-cells after the addition of thapsigargin. This effect was 

observed right after stimulation by thapsigargin and remained unchanged throughout the 

thapsigargin treatment upto 100 min. For the positive control, the PMA activated CD4
+
 T-cells 

were only stimulated by thapsigargin and as negative control, the extracellular as well as 

intracellular free Ca
2+

 were sequestered together with a mixture of EDTA-EGTA and BAPTA 

AM and then stimulated by thapsigargin. As observed in figure 3-15 B, the inhibitory effect of 

VacA WT at the higher concentration (2 µg/ml) at 58 min of thapsigargin treatment was upto 

40% of the cells without pre-incubation with VacA. This percentage of inhibition was calculated 

by comaparing the effect of VacA WT in the increase of cytosolic free Ca
2+

 with the effect in 

resting cells treated with EDTA-EGTA and BAPTA AM (negative control) and the effect in cells 

stimulated by thapsigargin (positive control). The fluorescence measured in negative control was 

considered zero value as there occurred no increase of cytosolic free Ca
2+

. The positive control 

was taken as 100%. However, as seen in figure 3-15 C, a slight but significant reduction of VacA 
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M was observed after 100 min of thapsigargin treatment, although no significant reduction was 

observed by VacA M after 58 min of thapsigargin treatment (Figure 3-15 B). 

 

 

Figure 3-15  Measurement of the increase of the cytosolic free calcium concentration in CD
4+

 T-cells pre-

incubated with VacA and then stimulated by thapsigargin.  

(A) Each line in the graph displays fluorescence intensity measurements over the period of 100 min in CD
4+

 T-cells. 

Ten baseline fluorescence measurements were taken prior to stimulation with 1 µM thapsigargin. The time point of 

thapsigargin stimulation is indicated by a black vertical arrow. The cells were pre-incubated with both VacA WT and 

VacA M at two different concentrations (2 µg/ml and 0.25 µg/ml) indicated in red and blue, respectively. Control 

measurements were performed in the presence of EDTA-EGTA, BAPTA AM, EDTA-EGTA and BAPTA AM, and 

thapsigargin treatment. (B) The degree of inhibition in the increase of the cytosolic free Ca
2+

 by VacA WT and VacA 

M at 58 min depicted as bar graphs. (C) Bars represent the averaged measurement obtained at 100 min. The 

horizontal arrows indicate the order of pre-incubation to stimulation. Each graph was compiled from data obtained in 

three independent experiments. Error bars are standard deviations. Statistical significance was evaluated using a t-

Test. *P<0.05, **P<0.01, # No significance. 
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Since the effect on inhibition of VacA WT on increase of cytosolic free Ca
2+

 was increased after 

two times thapsigargin treatment in Jurkat E6.1 cells figure 3-13, it was also interesting to see a 

similar effect in CD
4+

 T-cells. Therefore, PMA activated CD
4+

 T-cells were pre-incubated with 

VacA WT and VacA M and treated with 1 µM thapsigargin. After measuring the baseline 

fluorescence, cells were then again stimulated by 1 µM thapsigargin (Figure 3-16 A). As 

expected, VacA WT was able to inhibit upto 50% of the increase of cytosolic free Ca
2+

 in PMA 

activated CD
4+

 T-cells. This effect of VacA WT was evaluated at time points 58 min and 100 min 

(Figure 3-16, B&C). Besides, a slight but significant effect of VacA M was also observed after 

two times thapsigargin treatment (Figure 3-16 A, B&C).  

 

 

Figure 3-16 Measurement of the increase of the cytosolic free calcium concentration in CD
4+

 T-cells pre-

incubated with VacA and then stimulated by two times thapsigargin.  

(A) Each line in the graph displays fluorescence intensity measurements over the period of 100 min in CD
4+

 T-cells. 

The time point of thapsigargin stimulation is indicated by a black vertical arrow. The cells were pre-incubated with 

both VacA WT and VacA M at two different concentrations (2 µg/ml and 0.25 µg/ml) indicated in red and blue, 

respectively. Cells were then treated with thapsigargin and ten baseline fluorescence measurements were taken. After 

measuring the baseline fluorescence, 1 µM thapsigargin was again added to the cells. Control measurements were 

performed in the presence of EDTA-EGTA, BAPTA AM, EDTA-EGTA and BAPTA AM, and thapsigargin 

treatment. (B) The degree of inhibition in the increase of the cytosolic free Ca
2+

 by VacA WT and VacA M at 58 min 
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depicted as bar graphs. (C) Bars represent the averaged measurement obtained at 100 min. The horizontal arrows 

indicate the order of pre-incubation to stimulation.  Each graph was compiled from data obtained in three 

independent experiments. Error bars are standard deviations. Statistical significance was evaluated using a t-Test. 

*P<0.05, **P<0.01. 

As a further control experiment to confirm that no increase of cytosolic free Ca
2+

 occurred, PMA 

activated CD
4+

 T-cells were pre-incubated with VacA and then treated with both EDTA-EGTA 

and BAPTA AM. As observed in figure 3-17, EDTA-EGTA and BAPTA AM together sequester 

extracellular as well as intracellular free Ca
2+

 respectively thereby not allowing the increase of 

cytosolic free Ca
2+

 after stimulation by thapsigargin. 

 

 

Figure 3-17 Fluorescence measurement of CD
4+

 T-cells pre-incubated with VacA and treated with EDTA-

EGTA, BAPTA AM and thapsigargin. 

(A) Each line in the graph displays fluorescence intensity measurements over the period of 100 min in CD
4+

 T-cells. 

The time point of thapsigargin stimulation is indicated by a black vertical arrow. The cells were pre-incubated with 

both VacA WT and VacA M at two different concentrations (2 µg/ml and 0.25 µg/ml) indicated in red and blue, 

respectively. Cells were then treated with both EDTA-EGTA and BAPTA AM. Ten baseline fluorescence 

measurements were taken. After measuring the baseline fluorescence, 1 µM thapsigargin was again added to the 

cells. (B) The degree of inhibition by VacA, EDTA-EGTA and BAPTA AM at 58 min depicted as bar graphs. (C) 

Bars represent the averaged measurement obtained at 100 min. The horizontal arrows indicate the order of pre-

incubation to stimulation. Each graph was compiled from data obtained in three independent experiments. Error bars 

are standard deviations. Statistical significance was evaluated using a t-Test. **P<0.01. 
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Taking together all the data of calcium assays done in the human Jurkat E6.1 T-cells and primary 

human CD
4+

 T-cells, it was confirmed that VacA protein inhibits calcium influx and an increase 

of cytosolic free Ca
2+

 after both ionomycin and thapsigargin treatment. The effect of VacA WT in 

the human Jurkat E6.1 T-cells and primary human CD
4+

 T-cells was stronger and much more 

significant in the case of thapsigargin treatment and increased after subsequent thapsigargin 

stimulation. The question arised now why only VacA WT and not VacA M had a strong effect 

after thapsigargin stimulation in the human Jurkat E6.1 T-cell line and primary human CD
4+

 T-

cells? When VacA is once inside the cells, the VacA M protein is comparatively less ion-selective 

and forms slower ion-conductive channels as compared to VacA WT, resulting in a loss of 

vacuolating activity of VacA M. Therefore, a strong effect of only VacA WT was expected in the 

calcium assay in the case of thapsigargin treatment, since thapsigargin stimulates the increase of 

cytoplasmic free Ca
2+

 concentration from intracellular stores, such as ER. We further asked 

whether VacA WT inhibits the increase of cytosolic free Ca
2+

 after stimulation by thapsigargin 

through direct effects, such as a binding to the calcium channel proteins STIM1 or ORAI1 of 

store operated calcium entry.  

 Cellular processes that are essential for store operated calcium entry  3.4

Since H. pylori VacA WT inhibits the increase of cytosolic free Ca
2+ 

concentrations in Jurkat 

E6.1 T-cell line and primary human CD
4+ 

T-cells, based on our results with the calcium assay, we 

further evaluated the role of VacA WT in calcium signalling by thapsigargin in T-cells. It has 

been shown that thapsigargin raises the cytosolic free Ca
2+

 concentration by blocking the ability 

of the cell to pump Ca
2+

 into the ER, which causes ER Ca
2+ 

stores to become depleted. The ER 

store-depletion in result activates store operated calcium entry into the cytosol  (Lytton, Westlin, 

& Hanley, 1991). We therefore speculated that two proteins of store operated calcium entry called 

STIM1 and ORAI1 might be involved in this effect of VacA on the increase of cytosolic free 

Ca
2+

 evoked by thapsigargin. 

As observed with the calcium assay in Jurkat E6.1 cells and CD
4+ 

T-cells, the effect of VacA after 

stimulation by thapsigargin was statistically significant. Therefore, given the fact that the 

mechanism of the increase of cytosolic free Ca
2+

 concentrations after stimulation by thapsigargin 

in T-cells is by ER store-depletion, we first wanted to see how thapsigargin raises cytosolic free 

Ca
2+

 concentration in T-cells by live cell imaging and then decided to look at T-cells that had 

been pre-incubated with VacA WT for 4 h and stimulated by thapsigargin. 
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 Stromal interaction molecule-1 (STIM1) clusters in response to thapsigargin 3.4.1

treatment in T-cells 

Stromal interaction molecule-1 (STIM1) has been known for its role as tumor suppressing gene 

product (Sabbioni, Barbanti-Brodano, Croce, & Negrini, 1997). RNAi screening experiments in 

Drosophila S2 cells (Roos et al., 2005) and human-derived HeLa cells (Liou et al., 2005) 

suggested that STIM1 plays a major role in store operated calcium entry. STIM1 is localized on 

the ER membrane. 

Since most of the studies showed that thapsigargin-mediated depletion of ER Ca
2+

 stores causes a 

redistribution of STIM1 (Stathopulos, Zheng, Li, Plevin, & Ikura, 2008), the effect of 

thapsigargin on STIM1 oligomerization was evaluated. HEK-293 cells were transfected with a 

mCherry-STIM1-encoding plasmid carrying the neo gene using the transfection reagent 

lipofectamine 2000 as described in 2.2.4.4.2. The mCherry expression of STIM1 was analysed by 

confocal laser scanning microscopy (CLSM) (Excitation/Emission at 587/610 nm) (Figure 3-18 

A). Firstly, the cells were visualized without thapsigargin treatment. Next, thapsigargin at a 

concentration of 1 µM was added to the HEK-293 cells expressing mCherry-STIM1. As observed 

in figure 3-18, STIM1 oligomerization occurred upon thapsigargin treatment. STIM1 

oligomerization started immediately within 30s of thapsigargin treatment (Figure 3-18 B) and 

lasted until 1800 s (Figure 3-18 C-H). 
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Figure 3-18 mCherry-STIM1 oligomerization upon thapsigargin treatment in HEK-293 cells.  

(A) Live cell microscopy image from HEK-293 cells expressing mCherry-STIM1 (red) before thapsigargin 

treatment. (B) to (H) Cells at different time points after thapsigargin administration. The white arrows point out areas 

of STIM1 oligomerization. Scale bar A-H 9 μm.   
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 STIM1/ORAI1 coupling and store operated calcium entry 3.4.2

After Ca
2+

 store depletion by thapsigargin treatment, STIM1 redistributes and relocates to the 

junction between the ER and plasma membrane (PM) where the Ca
2+

 release–activated Ca
2+

 

(CRAC) channel protein ORAI1 is localized, and forms puncta. This STIM1 redistribution is 

necessary for binding with ORAI1 (Wu,  Buchanan, Luik, & Lewis, 2006). In addition, the direct 

binding of STIM1 after clustering leads to the activation of CRAC channels and extracellular 

Ca
2+

 influx (Park et al., 2009). 

In order to verify whether STIM1 clusters and relocates towards the plasma membrane localized 

calcium channel protein ORAI1, Two plasmids encoding mCherry-STIM1 and eGFP-myc-

ORAI1 respectively were transfected into HEK-293 cells. The HEK-293 cells expressing the 

mCherry-STIM1 plasmid carrying the neo gene were selected by G418 sulfate (100 µg/ml) and 

transfection efficiency was measured. After the stable expression of mCherry-STIM1, cells were 

then transiently transfected with the eGFP-myc-ORAI1 plasmid using lipofectamine 2000 as a 

transfection reagent. The HEK-293 cells were then passed in fresh medium after 12-18 h of 

transient transfection with the eGFP-myc-ORAI1 plasmid and then used for live cell imaging. 

mCherry-STIM1 and eGFP-myc-ORAI1 expression in resting conditions of HEK-293 cells was 

visualized by live cell imaging (Figure 3-19 A&B). After merging the two image channels in 

volocity software (Figure 3-19 C), a co-localization study was performed. No co-localization of 

mCherry-STIM1 and eGFP-myc-ORAI1 was observed (Figure 3-19 D). 1 µM thapsigargin was 

then added to the cells. Immediately after stimulation by thapsigargin clustering of mCherry-

STIM1 clearly occurred (Figure 3-19 F). This relates to the redistribution of STIM1 in the ER. 

We then asked the question whether this redistribution or clustering of STIM1 further leads to the 

formation of junctions with ORAI1. As observed in figure 3-19 H, co-localization between 

mCherry-STIM1 and eGFP-myc-ORAI1 was clearly visualized. The co-localized area refers to 

the area where STIM1 binds directly to ORAI1, forming puncta, after stimulation by thapsigargin 

in HEK-293 cells.   
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Figure 3-19 Co-localization study of eGFP-myc-ORAI1 and mCherry-STIM1 before and after thapsigargin 

stimulation.  

(A) Live cell microscopy image of HEK-293 cells expressing eGFP-myc-ORAI1 (green) before thapsigargin 

treatment. (B) Cells expressing mCherry-STIM1 (red) before thapsigargin treatment. (C) Merged image of eGFP-

myc-ORAI1 and mCherry-STIM1. (D) No co-localization was seen between eGFP-myc-ORAI1 and mCherry-

STIM1 before thapsigargin treatment. (E) Cells expressing eGFP-myc-ORAI1 (green) after thapsigargin treatment 

(F) Cells expressing mCherry-STIM1 (red) after thapsigargin treatment. (G) Merged image of eGFP-myc-ORAI1 

and mCherry-STIM1 after thapsigargin treatment. (H) Co-localization was visualized between eGFP-myc-ORAI1 

and mCherry-STIM1 after thapsigargin treatment (yellow). Scale bar A-D 5 μm, E-H 9 μm.  
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 H. pylori VacA co-localizes with STIM1 before and after thapsigargin stimulation  3.4.3

To investigate the possibility that VacA could interact inside the cells with STIM1 and inhibit the 

increase of cytoplasmic free Ca
2+

 by direct binding, we decided to visualize intracellular co-

localization of these two proteins before and after thapsigargin treatment. Since STIM1 

redistribution and clustering is required for CRAC channel activation, we wanted to analyze 

whether VacA might localize towards the area of STIM1 clustering. 

In order to visualize intracellular co-localization of VacA and STIM1, mCherry-STIM1 

expressing HEK-293 cells were incubated with VacA
Alexa 647

 and live cell imaging was 

performed. 

In the first step, highly purified VacA WT was labelled with Alexa Fluor 647 dye as described in 

2.2.5.7. After checking the activity of labelled VacA
Alexa 647

, HEK-293 cells expressing mCherry-

STIM1 were incubated with acid activated VacA
Alexa 647 

for 4 h. After washing the cells with PBS, 

they were resuspended in new medium and used for live cell imaging. 

The data showed that VacA
Alexa 647

 co-localized on the area of mCherry-STIM1 (Figure 3-20 D) 

already before thapsigargin treatment. This co-localization image reveals that VacA localizes 

towards STIM1 even when no clustering of STIM1 by thapsigargin treatment occurred. This 

observation suggested that VacA might interfere with intracellular Ca
2+

 elevation during the 

process of redistribution or clustering of STIM1 after thapsigargin stimulation. Therefore, a 

higher degree of co-localization between VacA
Alexa 647

 and mCherry-STIM1 in the area of 

redistribution of STIM1 after thapsigargin treatment was expected to be seen. The addition of a 

final concentration of 1 µM thapsigargin to the cells resulted in the oligomerization of STIM1 

(Figure 3-20). After merging the two image channels, the VacA
Alexa 647 

was seen in the area of 

redistribution of STIM1 (Figure 3-20 G, white arrow). Interestingly, a very high degree of co-

localization between VacA
Alexa 647

 and mCherry-STIM was visualized after 300 s of thapsigargin 

treatment (Figure 3-20 H). This co-localization was strong in the area of clustering of STIM1. 
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Figure 3-20 Co-localization of mCherry-STIM1 and VacA
Alexa 647

 before and after thapsigargin stimulation. 

HEK-293 cells expressing mCherry-STIM1 (red) were incubated with VacA 
Alexa 647

 (blue) for 4 h (A)-(D) before 

thapsigargin stimulation (E)-(H) after thapsigargin stimulation. Areas of co-localization (magenta) and highlighted 

with arrows. Scale bar A-H 9 μm.  
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 VacA substantially reduces movement of STIM1 towards the plasma membrane 3.4.4

protein ORAI1 

After observing a strong co-localization between VacA
Alexa 647

 and mCherry-STIM1, it was 

important to test if VacA also co-localizes with ORAI1 and whether the binding of VacA to 

STIM1 had an effect on STIM/ORAI1 coupling and consequently in store operated calcium entry. 

With this intention, we expressed mCherry-STIM1 and eGFP-myc-ORAI1 in HEK-293 cells and 

then incubated with VacA
Alexa 647

. 

Using the method described in 3.4.2 for the expression of mCherry-STIM1 and eGFP-myc-

ORAI1 together in HEK-293 cells, the cells were then incubated with VacA
Alexa 647 

for 4 h at 

37°C and 5% CO2. After checking the expression of mCherry-STIM1 and eGFP-myc-ORAI1, 

cells were stimulated by 1 µM thapsigargin (Figure 3-21 and Figure 3-22 A, B &C). The cells 

were analyzed at two different time points including 120 s and 30 min of thapsigargin treatment. 

After merging the images of expression of mCherry-STIM1, eGFP-myc-ORAI1 and VacA
Alexa 647

 

at 120 s and 30 min, a co-localization study was performed (Figure 3-21 & Figure 3-22 D). 

As seen in figure 3-21 E, a significant degree of co-localization occurred between mCherry-

STIM1 and eGFP-myc-ORAI1 in the cells containg relatively little VacA
Alexa 647

 after 120 s of 

thapsigargin treatment. However, as observed in figure 3-22 E, less co-localization occurred 

between mCherry-STIM1 and eGFP-myc-ORAI1 in the cells with more internalized VacA
Alexa 

647
. The clustering of STIM1 increases with time up to 30 min and co-localization of mCherry-

STIM1 with VacA
Alexa 647

 was seen (Figure 3-22 F). No co-localization was seen between eGFP-

myc-ORAI1 and VacA
Alexa 647

 (Figure 3-21 & 3-22 G).  

The analysis of these co-localization images suggested that VacA may bind with STIM1 to 

interfere with STIM1/ORAI1 coupling during the process of calcium store depletion. As VacA 

co-localized already with STIM1 before stimulation by thapsigargin, VacA is also seen co-

localized in the process of clustering of STIM1 after stimulation by thapsigargin.  
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Figure 3-21 Co-localization of eGFP-myc-ORAI1, mCherry-STIM1 and VacA
Alexa 647

 at 120 s after stimulation 

by thapsigargin.  

HEK-293 cells expressing eGFP-myc-ORAI1 (green) and mCherry-STIM1 (red) were incubated with VacA
Alexa647

 

(blue) for 4 h and stimulated by thapsigargin before imaging. (A)-(D) Cells expressing eGFP-myc-ORAI1 (green), 

mCherry-STIM1 (red) and VacA 
Alexa 647

 (blue). (E)-(H) Areas of co-localization are shown in yellow, cyan and 

magenta. Scale bar A-H 9 μm. 
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Figure 3-22 Co-localization of eGFP-myc-ORAI1, m-Cherry STIM1 and VacA
Alexa 647

 at 30 min after 

stimulation by thapsigargin.  

HEK-293 cells expressing eGFP-myc-ORAI1 (green) and mCherry-STIM1 (red) were incubated with VacA
Alexa647

 

(blue) for 4 h and stimulated by thapsigargin over the period of 30 min before imaging. (A)-(D) Cells expressing 

eGFP-myc-ORAI1 (green), mCherry-STIM1 (red) and VacA 
Alexa 647

 (blue). (E)- (H) Areas of co-localization are 

shown in yellow, cyan and magenta. Scale bar A-H 9 μm.   
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 Co-localization of VacA with STIM1 substantially increases after stimulation by 3.4.5

two times thapsigargin  

Until this point, the co-localization between VacA with STIM1 was confirmed in HEK-293 cells 

expressing mCherry-STIM1 after pre-incubation with Alexa Fluor 647 labelled VacA. With these 

experiments, it was shown that VacA interacts with STIM1 before stimulation by thapsigargin. In 

addition, after stimulation by thapsigargin, VacA is visualized with a high degree of co-

localization in the area of clustering and rearrangement of STIM1.  

As previously observed in calcium assay data with Jurkat E6.1 cells and primary human CD
4+

 T-

cells in figures 3-13 and 3-16, the effect of inhibition of VacA WT on the increase of cytosolic 

free Ca
2+

 was increased after two times thapsigargin treatment. This relevant data needed to be 

evaluated in co-localization studies. Therefore, mCherry-STIM1 and eGFP-myc-ORAI1 

expressing HEK-293 cells after incubation with VacA
Alexa 647

 for 4 h and stimulation by 

thapsigargin were used for this experiment. The cells were further stimulated by 1 µM 

thapsigargin. The cells were then visualized for co-localization. 

The images shown figure 3-23 A, B & C were taken after 2 times stimulation by thapsigargin. It 

shows that mCherry-STIM1 largely clusters with itself and around VacA
Alexa 647

 (Figure 3-23 D). 

A strong co-localization was seen between mCherry-STIM1 and VacA
Alexa 647 

(Figure 3-23 F). No 

co-localization was observed between eGFP-myc-ORAI1 and VacA
Alexa 647 

(Figure 3-23 G). 

Furthermore, the colocalization between eGFP-myc-ORAI1 and mCherry-STIM1 was evaluated 

and no co-localization was seen in these cells with large clusters of mCherry-STIM1 and 

VacA
Alexa 647 

(Figure 3-23 E). 

The fact that the effect of VacA WT on the increase of cytosolic free Ca
2+

 was increased in 

comparision to one time thapsigargin treatment in both Jurkat E6.1 cells and primary human 

CD
4+

 T-cells could be explained as the result of a more intense interaction of VacA with STIM1. Co-

localization of VacA with STIM1 is increased substantially after stimulation by thapsigargin, and 

after two times thapsigargin treatment, STIM1 clusters largely with itself and with VacA. These 

effects greatly inhibit binding of STIM1 to ORAI1. In these experiments, it was confirmed that 

VacA binding with STIM1 substantially reduces the movement of STIM1 towards ORAI1 to 

activate CRAC channels, thereby reducing calcium influx into the cells.   
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Figure 3-23 Co-localization of eGFP-myc-ORAI1, mCherry-STIM1 and VacA
Alexa 647

 after two times 

thapsigargin stimulation. 

HEK-293 cells expressing eGFP-myc-ORAI1 (green) and mCherry-STIM1 (red) were incubated with VacA
Alexa647

 

(blue) for 4 h and stimulated by two times thapsigargin over the period of 60 min before imaging. (A)-(D) Cells 

expressing eGFP-myc-ORAI1 (green), mCherry-STIM1 (red) and VacA 
Alexa 647

 (blue). (E)- (H) Areas of co-

localization are shown in yellow, cyan and magenta. Scale bar A-H 9 μm.  
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 VacA co-localizes with STIM1 in vicinity of ER membrane protein translocator 3.4.6

Sec61 before and after stimulation with thapsigargin 

After having shown that mCherry-STIM1 clusters and VacA interferes with this STIM1 

clustering after stimulation by thapsigargin in HEK-293 cells, we further were intersted to see 

whether this clustering of mCherry-STIM1 stimulated by thapsigargin and VacA interference 

with STIM1 occurred in the close vicinity of the ER membrane protein translocator Sec61. It has 

been shown that the Sec61 complex may act as a Ca
2+

 leak channel in the ER membrane and 

different cellular components are involved to limit Ca
2+

 efflux from the ER (Lang et al., 2011). 

Therefore, a co-localization study of GFP-Sec61, m-Cherry STIM1 and VacA
Alexa 647

 was 

performed. 

In the first step, a GFP-Sec61 plasmid was transiently transfected in HEK-293 cells stable 

expressing mCherry-STIM1 using the lipofectamin 2000 transfection reagent. After checking the 

transfection efficiency, the cells were incubated with VacA
Alexa 647

 for 4 h at 37°C and 5% CO2. 

The cells were then washed with PBS. After resuspension in new medium, the cells were 

visualized for co-localization of the corresponding labelled proteins. 

The localization of GFP-Sec61, m-Cherry STIM1 and VacA
Alexa 647

 is shown in figure 3-24 A, B 

& C, respectively. After merging of these three image channels (GFP, m-Cherry and Alexa 647) 

in volocity software, co-localization was seen. As is clearly visible in figure 3-24 E, GFP-Sec61 

substantially co-localizes with m-Cherry STIM1. As seen in figure 3-24 F, VacA
Alexa 647 

hardly 

co-localized with GFP-Sec61. Furthermore, after merging all the co-localized channels of figure 

3-24 E, F and G, VacA
Alexa 647

 was clearly visualized in the same region as m-Cherry STIM1 and 

GFP-Sec61 (Figure 3-24 H). 

Given the fact that VacA
Alexa 647

 co-localized in the region of GFP-Sec61 and m-Cherry STIM1 

before stimulation by thapsigargin, we expected a substantial co-localization of VacA
Alexa 647 

with 

m-Cherry STIM1 and not with GFP-Sec61 after stimulation, since stimulation by thapsigargin 

only clusters STIM1. As expected, after stimulation by thapsigargin, GFP-Sec61 was not 

clustered (Figure 3-25 A). As can be observed in figure 3-25 B, C & D, m-Cherry STIM1 

oligomerized and VacA
Alexa 647

 was seen in the area of m-Cherry STIM1 clustering. After 

evaluating the co-localization images, it was observed that the co-localization of VacA
Alexa 647 

with GFP-Sec61 was reduced after stimulation (Figure 3-25 F), however no change was observed 

in the degree of colocalization between m-Cherry STIM1 and GFP-Sec61 (Figure 3-25 E-H).  
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Figure 3-24 Co-localization of GFP-Sec61, mCherry-STIM1 and VacA
Alexa 647

 before thapsigargin stimulation.  

HEK-293 cells expressing GFP-Sec61 (green) and m-Cherry-STIM1 (red) were incubated with VacA
Alexa647

 (blue) 

for 4 h. (A)-(D) Cells expressing GFP-Sec61 (green), mCherry-STIM1 (red) and VacA 
Alexa 647

 (blue). (E)- (H) Areas 

of co-localization are shown in yellow, cyan and magenta. Scale bar A-D 10 μm, E-H 5 μm.  
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Figure 3-25 Co-localization of GFP-Sec61, mCherry-STIM1 and VacA
Alexa 647

 after thapsigargin stimulation. 

HEK-293 cells expressing GFP-Sec61 (green) and m-Cherry-STIM1 (red) were incubated with VacA
Alexa647

 (blue) 

for 4 h and stimulated by thapsigargin. (A)-(D) Cells expressing GFP-Sec61 (green), mCherry-STIM1 (red) and 

VacA 
Alexa 647

 (blue). (E)- (H) Areas of co-localization are shown in yellow, cyan and magenta. Scale bar A-D 10 μm, 

E-H 2.5 μm. 
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 Yeast two-hybrid assay to study the interaction between H. pylori VacA and 3.5

different domains of STIM1 and ORAI1 

H. pylori VacA is a major virulence factor which blocks intracellular Ca
2+

 in eukaryotic cells. 

The results obtained from calcium assays in the human Jurkat E6.1 T-cell line and primary human 

CD
4+

 T-cells activated by PMA suggested that VacA prevents the increase of cytoplasmic Ca
2+

 in 

T-cells after stimulation by thapsigargin. Two components of store operated calcium entry, 

STIM1 and ORAI1, were considered as possible targets of VacA. The live cell imaging data 

confirmed that VacA interacts with STIM1, which is localized in the ER. In order to search for 

the interacting domain of STIM1 with VacA, a yeast two-hybrid (YTH) assay was established. 

The stromal interaction molecule 1 (STIM1), which is localized in the ER, contains a luminal and 

a cytosolic domain connected by a single transmembrane domain (TMD). The N-terminal signal 

peptide is cleaved during translocation. The ER-luminal N-terminal domain includes a Ca
2+

-

binding canonical EF-hand domain (cEF), a non-Ca
2+

-binding hidden EF-hand (hEF) domain and 

a sterile α-motif (SAM). The cytosolic carboxy-terminal domain includes an Ezrin-Radixin-

Moesin (ERM) like domain consisting of two coiled-coil regions called CC1 and CC2. STIM1 

also contains a serin/prolin rich domain (S/P) and a polybasic lysine-rich domain (K). The CAD 

(Ca
2+

 release-activated Ca
2+

 (CRAC) activation domain) is the minimal sequence required for 

activation of ORAI1 and located in the cytosolic region (Figure 3-26 A).  

ORAI1 is a plasma membrane protein with four transmembrane segments (TM1, TM2, TM3 and 

TM4) with intracellular amino- and carboxy- termini. ORAI1 contains a putative coiled-coil 

domain (CC1) at the carboxy- terminal end. This coiled-coil domain mediates dynamic coupling 

to STIM1 (Figure 3-26 B). 
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Figure 3-26 Different domains of STIM1 and ORAI1. 

(A) STIM1 is a transmembrane ER localized Ca
2+

 sensor protein. The ER luminal N-terminal domain contains a 

signal peptide (SP), a Ca
2+

-binding canonical EF-hand domain (cEF), a non-Ca
2+

-binding hidden EF-hand (hEF) 

domain and a sterile α-motif (SAM). The cytosolic carboxy-terminal domain includes an Ezrin-Radixin-Moesin like 

domain (ERM) consists of two coiled-coil regions called CC1 and CC2. Furthermore, STIM1 contains a serin/prolin 

rich (S/P) domain and a polybasic lysine-rich (K) domain. (B) ORAI1 is a four transmembrane domain protein (TM1, 

TM2, TM3 and TM4) with intracellular amino- and carboxy- termini. ORAI1 contains a coiled-coil domain (CC1) at 

the carboxy- terminal end. 

In order to analyze interactions between domains of STIM1 and VacA proteins, both genes were 

cloned in yeast two-hybrid bait and prey vectors. Furthermore, two domains of ORAI1 were 

tested for their possible interaction with VacA. 

The recombination cloning method used here was Gateway
®

 cloning. 

 Amplification of STIM1, ORAI1 and VacA domain DNA sequences by nested-PCR 3.5.1

In the first step towards the Gateway
®

 cloning, different domains of STIM1, ORAI1 and VacA 

were amplified by “nested-PCR” in two steps. In the first step, each domain was amplified by 

using gene specific forward and reverse primers containing partial attB sites. In the second step, a 

PCR was performed using complete attB (common to all genes) primers in order to insert full-

length attB sites to the specific genes pre-amplified in the first PCR. The PCR products were 

SP SAMcEF hEF  TM S/P KCC2CC1 ERM

ER-lumen Cytoplasmic region

1-23 63-96 96-128 132-190 214-234 238-343 363-389 601-629 672-685

342-448

CAD

TM2 TM4TM1 TM3N CCC1

1-91 30192-108 125-141 182-198 243-260

STIM1

ORAI1

A

B
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separated in agarose gels and the predetermined sizes of the genes was verified. Finally, PCR 

products containing complete attB sites were compatible for Gateway
®

 cloning. The domains of 

STIM1, ORAI1 and VacA were summarised in table 3-1. 

Table 3-1  The domains of STIM1, ORAI1 and VacA and their amino acid positions  

Protein  Protein domain  Region (amino acid position) 

STIM1 EF-SAM  58-200 

STIM1 cEF  58-96 

STIM1 hEF 97-128 

STIM1 SAM 131-200 

STIM1 CAD 342-448 

ORAI1 N-terminal 48-91 

ORAI1 C-terminal 255-301 

VacA p33 and p55 821 

 Cloning of the Gateway® compatible nested-PCR amplified products in pDonr207 3.5.2

vector 

After the PCR amplification, all gene sequences described in table 3.1 were cloned into the 

Gateway
®

 compatible pDONR207 vector by recombination (BP reaction). E. coli DH5α were 

transformed with the BP reaction mixture and plated out on LB plates containing gentamicin. 

Plasmids were isolated from the clones and verified by sequencing. Positive clones were termed 

entry clones. 

 Sequence analysis of the genes cloned in pDONR207 vector  3.5.3

In order to analyze the sequence of entry clones, software Dnaman was used. Plasmid maps were 

constructed using the software CLC DNA workbench 6.  
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 Recombination cloning of entry clones into yeast two-hybrid prey and bait 3.5.4

vectors 

The entry clones for the domains described in table 3-1 of STIM1, ORAI1 and VacA were cloned 

into prey (pGADT7) and bait (pGBKT7) vectors by recombination (LR reaction). Recombination 

occurrs between the attL sites of the entry clone and attR sites of the prey/bait vectors (Figure 3-

27 A&B). The LR reaction mixture was transformed into E. coli DH5α and selected on LB plates 

containing ampicillin and kanamycin. Positive clones were screened by isolating plasmids from E. 

coli DH5α and analyzed by restriction digestion and DNA sequencing. 

 

 

 

 

 

Figure 3-27 Recombination cloning of domains of STIM1, ORAI1 and VacA into prey (pGADT7) and bait 

(pGBKT7) vectors. 

(A) The entry clone of the domains of STIM1 and ORAI1 were cloned into prey vector (pGADT7) by recombination 

(LR reaction). (B) Entry clone of VacA was cloned into bait vector (pGBKT7) by recombination (LR reaction ). The 

recombination occurred between the attL sites of the entry clone and attR sites of prey or bait vector. 
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 Transformation of prey/bait vectors into Saccharomyces cerevisiae 3.5.5

After Gateway
®

 cloning, positive prey/bait vectors were transformed into the Saccharomyces 

cerevisiae yeast strains. The prey vector was transformed into the CG1945 yeast strain and the 

bait vector in Y187 strain by LiAc transformation method to generate haploid yeast (see 2.2.2.4 ). 

The competent yeast cells were prepared in a 0.1 ml TE/LiAc solution with the prey/bait vectors 

to be transformed and then 0.6 ml of sterile polyethylene glycol (PEG)/LiAc solution was added 

to the mixture and was incubated at 30°C. After the incubation, 10% DMSO was added and the 

cells were heat shocked in 42°C water bath for 15 min, allowing the DNA to enter the cells. The 

cells were then resuspended into 0.5 ml TE buffer plated on the synthetic dropout (SD) medium 

with a selection marker corresponding to the yeast strain, tryptophan (pGBKT7; bait) and leucine 

(pGADT7; prey) were used. 

 Generation of diploid yeast by mating 3.5.6

In order to determine the interactions between STIM1 and VacA, diploid yeast cells were 

generated by mating with combinations of bait and prey vectors and assayed for growth on triple 

selective dropout medium (SD Leu/Trp/His). But first, the two haploid yeasts were mixed in a 

ratio at 1:1 and incubated for 24 h at 30°C. After successful mating the diploid yeasts were tested 

on double selective dropout medium (SD-Leu/Trp) and to confirm the mating. 

Figure 3-28 shows that the haploid yeast strains were successfully mated to generate diploid 

yeast. In all cases, the growth of diploid yeast could be seen. 

 

Figure 3-28 Generation of diploid yeast strains and selction on double selective dropout SD medium. 



RESULTS 

 

94 

 

Diploid yeast strains were generated by mating of haploid prey/bait vector transformed strains. Plating on the double 

selective dropout medium (SD-Leu/Trp) plates confirmed that diploid yeast strains had both prey/bait vectors. 

Diploid yeast strains were then used for further experiments. (++) indicates both prey and bait with fragments. (+-) 

indicates prey with insert and empty bait. 

 Yeast two-hybrid growth assay to study the interaction of STIM1 with VacA 3.5.7

The diploid yeast strains grown on the double selective dropout medium (SD-Leu/Trp) plates 

were used to test the interaction between prey and bait proteins in yeast cells. Growth on double 

selective dropout medium (SD-Leu/Trp) indicated the ability of diploid yeast cells to synthesize 

tryptophan and leucine. A growth test on triple selective dropout medium (SD-Leu/Trp/His) 

showed the ability of diploid yeast to synthesize histidine, which is only possible if there is 

interaction between prey and bait proteins. Strong interactions led to growth at higher dilutions. 

To analyze the possible interaction of STIM1 with VacA, various domains of STIM1 were tested. 

The protein fragments were fused either to the DNA binding or the activation domain of the 

transcription factor Gal4, which is involved in histidine biosynthesis. In the case of an interaction, 

the gene is transcribed, allowing yeast growth on selective media lacking histidine. In some cases, 

a single domain of transcription factor is sufficient to start the transcription of DNA, which is 

known as autoactivation. An autoactivation potential of STIM1 could be excluded in performed 

yeast two-hybrid assays, however autoactivation domains were further tested with empty 

plasmids.

 cEF-hand of STIM1 shows positive interaction with VacA 3.5.7.1

The performed yeast two-hybrid assay indicated that the ER luminal N-terminal Ca
2+

-binding 

canonical EF-hand domain interacts with VacA with cEF as a prey and VacA as a bait vector. No 

further positive interactions were found. cEF-hand domain appears to have a weak interaction 

(Figure 3-29), however supporting that the whole EF-hand motif may have substantial interaction 

with VacA. The cEF-hand domain was further tested in the other direction with VacA as prey and 

cEF as bait vector. Significant growth even upto a dilution of 10
4
 was observed in VacA/cEF on 

triple selective dropout medium (SD- Leu/Trp/His), confirming the interaction of cEF and VacA 

(Figure 3-30).  
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Figure 3-29 Determination of interaction between STIM1 and ORAI1 with VacA by yeast two-hybrid 

growth test. 

The diploid yeast strains are plated upto dilutions 10
5
 on double selective dropout medium (SD-Leu/Trp) and triple 

selective dropout medium (SD-Leu/Trp/His). The positive control shows the expression of the histidine biosynthesis 

and growth on triple selective dropout medium (SD-Leu/Trp/His), however the negative control does not grow. 

Possible interactions between EF-SAM/VacA, cEF/VacA and hEF/VacA were seen. A significant interaction was 

seen in cEF/VacA. No interactions were observed in ORAI1 48-91 and ORAI1 255-301. 

 

Figure 3-30 Determination of interaction between the cEF-hand motif and VacA.  

The diploid yeast strains containing either empty prey or bait vectors with the cEF domain of STIM1 were tested on 

double selective dropout medium (SD-Leu/Trp) and triple selective dropout medium (SD- Leu/Trp/His). No growth 

was observed on triple selective dropout medium (SD-Leu/Trp/His) with either empty prey or bait vectors. Although, 

the significant growth at higher dilutions (upto 10
4
 ) was observed in VacA/cEF on triple selective dropout medium 

(SD-Leu/Trp/His). 
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 Discussion 4.

Helicobacter pylori colonizes the stomach of more than 50% of the world's population. This 

colonization leads to development of chronic inflammation, gastric ulcers or adenocarcinoma 

(Dunn, Cohen, & Blaser, 1997). The immune response of the human host cannot eliminate 

H. pylori infections, because this bacterial pathogen developed various strategies to evade these 

immune responses.  

Due to its chronic infection life style, H. pylori has evolved a number of innate immune evasion 

mechanisms. Thus, H. pylori modulates LPS by phase variable expression of fucosyl transferases 

to generate Lewis (Le) antigens, epitopes also found on human epithelial cells. Le expression 

patterns result from the on/off status of three fucosyltransferases (e.g., FutB), which are regulated 

via slipped-strand mispairing in intragenic poly-A or poly-C tracts (Appelmelk et al., 2000). 

Furthermore, several typical pathogen-associated molecular patterns (PAMPS) of H. pylori do 

avoid recognition by the corresponding Toll-like receptors (TLRs). H. pylori LPS avoids 

interaction with TLR4 (Smith et al., 2003; Yokota et al., 2007). The bacteria possess a bundle of 

polar flagella, but H. pylori flagellin is posttranslationally modified by glycosylation involving 

pseudaminic acid (Pse5Ac7Ac) and is not recognized by TLR5 due to a divergent sequence in the 

TLR5 recognition region (Lee et al., 2003). Furthermore, H. pylori avoids killing by delayed 

phagocytosis, dependent on the Cag-T4SS and VacA-dependent inhibition of phagosome 

acidification and formation of megasomes (Schwartz & Allen, 2006; Zheng & Jones, 2003). 

NADPH oxidase is directed to the plasma membrane to avoid bacterial killing in the phagosome 

and H. pylori induces iNOS expression by phagocytes through urease, but avoids NO damage by 

producing L-arginase (RocF), which depletes the iNOS substrate L-arginine. L-arginine depletion 

also blocks translation of iNOS mRNA. Finally, H. pylori is able to extract cholesterol from host 

cell plasma membranes and glucosylates it by the bacterial cholesterol-α-glucosyltransferase 

(HP0421), a process that abrogates phagocytosis of H. pylori and subsequent T-cell activation 

(Wunder et al., 2006).  

 Effects of H. pylori VacA in epithelial and immune cells 4.1

In the last few years, there has been great progress in the understanding of the cellular effects 

caused by H. pylori VacA. These effects have been investigated intensively both in vivo and in 

vitro. A schematic diagram of various effects of VacA in epithelial cells and immune cells is 
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shown in figure 4-1 A & B. In the process of intoxication, VacA first interacts with the plasma 

membrane of gastric epithelial cells. The ability of VacA to cause multiple effects in vitro on 

epithelial cells has been demonstrated. Various cell surface receptors for VacA on epithelial cells 

have been identified. VacA targets RPTP-alpha (Yahiro et al., 2003), RPTP-beta (Fujikawa et al., 

2003), Heparin sulphate (Utt, Danielsson, & Wadstrom, 2001), sphingomyelin (Gupta et al., 

2008), lipid bilayers and vesicles (Czajkowsky, Iwamoto, Cover, & Shao, 1999; Moll et al., 

1995), fibronectin (Hennig, Godlewski, Butruk, & Ostrowski, 2005) and epithelial growth factor 

receptor (EGFR) (Seto, Hayashi-Kuwabara, Yoneta, Suda, & Tamaki, 1998). Following cell 

binding, VacA is internalized by clathrin independent pinocytosis. (Gauthier et al., 2005; Ricci et 

al., 2000). After internalization of VacA, this toxin causes vacuolation. The formation of vacuoles 

is the most distinct effect of VacA. Vacuolation is attributed to the formation of anion-selective 

channels in membranes by VacA, causing accumulation of internal membranous vesicles in late 

and early endosomes (Papini et al., 1994). Besides vacuole formation, VacA has been shown to 

exert multiple effects. VacA is localized to mitochondria (Kimura et al., 1999), where it is 

responsible for the release of cytochrome c, thereby initiating an apoptotic cascade (Galmiche et 

al., 2000). Prolonged exposure of VacA to the epithelial cells causes autophagy (Raju et al., 

2012). VacA further intoxicates immune cells, targeting T-lymphocytes by binding the beta-2 

integrin subunit of lymphocyte function-associated antigen 1 (LFA-1), CD18, as a cell surface 

receptor (Sewald et al., 2008). VacA interferes with the T-cell receptor/IL-2 signalling pathway at 

the level of the Ca
2+

-calmodulin–dependent phosphatase calcineurin resulting in abrogated  

translocation of Nuclear factor of activated T-cells (NFAT), which in turn causes downregulation 

of interleukin-2 (IL-2) transcription (Gebert, Fischer, Weiss, Hoffmann, & Haas, 2003) and 

surface expression of IL2 receptor-α (Boncristiano et al., 2003). 
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Figure 4-1 Schematic diagram of H. pylori VacA effects on epithelial and immune cells. 

A. H. pylori VacA binds to various receptors on epithelial cells and is internalized. Once inside the cells, VacA exerts 

multiple effects including vacuoles formation, release of cytochrome c from mitochondria and release of 

proinflammatory cytokines. These effects cause apoptosis of epithelial cells. B. In the lamina propria, VacA may 

come into contact with T-cells to interfere with NFAT translocation to the nucleus at the level of Ca
2+

-calmodulin–

dependent phosphatase calcineurin in T-cells resulting in down regulation of interleukin-2 (IL-2) transcription. 
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 H. pylori VacA effects on calcium influx in T-cells 4.2

As part of the physiological function of immune cells, calcium regulates a variety of processes 

including attachment, cell-cycle progression, electrochemical responses, enzyme activities, gene 

expression, motility, morphology, metabolic processes, replication and signal transduction. These 

functions are tightly controlled by the level of intracellular calcium concentration in cells. The 

concentration of extracellular calcium is typically 10
4
 times higher than the intracellular calcium 

level (Uematsu, Greenberg, Reivich, Kobayashi, & Karp, 1988). To trigger intracellular Ca
2+ 

elevation, at first, phospholipase C (PLC) is activated as a result of T-cell receptor or chemokine 

receptor activation and generates inositol 1,4,5-triphosphate (IP3) from the hydrolysis of 

phosphatidylinositol 4,5-bisphosphate. The increased IP3 in the cytoplasm binds to IP3R to 

release Ca
2+

 from the ER. This decrease of Ca
2+ 

in the ER induces the opening of calcium 

channels in the plasma membrane and activates a calcium influx resulting in a temporary increase 

in intracellular calcium concentration (Lewis, 2001). The elevation of intracellular calcium levels 

may lead to apoptosis. 

It has previously been described that VacA inhibits NFAT activation by blocking the activity of 

Ca
2+

-calmodulin-dependent phosphatase calcineurin in T-cells (Gebert, Fischer, Weiss, 

Hoffmann, & Haas, 2003). Since the increase in intracellular calcium concentration activates the 

regulatory protein calmodulin, it was assumed that the inhibition of NFAT activation by VacA 

may occur by blocking calcium influx. For this reason, it was essential to evaluate the effect of 

VacA on calcium influx in T-cells.  

 H. pylori VacA inhibits calcium influx induced by ionomycin and 4.3

thapsigargin 

In order to find out which kind of calcium signalling mechanism is affected by VacA in T-cells, a 

calcium assay was performed. The intracellular level of Ca
2+

 was raised by two different 

mechanisms. In one mechanism, an ionophore ionomycin was used to induce calcium influx from 

the extracellular milieu. In another mechanism, the cytoplasmic level of Ca
2+

 was raised by 

thapsigargin. This tumor promoter is a specific inhibitor of the sarco-endoplasmic reticulum Ca
2+

-

ATPase (SERCA) pump located in the endoplasmic reticulum. Once the SERCA pump is 

blocked, calcium release activated calcium channels (CRAC) are opened, thereby causing an 

increase in level of cytoplasmic Ca
2+

. This mechanism is called store operated calcium entry 

(SOCE).  
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We could confirm that VacA inhibited the increase of cytosolic free Ca
2+

 after stimulation by 

both ionomycin and thapsigargin in Jurkat E6.1 and primary CD
4+

 T-cells. In the case of 

thapsigargin, the effect of VacA was much more significant causing us to look more closely at 

VacA's effect on SOCE and its most central proteins STIM1 and ORAI1.  

 VacA targets SOCE to inhibit calcium influx induced by thapsigargin 4.4

Putney (Putney, 1990) suggested a major Ca
2+

 entry pathway in which the activation of calcium 

channels is a direct consequence of intracellular Ca
2+

 store depletion. This process is now called 

as store operated calcium entry (SOCE). Putney also suggested a specialized region where 

endoplasmic reticulum and plasma membrane are closely associated. Further studies showed that 

Ca
2+

 store depletion activates Ca
2+

 entry into the cytosol (Muallem, Khademazad, & Sachs, 1990; 

Takemura & Putney, 1989). Store operated calcium entry is essential for maintaining intracellular 

Ca
2+

 levels and the generation of Ca
2+

 signals. These Ca
2+

 signals are controlled by a combination 

of both Ca
2+

 entry across the plasma membrane and Ca
2+

 release from intracellular stores such as 

the ER. This combination occurs by sensing of ER Ca
2+

 stores and activation of specific channels 

resulting in a direct conformational coupling between ER and plasma membrane proteins 

(Berridge, 1995). An interaction between ER and plasma membranes is important for this 

coupling (Patterson, van Rossum, & Gill, 1999). Supporting this idea, using an RNA interference 

(RNAi)-based screening to identify genes that alter thapsigargin-dependent Ca
2+

 entry in 

Drosophila S2 cells (Roos, et al., 2005) and in human-derived HeLa cells (Liou, et al., 2005), the 

STIM1 protein localized in the ER was identified to play a major role in store operated calcium 

entry. In further studies, ORAI1 channels were identified on the plasma membrane (Feske et al., 

2006), (Vig et al., 2006), (Zhang et al., 2006). 

In order to assess the effect of VacA on this direct conformational coupling between ER and 

plasma membrane proteins STIM1 and ORAI1, a co-localization study was carried out by live 

cell imaging. After store depletion by thapsigargin, STIM1 is redistributed and oligomerizes 

(Figure 3-18). This redistribution of STIM1 triggers relocation towards ORAI1. 

 VacA binds to STIM1 and not to ORAI1 in order to prevent their 4.5

conformational coupling 

The interaction between oligomerized STIM1 and ORAI1 can itself trigger Ca
2+

 entry from the 

extracellular space across the plasma membrane into the cytosol after opening of CRAC channels. 
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The accumulation of STIM1 protein in the discrete subregions of plasma membrane (PM) to 

interacts with ORAI1 triggers formation of “Puncta”. The STIM1 Puncta formation is localized at 

ER-PM junctions. It was interesting to study how VacA may interfere with this process. Since 

thapsigargin causes store depletion and triggers the redistribution and movement of STIM1 in ER 

regions closely associated with plasma membrane thereby forming puncta with ORAI1 (Wu et 

al., 2006), firstly, it was important to test the effect of VacA on STIM1. VacA co-localizes with 

STIM1 before and after stimulation by thapsigargin. After incubation with VacA, the changes of 

STIM1 still occurred after stimulation and store depletion by thapsigargin, however the degree of 

co-localization between VacA and STIM1 was increased after thapsigargin treatment. This 

suggested that VacA could have an effect by direct binding to STIM1 even before thapsigargin 

treatment. After thapsigargin administration and clustering of STIM1, VacA was seen to co-

localize intensively with STIM1. In addition, co-localization of VacA with STIM1was increased 

after two times thapsigargin treatment. The co-localization of VacA with ORAI1 was as well 

tested, but no co-localization was observed. Based on these results, it was assumed that VacA 

enters the endoplasmatic reticulum (ER) to directly binds to STIM1 before stimulation by 

thapsigargin. VacA then affects the redistribution of STIM1, thereby preventing movement of 

STIM1 towards ORAI1. This effect of VacA was tested in the cells expressing both STIM1 and 

ORAI1 proteins using live cell imaging. As assumed, after thapsigargin treatment, the movement 

of STIM1 towards ORAI1 was not seen in areas with strong co-localization of VacA with 

STIM1, although a substantial co-localization occurred between STIM1 and ORAI1 where there 

was no co-localization of VacA with STIM1. Co-localization of VacA with STIM1 was also 

confirmed by expressing the ER marker Sec61, and VacA co-localized with STIM1 in close 

proximity with Sec61, indicating that VacA is indeed located in the ER. 

The live cell imaging results presented here suggested that VacA inhibits the increase of cytosolic 

free Ca
2+

 by interfering with ER protein STIM1 and not with ORAI1 before and after stimulation 

by thapsigargin. The interference of VacA with STIM1 may cause a defective redistribution of 

STIM1 after thapsigargin treatment, preventing the formation of puncta and thereby inhibiting 

Ca
2+

 entry into the cytosol. 
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 cEF-hand domain of STIM1 is target of VacA 4.6

The next question was whether VacA interferes with SOCE via direct binding with STIM1. 

Taking into consideration the importance of various domains of STIM1 in SOCE, it was 

necessary to define which of the domains of STIM1 may interact with VacA. STIM1 has an ER 

luminal region, a single transmembrane segment, and a cytoplasmic region (Figure 3-26). The 

ER-luminal domain of STIM1 is responsible for Ca
2+

 sensing and shows a paired arrangement of 

two EF-hands (cEF and hEF) followed by a sterile α motif (SAM) domain (Stathopulos, Zheng, 

Li, Plevin, & Ikura, 2008). Only the cEF binds Ca
2+

 and senses Ca
2+

 store depletion (Stathopulos, 

Li, Plevin, Ames, & Ikura, 2006). The cytosolic carboxy-terminal domain contains an Ezrin-

Radixin-Moesin like domain (ERM) consisting of two coiled-coil regions called CC1 and CC2, a 

serin/prolin rich (S/P) domain and a polybasic lysine-rich (K) domain. The cytoplasmic region 

contains a CRAC activation domain (CAD) that binds directly to the N and C termini of ORAI1 

to open the CRAC channel (Park et al., 2009).  

In search for the domain of STIM1 that binds to VacA, a yeast two-hybrid (YTH) assay was 

performed. Therefore, various domains of STIM1 and ORAI1 were cloned into the yeast prey and 

bait vectors and probed for their capacity to interact with VacA. Interestingly from the 

STIM1domains only the cEF-hand domain showed a positive interaction with VacA. However, 

no interaction of the C-terminal and N-terminal domains of ORAI1 with VacA was observed. 

Knowing that the cEF hand domain of STIM1 is the Ca
2+

 binding domain and decreased luminal 

Ca
2+

 levels cause Ca
2+

 to dissociate from the cEF-hand domain, VacA binding could disrupt 

redistribution of STIM1 and thereafter prevent conformational coupling of STIM1-ORAI1 

(Figure 4-2). However, the finding that the cEF-hand domain of STIM1 is the target of VacA to 

inhibit calcium influx needs to be further confirmed by biochemical assays (e.g. pull down 

assays). 
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Figure 4-2 cEF-hand domain of STIM1 is target of VacA.  

In T-cells, VacA is internalized and trafficks to the ER. Once inside the ER, VacA binds to the cEF-hand domain of 

STIM1. After store depletion by thapsigargin, bound EF-hand is no longer able to sense the decrease of Ca
2+

 levels in 

the ER. Possibly, this might prevent redistribution of STIM1 resulting in a defect in conformational coupling of 

STIM1 with ORAI1. This could in turn inhibit the increase of cytoplasmic free Ca
2+

 in T-cells. 

 Effects of inhibition of calcium influx by VacA on T-cell activation and 4.7

proliferation 

VacA substantially inhibits the increase of cytoplasmic free Ca
2+

 in T-cells. This inhibitory effect 

of VacA may influence various Ca
2+

 dependent T-cell functions. Previous reports indicated that 

VacA interferes with the proliferation of T-cells via multiple mechanisms. VacA suppresses 

nuclear translocation of nuclear factor of activated T-cells (NFAT) resulting in downregulation of 

interleukin-2 (IL2) gene transcription to efficiently block proliferation of T-cells (Gebert, Fischer, 

Weiss, Hoffmann, & Haas, 2003). However, another study investigated the effect of VacA on 

primary human CD
4+

 T-cells and suggested that VacA inhibits T-cell proliferation through an 

NFAT-independent mechanism through the T-cell receptor (TCR) and CD28 (Sundrud, Torres, 

Unutmaz, & Cover, 2004). Whether T-cell proliferation inhibition is NFAT-dependent or -

independent, it is possible that it happens via calcium signalling. Since SOCE is a major Ca
2+

 

signalling pathway in primary human CD
4+

 T-cells and VacA has a substantial inhibitory effect 

on SOCE, this reduction of Ca
2+ 

influx into the cytosol could be consequently associated with T-
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cell proliferation. A schematic representation of these effects of VacA in T-cells is shown in 

figure 4-3.  

STIM1 and ORAI1 are recruited towards the immunological synapse between primary human T-

cells and dendritic cells (Lioudyno et al., 2008). ORAI1 is known to be distributed throughout the 

plasma membrane surface and after treating cells with thapsigargin, the redistribution and 

movement of STIM1 towards ORAI to form puncta occurrs. Puncta formation is exclusively 

localized to the T-cell/dendritic cell interface. However, Ca
2+ 

influx through CRAC channels does 

not require the relocalization of ORAI1 and STIM1 to the interface. On the other hand, this Ca
2+ 

influx through CRAC channels is significantly increased in activated T-cells at the T-cell/dentritic 

cell interface.  

Because VacA prevents the movement of STIM1 towards ORAI1, thereby preventing formation 

of puncta, this localized calcium influx at the T-cell/dentritic cell interface could be diminished. 

However, the process by which VacA interferes with the relocalization of ORAI1 and STIM1 to 

the interface in T-cells has yet to be studied in detail. 

Another mechanism by which VacA inhibits NFAT activation is by blocking the activity of the 

Ca
2+

-calmodulin-dependent phosphatase calcineurin in T-cells. Since activation of the regulatory 

protein calmodulin is a Ca
2+

-mediated event where the increased Ca
2+

 binds to calmodulin to 

activate calcineurin, VacA may interfere with this mechanism by blocking Ca
2+ 

influx. Thus, 

VacA may act indirectly on this Ca
2+

-binding protein by inhibiting SOCE. 
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Figure 4-3 Possible H. pylori VacA effects on calcium signalling in T-cells.  

H. pylori VacA binds to the cell surface integrin receptor LFA-1 in T-cells and is internalized. Inside T-cells, VacA 

is trafficked to the endoplasmic reticulum (ER) where it binds the EF-hand domain of STIM1, thereby inhibiting the 

Ca
2+

 sensing ability and formation of puncta with plasma membrane protein ORAI1. VacA consequently blocks store 

operated calcium entry (SOCE) and therefore the increase of cytosolic free Ca
2+

 in the cells. After localizing to 

STIM1 in the ER, VacA could be transferred to other cell organelles such as mitochondria during Ca
2+

 exchange 

between ER and mitochondria. After blocking the Ca
2+

 influx of SOCE, in result, VacA further blocks nuclear 

translocation of NFAT, resulting in downregulation of interleukin-2 (IL2) gene transcription and proliferation of T-

cells. Since VacA localizes to STIM1 and inhibits conformational coupling with ORAI1, it causes inhibition of 

relocation of STIM1-ORAI1 towards the T-cell-dendritic cell interface, thereby inhibiting a localized calcium influx 

at the immunological synapse.    
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 Effects of VacA on localized calcium uptake in mitochondria 4.8

In addition to energy supply, mitochondria are important for other cellular functions including 

calcium signalling and buffering. In T-cells, mitochondria are preferentially localized in close 

vicinity of the immunological synapse (IS) (Quintana et al., 2007). Since immunological synapse 

formation also induces accumulation of STIM1/ORAI1 and mitochondria are involved in the 

regulation of SOCE (Nunez et al., 2006), such a large agglomeration of Ca
2+ 

binding proteins and 

organelles shows the importance of IS in T-cell activation. Besides, mitochondrial Ca
2+ 

uptake is 

stimulated after adding thapsigargin (Takekawa, Furuno, Hirashima, & Nakanishi, 2012), thereby 

releasing Ca
2+

 from the ER and by STIM1 mediated SOCE. 

With the results of VacA localization and interference with STIM1 in the ER, the possibility of 

VacA translocation to the mitochondria from the ER during calcium buffering needs to be 

examined. A previous study suggested that SOCE and STIM1 are involved in the regulation of 

shape and bioenergetics of mitochondria (Henke et al., 2012). After store depletion, mitochondria 

appeared more susceptible to Ca
2+

 uptake, smaller and more densely packed (Csordas et al., 

2006). These susceptible mitochondria buffer increased cytoplasmic Ca
2+

 in the region close to 

the ER where they sense local Ca
2+

 release. It is possible that after store depletion the aggregation 

of VacA-STIM1 is in close vicinity of the mitochondrial surface in contact with the ER (Figure 4-

3). The effect of VacA on this localized calcium signalling after the activation of T-cells with 

APC in the presence of VacA and the formation of the immunological synapse need to be 

investigated in future experiments. 

 Role of cytoplasmic free Ca2+ in regulating the effects of bacterial toxins  4.9

Protein toxins provide bacteria an advantage to interact, colonize and cause infections to the host 

cells. During host-pathogen interaction, bacterial toxins alter multiple effects on various cell 

lines. One of the key strategies of bacterial toxins is to modulate calcium metabolism by either 

increase or decrease of cytosolic Ca
2+

 concentrations in host cells. For instance, in this study of 

H. pylori VacA on calcium siganlling, VacA inhibits an increase of cytosolic free Ca
2+

 

concentrations in T-cells. In other instances, bacterial toxins can also induce an increase in the 

cytosolic free Ca
2+

 concentrations in host cells. The Rtx A1 toxin of Vibrio vulnificus causes cell 

death by Ca
2+ 

-dependent mitochondrial pathway in HeLa cells. Rtx A1-mediated cell death 

occurrs by an increase in cytoplasmic Ca
2+

 influx causing Ca
2+

 sequesteration in mitochondria 

(Kim et al., 2013). Cholera toxin B subunit (Ctx B) of Vibrio cholera stimulates Ca
2+

 influx by 
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interacting with GM1 ganglioside in N18 and NG 108-15 neuroblastoma cells causing 

neuritogenesis (Fang, Xie, Ledeen, & Wu, 2002). Clostridium difficile toxin B, a protein toxin 

associated with Clostridium difficile colitis infection causes sequential dissociation of actin 

microfilaments in NIH-3T3 fibroblasts. This response of C. difficile toxin B on actin cytoskeleton 

is triggered by an elevation of intracellular Ca
2+

 concentration. This rise in intracellular calcium is 

attributed to Ca
2+

 influx from the extracellular space (Gilbert, Pothoulakis, LaMont, & 

Yakubovich, 1995).  

Thus to study the mode of action of bacterial toxins on calcium homeostasis is important. In the 

case of H. pylori VacA, a major interest of effects of VacA on calcium signalling is to show how 

VacA traffics into the ER to inhibit store operated calcium entry. Furthermore, it would be also 

interesting to understand in more detail the subsequent effects of VacA on SOCE in target cells. 

Understanding the diversity of H. pylori VacA effects on target hosts is a major challenge and 

continued studies on VacA will extend our knowledge of H. pylori pathogenesis. 
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µl  Microlitre  
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aa Amino acid 

AM Acetoxymethyl 

APC Antigen presenting cell 
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NaOH Sodium hydroxide 
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nm  Nanometer  

NRU Neutral red uptake 

OD Optical density 

OMPs Outer membrane proteins 
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