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1 Summary 
 

Protein must fold into unique three-dimensional structure in order to become functionally ac-

tive. In the crowded environment of the cell, misfolded proteins easily clump together and form 

aggregates. Such protein aggregation contributes to neurodegenerative diseases, such as Alz-

heimer’s, Parkinson’s and Huntington’s disease. Protein aggregation is prevented by special-

ized proteins called molecular chaperones, which recognize misfolded proteins and promote 

their productive folding.  

The Hsp70 chaperone system is central to the cellular defense against toxic protein aggregation 

and for maintenance of protein homeostasis. Cytosolic Hsp70 mediates the folding of newly-

synthesized and stress-denatured proteins in an ATP-dependent reaction cycle, but also helps in 

the transfer of misfolded protein species to the degradation machinery. To accomplish protein 

folding, Hsp70 is regulated by co-chaperones of the J-protein family and by nucleotide ex-

change factors (NEFs). These stimulate ATP hydrolysis and ADP dissociation, respectively. A 

further Hsp70 regulator, the protein Hip/ST13 (Hsp70 interacting protein), has been suggested 

to delay substrate release by slowing ADP dissociation from Hsp70.  

Hip was first described in 1995, but its significance for protein homeostasis has only recently 

been appreciated. Hip, a dimer of  40 kDa subunits, stabilizes Hsp70-substrate complexes in 

the ADP-bound state. Hip is conserved in metazoans and functions in stabilizing complexes of 

Hsp70 with aggregation-prone substrate proteins, including -synuclein in Parkinson’s and Tau 

in Alzheimer’s disease.  

This study presents an in-depth structural and mechanistic analysis of the Hsp70 regulator Hip. 

In isothermal titration calorimetry (ITC) experiments Hip bound preferentially to the ADP-

bound form of Hsp70, however with relatively modest affinity. Binding of Hip slowed the dis-

sociation of a fluorescent ADP analog from Hsp70. Circular dichroism spectrometry and small 

angle X-ray scattering (SAXS) showed that the structured units in the multi-domain protein Hip 

are flexibly linked by long tethers, resulting in an extended dimer structure. We determined the 

crystal structures of the N-terminal dimerization domain and the tetratricopeptide repeat (TPR) 

middle domain of Hip by experimental phasing at 1.1 Å and 2.6 Å resolution, respectively. For 
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the C-terminal DP domain, we constructed a homology model. The TPR middle domain is suf-

ficient for Hsp70 binding. The C-terminal domain presumably mediates contacts to substrate 

proteins. 

 

Furthermore, we solved the crystal structure of the core complex of Hip with the nucleotide 

binding domain (NBD) of Hsp70 at 2.7 Å resolution. The complex structure showed that Hip 

forms a bracket over the ATPase domain of Hsp70, reducing its otherwise dynamic nature and 

locking the ADP-bound state. As a consequence, dissociation of ADP is retarded and Hsp70-

client protein complexes are stabilized. Structure-guided mutational analysis targeting the in-

teraction interface fully validated the observed interactions between Hip and Hsp70. 

Comparison of the structures of the Hip and NEF complexes suggested that Hip and NEF bind-

ing to Hsp70 are mutually exclusive. This was confirmed using a Hip-Hsp70 fusion protein, 

which forms a functional intramolecular interface. A yeast reporter assay employing the Hsp90 

client protein glucocorticoid receptor (GR) showed that Hip must work as a dimer and interact 

also with the Hsp70-bound substrate protein to compete effectively with NEF binding to 

Hsp70. Removal of either the dimerization or the DP domain was functionally equivalent to 

mutations that block interactions with the NBD.  

 

The presented data are in line with a model where association of Hip with specific Hsp70-

substrate complexes attenuates their active cycling. This mechanism explains why Hip enhanc-

es aggregation prevention by Hsp70 and facilitates the transfer of specific proteins to down-

stream chaperones such as Hsp90 or the proteasome. Pharmacological activation of Hip may 

prove useful in the removal of potentially toxic protein species. Our findings may thus inform 

new strategies for the treatment of protein deposition diseases. 
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2 Introduction 
 

Proteins constitute the largest fraction of the cell interior and fulfill numerous cellular functions, 

as metabolic enzymes, cellular regulators and in signal transductions. The different types of 

protein are synthesized as polymers of the common 20 amino acids. The functional properties 

of a protein are determined by its three-dimensional structure, which is encoded by the amino 

acid sequence. Therefore, determination of protein structures provides important clues about 

how proteins perform their function.   

 

2.1 Protein folding and protein aggregation 
 

To become biologically functional, newly synthesized proteins must correctly fold to their na-

tive state with a unique three-dimensional structure. The information for the structure of a pro-

tein is encoded in its primary sequence. This was demonstrated for the first time by Christian 

Anfinsen, who in 1972 received the Nobel Prize in Chemistry for his pioneering discovery of 

protein folding in vitro (Anfinsen, 1973; Anfinsen and Haber, 1961; Anfinsen et al., 1954). 

Protein folding is not a random process. It follows a direct pathway from unfolded forms to the 

energetically stable native state. The main driving force of protein folding is the gain of entropy 

in the overall system through the hydrophobic effect, when hydrophobic regions are buried to 

form the hydrophobic core and the solvation water is released into the surrounding space. Addi-

tional stabilization comes from hydrogen bonding, salt bridges and van der Waals interactions.  

The free enthalpy of the native state is around 10-15 kcal/mol compared to the unfolded state. 

Along the folding trajectory, metastable non-native intermediates can be formed. The folding 

properties of a protein can be illustrated by a funnel shaped energy landscape, representing the 

free-energy potential during protein folding (Fig. 1). 
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Figure 1: Energy landscape scheme of protein folding and aggregation. Local minima correspond to kinet-

ically trapped intermediate states. 

Left panel: Formation of intermediates towards native conformation via intramolecular interactions. Right panel: 

Misfolding through intermolecular interactions. The red color indicates the intermediates leading towards amor-

phous aggregates, toxic oligomers or amyloid fibrils via intermolecular contacts. Adapted from the review: (Hartl 

et al., 2011). 

 

In the crowded environment of the cell, additionally intermolecular interactions contribute sub-

stantially to the folding energy landscape (Fig. 1). Partially folded or misfolded proteins tend to 

aggregate in a concentration-dependent manner, as they transiently expose hydrophobic resi-

dues to the solvent. Such aggregates are generally amorphous and their formation prevents pro-

ductive folding. Alternatively, aggregation can lead to highly ordered, fibrillar aggregates 

named amyloid fibrils, in which β-strands run perpendicular to the long fibril axis (right panel 

in Fig. 1). Such forms appear to be energetically highly stable, perhaps more stable than the 

native state. These fibrillar amyloid aggregates are highly resistant to the cellular degradation 

machinery. The occurrence of such aggregates is common to neurodegenerative diseases such 

as Alzheimer’s (AD), Parkinson’s (PD), Huntington’s (HD) disease as well as Amyotrophic 

lateral sclerosis (ALS) (Chiti and Dobson, 2006; Olzscha et al., 2011). A large load of misfold-

ed species and aggregated protein are toxic to cells.  
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Aggregation of nonnative proteins is a by-product of de novo protein synthesis in vivo, whereby 

aggregation competes with protein folding. In addition, the aggregation of partially folded pro-

teins and chain compaction is predicted to be enhanced by the crowded macromolecular envi-

ronment, equivalent to a ~ 300-400 mg/ml protein solution, which increases the affinities be-

tween interacting proteins (Ellis, 2001). Crowding also provides a nonspecific force for mac-

romolecular compaction and association (Minton, 2000), including the collapse of protein 

chains during folding and the interaction of nonnative proteins with molecular chaperones 

(Martin and Hartl, 1997). 

 

2.2 Molecular chaperones 
 

While in the test tube proteins may fold into their native state spontaneously, under cellular 

condition the folding efficiency is often limited by the side reactions of misfolding and aggre-

gation. To overcome the problem of protein misfolding and aggregation, the cells employ a 

group of otherwise unrelated proteins called “molecular chaperones”.  

Chaperones are highly conserved in all three branches of the tree of life, archaea, bacteria and 

eukaryotes. They only assist the protein folding and assembly process, but are not present in the 

final structures. Molecular chaperones interact with the nonnative protein during de novo fold-

ing and under stress conditions to increase the efficiency of protein folding or re-folding. They 

are distinguished from folding catalysts such as peptidyl-prolyl isomerases and protein disul-

phide isomerases (Schmid, 1993; Tuite and Freedman, 1994), while accelerate specific folding 

steps. Chaperones are constitutively expressed, but under stress conditions, their expression can 

be greatly increased, hence the term “heat-shock protein” or “stress protein”. They are also key 

players in the regulation of the heat shock response pathway, which is mediated by the tran-

scription factor heat shock factor 1 (Hsf1). Chaperones are mainly divided into five major clas-

ses according to molecular weight: small Hsps, Hsp60, Hsp70, Hsp90 and Hsp100.  

The molecular chaperone mechanism was originally proposed in 1987 (Ellis, 1987). The uni-

versal feature of molecular chaperones is their ability to recognize and bind non-native proteins. 

Therefore, they are essential for the correct and efficient folding of proteins. They perform 

mainly three activities: (1) recognizing and interacting with non-native or denatured polypep-
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tide to form a stable chaperone protein complex; (2) preventing aggregation of unfolded and 

misfolded polypeptides and aiding their refolding; (3) helping the cell to maintain protein ho-

meostasis. For the latter function, chaperones may transfer terminally misfolded proteins to 

proteolytic degradation by the ubiquitin proteasome system (UPS) or autophagy (Hartl et al., 

2011; Rubinsztein, 2006). The cellular folding pathways mediated by molecular chaperones are 

well established (Fig. 2). 

 

Figure 2: Model of the chaperone-mediated protein folding in the cytosol. 

Left panel: In bacteria, newly synthesized polypeptide chains interact with trigger factor (TF) and around 70% of 

total proteins may fold directly to native state. Besides that, 20% of total require the DnaK system, bacterial homo-

log of Hsp70. The remaining 10% are subsequently transferred to the downstream chaperonin GroEL/GroES sys-

tem to fold to the native state. Right panel: In eukaryotes, nascent chain-associated complex (NAC) interacts with 

nascent chain, similar to trigger factor. The Hsp70 family functions as second-tier player for longer nascent chains 

and mediates the co- or post-translational folding. Around 20% polypeptide can reach their native state through the 

assistance of ribosome-associated chaperones (RAC), Hsp70 and Hsp40. Hsp70 system also contributes around 10% 

protein to downstream chaperones to complete the folding, such as Hsp90 or chaperonin systems. Adapted from 

the review: (Hartl et al., 2011). 

 

During synthesis of the polypeptide by the ribosome, part of the newly synthesized chain is 

shielded by the ribosomal exit tunnel. Beyond that, the hydrophobic side chains of partially 

synthesized polypeptide are exposed to the crowded environment of the cytosol. Thus the ex-
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tended polypeptide needs to be protected from aberrant interactions and misfolding during 

translation. Therefore, molecular chaperones begin to act cotranslationally. A particular class of 

chaperones specifically recognizes the newly synthesized nascent-chain emerging from the 

ribosome. These are ubiquitously present in all domains of life. In the bacterial system, it con-

sists of trigger factor (TF) and the Hsp70 system. In the eukaryotic system, the ribosome-

associated chaperones (RAC) and nascent chain-associated complex (NAC) are involved be-

sides Hsp70. The bacterial trigger factor is the best-characterized ribosome-associated chaper-

one. After capture by Hsp70, the polypeptide may be handed over to downstream chaperones 

such as the Hsp60 or Hsp90 systems for further folding and regulation. Therefore, we can 

summarize that protein folding starts cotranslationally and is completed posttranslationally. 

The general understanding of the roles of chaperones in protein folding comes from the study 

of the chaperonins (Hsp60) and the Hsp70 system, which will be discussed below. The Hsp90 

system will also be briefly described as an example for the complex mechanism of molecular 

chaperones. 

 

2.2.1 Chaperonins  

Chaperonins are a highly conserved class of macromolecular complexes. They form ~ 800 kDa 

large cylindrical folding compartments with a central cavity. Chaperonins are the downstream 

molecular machinery of Hsp70. The chaperonins have been classified into two families, groups 

I and II, with GroEL and TRiC as paradigms (Horwich et al., 2007; Tang et al., 2007).  

Members of group I are found in bacteria (GroEL) and compartments derived from bacteria in 

eukaryotes, such as chloroplast (Cpn60) and mitochondria (mt-Hsp60). The chaperonin com-

plexes of group I are composed of 14 subunits, forming two seven-membered rings. The double 

rings are stacked back-to-back and they cooperate with a co-chaperone (GroES, Cpn10 or mt-

Hsp10), which acts as a lid and covers the top of the chaperonin central cavity (Fig. 3A).  

The best-studied and characterized bacterial system is GroEL-GroES, which function as a pro-

tein-folding cage (Hartl, 1996; Hartl and Hayer-Hartl, 2002; Horwich et al., 2007). The folding 

ability of GroEL depends on its molecular architecture (Fig. 3A). GroEL is a double-ring con-

sisting of 14 identical subunits of ~ 57 kDa. Each subunit contains three structural parts: an 



2  Introduction 

 

15 

 

equatorial ATPase domain, an intermediate hinge domain and an apical substrate binding do-

main. Figure 3B shows the mechanism of GroEL-GroES in detail (Kim et al., 2013).  

A)  

 

 

B)  

 

 

C)  

 

 

Figure 3: Structures and mechanism of the chaperonin system.  
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The substrate is delivered from the upstream DnaK (Hsp70) system and is trapped on the Gro-

EL ring. It may assume an extended or compact conformation. ATP-dependent apical domain 

movements result in sequential stretching and re-modeling the partially folded region. The 

binding of GroES traps the substrate in the cage. GroES is a dome-shaped homoheptamer of    

~ 10 kDa subunits and regulates the ATPase activity of GroEL (Horwich et al., 2007; Xu et al., 

1997). The substrate folds in the chaperonin cavity. After ATP hydrolysis, the substrate is re-

leased either in native state or as an incompletely folded intermediate state. The incompletely 

folded substrate is re-bound to GroEL and will start a new cycle. The whole folding process is 

regulated by ATP and GroES. Binding of GroES leads to allosteric conformational change of 

GroEL and results in an expansion of the central cavity (Hartl and Hayer-Hartl, 2009). Unlike 

Hsp70, GroEL recognizes a molten globule, locally expanded form of substrate, and promotes 

folding through cycles of encapsulation. Due to the volume of the cavity, the size of the trapped 

substrate is limited, ranging from 20-50 kDa. They have been identified by a proteomics analy-

sis of GroEL/ES binding partners (Kerner et al., 2005).  

Group II chaperonins such as thermosome and TRiC (TCP-1 ring Complex) exist in archaea 

and the eukaryotic cytosol (Fig. 3C). TRiC is also called CCT (Chaperonin Containing TCP-1). 

In contrast to group I chaperonins and thermosomes, TRiC is not stress inducible (Horwich et 

al., 2007). Though all chaperonins share a common cylindrical structure, substantial differences 

exist between groups I and II. TRiC contains eight different subunits per ring and each subunit 

is ~ 60 kDa. In addition, group II TRiC subunits contain α-helical protrusions that extend from 

the apical domain of the ring, which has been described as a built-in lid. Therefore, TRiC work 

independent from an additional GroES-like co-chaperone. Notably, TRiC subunits share se-

A) Crystal structure of the group I chaperonin complex, GroEL-GroES. Left panel: The crystal structure of 

GroEL (PDB accession code 1SS8). Middle panel: Two conformational states of each subunit. The apical, 

intermediate and equatorial domains are colored in yellow, dark blue and red, respectively. Right panel: The 

asymmetrical GroEL-GroES complex (PDB accession code 1PF9). 
B) GroEL-GroES reaction mechanism. Substrate is bound by the open GroEL cis-ring of the asymmetrical 

GroEL-GroES complex. Binding of ATP to each of the seven GroEL subunits causes a conformational 

change in the apical domains. GroES binding traps the substrate in the cage. The encapsulated substrate is 

free to fold in the GroEL during the time needed to hydrolyze the seven ATP molecules bound to cis-ring (~ 

10 s). GroES dissociates from the ring and the substrate is released.  
C) Crystal structures of group II chaperonins. Left panel: Open form of the homo-oligomeric thermosome 

(PDB accession code 3KFK). Middle panel: Subunit CCT3 of TRiC in two states, which is colored as fol-

lows to indicate its domain structures (equatorial nucleotide-binding domain in red; intermediated hinge 

domain in green and the apical substrate-binding domain in yellow). Right panel: Closed form of TRiC/CCT 

(PDB accession code 4D8Q). 
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quence homology with GroEL at the ATP binding site, but not the substrate binding site. 

Therefore, TRiC was assumed to be specialized for a small subset of substrate proteins 

(Gomez-Puertas et al., 2004). A recent study suggested however that ~ 10 % newly synthesized 

proteins are TRiC substrates, ranging from the obligate substrate such as actin and tubulin to 

tumor suppressors (Yam et al., 2008). The broad range of substrate suggested that TRiC may 

work by a mechanism different from group I GroEL-GroES system.  

 

2.2.2 The Hsp90 system 

 

Similar to Hsp70, Hsp90 is a highly conserved and essential molecular chaperone in the mam-

malian cytosol and nucleus. Hsp90 functions in the downstream of Hsp70 and associates with 

non-native protein substrates. It mediates the conformational regulation of a wide range of cli-

ent proteins involved in cell cycle control, apoptosis and especially signal transduction 

(Burrows et al., 2004; Pearl and Prodromou, 2000). The glucocorticoid receptor (GR) was iden-

tified as the first client protein of Hsp90 (Sanchez et al., 1985). Signaling components such as 

steroid-hormone receptors including progesterone receptor (PR), androgen receptor (AR) and 

kinases are the best-understood clients of Hsp90 (McClellan et al., 2007; Picard, 2006). Hsp90 

is also essential for the cell’s response to stress and is a key player in maintaining cellular ho-

meostasis (Taipale et al., 2010). 

Though a comprehensive understanding of the cellular functions and underlying mechanism of 

Hsp90 is still elusive, the crystal structures of full-length Hsp90 in complex with its co-

chaperones provided deep insights into the structural dynamics and the regulation of Hsp90 

(Ali et al., 2006; Pearl and Prodromou, 2000; Shiau et al., 2006).  



2  Introduction 

 

18 

 

 

 

 
Figure 4: ATPase cycle of Hsp90.  

Upon ATP binding, the N-terminal ATPase domain (ND) undergoes a conformational rearrangement, leading to 

the dimerization of ND. The dimerization forms a “molecular clamp” and results in a compact Hsp90 dimer. The 

ATP-bound state is metastable and committed to ATP hydrolysis. Transition to the ATP-hydrolysis competent 

state is regulated by co-chaperones. After ATP hydrolysis, the NDs dissociate and the protomers in the Hsp90 

dimer remain connected by the C-terminal domain (CD). It has been suggested that the inactive substrate interacts 

mostly with the middle domain (MD) and is conformationally activated, when Hsp90 proceeds through the 

ATPase cycle. Adapted from the review: (Hartl et al., 2011). 

 

Hsp90 exists as a flexible dimer, connected by its C-terminal domains. Each monomer consists 

of three domains: an N-terminal nucleotide binding domain (ND), followed with a middle do-

main (MD) and C-terminal dimerization domain (CD) (Figure 4). The ND possesses a deep 

nucleotide binding pocket, where ATP is bound in an unusual kinked manner. Similar to other 

chaperones, Hsp90 mediates ATP hydrolysis-dependent folding of substrates. The ATPase ac-

tivity is essential for the function of Hsp90. Figure 4 shows the ATPase cycle of Hsp90 with its 

highly dynamic conformational changes. Besides the C-terminal dimerization domain, ATP 

binding promotes the dimerization of ND, resulting in a compact dimeric conformation of 

Hsp90. In this compact dimer, two monomers twist around each other and the NDs and MDs 

are also tightly associated. ATP hydrolysis leads to the dissociation of the NDs, resulting in the 

open conformational state of Hsp90, which enables the recognition of various substrates. Be-

cause of the broad extent of substrate specificities and the different structures of the known 
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substrates, Hsp90 is assumed to have multiple binding sites to substrates and the identification 

of binding sites on Hsp90 is still ongoing (Wandinger et al., 2008).  

In addition, the CD domain contains an EEVD peptide motif at the end of C-terminus, which 

serves as a specific binding site for several co-chaperones, such as Hop and Chip, which bind to 

Hsp90 via TPR domains. Hop facilitates the cooperation between Hsp90 and Hsp70. Chip fa-

cilitates the cooperation of Hsp90 and proteasome. Hop inhibits N-terminal dimerization of 

Hsp90. It works as an adaptor for Hsp70 and Hsp90 and participates in steroid hormone recep-

tor maturation by targeting clients to Hsp90 and forming the Hsp90-client complex. Moreover, 

Hsp90 is also targeted by several other co-chaperones without TPR domains, such as Cdc37, 

Aha1 and p23, which interact with Hsp90 in a sequential manner to regulate the chaperone ma-

chinery (Pratt and Toft, 2003; Smith, 1993). Cdc37 delivers specific kinase substrates to Hsp90 

and acts as an ATPase inhibitor. Thereby, Cdc37 is thought to keep Hsp90 in an open state for 

transfer of the kinase. Conversely Aha1 stimulates ATP hydrolysis. In contrast to Aha1, p23 

stabilizes the compact dimeric form of Hsp90 before ATP hydrolysis. In summary, the co-

chaperones may control the conformational changes of Hsp90 and thereby modulate specific 

substrate processing by Hsp90.  

It is widely recognized that the Hsp90 system is multifunctional and multicomponent chaper-

one machinery in the protein folding apparatus of the cell. In addition to client protein folding, 

Hsp90 has been shown to cooperate with the degradation machinery of the cell. This lead to a 

particular focus on Hsp90 with regard to pharmacological modulation (Schneider et al., 1996). 

Since it is responsible for the maturation of approximately 200 client proteins, among which 

several are oncoproteins (Workman et al., 2007), Hsp90 has gained attention as a critical target 

in cancer therapy, especially through the use of small compounds like geldanamycin that act as 

specific inhibitors of Hsp90. These drugs bind to the ATP binding pocket of Hsp90 blocking 

ATP binding. Thereby they specifically inhibit the ATPase function and arrest the Hsp90 func-

tional cycle. The growing number of Hsp90 inhibitors has been evaluated in preclinical and 

clinical trials, by which a proof-of-concept has been established (Kim et al., 2009; Sharp and 

Workman, 2006; Workman et al., 2007). 

 



2  Introduction 

 

20 

 

2.2.3 The Hsp70 system 

2.2.3.1 Diversity of Hsp70 isoforms 

 

Hsp70s are the most ubiquitous chaperones and occur in all three domains of life: archaea, bac-

teria and eukaryotes (Hartl and Hayer-Hartl, 2002). The archaeal and bacterial Hsp70 is named 

DnaK. The eubacterium Escherichia coli has three Hsp70 isoforms (DnaK, HscA and HscC). 

The unicellular eukaryote S. cerevisiae contains four non-ribosome associated Hsp70s (Ssa1-4) 

and three ribosome-associated Hsp70s (Ssb1, Ssb2, Ssz1) in the cytosol, and organelle-specific 

isoforms in the endoplasmic reticulum (ER) and mitochondria (Lindquist and Craig, 1988; 

Nelson et al., 1992). In mammals, the constitutively expressed and stress-inducible isoforms are 

known as heat shock cognate 70 (Hsc70) and Hsp70, respectively, but more isoforms exist, 13 

in total (Systematic names start with HSPA, followed by a number.). Hsc70 and Hsp70 share 

about 80 % sequence identity. The Hsp70s present in mitochondria and ER are known as 

mtHsp70/Grp75 and Bip/Grp78/Kar2, respectively. mtHsp70 is involved in the import of nu-

clear-encoded proteins into mitochondria. In the ER lumen, Bip is responsible for protein fold-

ing and quality control of proteins of the secretory pathway. Additional versatility is achieved 

by the employment of a multitude of Hsp40 family proteins (J proteins) and nucleotide ex-

change factors (NEFs) present in the eukaryotic cell, which act as co-chaperones. They control 

ATP hydrolysis of Hsp70 and recruit Hsp70 to specific substrate proteins. 

 

2.2.3.2 Cellular functions of Hsp70 

 

The Hsp70s have essential roles in protein metabolism under normal and stress conditions. 

They are central to many cellular processes, such as de novo protein folding, membrane trans-

location and misfolded protein degradation (Hartl and Hayer-Hartl, 2002; Neupert and Brunner, 

2002; Ryan and Pfanner, 2001; Wang et al., 2013). One of the important roles of Hsp70 is to 

assist protein folding and turnover. Many neurodegenerative diseases involve aberrant accumu-

lation of misfolded protein, and previous studies have linked Hsp70 to this process. In vitro 

studies showed that Hsp70 together with its co-chaperone Hsp40 can partially suppress the ag-

gregation of huntingtin (htt) in the early prefibrillar state (Muchowski et al., 2000). Consistent-

ly, Hsp70 was found to co-localize with polyQ aggregates implicated in polyQ expansion dis-

eases, and overexpression of Hsp70 and Hsp40 reduces polyQ aggregation and cytotoxicity 
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(Jana et al., 2000). Moreover, overexpression of Ssa1 (yeast homolog of Hsp70) decreases ag-

gregation of htt and increased its SDS solubility (Krobitsch and Lindquist, 2000). Furthermore, 

Hsp70 has been reported to be sufficient to inhibit amyloid fibril formation by α-Synuclein, 

even in the absence of co-factors (Dedmon et al., 2005). Intriguingly, Hsp70 is able to recruit 

the co-chaperone ubiquitin ligase Chip for the ubiquitination of Tau, in contrast to Hsc70. One 

recent genetic study reported that Hsp70 directly stabilizes lysosomes and plays a key role in 

Niemann-Pick disease (Kirkegaard et al., 2010). All of the versatility of Hsp70 builds from its 

basic function. It binds the hydrophobic regions of unfolded polypeptides in an ATP-dependent 

manner.  

In addition, Hsp70 appears to be a key component of cellular protein quality control. Hsp70 is 

abundantly expressed in many human tumors and this often correlates with metastasis and poor 

outcome in cancer patients (Brodsky and Chiosis, 2006; Patury et al., 2009). Up-regulated 

Hsp70 function is critical for the growth and survival of different human tumor cell lines 

(Brodsky and Chiosis, 2006; Patury et al., 2009; Powers et al., 2008).  In light of the ample 

structural data available on this molecular chaperone, Hsp70 appears as an attractive putative 

drug target for the treatment of cancer. 

 

2.2.3.3 Structure and working cycle of Hsp70 

 

All the Hsp70 forms are comprised of two domains, a ~ 45 kDa N-terminal nucleotide binding 

domain (NBD) and a ~ 25 kDa C-terminal substrate binding domain (SBD), which contains a 

~10 kDa α-helical “lid” domain and a ~ 15 kDa β-sandwich (Fig. 5A). The NBD and SBD are 

connected via a highly conserved hydrophobic linker with 10-12 residues (Vogel et al., 2006). 

Structural studies have revealed that the NBD of Hsp70 is composed of two lobes, I and II. 

Each lobe consists of two subdomains named IA, IB and IIA, IIB, respectively. The two lobes 

form a heart-shaped structure with a large cleft at the bottom, where the nucleotide-binding site 

is located. The two subdomains look like a clamp that locks the nucleotide within the cleft. The 

nucleotide binding is coordinated by residues derived from all four subdomains. Subdomain 

IIB plays an essential role in the dissociation of nucleotide. It was well-known that NBD and 

SBD of Hsp70 in ADP-bound state are structurally and functionally almost independent (Chang 

et al., 2008; Swain et al., 2007). Conversely, in the ATP state, many biochemical and NMR 
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studies have suggested that NBD and SBD contact with each other (Buchberger et al., 1995; 

Mayer, 2010; Swain et al., 2007). However, the structure of ATP-bound full length Hsp70 had 

remained elusive until the crystal structure of an intact Hsp70 became recently (Kityk et al., 

2012; Qi et al., 2013). In the ATP-bound state, the NBD and SBD form extensive contacts, 

which cause a dramatic conformational change in the SBD. The α-helical lid is separated from 

the β-sandwich domain and packs against the NBD, leading to an accessible peptide binding 

site. In the structure of an isolated SBD bound to a hydrophobic peptide, the β-sandwich har-

bors the peptide binding site, and the tightly associated α-helical domain forms a lid over the 

bound peptide (Zhu et al., 1996). 

As a molecular machine, Hsp70 performs its function through crosstalk between ATPase ac-

tivity in the NBD and substrate binding in the SBD. Hsp70 binds the hydrophobic polypeptide 

with its SBD, hydrolyzes ATP and then directs its substrate into a variety of distinct fates 

(Evans et al., 2010). Substrates of Hsp70 are thought to include newly synthesized linear poly-

peptides and partially folded proteins. 
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C)  

 

 

Figure 5: Structure and working cycle of Hsp70. 

A) Schematic representation of domain architecture of Hsp70 in DnaK E.coli. Hsp70 consists of two domains, 

the nucleotide-binding domain (NBD) in green color and the substrate-binding domain (SBD), which is com-

posed of a ~ 15 kDa β-sandwich domain and 10 kDa α-helical “lid” domain, shown in gold and dark blue, re-

spectively. Co-chaperone interaction sites with Hsp70. Only eukaryotic Hsp70 in cytosol contain an EEVD 

sequence at their C-terminus, which mediates the interaction with tetratricopeptide repeat TPR proteins, such 

as C-terminus of Hsc70 interacting protein (Chip) and Hsp70-Hsp90 organizing protein (Hop). 
B) Left panel: Crystal structure of bacterial Hsp70, DnaK in the ATP-bound open state. Right panel: Closed state 

in ADP-bound of E. coli DnaK (PDB: 2KHO), which was solved by NMR spectroscopy using the crystal 

structures of the individual domains. 
C) The ATP-dependent reaction cycle of Hsp70, regulated by J-domain proteins and nucleotide-exchange factors 

(NEFs). 

 

Hsp70 is an allosteric protein. It has two conformational states with distinct substrate binding 

properties: the open state with low affinity to substrate, and closed states with high affinity (Fig. 

5B). Substrate binding stimulates ATP hydrolysis, while ATP binding enhances substrate re-

lease. Figure 5C shows the model of Hsp70 working cycle, which is well-understood for the 

bacterial Hsp70 homolog DnaK. To accomplish the ATPase cycle, distinct classes of co-

chaperones are required. The J-domain protein DnaJ is required for stimulation of ATP hydrol-

ysis and the nucleotide exchange factor (NEF) GrpE for ADP dissociation from Hsp70. The 

collaboration with these important co-chaperones drives the transition of Hsp70 between the 

ATP and ADP states. ATP binding to the Hsp70 NBD increases the rate of substrate binding to 

SBD. Conversely, interactions between SBD and substrate increase the rate of ATP hydrolysis 
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through communication between the two functional domains (Mayer et al., 2000). In the ab-

sence of J-domain proteins, Hsp70 is predominantly in the ATP-bound state, since the intrinsic 

ATPase activity of Hsp70 is low (Schmid et al., 1994).   

The elucidation of the DnaK mechanism in detail has provided the paradigm for the function of 

the eukaryotic Hsp70 chaperone system. There are additional co-chaperones to control sub-

strate binding by independently binding to specific substrates, leading to a kind of substrate 

selection for Hsp70 (Kota et al., 2009; Vos et al., 2008). Recently, a novel protein Hikeshi was 

discovered that recognizes the ATP-bound state of Hsp70 and mediates its transport into the 

nucleus under heat-shock stress condition (Kose et al., 2012). Hsp70 distribution between cyto-

sol and nucleus might be important for the decision between re-folding and degradation. 

 

2.2.4 Hsp40 co-chaperones 

 

The working cycle of Hsp70 starts with the action of J-domain proteins. They are also referred 

to as Hsp40, which induce tight binding of substrate to Hsp70. Hsp40 proteins have been well 

established to recognize and stabilize unfolded substrates for delivery to the hydrophobic pock-

et of Hsp70 (Gamer et al., 1996). They were proposed to interact with the NBD and the highly 

conserved hydrophobic linker of Hsp70 through its J-domain and to coupling substrate with its 

C-terminal substrate binding domain (Karzai and McMacken, 1996). Furthermore, substrate 

and J-domain protein binding synergistically stimulated ATP hydrolysis by Hsp70 (Laufen et 

al., 1999). 

J-proteins are a heterogeneous group of multi-domain proteins. Though they are thought to act 

as co-chaperones of Hsp70, their number of homologs far exceeds that of Hsp70. There are six 

J-domain proteins in E. coli, 20 in S. cerevisiae, 33 in C. elegans and presumably 44 in human 

cells (Qiu et al., 2006). Based on their domain composition, they are subdivided into three clas-

ses as depicted in Figure 6: Type I: DnaJA (DnaJ E.coli, Ydj1 yeast, HDJ-2 human), Type II: 

DnaJB (Sis1 yeast, HDJ-1 human) and Type III: DnaJC (pyJ polio virus) (Cheetham and 

Caplan, 1998). Type I has full domain conservation with E. coli DnaJ, which contains four do-

mains: N-terminal J-domain, followed by a glycine-phenylalanine rich region, a Zn-binding 

domain and a C-terminal domain. The α-helical J-domain is composed of ~ 70 amino acids and 
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responsible for the interaction with Hsp70 (Wall et al., 1994). Type II is highly similar to Type 

I apart from missing the Zn-binding domain. Type III is more divergent as it only shares simi-

larity to the J-domain segment of types I and II. Since the C-terminal domains are highly diver-

gent, this class is less explored so far.  

 

 
Figure 6: J-domain protein family.  

Left panel: Schematic representation of domain architecture of three subfamilies of J-proteins. J: N-terminal J-

domain (magenta color). G/F: Gly-Phe rich region. Zn: Zn
2+

 binding domain. C: C-terminal domain of homology. 

Right panel: Ribbon representation of the NMR structure of J-domain of DnaJ in E. coli. Adapted from review: 

(Mayer and Bukau, 2005) 

 

The structure of the J-domain composed of four α-helices is common to all J-domain proteins 

(Fig. 6). The central two long anti-parallel α-helices are connected by an exposed loop with a 

conserved signature sequence, histidine-proline-aspartate (HPD). NMR and mutagenesis stud-

ies revealed that both of these two anti-parallel α-helices are necessary for the binding to Hsp70 

and modulating ATP hydrolysis (Landry, 2003). The interactions between J-domain and Hsp70 

trigger an allosteric conformation change, which accelerate ATP turnover by approximately 

seven-fold (Pierpaoli et al., 1997). In addition, a crystallographic study suggested that J-domain 

stimulated ATPase activity by directing the Hsp70 linker between NBD and SBD to displace 

their interactions (Jiang et al., 2007). Furthermore, binding of J-domain to Hsp70 displaced the 

SBD from NBD, which may activate Hsp70 for substrate binding through the SBD flexibility 

to capture diverse substrates (Jiang et al., 2007). Despite of its function in substrate targeting to 

Hsp70, the J-domains has been reported that it can stimulate the binding of Hsp70 to polypep-

tides (Misselwitz et al., 1998). The solid binding assay demonstrated that J-domain binding to 

Bip and activated Bip to bind more substrates, suggesting J-domain activation broadened the 

substrate binding range of Bip (Misselwitz et al., 1998). Therefore, it could be proposed that 



2  Introduction 

 

26 

 

substrate specificity of Hsp70 could be largely influenced by its partner, J-proteins. Moreover, 

the cooperation of J-domain proteins with Hsp70 can prevent the aggregation of unfolded pro-

tein.  

 

2.2.5 Nucleotide exchange factors (NEFs) 

 

A distinct class of co-chaperones involved in the Hsp70 ATPase cycle is the nucleotide ex-

change factors (NEFs), which catalyze ADP dissociation. Nucleotide dissociation is a crucial 

step and therefore it is regulated by a variety of NEFs in eukaryotes. Four major NEF families 

in the cellular cytosol are classified as: GrpE-like, BAG proteins, HspBP1 and Hsp110 

(Harrison, 2003; Kabani et al., 2002; Kabbage and Dickman, 2008; Shaner and Morano, 2007). 

In the bacterial system, ADP is firmly trapped in DnaK. In the absence of GrpE, the bound nu-

cleotide cannot be released effectively. This will prolong substrate binding by DnaK to an ex-

tent that cell function is disrupted. GrpE is therefore essential in E. coli (Brehmer et al., 2004). 

However, unlike the bacterial DnaK, the eukaryotic Hsp70 has a considerable off-rate for ADP. 

In principle, it could perform its work in cells in a NEF-independent way. Thereby, nucleotide 

exchange is apparently not the rate-limiting step in eukaryotes. This is in sharp contrast to the 

essential role of GrpE for DnaK. However, eukaryotic Hsp70 can interact with nucleotide ex-

change factors to further accelerate the rate of nucleotide dissociation (Höhfeld et al., 1995).  

A number of crystal structures of Hsp70-NEFs complexes has been determined (Harrison et al., 

1997; Polier et al., 2008). All the NEFs appeared to trigger an outward rotation of subdomain 

IIB in the Hsp70 NBD, except for HspBP1. Consequently, the bound nucleotide can be re-

leased more easily. However, each family probably prefers a slight different mechanism. 

Figure 7 shows an overview of the different forms of NEFs defined from different family.  
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Figure 7: Structures of the different NEFs shown in ribbon representation. 

GrpE is the NEF of the E. coli homolog of Hsp70, DnaK. It forms a homodimer, which is mediated by the α-helical 

domain. Form II, the BAG domain, is composed of three helices which are present in most BAG-domain proteins, 

except for BAG2. Family III shown here is the core domain of human HspBP1. It is an all-α-helical protein. Sse1 of 

family IV is the yeast homolog of Hsp110, which is structurally highly similar as Hsp70, containing NBD, β-

sandwich and three α-helices domains. All structures are shown in ribbon representation and presented on the same 

scale. PDB accession numbers are as follows: 1DKG (Harrison et al., 1997), 1HX1 (Sondermann et al., 2001), 1XQS 

(Shomura et al., 2005) and 3D2F (Polier et al., 2008).  

 

2.2.5.1 Family I 

 

GrpE (GroP-like gene E) functions as a nucleotide exchange factor for bacterial Hsp70, DnaK. 

It is heat-inducible and essential in E. coli. GrpE eukaryotic homologs are found in mitochon-

dria and chloroplasts cell organelles derived from bacteria. The yeast mitochondrial GrpE is 

named as Mge1, which is not heat-inducible in contrast to GrpE (Ikeda et al., 1994). Both share 

low sequence homology with only 34 % identity and 57 % similarity (Laloraya et al., 1994). 

Dimers of GrpE show an intriguing architecture with two almost parallel long α-helices con-

tributing to a four-helix bundle and two proximal β-sheet domains, which look like two wings 

(Fig. 7). In the co-crystal complex structure with DnaK, one monomer is bent towards DnaK, 

which leads to an asymmetric dimer appearance (Harrison et al., 1997).  

 

2.2.5.2 Family II 

 

There are six homologs in the family of BAG proteins in humans, named BAG1 to BAG6. All 

the homologs contain one BAG domain, except for BAG5, which is comprised of five putative 
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BAG domains. In contrast to the α-β-dimer structure of GrpE, the BAG domain of BAG1 

(Bcl2-associated athanogene) forms a three-helix bundle (Fig. 7). BAG-1 was initially thought 

as a cellular partner to bind the anti-apoptotic protein Bcl-2 and to promote cell survival 

(Takayama et al., 1995). The six BAG proteins are modular multi-domain proteins and seem to 

recruit Hsp70 for specific functions, though they employ a rather similar way to induce con-

formational change on Hsp70. Besides the BAG domain, BAG1 isoforms also share an ubiqui-

tin-like Ub1 domain which was implicated in proteasomal degradation, similar to the co-

chaperone Chip. BAG3 is involved in autophagy. 

 

2.2.5.3 Family III 

 

HspBP1 (Hsp70 binding protein 1) has another structural framework that was recruited for 

NEF function, a succession of armadillo repeats found in diverse structural contexts. HspBP1 is 

relatively abundant and it was initially described as an Hsp70-interacting protein that inhibited 

Hsp70-mediated protein refolding (Raynes and Guerriero, 1998). HspBP1 homologs represent 

a distinct class of conserved NEFs and relative abundant in cytosol, comparing to BAG domain 

proteins. The HspBP1 homolog in S. cerevisiae cytosol was named Fes1p. The structure of the 

core fragment of HspBP1 has an all-α-helical structure containing four armadillo repeats (Fig. 7) 

(Shomura et al., 2005). In contrast to the other NEFs, HspBP1 binding to the NBD causes much 

more drastic structural changes. It was suggested that HspBP1 distorts the lobe I of Hsp70NBD 

and separates it from lobe II. 

 

2.2.5.4 Family IV 

 

The principal class of eukaryotic NEF as judged from its abundance appears to be Hsp110, 

which is predominantly located in cytosol and its homolog Grp170 in the ER-lumen. After 

Hsp70 and Hsp90, it is the third most abundant heat shock protein in most mammalian cell 

lines and tissues. There are three human Hsp110 homologs, Hsp105, Apg1 and Apg2, in mam-

malian cytosol. Two homologs, Sse1 and Sse2, are found in the cytosol of S. cerevisiae (Easton 

et al., 2000). They are highly homologous with 76 % sequence identity. Both of them are up-

regulated upon stress. Sse1 is abundantly expressed under normal cellular conditions. Disrup-
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tion of Sse1 causes a growth defect and deletion of Sse2 causes no distinct phenotype, however 

double deletion results in synthetic lethality (Mukai et al., 1993). 

Interestingly, Hsp110 is a remote homolog of Hsp70 and shares the general domain composi-

tion with Hsp70. It consists of an NBD, a β-sandwich domain and a three-helix bundle domain 

(Fig. 7). The main difference with Hsp70 is the presence of an acidic insertion into the β-

sandwich domain and an extended C-terminus. It was previously hypothesized that the Sse1-

ATP structure represents an evolutionary vestige of Hsp70-ATP (Liu and Hendrickson, 2007). 

Intriguingly, the recent available structure of DnaK-ATP showed a similar structure, confirm-

ing that Hsp70s and Hsp110 are homologs (Qi et al., 2013). The most remarkable difference 

between the DnaK-ATP and Sse1-ATP structures was the altered conformation of the β-

sandwich and three-helix bundle domains. 

 

2.2.5.5 Cellular functions of NEFs 

 

Through their crucial role as nucleotide exchange factors, Hsp70 NEFs perform a wide variety 

of cellular functions, ranging from transcriptional regulation to the control of cell migration. In 

addition, some may participate in the targeting of substrates to the proteasome (Lüders et al., 

2000). For the BAG-1 protein a role in coordinating chaperone and degradation pathways was 

suggested. The ER homolog of HspBP1 in humans, Sil1, has been revealed as an essential 

component of the endoplasmic-reticulum-associated protein degradation (ERAD) machinery 

and the unfolded protein response. Moreover, disruption of Sil1 leads to accumulation of mis-

folded protein in ER and nucleus, which causes a neurodegenerative disease, Marinesco-

Sjögren syndrome (Anttonen et al., 2005; Senderek et al., 2005). Hsp110 is a distant Hsp70 

homolog, possessing holdase activity, which can stabilize unfolded proteins and prevent aggre-

gation. It was initially characterized as “holdase”, as they can keep denatured protein in solu-

tion (Oh et al., 1997; Oh et al., 1999). In addition, it can bind to a misfolded protein, but alone 

lacks substrate refolding activity (Dragovic et al., 2006). Passive substrate binding has been 

attributed to Hsp110 which might be related to Hsp70-mediated folding (Polier et al., 2010). 

Furthermore, Hsp110s were found associated with amyloidogenic proteins and disease-related 

protein aggregates such as from mutant superoxide dismutase 1 (SOD1) or tau (Eroglu et al., 

2010; Olzscha et al., 2011; Yamashita et al., 2007). More recently, Hsp110 has been implicated 
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to empower Hsp70-Hsp40 to efficiently resolubilize and reactivate substrate protein in vitro 

(Rampelt et al., 2012). Moreover, down-regulation of Hsp110 triggered formation of heat 

shock-induced luciferase aggregates in the model system C.elegans. This finding demonstrated 

that C. elegans unable to resolubilize luciferase aggregate in the absence of Hsp110, suggesting 

Hsp110 is an essential component of protein disaggregation machinery (Rampelt et al., 2012). 

In line with this finding, deletion of Hsp105 causes accumulation of hyper-phosphorylated tau 

and neurofibrillary tangles in mice (Eroglu et al., 2010). Taken together, the multiple functions 

of NEFs indicate the functional significance of NEFs in the Hsp70 molecular machinery.  

 

2.3 Hsp70 protein-protein network 

2.3.1 Eukaryotic Hsp70 protein-protein network  

 

Hsp70 as a major chaperone in the mammalian cytosol and nucleus has been widely recognized 

not to act alone, but to cooperate with multiple cofactors and other chaperone systems to main-

tain a functional proteome (Buchner, 1999; Caplan, 1999; Frydman and Höhfeld, 1997). These 

cofactors do not only regulate the ATPase activity and substrate affinity of Hsp70, but also re-

cruit Hsp70 to other chaperones and to components of the protein degradation machinery, 

thereby distributing functional proteins to functional complexes and organelles and damaged 

and misfolded proteins to proteolytic compartments. Figure 8 provides an overview of the main 

interactions of Hsp70 summarized by online database STRING (http://string-db.org/).  

 

http://string-db.org/
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Figure 8: Overview of protein-protein interactions in the human Hsp70 network. 

The network was generated by database STRING. The interactions include direct and indirect associations.  

 

For the cooperation of Hsp70 with the downstream Hsp90 system and the ubiquitin proteasome 

system (UPS), mainly three cofactors have been implicated in Figure 8: Hip (ST13), Hop 

(STIP1) and Chip (STUB1). In the following chapters, each of them is discussed in greater de-

tail, but with special emphasis on Hip. 

 

2.3.2 Hsp70 interacting protein (Hip) 

 

Animals, plants and protozoa contain a conserved additional regulator of the Hsp70 reaction 

cycle, the cytosolic Hsp70 interacting protein (Hip). Alternative names for Hip are suppressor 

of tumorigenicity (ST13) and human p48. Human p48 shares over 91 % identity with rat Hip. It 

is a highly conserved protein found in most eukaryotic lines, but absent in S. cerevisiae and 

other fungi (Appendix 8.2). The Hip concentration in reticulocyte lysate is  1 µM, similar to 

Hsc70. Hip is a dimeric protein of protomers with ~ 43 kDa molecular weight (human Hip). 

Hip was originally identified as a 368 residue protein binding specifically to the NBD of Hsp70 

in the presence of ADP and participating in the regulation of eukaryotic Hsp70 protein 

(Höhfeld et al., 1995). Independently, Hip was identified as a component (p48) of a complex of 

a progesterone receptor folding intermediate, which also contained Hsp70 and Hsp90 (Smith et 
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al., 1995). Hip was also found as interaction partner of the chemokine receptors C-X-C-motif 

chemokine receptors type 2 and 4 (CXCR2 and CXCR4), required for receptor internalization 

(Fan et al., 2002).  

The existence of Hip suggests a regulatory mechanism in the eukaryotic cytosol distinct from 

bacterial DnaK. Hip was proposed to stimulate the chaperone activity of Hsp70 by preventing 

premature substrate release (Mayer and Bukau, 2005). Besides affecting the Hsp70 chaperone 

activities in vitro and in vivo, Hip possesses intrinsic molecular chaperone activity, as it binds 

specifically to unfolded proteins and prevents their aggregation (Höhfeld et al., 1995; Velten et 

al., 2002; Velten et al., 2000). Hip however cannot fold substrate proteins independently from 

Hsp70 and has no intrinsic ATPase activity (Bruce and Churchich, 1997; Höhfeld et al., 1995; 

Velten et al., 2000). Hip may be specifically recruited to Hsp70 by certain substrates. In addi-

tion, Hip was also proposed to compete with BAG1 for binding to the NBD of Hsp70, thereby 

preventing BAG1 stimulated ADP release (Höhfeld and Jentsch, 1997). 

 

2.3.2.1 Predicted domain structure of Hip 

 

Hip is thought to be composed of five domains, a dimerization domain at its N-terminus, fol-

lowed by a tetratricopeptide repeats (TPR) domain flanked by highly negatively charged re-

gions and a conserved region at its C-terminus containing several GGMP peptide repeats and a 

DP domain. In the absence of structural data, most of these domains were proposed based on 

sequence alignment criteria, structural modelling and mutagenesis studies (Irmer and Höhfeld, 

1997; Prapapanich et al., 1996b; Velten et al., 2000). The schematic representation of the do-

main structure of Hip is shown in Figure 9. 

 

 

Figure 9: Overview of the domain structure of Hip.  

 

 

TPR 
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The residue numbers refer to Hip from Rattus norvegicus. The dimerization domain (HipN), Hsp70-binding TPR 

domain (HipM) and the DP domain are shown in purple, blue, and orange, respectively. White, acidic linker re-

gions; Yellow, GGMP repeat segment.  

 

2.3.2.2 The N-terminal dimerization domain of Hip 

 

Initially the number of Hip subunits in the Hip homo-oligomer was unclear (Höhfeld et al., 

1995; Ziegelhoffer et al., 1996). Later Hip was unambiguously shown by a combination of 

size-exclusion chromatography and analytical ultracentrifugation to form elongated dimers 

(Velten et al., 2000). Deletion of 14 residues from the N-terminus of Hip resulted in the appar-

ent loss of Hip homo-oligomerization. This indicates that dimerization was required for Hip-

assisted nuclear receptor maturation in vivo (Irmer and Höhfeld, 1997; Nelson et al., 2004; 

Nollen et al., 2001).  

In the course of my master project, I cloned the conserved 44 residues at the N-terminus of rat 

Hip, named Hip(1-44), and determined its crystal structure at 1.1 Å resolution (Zhuo Li, Master 

thesis). An exchange experiment using Hip(1-44) and full length Hip revealed slow exchange 

between the dimers (Figure 10C), suggesting stable dimerization on a molecular time scale 

(Zhuo Li, Master thesis). 

 

A)   
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B)  C)  

 

 

 

Figure 10: The dimerization domain of Hip. 

A) Ribbon representation of the crystal structure of the dimerization domain of Hip. Protomers are shown in 

purple and salmon. Chain termini are indicated.  

B) The dimer structure is stabilized by the contacts at the C-terminal end of the dimerization domain. The 

hydrogen bonds involved are indicated by dashed lines. 

C) Slow subunit exchange between Hip dimers (Hip2 and Hip(1-44)2) analyzed by size-exclusion chromato- 

graphy. A stoichiometric mixture of Hip and Hip(1-44) was incubated at 20 °C and analyzed at the times 

indicated. 

 

The structure showed a compact, α-helical dimer with each subunit contributing three helices 

(Fig. 10A). Interestingly, the helices are oriented at nearly 90° angles. This leads to a box-like 

parallel dimer structure, which is stabilized by van-der-Waals interactions of the side chains in 

the hydrophobic core. The C-terminal loops are stabilized by hydrogen bonds between the 

backbones at Lys41 and Met38 (Fig. 10B). No structural homologs were found in the Protein 

Data Bank with the DALI server. Similarly, no sequence homologs were found apart from se-

quences that were likely Hip homologs. This domain type might thus be unique to the Hip pro-

tein family.  

To characterize the stability of the Hip dimer, the monomer exchange between Hip2 and Hip(1-

44)2 at 20 °C was investigated over time by size-exclusion chromatography. During hours, the 

Hip-Hip(1-44) heterodimer complex band gradually increased, suggesting slow exchange (Fig. 

10C). The estimated half-time of exchange is ~ 6 h. This indicates that Hip forms a constitutive 

dimer on a physiological timescale. 
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2.3.2.3 The TPR domain of Hip 

 

Tetratricopeptide repeat (TPR) domain is composed of TPR motif, which is composed of 34 

amino acids (Lamb et al., 1995). Typically three successive TPR motifs and a C-terminal cap-

ping helix form a TPR domain. Specialized TPR domains recognizing the C-terminal EEVD 

motifs in Hsp70 and Hsp90 are present in their co-factors Hop, Chip, phosphoprotein phospha-

tase 5 (PP5), aryl hydrocarbon receptor interacting protein (AIP) and Hsp90-binding immuno-

philins Cyp-40, FK506-binding protein FKBP51 and FKBP52 (Ballinger et al., 1999; Buchner, 

1999; Dolinski et al., 1998; Pratt and Toft, 1997; Scheufler et al., 2000).  

Hip contains a predicted TPR domain between residues 113-214 (Höhfeld et al., 1995; Irmer 

and Höhfeld, 1997; Prapapanich et al., 1996b; Velten et al., 2002). Analysis of deletion con-

structs suggested that both the predicted TPR domain and the following positively charged re-

gion are required for efficient binding to the ATPase domain of Hsp70 (Prapapanich et al., 

1996b). The TPR domain alone was not sufficient for binding to Hsp70 in the yeast two-hybrid 

system (Irmer and Höhfeld, 1997). The shortest construct displaying interaction with the 

ATPase domain of Hsp70 comprised residues 15-257 of Hip (Irmer and Höhfeld, 1997).  

Truncation of the TPR domain from Hip unable it bind to Hsp70 (Prapapanich et al., 1996a), 

but its binding to CXCR2 was maintained and CXCR2-mediated mitogen-activated protein 

kinase activation can be preserved. However, overexpression of the TPR depletion mutant of 

Hip significantly attenuated the internalization of the chemokine receptors CXCR2 and CXCR4 

(Fan et al., 2002).  

 

2.3.2.4 The GGMP repeat region 

 

Hip comprises seven imperfect Gly-Gly-(Met/Phe)-Pro (GGMP) tetrapeptide repeats between 

residues 278-311, and this motif is located close to the C-terminus of Hip together with an ad-

ditional Sti1-related region (Höhfeld et al., 1995). It is highly conserved and is expanded to 

over 20 tandem repeats in a Plasmodium homolog of Hip (Uparanukraw et al., 1993). Similar 

repeats were also located in other chaperones, for example close to the peptide binding site of 

the C-terminus of Hsc70 as part of a regulatory motif (Höhfeld et al., 1995). Notably, inducible 

Hsp70 lacks this motif, as previously noted (Prapapanich et al., 1996a). It is interesting that Hip 
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combines structural elements found in Hsc70, Hsc70 and Hsp90-associated co-chaperones. 

Because of its proline-rich nature, it was predicted that neither α-helix nor β-sheet structure 

could be present in this region (Prapapanich et al., 1996a). The in vitro and in vivo studies sug-

gested that this motif was not involved in regulating Hsp70 chaperone activity (Irmer and 

Höhfeld, 1997; Nollen et al., 2001). The exact function of the GGMP repeats in the interaction 

with Hsp70 or other cellular components is not yet understood.   

 

2.3.2.5 The DP domain of Hip 

 

The C-terminal region of Hip (residues 312-368) comprises two Asp-Pro (DP) repeat motifs 

with similarity to segments of the Hsp70-Hsp90 organizing protein (Hop) and Rad23. Little is 

known about how the DP region participates in co-chaperon function (Nelson et al., 2003).  

The C-terminal domain of Hip was implicated in binding to the C-X-C-motif chemokine recep-

tors type 2 and 4 (CXCR2 and CXCR4). Truncation of the C-terminal 66 amino acids com-

pletely abolished the interaction of Hip with CXCR2 (Fan et al., 2002), suggesting substrate 

binding ability of C-terminus of Hip. In addition, it was previously found that mutants that de-

stabilized the DP domain can stabilize interaction with Hsp70, while inhibiting PR assembly 

(Prapapanich et al., 1998). Moreover, a recent study identified Hip as a novel substrate of G 

protein-coupled receptor kinase 5 (GRK5), which recognizes Hip by a motif within the DP do-

main, residues 303-319, and phosphorylates Hip at Ser346 in vitro and in vivo (Barker and 

Benovic, 2011). GRK5 had previously not been implicated in signaling and trafficking of 

CXCR4. Phosphorylation of Hip by GRK5 was shown to play an essential role in modulating 

CXCR4 internalization.  

 

2.3.3 C-terminus of Hsc70 interacting protein (Chip) 

 

Aberrant proteins or protein aggregates destined for degradation need to be labeled with a mul-

ti-ubiquitin chain. The ubiquitination process is mediated by the cooperation of three enzymes: 

activator E1, ubiquitin conjugating E2 and ubiquitin ligase E3 enzyme. C-terminus of Hsc70 

interacting protein, Chip, a ~ 35 kDa protein, was the first known ubiquitin ligase that directly 

associated with a chaperone. Chip was initially identified in a screen for human TPR-
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containing protein (Ballinger et al., 1999). Chip is a dimeric protein with subunits containing 

TPR and U-box domains at N- and C-terminus, respectively. The TPR domain in Chip enables 

the binding to the C-terminal EEVD motifs of Hsp70 and Hsp90, and the U-box domain partic-

ipates in the ubiquitin conjugation. Chip was shown to associate with Hsp70, block the ATPase 

cycle of Hsp70 and inhibit its ability to refold non-native protein (Ballinger et al., 1999). Simi-

larly, Chip may abolish the cooperation of Hsp90 with other co-chaperones needed for produc-

tive chaperone function. However, based on the modular structure of Chip, it may also enable a 

direct link between Hsp70 and Hsp90, ubiquitinate the clients and target them to proteasome 

for degradation. 

Chip was shown by isothermal titration calorimetry (ITC) to have a six-fold higher affinity for 

Hsp90 than Hsp70 in vitro (Stankiewicz et al., 2010). The same study also suggested that Chip 

preferentially ubiquitinated Hsp70-bound substrates, such as luciferase (Stankiewicz et al., 

2010). Chip was however also shown to promote the degradation of glucocorticoid hormone 

receptor (GR) by eliciting release of the regulatory cofactor p23 from the ternary complex 

(Connell et al., 2001). In line with this finding, Chip targeted the degradation of the ubiqui-

tinated Hsp90-associated immature cystic-fibrosis transmembrane-conductance regulator 

(CFTR) (Meacham et al., 2001). Importantly, overexpression of the U-box truncation fragment 

in Chip blocked CFTR ubiquitination, indicating the essential function of U-box domain for 

targeting substrate degradation (Meacham et al., 2001). In addition to CFTR, Chip has been 

shown to be involved in degradation of mutant superoxide dismutase 1 (SOD1), which is im-

plicated in protein misfolded disease (Urushitani et al., 2004). In addition, Chip was implicated 

in mammalian longevity through defective protein control. A Chip-knockout mouse model ex-

hibited a markedly reduced life span, along with accelerated age-related pathophysiological 

phenotypes (Min et al., 2008). Taken together, Chip appears to play a crucial role in maintain-

ing protein quality control in cells by modulating the balance of folding and degradation of 

chaperone substrates. 

 

2.3.4 The Hsp70-Hsp90 organizing protein (Hop) 

 

The yeast homolog to Hop, Sti1, was initially identified in a genetic screen for proteins that 

mediate the heat-shock response in S. cerevisiae (Nicolet and Craig, 1989). Subsequently, in 



2  Introduction 

 

38 

 

studies on the maturation of progesterone receptor (PR), mammalian Hop has been identified 

together with Hsp40, Hsp70 and Hip as an essential component for the recruitment of this ster-

oid receptor to Hsp90 (Smith et al., 1993). Hop showed effective enhancement of the matura-

tion of PR during in vitro reconstitution experiments. It is however not required for GR matura-

tion in the same system (Morishima et al., 2000).  

Hop is an abundant and highly conserved protein in eukaryotes. The homolog in S. cerevisiae is 

however not essential (Chang and Lindquist, 1994). Hop is a multi-domain adaptor protein that 

can bind Hsp70 and Hsp90 simultaneously. So far Hop has not been shown to act as a chaper-

one independently of Hsp70 and Hsp90 (Bose et al., 1996).  

The various homologs of Hop are structurally characterized by the presence of three TPR do-

mains, TPR1, TPR2A and TPR2B (residues 4-118, 223-352 and 353-477 in human Hop). The 

N-terminal TPR1 was shown to preferentially bind to the highly conserved EEVD motif at the 

C-terminus of Hsp70 (Scheufler et al., 2000). Interestingly, both TPR1 and TPR2B were identi-

fied to contribute to the Hsp70 interaction and they have redundant or overlapping functions in 

vivo (Flom et al., 2006). Conversely, TPR2A and TPR2B domains interact preferentially with 

the EEVD residues at the C-terminus of Hsp90 (Scheufler et al., 2000; Young et al., 1998). 

Notably, Hop contains two DP domains following TPR1 and TPR2B, called DP1 and DP2, 

respectively. Their sequences are 27 % identical and they form the arrangement in TPR1-DP1-

TPR2A-TPR2B-DP2. Both of the two DP domains contribute to Hop functions (Carrigan et al., 

2004; Chen et al., 1998), though one study has shown that DP2 domain is dispensable for the 

Hsp70 and Hsp90 interactions (Flom et al., 2007). Since Hop simultaneously interacts with 

Hsp70 and Hsp90 via separate TPR domains, Hop was postulated to be essential for in integrat-

ing Hsp70-Hsp90 interactions. This was demonstrated by using purified Hsp70 and Hsp90s in 

vitro, which associate with each other only when Hop was present (Chen et al., 1996). Thereby, 

it has been proposed that Hop plays a crucial role in the transfer of client proteins from Hsp70 

to Hsp90. Surprisingly, Hop was also reported as an ADP/ATP exchange factor in the recycling 

of Hsp70 system (Gross and Hessefort, 1996). In line with this study, the yeast homolog Sti1 

was found to stimulate ATPase activity of yeast Hsp70 Ssa1 by a factor of about 200, indicat-

ing that Sti1 is a potent novel effector for the Hsp70 ATPase activity (Wegele et al., 2003). 

Furthermore, Sti1 binds to the N- and C-terminal part of Hsp90 and prevents the N-terminal 

dimerization reaction that is required for efficient ATP hydrolysis by Hsp90. Therefore, we can 
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surmise that Hop might work as a functional homolog to GrpE in the eukaryotic cytosol, pro-

moting the dissociation of the substrate from Hsp70 for the efficient transfer to downstream 

Hsp90 chaperone system. 

 

2.3.4.1 Similarities between Hip and Hop  

 

Both Hip and Hop contain TPR domains, which mediate binding to chaperones. In addition, 

they also share DP motifs at their C-termini (Höhfeld et al., 1995; Nelson et al., 2003). Figure 

11 shows a comparison of the domain structure. The first DP unit between Hip and Hop has the 

same sequence DPEV, but the second, DPAM, is slightly different in Hop. Interestingly, the 

combination of TPR and DP domains can only be found in Hip and Hop homologs. Besides 

sharing TPR and DP domains, both contain highly charged regions. Both the sequences at the 

end of the DP domain of Hop and between the TPR and DP domains of Hip show a preference 

for the residues such as D, E, K, Q, S and T.  

 

 

Figure 11: Diagram representation of Hip and Hop domains and shared C-terminal sequences. 

 

Though the respective DP regions of Hip and Hop share sequence similarity, a functional de-

fect in Hop was observed upon introduction of the double-point mutation DPAM to DPEV in 

the second DP motif of Hop, whereas the corresponding mutation in Hip maintains its function 

(Fig. 11) (Nelson et al., 2003). Therefore, they are not functionally equivalent. Moreover, both 

of them bind to Hsp70 but through distinct binding sites. For Hip binding, the N-terminal 

ATPase domain of Hsp70 is sufficient. Conversely, Hop recognizes the C-terminus of Hsc70 
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(Demand et al., 1998). Notably, both of Hip and Hop are involved in the steroid receptor com-

plex maturation. In Hop, truncation of the entire DP region or DP point mutants blocked Hop 

binding to Hsp70 and assembly into the progesterone receptor (PR) complex (Chen and Smith, 

1998). In Hip, DP mutants bind to Hsp70 more stably than wild type Hip, but block recruitment 

of Hop and Hsp90 to the receptor complex (Prapapanich et al., 1998).  

 

2.4 Role of Hip in cellular protein quality control 
 

Hip has been shown to be important for stabilizing Hsp70 in the ADP-bound state (Höhfeld et 

al., 1995). It was implicated in progesterone receptor (PR) pathway and presumably mediates 

substrate binding to Hsp70 in early receptor complexes (Prapapanich et al., 1996a). In collabo-

ration with Hsp70, Hip prevents the formation of large cytotoxic aggregates of α-Synuclein and 

a polyQ-expanded mutant of androgen receptor (AR), hallmarks of Parkinson’s disease and 

spinobulbar muscular atrophy (SBMA) (Kennedy’s disease), respectively (Howarth et al., 

2009; Roodveldt et al., 2009). Recently, Hip was also implicated in the ubiquitylation and pro-

teasomal degradation of neuronal nitric oxide synthase and polyQ androgen receptor (Wang et 

al., 2013). Notably, a similar effect in promoting the degradation of polyQ androgen receptor 

and of hyper-phosphorylated Tau was achieved by the Hsp70-binding compounds MKT-077 

and YM-1. These chemically related compounds stabilize Hsp70-substrate complexes and have 

been described as mimics of Hip function (Rousaki et al., 2011; Wang et al., 2013). 

 

2.4.1 Regulation of progesterone receptor maturation 

 

Steroid receptors are rapidly turned over in cells. In the absence of hormone, the receptor re-

mains inactive. Upon hormone binding to the receptor, the complex disassembles, leading to 

release of the active receptor. The activation is mediated by intricate chaperone machinery in 

the cytosol. Hip was found to associate with Hsp70 in the ADP-bound state. It was suggested 

that Hip might contribute to the interaction of Hsc70 with various target proteins (Höhfeld et 

al., 1995). In addition, Hip was noted as a transient component during the cell-free assembly of 

progesterone receptor complex (Smith et al., 1995). Thereby, it was proposed to be an addition-

al accessory factor paralleling Hsp70 in the assembly process. The identification of Hip as a 
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component of the hormone receptor complex provides the possibility to understand the interac-

tions between Hip, Hsp70 and Hsp90 in vivo, since all of them are components of the same 

multi-protein complex (Smith, 1993; Smith et al., 1995). Hsp90 and its co-factors, which are 

essential for hormone binding and the activation of receptor, were suggested to stabilize the 

receptor in the proper hormone binding conformation.  

Therefore, the presence of Hip in the progesterone receptor complex provides us with an exam-

ple for the intracellular cooperation between the molecular chaperones. Especially, Hip might 

works as a signaling protein to link Hsp70 with downstream Hsp90. 

 

2.4.2 Aggregation prevention in models of neurodegenerative disease 

 

Protein misfolding and aberrant self-assembly may cause cell toxicity, resulting in protein con-

formational disorders and neurodegeneration. Many neurodegenerative diseases such as Alz-

heimer’s (AD), Parkinson’s (PD) and Huntington’s diseases (HD) are characterized by the dep-

osition of insoluble protein inclusions (Chiti and Dobson, 2006). The role of small molecular 

co-chaperones in facilitating the removal of protein inclusions has been studied (Jana and 

Nukina, 2005). 

 

A)  
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B)  

                       

Figure 12: Suppression of protein deposit formation by Hip in vivo.  

A) Cortical neurons were transduced with vectors expressing AR(Q19)GFP and AR(Q80)GFP fusion proteins 

with or without presences of additional chaperones. (i) vectors expressing AR(Q19)GFP; (ii) vectors express-

ing AR(Q80)GFP; (iii) AR(Q80)GFP in presence of Hsp70; (iv) AR(Q80)GFP in presence of Hip (Howarth et 

al., 2009).  

B) α-Syn inclusion formation in the head region of transgenic C. elegans worms. α-Syn-YFP transgenic 

C.elegans were fed with bacteria expressing either empty vector (L4440), RNAi for knockdown of Hsp70 and 

knockdown of Hip. Quantification of the inclusion formation was performed in age-synchronized young adult 

C.elegans, after feeding RNAi bacteria for two generations (Roodveldt et al., 2009).  

 

The effect of overexpressing Hip was initially investigated in a cellular polyglutamine (polyQ) 

model of spinal and bulbar muscular atrophy (SBMA) and Huntington’s diseases (Howarth et 

al., 2009). Overexpression of Hip alone significantly reduced inclusion body formation (Fig. 

12A). In addition, Parkinson’s disease (PD) patients had consistently low Hip expression levels 

in their blood relative to healthy controls, even in the early stages of the disease (Scherzer et al., 

2007). Intra-neuronal inclusions in the brains of PD patients known as Lewy bodies contain a 

large proportion of aggregated α-Synuclein. The effect of Hip on α-Synuclein aggregation was 

investigated in vitro and the C. elegans model system (Roodveldt et al., 2009). In the study, 

addition of Hip to Hsp70 in the presence of ATP efficiently suppressed α-Synuclein fibrils’ 

formation in vitro and no fibrils can be observed under transmission electron microscopy 

(TEM). Importantly, this anti-amyloidogenic activity of Hip is mediated by Hsp70, as over-

expression of Hip alone cannot decrease the formation of α-Synuclein fibrils. Depletion of 

Hsp70 by RNA interference caused only a non-significant increase of α-Synuclein-YFP inclu-

sions in transgenic worms, whereas knockdown of Hip significantly caused increased inclusion 

formation, suggesting an essential function of Hip in suppressing α-Syn aggregation (Fig. 12B). 

It can be therefore postulated that depletion of Hip might impair the ability of proteins to resist 

aggregation and that Hip is required to maintain protein homeostasis.  
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2.4.3 Hip promotes degradation of misfolded protein 

 

Hip preferentially binds to Hsp70 in the ADP-bound state. Interestingly, a small molecule func-

tional homolog of Hip named MKT-077 was identified, which also binds to the ADP-bound 

state of Hsp70, but not ATP state (Rousaki et al., 2011).  

A)  

 

B)  

 

 

Figure 13: MKT-077, a compound mimicking Hip. 

A) The molecular structure of MKT-077, based on quantum mechanical calculations. 

B) MKT-077 promotes the clearance of hyper-phosphorylated tau in HeLa C3 cell line in a dose-dependent  

manner. SDS-PAGE analysis was performed after 24h incubation (Pitsis and Visouli, 2011).  

 

MKT-077 is a rhodacyanine dye analog with the systematic name 1-ethyl-2-[[3-ethyl-5-(3-

methylbenzothiazolin-2-yliden)]-4-oxothiazolidin-2-ylidenemethyl] pyridinium chloride (Fig. 

13A). MKT-077 has been identified initially as potent anticancer compound that interacted 

with mtHsp70 in pull-down studies (Deocaris et al., 2007; Wadhwa et al., 2000). Later MKT-

077 was proposed to act as an “allosteric drug”, which blocks the cycle of cytosolic Hsp70 

through stabilization of the ADP state (Rousaki et al., 2011). The KD value for the complex of 

MKT-077 and the ADP-bound NBD of Hsp70 was estimated to be in the range of 1 – 10 µM 

by NMR titration. Selectivity towards the presumed binding site, a negatively charged pocket 
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between subdomains IA and IIA of Hsp70 NBD, might be driven by the cationic character of 

MKT-077 (Rousaki et al., 2011). This location is close to the nucleotide binding site, but not 

identical to it. 

In preclinical studies, MKT-077 was found to inhibit proliferation of multiple human cancer 

cell lines, including colon, breast carcinoma cells and showed no toxicity against normal kid-

ney cells (Koya et al., 1996). However, because of renal toxicity in the clinical Phase I trial 

against solid tumors, testing of MKT-077 was stopped. 

One of the hallmarks of Alzheimer’s disease is the accumulation of hyper-phosphorylated Tau 

in neurons besides extracellular amyloid-β deposits. Interestingly, MKT-077 promoted the 

clearance of hyper-phosphorylated Tau in a model of Alzheimer’s disease, suggesting a poten-

tial link from Hip to the cellular degradation machinery (Fig. 13B) (Rousaki et al., 2011). In-

deed, Hip overexpression facilitated ubiquitination and promoted proteasomal degradation of 

neuronal nitric oxide synthase (nNOS) and polyQ androgen receptor (AR) in cultured cells 

(Wang et al., 2013). A similar effect of increased ubiquitination and degradation of client pro-

teins was observed with the compound YM-1, a stable and soluble derivative of MKT-077. As 

predicted, this compound also promoted binding of Hsp70 to denatured luciferase. 

 

2.5 Aim of study 
 

It had been suggested that Hsp70 interacting protein, Hip delays substrate release from Hsp70 

by slowing the dissociation of Hsp70-bound ADP. However, the physiological role of Hip and 

its interplay with other Hsp70 co-factors were far from clear. Despite considerable achieve-

ments in understanding the Hip structure and its interaction with Hsp70, the exact three-

dimensional structure of Hip remained a mystery. The exact and detailed structural mechanism 

by which Hip regulates Hsp70 was unknown. Such data could provide the basis for rational 

drug design and novel therapeutic interventions. 

Based on these considerations, this work focuses on a detailed structural and functional analysis 

of Hip. Our aim was to determine the crystal structures of Hip and the Hip:Hsp70 complex. To 

achieve our goal, we first delineated the probable domain boundaries in rat Hip from sequence 

alignment, which guided the design of various Hip constructs. Functional analyses by isother-
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mal titration calorimetry (ITC) and MABA-ADP dissociation assay identified the essential 

Hsp70 binding domain of Hip. With the information provided by the functional assays, the 

crystal structures of the middle domain of Hip (HipM) and the Hip:Hsp70 protein core complex 

were successfully determined. Subsequently, a detailed characterization of Hip:Hsp70 complex 

based on structure-guided site-directed mutagenesis of Hip was undertaken. These experiments 

characterized the Hip interface with Hsp70 and the structural requirement for the stabilization 

and regulation of Hsp70. Comparison of the Hip-Hsp70 and NEF-Hsp70 complex structures 

suggested Hip and NEF binding to Hsp70 are mutually exclusive. Thus, the association of Hip 

with Hsp70-substrate complexes attenuates their active cycling. Finally, the functional interac-

tion between Hip and Hsp70 was probed in vivo, using the maturation of glucocorticoid recep-

tor as a read-out. 

In summary, the structural and biochemical analyses performed in this study were designed to 

provide a mechanistic model for the cooperation of Hip with Hsp70 in protein folding and ag-

gregation prevention. 
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3 Materials and Methods 
 

3.1 Chemicals 
 

Unless otherwise stated, chemicals were of pro analysis quality and purchased from Sigma-

Aldrich (Steinheim, Germany) or Merck (Darmstadt, Germany).  

Suppliers Chemicals 

Applied Biosystems (Foster, USA) Gal-Screen chemiluminescence reagent  

Biomol (Hamburg, Germany) HEPES 

Biozym (Hessisch Oldendorf, Germany) Biozym LE Agarose 

Clontech (Heidelberg, Germany) Herring testis carrier DNA 

Difco (Heidelberg, Germany) Bacto Agar 

Bacto Tryptone 

Bacto peptone 

Bacto Yeast Extract 

Bacto Yeast Nitrogen Base 

Fermentas (St. Leon-Rot, Germany) GeneRuler 100 b und 1 kb DNA Ladder Page 

Ruler Protein Ladder 

PageRuler Prestained Protein Ladder 

Restriction enzyme EheI (Enzyme) 

Fluka (Deisenhofen, Germany) Polyethylene glycols of different molecular 

weights 

Sodium cacodylate 

GE Healthcare (München, Germany) Chloramphenicol 

MES 

Hampton Research (Aliso Viejo, USA) Index Screen 

Interchim (Montluçon,  France)  8-((4-AMINO)BUTYL)-AMINO-ATP-MANT 

(MABA-ATP) 
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Invitrogen (Karlsruhe, Germany) pProEx-HtA, pProEx-HtB 

protein marker for SDS-PAGE 

SYBR Safe DNA gel strain 

J.M. Gabler Saliter GmbH & Co.KG 

(Obergünzburg, Germany) 

Skimmed milk powder 

Metabion (Martinsried, Germany) dNTP 

Oligonucleotides (Primers) 

New England Biolabs (Frankfurt am Main, 

Germany) 

BSA 

Restriction endonucleases (Enzyme) 

T4 DNA ligase (Enzyme) 

Promega (Mannheim, Germany) Pfu polymerase (Enzyme) 

Wizard Plus SV Miniprep DNA Purification 

System 

Wizard SV Gel and PCR Clean-Up System 

Qiagen (Hilden, Germany) Qiagen Plasmid Midi Kit 

Qiagen Plasmid Maxi Kit 

Roche (Basel, Switzerland) DTT 

EDTA-free Complete protease inhibitor cocktail 

Hexokinase (Enzyme) 

Proteinase K (Enzyme) 

Shrimp alkaline phohsphatase (Enzyme) 

Roth (Karlsruhe, Germany) Ampicillin 

IPTG 

KCl 

Serva (Heidelberg, Germany) Acrylamide-Bis 

Coomassie Blue R250 

PMSF 

SDS 

Table 1: Chemicals 
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3.2 Enzyme and antibodies 

 

Suppliers Chemicals 

Fermentas (St. Leon-Rot, Germany) Restriction enzyme EheI 

New England Biolabs (Frankfurt am Main,  

Germany) 

Restriction enzymes 

T4 ligase 

Novagen /ToyoBo (Darmstadt, Germany) KOD Hot Start DNA polymerasae 

Promega (Mannheim, Germany) Pfu polymerase 

T4 ligase 

Department of Cellular Biochemistry, MPI      

(Martinsried, Germany) 

Rat polyclonal Anti-Hip, second bleed-

ing, dilution 1:1000 

Invitrogen (Karlsruhe, Germany) Mouse polyclonal anti-PGK, dilution 

1:5000 

Invitrogen (Karlsruhe, Germany) Mouse monoclonal anti-Hsc70, dilution 

1:2500 

Roche (Mannheim, Germany) Mouse monoclonal anti-GFP, dilution 

1:1000 

Sigma-Aldrich (Steinheim, Germany) HRP-coupled secondary antibodies 

Table 2: Enzyme and antibodies 

 

3.3 Strains 
 

Suppliers Strains 

Novagen (Darmstadt, Germany) E. coli DH5α 

Stratagene (Heidelberg, Germany) E. coli BL21 (DE3) 

Stratagene (Heidelberg, Germany) E. coli BL21 (DE3) codon plus RIL 

M.B. Cox (University of Texas, El Paso, 

Texas, USA) 

S. cerevisiae DSY-1100  

Table 3: Strains 
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3.4 Instruments 
 

Suppliers Reagents 

Agilent Technologies (Santa Clara, USA) Variable wavelength detector Agilent 1100 series 

Applied Photophysics (Surrey, UK) SX. 18V stopped-flow instrument 

Bachofer (Reutlingen, Germany) Hybridization oven 

Beckman Coulter GmbH (Krefeld,      

Germany) 

Centrifuges (GS-6R, Allegra-6R, Avanti J-25 

with rotors JKA 10.500 and JA 25.50, J6-MI 

with rotor JS 4.2) 

DU 640 UV/VIS Spectrophotometer 

DU 800 UV/VIS Spectrophotometer 

Optima LE 80K ultracentrifuge with rotor 45 Ti 

Bibby Scientific (Stone, UK) Stuart rotating wheel 

Biometra (Göttingen, Germany) PCR thermocycler 

Bio-Rad (München, Germany) Chemidox XRS 

Horizontal agarose gel electrophoresis 

Mini Protean II electrophoresis cell 

Power Pac 300 

(Wide) Mini-SUB CELL GT 

Biospec (Bartlesville, USA) Bead Beater 

Eppendorf (Hamburg, Germany) Centrifuges (5415D and 5417R) 

Pipettes (2, 10, 20, 100, 200, 1000 µl) 

Thermomixer comfort 

Fischer Scientific (Schwerte, Germany) Accumet Basic pH meter 

Fuji/Raytest (Straubenhardt, Germany) Fuji-LAS3000 luminescence and densitometry 

system with Image Reader LAS-3000 

Gel imaging software: AIDA v.3.5.0 

GE-Healthcare (München, Germany) Äkta FPLC 

Äkta Purifier/Explorer 

Electrophoresis Power Supply – EPS600 

Ettan LC 
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Pre-packed chromatography columns as follow-

ing: HiTrap Chelating HP, HiTrap Blue HP, 

HiPrep 26/10 Desalting, HiLoad 16/60 Superdex 

200 prep grade, MonoQ HR 10/16, Mono S HR 

10/10, NAP-5 Sephadex G25 desalting, NAP-10 

Sephadex G25 desalting, NAP-25 Sephadex G25 

desalting 

Hampton Research (Aliso Viejo, USA) Mounted cryo loops 

Siliconized glass square cover slides (22 mm) 

VDX Plate with sealant 

Hoefer Scientific Instruments 

(San Francisco, USA) 

SemiPhor blotting systems 

Mettler Toledo (Gießen, Germany) Balances (AG285, PB602) 

MicroCal (Northampton, USA) MicroCal VP-ITC MicroCalorimeter 

Millipore (Schwalbach, Germany) Centriprep concentrators (3000, 10.000, 30.000 

and 50.000 Da MWCO) 

Steritop Filtration System (pore size 0.22 µm) 

Misonix (Farmingdale, USA) Sonicator 3000 

New Brunswick Scientific Innova 44 incubator / shaker 

PEQLAB (Erlangen, Germany) Nanodrop 1000 

Roth (Karlsruhe, Germany) ZelluTrans dialysis membrane 

Scientific Industries, Inc. (Bohemia/NY, 

USA) 

Vortex-Genie 2 

Whatman GmbH (Dassel, Germany) Whatman Protran nitrocellulose membrane 

Wissenschaftlich Technische Werkstätten 

(Weilheim, Germany) 

pH meter 

Table 4: Instruments 
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3.5 Media and buffers 
 

Media were prepared with deionized water and subsequently autoclaved. M9 minimal media 

was prepared with autoclaved water or sterile filtered ingredients. 

Media Reagents 

LB medium:  10 g/l Bacto peptone 

 5 g/l Bacto Yeast Extract 

 10 g/l NaCl 

 Adjust pH 7.0 with 5 M NaOH (~ 0.7 ml 5 M NaOH/liter) 

 (15 g/l agar for solid medium) 

  

SC medium  6.7 g/l Bacto Yeast Nitrogen Base 

 2 g/l drop-out mix 

 Adjust pH 5.6 with 5 M KOH, autoclave 

 40 ml 50 % (w/v) glucose (sterile-filtered) 

 If required, the following amino acids were added in, which 

were prepared in solution.  

  

 55.3 mg/l adenine (autoclaved) 

 62.9 mg/l L-histidine (autoclaved) 

 22.4 mg/l uracil (autoclaved) 

 81.7 mg/l L-tryptophan (sterile-filtered) 

 182.6 mg/l L-lysine (autoclaved) 

 219 mg/ml L-leucine (autoclaved) 

  

SC plates:  20 g/l Agar solution and SC medium (Bacto Yeast Nitrogen 

Base/drop out mix) were autoclaved separately, as the low 

pH of SC medium will cause acid hydrolysis of the agar. 

After autoclaving, the agar solution was mixed with SC 

medium. 

Table 5: Media 
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Buffers Reagents 

6 x DNA-loading buffer 0.25 % (w/v) bromophenol blue 

 0.25 % (w/v) xylene cyanol FF 

  

Coomassie staining solution 0.1 (w/v)  Serva Coomassie Blue R250 

 40 % (v/v) Ethanol 

 10 % (v/v) Acetic acid 

  

Coomassie destaining solution 10 % (v/v) Ethanol 

 10 % (v/v) Acetic acid 

  

2 x SDS-loading buffer 100 mM Tris-HCl pH 6.8 

 4 % (w/v) SDS 

 200 mM DTT 

 20 % (v/v) glycerol 

 0.2 % (w/v) bromphenolblue 

  

10 x SDS-running buffer  3.02 % (w/v) Tris 

 14.4 % (w/v) glycine 

 1 % (w/v) SDS 

  

Ponceau S stain 0.2 % (w/v) Ponceau S 

 3 % (v/v) trichloro-acetic acid 

  

10 x PBS 92 mM Na2HPO4•2H2O 

 16 mM NaH2PO4•2H2O 

 1.5 M NaCl 

 Adjust pH 7.2 with NaOH 

  

1x PBS-T 1 x PBS 

 0.1 % (v/v) Tween 20 



3  Materials and Methods 

 

53 

 

2 x SDS-loading buffer   100 mM Tris-HCl pH 6.8 

 200 mM DTT 

 4 % (w/v) SDS 

 0.2 % (w/v) Bromophenol blue 

 20 % glycerol 

  

Stripping membrane buffer 62.5 mM Tris-HCl pH 6.8 

 100 mM β-mercaptoethanol 

 2 % (w/v) SDS 

  

50 x TAE  2 M Tris-acetate 

 50 mM EDTA pH 8.0 

  

10 x TBS 500 mM Tris-HCl pH 8.0 

 1.37 M NaCl 

 27 mM KCl 

  

1 x TBS-T 50 mM Tris-HCl pH 8.0 

 137 mM NaCl 

 2.7 mM KCl 

 0.1 % (v/v) Tween 20 

  

Tfb I buffer (200 ml) 30 mM K-Acetate 

 100 mM RbCl 

 10 mM CaCl2 

 15 % (v/v) glycerol 

 Adjust pH 5.8 with 0.1 M acetic acid 

 Adjust final volume of 180 ml with deionized H2O 

 After autoclaving, 20 ml of sterile-filtered 500 mM 

MnCl2•2H2O was added 
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Tfb II buffer 10 mM MOPS 

 75 mM CaCl2 

 10 mM RbCl 

 15 % glycerol 

 Adjust pH 6.5 with 0.5 M NaOH, fresh sterile filtration 

  

Western Blot buffer 50 mM Tris 

 20 % (v/v) Methanol 

 1.441 % (w/v) glycine 

  

Yeast alkaline lysis buffer 0.2 M NaOH 

 1 % (w/v) SDS 

  

Buffer A 20 mM HEPES-KOH, pH 7.4 

 200 mM KCl 

 1 mM MgCl2 

  

Buffer B 20 mM HEPES pH 7.4 

 200 mM KCl 

 1 mM MgCl2 

 1 M imidazole 

  

Buffer C 25 mM HEPES-KOH pH 7.4 

 300 mM KCl 

 4 mM MgCl2 

 5 mM β-mercaptoethanol 

  

Buffer D 25 mM HEPES pH 7.4 

 300 mM KCl 

 4 mM MgCl2 

 1 M imidazole 
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Buffer E 40 mM HEPES-KOH pH 7.4 

 500 mM KCl 

 20 mM MgCl2 

 5 % (w/v) glycerol 

 2 mM β-mercaptoethanol 

 5 mM ATP 

  

Buffer F 40 mM HEPES pH 7.4 

 500 mM KCl 

 20 mM MgCl2 

 1 M imidazole 

 5 % (w/v) glycerol 

 2 mM β-mercaptoethanol 

 5 mM ATP 

  

Buffer BA 20 mM KH2PO4-KOH pH 8.0 

 5 mM β-mercaptoethanol 

  

Buffer BB 20 mM KH2PO4-KOH pH 8.0 

 1 M NaCl 

 5 mM β-mercaptoethanol 

  

Buffer CD 10 mM NaKHPO4-buffer pH 7.5 

 0.5 mM MgCl2 

  

Buffer HKM2 10 mM HEPES-KOH pH7.4 

 150 mM KCl 

 1 mM MgCl2 

  

Buffer GF 20 mM HEPES-KOH pH7.4 

 100 mM KCl 
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Buffer GFM 20 mM HEPES-KOH pH7.4 

 100 mM KCl 

 1 mM MgCl2 

  

Buffer PK 20 mM Tris-HCl pH 8.0 

 100 mM NaCl 

 1 mM DTT 

  

Buffer QA 10 mM HEPES-KOH pH7.4 

 1 mM MgCl2 

 10 mM KCl 

  

Buffer QB 10 mM HEPES-KOH pH7.4 

 1 mM MgCl2 

 1 M KCl 

  

Buffer SAXS 20 mM HEPES-KOH pH7.4 

 100 mM KCl 

 1 mM DTT fresh addition 

Table 6: Buffers 

 

3.6 Molecular biology methods 

3.6.1 DNA analytical methods 

 

DNA concentrations were determined by UV spectroscopy at a wavelength of 260 nm with a 

Nanodrop 1000 spectrophotometer (PEQLAB), where one absorption unit corresponds to 50 

ng/µl double stranded DNA. DNA-nuclease free water served as a reference. The absorbance 

ratio 260/280 nm for pure DNA should be over 1.85. Deviations from this absorbance ration 

ratio indicate contaminations such as RNA or protein. 

DNA electrophoresis was performed with 0.8 % (w/v) agarose gels submerged in 1 x TAE 

buffer. To prepare the gels, the agarose was dissolved in TAE buffer containing SYBR-SAFE 
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(1:5000). Prior to loading DNA samples on the gel, these were mixed with 6 x DNA loading 

buffer. Agarose gel electrophoresis was carried out at a constant voltage of 80 V for 20 minutes.  

The authenticity of cloned plasmid constructs was confirmed by restriction digestion with suit-

able restriction enzymes before DNA sequencing by the Core Facility at the MPI of Biochemis-

try in Martinsried, Germany. Sequencing chromatograms were visualized by the program 

Chromas (C. McCarthy, Griffith University, Australia). Comparative sequence analysis was 

performed by using the MultAlin (http://multalin.toulouse.inra.fr/multalin) analysis online pro-

gram (Corpet, 1988).  

 

3.6.2 Polymerase chain reaction (PCR) 

 

To amplify DNA target sequences from plasmid or annealed PCR oligonucleotides was used. 

Two kinds of Polymerases, KOD and Pfu, were used for the amplification of Hip constructs. 

The following standard protocols and cycling conditions were applied, respectively (Table 7 & 

Table 8). 

 

Component Volume 

Template [100 ng] 0.5 μl 

Primers [0.5 μM] 1.5 μl (each) 

KOD buffer 10 x 5 μl 

MgSO4 3 μl 

dNTPs [2 mM] 5 μl 

ddH2O 32.5 μl 

KOD Polymerase 1 μl 

Total volume  50 μl 

Table 7: Standard PCR amplification protocol using KOD polymerase. For Pfu Polymerase, see Table 9. 

 

 

 



3  Materials and Methods 

 

58 

 

 Process Temperature Duration 

Step 1 Initial denaturation 95 °C 2 min 

Step 2 Cycle denaturation 94 °C 20 s 

Step 3 Primer annealing 53 °C 10 s 

Step 4 Primer extension 70 °C 1 kb/min  

Steps 2 – 4 (x 35) 

Step 5 Final extension 70 °C 5 min 

Step 6 Cooling 4 °C ∞ 

Table 8: Thermocycling conditions for PCR amplification. 

 

3.6.3 Site-directed mutagenesis 

 

For site-directed mutagenesis in existing plasmids, a whole-plasmid PCR was performed. A 

complete list of primer pairs used for site-directed mutagenesis introduced in this study can be 

found in the Appendix (Table 17). Table 9 and Table 10 list the standard protocol and thermo-

cycling conditions. Modifications to the procedure were made when necessary. The success of 

the PCR amplification was checked by agarose gel electrophoresis. Afterwards, the product 

band was excised from the gel, dissolved and the DNA purified. 1 µl DpnI was added to 50 µl 

PCR Clean-Up sample and incubated at 37 °C for 1 h. The DpnI specifically digest methylated 

DNA, i.e. the template DNA produced in E.coli. Therefore, the parent DNA strands were selec-

tively removed from the sample (Weiner et al., 1994). Finally, 5 µl of the sample was directly 

transformed into E. coli DH5α.  

Component Volume 

Template [100 ng] 0.5 μl 

Primers [0.5 μM] 1.5 μl (each) 

Pfu buffer 10 x 5 μl 

dNTPs [2 mM] 5 μl 

ddH2O 28.5 μl 

Pfu Polymerase 1 μl 

Total volume  50 μl 

Table 9: Standard PCR amplification protocol using Pfu polymerase. 
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 Process Temperature Duration 

Step 1 Initial denaturation 95 °C 5 min 

Step 2 Cycle denaturation 94 °C 1 min 

Step 3 Primer annealing 53 °C 1 min 

Step 4 Primer extension 70 °C 1 kb/min  

 Steps 2 – 4 (x 18) 

Step 5 Final extension 70 °C 5 min 

Step 6 Cooling 4 °C ∞ 

Table 10: Thermal cycling conditions for site-directed mutagenesis. 

 

3.6.4 DNA restriction and ligation 

 

The amplified PCR products or plasmids of interest were digested with the appropriate re-

striction enzymes at the respective restriction conditions as follows: 19.5 µl water, 5 µl plasmid 

(~ 0.5 µg), 3 µl of the appropriate buffer ± 0.5 µl BSA, 1 µl of each restriction enzyme in 30 µl 

total reaction volume; 50 µl PCR product, 5.6 µl of appropriate buffer ± 0.5 µl BSA, 1 µl of 

each restriction enzyme. Samples were incubated at 37 °C for 1 h.  The mixtures were separat-

ed by agarose gel electrophoresis, and the target bands directly extracted with the PCR Clean-

up System (Promega). 

For ligation, approximately 50 ng digested plasmid DNA and a three-fold molar excess of in-

sert DNA were mixed with 1 µl T4 DNA ligase and 1 µl T4 ligase buffer in a total volume of 

10 µl. As a control reaction for re-ligation of incompletely restricted plasmid DNA, the same 

reaction without addition of insert DNA was carried out. The ligations were either performed 

for 1 h at room temperature or for 3 h at 18 °C. Afterwards, 5 µl of the ligation product was 

directly transformed into E. coli DH5α cells. The cells were subsequently spread on selective 

agar medium (AMP for pProEx) and incubated overnight at 37 °C (~ 15 h). Successful ligation 

was confirmed by restriction analysis and subsequent DNA sequencing.  
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3.6.5 Plasmid DNA and DNA fragment purification 

 

E. coli DH5α was used for the amplification of plasmid DNA. The transformed strains were 

grown in LB medium in presence of the appropriate antibiotics as selective markers for 8-16 h 

at 37 °C (Sambrook, 1989). Subsequently, plasmids were isolated by anion exchange chroma-

tography using the Wizard Plus SV Miniprep DNA Purification System, according to the man-

ufacturer’s instructions, apart from reducing the washing step to 500 µl Membrane Wash Solu-

tion in our protocol. For DNA Midiprep and Maxiprep, the Qiagen Plasmid Midi Kit and Qi-

agen Plasmid Maxi Kit were used, respectively.  

To purify DNA fragments after agarose gel electrophoresis or enzymatic reactions (see section 

3.6.1 and 3.6.4), the Wizard SV Gel and PCR Clean-Up system were used. Purification and 

isolation were performed according to the manufacturer’s instructions.  

 

3.6.6 Cloning strategies  

 

For the present study, a complete list of plasmids constructed and primer pairs used can be 

found in the Appendix section 8.1, respectively. The expression vectors pProEx-HtA and 

pProEx-HtB were used for the heterologous expression of protein constructs in E. coli. Proteins 

were expressed with as an N-terminal His6-tag fusion, which enables easy protein purification 

by immobilized metal-ion affinity chromatography (IMAC). The N-terminal His6-tag was sub-

sequently cleaved with TEV protease.  

Cloning of rat Hip constructs: Apart from Hip(1-44) and Hip(312-368), which were cloned 

into the pETM30 plasmid with restriction sites NcoI and HindIII (Zhuo Li, Master thesis), the 

Hip constructs were generated by PCR using pProEx-HtB-Hip(1-368) as a template (from Dr. 

Andreas Bracher), via primers flanked with EheI/HindIII or EheI/KpnI restriction sites. The 

trimmed amplificates were cloned into the expression plasmid pProEx-HtB (Invitrogen), which 

was cut with the same respective restriction sites. For generation of Hip mutants, whole plas-

mid site-directed mutagenesis was used to mutate the residues of interest in the respective 

plasmid via a PCR based strategy (see section 3.6.3) (Weiner et al., 1994). Primers are listed in 

Appendix 8.1 (Table 16 and 17).  
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Cloning of Hip fusion proteins: To construct Hip(78-234)-linker-Hsp70N and HipM-linker-

Hsp70N fusion proteins, Hip(78-234) and Hip(78-247) (HipM) were amplified by PCR using 

primers introducing EheI and EcoRI restriction sites and cloned into plasmid pProEx-Hsp70N 

(plasmid stock, #796, Department of Cellular Biochemistry of MPI, Martinsried) between the 

restriction sites for EheI and EcoRI. The coding sequence for the artificial linker sequences 

GGS, GGSGGS and GAGGGSGGS between Hip and Hsp70 was constructed by nested PCR 

method. For construction of the reverse fusion protein Hsp70N-HipM, no artificial linker was 

introduced, since the N-terminal of Hip encodes an unstructured region, which might work as a 

flexible tether. XhoI restriction sites were introduced by PCR at the 3’ end of Hsp70N and at 

the beginning of HipM. The EcoRI/XhoI and XhoI/HindIII digested PCR products were subse-

quently inserted into pProEx-HtA digested with EcoRI and HindIII. For generation of mutants 

of Hip fusion protein, site-directed mutagenesis with the appropriate primer pairs was em-

ployed via PCR (see section 3.6.3) (Weiner et al., 1994). Primers were listed in the Appendix 

8.1 (Table 18).  

Cloning of Hip constructs into yeast expression plasmids: For cloning the Hip constructs 

into the yeast expression plasmids p423GPD and p423ADH, SpeI and EcoRI restriction sites 

were introduced into the Hip constructs by PCR. Before cloning these Hip variants into the 

yeast plasmids, they were subcloned into a modified pProEx without the original SpeI site. For 

the Hip mutants, site-directed mutagenesis of this pProEx plasmid with the appropriate primer 

pairs was performed via PCR (Weiner et al., 1994). Primers are listed in the Appendix 8.1 (Ta-

ble 19). All plasmid inserts and mutants were verified by DNA sequencing. Subsequently, the 

inserts were excised from the pProEx-HtB expression plasmid by digestion with SpeI and Eco-

RI and cloned into the yeast expression plasmids p423GPD and p423ADH (Mumberg et al., 

1995), which were complementarily cleaved with SpeI and EcoRI. Amplification of the con-

structed yeast expression plasmids was performed in E. coli DH5α.  

 

3.6.7 Competent E. coli cell preparation and transformation 

3.6.7.1 Chemocompetent E. coli cells and chemical transformation  

 

For preparation of chemically competent E. coli cells, the RbCl method was utilized (Hanahan, 

1983). A single colony of the respective E. coli strain was grown in 5 ml LB over-night culture. 
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200 ml of fresh Psi broth were inoculated with 2 ml of the overnight culture and grown to an 

OD600 of 0.5 at 37 °C. Cells were then chilled on ice for 15 min and mixed frequently to speed 

up the cooling process. Afterwards, the cell suspensions were transferred into 50 ml-Falcon and 

centrifuged at 4 °C for 20 min at 3700 rpm. The supernatant was removed, and the cell pellets 

resuspended by gentle shaking in 40 ml freshly prepared, ice-chilled TfbI buffer. After incuba-

tion on ice for 15 min, the mixture was centrifuged again for 10 min at 3700 rpm at 4 °C. Fol-

lowing decantation of the supernatant, the harvested cells were placed on ice and resuspended 

in 8 ml ice-chilled TfbII buffer by gentle shaking during 15 min on ice. Subsequently, 50 µl 

aliquots of the cell suspension were pipetted into pre-cooled tubes (-20 °C), and immediately 

frozen in liquid nitrogen. Afterwards, the tubes were stored at -80 °C.  

For transformation, 50 µl chemically competent E. coli cells were mixed with 50-100 ng plas-

mid DNA or 5 µl ligation mixture, and incubated on ice for 30 min. Subsequently, the cells 

were heat-shocked at 37 °C for 5 min and afterwards immediately cooled on ice for 1 min. 950 

µl of LB were added to the cells and incubated for 1 h at 37 °C under gentle shaking (450 rpm). 

The cell suspension was then plated on plates with selective agar LB medium and incubated 

overnight at 37 °C (~ 15 h). Single colonies of transformants were picked and inoculated in 

liquid medium for further analysis.  

 

3.6.7.2 Electrocompetent E. coli cells and electroporation 

 

Electrocompetent E. coli cells were made by inoculating 500 ml of LB medium with 1 ml 

overnight culture and grown at 37 °C to OD600 of 0.5. Subsequently, cells were chilled on ice 

for 15 min and centrifuged for 15 min at 4200 rpm (Beckmann centrifuge Avanti J-25 with 

rotor JS 4.2) at 4 °C. Followed supernatant decantation, cell pellets were resuspended in 100 ml 

cold sterile water followed by centrifugation as described above. The washing step was repeat-

ed and cells were resuspended in 50 ml pre-cooled sterile 10 % (v/v) glycerol. Centrifugation 

was carried out for 10 min at 3700 rpm (Beckmann centrifuge Avanti J-25 with rotor JA 25.50) 

at 4 °C and the cell pellet was resuspended in 1 ml of pre-cooled sterile 10 % (v/v) glycerol. 

Each 50 µl were aliquoted into pre-cooled tubes (-20 °C), flash-frozen in liquid nitrogen and 

stored at -80 °C. 
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Before the start of the electroporation, electroporation cuvettes were pre-cooled and the compe-

tent cells were thawed on ice. 5 μl of the ligation mix or ~ 100 ng of plasmid DNA were trans-

ferred to the cells, and this mixture was subsequently transferred into the electroporation cu-

vette and pulsed (1250 V, 25 µF, 200 Ω). 800 μl LB-medium were immediately added into the 

cuvette after the signal tone. The mixture was subsequently transferred into an Eppendorf tube 

and incubated for 1 h at 37 °C with 450 rpm. Afterwards, the cells were pelleted for 1 min at 

7000 rpm (Eppendorf 5415D). Cells were resuspended in ~ 100 µl medium, plated on selective 

LB agar medium and incubated overnight at 37 °C (~ 15 h).  

 

3.6.8  Lithium acetate transformation of S. cerevisiae cells 

  

All yeast transformations in this study were performed following to the lithium acetate (LiAc) 

method (Gietz et al., 1995; Schiestl and Gietz, 1989). A single colony of the S. cerevisiae strain 

DSY-1100 (Genotype MATa leu2-112, ura3-1, trp1-1, his3-11, 15 ade2-1, can1-100 GAL 

SUC2 carrying plasmids pDS-125 (GR/TRP) and pDS-362 (GRE-lacZ/URA)) was picked from 

a freshly streaked SC-Ade-Leu plate and inoculated into 5 ml SC-Ade-Leu medium as a start 

overnight culture, which was incubated at 30 °C with vigorous shaking 200 rpm. This culture 

was diluted with SC-Ade-Leu medium in a 200 ml flask to an OD600 of ~ 0.15 in a total volume 

of 50 ml. Cells were harvested at OD600 of 0.5 by centrifugation for 5 min with a speed of 3700 

rpm at 4 °C. The yeast pellet was suspended in 25 ml autoclaved water and centrifuged again. 

The resulting cell pellet was washed with 1 ml 100 mM LiAc and transferred into a 1.5 ml Ep-

pendorf tube, which was centrifuged for 15 s with top speed. The cell pellet was resuspended in 

500 µl 100 mM LiAc and chilled on ice. For each transformation, 50 µl cells were needed. 

Cells were centrifuged at 2000 rpm for 1 minute. After removal of the LiAc solution, the fol-

lowing components were added sequentially: 240 µl sterile-filtered 50 % PEG3350, 36 µl 1 M 

LiAc, 5 µl 10 mg/ml herring testes carrier DNA, 60 µl autoclaved water and 5 µl plasmid DNA 

(p423GPD-Hip or p423ADH-Hip) at a concentration of ~100 ng/µl. Each tube was vigorously 

vortexed at room temperature until all the components were mixed well, then incubated in a 

shaker at 600 rpm and 30 °C for 30 min. Cells were then heat-shocked at 42 °C for 20 min and 

centrifuged at 8000 rpm for 30 s. Afterwards, the cell pellet was resuspended in 1 ml SC medi-

um and incubated at 30 °C and 600 rpm. After 2 h, the cells were harvested by centrifugation at 
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8000 rpm for 1 min at room temperature and resuspended in 100 µl of appropriate selective 

medium for plating on SC-Ade-Leu-His medium. These plates were then incubated for maxi-

mal two days at 30 °C. 

 

3.7 Protein biochemical and biophysical methods 

3.7.1 Protein expression and purification 

 

For protein overexpression in a BL21 codon plus stain, 1 L of LB medium containing suitable 

antibiotics was directly inoculated with ~ 1 ml of the transformation mixture grown overnight 

at 33 °C with 180 rpm of gentle shaking until next morning (~ 15 h), following incubation, the 

cells were further grown at 37 °C with 200 rpm to OD600 of 0.7. 

Protein purifications were performed at 4 °C unless stated. All the steps of purification were 

monitored by SDS-PAGE, and protein concentrations were measured by Bradford assay and 

A280.   

 

3.7.1.1 Hip constructs 

 

Firstly, constructs Hip(1-368), Hip(1-267), Hip(78-267) and Hip(78-368) were cloned by Dr. 

Andreas Bracher. Genes encoding Hip(1-44) and Hip(312-368) were cloned into bacterial ex-

pression vector pETM30 (Zhuo Li, Master thesis) and the other constructs Hip(45-267), 

Hip(45-368), Hip(78-234), Hip(78-247) and Hip(107-267) were cloned into pProEx-HtB con-

taining an N-terminal 6x His tag. The proteins were expressed in the E.coli strain BL21 (DE3) 

codon Plus RIL (Novagen) at 37 °C in LB medium containing 0.1 mg/ml AMP (ampicillin for 

pProEx) or 0.025 mg/ml Kan (kanamycin for pETM30) and 0.034 mg/ml CM (chlorampheni-

col). The cultures were grown at 37 °C until OD600 of 0.7 and expression was induced with 0.5 

mM IPTG at 37 °C for 3 h (Hip(1-44) and Hip(312-368)) or at 18 °C for 16 h (all other con-

structs). The harvested cells were removed by centrifugation at 4000 rpm (Beckman Coulter J6-

Micentrifuge with JS 4.2 rotor) and 4 °C for 25 min. Each 1 L cell pellet was resuspended in 20 

ml cell lysis buffer A and supplemented with 1 mM PMSF. Subsequently the cells were me-

chanically disrupted by ultrasonication with a Misonix Sonicator 3000 cell disruptor. The cells 

were placed in an ice bath and treated with 12 cycles of 25 s pulsing with force 6.0 and 95 s 
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chilling. Cell debris was clarified by centrifugation at a speed 20000 rpm (Beckmann centrifuge 

Avanti J-25 with JA 25.50 rotor) and 4 °C for 40 min. Supernatant was loaded onto a Ni-

Chelating Sepharose (GE Healthcare), which was equilibrated with 1 % buffer B (dilution with 

buffer A) (Table 6). The bound protein was eluted with an imidazole gradient of increasing 

buffer B content, and fractions containing protein were pooled. For cleavage of the eluted His-

tagged protein, the protein was incubated with TEV protease at a mass ratio of 1:100 in the 

presence of 1 mM DTT and 0.5 mM EDTA at 4 °C overnight. The uncleaved His-tagged pro-

tein and TEV protease were removed on Ni-Chelating Sepharose (GE Healthcare). Before load-

ing on Ni-Cleating Sepharose, the imidazole-containing buffer was removed by buffer ex-

change against buffer HKM2 (Table 6) using a HiPrep 26/10 Desalting column (GE 

Healthcare). If necessary, TEV-cleaved protein in flow-through fractions was further purified 

by additional anion-exchange chromatography (MonoQ, GE Healthcare) using a linear gradient 

of 0.01 to 1 M KCl mixed from buffers QA and QB (Table 6). Finally the proteins were puri-

fied by size exclusion chromatography on the Superdex 200 (GE Healthcare) using the buffer 

GF (Table 6) as equilibration and running buffer. The purity and molecular mass were verified 

by SDS-PAGE.  

 

3.7.1.2 Hip fusion constructs 

 

Hip-Hsp70 fusion proteins were expressed and purified similar to Hip variants. The modifica-

tions are described in the following. Overnight expression (~ 16 h) of the fusion proteins at 

18 °C was induced with 0.8 mM IPTG. Harvested cell pellets from 2 L were resuspended in 40 

ml 1 % buffer D (diluted with buffer C) (Table 6), supplemented with 1 mM PMSF and 1 x 

Complete protease inhibitor cocktail. The His6-tagged fusion protein was eluted using an imid-

azole gradient of increasing buffer D. In the size exclusion chromatography on the Superdex 

200 (GE Healthcare), the running buffer was GF (Table 6) containing 1 mM DTT. The protein 

was directly pooled and concentrated to 16-20 mg/ml. Aliquots of this material were flash-

frozen in liquid nitrogen and stored at - 80 °C.  
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3.7.1.3 Hsp70 homologs 

 

All the full-length human Hsp70 constructs (wild type, Hsp70(D199A) and Hsp70(T204A)) 

and Hsp70 NBD were expressed as N-terminally His6-tagged proteins in E. coli BL21(DE3)-

Codon Plus RIL cells. All the strains were grown at 37 °C in LB medium containing 0.1 mg/ml 

ampicillin and 0.034 mg/ml chloramphenicol. At an OD600 of 0.7, full-length proteins and 

Hsp70 NBD were induced with 0.2 mM IPTG and 0.8 mM IPTG, respectively. Cells were sub-

sequently grown at 18 °C for 16 h. Cells were harvested by centrifugation at 4 °C and 4200 rpm 

for 25 min. The pellets were suspended in 1 % buffer F (diluted with buffer E) for full-length 

Hsp70 variants or 1 % buffer D (diluted with buffer C) for Hsp70 NBD containing 1 mM 

PMSF and Complete protease inhibitor cocktail and lysed by ultrasonication as described above 

in 3.7.1.1. After 30 minutes centrifugation at 4 °C with 20000 rpm, the supernatant will be 

loaded onto Ni-HiTrap Chelating Sepharose (GE Healthcare), which was pre-equilibrated with 

50 ml 1 % buffer F (full-length Hsp70) or 1 % buffer D (Hsp70 NBD) containing 10 mM imid-

azole. The bound protein was eluted with a linear gradient of imidazole. The fractions contain-

ing highly concentrated protein were pooled together. For cleavage of His6-tag, the pool of pro-

tein was incubated with His6-TEV protease at a molar ratio of 1:100 in the presence of 1 mM 

DTT and 0.5 mM EDTA at 4 °C overnight. To remove the residual cleaved His6-tagged protein 

and TEV protease, the proteins were first transferred into HKM2 buffer (Table 6) and then 

passed onto Ni-HiTrap Chelating Sepharose again, which was equilibrated with 2 % buffer F 

(full-length Hsp70) or 2 % buffer D (Hsp70 NBD) containing 20 mM imidazole. The flow-

through containing the protein without His6-tag was pooled. After the Ni-affinity chromatog-

raphy, anion exchange MonoQ column chromatography was performed. Before loading onto 

MonoQ (GE Healthcare), proteins were changed into buffer QA containing low salt by using 

HiPrep 26/10 Desalting column. When necessary, size exclusion chromatography on Superdex 

200 using buffer GF (Table 6) followed as the final purification step. Purified proteins were 

flash-frozen in liquid nitrogen and stored at - 80 °C.  

To remove the bound nucleotides from the full-length Hsp70, after 2
nd

 Ni-affinity chromatog-

raphy, the protein was incubated with 50 mM EDTA on a rotation plate at room temperature 

for 1 h. Subsequently the nucleotide was partially removed by the size exclusion chromatog-

raphy on Superdex 200 (GE Healthcare) with running buffer GF. After Superdex 200, Hsp70 

was incubated with Calf Intestinal Alkaline Phosphatase (CIP, New England Biolabs) at a ratio 
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of 3 U/mg Hsp70 at room temperature for 3 h and then incubated on ice overnight. CIP phos-

phatase and reaction products were removed by size exclusion chromatography on Superdex 

200. 

Another effective method to remove nucleotide of Hsp70 NBD is using the HiTrap Blue Se-

pharose column (GE Healthcare), which was described in a previous study (Arakawa et al., 

2011). After Hsp70N was purified with anion exchange chromatography, protein buffer was 

exchanged to buffer BA (Table 6) using HiPrep 26/10 Desalting column (GE Healthcare). Pro-

tein was loaded onto a 5 ml the HiTrap Blue Sepharose which was equilibrated with buffer BA, 

and eluted with buffer BB containing 1 M NaCl salt gradient in 0.5 ml/min flow-rate (Table 6). 

 

3.7.2 Protein analytical methods 

3.7.2.1 Protein quantification 

 

Protein concentrations were determined either colorimetrically using the Bradford assay or 

spectrophotometrically by measuring the absorption at 280 nm. Samples of cell lysate or pro-

tein mixtures were quantified by the Bradford assay according to the manufacturer’s instruc-

tions (Bradford 1976). 1-5 µl protein were added to 1 ml of a 1:4 dilution Bio-Rad protein as-

say reagent and the absorbance at 595 nm measured with a DU640 photometer (Beckman Coul-

ter) against the reagent background. Concentrations of pure proteins were always determined 

by A280 using a Nanodrop 1000 (PEQLAB). As a reference, protein-free buffer was used. Con-

centration was determined with the theoretical molar extinction coefficient (M
-1

 cm
-1

), which 

was calculated based on the protein sequence with the online program ExPASy ProtParam 

(http://web.expasy.org/protparam).   

 

3.7.2.2 SDS-PAGE 

 

To separate and analyze protein mixtures based on molecular weight, sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) was used (Laemmli, 1970). Protein analysis 

was performed under denaturing and reducing conditions. Gels were prepared as described in 

Table 11 and water was layered over the resolving gel while the gel matrix polymerized. Pro-

tein samples were mixed with 2 x SDS-sample buffer. Prior to loading, samples were heated for 
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5 min at 95 °C and spun down shortly at maximum speed in a table centrifuge (Eppendorf 

5415D). Gel electrophoresis was completed in Bio-Rad Mini-Protean 2 electrophoresis cham-

bers filled with SDS-PAGE running buffer employing a constant voltage of 200 V for 45 min.  

Solutions 

(for 4 gels) 

Resolving gel Stacking gel 

10 % 12 % 15 % 4 % 

deionized water 7.9 ml  6.6 ml 4.6 ml 2.7 ml 

1.5 M Tris-HCl pH 8.8 5 ml 5 ml 5 ml ― 

1.0 M Tris-HCl pH 6.8 ― ― ― 0.5 ml 

30 % Acrylamide  6.7 ml 8.0 ml  10.0 ml 0.67 ml 

10 % (w/v) SDS 200 µl 200 µl 200 µl 40 µl 

10 % (w/v) APS 200 µl 200 µl 200 µl 40 µl 

TEMED 8 µl 8 µl 8 µl 4 µl 

Table 11: Composition of resolving and stacking gels for SDS-PAGE. 

 

3.7.2.3 Coomassie blue staining of SDS-PAGE 

 

Coomassie blue staining was used for the visualization of protein bands in SDS-PAGE. Coo-

massie blue dye is a triphenylmethane coloring agent that binds to proteins. The dye integrates 

with cationic, nonpolar and hydrophobic side chains of a polypeptide. Protein bands were fixed 

and stained in the gel matrix by immersion into freshly prepared Coomassie blue staining solu-

tion, followed by gentle shaking for 20 min. The background destaining was performed by in-

cubation with Coomassie destaining solution for at least 1 h at RT under gentle shaking.  

 

3.7.2.4 Western blotting and immunodetection 

 

Proteins were separated on SDS-PAGE and subsequently proteins were transferred from the gel 

onto nitrocellulose membranes using a semi-dry western blot system (SemiPhor). Transfer was 

performed in Western blot buffer and accomplished by employing a constant current of 80 mA 

for 75 min for one or two gels. Transfer efficiency was determined by staining with Ponceau S 

solution for 2-3 min, followed by water destaining to remove background. Membranes were 

afterwards immediately subjected to immunodetection.  
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Nitrocellulose membranes were blocked in 3-5 % milk powder in PBST/TBST solution for 1 h 

at RT. The primary antibody was diluted in blocking solution and incubated with the membrane 

for 2 h at room temperature or at 4 °C overnight. The membranes were washed for 3-4 times 

with TBST solution, each time 10 min long. After washing, the membrane was incubated with 

HRP-conjugated (horseradish peroxidase) secondary antibody at a dilution of 1:5000 in TBST 

for 1 h at RT. The membranes were washed again as above and the bound HRP-coupled anti-

bodies were detected by enhanced chemiluminescence (ECL) staining using a 1:1 ratio of Ro-

deo ECL detection reagents 1 and 2. The detection reagent should completely cover the mem-

branes. Chemiluminescence was detected and documented with the Fuji-LAS3000 lumines-

cence and densitometry system. When necessary, membranes were stripped with stripping 

buffer at 70 °C for 45 min. 

 

3.7.2.5 Circular dichroism spectroscopy (CD) 

 

The secondary structure of purified Hip variants was determined by CD spectroscopy. Proteins 

were exchanged into buffer CD by using Superdex 200 (Table 6). The CD spectra were meas-

ured with a Jasco-715 spectrometer equipped with a Peltier-thermostat. 200 µl of each protein 

sample with concentration of ~ 0.1 mg/ml or 2.5 µM was analyzed in 0.1 cm glass cuvettes at 

4 °C. Wavelength scans ranging from 250-195 nm were recorded four times and averaged, fol-

lowed by correction with the analysis buffer baseline. All the spectra were fitted with the pro-

grams CDPro analysis and CONTIN to estimate the secondary structure content.  

 

3.7.2.6 Small angle X-ray scattering (SAXS) 

 

Samples of Hip constructs for SAXS measurement were applied to an analytical Superdex 200 

column operated at 18 °C in buffer SAXS (see Table 6). Three different concentrations:  ~ 2, 5 

and 10 mg/ml were prepared. After concentrations were accurately measured with the 

Nanodrop photometer (2 µl loading), 1 mM fresh DTT was added to each sample. The SAXS 

experiments were performed with a monochromatic X-ray beam of 0.931 Å wavelength at 

ESRF beamline ID14-3. As a reference, a BSA sample was measured. For each Hip sample, ten 

measurements of 10 s exposures were recorded and averaged. The buffer background scattering 

curve was subtracted. The program Primus was used to process the protein scattering data 
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(Konarev et al., 2003). Radii of gyration (Rg) were determined using the Guinier approximation. 

Scattering curves were fitted with GNOM (Svergun, 1992). 

 

3.7.2.7 Multi-angle light scattering (MALS) 

 

For determination of molecular mass and hydrodynamic radium of Hip fusion proteins, size 

exclusion chromatography/multi-angle light scattering (MALS) was performed by Dr. Manajit 

Hayer-Hartl. 80 µl of each Hsp70N-HipM and HipM-Hsp70N were respectively injected on a 

gel filtration column using a 100 µl injection loop. The column was developed at a flow rate 

0.2 ml/min. The GFM buffer used as running buffer contained 1 mM fresh DTT. The system 

was connected to DAWN EOS MALS detector (960 nm laser), variable wavelength detector 

(absorbance at 280 nm, Agilent 1100 series), and Optilab DSP refractive index detector (690 

nm). Masses and molecular diameters were calculated using the ASTRA software with the 

dn/dc value set to 0.185 mg/g.  

 

3.7.3 Protein crystallization and structure determination 

3.7.3.1 Crystallization 

 

Before setting up the crystallization screens, particles and precipitated protein were first re-

moved from the protein solution by centrifugation with 12000 rpm at 4 °C for 40 min. Initial 

crystal screens were conducted at the Crystallization Facility of the MPI of Biochemistry, Mar-

tinsried. In the initial screening, the sitting drop vapor diffusion method was used mixing 100 

nl protein solution and 100 nl reservoir solution. 

The precipitant kits Hampton Research Index, Qiagen Classics, Qiagen pH Clear 1 and Qiagen 

pH Clear 2 were used for initial screenings at 18 °C for Hip(78-247), named HipM in the fol-

lowing. Initial crystals of HipM were obtained from the Hampton Research Index and Qiagen 

pH Clear 1 screens with 1.4 M tri-sodium citrate, 0.1 M HEPES pH 7.5 and 2.4 M Na-malonate 

pH 7.0. Crystallization conditions were optimized by systematically varying the precipitant 

concentration. To get larger crystals, 1 µl HipM at the same concentration, 18 mg/ml, was 

mixed with 1 µl of reservoir solution and equilibrated against 500 µl of reservoir solution at 

18 °C using the hanging drop vapor diffusion method. Crystal grew in clusters of thin plates. 
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Optimization of the tri-sodium citrate condition was not successful. With the Na-malonate pH 

7.0 condition, single crystals can hardly be achieved. Thin plates were only observed after sev-

eral rounds of micro-seeding. For this crystal form, experimental phasing using heavy atom 

soaks failed. Growing similar crystals of SeMet-substituted HipM also failed. This protein 

formed spheroids, and single crystal could not be obtained by seeding. However, a second crys-

tal form was found at pH 6.0 with sodium malonate as precipitant. Single, cube-shaped tetrago-

nal crystals were obtained after three weeks in presence of 2.3 M Na-malonate pH 6.0 at 18 °C. 

For cryo-protection of the crystals, they were transferred in two steps into a cryo-solution. First 

they were mixed with a 1:1 mixture of mother liquor and cryo-solution for 15 min. The mother 

liquor contained 2.5 M Na-malonate pH 6.0 and the cryo-solution with additionally 15 % glyc-

erol. After equilibration, they were transferred to 100 % cryo-solution and incubated for 15 min, 

followed by flash-cooling in liquid nitrogen.  

To crystallize the Hsp70N-HipM fusion protein, the precipitant kits Qiagen PEGs, Hampton 

Research Index and Qiagen Classics Lite were used for initial screening at 4 °C and 18 °C. Ini-

tial crystals were obtained from Qiagen PEGs screening kit with 0.2 M NH4I and 20 % PEG 

3350 at 4 °C and 18 °C. Improved crystals were achieved by hanging drop vapor diffusion 

method after micro-seeding in presence of 0.2 M NH4I and 17 % PEG 3350 at 18 °C. For cryo-

protection, the original drop was first mixed with a 1:1 mixture of mother liquor and cryo-

solution for 15 min. The mother liquor was 0.2 M NH4I, 20 % PEG3350 and cryo-solution with 

additional 15 % glycerol. Finally, they were transferred to 100 % cryo-solution and incubated 

for 15 min, followed by flash-cooling in liquid nitrogen.  

 

3.7.3.2 Data collection, structure solution and refinement 

 

Diffraction data were collected at beamlines ID14-4, ID23-1, ID23-2 and ID29 of ESRF Gre-

noble, France. The data collection strategy was devised with iMosflm from two wedges of re-

flection images 90° apart (Battye et al., 2011). The images were integrated with XDS (Kabsch, 

2010) and converted to CCP4 format with Pointless (Evans, 2006). SCALA (Evans, 1997) was 

utilized for scaling as implemented in the CCP4i interface (Collaborative Computational 

Project, 1994). 
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HipM crystal form I (P43212): The native dataset was from a crystal soaked with hydroxyl-

mercuribenzoic acid. The mercury ligand was however not bound or disordered in the structure. 

The form I structure of HipM was initially determined by single isomorphous replacement with 

anomalous scattering (SIRAS) from this native dataset and derivative dataset from a K2[OsO4]-

soaked crystal by direct methods using Shelx-CDE as implemented in HKL2MAP at 5.6 Å 

resolution (Schneider and Sheldrick, 2002). SHARP was used to refine the three heavy atom 

sites and for calculating initial phases (Vonrhein et al., 2007). Phase extension and density 

modification was performed with Resolve, resulting in an interpretable electron density map 

(Terwilliger, 2000). The unit cell contained two copies of HipM, which were symmetrically 

associated via C-terminal interaction with the opposing neighbor molecule. Density for the res-

idues 78-93 and 213-247 was not discernible. The respective portions of the protein were either 

disordered or cleaved off in both copies. The final model was refined against native dataset of 

2.6 Å resolution.  

 

HipM crystal form II (P21): The diffraction data was initially integrated in the orthorhombic 

space group C2221 with lattice parameters of 68.9, 92.4 and 126.6 Å. This structure was solved 

by molecular replacement with the HipM fragment coordinates from the Hsp70N-HipM fusion 

protein using Molrep (Vagin and Isupov, 2001). However, refinement of the model failed to 

lower the R-factors. The actual space group turned out to be P21 with quite similar lattice pa-

rameters a and c with 57.29 Å and 57.31 Å, respectively. The crystals were twinned and each 

unit cell contained four copies of HipM. Residues 82-241 were ordered in all chains. 

 

Hsp70N-HipM fusion protein: This fusion protein was solved by molecular replacement us-

ing Molrep with the Hsp70(1-393)-ADP complex and the HipM monomer from crystal form I 

as search templates (Vagin and Isupov, 2001). Residues 1-382 of human Hsp70 and residues 

78-243 of rat Hip were defined in the density as well as ADP-Mg
2+

 and 17 iodine ions. The 

positions of 17 resolved iodine ions from the precipitant solution were confirmed from the 

anomalous signal in the dataset collected from another crystal at 2.0 Å wavelength.  

 

All of the models were built interactively using Coot (Emsley and Cowtan, 2004). Refinement 

was performed with REFMAC5 (Murshudov et al., 1997). Non-glycine residues without de-

tectable side chain density facing solvent channels were modeled as alanines. Together with the 
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previous solved dimerization domain of Hip, all of the atomic coordinates and structure factors 

of HipM and Hsp70N-HipM fusion protein have been deposited in the Protein Data Bank under 

the accession code of 4J8C (HipN), 4J8E (HipM, crystal form I), 4J8D (HipM, crystal form II) 

and 4J8F (Hsp70N-HipM). Structural figures were generated with PyMOL (Schrödinger, 2010).  

 

3.7.4 Structure analysis  

 

Coordinates were aligned with Lsqman (Kleywegt and Jones, 1994). The sequence alignment 

was prepared with ClustalW (Larkin et al., 2007; Thompson et al., 1994) and ESPript (Gouet et 

al., 1999). The interaction surface in the Hip:Hsp70 complex was analyzed with Areaimol (Lee 

and Richards, 1971), Contact (Skarzynski, 1988), Naccess (Hubbard and Thornton, 1993). Sur-

face shape complementarity between Hip and Hsp70 complex was estimated using SC 

(Lawrence and Colman, 1993).  

 

3.7.5 Functional characterization in vitro  

3.7.5.1 Limited proteolysis with Proteinase K 

 

In order to determine stably folded protein fragments, protein samples were subjected to Pro-

teinase K treatment. Aliquots of 6 µM purified protein were incubated with a series of Protein-

ase K concentrations from 0.4 to 2.56 µg/ml on ice for 1 h. The reaction was then quenched by 

addition of 100 mM PMSF to a final concentration of 4 mM PMSF, followed by 5 minutes in-

cubation on ice. To remove insoluble PMSF, the samples were centrifuged for 1 min. 10 µl 

supernatant were mixed with 10 µl 2 x SDS loading buffer and heated to 95 °C for 5 min. The 

samples were analyzed by SDS-PAGE on 15 % acrylamide gels after Coomassie blue staining. 

 

3.7.5.2 Isothermal titration calorimetry (ITC) 

 

To measure the binding affinity of Hip to Hsp70 under various conditions, ITC experiments 

were performed with a MicroCal VP-ITC at 22 °C. All of the reactant solutions were dialyzed 

against 20 mM HEPES-KOH pH 7.4 and 100 mM KCl buffer at 4 °C overnight. The samples 

and some dialysis buffer were centrifuged at 12,000 rpm and 20 °C for degassing and removal 
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of particles. The sample cell chamber was rinsed with degassed buffer, then around 1.8 ml 

Hsp70 or Hsp70N (164 – 214 µM) was carefully injected into the chamber using a syringe with 

a long needle until liquid became visible in the aperture. Around 320 µl Hip variant concentrate 

(1.38 – 1.76 mM) sample were loaded into the injection syringe so that no air bubbles were 

trapped inside the syringe. During each injection, an 8 µl portion of Hip protein from the sy-

ringe was added into the calorimeter chamber containing Hsp70. Injections were applied at 180 

s intervals. The data were evaluated with MicroCal Origin software (v7.0), assuming independ-

ent binding sites. 

 

3.7.5.3 Nucleotide release assay 

 

To determine the effect of Hip on nucleotide release from Hsp70 and its competition with 

NEFs, we employed the fluorescent nucleotide analog MABA-ADP, which was enzymatically 

prepared from MABA-ATP (8-[(4-(N-methyl-anthraniloyl)-amino)butyl]-amino-adenosine-5'-

triphosphate, sodium salt, Interchim). The assay was performed with a SX.18V stopped-flow 

instrument (Applied Photophysics, Surrey, UK) as previously described (Gässler et al., 2001). 

All components were in GFM buffer containing additional 1 mM DTT. MABA-ADP complex-

es were formed by mixing 2.5 µM Hsp70N, Hsp70 or an Hsp70N fusion protein with an 

equimolar concentration of MABA-ADP, followed by incubation at 30 °C for 30 min. The nu-

cleotide exchange solutions contained 250 µM ATP and protein factors as indicated. To deter-

mine the nucleotide release rates, equal volumes of the solutions were mixed at 30 °C in the 

stopped-flow apparatus. The release of nucleotide MABA-ADP fluorescence was monitored 

via the time-dependent decrease in fluorescence (excitation at 360 nm wavelength, emission 

cut-off filter 400 nm) for 1-500 s at 30 °C. The curves were fitted and analyzed assuming first 

order kinetics and a constant drift from bleaching. Rate constants were determined by averag-

ing the kinetic constants from each three repeats in three independent experiments.  

 

3.7.6 Functional characterization in vivo   

3.7.6.1 β-Galactosidase assay 
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This β-Galactosidase assay was performed according to an established protocol (Nelson et al., 

2004). The reporter strain S. cerevisiae DSY-1100 (Genotype MATa leu2-112, ura3-1, trp1-1, 

his3-11, 15 ade2-1, can1-100 GAL SUC2 carrying plasmids pDS-125 (GR/TRP) and pDS-362 

(GRE-lacZ/URA)) expresses mammalian Glucocorticoid Receptor (GR) and the lacZ gene un-

der control of a Glucocorticoid Responsive Element (GRE) promoter. This strain was trans-

formed with plasmids p423GPD and p423ADH into which the different Hip constructs had 

been cloned to test the influence on β-Galactosidase (lacZ is the gene for β-Galactosidase) ac-

tivity. The empty plasmids p423GPD and p423ADH were also transformed as background con-

trols. In the assay, the resultant strains were grown in 2 ml SC medium lacking uracil and tryp-

tophan at 30 °C overnight, diluted to OD600 of 0.05 – 0.10 in a final volume of 1 ml and grown 

at 25 °C and 600 rpm for 90 min. Cell growth was monitored spectrophotometrically to ensure 

that the cells were in the exponential growth phase. The glucocorticoid hormone Deoxycorti-

costerone (DOC) was then added to a final concentration of 50 nM. Hormone binding is needed 

for GR activation. 90 minutes after hormone addition, 50 µl samples were withdrawn at 15-min 

intervals, the OD600 determined and an equal volume Gal-Screen chemiluminescence reagent 

(Applied Biosystems) added. After 2 h incubation in a dark box, the reactions were analyzed 

with a luminometer (Berthold LB 9507). The emitted light at the different time points was plot-

ted against the OD600, and the slope was determined by linear regression as a measure of func-

tional β-galactosidase expression. Cells transformed with p423GPD and p423ADH served as 

background controls. All the experiments were repeated at least three times.  

 

3.7.6.2 Protein expression analysis by Western blotting 

 

To analyze the expression levels of the Hip truncation constructs and Hip mutants in the 

p423ADH yeast strains, Western blotting of whole cell lysates was performed. The strain carry-

ing the empty vector p423ADH was used as a background control. The overnight cultures were 

diluted to OD600 0.1 to 0.5 and grown to mid-log phase OD600 0.5 – 1.0 at 30 °C in selective 

medium lacking uracil and tryptophan. Equal amounts corresponding to yeast cell OD600 2 in 

1.5 ml were harvested by centrifugation at 8000 rpm for 3 minutes at room temperature (Ep-

pendorf 5417). Cell pellets were subjected to alkaline lysis buffer (Kushnirov, 2000). 10 µl of 

the final samples were loaded on a 12 % SDS-PAGE and further analyzed by Western blotting.
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4  Results 
 

In order to dissect Hip into functional modules and to determine their crystal structures, a series 

of truncation mutants and fusion proteins was generated. The constructs are schematically 

shown in Figure 14A. The construct boundaries were chosen based on sequence conservation 

between distantly related Hip homologs (for the respective sequence alignment, see Appendix 

8.2). 

 

4.1 Purification of Hip 
 

All the proteins used in this project were overexpressed in the E. coli BL21 codon plus strain as 

N-terminal His-tag fusion proteins (Fig. 14A). Immobilized metal ion affinity chromatography 

(IMAC) of the cleared lysate on Ni-Chelating Sepharose (GE) served as first purification step. 

Proteins were eluted with a step gradient of increasing imidazole concentration. The purifica-

tion step was monitored by SDS-PAGE analysis. Samples of whole cells (C), insoluble pellet 

(P), supernatant (lysate) (SN), flow-through (FT), wash steps (W) and elution fractions (E) 

were analyzed on SDS-PAGE gels. A representative example of such a Coomassie-stained gel 

from the purification of HipM, Hip(78-247), is shown in Figure 14B.  

 

A)  
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B)  

 

        MW     -       +       P      SN    FT   W1   W2   W3              MW   E1    E2    E3     E4     E5     E6 

        

Figure 14: Partial purification of HipM on Ni-Chelating Sepharose. 

A) Schematic representation of the Hip constructs analyzed. The dimerization domain (HipN), Hsp70-binding 

(HipM) and DP domains of rat Hip are shown in purple, blue and orange, respectively. The GGMP repeat 

segment is indicated in yellow; the acidic linker regions in white. The NBD of human Hsp70 used to construct 

the Hsp70N-HipM and HipM-Hsp70N fusion proteins is shown in green. 

B) 15 % SDS-PAGE gel with samples from a crude purification of His-tagged HipM by nickel-affinity chroma-

tography under native conditions. MW: Molecular weight marker (lanes 1); Whole cell lysate before induction 

(lane 2); Sample after induction with 0.5 mM IPTG at 20°C for 16 hours (lane 3); P: Insoluble pellet (lane 4); 

SN: Supernatant (lane 5); FT: Flow-through (lane 6); Wash fractions (W1-W3); Elution fractions (E1-E6).  

 

Fractions W3 and E1 were pooled and subjected to TEV protease digestion performed at 4 °C 

overnight to cleave the His-tag segment. To remove imidazole, the protein was subjected to 

buffer exchange by application to a GE desalting column on the next morning, which was 

equilibrated with buffer HKM2. The pool of the protein-containing fractions from the desalting 

column was subsequently applied a second time to the Ni-Chelating Sepharose column to re-

move the His-tagged TEV protease, the cleaved His-tag and the remaining His-HipM. 

 

                                                  –        +     MW   FT    W1    W2    W3     W4     W5    

    
Figure 15: Nickel-affinity chromatography step after TEV protease cleavage in a representative purification 

of HipM construct. 

His-HipM 

HipM 

His-HipM 
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15% SDS-PAGE analysis after TEV cleavage and further purification of HipM with Nickel-affinity chromatog-

raphy. Sample before TEV cleavage (lane 1); Sample after cleavage over night at 4 °C (lane 2); Molecular marker 

(lanes 3); FT: Flow-through (lane 4); W1-W5: wash fractions 

 

After the second run through Ni-Chelating Sepharose, the flow-through and wash fractions 

were loaded on 15 % SDS-PAGE for checking the cleavage quality and elution efficiency (Fig. 

15). It can be seen that almost complete cleavage took place. The His-tagged proteins were re-

moved and HipM protein was eluted in the fractions flow-through, W1 and W2, which were 

pooled and concentrated to a total volume of ~ 500 μl. The concentrate was subjected to size 

exclusion chromatography on a Superdex-200 column (GE) yielding mono-disperse and pure 

protein (Fig. 16A). HipM was eluted at an apparent molecular weight of 20 kDa, as analyzed 

by SDS-PAGE (Fig. 16B).  

 

A)  

 
B)  

 

                                                                   MW 17   18   19   20   21   22 

 

HipM 



4  Results 

 

79 

 

Figure 16: Size exclusion chromatography step of a representative purification.  

A) Size exclusion chromatography by using Superdex 200 GL10/300 (GE). 

B) 15 % SDS-PAGE gel with fractions from the purification of HipM with size exclusion chromatography. The 

location of the HipM band is indicated. MW: Molecular weight marker (lane 1); Elution fractions: numbers 

are indicated above the gel.   

 

After size exclusion chromatography, samples were pooled and concentrated to ~ 18-22 mg/ml 

for protein crystallization. The average yield was ~ 20-30 mg or pure protein from 1L E. coli 

BL21 codon plus grown in a shaking culture of LB medium. All the purification steps were 

performed within 4 days. The purified protein was subsequently stored at - 80°C.  

 

4.2 Characterization of the Hip-Hsp70 interaction by isothermal titration 

calorimetry 
 

4.2.1 Selectivity of Hip for the ADP-bound state of Hsp70 

 

To gain first insight into the mechanism by which Hip modulates the Hsp70 reaction cycle, we 

used isothermal titration calorimetry (ITC) to quantify Hip binding to Hsp70 and to determine 

the affinity constant. These experiments were performed with full-length rat Hip and human 

Hsp70, which shares 97.4 % sequence identity with rat Hsp70. First, we analyzed the interac-

tion of Hip with different conformational states of full-length Hsp70 in the absence of nucleo-

tide (apo) and presence of ADP and ATP.  

A)  B)  C)  
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Figure 17: Affinity measurements by isothermal titration calorimetry (ITC) of Hip with Hsp70 in the apo, 

ADP and ATP-bound conformational states. Upper panel: Energy flow as a result of injection of Hip plot-

ted against time. Lower panel: Heat release per injection plotted against the molar ratio of Hip:Hsp70.  

A) Interaction of Hip with Hsp70 in the ADP-bound state. The experiments were performed at 22 °C using a 

buffer of 20 mM HEPES-KOH pH 7.4 containing 100 mM KCl. 5 mM Mg-ATP was added when indicated. 

All data were analyzed assuming that Hip protomers act as independent binding partners.  

B) Interaction of Hip with nucleotide-free Hsp70 (apo). 

C) Interaction of Hip with Hsp70 in the ATP-induced conformational state. The hydrolysis-defective mutant 

Hsp70(T204A) was used (Barthel et al., 2001; Kityk et al., 2012). The curve-fitting of the binding parameters 

for Hsp70(T204A)ATP data was unstable.  

 

Construct ∆H [calmol
-1

] ∆S [calmol
-1

K
-1

] N [molar ratio] KD [µM] 

Hsp70•ADP -7573 -2.21 0.82 8 

Hsp70•Apo -6232 -1.49 1.01 51 

Hsp70•ATP -6192 -0.02 1.05 26 

Hsp70(T204A)•ATP -11650 -23.20 1 n.d. 

Hsp70(D199A)•ATP -7332 -2.84 1.04 16 

Table 12: The binding parameters as determined by curve-fitting the ITC experimental data of Hip with 

Hsp70. 

 

Our data showed that Hip had a strong preference for the ADP-bound form of Hsp70 (KD = 8 

µM), relative to the nucleotide-free apo state (KD = 51 µM) (Fig. 17A & 17B, Table 12). We 

also studied the affinity of Hip for Hsp70ATP. In an ITC experiment with wild type Hsp70 in 

the presence of a large excess of ATP, we determined an affinity of 26 µM, close to the value 

of ADP-bound Hsp70 (Table 12, data not shown). Because we suspected that Hip might prefer-

entially recognize and stabilize transiently formed ADP-bound Hsp70, we decided to also test 

ATP-hydrolysis-defective mutants of Hsp70. The Hsp70 mutation D199A is ATPase-inactive 

and fails to undergo an ATP-induced conformational transition to a more compact state 

(Buchberger et al., 1995; McCarty and Walker, 1991). Using this mutant we found an affinity 

for Hip of 16 µM, suggesting that ATP binding to Hsp70 has only a minor influence on Hip 

binding (Table 12, data not shown). In DnaK, T199A is a well-characterized mutation, which 

effectively abolishes ATPase activity, but maintains allosteric coupling. In the crystal structure, 

this mutant adopts a compact conformation, in which NBD and SBD are closely associated 

(Kityk et al., 2012; Qi et al., 2013). The co-existence of the “open” and “closed” conformations 

in the Hsp70 ensemble due to ATP hydrolysis appears to be largely suppressed in this mutant. 

Based on sequence alignment, the homologous mutation in human Hsp70 is T204A. In the 
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presence of ATP, Hip bound with strikingly low affinity to the ATPase-inactive Hsp70 mutant 

T204A. The titration curve was too shallow for proper quantification (Fig. 17C). 

Despite the strong preference of Hip for the ADP-bound state of Hsp70, it should be noted that 

the affinity to Hsp70ADP is rather moderate (KD = 8 µM) in comparison to Hsp70 nucleotide 

exchange factors (NEFs), which all display substantially higher affinity for Hsp70 (KD ≈ 0.1 

µM). This suggests that the interaction with Hip must be enhanced by additional contacts for 

allowing Hip to effectively compete with the binding of nucleotide exchange factors (NEFs). 

For example, interactions of Hip with Hsp70-bound substrate protein may contribute to the 

strength of association. 

Besides the binding affinity, ITC curves may also reveal the binding stoichiometry and the ex-

istence of distinct binding sites in the receptor component. The ITC binding curves indicated 

that one Hip dimer bound two molecules of Hsp70ADP (Table 12). We found no evidence for 

any negative interference between the Hsp70 binding sites in the Hip dimer. Thus avidity ef-

fects might enhance complex formation of Hip with entities containing multiple Hsp70 mole-

cules.  

 

 

4.2.2 Identification of binding site of Hip on Hsp70 

 

We have demonstrated that Hip selectively binds to full length Hsp70 in the ADP-bound state, 

which is in line with previous studies (Höhfeld et al., 1995). But Hip was originally identified 

as binding partner of the NBD of Hsp70 (Höhfeld et al., 1995). We attempted to confirm this 

by ITC analysis.  
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A)  B)   

 

 

Figure 18: Hip affinity towards the ADP-bound states of Hsp70NBD and full length Hsp70, respectively.  

A) ITC titration of full-length Hip with the NBD of Hsp70 (Hsp70N) in the ADP-bound conformational state. 

The data were analyzed based on the Hip protomer concentration. Prior to dialysis against GF buffer, 1 mM 

ADP was added to Hsp70N. 

B) ITC titration of full-length Hip with full-length Hsp70 in the ADP-bound conformational state. 

 

Based on ITC, the affinity of full-length Hip for the ADP-bound Hsp70N (KD = 6 µM) is essen-

tially the same as that for full-length Hsp70 (KD = 8 µM) (Fig. 18). Thus, the SBD of Hsp70 

does not detectably contribute to the interaction with Hip in vitro. It might however influence 

Hip binding in presence of substrate in vivo. 

 

4.2.3 Identification of the Hip minimal Hsp70-binding domain 

 

For the exact identification of the region in Hip responsible for the binding to Hsp70N, trunca-

tion constructs were analyzed by ITC (Fig. 19). Höhfeld and coworkers had already found that 

both the TPR domain and the C-terminally adjacent charged region in Hip are needed for 

Hsp70 binding (Irmer and Höhfeld, 1997). Residues 107-241 were predicted to form a TPR 

domain. In a sequence alignment including distantly related Hip homologs (Appendix 8.2), this 

region is flanked by conserved segments, starting at residue 78 and ending at 267. For these 

regions, however, no secondary structure was predicted by J-Pred (data not shown), suggesting 

intrinsically poor ordering, which might be a potential obstacle for crystallization. To our sur-
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prise, the construct encompassing residues 107-267 was not expressed as a soluble protein in E. 

coli (data not shown). 

A)  B)  C)  

 

 

D)  

 

 

E)  

 

 

 

Figure 19: Affinity of Hip truncation constructs towards Hsp70N•ADP.  

(A-C) ITC curves for binding of truncation constructs Hip(78-267), Hip(78-247)  and Hip(78-234) to Hsp70N• 

ADP. Prior to dialysis against ITC buffer, 1 mM ADP was added to Hsp70N. 

D) Direct comparison of the binding affinities of the truncation constructs towards Hsp70N•ADP. 

E) Schematic representation of the Hip truncation constructs analyzed. 

  

 

Hip(78-267) contains the whole conserved segment and thus the complete Hsp70-binding re-

gion as predicted by Höhfeld and coworkers. Using ITC, we found virtually the same affinity to 

Hsp70NADP (KD = 9 µM) as for full-length Hip (KD = 8 µM), suggesting that this segment 

indeed contains the complete Hsp70-binding region in Hip. C-terminal truncation to Hip(78-

247) lowered the affinity slightly to KD = 27 µM (Fig. 19B & 19D). A sharp decrease in affinity 
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was found for Hip(78-234) with KD = 102 µM, suggesting that residues 235-247 contribute 

substantially to Hsp70 binding (Fig. 19C, 19D & 19E).  

 

4.3 Hip binding decelerates nucleotide release from Hsp70 
 

Our ITC analysis demonstrated that Hip preferentially binds to Hsp70 in the ADP-bound state. 

Hip might thereby also stabilize Hsp70 binding to ADP (Höhfeld et al., 1995). In presence of 

high ATP concentrations such as in the cytosol, this would only take effect however if ADP 

dissociation was also slowed down. In order to monitor nucleotide dissociation from Hsp70 in 

presence of Hip, we used the fluorescent ADP analog MABA-ADP as a reporter. Previous 

studies have shown that the Hsp70-binding and dissociation properties of MABA-ADP are 

closely similar to ADP (Brehmer et al., 2004). For the assay, Hsp70 or Hsp70N were incubated 

with a stoichiometric amount of MABA-ADP to prepare the Hsp70-MABA-ADP complex. 

Mixing with a great excess of ATP in a stopped-flow apparatus prevents re-binding of MABA-

ADP to Hsp70, resulting in decreased fluorescence (Fig. 20A). 

 

A)   
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B)  

 

C)  

 

 

  

D)  

 

E)  

 

 

Figure 20: Deceleration of MABA-ADP release from Hsp70N by Hip. 

A) Fluorescence traces reflecting the time-dependent dissociation of Hsp70N-bound MABA-ADP. The fluores-

cent MABA-ADP was incubated for 30 min with 2.5 µM Hsp70N at 30 °C, and then mixed in a stopped-flow 

apparatus with buffer containing 250 µM ATP either with or without 100 µM of Hip protein (i.e., 40-fold ex-

cess over Hsp70N). The fluorescence traces were curve-fitted using a model assuming single-exponential de-

cay and a linear drift to account for bleaching. The red line is the spontaneous release of MABA-ADP from 

Hsp70N. The blue line is in the presence of 100 µM of Hip.  

B) Hip-mediated attenuation of MABA-ADP dissociation from Hsp70N in buffer without phosphate. For deter-

mining the concentration dependence, the Hip concentration in the ATP solution was varied. Otherwise the 

solution was as described above. Apparent koff rates were determined from curve-fitting the exponential decay 

of MABA-ADP fluorescence and plotted against the final Hip concentration. 

C) Hip-mediated attenuation of MABA-ADP dissociation from Hsp70N in buffer containing 10 mM phosphate.  

D) Schematic representation of the Hip constructs analyzed. The dimerization domain (HipN), Hsp70-binding 

(HipM) and DP domains of rat Hip are shown in purple, blue and orange, respectively. The GGMP repeat 

segment is indicated in yellow; the acidic linker regions in white.  

E) MABA-ADP dissociation as a proxy for estimating the affinity of different Hip truncation constructs towards 

Hsp70. Nucleotide dissociation rates from Hsp70N were measured in presence of each of the Hip truncation 

constructs. The Hsp70NMABA-ADP complex was mixed with buffer containing 250 µM ATP and 100 µM 

of the respective Hip construct. Apparent koff rates were determined from curve-fitting the exponential decay 
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of MABA-ADP fluorescence. The averages and standard deviations from three independent experiments are 

shown. 

 

We first investigated the dependence of the MABA-ADP dissociation rate on the Hip concen-

tration under condition of the release assay. In the absence of Hip, the spontaneous MABA-

ADP off-rate was ~ 0.34 s
-1

 (red line, Fig. 20A), similar to the ADP dissociation rate for the 

bacterial homolog of Hsp70, DnaK (Gässler et al., 2001). At an equimolar concentration rela-

tive to Hsp70N, Hip lowered the ADP-dissociation rate only marginally, in line with its modest 

affinity to Hsp70N (Fig. 20B). However, a substantial decrease of koff (~ 0.13 s
-1

) was observed 

upon the addition of full length Hip in 40-fold excess over Hsp70N (blue line, Fig. 20A), indi-

cating that Hip can stabilize Hsp70 in the ADP bound state. 

The ADP release rate from eukaryotic Hsp70 was reported to be greatly lowered in the pres-

ence of inorganic phosphate, a component of the eukaryotic cytosol (Brehmer et al., 2001). We 

suspected that Hip and phosphate might have a multiplicative effect on the dissociation rate. In 

presence of 10 mM inorganic phosphate, a possible physiological concentration, the spontane-

ous MABA-ADP off-rate was lowered by a factor of ~ 15. However, in relative terms the de-

pendence on Hip concentration did not change substantially in presence of phosphate (~ 60 % 

decrease at 50 µM Hip and 1.25 µM Hsp70N), arguing against a synergistic effect of Hip and 

phosphate (Fig. 20C). 

Next, we used the MABA-ADP dissociation from Hsp70N as a functional assay for our Hip 

truncation constructs. To get a robust signal, a 40-fold excess of the respective construct over 

Hsp70N•MABA-ADP was used (Fig. 20D & 20E).  

The N-terminal dimerization domain Hip(1-44) and C-terminal DP repeat region Hip(312-368) 

alone did not change the MABA-ADP dissociation rate from Hsp70N, consistent with Hsp70 

exclusively binding to the middle segment of Hip. Moreover, the dissociation rates in the pres-

ence of full-length Hip(1-368) and the C-terminally truncated construct Hip(1-267) were close-

ly similar, suggesting that the C-terminal GGMP motifs and the DP repeat regions do not con-

tribute to Hsp70-binding (Fig. 20D & 20E). When we compared the off-rates in presence of 

dimeric full-length Hip(1-368) with monomeric Hip(45-368) and Hip(78-368), we found a 
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slightly increased stabilizing effect with the N-terminal truncation mutants, indicating that di-

merization might disturb the interaction with Hsp70 to some degree.  

Hip(78-247) and Hip(78-267) slowed MABA-ADP dissociation from Hsp70N to similar ex-

tents, consistent with our ITC affinity data. Compared to Hip(78-247) and Hip(78-267), the 

shorter construct Hip(78-234) had a substantially lower activity, confirming that the functional 

MABA-ADP dissociation assay can be used as a proxy for affinity. 

Taken together, the ITC experiments demonstrated that Hip has a clear preference for the 

Hsp70•ADP complex. In addition, the NBD of Hsp70 is sufficient for Hip binding. Consistent 

with the loose domain tethering in the structural model of the ADP complex of Hsp70, the SBD 

of Hsp70 is neutral towards Hip binding. Moreover, the ability of Hip truncation mutants to 

attenuate MABA-ADP release from Hsp70N correlated with their binding affinity to Hsp70N-

ADP. The investigation of Hip truncation mutants revealed that both conserved flanking re-

gions to the TPR domain are required for the interaction with Hsp70. 

 

4.4 Nucleotide release is virtually abolished in a Hip-Hsp70 fusion protein  
 

Even at a high 40-fold excess of Hip only a partial reduction of the MABA-ADP dissociation 

rate from Hsp70 was observed in vitro. To estimate the maximal effect of Hip on nucleotide 

dissociation under saturation conditions, we generated two fusion proteins of HipM and 

Hsp70N differing in the sequence of the domain segments, HipM-Hsp70N and Hsp70N-HipM, 

respectively (Fig. 21A).  

 

A)  
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B)  

 

  

Figure 21: Analysis of the HipM-Hsp70N fusion proteins with the MABA-ADP dissociation assay. 

A) Left panel: Schematic representation of the fusion protein constructs. The NBD of human Hsp70 is shown 

in green; HipM in blue. Right panel: MABA-ADP dissociation rates from the fusion proteins as determined 

by curve-fitting. 

B) Fluorescence traces reflecting the time-dependent dissociation of MABA-ADP. The fluorescent MABA-

ADP was incubated with 2.5 µM of the respective protein at 30 °C for 30 min, and then mixed in a stopped-

flow apparatus with buffer containing 250 µM ATP. The fluorescence traces were curve-fitted using a mod-

el assuming single-exponential decay and a linear drift to account for bleaching. The yellow line was rec-

orded with the HipM-Hsp70N fusion protein. For comparison, the spontaneous dissociation from Hsp70N 

and the triggered dissociation in presence of a 40-fold excess of Hip are shown in red and blue (same as in 

Figure 20A). 

 

In the HipM-Hsp70N fusion construct, the spontaneous MABA-ADP dissociation rate was 

strongly reduced to a koff value of 0.02 s
-1

, indicating a functional intramolecular interface 

formed between the domains (Fig. 21A, and yellow line in Fig. 21B). This demonstrates that 

there is ample room for enhancement of the functional effect of Hip by additional interactions 

stabilizing the Hip:Hsp70 complex. Conversely, the reversed Hsp70N-HipM showed a koff val-

ue close to the spontaneous off-rate, indicating that this fusion protein failed to form a func-

tional intramolecular interface in this orientation (Fig. 21A).   

 

4.5 Structural analysis of Hip 

4.5.1 Hip domain structure 

We delineated the probable domain boundaries in rat Hip from the alignment with remote 

homologs from protists, which became available only after most of the previous functional 
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work of Hip had been completed, shown in Appendix 8.2. Including these additional sequences 

revealed the functional, structured regions as boxes of increased conservation.  

Limited proteolysis of full-length Hip gave unclear results (data not shown). The first block of 

high conservation encompassing the dimerization domain terminates at Pro44 in rat Hip. This is 

followed by an acidic linker of ~ 30 amino acids, which is likely to be unstructured. The net 

negative charge might help to force a Hip dimer into an extended conformation by electrostatic 

repulsion. The following block of high sequence conservation, residues 78-242 in rat Hip, en-

compasses additional regions flanking the predicted core TPR domain (residues 107-232) and 

likely forms a structured middle domain. This is followed by another acidic stretch of ~ 20 res-

idues and a variable segment of imperfect repeats of the motif Gly-Gly-(Met/Phe)-Pro (GGMP). 

At the C-terminus a conserved DP domain is located (residues 312-368 in rat Hip). 

 

4.5.2 Circular dichroism spectroscopy of Hip domains 

 

Hip has been proposed to be an almost all α-protein (Prapapanich et al., 1998). The secondary 

structure of a polypeptide chain (α-helix, β-sheet and random coils) shows a characteristic cir-

cular dichroism (CD) spectra. Therefore, we analyzed our Hip truncation constructs using CD 

spectroscopy to test whether the conserved regions are indeed independently folded domains. 

The secondary structure content was estimated by deconvolution of the CD spectra with the 

program CONTIN (Fig. 22). 

A)  
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B)  

 

 

Figure 22: CD Spectroscopic analysis of Hip truncation constructs.  

A) CD spectra of Hip constructs. A strong maximum at 195 nm and two strong minima at 208 and 222 nm are 

indicative of α-helical structures. A minimum at 218 nm and maximum at 195 nm suggest ß-sheet structures. 

The mean molar ellipticities per residue for indicated constructs are shown in green. Calculated spectra are 

shown in blue and residual differences in red.  

B) Comparison of the putative secondary structure contents, represented as bar graphs. The α-helical, β-sheet and 

random-coil structure is indicated in blue, red and green, respectively. 

 

The CD spectra indicate that full-length Hip and the analyzed truncation constructs indeed con-

tain a large amount of α-helices (Fig. 22A). To compare the truncation constructs with each 

other, the secondary structure distribution for each construct is shown in Figure 22B. The sec-

ondary structure content of full-length Hip is almost identical to the sum of N-terminal dimeri-

zation domain Hip(1-44), middle domain Hip(78-247) and the DP domain Hip(312-368), sug-

gesting that these regions indeed represent the structured domains in Hip. The linker regions 

and the GGMP repeats do not seem to form regular secondary structure. 

Furthermore, the analysis of the secondary structure content of the middle domain constructs 

Hip(78-267), Hip(78-247) and Hip(78-234) revealed that Hip(78-267) and Hip(78-247) had 

approximately the same amount of α-helical structure, suggesting that the C-terminal charged 

flanking region is unstructured in isolation. Notably, Hip(78-234) had much less helical content, 

suggesting that residues 235-247 are required for full helix formation in the domain. These 

findings explain why among the three Hip constructs only Hip(78-247) was successfully crys-

tallized (see section 4.5.4).  
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In contrast to Hip(1-44), which was crystallized successfully, we were unable to obtain crystals 

of the C-terminal Hip(312-368) (data not shown). This suggests that the DP domain of Hip is 

not stably structured in isolation, and may only assume a defined structure in presence of a 

bound substrate.  

 

4.5.3 The DP domain of Hip 

 

Figure 23: Structure model of the DP domain (312-368) in Hip. 

 

The C-terminal DP domain beginning at residue 312 is quite well-conserved. Analysis of the 

CD spectra of the domain constructs versus full-length Hip suggested that DP domain of Hip is 

partially structured (Fig. 22). We further analyzed the domain constructs Hip(1-44), Hip(78-

234) and Hip(312-368) by one-dimensional 1H-NMR spectroscopy (Rehm et al., 2002) (Zhuo 

Li, Master thesis). The dispersion of amide resonances indicated that the N-terminal domain 

was stably structured, whereas this was less so in the spectrum of the C-terminal domain, sug-

gesting that this region was structurally more dynamic (data not shown). Fortunately, the NMR 

structures of the DP domains in Sti1 (yeast Hop) were solved independently in the meantime 

(Schmid et al., 2012). Thereby we were able to create a homology model for the respective 

segment in Hip based on the DP1 domain of Sti1, which is largely consistent with our CD data 

(Fig. 22). 

 

4.5.4 Crystallization of the Hsp70-interacting domain of Hip 

 

Since our initial attempts to crystallize full-length Hip failed, we chose to determine the crystal 

structures of individual Hip segments (Zhuo Li, Master thesis). At the beginning of the doctoral 

312 

368 
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study, we had already solved the structure of the N-terminal dimerization domain of Hip (Zhuo 

Li, Master thesis). In NMR spectra, the C-terminal DP domain appeared only partially struc-

tured. Consistently, crystallization of this segment did not succeed. Therefore, we concentrated 

on the structure of the Hsp70-binding domain of Hip, which has been predicted to contain a 

tetratricopeptide repeat (TPR) domain. All three truncation constructs Hip(78-267), Hip(78-247) 

and Hip(78-234) encompassing this putative TPR domain were tested in crystallization trials 

based on commercial and in-house factorial screens. 

Only the domain construct Hip(78-247) was however successfully crystallized. In the following, 

this construct is designated HipM – for Hip middle domain. Initial crystals were obtained with 

two different precipitant compositions: 2.4 M sodium malonate pH 7.0 and 1.4 M tri-sodium 

citrate, 0.1 M HEPES pH 7.5. These crystals grew in clusters of thin plates. To refine the crys-

tal morphology, we varied the pH value from 7.0 to 6.0 in the sodium malonate condition. Sin-

gle, cube-shaped tetragonal crystals appeared after three weeks (Fig. 24A). Conversely, single 

crystals could only be obtained from Na-malonate pH 7.0 conditions through several rounds of 

micro-seeding. Unfortunately, the optimization of tri-sodium citrate condition was not 

successful, even when employing micro-seeding and streak-seeding. 

 

 
 

 
 

 

Figure 24: Representative images of Hip(78-247) crystal forms and structures. 

 

 

A B C 

D E F 
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A) Crystals obtained in a hanging-drop setup with 2.1M Na-malonate pH 6.0 as precipitant at 18 °C. 

B) A tetragonal crystal of Hip(78-247) from the Na-malonate condition at pH 6.0 mounted in a cryo loop. The 

green scalebar corresponds to 100 µm. 

C) Structure of the tetragonal crystal form. Crystal form I was solved by Os-SIRAS at a resolution of 2.6 Å. 

The R and Rfree values are 18.4 % and 24.8 %, respectively.  

D) Crystals obtained in a hanging-drop setup with 2.15 M Na-malonate pH 7.0 at 18 °C. 

E) Monoclinic plate-shaped crystals of Hip(78-247) from the Na-malonate condition at pH 7.0 mounted in a 

cryo loop. The green scalebar corresponds to 50 µm. 

F) Structure of the monoclinic crystal form. Crystal form II was solved by molecular replacement at a resolu-

tion of 2.8 Å. The R and Rfree values are 24.6 % and 29.9 %, respectively. 

 

4.5.5 Structure determination and refinement of HipM 

 

From the construct HipM we obtained two crystal forms, I and II (Fig. 24B & 24E), with native 

diffraction to 2.6 Å and 2.8 Å, respectively. Table 13 provides an overview of data collection 

and refinement statistics. The structure of form I was crystallized in space group P43212 with 

unit cell dimension of a • b • c = 79.86 Å • 79.86 Å • 97.31 Å. The structure was initially solved 

by Os-SIRAS at a resolution of 4 Å, containing two protein chains per asymmetric unit. The Os 

substructure was found using the Shelx program package (ShelxC, ShelxD) and contained three 

Os-atom positions. The heavy atom positions were refined and initial phases were calculated in 

SHARP  (Vonrhein et al., 2007). After further density modifications by Resolve (Terwilliger, 

2000), an interpretable map was obtained, which was sufficient to manually build initial models 

with Coot (Emsley and Cowtan, 2004). The final model building was carried out against a 

high-resolution native dataset of 2.6 Å resolution. Subsequently, several rounds of refinement 

were performed with Coot and REFMAC (Murshudov et al., 1997), respectively. The refine-

ment statistics was greatly improved by the application of TLS parameterization in REFMAC. 

This could indicate that the Hip TPR domains undergo rigid body movements with respect to 

each other in the crystal lattice. The final structure of form I (Fig. 24C) was refined to a crystal-

lographic R-factor of 18.4% (Rfree 24.8%). 

The structure of the second crystal form II (Fig. 24F) was solved by molecular replacement 

only after the Hsp70N-HipM crystal structure had been determined (see below), using the 

HipM segment as a search template. The crystals are twinned, belonging to space group P21 

with lattice parameters of a • b • c = 57.29 Å • 127.00 Å • 57.31 Å, and harbor four copies of 

HipM per asymmetric unit. The best native diffraction data at 2.8 Å resolution was collected at 

the European Synchrotron Radiation Facility (ESRF). 
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Compared to form I, in which residues 95-212 are ordered, almost the complete HipM con-

struct (residues 81-241 in all chains) was visible in crystal form II. Therefore this crystal form 

will be discussed first. 

Construct Hip(1-44) Hip(78-247) Hsp70N-Hip 

Dataset EtHgPO4 native K2[OsO4]-I native-I native-II native 

Space group P21 P21 P43212 P43212 P21 P41 

Cell dimensions       

  a, b, c (Å) 28.80, 43.89, 

32.24 

28.78, 43.98, 

32.21 

79.05, 79.05, 

96.82 

79.86, 79.86, 

97.31 

57.29, 127.00, 

57.31 

65.60, 65.60, 

141.47 

  , ,  (°) 90, 93.40, 90 90, 93.44, 90 90, 90, 90 90, 90, 90 90, 105.93, 90 90, 90, 90 

Wavelength (Å) 1.005 0.9000 1.140 1.005 0.9189 0.8726 

Resolution (Å)* 43.90 - 1.57 

(1.67 - 1.57) 

43.98 - 1.1 

(1.16 - 1.1) 

48.41 – 4.0 

(4.22 – 4.0) 

48.84 – 2.6 

(2.74 – 2.6) 

45.74 – 2.8 

(2.95 – 2.8) 

48.10 – 2.65 

(2.79 – 2.65) 

Rmerge* 0.104 (0.375) 0.057 (0.323) 0.187 (0.432) 0.054 (0.338) 0.110 (0.427) 0.068 (0.491) 

I/σI* 16.9 (6.7) 13.4 (4.1) 13.4 (6.2) 24.0 (5.5) 8.3 (2.5) 16.1 (2.9) 

Completeness (%) * 99.9 (99.7) 98.6 (97.5) 99.8 (99.0) 99.5 (98.5) 98.7 (96.0) 99.9 (99.8) 

Redundancy * 7.3 (7.3) 3.6 (3.5) 13.1 (13.4) 6.3 (6.6) 3.1 (3.1) 5.1 (5.1) 

Refinement       

Resolution (Å) - 20 - 1.1 - 20 – 2.6 20 – 2.8 20 – 2.7 

No reflections - 30476 - 9666 18235 15540 

Rwork / Rfree - 0.135 / 0.162 - 0.184 / 0.248 0.246 / 0.299 0.194 / 0.261 

Number of atoms       

  Protein - 819 - 1865 4884 4243 

  Ligand/ion - 6 - 12 - 50 

  Water - 147 - 11 - 45 

B-factors       

  Protein - 11.73 - 50.14 36.26 55.25 

  Ligand/ion - 22.63 - 61.42 - 47.46 

  Water - 32.10 - 30.41 - 41.76 

R.m.s. deviations       

  Bond length (Å) - 0.015 - 0.013 0.007 0.010 

  Bond angles (°) - 1.722 - 1.363 1.039 1.243 

*  Values in parenthesis for outer shell. 

Table 13: Summary of Hip data collection and refinement statistics. 
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4.5.6 Structure of HipM 

 

HipM comprising residues 78-247 is composed of two parts, the N-terminal extension (residues 

78-106) and TPR module, consisting of three TPR repeats (residues 107-211) and a capping 

helix α10 (residues 214-241) (Fig. 25A). Interpretable electron density was visible for residues 

81-241 in all four, almost identical copies of HipM in the asymmetric unit of crystal form II 

(Fig. 25B). 

A)  

 

 

B)  

 

 

Figure 25: Crystal structure of the Hsp70-binding domain of Hip, HipM. 

A) Representation of the architecture of the HipM domain. N-terminal extension (residues 81-106) is highlighted 

in yellow. The core TPR domain is shown in dark blue. 

B) Left panel: Cartoon representation of the overall structure of HipM. Right panel: Detailed view of the interac-

tions between the N-terminal extension and the core TPR domain. The N-terminal extension is shown against 

the molecular envelope of the TPR domain. Selected side chains in the N-terminal linker extension are labeled 

and highlighted in stick representation.  

 

The N-terminal extension traverses the helix bundle in the groove between helices α5 and α7 of 

TPR core. Subsequently, it sneaks along the opposite edge to reach the C-terminal capping he-

lix α10, which protrudes beyond the classical TPR domain structure, bringing N- and C-

terminal segments into close proximity (Fig. 25B). As a result of this arrangement, the nega-

tively charged residues 81-85 are placed in the vicinity of the positively charged C-terminus of 

α4 

α5 

α6 
α7 

α8 

α9 

α10 
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helix α10. The N-terminal segment is firmly attached to the TPR core by extensive hydropho-

bic (Ile82, Val87, Ile88 and Ile105) and polar contacts (Asp91, Gln96 and Met98) (Fig. 25B). 

The buried surface area is 1086 Å
2
, suggesting a stable interaction between the segments in 

HipM. Consistently, HipM also appeared stable in solution, which was determined by CD spec-

trometry with a melting point of 56 °C (data not shown).   

Notably, truncation of N-terminal residues 78-106 might destabilize the TPR domain by expos-

ing large hydrophobic surface areas. This is consistent with the insolubility of the construct 

Hip(107-267). Remarkably, the C-terminal extended final helix α10 might not be stably struc-

tured. This is suggested by two lines of evidence. A previous study found that Hip was proteo-

lytically truncated at residues 226 and 237 (Velten et al., 2002). Furthermore, the final helix 

α10 is not present in crystal form I (Fig. 26A), indicating that it was disordered or cleaved dur-

ing crystallization. Perhaps prior proteolysis in the N-terminal extension is required to stabilize 

helix α10. Figure 26 provides an structure overview of the two crystal forms of HipM. 

A)  

 

B)  

                         

 

Figure 26: Comparison of the two crystal forms of HipM. 

A) Structure of the HipM dimer in crystal form I. The two segments are shown in ribbon representations in light 

blue and gold, respectively. Residue numbers are indicated for the termini of the ordered segment.  
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B) Superposition of the HipM units in crystal forms I and II. For clarity, only one representative chain from each 

crystal form is shown. The chain from crystal form II is shown in dark blue. The additional helix is indicated 

as α10. 

 

Form I contained two protein chains per asymmetric unit, forming a symmetrical dimer (Fig. 

26A). Only residues 95-212 were ordered in both copies, i.e. density for the capping helix α10 

was completely absent. Otherwise, the structured part was closely similar to crystal form I as 

shown in Figure 26B. Subsequent SDS-PAGE analysis of dissolved crystals revealed an ap-

proximate 1:1 mixture of two chain lengths, one similar to full-length HipM (data not shown), 

suggesting partial proteolytic degradation. The exact composition of the crystals remains there-

fore unclear. 

Size exclusion chromatography gave no indication for dimerization of HipM in solution (Fig. 

16A). The buried surface area of ~ 600 Å at the interface is probably too small for a stable in-

teraction. Two opposed cysteines were found at the interface, however no disulfide bond for-

mation was observed. Therefore, this dimer formation is probably a consequence of crystal 

packing.   

 

4.5.7 Small angle X-ray scattering (SAXS) 

 

Since full-length Hip could not be crystallized, the structural features of Hip as a whole re-

mained unknown. Small angle X-ray scattering (SAXS) analysis offers complementary infor-

mation about macromolecular folding, conformation and assembly state in solution with resolu-

tion range of about 50 Å to 10 Å. Together with the solved three-dimensional structures of in-

dividual domains of Hip, we attempted to create a model for a complete Hip dimer.  

Mainly two parameters can be estimated from SAXS data, the particle radius of gyration Rg and 

the maximum linear dimension of the scattering particle Dmax. Rg can be obtained by curve-

fitting with the programs Guinier and GNOM using Guinier’s law and Dmax can be calculated 

with GNOM. When the atomic structures are available, the theoretical curves can be calculated 

from the pdb files by evaluating all the interatomic distances in the structure. In the direct com-

parison of such theoretical curves with SAXS data, the Chi value (χ
2
) is used to estimate the 
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agreement between the atomic model with the experimental data from SAXS, which is similar 

to the R-factor in crystallography by indicating the goodness-of-fit.  

 

Following this methodology, an Rg of 6.05 nm was identified for full-length Hip. The respec-

tive pair distance distribution function p(r) is shown as insert, suggesting a large Dmax of 202 Å 

(Fig. 27A). These dimensions are consistent with previous observations (Dores-Silva et al., 

2012; Velten et al., 2000), suggesting an elongated conformation for the complete  80 kDa 

Hip dimer with a maximum extension of  200 Å (Fig. 27A). The Kratky plot representation of 

the full-length Hip data indicated that a substantial fraction of Hip is unstructured (Fig. 27B), 

which is consistent with the secondary structure composition derived from CD spectroscopy.  

A)  

 

B)  

 

 

Figure 27: SAXS Structural analysis of the Hip dimer.  

A) X-ray scattering curve of Hip at 1.8 mg/ml in the presence of 20 mM HEPES, 100 mM KCl and 1 mM DTT, 

pH 7.4. The red line indicates the best fit obtained with the indirect Fourier transform method using the pro-

gram GNOM (Svergun, 1992). The respective pair distance distribution p(r) is shown as insert, suggesting a 

large Dmax of 202 Å for the 80 kDa particle. The radius of gyration (Rg), 6.05 nm, was determined using the 

Guinier approximation, as implemented in PRIMUS (Konarev et al., 2003).  

B) Kratky plot representation of the scattering data. The high signal of s
2
I at s > 2.5 nm indicates that a sub-

stantial fraction of Hip is unstructured. 

 

Besides full-length Hip, two Hip truncation mutants, Hsp70 and the HipM-Hsp70 fusion pro-

tein were also studied (data not shown). Table 14 summarizes the key results derived from 

SAXS data. 
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Construct SAXS Scattering curve Atomic model Chi fit (χ
2
) 

Rg [nm] Dmax [nm] Rg [nm] Dmax [nm] 

Hip 6.05 ± 0.04 20.18 –  – – 

Hip(1-267) 5.08 ± 0.01 17.77 –  – – 

Hip(78-247) 2.25 ± 0.01 8.31 1.78 6.50 14.64 

Hip(78-234) 1.98 ± 0.004 6.33 1.68 6.02 10.78 

Hsp70N 2.44 ± 0.01 8.39 2.10 7.17 5.197 

HipM-Hsp70N 2.73 ± 0.01 9.56 2.54 8.51 4.567 

Table 14: Comparison of structural data from SAXS and crystallographic analysis 

 

Both Hip(78-247) and Hip(78-234) showed quite high Chi values. One explanation could be 

that these two constructs might show more open conformations in solution than suggested from 

the crystal structure of HipM, Hip(78-247). Especially the SAXS data for the functional fusion 

protein HipM-Hsp70N are in good agreement with the determined Hip:Hsp70 core complex 

crystal structure (see below). Furthermore, the Dmax of the fusion protein is similar to Hsp70N, 

indicating a compact conformation of this protein in solution.  

 

4.6 Structural analysis of the Hip:Hsp70 complex 
 

4.6.1 Crystallization of the Hip:Hsp70 core complex 

 

To gain further insight into the mechanism by which Hip stabilizes Hsp70, we determined the 

crystal structure of Hsp70 in complex with Hip.  

Since the individual crystal structures of Hsp70N and the Hsp70-binding domain of Hip, HipM, 

were known, we first tried to co-crystallize Hsp70N and HipM. ITC experiments had shown 

that the binding ratio of these two proteins was 1:1 with a modest binding affinity (KD = 27 

µM). The co-crystallization trials were first performed at a molar ratio of 1:1. In order to in-

crease complex formation, we modified the molar ratio of 1:1.2 and 1:1.5, assuming that HipM 

was less likely to crystallize by itself than Hsp70N, which crystallized readily. Unfortunately, 

the co-crystallization of Hip with Hsp70N failed. The crystals invariably contained only 

Hsp70N in the apo or ADP-bound form, depending on whether exogenous ADP was added or 

not (data not shown). To obtain the structure of a Hip:Hsp70 complex, we therefore changed 



4  Results 

 

100 

 

our strategy by employing the fusion proteins of HipM and Hsp70N. The proximity of the do-

mains was assumed to enforce intramolecular interactions. As described above, we designed 

two different types of fusion proteins, the functional HipM-Hsp70N and the rather non-

functional Hsp70N-HipM (Fig. 21A). While crystals could not be obtained from the HipM-

Hsp70N fusion protein, the reverse construct, Hsp70N-HipM, produced crystals. These ap-

peared as needles in the initial screen with 0.2 M NH4I and 20 % PEG 3350 as a precipitant at 

both 4 °C and 18 °C (Fig. 28A & 28B). To improve crystal quality, the crystallization condition 

was optimized and micro-seeding was performed at 18 °C. A single rod crystal could be ob-

tained by micro-seeding with 0.2 M NH4I and 17 % PEG 3350 as precipitant using the hanging 

drop method (Fig. 28D).  

    

    

Figure 28: Representative images of the HipM-Hsp70N crystal form. 

A) Initial crystals obtained in the sitting-drop setup under the condition using 0.2 M NH4I and 20 % PEG 3350 

at 4 °C 

B) Initial crystals obtained in the sitting-drop setup under the same conditions at 18 °C 

C) Crystals obtained in the hanging-drop setup with of 0.2 M NH4I and 17 % PEG 3350 at 18 °C  

D) A single crystal obtained after seeding in the hanging-drop setup using 0.2 M NH4I and 17 % PEG 3350 as a 

precipitant. 

 

 

4.6.2 Structure determination of the Hsp70-Hip fusion protein 

 

X-ray diffraction data were collected from the single rod crystal to 2.7 Å resolution. The analy-

sis showed that the space group is P41 with lattice parameters of a • b • c = 65.5 Å • 65.5 Å • 

141.47 Å (Table 13). The structure of the Hsp70N-HipM fusion protein was solved by molecu-

lar replacement using the program Molrep. Hereby, the Hsp70(1-393)-ADP complex and the 

HipM monomer form I were used as the searching templates. Hsp70N-HipM was almost fully 

defined in the density including the human Hsp70 (residues 1-382), a short linker and rat Hip 

(residues 78-243), as well as bound ADPPiMg
2+

. 17 structurally defined iodine ions from the 

A B C D 
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precipitant solution were confirmed with the anomalous signal in a dataset collected from a 

different crystal at 2.0 Å wavelength. Several of these iodide ions are located at the domain-

domain interface and at crystal contacts, presumably stabilizing crystal packing interactions 

(Fig. 29A & 29B). Therefore, the presence of 200 mM NH4I in the crystallization condition 

presumably plays an important role in crystal stabilization.  

 

 

  

 

Figure 29: Electron density map of the fusion protein Hsp70N-HipM. 

A) Representative portion of an initial electron density map. The intermolecular interface of HipM (red), 

Hsp70N (yellow) and resolved iodine ion shown in cross. 

B) The final structural model is overlaid and shown as color coded stick representation. 

C) The representative intermolecular interface of the fusion protein in the initial electron density map. 

 

The complex structure was refined to an R-factor of 19.4 % (Rfree of 26.1 %). All models were 

built interactively using the program Coot. Refinement was performed with the program REF-

MAC. Residues (apart from glycine) facing solvent channels were modeled as alanine, when 

side chain density was not discernible. Interestingly, besides the intramolecular interface within 

the fusion protein Hsp70N-HipM, the likely intermolecular interface between Hsp70N and 

HipM could be observed in the electron density map (Fig. 29C). 

 

 

A 

B 

C 
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4.6.3 Two interaction interfaces between Hip and Hsp70  

 

In the electron density map, two plausible interfaces between Hsp70N and HipM domains were 

observed. Figure 30A and 30B show the two different interfaces between Hip and Hsp70 to-

gether with the surface conservation in Hip at the respective region. 

A)  

 

 

B)  

 

C)  

 

 

 

 

D)  

 

 

E)  

 

 

Figure 30: Intramolecular- and intermolecular interfaces of the Hsp70N-HipM fusion protein. 

A) Crystal structure of the Hsp70N-HipM fusion protein showing the intramolecular domain-domain interface. 

The protein structure is shown in ribbon representation. The Hsp70N and HipM segments are colored green 

and dark blue, respectively; subdomain IIB of Hsp70N is highlighted in yellow. The bound ADP is shown in 

stick representation.  

B) Intermolecular interface between HipM and Hsp70N with functional contacts.  

C) Packing of Hsp70N-HipM fusion protein units in the crystal lattice. The functional contact between Hsp70N 

and HipM moieties from symmetry mates in the crystal lattice is high-lighted in blue (HipM partner) and 

green (Hsp70N partner). The fusion proteins pack via these functional HipM-Hsp70N contacts into supra-

helical fibers along the 41 vertical screw axis. 

D) Lack of surface conservation of HipM at the intramolecular interface of the non-functional Hsp70N-HipM 

fusion protein.  

E) Increased surface conservation of HipM at the intermolecular interface of functional Hsp70N-HipM fusion 

protein.  

IB 

IIA IA 

IIB 

IB 

IIA IA 

IIB 
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4.6.3.1 Intramolecular interface  

 

The fused Hsp70N and HipM domains were tightly associated in the crystal structure (Fig. 

30A). The observed intramolecular domain-domain interface buried 949 Å
2 

of surface area, 

potentially sufficient for a stable interaction. Hip is located on the side of subdomain I of 

Hsp70 and makes no contacts to subdomain IIB of Hsp70N, which is a well-known to regulate 

access to the nucleotide binding pocket (Liu et al., 2010). It is hard to see how this binding 

mode of Hip could stabilize Hsp70 in the ADP-bound state. The interaction of Hip with Hsp70 

is on the convex face of the TPR domain instead of the concave face (Fig. 30D). Moreover, this 

interface proved to be poorly conserved, which is in conflict with surface sequence conserva-

tion normally found at protein-protein interfaces because of co-evolution of the binding part-

ners. Of note, the surface of the NBD of Hsp70 is strongly conserved all over. Together this 

raises strong doubts on the functional relevance of the intramolecular interface.  

Moreover, this interaction is apparently forced by favorable contacts to the artificial linker be-

tween Hsp70 and HipM, residues Leu76 and Glu77, which were introduced during cloning, the 

respective sequence serving as a restriction site between the Hsp70 and HipM coding sequenc-

es (Fig. 31). 

 

 

 

Figure 31: Detailed interactions between the artificial linker, Hsp70 and HipM. 

The linker residues undergo multiple polar interactions. Back bone hydrogen bonds are formed between 

Leu76/Glu77 and Leu380/Met381 at the C-terminus of Hsp70N (color green), respectively. In addition, a likely 

salt bridge between Glu77 and side chain of Lys3 of Hsp70 was observed. 
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Remarkably, the linker was structured, forming an extension to the C-terminal final helix of 

Hsp70N. To prove that the intramolecular interface is without function, the double mutation 

H196S/E199A targeting interruption of the intramolecular interface was investigated in our 

functional assays (see below). We confirmed that this mutation is indeed neutral, suggesting 

that the contact is an experimental artifact. 

 

4.6.3.2 Intermolecular interface 

 

Surprisingly, an intermolecular interface of Hsp70N-HipM fusion proteins forming a contact 

between symmetry mates in the crystal lattice showed the characteristics of a functional inter-

face (Fig. 30B & 30E). The interaction buries 1039 Å
2 

surface area, similar to the intramolecu-

lar interface (949 Å
2
). Moreover, the surface of HipM shows the highest conservations score 

between residue 176-181 and 210-214 (Fig. 32), which contact subdomains IA, IB and IIB of 

Hsp70N in the intermolecular interface (Fig. 30B & Fig. 30E). This is in line with the regulato-

ry role of subdomain IIB of Hsp70. The intermolecular contact therefore provides a promising 

candidate for the functionally relevant interface between Hip and Hsp70. 

 

 

Figure 32: Evolutionary conservation of the central part of HipM, from residues 137 to 216. 

In this section of the alignment of Hip sequences similar residues are shown in red and identical residues in white 

on red background, respectively.  

 

 

 

4.6.4 Structure of the Hip:Hsp70 core complex 

 

As mentioned above, the crystal lattice suggested a promising candidate for the interface be-

tween Hip and Hsp70. This interface and some key residue contacts are described in detail be-

216 180 160 200 
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low (Fig. 33). We later confirmed the functional significance of this interface by mutational 

analysis (see below). 

The NBD of Hsp70 is thought to be conformationally dynamic, with subdomain IIB acting as a 

mobile regulator for the nucleotide (Liu et al., 2010). The crystal structure of HipM:Hsp70 core 

complex showed that Hip forms a bracket over the NBD, arresting the otherwise mobile sub-

domain IIB in a closed conformation and locking the nucleotide in the binding pocket (Fig. 

33A). 

A)  B)  

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 33: Structure of core complex of Hip and Hsp70. 

A) Ribbon representation of the HipM:Hsp70 complex. HipM and Hsp70N are colored blue and green, respec-

tively. Subdomain IIB of Hsp70N is highlighted in yellow. The bound ADP-phosphate-Mg
2+

 complex are 

shown in ball-and stick representation. The subdomain structure of the Hsp70N is indicated.   

B) Left panel: Surface conservation of the interface between HipM and Hsp70N. The similarity score from 

thesequence alignment (Appendix 8.2) is mapped onto the molecular surface of HipM using a color gradient 

from magenta (high similarity) to cyan (low similarity). Right panel: Key contacts between HipM and 

Hsp70N are shown in detail.  

 



4  Results 

 

106 

 

The conformation of Hsp70N in complex with HipM is virtually identical to that of the 

ADPMgPi complex of the NBD of bovine Hsc70 (Wilbanks and McKay, 1995), with the nu-

cleotide being deeply buried in the center of the structure (Fig. 34A). Conversely, Hsp70 NEFs 

accelerate ADP release by stabilizing Hsp70N in an open conformation. 

 
A)  

 

B)  

 

 

Figure 34: Analysis of Hip:Hsp70 interaction. 

A) Superposition of Hsp70N from the Hsp70N-HipM structure with the ADPPiMg
2+

 complex of the NBD 

from bovine Hsc70. The latter structure is shown in gray (PDB code 1HPM (Wilbanks and McKay, 1995)). 

The subdomain structure is indicated. The Hsp70N fragment has essentially the same structure with an 

r.m.s.d. of 0.674 Å, consistent with Hip recognizing and stabilizing the ADP-bound state. 

B) Superposition of HipM structures. The copies of HipM in the asymmetric units of crystal forms I (two 

copies) and II (four copies) were superposed on the respective segment in the structure of the fusion pro-

tein. Backbone traces from crystal forms I and II are indicated by yellow and blue, respectively. The back-

bone of the Hip segment in the fusion protein is shown in purple. Both of the N- and C-termini are indicat-

ed.  

 

The structure of HipM in the Hip:Hsp70 complex is essentially identical to the structure of 

HipM alone in crystal form II (r.m.s.d.s 0.834 – 0.873 Å), indicating that the functionally active 

conformation is favored also in absence of Hsp70. Since the conformation of HipM in the com-

plex with Hsp70N is virtually indistinguishable from that of the isolated domain, the surface of 

HipM for Hsp70 binding is probably pre-formed (Fig. 34B). The extended interface with 

Hsp70N at the upper edge of the Hip TPR domain is complementary in shape to the surround-

ings of the Hsp70 nucleotide binding cleft. This mode of interaction differs markedly from oth-

er TPR modules, most of which bind extended peptides in a groove at the concave face of the 

TPR solenoid (D'Andrea and Regan, 2003). 
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The intermolecular interface comprises a large number of polar and hydrophobic interactions, 

shown in right panel of Figure 33B: (i) Asn177 of HipM forms a hydrogen bond with Glu283 

in Hsp70N; (ii) Asp179 and Asp211 engage in salt bridges to Arg269 and Arg262 in Hsp70N, 

respectively; (iii) Tyr212 of HipM is in van-der-Waals contact to residues Asn57, Gln58 and 

Leu61 in lobe IB of Hsp70N; (iv) Leu210 forms hydrophobic contacts to residues Arg269 and 

Thr265 of Hsp70N. The interaction of the TPR core domain with subdomains IA, IB and IIB of 

Hsp70N is reinforced by contacts of the elongated terminal helix α10 of Hip with subdomain 

IA. This rather shallow interface appears to be stabilized by electrostatic interactions between 

numerous basic residues (233-HRRKYERKR-241) at the C-terminus of helix α10 and the helix 

dipole of helix 4 in Hsp70N. 

 

4.6.5 Mutational analysis of the binding interface between Hip and Hsp70 

 

Since a large number of residues within the conserved interface were involved in the interaction 

between Hip and Hsp70, we next probed the functional significance of the interface by muta-

tion of key residues in Hip, using the MABA-ADP dissociation assay as a read-out.  

The mutations were introduced in HipM, Hip residues 78-247 (Fig. 35B), because this fragment 

exhibited a similar effect on MABA-ADP dissociation as full-length Hip (Fig. 35A). The assay 

is a suitable proxy for the Hsp70 binding ability. 

 

A)  

 

 

 

B)  

 

Hip(1-368) 

Hip(78-247) 
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C)  

 

D)  

 

Figure 35: Mutational analysis of the interaction between Hip and Hsp70. 

A) Schematic representation of the full-length Hip(1-368) and Hip(78-247) (HipM) and the analysis of MABA-

ADP release assay. Hip-mediated attenuation of MABA-ADP dissociation from Hsp70N. In a stopped-flow 

apparatus, 2.5 µM Hsp70N with MABA-ADP complex was mixed with 250 µM ATP solution containing 

increasing concentrations of full-length Hip or HipM at 30 °C. Apparent koff rates were determined from the 

exponential decay of MABA-ADP fluorescence and plotted against the final Hip concentration. 

B) Key contacts in the functional HipM:Hsp70N interface. The contacting elements of HipM are shown above 

the molecular surface of Hsp70N. Interacting side chains are highlighted in stick representation. Key polar 

contacts are indicated by green dotted lines. The bulk of the HipM TPR domain in the foreground was re-

moved for clarity. 

C) Probing the interface between Hip and Hsp70 by HipM mutation. Hsp70N•MABA-ADP was mixed with a 

40-fold excess of the respective HipM mutant. Koff rates of MABA-ADP obtained from the resultant fluo-

rescence traces are shown. Error bars represent standard deviations from at least three independent experi-

ments. 

D) Probing the interface of full-length Hip by mutation. Hsp70N•MABA-ADP was mixed with a 40-fold ex-

cess of the full-length Hip mutants. 
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Mutations N177K, N177A/D179A, L210S and D211K/Y212A in the central region of the in-

terface resulted in a virtual loss of the ability of Hip to decelerate the dissociation of MABA-

ADP from Hsp70N (Fig. 35B & 35C). The mutation N177K resulted in very weak binding to 

Hsp70-ADP, as determined by ITC (Table 15). The double mutant D211K/Y121A resulted in 

virtually complete loss of binding in ITC. The inactivating mutation K185E disrupts a con-

served intramolecular salt bridge with Asp213, and thus presumably destabilizes Hip. Muta-

tions K117A, R235A/K236D and ∆(235-247) at the periphery of the interface exhibited a simi-

lar milder functional impairment. The double mutation R235A/K236D at the C-terminus of 

HipM was intended to prevent dissipation of the dipole moment in α4 helix in Hsp70N by Hip. 

It induced a similar Koff rate as the truncation construct of HipM, ∆(235-247), consistent with 

an important role of dissipation of the dipole moment for binding.  

 

HipM mutation KD value [µM] 

N177K 192 

K185E 85 

D211K/Y212A n.d. 

R235A/K236D 68 

Table 15: The dissociation constants of selected HipM mutants determined by ITC.  

As expected, the mutations showed lower binding affinity to Hsp70N than wild type HipM (KD = 27 µM),  

consistent with the MABA-ADP release assay. 

 

Notably, mutation L210S (L211S in human Hip) was previously identified in a screen for loss-

of-function mutants of human Hip (Place, 2011). In contrast to the above listed mutants, the 

double mutation H196S/E199A targeting the non-conserved intramolecular interface of the 

Hsp70N-HipM fusion protein had no effect on HipM activity (Fig. 35C), a result confirming 

that this interface is not functionally relevant.  

Subsequently, two phosphomimetic mutations, S74E/S75E/S78E and S180E, were tested. Cell 

cycle-dependent phosphorylation of Hip at S74, S75 and S78 was previously detected in a large 

scale proteomics studies (Olsen et al., 2006). Phosphorylation at Hip residue S180 was inde-

pendently found (Olsen et al., 2010). We found that the phosphor-mimetic mutant S180E locat-

ed at the interface was inactive (Fig. 35C). However, the triple mutation S74E/S75E/S78E had 

activity similar to wild type, which is most likely because of its location far from the Hsp70 
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interface. Interestingly, the mutation I148A located within the functional Hsp70N-HipM inter-

face was reported before to increase Hsp70 binding activity (Nelson et al., 2004). This surpris-

ing finding could be confirmed with our functional assay. The mutation might enhance polar 

contacts of Lys117 and Lys152 with Asp292, Tyr294 and Asp285 of Hsp70N, respectively. 

The finding that the I148A mutation has not been selected for during evolution suggests that in 

vivo the affinity of Hip for Hsp70 must be carefully balanced with that of other Hsp70 regula-

tors.  

To complete the analysis, we further tested selected mutations in the context of full-length Hip 

(Fig. 35D). The selected mutations all exhibited the same trend in the functional assay as the 

respective mutations in HipM. Only the double mutation R235A/K236D showed a more seri-

ous functional impairment in full-length Hip compared to the HipM mutant. No clear difference 

was observed between the phosphor-mimetic S74E/S75E/S78E mutation and the phosphoryla-

tion-resistant mutant S74N/S75N/S78N, showing that modification at this site can only indi-

rectly affect Hip activity. 

In order to test for subtle differences between mutations, which virtually abolish Hip function 

in the HipM construct, some of these mutations were introduced into the HipM-Hsp70N fusion 

protein with the functional intramolecular interface, which has been identified in section 4.4 

(Fig. 21).  

 

Figure 36: Point mutations in the intramolecular interface of the HipM-Hsp70N fusion protein.              

Mutants markedly accelerate MABA-ADP dissociation, whereas the mutation H196S/E199A in the HipM-

Hsp70N interface is neutral. 

The double mutation D211K/Y212A in HipM-Hsp70N almost restored the MABA-ADP off-

rate to the level of free Hsp70N (Fig. 36). The double mutant N177A/D179A had a somewhat 
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milder effect. As expected, the double mutation H196S/E199A in the non-functional interface 

left the off-rate of HipM-Hsp70N unchanged (Fig. 36).  

Taken together, the mutational analysis fully validated the intermolecular contacts in the 

Hsp70N-HipM crystal structure as the functional binding interface between Hip and Hsp70.  

 

4.7 Interplay between Hip and Hsp70 NEFs 
 

Two co-chaperones target the ADP state of Hsp70. Hip thereby stabilizes this state, whereas 

NEFs stimulate the release of ADP and the progression of the Hsp70 folding cycle. Therefore, 

we hypothesized that Hip and NEFs might act as direct competitors for Hsp70 binding.  

To explore this idea, we mapped the binding areas of Hip and NEFs on Hsp70N based on the 

solved complex structures. Figure 37A shows that the binding surfaces on the Hsp70 NBD 

strongly overlap, suggesting mutually exclusive binding of Hip and NEFs to Hsp70 (Polier et 

al., 2008; Schuermann et al., 2008; Shomura et al., 2005; Sondermann et al., 2001; Xu et al., 

2008).  

A)  
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B)  

 

C)  

 

 

D)  

 

E)  

 

 

 

Figure 37: Interplay of Hip and Hsp70 NEFs. 

A) Comparison of Hip- and NEF-binding surfaces on Hsp70N. Residues of the NBD that form contacts with 

Hip, BAG1, BAG2, BAG5, HspBP1 and Sse1 in the respective crystal structures are indicated on the sur-

face of the human Hsp70NBD in the ADP state. Subdomain IIB of the NBD of Hsp70 is highlighted in yel-

low. In the crystal structures of NEF-Hsp70 NBD complexes, subdomains IIB are rotated outwards. The nu-

cleotide binding pocket is located in the center of the molecule. 

B) Effect of NEFs on MABA-ADP dissociation from the Hsp70N•MABA-ADP complex in the absence of Hip. 

Equimolar concentrations (2.5 µM) of the Hsp70 and NEFs (Hsp110, BAG1, HspBP1 and Sse2) were used 

in the assay. Error bars represent standard deviations from three independent experiments. 

C) Rates of MABA-ADP dissociation from the functional HipM-Hsp70N fusion protein in the presence of 

NEFs (Hsp110, BAG1, HspBP1 and Sse2). Equimolar concentrations of the proteins (2.5 µM) were used. 

Please note the 100-fold difference in scale compared to panel B 

D) Effect of Hip on MABA-ADP dissociation from Hsp70N in the presence of NEFs (Hsp110, BAG1, 

HspBP1). Equimolar amounts of the proteins were used (2.5 µM). MABA-ADP Koff rates for Hsp70N 

(black) and an equimolar mixture of Hip and Hsp70N (gray) are shown. Error bars represent standard devia-

tions from three independent experiments. 

E) Competition at likely cytosolic concentration ratios. The complex of MABA-ADP and Hsp70N (2.5 µM) 

was mixed with buffer containing ATP (250 µM) and NEFs (BAG1, HspBP1, Hsp110, Sse2) (0.5 µM) ei-

ther in presence or absence of Hip (2.5 µM) at 30 °C in a stopped-flow apparatus. Koff rates for Hsp70N 

(black) and an equimolar mixture of Hip and Hsp70N (white) are shown. Error bars represent standard devi-

ations from three independent experiments. 
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First we tested the stimulatory effect of NEFs on the MABA-ADP dissociation from the 

Hsp70N•MABA-ADP complex in the absence of Hip. Equimolar amount of Hsp70 and NEFs 

(Hsp110, BAG1, HspBP1 and Sse2) were studied (Fig. 37B). Compared to spontaneous ADP 

dissociation from Hsp70 (koff ~ 0.34 s
-1

), all the NEFs strongly accelerated ADP release. Addi-

tion of equimolar amounts of Hip had almost no effect (Fig. 37D), in line with the roughly 

~100-fold higher affinity of NEFs for Hsp70 found in previous studies (Raviol et al., 2006; 

Shomura et al., 2005; Sondermann et al., 2001). However, the maximal stabilization effect of 

Hip can be observed by employment of the fusion protein HipM-Hsp70N (Fig. 37C). Interest-

ingly, the yeast Hsp110 protein Sse2 competed somewhat more efficiently, perhaps because a 

Hip homolog does not exist in yeast (Fig. 37B). 

Hip was reported to be present in the cytosol at concentrations similar to Hsc70 (~ 1 µM) 

(Höhfeld et al., 1995), while most NEFs are present only at ~ 10-fold lower levels. To mimic a 

more physiological ratio in the MABA-ADP release assay, equimolar amounts of Hip and 

Hsp70 in 5-fold molar excess to NEFs were used (Fig. 37E). This excess was however not suf-

ficient to suppress NEF action on Hsp70.Therefore, Hip cannot efficiently interfere with the 

binding of NEFs to Hsp70N under the assay conditions. 

Since the free Hip cannot efficiently compete with the binding of NEFs under the assay condi-

tions, we employed the functional fusion protein HipM-Hsp70N as a model for maximum Hip 

binding (Fig. 38).  

 

Figure 38: Effect of mutations in the HipM-Hsp70N interface on NEF-triggered MABA-ADP release. 

Rates of MABA-ADP dissociation from HipM-Hsp70N fusion proteins in the presence of NEFs (Hsp110, BAG1, 

HspBP1). Equimolar concentrations of the proteins were used. Koff rates for the functional HipM-Hsp70N fusion 

protein (black) and the inactive mutant HipM(D211K/Y212A)-Hsp70 (gray) are shown with standard deviations 

from three independent measurements. Note the difference in scale of the x-axes. 
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Virtually no acceleration of MABA-ADP release was observed, when stoichiometric amounts 

of the mammalian NEFs (Hsp110, BAG and HspBP1) were added to the MABA-ADP complex 

of the functional HipM-Hsp70N fusion protein (black bar in Fig. 38). The koff rate of the 

MABA-ADP dissociation remained below ~ 0.04 s
-1

. The NEF effect was restored in the dou-

ble mutation HipM(D211K/Y212A)-Hsp70N, which disrupts the functional interface between 

Hip and Hsp70, reflecting that presence of HipM attached to Hsp70N (gray bar in Fig. 38).  

In the presence of saturating concentrations of Hip, the NEFs thus do not effectively bind to 

Hsp70. When Hip binding is reinforced by other means, Hip should therefore effectively com-

pete with NEFs. 

 

4.8 Hip function in vivo 
 

To evaluate the functional relevance of the dimerization and of the putative substrate binding 

region of Hip in vivo, we employed a β-galactosidase reporter (GR). This established in vivo 

model system evaluates the effects of various molecular chaperones on the hormone-dependent 

maturation of glucocorticoid receptor (GR) in S. cerevisiae. (Nelson et al., 2004). In this model 

system lacking endogenous Hip, GR activity is measured via the expression of a steroid-

dependent β-galactosidase reporter (Fig. 39A). Almost complete conservation of the Hip con-

tact residues in the yeast Hsp70s Ssa1 and Ssa2 suggests that mammalian Hip interacts func-

tionally with yeast Hsp70. At limiting hormone levels, Hip expression increased the reporter 

activity  3-fold, reflecting the ability of Hip to enhance the conformational maturation of GR 

(Fig. 39C) 

A)  
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B)  

 

C)  

 

D)  

 

F)   

 

 

E)  

 

 

Figure 39: Hip functional study in vivo. 

A) The model system. Hip constructs and the glucocorticoid receptor (GR) protein from R. norvegicus were co-

expressed in a S. cerevisiae reporter strain expressing β-galactosidase (β-Gal) under control of the hormone-

dependent GR promoter; GRE (Riggs et al., 2003). Hip and GR functionally interact with the yeast Hsp70 

and Hsp90 machinery (Hsp70, Hsp90, Sti1). 

B) Schematic representation of the Hip, Hip(1-267) and Hip(45-368) constructs.  

C) Reporter gene activity upon expression of Hip mutants. β-Gal levels were measured upon the expression of 

Hip constructs. The relative amounts of functional GR compared to control cells without expressing Hip are 

indicated. Averages and standard deviations (s.d.) are from five independent experiments.  

Dimerization Hsp70 binding Substrate binding 
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D) Expression levels of Hip variants in yeast cells. Western blot of yeast reporter strains. S. cerevisiae cultures 

were grown to OD 1.5-2.0 at 30 °C in selective medium. Equal amounts of cells were harvested and sub-

jected to alkaline lysis. Cell extracts were separated on 12 % SDS-PAGE and probed by Western blotting 

against Hip using a polyclonal antiserum (Höhfeld et al., 1995). The strain transformed with p423ADH 

(empty vector) served as a control for background; phosphoglycerate kinase (PGK) was used as a loading 

control.  

E) Western blot signal of purified Hip and Hip(45-368). Left panel: Equimolar amounts of purified Hip and 

Hip(45-368) were analyzed by Ponceau-S protein stain; Right panel: Western blotting with anti-Hip anti-

body. 

F) The growth rate of the reporter strains. The growth rate for the different Hip variants in liquid shaking cul-

ture was analyzed by OD600 measurements during the assay.  

 

To dissect the impact of different features of Hip on its in vivo functionality, we also expressed 

selected Hip mutants in the model system. All Hip variants had similar expression levels (Fig. 

39D). The growth rates of the reporter strains were closely similar (Fig. 39F). In accordance 

with previous findings (Nelson et al., 2004), the monomeric construct Hip(45-368) had signifi-

cantly reduced activity (Fig. 39B & 39C), although the protein was expressed similar to wild-

type Hip (Fig. 39D). This finding strongly suggests that avidity plays an important role in the 

interaction of Hip with Hsp70-substrate complexes. In addition, direct contacts of the substrate 

with the two arms of Hip might be important. This notion is supported by the poor in vivo ac-

tivity of Hip(1-267), lacking the putative substrate binding region. However, in our in vitro 

MABA-ADP release assay, Hip(1-267) was as active as full-length Hip (Fig. 20E), suggesting 

that the direct interaction with Hsp70 is unperturbed in this mutant. 

The mutants L210S, D211K/Y212A and R235A/K236D, which disrupted the Hip-Hsp70 inter-

face similarly, diminished the ability of Hip to support GR activation. Thus, in vivo function of 

Hip depends on direct interactions with Hsc70 (Fig. 39C). Interestingly, expression of the hy-

per-active mutant I148A slightly reduced GR maturation relative to wild-type Hip. This is 

again evidence for careful control of Hip activity in vivo. Expression of Hip under a stronger 

promotor caused a temperature-sensitive phenotype in the reporter system (Nelson et al., 2004). 

The phosphomimetic S74E/S75E/S78E mutant and the S74N/S75N/S78N mutation used as 

negative control for in vivo phosphorylation were again more-or-less neutral (Fig. 39C), similar 

to the MABA-ADP release assay (Fig. 35D). 

In summary, the in vivo studies of Hip suggested that function requires Hip dimerization and 

substrate binding capacity in addition to the capability to directly interact with Hsc70. 
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5 Discussion 
 

Protein folding to a well-defined conformation is essential to perform biological function. 

Moreover, misfolded proteins cause neurodegenerative diseases such as Alzheimer’s, Parkin-

son’s and Huntington’s disease. The Hsp70 chaperones are central to the cellular defense 

against toxic protein aggregation through an ATP-dependent reaction cycle, which is regulated 

by co-chaperones of the J-protein family and by nucleotide exchange factors (NEFs). 

Hip, Hsp70 interacting protein, is so far the only known Hsp70 co-chaperone that stabilizes 

Hsp70-client protein complexes by retarding the dissociation of ADP from Hsp70. In this study, 

we present the first complete structural model of this novel regulator of metazoan Hsp70 in-

cluding the crystal structures of the dimerization domain and the TPR domain. We performed 

an in-depth mechanistic analysis of the interaction of the Hip core domain with the nucleotide 

binding domain (NBD) of human Hsp70. The structure-guided mutational analysis showed that 

Hip forms a bracket over the ATPase domain, reducing its otherwise dynamic nature and lock-

ing the ADP-bound state. Moreover, Hip directly counteracts the binding of various NEFs, 

which catalyze ADP dissociation and facilitate substrate release upon ATP re-binding. To be-

come fully functionally effective, Hip must interact not only with the NBD but also with the 

Hsp70-bound client protein. Our data explains how Hip enhances aggregation prevention by 

Hsp70 and suggests how Hip would potentially divert the client proteins to the downstream 

proteostasis machinery, such as Hsp90 or the proteasome. 

In the following sections, we contrast and compare the results of this study with previous stud-

ies and present an integrated model for the Hsp70 mechanism. 

 

5.1 Comparison of the TPR domains in Hip and Hop 
 

The basic function of TPR domains is to mediate protein-protein interactions, particularly facil-

itating interactions with heat shock proteins. The binding residues are normally presented on 

the concave face of the TPR solenoid and bind with high specificity to the target peptide 

(D'Andrea and Regan, 2003). Hop is the paradigm for TPR domain interaction with Hsp70 and 

Hsp90. The crystal structures of the TPR domain-peptide complexes revealed that Hop specifi-
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cally recognizes the C-terminal pentapeptides of Hsp70 and Hsp90 through distinct TPR do-

main modules (Scheufler et al., 2000).  

 

A)  

 

B)  

                             

Figure 40: Comparison of the binding sites in the TPR domains of Hip and Hop. 

A) Overlay of crystal form I of Hip(78-247) (dark blue) and the Hop-TPR1 peptide complex (gray). The 

proteins are shown in ribbon representation. The backbone of the Hop-bound peptide is represented as stick 

model. The last α-helix of Hop is absent in form I of Hip(78-247). 

B) Ribbon representation of the overlay between the complex structures of the Hip-Hsp70 and Hop-peptide. 

Hsp70N is shown in green with subdomain IIB in gold. Hip(78-247) is shown in blue.  

 

In comparison to the TPR1 domain of Hop, the solenoid formed by the TPR repeats in Hip has 

a more pronounced curvature. However, unlike Hop, Hip does not employ the concave face of 

the solenoid for binding of Hsp70. It instead employs the upper edge of the solenoid, which is 

shape-complementary to the Hsp70 surfaces around the closed nucleotide binding cleft in sub-

domains IB and IIB (left panel in Fig. 40B). In addition, the elongated C-terminal helix α10 of 

Hip contacts lobe IA in the NBD of Hsp70 (right panel in Fig. 40B). This rather flat interface 

appears to be stabilized by electrostatic interactions with the negative end of one α-helix dipole 

in Hsp70. Substitution of the positively charged residues Arg235 and Lys236 had a surprisingly 
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strong effect on Hip function (see Table 15, Fig. 35C, Fig. 35D and Fig. 39C). The crystal 

structures of the middle domain of Hip show that the TPR domain is a versatile structural scaf-

fold for protein-protein interactions that can support both interactions with extended peptide 

motifs as well as surface motifs in folded proteins.  

 

5.2 Tentative model for the overall structure of Hip dimer 
 

With structural models of the folded domains at hand, we can now construct a tentative model 

for the complete Hip dimer (Fig. 41).  

 

         Figure 41: Tentative model of dimeric full-length Hip. 

 

 

Consistent with previous observations (Dores-Silva et al., 2012; Velten et al., 2000), our small 

angle X-ray scattering (SAXS) analysis indicated an elongated conformation for the complete 

80 kDa Hip dimer with a maximum extension of  200 Å. In the model, it is important to note 

that all the folded domain structures are connected by long, negatively-charged linkers, which 

could span much greater distances (assuming a contour length of 3.6 Å per residue). Consider-

ing the elongated shape of HipM, the DP domains at the ends of long tethers might not be re-

solved in the SAXS experiments at all, because of limited contrast against the solvent back-

ground. Electrostatic repulsion between the pronounced negative charges in the linkers might 
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force the Hip dimer into an open, extended conformation, allowing independent and simultane-

ous binding of two Hsp70 molecules at each arm of the dimer.  

Analysis of the CD spectra and the Kratky plot suggests the absence of regular secondary struc-

ture and disorder for most of the linker parts in Hip. This disorder may provide the conforma-

tional flexibility for Hip to recognize a wide range of Hsp70substrate protein complexes.  

The helices of the dynamic DP domains form hydrophobic grooves, which could serve as bind-

ing sites for exposed hydrophobic segments in non-native substrate proteins. Since the DP do-

mains are expendable for Hsp70 binding in vitro, but important for the enhancement of the con-

formational maturation of GR in vivo, such interactions appear to play an important role for Hip 

functionality. This appears to work however only in dimeric Hip, suggesting an avidity-

enhanced binding mechanism requiring multiple recognition sites in the substrate complex. 

 

5.3 Specific recognition of the Hsp70 ADP state by Hip 
 

Consistent with the earlier proposal by Höhfeld et al. in 1995, our detailed ITC analysis 

demonstrated preferential binding of Hip to ADP-bound Hsp70 (KD = 8 µM), compared to the 

apo- and ATP states of Hsp70 (KD = 51 µM and not determinable, respectively). Our analysis 

showed that the presence of ATP in the binding pocket of Hsp70 as such had only a minor in-

fluence. 

Superposition of the Hip-Hsp70 core complex with the recently solved crystal structure of a 

mutant full-length bacterial Hsp70 (DnaK) in complex with ATP indicates how Hip might dis-

cern the ADP-bound from the ATP-bound form of the molecular chaperone (Kityk et al., 2012) 

(Fig. 42). 
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Figure 42: Comparison of the crystal structures of DnaK-ATP and the HipM-Hsp70N-ADP complex.  

An overlay of the two structures is shown. For superposition of the structures, the lobe II parts (subdomains IIA 

and IIB) of the NBDs were aligned. DnaK-ATP is shown in red, Hsp70N-ADP in green and HipM in blue rib-

bons, respectively. HipM is enveloped by a molecular surface.  

 

In the ATP bound state, DnaK is in a compact conformation and the 3-helix bundle domain of 

the Hsp70 SBD is associated with the flank of the NBD. ATP binding to Hsp70 furthermore 

induces a twist between lobes I and II of the Hsp70 NBD, causing a slight rotation of lobe I of 

DnaKATP around the vertical axis, resulting in a large (4 Å) relative shift of the top-left part 

of lobe I compared to ADP-bound Hsp70. This part contributes critically to the interface with 

Hip (indicated by an arrow). The ATP-induced shift would cause a severe clash with HipM. 

Therefore, Hip can no longer bind to both lobes of Hsp70 in the ATP-bound conformation sim-

ultaneously. Furthermore, the 3-helix bundle domain of the Hsp70 SBD would clash with the 

N-terminal region of HipM, which is indicated by a double arrow (Fig. 42). In the ADP-bound 

state, the 3-helix bundle domain of DnaK forms a lid over the peptide binding β-sandwich do-

main, which is loosely tethered via a flexible linker roughly opposite from the Hip interaction 

site. Thus it is unlikely to interfere with Hip binding. 

The nucleotide-free state of Hsp70 (apo-state) is probably lowly populated in the nucleotide-

rich environment of the cytosol. In principle, it should have protein substrate affinity similar to 

the ADP-bound state, and as such should be a target for Hsp70-substrate complex stabilization. 

The lower affinity of Hip to this state is probably caused by increased flexibility of the Hsp70 

NBD, as suggested by molecular dynamic simulations (Zhuravleva and Gierasch, 2011). This 

would transiently disrupt the simultaneous contacts of Hip to subdomains IB and IIB in Hsp70. 
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5.4 Mechanism of Hip-mediated stabilization of Hsp70 in the ADP state 
 

The crystal structure of the Hip:Hsp70 core complex revealed the molecular details of the func-

tional interaction. Through a large number of polar and hydrophobic interactions, Hip stabilizes 

Hsp70N by forming a bracket over the nucleotide binding cleft, locking ADP in the nucleotide 

pocket. The binding interface involves the highly conserved edge of the TPR domain (residue 

176-181 and 210-214) in Hip, which contacts subdomains IA, IB and IIB of Hsp70N. 

A)  

 

B)  

 

 

Figure 43: Interpretation of the Hip:Hsp70 structure.  

A) Left panel: Superposition of Hsp70 NBD structures. Subdomain IIB indicated in yellow is attached via a 

flexible hinge to the rest of the NBD (green). This becomes apparent by comparing the conformations of 

the NBD in crystal structures of NBD:NEF complexes and the free ADP-bound form (gray) (Arakawa et 

al., 2010; Polier et al., 2008; Schuermann et al., 2008; Sondermann et al., 2001; Wilbanks and McKay, 

1995; Xu et al., 2008). Right panel: The structure of the Hip:Hsp70 core complex is shown. Peptide back-

bones are represented as -carbon traces.  

B) Schematic representation of structural dynamics of the Hsp70 NBD and the mechanism for stabilization of 

the closed conformation by Hip. The outward rotation of subdomain IIB - indicated by a curved red arrow - 

breaks the respective contacts to ADP, thereby accelerating nucleotide dissociation (Liu et al., 2010). The 

contacts of the middle domain of Hip (dark blue) to subdomains IIB and IB/IA lock the domain in the 

closed conformation with ADP buried in the center. Absence of nucleotide greatly enhances the dynamics 

of the Hsp70 NBD, which would prevent stable Hip binding. In the ATP-bound conformation, the halves 

of the NBD are twisted with respect to each other, displacing the Hip-binding interface segments. 
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Figure 44 shows an overview of the structural dynamics of the NBD of Hsp70. It is interesting 

to note the motion of subdomain IIB to allow ADP release, which is otherwise firmly surround-

ed by Hsp70 and cannot easily escape. A simulation of the rotatory movement is shown in Fig-

ure 44A by comparing the NBD in crystal structures of NBD:NEF complexes and the ADP-

bound form, which is closely similar to the structure of the NBD in the core complex with Hip. 

Interaction of Hip with both subdomain IIB and the opposing lobe I dampens this dynamic 

movement, thereby slowing dissociation of ADP.  

 

5.5 Antagonism between Hip and NEFs 
 

In principle, Hip and NEFs have opposing effects on the reaction cycle of Hsp70. Hip binding 

would rather slow or inhibit the cycle, while NEFs together with J-domain proteins would drive 

it forward. Comparison of the respective structures and our biochemical data show that Hip and 

NEF binding to Hsp70 are mutually exclusive. 

 

Notably, Hip has much lower binding affinity to Hsp70 in vitro (KD ~ 10 µM) than the NEFs, 

which have remarkably similar affinities (KD ~ 0.1 µM) (Raviol et al., 2006; Shomura et al., 

2005; Sondermann et al., 2001). The interaction between Hip and substrate-free Hsp70 appears 

to be largely, if not exclusively, mediated by the TPR domain of Hip (HipM) and the Hsp70 

NBD, but with an affinity probably too low to be biologically relevant. In the cytosol, this may 

be partially compensated by a favorable concentration ratio between Hip and NEF (NEFs in-

hibit Hsp70 at 1:1 ratio). While the competition under physiological conditions remains to be 

experimentally investigated, our preliminary analysis of Hip-mediated attenuation of MABA-

ADP dissociation from Hsp70N in the presence of 10 mM phosphate suggests that increased 

concentrations of this metabolite might be in favor of Hip binding (Fig. 20C). In presence of 

phosphate, ADP appears to bind more tightly to Hsp70 (Arakawa et al., 2011), suggesting that 

the dynamics of the NBD is decreased. The binding characteristics of Hip as judged from the 

concentration dependence in presence of 10 mM phosphate, appear unaltered (Fig. 20C). NEFs 

however appear to merely capture and stabilize the open conformation of the NBD, which will 

be less populated under such circumstances. Stabilization of ADP complexes of eukaryotic 

Hsp70 by phosphate might also explain why NEFs are required in the eukaryotic cytosol, alt-



5  Discussion 

 

124 

 

hough the spontaneous off-rate is sufficient to drive the folding reaction in vitro. This is in con-

trast to the bacterial homolog DnaK, which also depends on the NEF GrpE in vitro. The finding 

that the hyper-activating mutation I148A of Hip has not been selected during evolution indi-

cates that Hip can effectively compete with NEFs under physiological conditions. 

 

Under non-stressed conditions, Hip likely needs direct or indirect interactions with Hsp70-

bound substrate to effectively compete with NEFs. We were unable to demonstrate this effect 

in vitro with denatured firefly luciferase or carboxymethylated bovine α-lactalbumin using our 

MABA-ADP release assay (data not shown). As judged from GR maturation, the putative sub-

strate binding capability of Hip is as important as its capacity to interact with Hsp70 in vivo. 

However, avidity could greatly enhance the binding of Hip dimers to both substrates and Hsp70, 

as long as they form complexes with multiple binding sites. 

 

Our findings therefore suggest that in order to effectively compete with NEF binding to Hsp70, 

Hip dimers would have to interact simultaneously with two Hsp70 molecules bound to different 

regions of the same substrate protein or to Hsp70s associated with small protein aggregates. 

The binding of multiple Hsp70 molecules may reflect the requirement of a specific substrate 

protein for prolonged chaperone stabilization. Thus, conformational properties of the client 

protein would determine the extent to which Hip decelerates Hsp70 cycling. Future experi-

ments will have to test this element of the model, and the 140-residue protein -synuclein 

might be a promising substrate candidate, which was shown to undergo nucleotide-dependent 

interactions with Hsp70 (Roodveldt et al., 2009).  

 

5.6 Possible role of Hip in protein quality control 
  

Hip is so far the only known Hsp70 co-chaperone that stabilizes Hsp70-client protein complex-

es by retarding the dissociation of ADP from Hsp70. Previous model suggested the regulation 

of Hip as a tetramer to stabilize Hsp70 in the ADP-bound state (Ziegelhoffer et al., 1996). 

Hsp70 is both involved in the folding of newly made and stress-denatured proteins as well as in 

the timely degradation of terminally misfolded proteins. Figure 44 shows an overview for the 

potential role of Hip in the cellular protein homeostasis machinery.  
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Figure 44: Model for the role of Hip in protein quality control. 

A schematic model for the cooperation of Hsp70 and its cochaperones in protein folding is depicted. Hsp70 and 

Hip are indicated in yellow and red color, respectively. J-domain proteins and NEFs (blue color) drive the 

Hsp70 cycle of substrate binding and release. Hip attenuates Hsp70 cycling by stabilizing the ADP state, there-

by increasing the substrate “holdase” activity of Hsp70 and diverting certain Hsp70-ADP-substrate complexes 

towards Hsp90 or proteasomal degradation.  

 

J-domain proteins and NEFs drive the Hsp70 cycle of substrate binding and release. For both 

factors multiple isoforms co-exist in the cytosol, presumably adapting Hsp70 cycling rates to 

specific substrates.  

Hip attenuates Hsp70 cycling by stabilizing its ADP state, thereby increasing the substrate 

“holdase” activity of Hsp70. This might occur by specific recognition of the bound substrate, 

enabling slow cycling and limiting unnecessary ATP expenditure on recalcitrant substrates. In 

addition, Hip preferentially targets and stabilizes Hsp70ADP-substrate complexes containing 

multiple Hsp70 molecules. Binding of multiple Hsp70 molecules may reflect the requirement 

of a specific client protein for prolonged chaperone stabilization. Notably, the conformational 

properties of the client protein would determine the extent to which Hip decelerates Hsp70 cy-

cling. Prolonged residence on Hsp70 mediated by Hip may prevent aggregation or facilitate 

substrate transfer to downstream Hsp90 or to the degradation machinery. The decision to fold 
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or degrade the client might depend on the competition between downstream co-chaperones, 

Hop/Sti1 and the ubiquitin ligase Chip. Both of them target the C-terminal EEVD motif of 

Hsp70 (Scheufler et al., 2000; Zhang et al., 2005). Previous studies showed that Hip cooperated 

with both factors. Hop and Hip synergize in the maturation of GR (Nelson et al., 2004) and Hip 

and Chip support increased proteasomal degradation of iNOS (Wang et al., 2013). 

 

We have demonstrated that Hip binds to the NBD domain of Hsp70. It was known that Hop 

binds to the SBD of Hsp70. Thus a simultaneous interaction of Hop and Hip with Hsp70 seems 

possible. Consistently, a complex containing Hsp70, Hsp90, Hip and Hop has been identified 

as an intermediate during progesterone receptor activation (Smith et al., 1995). Besides Hop, 

Chip also interacts with Hsp70 and plays an essential role in balancing substrate protein folding 

and degradation. It was reported that Chip associated with Hsp70 and blocked the ATPase cy-

cle of the chaperone (Ballinger et al., 1999). Apparently Hsp70 selects substrates for Chip-

mediated ubiquitylation. Thereby Chip might associate with Hsp70 to promote the ubiquityla-

tion of diverse substrates.  

The balance between the diverse pathways, active protein folding by Hsp70, hand-over to 

Hsp90 or to the protein degradation machinery, apart from the cellular concentrations of the 

components and phosphate levels – might also be regulated by the post-translational modifica-

tions of Hip. Phosphorylation of Hip at serine residues 74, 75 and 78 adjacent to its Hsp70-

binding domain and within the DP domain likely modulates the activity of Hip, providing addi-

tional regulation of substrate flux (Barker and Benovic, 2011; Olsen et al., 2006). 

 

Both Hop and Chip could also be involved in the interaction of Hip with Hsp70 and substrate, 

but the underlying mechanism remains elusive. One possibility to study the simultaneous inter-

actions of Hip-Hsp70 with Hop or Chip in detail would be to determine the crystal structures of 

complexes of the full-length proteins.  
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6 Implications and outlook 
 

Determination of three-dimensional structures of Hip and the Hip-Hsp70 core complex was the 

main achievement in this study. We presented the crystal structures of the N-terminal dimeriza-

tion domain of Hip, the TPR binding domain for Hsp70 and the core complex with the ATPase 

domain of Hsp70. Thus, this work provides novel insights into the function of Hip at the mo-

lecular level.  

The biochemical and structural data presented in this work lead to a detailed model for the 

function of metazoan Hsp70 and provide a preliminary model of the regulatory role of Hip in 

protein quality control. Hip may function as a central scaffolding protein that coordinates the 

interplay between multiple chaperones such as Hsp40, Hsp70 and Hsp90 and the proteasomal 

degradation machinery. Since Hip associates with Hsp70-substrate complexes, an important 

and interesting future goal will be to identify the client proteins of Hip. If the substrates include 

signaling molecules known to interact with Hsp90, this would provide clear evidence that Hip 

contributes to the conformational regulation of these clients and cooperates with Hsp90 in their 

biogenesis. 

Increasing the level of Hip has been shown to reduce pathologic protein aggregation in cellular 

models of Parkinson’s and Huntington’s disease (Howarth et al., 2009; Roodveldt et al., 2009). 

Enhancing Hip activity or mimicking its effect on Hsp70 pharmacologically (Wang et al., 2013) 

may prove useful in facilitating the proteolytic clearance of toxic, aggregation-prone proteins. 

Similarly, boosting Hip function might be advantageous in cancer therapy (Zhou et al., 2012) 

by accelerating the clearance of metastable, oncogenic mutant proteins.  

Given that mammalian cells likely possess multiple isoforms of J-proteins and different types 

of NEFs in the same compartment, controlling the ATPase activity of Hsp70 appears to be one 

central determinant for regulation of chaperone activity. Hip competes with NEFs for the bind-

ing to the ADP state of Hsp70, which might have far-reaching effects. It will be interesting to 

see whether retarding ADP-release from Hsp70 is also utilized more extensively in the regula-

tion of protein quality control. This might create new opportunities for drug design and thera-

peutic interventions. 
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8 Appendix 

8.1 List of primers 
 

Oligonucleotides utilized in this study are listed here. Oligonucleotides were purchased from 

Metabion (Martinsried, Germany). 

Construct Primer Sequence 5’ → 3’ Endonuclease 

Hip(1-44) LZ_HIP1f CATGCCATGGACCCCCGCAAAGTGAGCGAGC NcoI 

 LZ_HIP2r CCCAAGCTTAAGGTGGTACTTTACCCCCCATGCTCTCC HindIII 

Hip(1-267) AB99f phos-GCCCGCGGTGGAATGGACCCCCGCAAAGTGAGCG 

AGC 
EheI-SacII 

 AB101r CCCAAGCTTATTCTTCCCTTTGGGCTTTTTCATGCTCTT 

CTCG 
HindIII 

Hip(1-368) AB99f phos-GCCCGCGGTGGAATGGACCCCCGCAAAGTGAGCG 

AGC 
EheI-SacII 

 AB102r CCCAAGCTTATGAGTGACCTCCAAACTTGGCTGACAA 

TTTACTG 
HindIII 

Hip(45-267) LZ_HIP5f CCCCCATGGCTACTCATAAAGCGAAGTCAGAAGAA A 

AC 
NcoI 

 LZ02r CGGGGTACCTTATTCTTCCCTTTGGGCTTTTTCATGCT 

CTTCTCG 
KpnI 

Hip(45-368) LZ_HIP5f CCCCCATGGCTACTCATAAAGCGAAGTCAGAAGAAA 

AC 
NcoI 

 AB102r CCCAAGCTTATGAGTGACCTCCAAACTTGGCTGACAA 

TTTACTG 
HindIII 

Hip(78-234) AB100f phos-GCCCGCGGTGGAAGCGATCTAGAAAT 

TGACAATGAAGGTGTAATTGAAGC 
EheI-SacII 

 LZ_HIP4r CCCAAGCTTACCGATGTTCAGCAATTTTTTGAGCCCG 

AGG 
HindIII 

Hip(78-247) AB100f phos-GCCCGCGGTGGAAGCGATCTAGAAAT 

TGACAATGAAGGTGTAATTGAAGC 
EheI-SacII 

 LZ20r CCCAAGCTTATTTTATCTCTCGCTCTTCACGTTTTCGCT 

CATA  
HindIII 

Hip(78-267) AB100f phos-GCCCGCGGTGGAAGCGATCTAGAAAT 

TGACAATGAAGGTGTAATTGAAGC 
EheI-SacII 

 AB101r CCCAAGCTTATTCTTCCCTTTGGGCTTTTTCATGCTCTT 

CTCG 
HindIII 

Hip(78-368) AB100f phos-GCCCGCGGTGGAAGCGATCTAGAAAT 

TGACAATGAAGGTGTAATTGAAGC 
EheI-SacII 

 AB102r CCCAAGCTTATGAGTGACCTCCAAACTTGGCTGACAA 

TTTACTG 
HindIII 

Hip(107-267) LZ23f GCCGAGGCGATGATGGATGAAGCAAATGAAAAG EheI 

 AB101r CCCAAGCTTATTCTTCCCTTTGGGCTTTTTCATGCTCTT 

CTCG 
HindIII 

Hip(312-368) LZ_HIP3f CATGCCATGGGACTCAACGAAATCCTCAGTGACCCAG 

AG 
NcoI 

 AB102r CCCAAGCTTATGAGTGACCTCCAAACTTGGCTGACAA 

TTTACTG 
HindIII 
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Table 16: Primer utilized for generation of Hip constructs in this study.  

The names of constructs, primers with respective nucleotide sequences and the corresponding restriction endonu-

cleases sites are listed in the respective columns. The underlined residues indicate restriction endonuclease sites 

introduced for cloning. The 5’- phosphorylation of forward primers is indicated by phos. 

 

 

Hip Mutant Primer Sequence 5’ → 3’ 

K117A LZ89f_K117A ATGAAGCAAATGAAAAGGCGGGGGCTGCCATCGACGCTC  

 LZ90r_K117A GAGCGTCGATGGCAGCCCCCGCCTTTTCATTTGCTTCAT  

G118V LZ34f_HIPFM1 GAAGCAAATGAAAAGAAGGTGGCTGCCATCGACGCTCTA  

 LZ35r_HIPFM1 TAGAGCGTCGATGGCAGCCACCTTCTTTTCATTTGCTTC  

I148A LZ93f_I148A CTAAACCCTCGCTTGGCCGCCCTGTATGCCAAGAGA   

 LZ94r_I148A TCTCTTGGCATACAGGGCGGCCAAGCGAGGGTTTAG   

N177K LZ70f_N177K GACAGAGCTATTGAAATAAAGCCTGATTCAGCTCAGCCA   

 LZ71r_N177K TGGCTGAGCTGAATCAGGCTTTATTTCAATAGCTCTGTC   

S180E LZ96f2_S180E ATTGAAATAAACCCTGATGAGGCTCAGCCATACAAATGGAGA 

 LZ97r2_S180E TCTCCATTTGTATGGCTGAGCCTCATCAGGGTTTATTTCAAT 

K185E LZ72f_K185E GATTCAGCTCAGCCATACGAATGGAGAGGGAAAGCGCAC   

 LZ73r_K185E GTGCGCTTTCCCTCTCCATTCGTATGGCTGAGCTGAATC   

L210S LZ87f_L210S TTGCCCTGGCCTGTAAATCCGACTATGATGAGGACGC  

 LZ88r_L210S GCGTCCTCATCATAGTCGGATTTACAGGCCAGGGCAA  

N177A/D179A LZ85f_ND AGAGCTATTGAAATAGCCCCTGCCTCAGCTCAGCCATAC  

 LZ86r_ND GTATGGCTGAGCTGAGGCAGGGGCTATTTCAATAGCTCT  

H196S/E199A LZ91f_HE ACAGACTCCTGGGTTCTTGGGAAGCCGCAGCTCGCGAT  

 LZ92r_HE ATCGCGAGCTGCGGCTTCCCAAGAACCCAGGAGTCTGT   

D211K_Y212A LZ74f_2M CTGGCCTGTAAATTGAAGGCCGATGAGGACGCCAGTGCA   

 LZ75r_2M TGCACTGGCGTCCTCATCGGCCTTCAATTTACAGGCCAG   

R235A/K236D LZ83f_RK AAATTGCTGAACATCGGGCCGACTATGAGCGAAAACGTGAAG 

AGC  

 LZ84r_RK GCTCTTCACGTTTTCGCTCATAGTCGGCCCGATGTTCAGCAAT 

TT  

S74E/S75E/S78E LZ95f_3E GCCGGAGAGGAGGAGGAGGAGGATCTAGAAATTGACAATGA 

AGGTGTAATTGAA 

 LZ20r CCCAAGCTTATTTTATCTCTCGCTCTTCACGTTTTCGCT CATA  

S74E/S75E/S78E LZ100f_3E AAGACAGAGGAGCCAGAGGAGGAGGAGGAGGATCTAGAAA 

TT 

 LZ101r_3E AATTTCTAGATCCTCCTCCTCCTCCTCTGGCTCCTCTGTCTT  

S74N/S75N/S78N LZ98f_3N AAGACAGAGGAGCCAAACAACGAGGAGAACGATCTAGAAAT 

TGAC   

 LZ99r_3N 
GTCAATTTCTAGATCGTTCTCCTCGTTGTTTGGCTCCTCTGTCT 

T   
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Table 17: Primers utilized for site-directed mutagenesis on Hip.  

Point mutations were introduced via a PCR based mutagenesis strategy into Hip. The sites of point mutations are 

listed on the left column. The respective names of the primer and the corresponding oligonucleotide sequences are 

listed. The modified sites are highlighted by bold characters. 

 

Construct Primer Sequence 5’ → 3’ Endonuclease 

Hip(78-234)-3aa-

Hsp70N 
AB100f phos-GCCCGCGGTGGAAGCGATCTAGAAAT 

TGACAATGAAGGTGTAATTGAAGC 
EheI-SacII 

 LZ43r CCCGGATCCACCCCGATGTTCAGCAATTTTT 

TGAGCCCGAGG    
BamHI 

 LZ51r CCCGAATTCGGATCCACCCCGATGTTCAGCA 

ATTT  
EcoRI 

Hip(78-234)-6aa-

Hsp70N 
AB100f phos-GCCCGCGGTGGAAGCGATCTAGAAAT 

TGACAATGAAGGTGTAATTGAAGC 
EheI-SacII 

 LZ44r CCCGGATCCACCGGAGCCACCCCGATGTTCA 

GCAATTTTTTGAGCCCG  
BamHI 

 LZ52r CCGAATTCGGATCCACCGGAGCCACCCCG   EcoRI 

Hip(78-234)-9aa-

Hsp70N 
AB100f phos-GCCCGCGGTGGAAGCGATCTAGAAAT 

TGACAATGAAGGTGTAATTGAAGC 
EheI-SacII 

 LZ45r GGAGCCACCTCCAGCACCCCGATGTTCAGCA 

ATTTTTTGAGCCCG    
― 

 LZ46r CCCGGATCCACCGGAGCCACCTCCAGCACCC 

CG    
BamHI 

 LZ53r CCCGAATTCGGATCCACCGGAGCCACCTCC   EcoRI 

HipM-3aa-Hsp70N AB100f phos-GCCCGCGGTGGAAGCGATCTAGAAAT 

TGACAATGAAGGTGTAATTGAAGC  
EheI-SacII 

 LZ76r_F3aa CCCGGATCCACCTTTTATCTCTCGCTCTTCAC-

GTTTTCGCTCA  
BamHI 

HipM-6aa-Hsp70N AB100f phos-GCCCGCGGTGGAAGCGATCTAGAAAT 

TGACAATGAAGGTGTAATTGAAGC 
EheI-SacII 

 LZ77r_F6aa CCCGGATCCACCGGAGCCACCTTTTATCTCTC 

GCTCTTCACGTTTTCGCTCA 
BamHI 

HipM-9aa-Hsp70N AB100f phos-GCCCGCGGTGGAAGCGATCTAGAAAT 

TGACAATGAAGGTGTAATTGAAGC 
EheI-SacII 

 LZ78r_F9aa GGAGCCACCTCCAGCACCTTTTATCTCTCGCT 

CTTCACGTTTTCGCTCA 
― 

 LZ79r_F9aa CCCGGATCCACCGGAGCCACCTCCAGCACCTT 

TTAT 
BamHI 

Hsp70N-HipM LZ80f_Hsp70N CCCGAATTCATGGCCAAAGCCGCGGCGATCG  EcoRI 

 LZ81r_Hsp70N CCCTCGAGCCCCATCAGGATGGCCGCCTG  XhoI 

 LZ82f_HIPF GGGCTCGAGAGCGATCTAGAAATTGACAATG 

AAGGTGTAATTGAA  
XhoI 

 LZ20r 
CCCAAGCTTATTTTATCTCTCGCTCTTCACGTT 

TTCGCTCATA  
HindIII 

Table 18: Primers utilized for generation of Hip-Hsp70 fusion protein in this study.  

The names of fusion proteins, primers with respective nucleotide sequences and the corresponding restriction 

endonuclease sites are listed in columns. The underlined residues indicate the restriction sites introduced for clon-

ing. The phosphorylation of forward primers is indicated by phos. 
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Construct Primer Sequence 5’ → 3’ Endonuclease 

Hip(1-267) LZ102f phos-GCCACTAGTATGGATCCCCGCAAAGTGAG 

CGAG 

EheI-SpeI-ATG 

start codon 

 LZ110r CCGAATTCTTATTCTTCCCTTTGGGCTTTTTCAT 

GCTCTTC TCG 

EcoRI 

Hip(1-368) LZ102f phos-GCCACTAGTATGGATCCCCGCAAAGTGAGC 

GAG 

EheI-SpeI-ATG 

start codon 

 LZ109r CCGAATTCTTATGAGTGACCTCCAAACTTGGCTG 

ACAATTTACTG 

EcoRI 

Hip(45-368) LZ103f phos-GCCACTAGTATGGCTACTCATAAAGCGAAG 

TCAGAAGAAAACAC 

EheI-SpeI-ATG 

start codon 

 LZ109r CCGAATTCTTATGAGTGACCTCCAAACTTGGCTG 

ACAATTTACTG 

EcoRI 

pProEx-HtB  

(SpeI site mutant) 

LZ111f_SpeI 

mut 

CTACGTCGACGAGCTCTATAGTCGCGGCCGCTT 

TCGAA 

― 

 LZ112r_SpeI 

mut 

TTCGAAAGCGGCCGCGACTATAGAGCTCGTCGA 

CGTAG 

― 

Table 19: Primers utilized for generation of Hip constructs for the in vivo studies in yeast.  

The names of constructs, primers with respective nucleotides and the corresponding restriction endonucleases are 

listed in the respective column. The underlined residues indicate restriction endonuclease sites introduced for clon-

ing purposes. The phosphorylation of forward primers is indicated by phos. Since the yeast vectors p423GPD or 

p423ADP contains no start codon, ATG start codons were introduced via PCR amplification. ATG start codon and 

mutated SpeI site in pProEx-HtB vector are also highlighted in bold. The Hip mutants for yeast study were gener-

ated using the respective primers in Table 17. 

 

 

 

Hsp70 Mutant Primer Sequence 5’ → 3’ 

Hsp70_D199A LZ120f_D199A AACGTGCTCATCTTTGCCCTGGGCGGGGGCACCT  

 LZ121r_D199A AGGTGCCCCCGCCCAGGGCAAAGATGAGCACGTT  

Hsp70_T204A T204A_f TTTGACCTGGGCGGGGGCGCGTTCGACGTGTCCAT  

 T204A_r ATGGACACGTCGAACGCGCCCCCGCCCAGGTCAAA  

Table 20: Primers utilized for site-directed mutagenesis on full length human Hsp70.  

Point mutants of Hsp70variants were investigated via a PCR based mutagenesis strategy. The sites of point mu-

tants are listed on the left column. The names of primer and the corresponding nucleotides are listed, respectively. 

The mutated sites are highlighted in bold. 
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8.2 Hip alignment 
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Figure 45: Alignment of Hip sequences. 

Amino acid sequences of selected Hip homologs were aligned using the EBI Clustal-X server. Secondary structure 

elements for Hip from Rattus norvegicus are indicated above the sequences. The Hip domain structure is indicated 

by purple, blue and orange coloring of secondary structure elements in the dimerization, TPR and DP domains, 

respectively. Similar residues are shown in red and identical residues in white on a red background. Blue frames 

indicate homologous regions. The consensus sequence is shown at the bottom. Downward pointing arrowheads 

indicate interface residues facing the NBD of Hsp70. Blue and cyan colors indicate contacts to subdomains IA/IB 

and IIB of the Hsp70 NBD, respectively. Known acetylation and phosphorylation sites are indicated by asterisks in 

dark blue and purple, respectively. Reported ubiquitylation sites are shown as hollow circles. Mutation sites are 

indicated by upward pointing arrowheads, and colored according to their effect on Hsp70 binding. Green, yellow 

and red colors indicate decreased, neutral and increased dissociation rates of MABA-ADP from Hsp70N. The 

Uniprot/TREMBL accession codes for the sequences are: P50503, Rattus norvegicus; B3RY90, Trichoplax ad-

haerens; G5EE04, Caenorhabditis elegans; G4VJJ1, Schistosoma mansoni; Q86DS1, Drosophila melanogaster; 

C4M2C4, Entamoeba histolytica; C9ZKP5, Trypanosoma brucei gambiense (strain MHOM/CI/86/DAL972); 

A4HH33, Leishmania braziliensis; A4S4D2, Ostreococcus lucimarinus (strain CCE9901); B9Q4N1, Toxoplasma 

gondii; Q8I3J0, Plasmodium falciparum (isolate 3D7); Q93YR3, Arabidopsis thaliana. 

 

 



8  Appendix 

 

150 

 

8.3 Abbreviations 
 

AD Alzheimer’s Disease 

ADP Adenosine 5’-diphosphate 

AIP Aryl hydrocarbon receptor interacting protein 

AMP Ampicillin 

APS Ammonium peroxydisulfate 

AR Androgen receptor 

ATP Adenosine 5’-triphosphate 

BAG Bcl2-associated athanogene 

BLAST Basic Local Alignment Search Tool 

bp base pairs 

BSA Bovine serum albumin 

CD Circular dichroism 

CD C-terminal domain 

CFTR Cystic-fibrosis transmembrane-conductance regulator 

CHIP C-terminus of Hsp70-interacting protein 

CIP Calf intestinal phosphatase 

CV Column volume 

CXCR2 C-X-C-motif chemokine receptors type 2 

CXCR4 C-X-C-motif chemokine receptors type 4 

DNA Deoxyribonucleic acid 

DnaJ Bacterial Hsp40 chaperone 

DnaK Bacterial Hsp70 chaperone 

dNTPs Deoxyribonucleoside triphosphates 

DOC Deoxycorticosterone 

DTT Dithiothreitol 

ECL enhanced chemiluminescence 

E.coli Escherichia coli 

EDTA Ethylenediaminetetraacetic acid 

ER Endoplasmic reticulum 
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ESRF European Synchrotron Radiation Facility 

FKBP FK506-binding protein 

GR  Glucocorticoid Receptor 

GRE Glucocorticoid Responsive Element 

GRK5 G protein-coupled receptor Kinase 5 

GroEL Large growth E gene product 

GroES Small growth E gene product 

GrpE Growth P-like gene E 

HEPES N-(2-hydroxyethyl)piperazin-N’-2-ethanesulfonic acid 

Hip Hsp70-interacting protein 

His6 Hexa-histidine tagged  

Hsf1 Heat shock factor 1 

Hop Hsp70-Hsp90 organizing protein 

HPD histidine-proline-aspartate 

Htt Huntingtin 

Hsp Heat shock protein 

HspBP1 Hsp70 binding protein 1 

IMAC Immobilised metal ion affinity chromatography 

IPTG Isopropyl-β-D-1 thiogalactopyranoside 

ITC Isothermal titration calorimetry 

Kan Kanamycin 

LB Luria Bertani medium 

MD Middle domain 

MOPS 3-(N-morpholino)propanesulfonic acid 

MW Molecular weight 

NAC Nascent chain-associated complex 

NBD Nucleotide binding domain 

ND N-terminal domain 

NEF Nucleotide exchange factor 

NMR Nuclear magnetic resonance 

OD Optical density 
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PCR Polymerase chain reaction 

PDB Protein data bank 

PEG Polyethylene glycol 

Pfu Pyrococcus furiosus 

PGK Phosphoglycerate kinase 

PMSF Phenylmethylsulfonylfluoride 

PP5 Phosphoprotein phosphatase 5 

RAC Ribosome-associated complex 

rpm revolutions per minute 

RT Room temperature 

SBD Substrate binding domain 

SC Synthetic complete 

S.cerevisiae Saccharomyces cerevisiae 

SDS-PAGE Sodiumdodecylsulfate polyacrylamide geleletrophoresis 

sHsp Small heat shock protein 

SIRAS Single isomorphous replacement with anomalous scattering 

SLS Swiss Synchrotron Light Source 

SOD Superoxide dismutase 1 

TEM Transmission Electron microscopy 

TEMED N, N, N’, N’-tetramethylethlylenediamine 

TEV Tobacco etch virus 

TF Trigger factor 

TPR Tetratricopeptide repeat 

TRiC TCP-1 ring complex 

Tris Tris(hydroxymethyl)aminomethane 

UPS Ubiquitin Proteasome System 

UV Ultra violet 

V Volts 

v/v Volume per volume 

w/v Weight per volume 
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