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Abstract

Three methods, based on Evolutionary Algorithms (EAs), to support and automate the design

of dispatching rules for complex and dynamic scheduling problems are proposed in this thesis.

The first method employs an EA to search for problem instances on which a given dispatch-

ing rule performs badly. These instances can then be analysed to reveal weaknesses of the

tested rule, thereby providing guidelines for the design of a better rule. The other two methods

are hyper-heuristics, which employ an EA directly to generate effective dispatching rules. In

particular, one hyper-heuristic is based on a specific type of EA, called Genetic Programming

(GP), and generates a single rule from basic job and machine attributes, while the other gen-

erates a set of work centre-specific rules by selecting a (potentially) different rule for each

work centre from a number of existing rules. Each of the three methods is applied to some

complex and dynamic scheduling problem(s), and the resulting dispatching rules are tested

against benchmark rules from the literature. In each case, the benchmark rules are shown to be

outperformed by a rule (set) that results from the application of the respective method, which

demonstrates the effectiveness of the proposed methods.
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Chapter 1

Introduction

Scheduling is concerned with the allocation of limited resources to tasks over time, with the

basic aim to ensure an effective and efficient use of the available resources. A classic problem

area is the scheduling of manufacturing systems, where machines (the resources) have to be

allocated to jobs (the tasks) in a way that the cost of production is minimised. Some of the

costs that are typically affected by a production schedule are the holding costs of in-process in-

ventory, contractual penalties for late deliveries, setup costs, and the costs of scrap and rework,

which illustrates the importance of production scheduling to manufacturers in their endeavour

to become and remain competitive.

In general, scheduling problems can be addressed with a variety of solution methods that

have different strengths and weaknesses (see Pinedo, 2008). However, real-world production

environments tend to be highly complex and dynamic, making the use of some of these meth-

ods impractical. A widely popular approach to solving production scheduling problems in

practice are dispatching rules (Pfund et al., 2006), which are simple heuristics that progres-

sively construct solutions by scheduling one operation at a time. More precisely, whenever a

machine is available and there are jobs waiting to be processed on that machine, dispatching

rules compute a priority index for each job as a function of some job attributes, e.g. its due

date or the processing time of its imminent operation, and machine attributes, e.g. its current

setup, and schedule only the imminent operation of the job with the highest priority. Dispatch-

ing rules thus solve a global problem by making local scheduling decisions based on local

information, which allows them to be executed very quickly, irrespective of the complexity of

the overall problem. Their ability to take decisions in real-time is particularly advantageous

in dealing with dynamic problems as it allows for prompt reactions to sudden changes due

to unexpected events, which can be taken into account as they emerge. Apart from their low

computational and information requirements, dispatching rules are further favoured for their

simple and intuitive nature, their ease of implementation and their flexibility to incorporate

domain knowledge and expertise (Aytug et al., 2005).

1
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The main disadvantage of dispatching rules is that, due to their locally restricted horizon,

they cannot assess how a local scheduling decision affects the quality of the global schedule. In

consequence, no rule can outperform all other rules across different shop configurations, objec-

tive functions or operating conditions (Blackstone et al., 1982; Kiran and Smith, 1984; Haupt,

1989; Holthaus and Rajendran, 2000), but they have to be carefully designed for the problem

at hand so that, despite their local horizon, their decisions result in a good global performance.

However, the manual design of effective dispatching rules for complex and dynamic problems

is usually a tedious trial-and-error process, with candidate rules tested in a simulation model

of the considered shop, modified and retested until they meet the demands for actual imple-

mentation, which requires a significant amount of expertise, time and coding-effort (Geiger

et al., 2006). This motivates the development of methods to support and automate the design

of dispatching rules, which is the main concern of this thesis.

Three different methods are proposed in this work, which are each based on an Evolution-

ary Algorithm (EA). The first method employs an EA to search for job shop problem instances

on which a given dispatching rule performs poorly. The idea of this method is to support the

development of dispatching rules by revealing the weaknesses of existing rules. Although sim-

ilar methods have been developed by Kosoresow and Johnson (2002) and Julstrom (2009), this

work appears to be the first to apply the idea to dispatching rules, and the area of scheduling

in general. Moreover, the proposed EA is designed to search for problem instances where the

poor performance of a tested dispatching rule can be attributed to a single suboptimal decision

it takes, which is a key difference to previous work. The advantage of focussing on single

decision points is that it greatly facilitates the analysis of problem instances and the identifi-

cation of conditions that cause the rule to fail. The effectiveness of the method is assessed by

applying it to a benchmark rule for a well-studied dynamic job shop problem with the objec-

tive of minimising mean flow time, where the insights gained from the analysis of the evolved

problem instances are incorporated in the design of two new dispatching rules. The new rules

are then evaluated against the benchmark rule and some other effective rules.

In contrast to the first method, the second method employs an EA directly to search for

effective rules, thereby automating the development process. Such methods that operate on a

search space of heuristics are commonly referred to as hyper-heuristics (Burke et al., 2010).

The proposed hyper-heuristic is based on a specific type of EA, called Genetic Program-

ming (GP), and generates a dispatching rule from basic job and machine attributes. Several

researchers have developed similar GP-based hyper-heuristics for various scheduling prob-

lems, with promising results (e.g. Atlan et al., 1994; Geiger and Uzsoy, 2008; Jakobović and

Marasović, 2012). However, a shortcoming of these studies is that they predominantly focus

on static problems of small to moderate size, which are likely to be better solved by some

global solution method than some dispatching rule. This work investigates the potential of

GP hyper-heuristics to generate effective rules for complex, dynamic problems. In particular,
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the developed hyper-heuristic is applied to some dynamic, flexible job shop problems from

semiconductor manufacturing with the objectives of minimising mean flow time and mean

weighted tardiness, respectively. These problems feature complex processing characteristics

such as sequence-dependent setup times and batch processing, which make the manual de-

sign of effective dispatching rules very challenging. To assess the effectiveness of the hyper-

heuristic, the evolved dispatching rules are evaluated against some benchmark rules from the

literature, and are further tested for their robustness to changes in the job arrival pattern and

due date setting.

The third method is another hyper-heuristic that (automatically) generates a set of work

centre-specific rules by selecting a (potentially) different rule for each work centre from a

number of existing rules. The motivation for this method is that using different dispatching

rules at different work centres has been found to be beneficial for some problems where work

centres vary with respect to their position in the shop (Barrett and Barman, 1986; LaForge and

Barman, 1989; Mahmoodi et al., 1996; Sarper and Henry, 1996; Barman, 1997, 1998) and/or

workload (Raman, Talbot, and Rachamadugu, 1989; Ruben and Mahmoodi, 1998; Bokhorst,

Nomden, and Slomp, 2008). Moreover, similar hyper-heuristics have been developed and

shown to be effective by Baek and Yoon (2002) and Yang et al. (2007) for small problems

with up to ten work centres. This work investigates the potential of EA-based hyper-heuristics

to generate sets of work centre-specific rules for complex, dynamic problems that feature a

large set of heterogeneous work centres. The proposed hyper-heuristic is specifically designed

for shops that contain both serial and batch processing work centres, and further extends previ-

ously developed hyper-heuristics by optimising the information horizon of each work centre,

i.e. the degree to which jobs that are expected to arrive in the near future are considered

in the decision making. The latter extension is motivated by the observation that it may be

beneficial to wait for future jobs at some work centres, e.g. to save a long setup time or to

support the operation of a downstream bottleneck, while it may be counterproductive at oth-

ers, e.g. at highly utilised work centres. The hyper-heuristic is applied to the same problems

as the GP hyper-heuristic, which feature different types of work centres that vary with regard

to their setup requirements, batch processing capacities, number of parallel machines, work-

load and their position in the shop. To assess the effectiveness of the rule set hyper-heuristic,

the evolved rule sets are evaluated against some benchmark rules, including those evolved by

the GP hyper-heuristic, and are further tested for their robustness to changes in the job arrival

pattern and due date setting.

This thesis is organised as follows. Chapter 2 gives a brief introduction to scheduling

problems in production and methods to solve them, and introduces some basic terminology and

notation that is used within the rest of the thesis. Chapter 3 contains a review of dispatching

rules, with a focus on promising design concepts for selected problems of interest. Chapter 4

describes the methodology of this work, specifically the tools and techniques used for the
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development and evaluation of the three methods, which are subsequently discussed in three

separate chapters. In particular, the design and application of the method that employs an EA

to search for problem instances is described in Chapter 5, followed by a presentation of the GP

hyper-heuristic and the rule set hyper-heuristic in Chapter 6 and Chapter 7, respectively. The

thesis ends with some general conclusions drawn in Chapter 8.



Chapter 2

Production Scheduling

Scheduling problems in production are generally defined by a number of jobs, n, that have to be

processed by a set of m machines. The task is to determine a processing order for the n jobs on

each of the m machines, i.e. a schedule, that optimises a given objective function. A scheduling

problem can be either static or dynamic. Static scheduling problems are deterministic and fully

defined problems with a limited number of jobs, whose attributes are completely known. In

contrast, dynamic problems are subject to constant change over time due to random, stochastic

events such as new job arrivals or machine breakdowns. This work is primarily concerned

with dynamic scheduling problems, which is motivated by the fact that real-world production

environments are typically dynamic in nature.

This chapter provides a general introduction to scheduling problems and methods to solve

them, with a focus on those type of problems that are most relevant for this work (for a more ex-

tensive discussion on problems and solution techniques in scheduling see Pinedo, 2008). The

first section introduces the terminology and the notation used to describe scheduling problems

in this thesis. It also discusses some issues related to the complexity of scheduling problems.

This is followed by another section covering solution methods for static and dynamic schedul-

ing problems.

2.1 Problem Definition and Notation

A convenient way to describe a specific scheduling problem is by means of the α|β|γ notation

of Graham et al. (1979), which is adopted herein. The three fields represent the shop configu-

ration, processing characteristics and objective function of the scheduling problem, which are

separately discussed in the following.

5
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2.1.1 The α Field — Shop Configuration

A number of shop configurations are commonly described in the scheduling literature. The

simplest configuration is a single machine that is responsible for processing all jobs, which is

denoted by a 1 in the α field. Pm denotes a parallel machine environment, where m identical

machines of the same functionality are available to process a job, while Qm is used to indicate

that the parallel machines differ with respect to their processing speed. Multi-stage problems,

which are generally NP-hard (Garey et al., 1976), are characterised by jobs that consist of a

number of processing steps, or operations, that need to be performed on distinct machines. If

all jobs follow the same route that involves visiting each of the m distinct machines exactly

once, the shop is called a flow shop, which is denoted by Fm. Hence, every job consists of

exactly m operations in a flow shop. In the other extreme of an ideal job shop, each job has its

own specified route and may revisit some of the m machines several times while leaving out

others completely. This implies that the number of operations can vary between jobs in a job

shop. In practice, the number of different job routes is often limited by the product portfolio,

which leads to a flow pattern that lies in between the two extremes of the linear flow of a flow

shop and the random pattern of an ideal job shop. Such a shop is referred to as a flow-dominant

job shop herein, and like the ideal job shop, is denoted by Jm. Flow shops and job shops are

further called flexible, if they contain at least one work centre that consists of more than one

machine, where a work centre is defined as a set of parallel machines sharing the same input

and output buffer. FFc and FJc denote a flexible flow or job shop, respectively, with c work

centres.

An important characteristic of multi-stage problem is the workload balance among work

centres. In a perfectly balanced shop all work centres are equally utilised, where utilisation

of a work centre is defined as the fraction of busy time averaged across its machines. On the

other hand, an unbalanced shop implies that some work centres have a higher workload than

others. Then, the utilisation of the shop is given by the utilisation of the bottleneck, i.e. the

mostly utilised work centre.

2.1.2 The β Field — Processing Characteristics

The standard assumptions with respect to the processing characteristics of production schedul-

ing problems are that

• a job can be processed by only one machine at at time (no splitting or overlapping),

• a machine can process only one job at a time (no batch processing),

• a started operation must be completed before the respective machine can process another

job (no preemption),

• an operation can only be performed on the specified work centre (no alternate routeings),
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• the processing of jobs is independent of the progress of other jobs (no assembly opera-

tions or precedence constraints),

• processing times are independent of the schedule and cover all activities related to the

execution of an operation (no sequence-dependent setup times),

• machines are the only limiting resource (no lack of operators, tools or material),

• there are no space or time constraints on input and output buffers (no blocking, scrap or

rework),

• all machines are continuously available (no breakdowns or maintenance activities),

• all jobs are available to be scheduled instantly (no dynamic job arrivals).

A problem that fulfils all of the above conditions is typically identified by an empty β field.

Otherwise, specific entries are used to indicate certain deviations from these assumptions as

illustrated in the following.

Dynamic Job Arrivals

If jobs arrive at the shop over time, i.e. each job j has its own specific release date r j, this is

denoted by an r j entry in the β field. Dynamic job arrivals generally increase the complexity of

scheduling problems, and make some otherwise simple single machine problems become NP-

hard (Lenstra et al., 1977). In reality, perfect information on future jobs and their release dates

is often not available, as the job arrival process may depend on external customers placing their

orders. It is thus assumed in this work that future jobs and their characteristics are unknown

until the time of their release to the shop.

Sequence-Dependent Setup Times

An se f entry in the β field indicates that machines require to be set up properly to process a par-

ticular job, and that the durations of these setups are sequence-dependent, i.e. they depend on

the current state of the machine, resulting from the previously executed operation. Contrary to

sequence-independent setup times, which can be simply treated as part of the processing time

of an operation, sequence-dependent setup times have to be explicitly modelled and largely

increase the complexity of a scheduling problem. This is illustrated by the fact that even the

most trivial single machine problems become NP-hard in the presence of sequence-dependent

setup times (Monma and Potts, 1989; Potts and Kovalyov, 2000).

One way to represent the setup characteristics of a machine is by a so-called setup time

matrix. In practice, the number of different operations a machine can perform will be lim-

ited, implying a limited number of machine setups. Jobs requiring the same setup can then
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be grouped into families with the implication that changeovers only become necessary when

switching from one family of jobs to another. The setup time matrix is a square matrix of

dimension equal to the number of families, where its entries se f specify the time for changing

over from a job belonging to family e to one belonging to family f . Since no setup is required

between the processing of jobs of the same family, all elements on the main diagonal are equal

to 0 in a setup time matrix. Moreover, setup time matrices normally satisfy the triangle in-

equality, se f + s f g ≥ seg ∀e, f , g (Pinedo, 2008, Chapter 4). The inequality simply states that

the direct transition from one to the other family setup is always the fastest, which is usually

the case in reality. Otherwise, the matrix can be made compliant with the triangle inequality

by substituting the respective entry seg by the lower value of se f + s f g. Figure 2.1 shows an ex-

ample of a setup time matrix, which satisfies the triangle inequality, for a machine that can be

set up in four different ways. To illustrate, the time for changing over from the setup required

for processing jobs of family 1 to the setup required for jobs of family 3 is s13 = 2 in this case.

0 3 2 3

5 0 2 3

5 3 0 3

5 3 2 0

Figure 2.1: Example of a setup time matrix for a machine with four possible setups.

A special case of sequence-dependent setup times is the one where all changeovers require

the same amount of time, i.e. all entries of the setup time matrix apart from the zero-diagonal

have the same value. Although setup times are then independent of the family sequence (and

have been referred to as being sequence-independent in the literature), they are clearly not

independent of the job sequence as no changeover is required between two jobs of the same

family, and thus have to be modelled as sequence-dependent.

In multi-stage problems, there may be more than one work centre featuring sequence-

dependent setup times. Then, one matrix, which applies to every machine of the respective

work centre, is needed for each of these work centres. Moreover, since the concept of fam-

ily membership is generally related to operations and not to jobs, the association of jobs to

families can vary for their different operations in multi-stage problems.

Batch Processing

In contrast to serial processing machines, batch processing machines can process more than

one job at the same time as a batch. In the literature, a distinction is made between batch

processing problems with compatible and incompatible families. In the case of compatible
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families, a batch can be comprised of jobs with different processing times and of different

sizes, and the only constraint regarding the formation of batches is that the total size of a batch

may not exceed the capacity of the machine. The processing time of a batch is then determined

by the maximum of the processing times of the included jobs. The various possibilites to form

batches make these problems difficult to solve, and single machines problems of this type are

already NP-hard, in general (Uzsoy, 1994; Potts and Kovalyov, 2000). On the other hand,

batch processing problems with incompatible families only allow for jobs of the same family

to be batched together, which strongly reduces the number of possible batches that can be

formed. In consequence, some common single batch processing machine problems are still

easy to solve if families are incompatible (Uzsoy, 1995).

In the context of batch processing, families are defined by jobs that share the same pro-

cessing requirements with regard to machine setup, time and space, and, as in the case of

sequence-dependent setup times, are related to operations in multi-stage problems. Moreover,

the capacity of the machine in terms of the maximum batch size B f can vary for different fami-

lies f . In this work, only batch processing problems with incompatible families are considered,

which are identified by a B f entry in the β field.

2.1.3 The γ Field — Objective Function

In practice, the ultimate goal of production scheduling is to minimise the cost of production.

However, since cost structures tend to vary widely across companies, general, time-based

objective functions that represent a certain cost component are more commonly used in the

literature. Most of these functions can be classified as being either related to the efficiency of

the shop or its ability to adhere to due dates.

A classic efficiency-related objective of scheduling problems is to minimise the makespan

of jobs, which is the total time required to finish a given set of jobs. In mathematical terms,

the makespan is defined as max j∈N(C j), where N denotes the set of jobs and C j the completion

time of job j. Problems with the makespan objective are indicated by a Cmax symbol in the γ

field. The makespan is an intuitive measure of efficiency for static scheduling problems that

feature a limited and fully defined set of jobs. However, it is generally not a very sensible

criterion for dynamic scheduling problems, in which new jobs arrive continuously.

A more suitable objective for dynamic problems is the minimisation of the mean flow time,

where the flow time of job j is defined as C j − r j, i.e. the length of time the job spends in the

shop, from the time of its arrival to the time of its completion. The mean flow time is therefore

calculated as
1
n

n∑
j=1

(C j − r j) =
1
n

n∑
j=1

C j −
1
n

n∑
j=1

r j. (2.1)

By Little’s Law (Little, 1961), the mean flow time is proportional to the average number of

jobs in the shop, and mean flow time is thus a widely accepted measure for the holding costs
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of in-process inventory. In Equation (2.1), the last term on the right corresponds to the mean

of the job release dates, which are normally not decision variables of a scheduling problem,

but assumed as fixed. Then, they can be taken out of the objective function, and the objective

reduces to the minimisation of the mean completion time. Moreover, the flow time of job j can

also be written as p j +q j, where p j indicates its processing time and q j its queueing or waiting

time, which is the reducible component of the flow time. In other words, there is no need to

distinguish between the objectives of minimising average number of jobs in shop, mean (or

total) flow time, mean (or total) waiting time and mean (or total) completion time, in this work,

as they all refer to the same objective, which is denoted by C.

Most due date-related objective functions, used to represent costs related to the violation of

due dates such as contractual penalties for late deliveries or costs of customer badwill, are some

function of the tardiness of jobs. The tardiness of job j, denoted by T j, is defined as the non-

negative difference between its completion time and its due date d j, i.e. T j = max(C j − d j, 0).

Common objectives are the minimisation of the maximum or mean (or total) tardiness of all

jobs, indicated by Tmax and T , respectively, and the proportion (or number) of tardy jobs,

denoted by U. The proportion of tardy jobs can further be seen as one of two components of

the mean tardiness, with the second one being the conditional mean tardiness, which is the

mean tardiness of the tardy jobs and denoted by T
c

herein. The relationship between the three

measures is given by T = U × T
c
.

Pinedo (2008) establishes a complexity hierarchy among the different objectives, accord-

ing to which a scheduling problem with the objective of minimising proportion tardy or mean

tardiness is generally more complex than the corresponding problem with the maximum tar-

diness objective, which in turn is harder to solve than the respective makespan problem. In

addition, solving a problem for the minimum mean tardiness is at least as hard as to solve it

for the minimum mean flow time (Pinedo, 2008, Chapter 2).

In some situations, the costs of holding a job or violating its due date may depend on

the specific job. This is expressed by weighted objective functions, where the contribution of

each job j, e.g. in terms of tardiness or flow time, is multiplied by a weight w j that reflects

its relative importance. The symbols wC and wT indicate the objectives of minimising mean

weighted flow time and mean weighted tardiness, respectively. Clearly, (unequal) job weights

increase the complexity of scheduling problems.

The objectives discussed so far are all regular, i.e. the objective function values do not

improve if the completion of a job is delayed. An example of a non-regular objective is the

minimisation of mean earliness, where the earliness of job j, denoted by E j, is defined as

E j = max(d j − C j, 0). Such objectives that penalise the earliness of jobs are characteristic of

just-in-time environments, where the aim is to finish jobs dead on time.

To illustrate the notation described in this section, consider a scheduling problem from

semiconductor manufacturing. Production systems in this industry are characterised by a het-
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erogeneous set of work centres, of which some contain multiple machines operating in parallel,

and by product-specific routes that involve revisitations. Moreover, some of the machines in

the shop feature sequence-dependent setup times while others are capable of processing sev-

eral jobs simultaneously as a batch (Uzsoy et al., 1992; Pfund et al., 2006). Provided that

job arrivals are dynamic and that the objective is to minimise mean weighted tardiness, this

problem is then denoted by FJc|r j, se f , B f |wT .

2.2 Solution Methods

In discussing solution methods, a distinction has to be made between methods for static and

dynamic scheduling problems.

2.2.1 Static Scheduling Problems

Static problems are fully defined and, in theory, can be solved to optimality. However, schedul-

ing problems in practice are often too complex for exact methods to find the optimum in a

reasonable amount of time, which motivates the use of heuristics and other methods that focus

on delivering a good, but not necessarily optimal solution in a short time. Figure 2.2 presents

an overview of methods used to solve static scheduling problems.

Exact solution methods generally involve the formulation of the problem as a (dynamic,

mathematical or constraint) programme that is then solved by a complete and systematic search

of the solution space. Many of the more complex scheduling problems can be formulated as

mixed integer programmes (see, e.g. Mason et al., 2005; Pan and Chen, 2005), which are

typically tackled by the well-known branch-and-bound procedure. Exact methods can further

be used as heuristics by restricting their search to certain parts of the solution space, or by

setting a limit on the time the algorithm is allowed to run for, after which the best solution

found so far is returned.

A different kind of search-based heuristic are the so-called metaheuristics, which start

from initial (randomly generated) solutions that they seek to improve upon by means of local

search techniques in combination with mechanisms that allow them to escape local optima

and explore other parts of the solution space. A popular subcategory of metaheuristics are

evolutionary algorithms, which have been widely applied to scheduling (Hart et al., 2005).

An alternative heuristic approach to search-based heuristics is to decompose a given

scheduling problem into smaller subproblems that can be solved more easily. These partial

solutions are then combined to yield an overall solution to the original problem. Decomposi-

tion methods for static scheduling problems are typically job- or machine-based. An example

of a machine-based decomposition method is the well-known shifting bottleneck heuristic,

which schedules machines in non-increasing order of their criticality and is commonly used to

address (flexible) job shop problems (see Mason et al., 2002; Pinedo, 2008, Chapter 7).
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Figure 2.2: An overview of solution methods for static scheduling problems.

A particularly simple type of scheduling heuristic are dispatching rules, which progres-

sively construct solutions by scheduling one operation at a time. Whenever a machine is

available and there are jobs waiting to be processed on that machine, dispatching rules com-

pute a priority index for each job (or batch) as a function of some job (or batch) attributes,

e.g. its weight or due date, and machine attributes, e.g. its current setup, and schedule only

the imminent operation of the job (or the batch) with the highest priority. Since dispatching

rules lack a global perspective on the problem they tend to produce worse solutions than more

sophisticated heuristics. However, their local horizon allows them to be executed very quickly,

irrespective of the complexity of the overall problem.

Another approach that is based on local decision making are market-based procedures,

which model scheduling decisions as a negotiation process between agents associated with

jobs and agents representing the machines. Each job agent holds a certain budget, which it

can use to pay for a processing time on the required machine(s). To reserve a time slot for

the imminent operation of a job, the job agent makes a call for bids to which the agents of

the machine(s) that can process the operation reply with bids. Each bid consist of a price and

time slot, where the prices are set by the machine agents with the aim to maximise their own

profit. The job agent then accepts the bid that it considers to be the best value for money,
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thereby scheduling the operation. A challenge with regard to the application of market-based

procedures is the determination of suitable budgets, as well as effective pricing and acceptance

rules, which are likely to be problem-specific. Toptal and Sabuncuoglu (2010) provide a more

detailed discussion of market-based scheduling procedures.

Finally, static scheduling problems can also be addressed by means of machine learning

algorithms. These algorithms solve problems by inference from good solutions to similar

instances. Hence, they can only be employed in combination with another method or a human

expert, which or who generates solutions to example problems that can be used to train the

machine learning algorithm. Some scheduling algorithms based on machine learning can be

found in Pinedo (2008, Chapter 18).

2.2.2 Dynamic Scheduling Problems

Contrary to static problems, dynamic scheduling problems cannot be solved optimally as the

optimal solution depends on future uncertain events that occur only after a solution has been

implemented. A key distinctive feature of solution methods for dynamic problems is how they

account for these uncertainties, which can be in a proactive or reactive manner. Figure 2.3

provides an overview of the different methods for dynamic scheduling problems, based on the

surveys by Aytug et al. (2005) and Ouelhadj and Petrovic (2009).

Robust scheduling methods take a proactive approach to uncertainty by generating flexible

(or robust) schedules that, up to a certain degree, can accommodate future changes without a

severe deterioration of the objective function value. Measures to increase the robustness of a

schedule can include the insertion of idle times at machines that are likely to break down, or

the upkeep of a minimum queue length at the bottleneck work centre to reduce the risk of a

temporarily starving bottleneck due to a breakdown at an upstream machine (Pinedo, 2008,

Chapter 18). The drawback of such measures is that they compromise performance to account

for disruptions that do not necessarily occur, e.g. processing capacity may be wasted as a

result of reserving machine time for repair work that turns out to not be required in the end. It

is therefore important to have a good understanding of the uncertainties involved in a problem,

their probability of occurrence and their potential impact on the quality of a schedule when

using robust scheduling methods. This knowledge can then be incorporated into the solution

method, e.g. into the constraints or objective function of a stochastic mathematical programme

(Kouvelis et al., 2000). However, since predictions regarding future developments become

increasingly inaccurate for longer time horizons, associated with the exponential increase of

possible combinations of future events over time, robust scheduling methods are only practical

for problems with relatively short time horizons.

Predictive-reactive methods are two-stage procedures that first generate a so-called predic-

tive schedule on the basis of the initial problem data, and then revise and modify this schedule

over time as new information becomes available. They can be classified as event-driven or
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Figure 2.3: An overview of solution methods for dynamic scheduling problems.

time-driven, depending on the mechanism that initiates revisions of the schedule. Event-driven

procedures revise the schedule in response to unexpected events, while time-driven procedures,

commonly referred to as rolling horizon procedures, reoptimise the schedule at regular inter-

vals. Concerning the generation of the predictive and revised schedules, any of the solution

methods for static scheduling problems, shown in Figure 2.2, can be used in principle, where

the suitability of a method for a given problem generally depends on the nature of the present

uncertainties in terms of their disruptive power and the available time to react. In the case that

the only random events concern the arrival of new jobs that hardly affect the quality of the

current schedule, a rolling horizon procedure, which periodically applies a computationally

expensive branch-and-bound algorithm, may be the method of choice (see, e.g. Ovacik and

Uzsoy, 1994). On the other hand, a problem in which unexpected machine breakdowns can

cause sudden and serious disruptions may require for an event-driven method that, in case of

a breakdown, quickly restores feasibility of the schedule by means of a simple heuristic (see,

e.g. Yamamoto and Nof, 1985). In practice, hybrid methods that generally follow a periodic

reoptimisation but are able to react flexibly, if the disruption caused by a particular event is

severe, are often employed.
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Completely reactive methods are characterised by making scheduling decisions in real-

time, immediately before they are implemented, thereby renouncing to plan into the future.

The advantage of this approach is that changes due to random events are taken into account

as they emerge, which allows for prompt reactions. However, in order to be able to schedule

in real-time, reactive methods have to rely on procedures with low computational and infor-

mation requirements such as dispatching rules or simple agent negotiation protocols, which

take scheduling decisions on the basis of a locally restricted information horizon with little

consideration of the overall problem structure.

In general, there is broad agreement in the literature that the higher the dynamics of a

scheduling problem, the better completely reactive methods fare in comparison to predictive-

reactive methods (Aytug et al., 2005). Clearly, a globally optimised schedule becomes obsolete

more quickly if the frequency and impact of random events is high, up to a point where the

assumptions underlying the schedule become invalid only moments after the very first part

of the schedule has been implemented. Then, the global solution method effectively solves

the wrong problem(s) and thus may well lead to poorer scheduling decisions than a locally

restricted method that does not plan into the future at all.

The use of a predictive-reactive approach based on global solution methods may also be-

come impractical if the given scheduling problem is too complex to permit the generation of

good global schedules in a reasonable amount of time (Ouelhadj and Petrovic, 2009). The

limits of global optimisation methods is impressively demonstrated by a study by Mason et al.

(2005), who apply the well-known CPLEX solver to a mixed integer programming formula-

tion of the FJc|r j, se f , B f |wT problem. CPLEX is shown to be unable to find, within six hours

of CPU time, a feasible, let alone the optimal solution to problem instances with only five

machines and nine jobs, consisting of six operations each. In contrast, real-world problems

from semiconductor manufacturing, which feature similar processing characteristics (see Sec-

tion 2.1), typically require thousands of operations to be scheduled on hundreds of machines

at a time, making the generation of good global schedules extremely difficult.

In summary, a variety of methods exist for solving scheduling problems, which further

can be employed as hybrid methods in various combinations. Solution methods for dynamic

problems can be classified as robust, predictive-reactive and completely reactive. Robust meth-

ods try to accommodate uncertainty by anticipating future events, and by themselves are thus

only practical for problems with relatively short time horizons. On the other hand, schedul-

ing problems can be too dynamic or complex for predictive-reactive methods to be effective,

which motivates the use of completely reactive methods with their local decision making.

Completely reactive methods can be based either on dispatching rules or market-based

procedures. While the latter have to be properly configured for the problem at hand, which

is generally not easy, dispatching rules are known for their simple and intuitive nature, their

ease of implementation and their flexibility to incorporate domain knowledge and expertise
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(Aytug et al., 2005). These factors, together with the low computational and information

requirements of dispatching rules, explain their wide usage in practice (Pfund et al., 2006) and

the ongoing research on the development and evaluation of dispatching rules. The following

chapter contains a review of dispatching rules and their underlying design concepts.



Chapter 3

The Design of Dispatching Rules

Since dispatching rules are simple heuristics with a locally restricted information horizon, it

is obvious that no rule can outperform all other rules across different shop configurations,

objective functions or operating conditions (Blackstone et al., 1982; Kiran and Smith, 1984;

Haupt, 1989; Holthaus and Rajendran, 2000). Hence, dispatching rules should be generally

designed for the problem at hand, and their priority indices should incorporate attributes that

are specifically relevant with respect to the given problem. In consequence, many different

dispatching rules have been developed over the last few decades (for extensive surveys see,

e.g. Panwalkar and Iskander, 1977; Blackstone et al., 1982; Haupt, 1989).

The aim of this chapter is to highlight the issues in developing effective dispatching rules

as well as to identify the most promising design concepts from the literature for selected prob-

lems of interest. In particular, the scope of the review is on rules designed for scheduling

problems with the objective to minimise mean flow time or mean (weighted) tardiness, where

problems are covered in increasing degree of their difficulty. Thus, the first section presents

rules for simple single stage problems, which provide the basis for the development of more

sophisticated rules for problems with sequence-dependent setup times, batch processing prob-

lems or multi-stage problems, discussed in the three subsequent sections. Throughout this

thesis, priority indices are defined so that a higher index I j corresponds to a higher priority of

the job.

3.1 Simple Single Stage Problems

The design of effective dispatching rules for scheduling problems with a single processing

stage or work centre and without complex characteristics such as sequence-dependent setup

times is comparatively easy, and similar principals apply with regard to single machine and

parallel machine problems.

17
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3.1.1 Minimising Mean Flow Time

The 1||C and Pm||C problems are both optimally solved by the Shortest Processing Time (SPT)

rule, according to which jobs are scheduled in non-decreasing order of their processing times

(Smith, 1956; Pinedo, 2008, Chapters 3 and 5). Thus, the priority index of SPT for job j can

be simply defined as

ISPT
j = −p j. (3.1)

The application of the SPT rule is further the best one can do for the analogous problems with

dynamic job arrivals without information on future jobs, which are assumed to be unknown in

this work.

3.1.2 Minimising Mean Weighted Tardiness

Du and Leung (1990) show that the easiest type of this problem category, namely the 1||T

problem, is already NP-hard. Hence, a dispatching rule (polynomial time algorithm) that

optimally solves the 1||wT or Pm||wT problem is not known, and its existence is very unlikely.

However, there are two extreme cases that can be solved by a simple dispatching rule.

First, consider the case in which it is impossible to finish any job on time. The mean

weighted tardiness can then be rewritten as

1
n

n∑
j=1

w jT j =
1
n

n∑
j=1

w j(C j − d j) =
1
n

n∑
j=1

w jC j −
1
n

n∑
j=1

w jd j, (3.2)

where the last term of the expression on the right is a constant and independent of the schedule.

Hence, the objective of minimising mean weighted tardiness becomes the same as minimising

mean weighted completion time in this case. The 1||wC problem, in turn, is optimally solved

by the Weighted Shortest Processing Time (WSPT) rule by Smith (1956), which also yields

close to optimal solutions to the Pm||wC problem (Pinedo, 2008, Chapters 3 and 5). The

priority index of job j with WSPT is the ratio of its weight to its processing time, i.e.

IWSPT
j =

w j

p j
. (3.3)

The other extreme case is the one where it is possible to finish every job on time. Then,

an algorithm that minimises the maximum tardiness will produce a solution with a maximum

tardiness of 0, which is obviously also optimal with respect to the mean weighted tardiness

criterion. The 1||Tmax problem is optimally solved by the Earliest Due Date (EDD) rule, which

simply schedules jobs in non-decreasing order of their due dates (Jackson, 1955; Pinedo, 2008,

Chapter 3). The priority index of EDD is thus given by
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IEDD
j = −d j (3.4)

or

IEDD
j = −(d j − t), (3.5)

where t refers to the current time.

Both priority indices represent the same rule as the current time is the same for all jobs and

hence does not affect the ranking of priorities. However, as soon as EDD is integrated with

other rules into so-called composite dispatching rules, the formulation of its priority index

does become important. If the absolute due date from Equation (3.4) is integrated with other

job attributes, their relative proportions, and hence the behaviour of the rule, may change

over time. To illustrate, a dispatching rule with a priority index I j = −max(10p j, d j) might

operate like SPT in the beginning and then switch to EDD dispatching as time passes and due

dates take on substantially larger values than the processing times, which do not change with

time. Clearly, such a time-dependent switch is generally not desired and can be avoided by

relating due dates to the current time as in Equation (3.5), before integrating them with other

attributes. In fact, the term d j − t, which is called the remaining allowance of job j, appears in

many effective due date-oriented rules, as shown in the following.

The analytical result that EDD and WSPT each lead to an optimal solution to the 1||wT

problem under opposed extreme conditions seems to carry over to the problem with dynamic

job arrivals to some extent. Baker and Bertrand (1982) apply (W)SPT and EDD to the 1|r j|T

problem, and find that SPT clearly outperforms EDD under tight due date levels, while the

latter is the better rule if due dates are loose. As a consequence, they propose the Modified

Due Date (MDD) rule, which behaves like SPT or EDD in the respective extreme conditions

and presents a compromise for intermediate tightness settings. Its priority index is defined as

IMDD
j = −max(t + p j, d j), (3.6)

i.e. the priority of a job is determined by the maximum of its earliest possible completion time

and its due date. Kanet and Li (2004) reformulate the priority index of MDD, by substracting

t, to

IMDD
j = −max(p j, d j − t). (3.7)

The terms of earliest possible completion time and due date in the original formulation are

thus replaced by the processing time and remaining allowance of a job, the priority indices of

SPT and EDD. Baker and Bertrand (1982) test MDD against SPT and EDD on the 1|r j|T prob-

lem with various levels of shop utilisation and due date tightness, as well as different due date

assignment rules, and report that MDD dominates its component rules across all experimental
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conditions. The dominance of MDD over EDD and SPT for the 1|r j|T problem is confirmed

by Moser and Engell (1992a) for different levels of utilisation and due date tightness.

Kanet and Li (2004) extend the MDD rule to the Weighted Modified Due Date (WMDD)

rule to account for unequal job weights. They formulate this extension on the basis of the

MDD index from Equation (3.7) and define its priority index as

IWMDD
j = −

1
w j

(max(p j, d j − t)). (3.8)

Their decision not to base the WMDD rule on the original MDD index from Equation (3.6)

is motivated by the aim to create a rule that reverts to WSPT behaviour when due dates are

very tight. This is achieved by their WMDD formulation, but not by an extension that is

based on the priority index from Equation (3.6), which would prioritise jobs in non-increasing

order of the term (t + p j)/w j in tight due date settings. They also mention some preliminary

simulation experiments showing this alternative rule to be inferior, which supports the earlier

notion that it is more sensible to use the remaining allowance than absolute due dates within

composite rules. Kanet and Li compare the performance of WMDD for the 1||wT and the

1|r j|wT problem to that of various other rules, and conclude that WMDD is one of the most

effective rules tested.

In trying to minimise mean (weighted) tardiness, it is important to discriminate jobs on

the basis of how urgent they are with respect to their individual due dates. One such measure

for the urgency of a job is the critical ratio, which is generally defined as the fraction of the

remaining allowance of a job to the remaining time required for its completion (Blackstone

et al., 1982; Baker, 1984). Thus, the more urgent a job, the smaller its critical ratio, with

a ratio lower than 1 indicating that the job is too far behind schedule to finish on time. By

prioritising jobs in non-decreasing order of their critical ratio, the Critical Ratio (CR) rule

aims to minimise mean tardiness by processing the more urgent jobs first. In the context of

simple single stage problems, the remaining time required for the completion of a job is just

its processing time and the priority index of CR is thus given by

ICR
j = −

d j − t
p j

. (3.9)

A general issue with rules that are based on a ratio as priority index is that their behaviour

can change as a result of a change of sign in either the numerator or denominator. To illustrate,

the CR rule generally gives priority to jobs that require more time before they are completed.

However, when some jobs have missed their due dates (at which point their priority indices

become positive) the rule tends to prioritise the shorter among those late jobs. This anomaly

has been criticised as one of the main drawbacks of ratio type rules, and efforts have been made

to rectify it (Adam and Surkis, 1980; Kanet, 1982). On the other hand, the shift towards the
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prioritisation of short jobs when some jobs are late can be considered a beneficial adaptation to

the changing conditions (Vepsalainen and Morton, 1987), as scheduling the tardy jobs first, in

non-decreasing order of their processing times, is actually a sensible strategy to reduce mean

tardiness. The anomaly, however, does mean that the incorporation of weights into the priority

index of the CR rule is not trivial. The aim of a weighted variant of CR should be to always

assign a higher priority to jobs with larger weights, no matter whether jobs are late or not. In

practice, a hierarchical rule is often used that prioritises jobs in non-increasing order of their

weights, and uses the CR priority index to break ties (Pfund et al., 2006).

Another popular measure for the urgency of a job is the difference (rather than the fraction)

of the remaining allowance and the remaining time required for its completion, commonly

known as the slack (Baker, 1984). For simple single stage problems, the slack S j of job j is

calculated as

S j = d j − t − p j. (3.10)

The direct use of the slack as a priority index in form of the Minimum Slack (MS) rule, which

schedules jobs in non-decreasing order of their slack, is generally not recommended. This

is due to the inherent ‘anti-SPT’ logic (Baker, 1984; Vepsalainen and Morton, 1987), i.e. the

tendency to prioritise longer jobs and thereby counteracting SPT, which can lead to a very poor

performance in conditions of tight due dates. However, the slack is a recurring component of

many of the more effective due date-oriented rules, e.g. the priority index of the CR rule can

be reformulated as

ICR
j = −

d j − t
p j
−

p j

p j
= −

S j

p j
, (3.11)

since p j/p j is a constant and constants do not affect the relative priority of jobs. The expression

on the right in Equation (3.11) is the priority index of the Slack per Remaining Processing Time

(S/RPT) rule, which is thus equivalent to CR (Kutanoglu and Sabuncuoglu, 1999). Moreover,

there is an alternative slack-based formulation of the WMDD rule, i.e.

IWMDD
j =


−

d j − t
w j

if S j ≥ 0,

−
p j

w j
otherwise,

(3.12)

in which the slack can be seen to trigger a switch from a weighted version of EDD to WSPT

when jobs become time-critical (Baker and Bertrand, 1982).

Another promising approach, in which the slack plays an important role, are dispatching

rules that determine the priority of a job by estimating the cost of delaying it by one unit of

time. Clearly, for a job that is behind schedule, the penalty for delaying it for a further time

unit in terms of increased weighted tardiness is equal to the weight of the job. However, if a job

has some positive slack it is not as clear to what increase of weighted tardiness the decision of

delaying it will ultimately lead, particularly not for more complex scheduling problems. Then,
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the cost of taking that decision can only be estimated, e.g. by taking into account the slack of

the job. Two popular examples of this type of rule are the Cost Over Time (COVERT) and the

Apparent Tardiness Cost (ATC) rule. While both rules are similar in that they prioritise jobs in

non-increasing order of the ratio of its estimated delay cost to its (imminent) processing time,

they differ with respect to how they estimate the delay cost.

The priority index of the COVERT rule, developed by Carroll (1965), is given by

ICOVERT
j =

w j

p j

(
max

(
1 −

max(S j, 0)
kq̂ j

, 0
))
, (3.13)

where q̂ j indicates the estimated queueing time of job j and k is a scaling parameter. As can be

seen from Equation (3.13), the estimated delay cost (and the priority index) of a job decreases

linearly in the amount of its slack, up to a point where the slack exceeds kq̂ j. Such jobs are

considered to have excessive slack so that a delay does not cause any increase of weighted

tardiness, and their estimated delay cost is thus 0. Obviously, the performance of COVERT is

affected to some extent by the method used to determine the queueing times q̂ j. Carroll (1965)

runs a preliminary simulation experiment with the First Come First Served (FCFS) rule to

obtain an estimate for the queueing times. Other possible options are to use recently observed

queueing times or initial allowances (Russell et al., 1987).

The ATC rule originates from a paper by Morton and Rachamadugu (1982), and its priority

index is defined as

IATC
j =

w j

p j
exp

(
−

max(S j, 0)
kp

)
. (3.14)

The main difference to COVERT is that ATC relies on an exponential instead of a linear

function to discount the estimated delay cost for the slack of a job. Moreover, the queueing

time estimate in the denominator of the discount function is replaced by the average processing

time in the queue p. Morton and Rachamadugu report that the exponential discount function

is more effective than a linear one in reducing mean weighted tardiness of single machine

problems. They also test ATC against several dispatching rules on the 1||wT and the Pm||wT

problems, including WSPT and EDD, and conclude that ATC is superior across different levels

of due date tightness and due date range (Morton and Rachamadugu, 1982; Rachamadugu and

Morton, 1983). However, in a few cases the scaling parameter k has to be adjusted to the

problem parameters for ATC to outperform the other rules.

The effect of the scaling parameter on the mode of operation of ATC and COVERT, re-

spectively, is shown in Figure 3.1. For illustrative purposes, it is assumed that q̂ j = p. On the

one hand, if k is chosen very large, the priority indices become insensitive to the slack of a

job and both rules converge to the WSPT rule, which is good for tight due dates. On the other

hand, a very small k value leads to a sharp increase in the priority indices as jobs approach

the depletion of their slack, which is a more suitable strategy for loose due date settings. In

the original development of the COVERT rule, Carroll (1965) sets k = 1, according to Rus-
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sell et al. (1987). For ATC, Morton and Rachamadugu (1982) and Rachamadugu and Morton

(1983) find that k = 2 works well for single stage problems, but also observe that a lower

parameter value can be beneficial in loose due date conditions.

COVERT(k = 1)

COVERT(k = 3)

COVERT(k = 100)

ATC(k = 1)

ATC(k = 3)

ATC(k = 100)

jS

jI

j

j

p
w

jq̂3 jq̂ 0

COVERT(k = 3)

COVERT(k = 1)

ATC(k = 1)

COVERT(k = 100)

ATC(k = 3)

ATC(k = 100)

Figure 3.1: Influence of the scaling parameter k on the priority index I j of the COVERT and
ATC rules as a function of the slack S j of job j (see also Morton and Rachamadugu, 1982).

Kanet and Li (2004) compare the performance of ATC and COVERT to that of their

WMDD rule. Regarding the 1|r j|wT problem, all three rules are shown to perform similar,

in general, while COVERT is found to be less effective than ATC and WMDD for the 1||wT

problem. Moreover, WMDD is reported to outperform ATC on the 1||wT problem if due dates

are tight.

In summary, SPT is clearly the best dispatching rule to minimise mean flow time in simple

single stage problems, while WMDD, ATC and COVERT seem to be the most promising rules

for the minimisation of mean weighted tardiness. In addition, CR represents a popular rule for

the latter objective in the case that jobs have unit weights, and is also commonly used as a tie

breaking rule.

3.2 Problems with Sequence-Dependent Setup Times 1

When setup times are sequence-dependent, the use of a dispatching rule that does not account

for setup times is likely to cause unnecessarily frequent and lengthy setups, thereby wasting

1This section is published in similar form in C. W. Pickardt and J. Branke (2012), Setup-oriented dispatching
rules — a survey, International Journal of Production Research 50(20), 5823–5842.
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a large amount of the processing capacity of the work centre on changeovers. In dynamic

problems, this can lead to the buildup of large queues, implying long waiting times, and even

to an unstable system, i.e. the number of jobs in the shop grows indefinitely, if the long-

term processing rate of the work centre is allowed to fall below the job arrival rate. Hence,

dispatching rules for problems with sequence-dependent setup times have to be setup-oriented

and take setup times explicitly into account in order to be effective.

Setup-oriented dispatching rules from the literature can be classified into three categories:

Purely setup-oriented, composite and family-based rules, where family-based rules can be

further subdivided into exhaustive and truncated rules, as illustrated in Figure 3.2. Purely

setup-oriented rules are primarily concerned with the minimisation of setup times. A popular

example is the Shortest Setup Time (SST) rule, originally proposed by Gavett (1965), which

assigns highest priority to the job requiring the least setup time given the current machine

setup. However, it will be generally insufficient to focus solely on setup time reductions if the

objective is to minimise mean flow time or mean weighted tardiness. Then, the importance

of minimising setup times has to be traded off with potentially conflicting objectives such

as giving priority to urgent jobs, which motivates the design of composite or family-based

rules. Composite setup-oriented rules employ a single priority index that incorporates a term

for setup avoidance, which allows them to trade off different criteria simultaneously, whereas

family-based rules follow a hierarchical approach and avoid setup times by combining the

processing of jobs that belong to the same family.

Setup-Oriented Dispatching Rules

Purely
Setup-Oriented Composite Family-Based

TruncatedExhaustive

Figure 3.2: Classification of setup-oriented dispatching rules.
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Mosier et al. (1984) model the decision making of family-based rules as a multi-stage

process involving the consideration of three interrelated decisions, namely:

1. When to switch to another family, i.e. when to conduct a setup.

2. Which family to select, if a switch is made.

3. Which job to choose from the selected family.

The third decision does not affect setup times and thus can be properly resolved by any con-

ventional dispatching rule. Regarding the first decision, family-based rules are distinguished

as exhaustive or truncated. Exhaustive rules never switch to another family as long as jobs of

the current family are waiting to be processed. While this strategy effectively reduces the fre-

quency of setups, it also introduces a certain amount of inflexibility that can lead to poor results

in some situations. Truncated rules address this inflexibility by permitting changeovers prior

to the exhaustion of the current family, provided that a certain (problem-dependent) criterion

is met.

3.2.1 Minimising Mean Flow Time

Unlike the corresponding problem without sequence-dependent setup times, the 1|se f |C prob-

lem is NP-hard (Potts and Kovalyov, 2000), which precludes the availability of an optimal

dispatching rule. However, an optimal solution to this problem is characterised by schedul-

ing jobs within each setup family in non-decreasing order of their processing times (Pinedo,

2008, Chapter 4), which indicates that an effective rule needs to integrate the principle of setup

avoidance with SPT in some way.

Several composite rules that combine SST and SPT have been developed in the literature.

Wilbrecht and Prescott (1969) propose a simple additive combination of the two rules, which

is commonly referred to as the Shortest Setup and Processing Time (SSPT) rule. Its priority

index is given by

ISSPT
j = −(se f j + p j), (3.15)

where se f j denotes the time required to change over from the previously processed family e

to the family f j of job j. Kochhar and Morris (1987) present a similar rule, called Shortest

Normalised Setup and Processing Time (SNSPT) in this work, with a priority index of

ISNSPT
j = −

(
X

se f j

s
+ Y

p j

p

)
. (3.16)

In contrast to SSPT, the SNSPT rule normalises the setup and processing time by dividing

them by their respective queue averages s and p, and weights the two terms before summing

them up. Given that no guidelines are provided for setting the weighting factors, it appears

reasonable to set X = Y . Another composite rule is proposed by Raman, Rachamadugu,
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and Talbot (1989), which is referred to as the Shortest Average Setup and Processing Time

(SASPT) rule herein and computes the priority index of a job as

ISASPT
j = −

( se f j

nQ
f j

+ p j

)
, (3.17)

where nQ
f j

indicates the number of jobs in the queue that belong to the same family as job j. The

underlying assumption of this rule is that the machine processes all waiting jobs of a family

consecutively so that the setup time se f j is spread over nQ
f j

jobs. The ratio of the two attributes

then gives the average setup time per job of that family. Unfortunately, there appears to be a

lack of studies on the relative performance of these composite rules or how they compare with

promising family-based rules.

Since it is optimal to schedule jobs within each family in non-decreasing order of their

processing times, SPT should be generally used for the job selection within family-based rules

for single stage problems with the objective to minimise mean flow time. Hence, the discussion

of family-based rules for the minimisation of mean flow time can focus on the design of family

selection rules.

The employment of an effective family selection rule is crucial as they largely determine

the overall performance of family-based rules. This is especially the case for exhaustive rules,

which are committed to processing all jobs of a family once that family has been chosen,

and therefore cannot easily rectify a poor decision taken at the family selection level. Conse-

quently, the more promising family selection rules from the literature make use of information

on the entire set of jobs in the queue. Arzi and Raviv (1998) propose a simple rule that de-

termines the priority of a family by dividing its required setup time by the number of jobs in

the queue that belong to it. This rule is called Family Shortest Average Setup Time (FSAST)

herein, and its priority index I f for family f is defined as

IFSAST
f = −

(
se f

nQ
f

)
, (3.18)

where nQ
f indicates the number of jobs of family f in the queue. Russell and Philipoom (1991)

develop a family selection rule, referred to as Family Shortest Average Setup and Processing

Time (FSASPT), that additionally takes into account the processing times of the waiting jobs

of a family. Its priority index is given by

IFSASPT
f = −

1

nQ
f

(
se f +

∑
j∈NQ

f

p j

)
, (3.19)
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where NQ
f denotes the set of queueing jobs that belong to family f . FSASPT thus prioritises

the family with the highest job processing rate, i.e. the largest number of jobs that can be

completed per unit of time, given the current queue content.

By definition, exhaustive family-based rules only change the setup when there is no job

left in the queue that can be processed with the current setup, and are therefore fully defined

by the two rules they apply to determine the next family, and the next job within a family.

Nomden et al. (2008) test several exhaustive rules, based on different family selection rules,

including FSAST and FSASPT, and the SPT job selection rule, on the 1|r j, se f |C problem.

They conclude that FSASPT is very effective across various settings for the number of families,

utilisation and the s/p ratio, the ratio of average setup time to average processing time, though

it is outperformed by FSAST when utilisation is high and the s/p ratio large. These findings

are confirmed by Van der Zee (2010), who also applies the exhaustive FSAST and FSASPT

rules with SPT job selection to the 1|r j, se f |C problem. In addition, Van der Zee finds FSAST

to perform particularly well if the variance of setup times is large (relative to the variance of

processing times). These results can be explained by the fact that FSAST concentrates on the

minimisation of setup times, which becomes most important when setups take a long time and

work centres are highly utilised. Moreover, a small variance of processing times limits the

potential of FSASPT to select a family with a small average processing time as they will all

be similar.

On the other hand, a large variance of job processing times can lead to situations where

there are many jobs of another family in the queue with substantially shorter processing times

than the remaining jobs of the current family. In such a case, a truncated rule that switches

to the other family although there are still jobs of the current family left could minimise

mean flow time more effectively. Mosier et al. (1984) design a truncated rule that permits

a changeover after the completion of a certain number of jobs, subsequently referred to as a

sequential batch. The size of this sequential batch (in terms of number of jobs) is determined

at the moment a new family is selected and is simply equal to the number of jobs of that family

waiting in the queue at that point. However, with new jobs arriving over time, the completed

jobs do not necessarily have to correspond to those that were originally in the queue, but can

include some that arrived more recently.

Van der Zee (2010) combines this rule with FSASPT and calls it the Gated FSASPT

(FSASPT GA) rule, and proposes two alternative truncated rules, the Adaptive FSASPT

(FSASPT AD) and the Hybrid FSASPT (FSASPT HY) rule. The FSASPT AD rule sorts

the queueing jobs of every family in non-decreasing order of their processing times and ap-

plies the FSASPT rule to every partial sequential batch of every family, including those that

consist only of the job with the shortest processing time. The family related to the batch with

the highest priority is then selected for processing, and the number of jobs to be processed

before the rule is allowed to truncate is determined by the size of this batch. However, to pre-
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vent the system from becoming unstable, only sequential batches that are larger than a lower

bound, which is based on the required setup time and utilisation level, are eligible to be cho-

sen. The FSASPT HY rule extends FSASPT AD by successively increasing the batch size

of the chosen family until its priority becomes lower than that of a partial batch of another

family. In case that even the largest batch, containing all queueing jobs from the family, has

a higher priority than any batch of any other family, FSASPT HY temporarily switches to

an exhaustive mode. Van der Zee tests the three truncated rules on the 1|r j, se f |C problem

against the exhaustive FSASPT and FSAST rules (all with SPT job selection) and concludes

that FSASPT AD yields the lowest mean flow time for moderate to low utilisation levels and

s/p ratios, especially if the variances of processing and setup times are both large. In con-

trast, FSASPT AD and FSASPT GA are shown to be significantly worse than the exhaustive

rules for high utilisation levels or s/p ratios, and a small variance of processing times, while

FSASPT HY is reported to hold an intermediate position.

A few researchers have developed family selection rules that coordinate the setups of par-

allel machines. Jensen et al. (1998) present two rules that, in determining the priority of a

family f , first count the number of machines m f that are currently set up for it. The prior-

ity of a family is then based on a subset of the nQ
f queueing jobs of that family, namely the

nQ
f /m f jobs with the lowest priorities. Hence, the more machines are set up for a given fam-

ily the lower its priority will be, thereby discouraging machines to work on the same family

simultaneously. Similarly, Arzi and Raviv (1998) drive parallel machines to work on different

job families with a decision logic that, upon its arrival, assigns every job to a machine that is

currently processing its family, provided that such a machine exists and there is no machine

running idle at that time. They further improve their rule by grouping together families for

which switching between setups takes a relatively short time. The rule then restrains machines

from loading jobs that belong to a family group already in process on another machine. These

more advanced strategies generally reduce the time spent on changeovers, and thus can achieve

a lower mean flow time.

3.2.2 Minimising Mean Weighted Tardiness

Since the WMDD, COVERT, ATC and CR rules effectively minimise mean (weighted) tar-

diness in single stage problems without sequence-dependent setups, their integration with a

mechanism that minimises setup times appears to be a promising way to the design of effec-

tive setup-oriented rules.

A simple approach to the development of setup-oriented variants of these rules is taken by

Raman, Rachamadugu, and Talbot (1989), who modify MDD and ATC by substituting every
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processing time term in their priority indices with the sum of (current) setup and processing

time. The slack within these composite rules is therefore altered to

S j = d j − t − p j − se f j . (3.20)

As Lee, Bhaskaran, and Pinedo (1997) point out, the problem with this slack definition is that

it leads due date-oriented rules to give a higher priority to jobs that require a longer setup time

since they tend to have less slack according to Equation (3.20). Such a rule then acts in a

way that is counterproductive to the minimisation of setup times and is likely to perform very

poorly in consequence.

This observation motivates Lee, Bhaskaran, and Pinedo to propose an alternative extension

of ATC that considers slack and setup time separately. The priority index of this rule, called

ATC with Setups (ATCS), is given by

IATCS
j =

w j

p j
exp

(
−

max(d j − t − p j, 0)
k1 p

)
exp

(
−

se f j

k2s

)
. (3.21)

A disadvantage of this separation is that it comes at the cost of a second scaling parameter k2,

in addition to the one from the original ATC rule, which is denoted by k1 in Equation (3.21).

Lee, Bhaskaran, and Pinedo establish laws for setting the two parameters experimentally and

test ATCS with thusly tuned parameter values on the 1|se f |wT problem against the setup-

oriented ATC rule from Raman, Rachamadugu, and Talbot (1989). The ATCS rule is shown

to be clearly better, irrespective of the due date setting or the s/p ratio. In a follow-up paper,

Lee and Pinedo (1997) apply the ATCS rule to the Pm|se f |wT problem and find that it achieves

close to optimal solutions when due dates are tight and the s/p ratio is not too high. However,

they derive and make use of different laws to tune the parameters, which indicates that a good

parameter setting is highly problem-dependent.

Chiang and Fu (2009) design a composite setup-oriented rule that is based on the CR rule.

Their Enhanced CR (ECR) rule evaluates the effect of prioritising one job on the urgency of

all other jobs in the queue before making a decision on which job to select. For single stage

problems the priority index of ECR is computed as

IECR
j = −

∑
y∈NQ,y, j

urg(py, dy − t − se f j − p j − s f jgy), (3.22)

where NQ denotes the set of jobs in the queue. The two arguments of the urgency function

urg correspond to the numerator and denominator of the critical ratio of a job, namely its re-

maining processing time and remaining allowance (see Section 3.1.2). The latter is determined

under the assumption that job j is processed first and the current allowance of job y therefore

decreases by the setup and processing time required for the completion of job j, and the time
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s f jgy it takes to subsequently switch from the setup for family f j to that needed for family gy of

job y. Hence, a job that involves extensive processing and setup times tends to receive a low

priority with ECR as it largely increases the urgency, a non-increasing function of remaining

allowance, of all other waiting jobs. Moreover, the ECR rule has an extra capability of min-

imising setup times as it does not only consider the time required to get to a certain setup, but

also the time to leave the setup afterwards to process another job from the queue. On the other

hand, the performance of ECR is strongly influenced by the used urgency function, where the

one proposed by Chiang and Fu ignores job weights and is primarily designed to minimise the

proportion of tardy jobs. Thus, the applicability of the ECR rule is restricted by the absence

of a suitable urgency function for the minimisation of mean weighted tardiness.

Regarding family-based rules, there seems to be a general lack of sophisticated family

selection rules for due date-related objectives. Exhaustive rules suggested in the literature

typically use a common dispatching rule to choose the next family, e.g. the family that contains

the job with the earliest (modified) due date or the smallest critical ratio (see, e.g. Mahmoodi

et al., 1990; Russell and Philipoom, 1991; Mahmoodi et al., 1992; Ruben et al., 1993; Kim and

Bobrowski, 1994; Frazier, 1996; Vinod and Sridharan, 2008). This is likely to result in a poor

performance as the urgency (and weight) of all other queueing jobs of a family are completely

ignored in the decision making. On the other hand, the suitability of exhaustive rules for the

minimisation of mean (weighted) tardiness is generally questionable as they make jobs, which

approach their respective due dates, wait for the completion of less urgent jobs, simply because

the machine is set up for the latter. Instead, it appears more sensible to resort to truncated

family-based rules that allow for a changeover to another family whenever a job becomes

time-critical and there is no urgency to process the jobs of the current family. However, none

of the due date-oriented truncated rules developed so far seems to be particularly effective in

minimising mean (weighted) tardiness (see, e.g. Mahmoodi and Dooley, 1991; Russell and

Philipoom, 1991; Wemmerlöv and Vakharia, 1991).

In summary, rules that combine setup avoidance with SPT are most effective in reducing

mean flow time in single stage problems with sequence-dependent setup times, and the group

of promising rules comprises both composite and family-based rules. In contrast, there appears

to be a lack of effective family-based rules for the objective of minimising mean (weighted)

tardiness, leaving the composite ATCS rule as the benchmark.

3.3 Batch Processing Problems with Incompatible Families

Dispatching rules for work centres with batch processing capabilities have to select a batch of

jobs to be processed next, which implies the formation of batches from the set of waiting jobs.

In the case of incompatible families, when only jobs of the same type, i.e. of equivalent size

and with equivalent processing requirements, can be batched together, batch formation can
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be handled as a separate subproblem. More specifically, it is sufficient to form the best batch

of each family, containing the jobs with the highest priorities, and then choose one of these

batches for processing. While a common dispatching rule can be used to prioritise the jobs

within each family, the comparison of batches requires for a more sophisticated dispatching

rule that takes into account the content of each batch. In particular, dispatching rules need

to consider the size of a batch, in terms of the number of jobs it contains, relative to the

maximum number of jobs the machine could accommodate for that family. Otherwise, there

is the risk of an excessive waste of the capacity of the work centre by the repeated processing

of near-empty batches, which, as in the case of sequence-dependent setup times, can lead to

an unstable system in dynamic problems.

3.3.1 Minimising Mean Flow Time

Uzsoy (1995) shows that, for single stage batch processing problems with incompatible fami-

lies and a regular objective such as the minimisation of mean flow time, it is optimal to make

batches always as full as possible (see also Webster and Baker, 1995). In other words, un-

less there is a penalty associated with the early completion of jobs, nothing can be gained by

leaving some of the capacity of a machine unused. This finding and the analogy between the

Pm|B f |C and the Pm||wC problem (see also Dobson and Nambimadom, 2001), allows Uzsoy

to derive a dispatching rule that solves the 1|B f |C problem optimally and yields good solutions

to the Pm|B f |C problem. This rule, called Batch SPT (BSPT) herein, forms the largest possi-

ble batch of each family using any of the available jobs and then, analogue to the WSPT rule,

selects the batch b with the largest ratio of its size (its weight) to its processing time. Thus, the

priority index of BSPT is defined as

IBSPT
b =

nb

pb
, (3.23)

where pb indicates the processing time of batch b and nb the number of jobs it contains.

Although the BSPT rule is very effective for the 1|B f |C and the Pm|B f |C problem, it does

not guarantee stability for the corresponding dynamic problems. To illustrate, consider a single

machine problem with dynamically arriving jobs that belong to one of the two families e and

f . The machine can process up to four jobs of family e in a batch, requiring four units of

time, i.e. Be = 4 and pe = 4, or up to four jobs of family f in 20 time units, i.e. B f = 4 and

p f = 20. It follows that a batch containing only one job of family e has a priority index of

1/4 with BSPT, which is larger than 4/20, the priority index of a full batch of family f . If the

arrival rate of family e exceeds its processing rate based on one-job batches, i.e. one job per

four units of time, there will always be jobs of family e in the queue in the long term. Then,

BSPT will never choose a batch of family f for processing, resulting in the system to become

unstable.
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One way to ensure system stability is by the application of a threshold policy that only

allows the start of a batch b if its size nb is equal to or larger than a given threshold value

L. This policy, which originates from a paper by Neuts (1967), is commonly referred to as

the Minimum Batch Size (MBS) rule in the literature. Deb and Serfozo (1973) show that

MBS with the optimal L-value yields the long-term minimum average number of jobs in the

queue, and hence the minimum mean flow time, for the special case of the 1|r j, B f |C problem

with one family and a Poisson arrival time distribution. For problems with multiple families

with different arrival rates and processing times, Akçalı et al. (2000) suggest to use family-

specific threshold values that are increasing in the difference between the processing time

and the mean interarrival time of a family. The dispatching rule is then restrained to select

only among those batches that are large enough to comply with the family-specific threshold.

Duenyas and Neale (1997) design a dispatching rule that combines BSPT and MBS in a similar

manner. This rule, called MBSBSPT in this work, sorts families in non-increasing order of

their BSPT index B f /p f and determines the family with the highest priority that can form a

full batch. This family and all families that have a higher BSPT index and can form a batch

that is at least as large as their MBS threshold are then eligible for processing, where the

family-specific thresholds depend on the family that can form the full batch and are based on

a sufficient condition for a stable system. If none of the families can form a full batch, then

all families are eligible for processing. The largest possible batch is formed for each family

and the one with the highest BSPT index is selected. The batch is started immediately unless

there is a benefit in leaving the machine idle, which is estimated using the arrival rates for the

individual families. Duenyas and Neale apply their MBSBSPT rule to the 1|r j, B f |C problem

with different utilisation levels, number of families, family mixes and machine capacities.

They find that their rule consistently yields a mean flow time that is very close to a lower

bound on the optimum solution obtained by stochastic dynamic programming.

The main disadvantage of MBS-based rules in general, and MBSBSPT specifically, is

that their effectiveness depends largely on adequately set (family-specific) threshold values

(Glassey and Weng, 1991; Van der Zee et al., 1997). In the literature, these are typically

determined using the arrival rates of the individual families (see, e.g. Duenyas and Neale,

1997; Akçalı et al., 2000). However, arrival rates are generally unknown, and can only be

estimated from historic job arrivals. Furthermore, subtle changes to arrival rates over time are

very difficult to detect, making it difficult to adjust the thresholds in time, which could impair

the performance of an MBS-based rule to some extent.

Alternatively, system instability can also be avoided by giving priority to batches that use

more of the available machine capacity. A simple implementation of this strategy is a rule,

referred to as the Full Batch (FB) rule herein, that distinguishes only between full and par-

tial batches and only allows for the selection of a partial batch if no full batch can be formed.
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A slightly more sophisticated variant, called Most Complete Batch (MCB) is this work, as-

sesses the degree of fullness in the prioritisation of batches, i.e. its priority index is given

by

IMCB
b =

nb

B fb
, (3.24)

where B fb denotes the maximum size of a batch of the family fb that batch b belongs to. Both

MCB and FB guarantee a stable system and could be combined with BSPT, e.g. by using the

latter as a tie-breaking rule, to create promising rules for the minimisation of mean flow time

of single stage batch processing problems.

3.3.2 Minimising Mean Weighted Tardiness

The minimisation of mean weighted tardiness represents another regular objective, for which

there is no incentive to form partial batches that could be filled with some of the waiting jobs

instead (Uzsoy, 1995; Webster and Baker, 1995). Hence, all batches apart from possibly the

last batch of each family are full batches in an optimal solution to the 1|B f |wT or the Pm|B f |wT

problem. Moreover, due to the analogy between the 1|B f |wC and the 1||wC problem (Uzsoy,

1995; Dobson and Nambimadom, 2001), the extreme case of the 1|B f |wT problem, in which

it is impossible to complete any job on time, can be solved optimally by a batch processing

version of the WSPT rule (see also Section 3.1.2). This rule, developed by Uzsoy (1995) and

referred to as the Batch WSPT (BWSPT) rule in this work, forms the largest possible batch

of each family by filling them with jobs in non-increasing order of their weights. The priority

index of a formed batch is then given by

IBWSPT
b =

wb

pb
, (3.25)

where the weight wb of batch b equals the sum of the weights of the jobs it contains, and the

batch with the highest BWSPT index is selected for processing.

In addition, Uzsoy (1995) derives a batch processing version of the EDD rule, called Batch

EDD (BEDD) herein, that solves the 1|B f |Tmax problem optimally, and thus also the 1|B f |wT

problem in the other extreme case when it is possible to finish all jobs on time. BEDD fills

batches with jobs in non-decreasing order of their due dates and, analogue to EDD, sequences

batches in non-decreasing order of their due dates. Hence, the priority index of BEDD is

IBEDD
b = −db, (3.26)

where the due date db of batch b is determined by the earliest of the due dates of the jobs it

contains.

The fact that BWSPT and BEDD yield optimal solutions to the 1|B f |wT problem, and

close to optimal solutions to the Pm|B f |wT problem (Uzsoy, 1995), in opposed conditions of
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extremely tight and loose due dates indicates that a generally effective rule should somehow

integrate the two rules. In particular, with regard to the formation of batches, such a rule has to

trade off between the prioritisation of a job with a larger weight and more relaxed due date, and

giving priority to a more urgent job with a smaller weight. In many ways, the considerations

to be made resemble those involved in solving serial processing problems for the minimum

mean weighted tardiness, and the extension of effective rules such as WMDD, COVERT or

ATC to batch processing problems thus appears promising.

Several ATC-based rules have been developed for batch processing problems. Mehta and

Uzsoy (1998) design the Batch ATC (BATC) rule to address the 1|B f |T problem, for which the

formation of batches is easy as it is optimal to include jobs in non-decreasing order of their

due dates (Mehta and Uzsoy, 1998). The priority index of BATC is defined as

IBATC
b =

1
pb

exp
(
−

∑
j∈Nb max(d j − t − p j, 0)

kp

)
, (3.27)

where Nb denotes the set of jobs contained in batch b and p now refers to the average process-

ing time of the formed batches. Similarly, Mason et al. (2002) formulate a batch processing

extension of the ATCS rule that accounts for the weight as well as the relative fullness of a

batch. For problems without sequence-dependent setup times the priority index of this rule

can be simplified to

IBATCS
b =

wb

pb
exp

(
−

max(db − t − pb, 0)
kp

)
1

B fb
. (3.28)

Regarding the formation of batches, Mason et al. propose to make a batch for every feasible

combination of available jobs, including partial batches, which is rather inefficient. Perez

et al. (2005) present another batch processing adaptation of the ATC rule, which forms only

one batch per family by applying ATC to select the jobs to be included. The priority index of

a batch is then simply given by the sum of priority indices of jobs it contains, i.e.

IBATCx

b =
∑
j∈Nb

w j

p j
exp

(
−

max(d j − t − p j, 0)
kp

)
, (3.29)

where p refers to the average processing time of all jobs in the queue, as in the original ATC

rule. Perez et al. test BATCx against BEDD on the 1|B f |wT problem with different values of

number of families, number of jobs per family and machine capacity, as well as different due

date settings. Their results show BATCx to outperform BEDD across all experimental condi-

tions, which demonstrates the potential of ATC-based rules for batch processing problems.

Despite the lack of studies on the relative performance of the different BATC formulations,

their effectiveness can be gauged by a closer examination of their respective priority indices.

First of all, a drawback of the BATC rule is that it ignores the size (or weight) of a batch.
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Clearly, the (weighted) tardiness penalty associated with a unit of time delay of a batch that is

entirely composed of tardy jobs is equal to the number (or sum of weights) of jobs the batch

contains. Hence, replacing the 1 in the numerator of the first ratio in Equation (3.27) by wb

(which is equal to nb in the case of unit job weights) is likely to make the rule more effective.

The main difference between BATC, BATCS and BATCx, however, is the way in which they

estimate the cost of delaying a batch for another unit of time that is not entirely composed of

tardy jobs. The BATCS rule is a little simplistic in this respect as it considers only the slack

of the most urgent job in the batch, ignoring the slack of all other jobs. The determination

of the delay cost of a batch within the BATC rule is also flawed, as it mixes the estimated

delay costs of the individual jobs and discounts the total cost for each job with positive slack.

In consequence, a job with excessive slack may offset the delay cost of other jobs, even if

these are already late and would increase weighted tardiness for certain if the batch is further

delayed. Clearly, this can result in very poor scheduling decisions. BATCx, on the contrary,

discounts the weight of each job for its slack and then adds up the discounted weights, which

seems a more appropriate way to estimate the delay cost of a batch. Hence, the BATCx rule is

likely to be the most effective of the three rules.

Another question is whether or not to incorporate the extra factor of the BATCS rule,

i.e. 1/B fb , which only has an effect if the maximum batch size differs across families. An

argument against its inclusion is the fact that BATCx in its original form reverts to the BWSPT

rule for extremely tight due dates, which can be regarded as desirable, given the optimality of

BWSPT for the 1|B f |wT problem under these conditions. On the other hand, as discussed in

the previous section, a rule that is optimal for a static batch processing machine problem can

still lead to an unstable system when applied to the corresponding dynamic problem. The extra

factor of BATCS decreases the probability of instability by relating the estimated delay cost

of a batch, which is a non-decreasing function of its size, to the maximum batch size, thereby

increasing the priority of fuller batches. However, the factor does not guarantee stability, and

an adequate integration of the original BATCx rule with the FB or MCB rule may actually be

more effective.

Kim et al. (2001) develop a rule, named PUCH (Processing Urgency Classification Heuris-

tic), that integrates the CR rule with MBS. PUCH first applies the CR rule to determine the

most critical job in the queue. If the critical ratio of this job is less than or equal to a predefined

threshold value u1, it is regarded as very urgent and processed immediately as part of a batch of

maximum possible size. If its critical ratio is greater than u1, but less than another predefined

threshold value u2, the job is considered to be moderately urgent. Then, PUCH assesses for

every moderately urgent job, in non-decreasing order of their critical ratios, whether a batch

can be formed of its family that is large enough to satisfy the family-specific MBS threshold,

and starts the largest possible batch of that family, if that is the case. Otherwise, if none of the

jobs in the queue is even moderately urgent or none of those families with moderately urgent
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jobs can form a large enough batch, PUCH simply starts a batch of the family with the most

number of jobs in the queue that can satisfy the MBS threshold, or leaves the machine idle

if no such family exists. Regarding the formation of batches, PUCH includes jobs in non-

decreasing order of their slack, which for single stage batch processing problems is the same

as including jobs in non-decreasing order of their due dates, as the (remaining) processing

times of jobs of the same family are all equal.

The key idea of the PUCH rule is to allow urgent jobs to violate minimum batch size

requirements in order to finish before their due date. An important issue with respect to the

application of PUCH thus concerns the definition of ‘urgent’, i.e. the selection of an adequate

u1-value. Clearly, if u1 is set smaller than 1, PUCH starts to expedite jobs only after it is

certain that they cannot be completed on time, which defeats the intention of the rule. On the

other hand, a very large u1-value effectively corresponds to removing the MBS rule, which is

likely to cause an inefficient operation of the batch processing work centre, thereby making

more jobs time-critical in turn. Using simulation, Kim et al. find that setting u1 = 2.5 and

u2 = 4 works well for their problem. However, in general, the best values for u1 and u2 can

be expected to depend not only on the problem, but also on the values chosen for the MBS

thresholds and vice versa. The various parameters and the previously discussed challenges

associated with the use of MBS-based rules makes the application of PUCH rather difficult.

Another drawback is that the rule does not account for unequal job weights in its current form.

In summary, BSPT is the best rule to minimise mean flow time in static single stage batch

processing problems, while BATCx seems to be the most promising rule for the minimisation

of mean weighted tardiness. However, both rules can cause instability in dynamic problems,

for which they should be combined with rules such as FB or MCB.

3.4 Multi-Stage Problems

In multi-stage problems, jobs have to visit several work centres in a certain order, which im-

plies that a scheduling decision taken at one work centre generally affects the set of jobs, and

therefore the decision options, available at another work centre at a later point in time. This

interdependency of scheduling decisions makes the development of effective dispatching rules

for multi-stage problems very difficult. The challenge is to design rules that operate on a

locally restricted horizon and, at the same time, result in a good global performance.

3.4.1 Minimising Mean Flow Time

Since SPT is the best rule for simple single stage problems with the objective to minimise

mean flow time, its adaptation provides a natural starting point in the design of effective rules

for the corresponding multi-stage problems.
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There are several obvious ways to adapt SPT to multi-stage problems. One possibility

is to base the priority of a job only on the processing time of its imminent operation on the

considered work centre, thereby ignoring all subsequent operations of the respective job. The

priority index of this rule, commonly identified by the name of its single stage relative, is thus

ISPT
j = −p j,i, (3.30)

where p j,i indicates the processing time of the imminent operation i of job j. Another sensible

adaptation is the Least Work Remaining (LWKR) rule, which prioritises jobs according to the

processing times of all remaining operations. Its priority index is given by

ILWKR
j = −

l j∑
o=i

p j,o, (3.31)

where p j,o denotes the processing time of operation o of job j, and l j the number of operations

of job j. Hence, while SPT focusses on short operations and on minimising the local mean

flow time at each individual work centre, LWKR assumes a more global perspective and aims

to quickly push through short jobs.

Although both rules have their intuitive appeal, the general conclusion in the literature is

that SPT is the more effective rule for the minimisation of mean flow time, both in job shops

(Blackstone et al., 1982; Baker and Kanet, 1983; Haupt, 1989) and flow shops (Hunsucker

and Shah, 1994; Brah and Wheeler, 1998; El-Bouri et al., 2008). An exception is the study

by Rajendran and Alicke (2007), who examine the Fm||C problem with unbalanced workloads

and find that LWKR gains considerably on SPT with an increasing number of processing stages

until it starts to outperform the latter rule. However, this result does not seem to carry over

to other problems, not even to flow shop problems with dynamic job arrivals and/or balanced

workloads.

The drawback of conventional dispatching rules such as SPT and LWKR is that their infor-

mation horizon is restricted to jobs currently queueing at the considered work centre. Hence,

their decision making is myopic in that interactions with other work centres are completely

ignored. Clearly, such a local horizon can easily lead to decisions that are bad with respect to

the global performance of the shop, which motivates the design of dispatching rules that use

some more global information.

Consideration of Upstream Jobs

Gere (1966) proposes to provide dispatching rules with information on jobs that are expected

to arrive from upstream work centres in the near future. This information allows a dispatching

rule to look ahead, i.e. to assess the effect a particular decision has on future conditions at the

local work centre. Moreover, these look-ahead dispatching rules can make a decision to leave
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a machine idle in anticipation of a job with high priority. Waiting for a future job, however,

always comes at the expense of delaying jobs that are already in the queue, which has to be

traded off against the benefit of being able to process the future job without delay.

To illustrate this trade-off, consider a simple single machine problem with the objective of

minimising mean flow time. Assume that there are nQ jobs waiting at the machine, and that

another job with higher priority, i.e. shorter processing time, is due to arrive before the highest

prioritised job in the queue can be completed (otherwise there is no incentive to wait for the

future job). Without loss of generality, let the jobs be indexed in non-decreasing order of their

processing times. Then, the mean queueing time of the nQ + 1 jobs that results from waiting

for the future job (Job 1) and processing all jobs in order of the (optimal) SPT rule equals

1
nQ + 1

(
nQ(r1 − t) +

nQ∑
j=1

((nQ + 1 − j)p j)
)
, (3.32)

where r1 denotes the time of arrival of Job 1 to the machine. In contrast, processing the shortest

job in the queue, i.e. Job 2, immediately and the remaining jobs in SPT order yields a mean

queueing time of

1
nQ + 1

(
(p2 − (r1 − t)) +

nQ∑
j=1

((nQ + 1 − j)p j) − p1

)
. (3.33)

It is therefore better to wait for Job 1 if, and only if, the expression in Equation (3.32) is smaller

than that in Equation (3.33) or, rearranging terms, if

(nQ + 1)(r1 − t) + p1 < p2. (3.34)

The first term in this inequality represents the penalty of waiting in terms of increase of total

flow time, which is shown to be proportional to the number of jobs in the queue. Hence, it

is generally not beneficial to wait for a future job at highly utilised work centres, which are

characterised by large queues. On the other hand, the inequality indicates that look-ahead rules

can reduce the mean flow time over conventional dispatching rules at moderately utilised work

centres, especially in situations where a job with a much shorter processing time than any of

the waiting jobs is expected to arrive in the very near future.

The potential of look-ahead dispatching rules tends to increase for problems with

sequence-dependent setup times. More specifically, their ability to anticipate future jobs

that require little or no setup time, given the current machine setup, may save some long

changeover operations. Nomden et al. (2008) extend several exhaustive family-based rules so

they take future jobs into account in the determination of family priorities and can select a fam-

ily without jobs in the queue, in which case the machine is left idle until the next job arrival.

They test these look-ahead extensions on the 1|r j, se f |C problem and find that the performance
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of the already effective FSASPT and FSAST rules is further improved, particularly in condi-

tions of a high s/p ratio and low utilisation. Despite the apparent potential of look-ahead rules

to reduce mean flow time in problems with sequence-dependent setup times, little work seems

to have been done in this area.

In contrast, a number of look-ahead rules have been developed for batch processing prob-

lems (with incompatible families), which are the topic of the remaining discussion (see also

Van der Zee, 2003). The design of look-ahead rules for batch processing problems is par-

ticularly promising as batch operations are typically characterised by long processing times

(relative to the interarrival times) and the information on future job arrivals can help to start a

batch operation at the right moment. To illustrate, if several jobs are expected to arrive in the

near future, allowing for the formation of a substantially larger batch, then to wait for their ar-

rivals is likely to result in a lower mean flow time than to process a smaller batch immediately.

One of the simplest look-ahead rules, which is designed for problems with only one fam-

ily, is the Dynamic Batching Heuristic (DBH) proposed by Glassey and Weng (1991). DBH

considers all jobs that arrive by the time a batch operation would finish if it were started im-

mediately, and up to the point where a full batch could be formed. Its priority index can be

expressed as

IDBH
j =

∑
y∈NL,ry,i≤r j,i

(t + p j,i − r j,i) − nQ ×max(r j,i − t, 0), (3.35)

where NL denotes the set of look-ahead jobs, i.e. the jobs that arrive at the considered work

centre in the near future, and r j,i indicates the arrival time of job j to the work centre for its

imminent operation. Thus, if j is a look-ahead job then r j,i > t holds, and r j,i ≤ t otherwise.

The first term of the priority index of DBH measures the total queueing time saved by waiting

for the arrival of job j before starting a batch operation, which relates to future jobs that arrive

before j and would have to wait until t + p j,i if a batch is processed immediately (in batch

processing problems with only one family all batches require the same processing time, i.e.

p j,i). The second term, on the other hand, represents the additional queueing time that would

incur for jobs already in the queue at the time of decision making. The priority index of DBH

is therefore an estimate of the net reduction of total waiting time over the horizon of one batch

operation processing time, associated with the prioritisation of a look-ahead job j. Moreover,

since IDBH
j = 0 for any non-future job j, the machine is made to wait whenever there is a

look-ahead job with a positive estimated net reduction of total waiting time.

In several papers (Glassey and Weng, 1991; Fowler et al., 1992; Weng and Leachman,

1993; Van der Zee et al., 1997), DBH is applied to the 1|r j, B f |C problem and shown to out-

perform MBS with an optimally chosen threshold value across various conditions, where the

relative advantage of DBH is found to be larger for a more irregular job arrival pattern, a

lower utilisation and a smaller machine capacity. In particular, the fact that DBH shows to

outperform MBS in the case that job arrivals follow a Poisson process, for which MBS is op-
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timal under the assumption that information on future jobs is unavailable (see Section 3.3.1),

demonstrates the potential of look-ahead rules for batch processing problems.

Fowler et al. (1992) develop a look-ahead rule, named Next Arrival Control Heuristic

(NACH), for batch processing problems with multiple families, and extend its applicability to

problems with parallel machines in a follow-up paper (Fowler et al., 2000). NACH features a

sequential decision logic that involves the computation of up to three priority indices. When-

ever a machine completes an operation and there are jobs waiting to be processed, NACH

determines first whether it is possible to form a full batch with the jobs in the queue. If this is

the case, a full batch of the family f with the highest NACH-Start (NACH-S) index, defined

as

INACH-S
f = −

(∑
g, f

nQ
g p f

)
, (3.36)

is formed and processed immediately. Else, if the work centre consists of several machines, of

which more than one is running idle at the point of decision making, a partial batch, as large

as possible, of the family with the highest NACH-S index is processed immediately. If neither

of the first two conditions apply, NACH employs the DBH rule to determine for each family,

separately and in isolation of the other families, whether it is beneficial to wait for the next

respective job arrival or not. To account for parallel machines, Fowler et al. (2000) extend the

priority index of DBH to

IDBH
j =

∑
y∈NL,ry,i≤r j,i

(min(τ, t + p j,i) − r j,i) − nQ ×max(r j,i − t, 0), (3.37)

where τ refers to the time at which the next of the parallel machines completes its current

operation. If, for every family, the DBH index of the next arriving job is negative, i.e. the total

waiting time is estimated to increase as a result of waiting, then the largest possible batch of

the family with the highest NACH-S index is formed and processed immediately. Otherwise,

if the DBH rule indicates that, for every family, it is beneficial to wait for the next arrival, the

machine is left idle. However, if the result of the evaluation is mixed, i.e. DBH determines

that waiting is the preferred decision for some families but not all, then another index, referred

to as NACH-Start or Wait (NACH-S/W) herein, is employed to make a decision. This priority

index is given by

INACH-S/W
j = −

(∑
g

nQ
g ×max(r j,i − t, 0) +

∑
g, f j,i

nQ
g p j,i

+
∑

y∈NL,y, j

max(0,max(t, r j,i) + p j,i − ry,i)
)
,

(3.38)

where f j,i denotes the family of the imminent operation of job j. NACH-S/W, which just like

NACH-S measures the increase of total waiting time, is applied to all queueing jobs and all jobs
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of the set of look-ahead jobs NL, which only includes one job per family in this case, namely

the one with the earliest arrival time. If the job with the highest priority, i.e. the one associated

with the smallest increase of total waiting time, is a look-ahead job, the machine is left idle.

Otherwise, the machine starts processing a batch that contains the job with the highest priority

and all other jobs in the queue that belong to the same family. Once the decision is made to

leave a machine idle, the NACH rule determines for every new job arrival whether it is now

possible to form a full batch, and if not, whether starting a partial batch is, according to DBH,

better than to wait for the subsequent arrival of that family. If one of these two conditions is

satisfied, NACH starts processing a (full or partial) batch with the newly arrived job, and else

leaves the machine idle.

For the 1|r j, B f |C problem with a single family, NACH performs very similar to the DBH

rule, in general (Fowler et al., 1992; Weng and Leachman, 1993; Van der Zee et al., 1997),

which can be expected as NACH essentially reduces to the application of DBH to decide

whether or not to wait for the next arrival of the only family, in this case. On the other hand,

Van der Zee et al. (1997) point out some flaws in the decision logic of NACH that are likely

to impair its performance for problems with multiple families. First of all, the separate con-

sideration of families by the DBH rule to determine whether or not it is beneficial to wait does

not account for interdependencies between jobs of different families. Secondly, NACH only

accounts for the next arriving job of each family, thereby ignoring all other jobs that are ex-

pected to arrive within the considered time horizon and thus could be negatively affected by

a taken decision. Clearly, such a selective use of arrival time information can easily result in

poor decisions and reduce the effectiveness of a look-ahead rule.

An alternative to the NACH rule is the Minimum Cost Rate (MCR) rule by Weng and

Leachman (1993). Similar to NACH, MCR checks first whether a full batch can be formed

with the set of queueing jobs and, if that is the case, starts a full batch of the family f with the

highest MCR-Start (MCR-S) index, which is computed as

IMCR-S
f = −

1
p f

((
max(nQ

f − B f , 0) +
∑
g, f

nQ
g

)
p f +

∑
y∈NL

ry,i≤t+p f

(t + p f − ry,i)
)
. (3.39)

Otherwise, all jobs (and families) are eligible to be selected, in particular all look-ahead jobs

up to and including the one that allows for the formation of a full batch of the respective family.

The priority of job j is then determined by the MCR-Start or Wait (MCR-S/W) index, given

by
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IMCR-S/W
j =



−
1

p j,i

( ∑
g, f j,i

nQ
g p j,i +

∑
y∈NL

ry,i≤t+p j,i

(t + p j,i − ry,i)
)

if j ∈ NQ,

−
1

(r j,i + p j,i − t)

(
nQ

f j,i
(r j,i − t) +

∑
y∈NL

f j,i
,ry,i≤r j,i

(r j,i − ry,i)

+
∑

y∈NL
f j,i

r j,i<ry,i≤r j,i+p j,i

(r j,i + p j,i − ry,i) +
∑
g, f j,i

(
nQ

g (r j,i + p j,i − t)

+
∑
y∈NL

g
ry,i≤r j,i+p j,i

(r j,i + p j,i − ry,i)
))

otherwise,

(3.40)

where NL
g refers to the set of look-ahead jobs of family g. Both indices measure the average

queue length that would result from prioritising job j (or family f ) over a time horizon that

extends to the completion of its operation, i.e. t + p j,i for jobs that are started immediately and

r j,i + p j,i for jobs that arrive at r j,i, which the MCR rule seeks to minimise. More specifically,

in each case the expression within the outer brackets measures the total waiting time within

the respective time horizon, which is divided by the length of the horizon to give the average

queue length. The total waiting time that would result from prioritising a queueing job, given

by Equation (3.39) and the first case in Equation (3.40), is composed of two terms, which

measure the waiting time for other jobs in the queue that are not part of the batch, and the

waiting time for future jobs that arrive before the operation is completed, respectively. On the

other hand, the total waiting time associated with the prioritisation of a look-ahead job, i.e. the

second case in Equation (3.40), is composed of five terms, which represent queueing jobs of

the same family as job j, look-ahead jobs of the same family that arrive before and after j, and

queueing and look-ahead jobs of other families, respectively. Depending on whether the job

with the highest priority is a queueing or look-ahead job, the machine either starts processing

a batch containing that job or waits for the job to arrive.

In contrast to NACH, MCR takes into account all jobs that are expected to arrive within

the considered time horizon, not only the next arrival of each family. This could be the reason

for that MCR is commonly found to be slightly more effective than NACH for the 1|r j, B f |C

problem with multiple families (Weng and Leachman, 1993; Robinson et al., 1995; Van der

Zee et al., 1997). On the other hand, results from Weng and Leachman (1993) and Van der

Zee et al. (1997) for the 1|r j, B f |C problem with a single family indicate that NACH starts to

outperform MCR under higher utilisation levels. More generally, the superiority of one rule

over the other seems to depend on a combination of factors such as the number of families, the

utilisation and the distributions of interarrival and processing times (Van der Zee et al., 1997).

However, a drawback of MCR in comparison with NACH is that it is not designed for work

centres with parallel machines.
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Van der Zee et al. (1997) develop the Dynamic Job Assignment Heuristic (DJAH), a mod-

ification of the MCR rule that is also suitable for parallel machines. The main difference to

MCR is that the total waiting time in the indices is divided by the number of jobs in the batch

instead of by the length of the time horizon. The DJAH-S index, which is used to determine

the family with the highest priority among those that can form a full batch with jobs in the

queue (if applicable), is therefore given by

IDJAH-S
f = −

1
B f

((
max(nQ

f − B f , 0) +
∑
g, f

nQ
g

)
×min(τ − t, p f )

+
∑
y∈NL

ry,i≤min(τ,t+p f )

(min(τ, t + p f ) − ry,i)
)
,

(3.41)

which, apart from denominator (B f instead of p f ), corresponds to the MCR-S index for work

centres that consist of a single machine. Similarly, the DJAH-S/W priority index, which is

employed in the case that no full batch can be formed, is an analogue modification of the

MCR-S/W index and defined as

IDJAH-S/W
j =



−
1

nQ
f j,i

( ∑
g, f j,i

nQ
g ×min(τ − t, p j,i)

+
∑
y∈NL

ry,i≤min(τ,t+p j,i)

(min(τ, t + p j,i) − ry,i)
)

if j ∈ NQ,

−
1

(nQ
f j,i

+ 1)

(
nQ

f j,i
(r j,i − t) +

∑
g, f j,i

nQ
g (min(τ, r j,i + p j,i) − t)

+
∑
y∈NL

ry,i≤min(τ,r j,i+p j,i)

(min(τ, r j,i + p j,i) − ry,i) − p j,i

)
otherwise,

(3.42)

In accordance with the MCR rule, NL denotes the set of all look-ahead jobs. However, the

DJAH-SW index is only computed for jobs in the queue and the next arrival of each family,

which is more in the spirit of the NACH rule and the reason for why some of the terms in the

second case in Equation (3.40) can be combined. Moreover, the processing time of a batch in

the denominator of MCR is again replaced by its size, which is equal to the number of jobs in

the queue belonging to the respective family nQ
f j,i

, plus the extra look-ahead job if the decision

to wait for its arrival is made.

Van der Zee et al. test DJAH against NACH and MCR on the 1|r j, B f |C problem with mul-

tiple families and report that it dominates both rules across different utilisation levels, family

mixes, machine capacities and processing time distributions. An exception is the case of uni-

formly distributed interarrival times in combination with a moderate to low utilisation, for
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which NACH shows to perform best. In addition, their results for the corresponding single

family problem indicate that MCR is slightly more effective than DJAH in conditions of a

lower utilisation and/or larger machine capacity, while NACH seems to fare marginally better

for a high utilisation level. However, the differences found between the mean flow time per-

formance of DJAH, NACH and MCR are generally small in comparison to the advantage they

have over rules that do not take future job arrivals into account (Fowler et al., 1992; Weng and

Leachman, 1993; Robinson et al., 1995; Van der Zee et al., 1997).

Duenyas and Neale (1997) present a variant of their MBSBSPT rule that bases the deci-

sion to leave the machine idle on the time of the next job arrival of every family instead of on

arrival rates. This modification is shown to improve the effectiveness of the rule to an extent

that it outperforms NACH on the 1|r j, B f |C problem for various settings of number of fam-

ilies, family mix, utilisation, machine capacity, and different interarrival or processing time

distributions, except for conditions of a very low utilisation.

An important issue in connection with look-ahead rules is the accuracy and completeness

of the arrival time information, as perfect information is generally not available. To illustrate,

in an ideal job shop, any work centre can receive jobs from outside the shop, which cannot be

predicted according to the assumptions made in this work, or from other work centres within

the shop, for which arrival times may be estimated. These estimations can be further precise,

e.g. if the job has already started the immediately preceding operation and will join the queue

directly afterwards, or imprecise, e.g. if the job still has to undergo several operations on other

work centres before it is sent to the considered work centre, in which case its arrival time is

subject to future scheduling decisions and random events. Some researchers have studied the

effect of inaccurate and incomplete arrival time data on the performance of look-ahead rules

in the context of batch processing problems. Their findings can be summarised in that less

information-intensive rules turn out to be more robust, and that negative effects of imperfect

information can be alleviated by reevaluating decisions to leave a machine idle as soon as new

information on future arrivals becomes available (Fowler et al., 1992; Robinson et al., 1995;

Van der Zee et al., 1997).

Overall, the above studies demonstrate the benefit of using look-ahead rules for the min-

imisation of mean flow time, especially at work centres involving sequence-dependent setup

times or batch processing. Moreover, look-ahead rules are found to be particularly effective

in conditions where a lot can be gained from looking ahead, e.g. setup times are long or job

arrivals are irregular, and the penalty for leaving a machine idle is not too high, i.e. utilisation

is moderate and queues are small. However, a local reduction of mean flow time does not

necessarily translate into a lower global mean flow time, e.g. if the considered work centre

is upstream of a bottleneck that largely determines the performance of the shop. Then, sup-

porting an efficient operation of the downstream bottleneck may be more important than local

improvements.



CHAPTER 3. THE DESIGN OF DISPATCHING RULES 45

Consideration of Downstream Work Centres

While look-ahead rules assess the effect of each possible scheduling decision on the future

conditions at the local work centre, it can also be beneficial to assess how a decision affects

the future conditions at other, specifically downstream work centres. In particular, unnecessary

idle times at highly utilised work centres that are due to a temporarily shortage of jobs may be

avoided by ensuring that these work centres are provided with a constant job supply.

A rule that operates in this way is the Processing Time plus Work In Next Queue

(PT+WINQ) rule, presented by Holthaus and Rajendran (1997a,b). The priority index of

this rule is given by

IPT+WINQ
j = −(p j,i + Wz j,i+1), (3.43)

where Wz j,i+1 denotes the current work content, i.e. the sum of operation processing times

of jobs in the queue and the remaining processing time of the operation in process, of the

work centre z j,i+1, required for the subsequent operation of job j. If there is no subsequent

operation, i.e. the imminent operation of the job is its last, then Wz j,i+1 = 0. Hence, this

component, called WINQ in the following, assigns maximum priority to a job that will leave

the system after the completion of its imminent operation. By considering the queue lengths of

work centres that jobs visit for their next operation in addition to the processing time of their

imminent operation, the PT+WINQ rule is able to trade off the minimisation of the local mean

flow time with the importance of balancing the work content of other work centres to avoid idle

times due to starvation. As a consequence, PT+WINQ shows to perform significantly better

for the Jm|r j|C problem than its two components, the SPT and WINQ rules, and a policy

that randomly switches between those two rules, especially in conditions of high utilisation

(Holthaus, 1997; Holthaus and Rajendran, 1997a,b; Rajendran and Holthaus, 1999).

Encouraged by these results, Holthaus and Rajendran propose a modification of the

PT+WINQ rule in a follow-up paper (Holthaus and Rajendran, 2000). The name of this modi-

fication, 2PT+WINQ+NPT, is derived from the formula of the priority index of the rule, which

is defined as

I2PT+WINQ+NPT
j = −(2p j,i + Wz j,i+1 + p j,i+1). (3.44)

Thus, the main difference to PT+WINQ is the incorporation of the processing time of the

subsequent operation of a job p j,i+1, and the idea behind this is to give priority to jobs that can

be quickly pushed through their next two operations. Holthaus and Rajendran (2000, 2002)

apply 2PT+WINQ+NPT to the Jm|r j|C problem and find that it outperforms both SPT and

PT+WINQ, especially when the shop is highly utilised.

In view of the effectiveness of the PT+WINQ and 2PT+WINQ+NPT rules, one might be

tempted to extend the information horizon further to include more than just the next operation.

However, as Holthaus and Rajendran (2000) point out, the accuracy of the work content term

is expected to decrease quickly for additional subsequent operations due to unforeseen future
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events, e.g. the arrival of a new job, that may happen before the job arrives at the respective

work centre as well as dispatching decisions taken in between. Hence, in an ideal job shop,

where jobs can arrive at any work centre from any other work centre (or from outside the shop),

it does not seem sensible to look ahead for more than one operation. On the other hand, in a

flow-dominant job shop, looking only at the next operation is likely to be insufficient. This is

illustrated by the other extreme of a flow shop, where all jobs in a queue move on to the same

work centre for their next operation. The WINQ component is the same for all jobs in this

case, and the PT+WINQ rule thus reverts to the SPT rule. Furthermore, 2PT+WINQ+NPT

appears to loose its advantage over SPT for the Fm|r j|C problem, and perform worse in fact

(Holthaus and Rajendran, 2002).

Another aspect that is likely to adversely affect the effectiveness of these rules is the work-

load balance among work centres in the shop. If the shop is perfectly balanced, as it is the

case in the above studies, each work centre is equally important regarding the avoidance of

idle times. However, in an unbalanced shop, the focus should be on the highly utilised work

centres. Then, it is not the next operation, or the work centre on which it is to be performed,

that is important but the operation on the next critical work centre and attributes relating to it.

Rajendran and Alicke (2007) develop several dispatching rules for flow shop problems

with unbalanced workloads that focus on the bottleneck operations. One of their more effective

rules is defined by the priority index

IBLWKR
j =


−

h∑
o=i

p j,o if i ≤ h,

−

l j∑
o=i

p j,o otherwise,

(3.45)

where h is the index of the operation of a job that is to be performed on the bottleneck work

centre (h is the same for all jobs in flow shop problems). The rule, referred to as Bottleneck-

based LWKR (BLWKR) herein, thus makes a distinction between jobs that still have to un-

dergo processing on the bottleneck and those that have already passed through it. In the first

case, the processing times of all operations up to and including the one on the bottleneck de-

termine the priority of a job, while in the second case the LWKR rule is simply followed.

The reasoning behind this rule is that jobs that can reach the bottleneck quickly should be

prioritised to support an efficient operation of the bottleneck and prevent it from starving. Ra-

jendran and Alicke further present a variant of BLWKR that assigns more weight to the more

proximate operations, with its priority index given by
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IBLWKRx

j =


−

h∑
o=i

(h − i + 1)p j,o if i ≤ h,

−

l j∑
o=i

(l j − i + 1)p j,o otherwise.

(3.46)

Both rules are tested on the Fm||C problem with one clear bottleneck work centre, for which

they show a similar performance, outperforming SPT and LWKR. However, BLWKRx appears

to become more effective with an increasing number of work centres and when the bottleneck

is located more towards the end of the flow shop (Rajendran and Alicke, 2007), which indicates

that less attention should be paid to the bottleneck operation if it is farther down the line, with

several operations preceding it.

In addition, Rajendran and Alicke investigate how to best adapt the BLWKR rule to prob-

lems with several bottleneck work centres. They distinguish between local and global bottle-

necks, where local bottlenecks are defined by a workload that is higher than that of most other

work centres but lower than that of the global bottleneck(s). Their findings indicate that local

bottlenecks should be ignored and are not important in the determination of priorities. In other

words, the h within the priority index of BLWKR should always refer to the next operation on

a global, not local bottleneck.

El-Bouri et al. (2008) design a rule, called Cooperative Dispatching (CD), which assesses

the effect of prioritising a given job on all downstream work centres before making a decision

on which job to select. The priority index of CD can be expressed as

ICD
j = −

l j∑
o=i

(R̂z j,o( j) × vz j,o), (3.47)

where R̂z j,o( j) represents the estimated increase of total flow time (the regret) at work centre

z j,o, required for operation o of job j, that results from prioritising job j. More specifically, the

flow times refer to the set of jobs queueing at the work centre for which a decision is being

made and are calculated under the assumption that, of the set, job j is processed first at every

downstream work centre, and that the remaining jobs have all arrived by the time the operation

of job j is completed and can be rearranged optimally (using the SPT rule). To further obtain

an estimate of the time at which each work centre starts to process job j, which depends on

other jobs in between, El-Bouri et al. simulate the shop using the FCFS rule, thereby assum-

ing that the set of jobs headed by job j does not overtake any other job. The regret R̂z j,o( j) is

then given by the difference between the total flow time at work centre z j,o that results from

the prioritisation of job j, and the minimum total flow time that can be reached by choosing

any of the jobs of the set. Hence, for each downstream work centre there is at least one job in

the set of queueing jobs that yields a regret of 0. The regret values of the different work centres
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are then weighted with a factor vz j,o , which takes into account the relative workload of a work

centre as well as its proximity to the local work centre, before being summed up.

Using weighting factors that give more weight to the more utilised and/or closer work

centres, El-Bouri et al. apply CD to the Fm|r j|C problem and find that it is more effective

than SPT and LWKR, particularly at higher utilisation levels. However, the application of

CD is limited to flow shop problems as the regret calculations are only sensible if all jobs

visit the same work centres in the same order. An additional limitation of CD are the rather

elaborate computations required for the determination of the flow times that include the use of

simulation.

A very different approach to coordinate the interplay between up- and downstream work

centres is taken by Holthaus and Ziegler (1997a,b). Their Look Ahead Job Demanding (LAJD)

mechanism intervenes in the regular dispatching process once the work content of the queue

of a work centre has fallen below a predefined lower bound and there are no jobs in process at

other work centres that will join the queue directly afterwards. LAJD then initiates an inquiry

to all work centres for jobs that have their next operation on that close-to-starving work centre

and chooses the job that fits best to be processed next at the upstream work centre, overwriting

the decision making of the dispatching rule. The job regarded to fit best is the one that would

arrive earliest after the downstream work centre is expected to run out of work, or alternatively,

if all jobs would arrive before that point in time, the one that would arrive the latest. The idea

behind this is to prioritise jobs that arrive just in time to keep the work centre busy without

having to wait in the queue for a long time. If a work centre receives several conflicting

instructions from different downstream work centres, it randomly selects one to follow and

notifies the other work centres that their instruction has been refused.

Holthaus and Ziegler test LAJD on the Jm|r j|C problem with balanced workloads in com-

bination with the SPT rule, and find that it achieves significant reductions of mean flow time

over pure SPT dispatching. However, the results in Holthaus and Ziegler (1997b) also show

that LAJD can impair the mean flow time performance of SPT if the lower bounds for the work

content are set too high, leading to an excessively frequent and premature intervention of the

LAJD mechanism. In other words, the effectiveness of LAJD depends largely on the values

used as lower bounds, for which to find a suitable setting can be challenging. To illustrate,

consider a job shop with unbalanced workloads. Clearly, a lowly utilised work centre should

not be allowed to interfere with the scheduling of a bottleneck, even if its queue is empty

(which could often be the case). However, this implies that each work centre should have its

own bound, reflecting its workload to some extent.

Another drawback of LAJD in its current form is that it can only attract jobs that have

their next operation on the (nearly) starving work centre. While this may be sufficient for

ideal job shops, an extension of the attraction radius to jobs that visit the work centre in the

future for some, but not necessarily their subsequent operation, could become necessary to
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obtain improvements in shops with dominant process flows, which in turn would increase the

complexity of the approach.

3.4.2 Minimising Mean Weighted Tardiness

In Section 3.1.2, the WMDD, CR, COVERT and ATC rules are identified as the most promis-

ing rules for minimising mean (weighted) tardiness in simple single stage problems. Due to

the fact that all four rules incorporate the measure of slack to determine priorities, an essential

part of adapting these rules to multi-stage problems is an adequate reformulation of slack.

Since due dates are tied to jobs and not operations, the common definition of slack is

job-based and is given by

S j = d j − t −
l j∑

o=i

p j,o. (3.48)

This slack definition is used within the standard multi-stage versions of CR, WMDD and

COVERT (Baker and Kanet, 1983; Russell et al., 1987; Kutanoglu and Sabuncuoglu, 1999),

resulting in priority indices of

IWMDD
j = −

1
w j

(
max

( l j∑
o=i

p j,o, d j − t
))
, (3.49)

ICR
j = −

d j − t∑l j
o=i p j,o

(3.50)

and

ICOVERT
j =

w j

p j,i

(
max

(
1 −

max(d j − t −
∑l j

o=i p j,o, 0)

k
∑l j

o=i q̂ j,o

, 0
))
, (3.51)

where q̂ j,o refers to the queueing time estimated for operation o of job j (see also Section 3.1.2).

On the other hand, it is possible to establish artificial operation due dates to serve as mile-

stones in assessing the progress of a job with respect to its due date. Provided that operation

due dates are set adequately, each of them then marks a reference point that indicates whether

a job is behind or ahead of its planned schedule and by how much. In theory, there are an

unlimited number of possibilities of setting the operation due dates d j,o of a job j, even when

adhering to the reasonable condition that the due date of its last operation should be equal

to the job due date, i.e. d j,l j = d j. However, the best practice is to allocate the total initial

allowance of a job among its operations proportionally to their respective processing times

(Baker, 1984), as illustrated in Figure 3.3. With the operation allowances a j,o fixed, the due

date of the imminent operation of job j is then given by

d j,i = r j +

i∑
o=1

a j,o. (3.52)
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Figure 3.3: Best practice of setting operation due dates. The total allowance a j = d j − r j of
job j is allocated to operations proportionally to their processing times p j,o.

The availability of operation due dates allows for the computation of the slack of imminent

operations as

S j,i = d j,i − t − p j,i. (3.53)

Then, substituting this operation slack for the job slack within the priority indices of WMDD,

CR and COVERT (and the queueing time estimate of the imminent operation q̂ j,i for that of

the remaining operations within the COVERT index) yields the operation-based variants of

the rules (Baker and Kanet, 1983; Russell et al., 1987; Kutanoglu and Sabuncuoglu, 1999),

called Weighted Modified Operation Due Date (WMOD), Operation Critical Ratio (OCR) and

Operation Cost Over Time (OCOVERT). Their priority indices are defined as

IWMOD
j = −

1
w j

(max(p j,i, d j,i − t)), (3.54)

IOCR
j = −

d j,i − t
p j,i

(3.55)

and

IOCOVERT
j =

w j

p j,i

(
max

(
1 −

max(d j,i − t − p j,i, 0)
kq̂ j,i

, 0
))
. (3.56)

Several studies have compared the mean (weighted) tardiness performance of these rules

with that of their job-based counterparts. Kanet and Hayya (1982) apply CR and OCR to a

dynamic job shop and conclude that OCR achieves both a lower conditional mean tardiness

and a smaller proportion of tardy jobs (and hence a lower mean tardiness) than CR across a

wide range of due date tightness levels. The relative advantage of OCR over CR is confirmed

by Baker and Kanet (1983) and Baker (1984) for the Jm|r j|T problem, by Kutanoglu and

Sabuncuoglu (1999) for the Jm|r j|wT problem and by Barrett and Kadipasaoglu (1990) for the

Fm|r j|T problem, although the results in Baker and Kanet (1983) and Baker (1984) indicate

that CR performs better under loose due date settings. Similarly, the operation-based MOD

rule, the unweighted relative of WMOD, is generally found to be more effective in reduc-
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ing mean (weighted) tardiness than the job-based MDD rule unless due dates are very loose

(Baker and Kanet, 1983; Russell et al., 1987; Kutanoglu and Sabuncuoglu, 1999; El-Bouri,

2012), while the results in Raman, Talbot, and Rachamadugu (1989) for the Jm|r j|T problem

indicate that MOD also looses its advantage over MDD if the workloads of the work centres

are unbalanced. Baker and Kanet (1983) evaluate COVERT and OCOVERT on the Jm|r j|T

problem and report that OCOVERT yields a lower mean tardiness at very tight due date levels,

but is quickly outperformed by COVERT at looser due date settings. However, both rules are

clearly dominated by MOD, which performs best overall in their study.

The general observation that the operation-based variants of due date-oriented dispatching

rules tend to be more effective than their job-based counterparts motivates Vepsalainen and

Morton (1987) to adapt ATC for multi-stage problems directly on the basis of operation slack.

They define the priority index of the multi-stage version of ATC as

IATC
j =

w j

p j,i
exp

(
−

max(d j − t − p j,i −
∑l j

o=i+1(q̂ j,o + p j,o), 0)
kp

)
(3.57)

and

d j,i = d j −

l j∑
o=i+1

(q̂ j,o + p j,o), (3.58)

which yields

d j − t − p j,i −

l j∑
o=i+1

(q̂ j,o + p j,o) = d j,i − t − p j,i = S j,i, (3.59)

where p refers to the average processing time of imminent operations of the jobs in the queue.

Equation (3.58) links operation due dates, representing the time allowed to complete an

operation, to operation flow times, i.e. the (estimated) time required to complete that operation.

Moreover, Equation (3.59) can be rearranged to

S j,i = d j − t −
l j∑

o=i

p j,o −

l j∑
o=i+1

q̂ j,o = S j −

l j∑
o=i+1

q̂ j,o, (3.60)

which distinguishes operation slack as a conservative measure of job slack that reserves some

time for delays of subsequent operations. Note that once operation due dates have been fixed,

q̂ j,o in Equations (3.58) – (3.60) should be interpreted as the permitted, rather than the esti-

mated queueing time of an operation, irrespective of whether queueing time estimates have

been originally used to set the operation due dates or not. To illustrate, if operation allowances

are set proportionally to processing times as in Figure 3.3, then the time an operation is allowed

to queue for is q̂ j,o = (a j/p j − 1)p j,o.

The above rules have been evaluated against each other in a number of studies and on

various problems. Vepsalainen and Morton (1987) apply their ATC rule along with some other
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rules to the Jm|r j|wT problem and report that it yields the lowest mean weighted tardiness,

irrespective of the utilisation or the tightness of due dates, thereby outperforming COVERT as

the second best rule in their study. The strong performance of ATC is confirmed by Kutanoglu

and Sabuncuoglu (1999), who test a number of dispatching rules on the Jm|r j|wT problem

with varying levels of workload balance, utilisation and due date tightness, and find that ATC

is consistently among the best rules, together with COVERT. Similarly, results in Jensen et al.

(1995) show ATC, COVERT and a WMOD rule that is based on Equation (3.6) instead of

Equation (3.7) to be the most effective rules for the Jm|r j|wT problem, irrespective of the

due date tightness or distribution of job weights. Russell et al. (1987) evaluate COVERT and

MOD on the Jm|r j|T problem and conclude that MOD is the slightly better rule. However,

experimental results from Anderson and Nyirenda (1990) for the same problem suggest that

this holds only for moderate to tight due date settings. Similarly, El-Bouri (2012) finds that

MOD is more effective than COVERT for the Fm|r j|T problem with tight due dates, but is

outperformed by COVERT in loose due date conditions. The results further indicate that

COVERT performs better than MDD, which is in contrast to the results from Brah (1996)

and Chiang and Fu (2007) for the FFc||T and the Jm||T problem, respectively, which show

both rules to perform more or less equally well. Moreover, ATC is shown to outperform

MDD, COVERT and CR on the Jm||T problem in Chiang and Fu (2007), while the studies by

Philipoom and Fry (1990) and Raghu and Rajendran (1993) indicate that ATC and MOD yield

a very similar performance on the Jm|r j|T problem, in general. Overall, the mixed findings on

the relative performance of the rules makes it difficult to rank them, though ATC, (W)MOD

and COVERT appear to be the most promising rules.

One factor that impairs the comparability of results is the fact that different studies use

different settings for the scaling parameter k and also different ways to establish the estimated

or allowed queueing times q̂ j,o, which affects the performance of the (O)COVERT and ATC

rules. For ATC, Vepsalainen and Morton (1987) recommend to set the queueing times as a

multiple of the corresponding processing times and k to a value between 1.5 and 4.5, and these

guidelines are widely followed in the literature (see, e.g. Philipoom and Fry, 1990; Raghu and

Rajendran, 1993; Kutanoglu and Sabuncuoglu, 1999). Russell et al. (1987), on the other hand,

compare different configurations of the COVERT rule and find that it becomes more effective

if queueing time estimates are based on historically observed or dynamically updated queueing

times instead of being tied to operation allowances. However, some papers simply adopt the

best practice for ATC and take a multiple of the respective processing time as the queueing time

estimates within COVERT (e.g. Vepsalainen and Morton, 1987; Kutanoglu and Sabuncuoglu,

1999). Commonly proposed values for the scaling parameter k of COVERT are 1 or 2 (see, e.g.

Baker and Kanet, 1983; Russell et al., 1987; Jensen et al., 1995; Kutanoglu and Sabuncuoglu,

1999), though the ideal value will generally depend on how the estimated queueing times are
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established. This discussion illustrates an important advantage of the WMOD rule, which is

that it can be applied directly without having to worry about setting parameters.

Anderson and Nyirenda (1990) develop two more non-parametric rules by integrating the

job-based CR and S/RPT rules with the operation-based WSPT rule. The priority indices of

these rules, named CR+SPT and S/RPT+SPT can be expressed as

ICR+SPT
j = −

1
w j

(
p j,i ×max

(
d j − t∑l j
o=i p j,o

, 1
))

(3.61)

and

IS/RPT+SPT
j = −

1
w j

(
p j,i ×max

(
d j − t −

∑l j
o=i p j,o∑l j

o=i p j,o

, 1
))
. (3.62)

Note that CR+SPT is a close relative of the WMOD rule, and that both rules are equivalent for

single stage problems. The main difference between CR+SPT and S/RPT+SPT is the point at

which they switch to WSPT prioritisation. While CR+SPT prioritises jobs according to WSPT

once they are too late to finish on time (critical ratio smaller than 1), S/RPT+SPT reverts to

WSPT at an earlier point, namely when the critical ratio of a job is smaller than 2. As a conse-

quence, S/RPT+SPT can be expected to yield a lower mean weighted tardiness than CR+SPT

in conditions in which WSPT performs well, i.e. when due dates are tight, whereas CR+SPT

should be the better choice for loose due date settings. This notion is largely supported by

the results of Anderson and Nyirenda (1990) and Raghu and Rajendran (1993) for the Jm|r j|T

and the Jm|r j|wT problem. However, the difference between the mean (weighted) tardiness

performance of the two rules appears to be small, in general (Anderson and Nyirenda, 1990;

Raghu and Rajendran, 1993; Chiang and Fu, 2007).

Both CR+SPT and S/RPT+SPT have also been tested against the other rules in various

papers. Anderson and Nyirenda (1990) apply several rules to the Jm|r j|T and the Jm|r j|wT

problem and find that CR+SPT and S/RPT+SPT dominate COVERT across a large range

of due date tightness levels, and also MOD in the unit weight case unless due dates are ex-

tremely tight. The strong performance of CR+SPT and S/RPT+SPT is confirmed by the re-

sults in Raghu and Rajendran (1993) that show them to be more effective than MOD and ATC

for the Jm|r j|T problem. Similarly, Moser and Engell (1992b) report that CR+SPT yields

a lower mean tardiness than MOD and COVERT for the FJc|r j|T problem. On the other

hand, Kutanoglu and Sabuncuoglu (1999) conclude that the best rules for the Jm|r j|wT prob-

lem are S/RPT+SPT, CR+SPT, COVERT and ATC, and that performance differences between

them are insignificant. Brah (1996) find no significant difference between the performance

of CR+SPT, S/RPT+SPT, COVERT and MDD for the FFc||T problem, while the results in

Chiang and Fu (2007) indicate that CR+SPT and S/RPT+SPT perform better than MDD and

COVERT for the Jm||T problem with a moderate tightness level, but not better than ATC. In

general, the relative advantage of CR+SPT and S/RPT+SPT over other rules appears to be



CHAPTER 3. THE DESIGN OF DISPATCHING RULES 54

largest for moderate tightness levels and tends to diminish as due dates become tighter (An-

derson and Nyirenda, 1990; Raghu and Rajendran, 1993; Chiang and Fu, 2007). This can be

expected in so far as CR+SPT, S/RPT+SPT, WMOD, COVERT and ATC all converge to the

WSPT rule with increasing due date tightness (though at different rates), which could explain

why some studies struggle to find any significant difference between their performance.

Consideration of Upstream Jobs

The development of look-ahead dispatching rules for problems with the objective to minimise

mean weighted tardiness appears to be very promising given that the penalty for waiting for

a future job may be negligible relative to the benefits of processing that job without further

delay, e.g. if the future job is behind schedule and has a substantially higher weight than some

non-urgent jobs in the queue.

Some ATC-based rules have been designed to deal with future jobs. Morton and Pentico

(1993) extend the ATC rule by a factor that discounts the priority index of a future job for the

expected waiting time that would result from its prioritisation (Pfund et al., 2008). The priority

index of this X-ATC rule is given by

IX-ATC
j =

w j

p j,i
exp

(
−

max(d j,i − t − p j,i, 0)
k1 p

) (
1 −

k3 ×max(r j,i − t, 0)
pmin

)
, (3.63)

where pmin denotes the minimum imminent operation processing time of jobs in the queue,

and k3 represents an extra scaling parameter for the waiting time discount factor. X-ATC only

considers look-ahead jobs that arrive before t + pmin, i.e. before any of the queueing jobs can

complete its imminent operation, where the priority index of these jobs is linearly decreasing

in their arrival time. In contrast, Pfund et al. (2008) propose an extension of the ATCS rule

that incorporates an exponential discount function for the waiting time, which is normalised

by the average instead of the minimum processing time in the queue. For problems without

sequence-dependent setup times the priority index of this ATC with Setups and Ready Times

(ATCSR) rule reduces to

IATCSR
j =

w j

p j,i
exp

(
−

max(d j,i −max(r j,i, t) − p j,i, 0)
k1 p

)
exp

(
−

max(r j,i − t, 0)
k3 p

)
. (3.64)

Hence, another modification of the ATCSR rule concerns the computation of slack for future

jobs, which is adjusted to reflect the slack they actually have at the time of their expected arrival

to the considered work centre. Pfund et al. apply ATCSR and X-ATC with the additional ATCS

setup time factor to the Pm|r j, se f |wT problem, using various parameter settings for both rules,

and conclude that ATCSR is the better rule. They further report that the relative advantage of

the two look-ahead rules over ATCS increases for a higher s/p ratio, which is in agreement with

similar findings for problems with the minimum mean flow time objective (see Section 3.4.1).
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However, a disadvantage of both rules is that they require an additional scaling parameter to

be set adequately in order to perform well.

Mönch and Habenicht (2003) develop a look-ahead rule for batch processing problems on

the basis of the BATCS rule by Mason et al. (2002). This rule, called BATCR (BATC with

Ready Times) in this work, considers only future jobs that arrive within a prespecified time

window, which is a function of the average processing time in the queue. BATCR sorts these

jobs and all queueing jobs in non-decreasing order of their ATCR index, which is defined as

IATCR
j =

w j

p j,i
exp

(
−

max(d j,i − t − p j,i + max(r j,i − t, 0), 0)
kp

)
, (3.65)

and selects the H jobs with the highest priorities to be included in the formation of batches,

where H is a rule parameter. Using these jobs, BATCR forms a batch for every feasible job

combination and prioritises batches according to the BATCR index, given by

IBATCR
b =

wb

pb
exp

(
−

max(db − t − pb + max(rb − t, 0), 0)
kp

)
1

B fb
, (3.66)

where the release date rb of batch b is determined by the maximum of the times at which the

jobs it contains are expected to arrive at the considered work centre. Depending on whether

the batch with the highest priority contains future jobs or not, the machine either is made to

wait for their arrival or starts processing that batch, which is filled up with jobs from the queue

if possible.

An obvious shortcoming of the BATCR rule concerns its formation of batches. While

limiting the number of eligible batches to combinations that involve only high priority jobs

is certainly sensible, batches should be generally made as full as possible at the respective

time, as nothing can be gained from leaving some of the machine capacity unused (see Sec-

tion 3.3.2). The BATCR rule, on the contrary, tends to form and evaluate partial batches and

only fills them up if they are chosen, which is likely to lead to poor decisions.

Another drawback that is common to all of the above ATC-based look-ahead rules is the

inaccurate estimation of waiting time penalties, which should be based on the total number of

jobs in the queue, their (average) weight and remaining allowance. Hence, there still seems

to be a large potential for future work on the design of effective due date-oriented look-ahead

rules.

Consideration of Downstream Work Centres

Clearly, avoiding the starvation of highly utilised work centres can also help to minimise

mean (weighted) tardiness, as it may reduce the amount of allowance that jobs use up on

non-productive waiting times.
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Raghu and Rajendran (1993) design a rule, commonly named the RR rule after its devel-

opers, with a priority index of

IRR
j = −

(
d j − t −

∑l j
o=i p j,o∑l j

o=i p j,o

exp(−η)p j,i + exp(η)p j,i + q̂ j,i+1

)
, (3.67)

where q̂ j,i+1 refers to the estimated queueing time for the next operation of job j and η to the

utilisation of the shop. As shown in Equation (3.67), the RR rule uses the utilisation as a

weighting factor to switch between prioritising jobs with short imminent operations at high

utilisation levels and a stronger focus on the urgency of jobs at lower utilisation levels.

In several papers, RR is found to produce outstanding results for the Jm|r j|T problem

with balanced workloads, dominating rules such as MOD, COVERT, ATC, CR+SPT, and

S/RPT+SPT across a wide range of utilisation and due date tightness levels (Raghu and Ra-

jendran, 1993; Holthaus, 1997; Holthaus and Rajendran, 1997a,b; Rajendran and Holthaus,

1999; Holthaus and Rajendran, 2000). However, Raghu and Rajendran (1993) observe that RR

looses some of its relative advantage with decreasing utilisation and due date tightness, which

they ascribe to the reduced effectiveness of the queueing time component under these condi-

tions. Similarly, Rajendran and Holthaus (1999) explain the finding that RR is outperformed

by COVERT in flow-dominant shops by the ineffectiveness of the queueing time component

for such problems. In other words, there are some strong indications that the good perfor-

mance of RR is mainly due to the queueing time component, which is similar to WINQ in its

prioritisation of jobs that visit a work centre with a short queue for their next operation. Hence,

the RR rule appears to be specifically tailored to ideal job shop problems with a perfectly bal-

anced workload among the work centres and, like PT+WINQ and 2PT+WINQ+NPT, cannot

be expected to perform well for other problems. Moreover, it does not account for unequal job

weights in its current form.

In addition to their flow time-oriented rules, Rajendran and Alicke (2007) propose two

rules to minimise mean tardiness in an unbalanced flow shop, which are based on similar

ideas. Their respective priority indices are given by

IDD/BJ
j =

−d j,h if i ≤ h,

−d j otherwise,
(3.68)

and

I(TPT+DD)/BJ
j =


−(d j,h +

h∑
o=i

p j,o) if i ≤ h,

−(d j +

l j∑
o=i

p j,o) otherwise,

(3.69)
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where h is again the index of the next operation of job j that is to be performed on a (global)

bottleneck work centre (h is the same for all jobs in flow shop problems). Both rules thus focus

on finishing bottleneck operations on time, while (TPT+DD)/BJ also prioritise jobs that can

quickly reach and be pushed through the bottleneck.

Rajendran and Alicke apply DD/BJ and (TPT+DD)/BJ to the Fm||T problem with up to

three bottleneck work centres, and conclude that both, and especially (TPT+DD)/BJ, perform

significantly better than the other rules tested, which includes EDD and its operation-based

variant, ODD. Hence, there appears to be some potential in concentrating on the due date

of the bottleneck operation. However, the design of a rule that can outperform more effective

rules, such as ATC, is likely to require a more sophisticated integration of this information with

other attributes than just a simple addition of the remaining processing time and absolute due

date, which is further unsuitable for problems with dynamic job arrivals (see Section 3.1.2).

El-Bouri (2012) presents an adjusted version of CD for the minimisation of mean tardi-

ness that computes the regret R̂z j,o( j) as the increase of local tardiness instead of local flow

time, where local tardiness is measured with respect to the due dates of the operations to be

performed on the respective work centre. To determine the minimum local tardiness for a

given work centre, the ODD rule is used in combination with a procedure that tries to improve

the ODD sequence by pairwise interchanges of adjacent jobs. This tardiness-variant of CD

is shown to outperform benchmark rules such as MDD, MOD and COVERT on the Fm|r j|T

problem, irrespective of the shop size, utilisation or tightness of due dates (El-Bouri, 2012).

A drawback of this CD version is that the determination of appropriate weighting factors

vz j,o seems to become rather difficult. In particular, El-Bouri finds that, for conditions of tight

due dates and/or high utilisation, it is beneficial to give a higher weight to more proximate

work centres, as in the flow time-oriented version of CD, while the opposite is true if due

dates are relatively loose, which El-Bouri ascribes to the fact that tardiness only arises at

work centres farther downstream in the latter case. This illustrates a main problem of the

tardiness-variant of CD, namely that the tardiness-based regret values strongly depend on the

estimated operation completion times and the used operation due dates, which thus affect the

effectiveness of the rule. On the other hand, the suitability of regrets based on local tardiness is

generally questionable given that the global mean tardiness, unlike the global mean flow time,

is not the sum of its local components. Hence, it may be more effective to use the original CD

to reduce queueing times and combine it with a dispatching rule that concentrates on due dates

(and weights) of jobs.

Holthaus and Ziegler (1997a,b) show that their LAJD mechanism can also be used to im-

prove the performance of the COVERT rule for the Jm|r j|T problem with balanced workloads.

The improvements, which are obtained for a wide range of due date tightness levels, seem to

be due to the reductions of waiting times achieved by LAJD. This is supported by the observa-

tion that COVERT and SPT show a similar mean flow time performance when combined with
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LAJD, performing significantly better than SPT by itself. However, the application of LAJD

is still hindered by the requirement to determine work content bounds and an attraction radius

that are suitable for the problem at hand.

In summary, there are a number of dispatching rules for multi-stage problems that effec-

tively minimise mean flow time and mean weighted tardiness, respectively. A general finding

is that operation-based rules, such as SPT and WMOD, tend to perform better than the cor-

responding job-based rules, i.e. LWKR and WMDD, though rules that incorporate both job

and operation attributes, e.g. CR+SPT, also appear to perform well. Moreover, some rules

that make use of upstream or downstream information are found to be very effective, which

illustrates the potential of incorporating such information into the design of dispatching rules.

On the other hand, the development of sophisticated rules for complex scheduling prob-

lems is usually a tedious trial-and-error process, with candidate rules tested in a simulation

model of the considered shop, modified and retested until they meet the demands for ac-

tual implementation, which requires a significant amount of expertise, time and coding-effort

(Geiger et al., 2006). This motivates the development of methods to support and automate

the design of dispatching rules, which is the main concern of this thesis. The following chap-

ter describes the methodology of this work, specifically the tools and techniques used in the

process of developing the methods.



Chapter 4

Methodology

An essential part of this thesis consists in the actual development of methods and algorithms,

covering all stages from the conceptual design to the implementation into computer code.

Once implemented, the procedures need to be tested on some example problem to establish

whether they are effective, which is another important part of this work.

This chapter presents the tools and techniques used for the development and evaluation of

methods. The first section provides a short introduction to evolutionary algorithms, which are

a key component of the developed methods. This is followed by another section describing

the simulation experiments and statistical tests to assess the effectiveness of methods.

4.1 Development of Methods

The methods designed in this work are all based on Evolutionary Algorithms (EAs), which are

stochastic search procedures, inspired by natural evolution, that maintain a set of candidate so-

lutions, the so-called population. The general process of EAs can be described as follows. In

each iteration, the promising individuals, i.e. candidate solutions with good objective function

values or fitness values, are selected from the population to reproduce, in the spirit of ‘survival

of the fittest’. Reproduction typically involves the operations of crossover, in which two in-

dividuals, the parents, are recombined to create new individuals, the children, and mutation,

which makes a random modification to an individual. The newly created individuals, often

together with the best original individuals, then form the new population, also referred to as

the next generation. This cycle, which is illustrated in Figure 4.1, is repeated until a specified

termination criterion is met, e.g. a limit on runtime or the number of iterations is reached.

Hence, this iterative process evolves better and better solutions over time, just like in nature,

where the individuals become better and better adapted to their environment. Finally, the best

individual of the last generation is returned as the solution of the EA.

A key advantage of EAs is that their general design is largely abstract from the given

problem as the interface is mainly established by the definition of an adequate problem-specific
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Figure 4.1: Simplified diagram of the evolutionary cycle.

fitness or evaluation function. Hence, EAs can be applied to any type of problem with relative

ease, in principle, since most components are reusable. This is reflected by the numerous

successful applications of EAs that can be found in the literature, including in the area of

scheduling (Hart et al., 2005), and motivates their use in this work. The specific design of

each developed EA, in particular the encoding of solutions, fitness function, selection scheme

and reproduction operators, is detailed within the presentation of the respective method, which

are discussed in the following chapters (for an extensive review of EAs, see Eiben and Smith,

2003).

All algorithms are implemented in Java programming language, using the library ECJ

(Luke et al., 1998), which contains a collection of generic EA structures and components. This

allows the programming effort to be concentrated on the implementation of newly developed

components such as fitness functions, or specifically designed encodings and operators.

4.2 Evaluation of Methods

The primary aim of the methods proposed in this work is to lead to the design of better dis-

patching rules. Hence, the effectiveness of a method can be gauged by the performance of

the dispatching rules that result from its application relative to some benchmark rules from

the literature. Due to the lack of suitable analytical methods, dispatching rules are generally

evaluated by means of simulation (Blackstone et al., 1982), which is adopted herein.

Prior to the execution of the actual simulation experiments, the warm-up period for a given

simulation model, i.e. the time it takes the simulation to reach steady state from an initial
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empty state, is determined using Welch’s procedure (see also Law, 2007, Chapter 9). This

is a graphical method, in which the moving average for a characteristic output quantity such

as the throughput or flow time, averaged over a number of replications, is plotted over time

or number of completed jobs, respectively. Figure 4.2 shows such a graph for one of the job

shop models from Chapter 5. The simulation is considered to be warmed up after the graph

has levelled out, and some (conservative) value beyond this point is selected as the end of

the warm-up period, e.g. 1000 job completions in the case of Figure 4.2. For the purpose of

generating these graphs, the simulation is run with the First Come First Served (FCFS) rule.

Warm-up period

Figure 4.2: Moving averages for job flow time for a job shop model from Chapter 5. The
warm-up period is determined to comprise the completion of 1000 jobs, at which point the
flattened out graph indicates that the simulation has reached steady state (see also Law, 2007,
Chapter 9).

With the warm-up period determined, the evaluation of dispatching rules is done by run-

ning the simulation with the corresponding rule for some longer period, where data collection

starts at the end of the warm-up. More specifically, data is collected for the first n jobs arriving

after the end of the warm-up period, and the shop is continuously loaded with new jobs until

the last of these n jobs is completed, which marks the end of the simulation run. Each ex-

periment, defined by the combination of dispatching rule and simulation model, is replicated

20 times with different random number streams to yield a precise measure of the performance

of a given rule. Moreover, the variance reduction technique of common random numbers is

used, i.e. each dispatching rule is tested with the same 20 random number streams (Law, 2007,

Chapter 11).

All simulation experiments in this work are carried out with Jasima (Hildebrandt, 2012), a

discrete-event simulation environment that has been developed in cooperation with the BIBA
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institute at the University of Bremen, Germany. Jasima is very roughly based on a Java-port of

the SIMLIB library as described by Huffman (2001). Given that it is Java-based, Jasima can

be easily integrated with ECJ, which facilitates the implementation of the methods proposed in

this work. Another advantage of using a self-developed, rather than a commercial simulation

software is the increased flexibility with regard to the implementation of specific dispatching

rules or shop environments. The correct operation of Jasima and the implemented simulation

models has been widely ensured by verification tests, including a high-level analysis of the

simulation output as well as a thorough examination of the simulation trace files.

To establish whether the performance differences between dispatching rules are statisti-

cally significant, simulation results are subjected to a single-factor within-subjects Analysis Of

Variance (ANOVA), and the Bonferroni-Dunn test in particular (Sheskin, 2007, Test 24). This

parametric test aims to detect differences in population means and assumes an experimental

design with dependent samples that result from testing a number of different treatments (dis-

patching rules) on the same subjects (random number streams), which qualifies it to be used

in conjunction with common random numbers. The test further requires that

• subjects are randomly selected,

• the underlying population of each treatment follows a normal distribution,

• the sphericity assumption is satisfied.

Clearly, the first condition is fulfilled by the use of random numbers in creating the seeds for

each replication of a simulation experiment, which corresponds to a random selection of sub-

jects. Moreover, since all of the measures examined in this work, e.g. the mean flow time or

mean weighted tardiness (of a simulation run), are averages of a large number of individual

(though correlated) observations, they can be expected to closely follow a normal distribution

(Law, 2007, Chapter 9). Despite this, Anderson-Darling and Kolmogorov-Smirnov tests (see

Law, 2007, Chapter 6) are conducted in this work to check for any considerable violations of

the normality assumption before applying ANOVA to any data. The sphericity assumption,

on the other hand, which relates to the nature of underlying population variances and covari-

ances, is difficult to verify (Sheskin, 2007, Test 24). Instead, the Geisser-Greenshouse method,

as described in Sheskin (2007, Test 24), is followed, which involves employing a more conser-

vative tabled critical F-value so that the sphericity assumption no longer has to hold. Hence,

the suitability of the test for its intended purpose is ensured on the whole.

The Bonferroni-Dunn test is based on the Bonferroni inequality, which adjusts the sig-

nificance level of an individual comparison αind for the number of conducted comparisons ν

according to αind = α/ν, where α is the overall significance level of the test (Sheskin, 2007,

Test 21). The adjustment implies that a set of comparisons, e.g. underlying a complete ranking

of some compared dispatching rules, can be considered to be correct with (1 − α)% probabil-

ity. However, the drawback of the Bonferroni-Dunn test is that it is rather conservative so that
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performance differences between dispatching rules are only detected if there is very strong

evidence for it (Sheskin, 2007, Test 21).

In this work, an overall significance level of α = 0.05 is used for all tests, where the p-

values of the pairwise comparisons are provided in Appendix A for further reference. All tests

have been implemented in Java, following the descriptions in Sheskin (2007, Tests 21 and 24)

and Law (2007, Chapter 6), and verified with examples from these books.

This concludes the description of the general methodology used to develop and test meth-

ods. The actual design of the methods as well as results on their performance are presented in

the following chapters.



Chapter 5

Evolutionary Search for
Difficult Problem Instances 1

A possible approach to the development of better dispatching rules, and algorithms in general,

is to study the performance of current benchmark algorithms, especially in situations where

they fail. Any insights gained from this analysis can then be incorporated into the design of a

new, improved algorithm, making the development process more systematic.

This chapter presents a method to support the process of developing dispatching rules by

employing an EA to search for job shop problem instances on which a given rule performs

poorly, thus helping to reveal its weaknesses. First, some related work is reviewed in Sec-

tion 5.1, followed by a detailed description of the EA in Section 5.2. The method is applied

to a scenario from the literature in Section 5.3, resulting in two new dispatching rules, which

are evaluated against benchmark rules in Section 5.4. The chapter concludes with a critical

appraisal of the method and some suggestions for future work.

5.1 Related Work

In areas other than scheduling, metaheuristics, and EAs in particular, have been used to gen-

erate problem instances that are hard to solve for a particular algorithm, where hardness is

measured in terms of the quality of the solution the algorithm generates (relative to some

benchmark) or the amount of time it requires to (optimally) solve the problem. Cotta and

Moscato (2003) employ an EA to search for permutations of natural numbers that are hard

to rearrange for two well-known sorting algorithms. They evolve instances of different sizes

and use them to derive lower bounds for the worst-case runtime complexity of the two algo-

rithms as a function of problem size, which turn out to be very close to their actual respective

1This method is published in J. Branke and C. W. Pickardt (2011), Evolutionary search for difficult problem
instances to support the design of job shop dispatching rules, European Journal of Operational Research 212(1),
22–32. However, the experimental results presented in this chapter deviate from those reported in the paper due to
a slightly different experimental setup.
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worst-case complexity. Van Hemert (2006) presents several applications of EAs to generate

instances of combinatorial problems that are difficult to solve for a corresponding solution al-

gorithm in terms of runtime. The evolved instances are analysed for common patterns, which

reveals some structural properties that characterise challenging instances within each problem

domain. Smith-Miles and Van Hemert (2011) extend this work in two ways. First, they do

not only let their EA search for hard (and easy) instances, but also for instances that are hard

for one solution procedure relative to another. Second, they use machine learning to extract

structural properties from the evolved instances to predict which algorithm is most suitable for

a given instance. Smith-Miles and Van Hemert test their approach on two solution algorithms

for the travelling salesman problem and discover some problem features that reliably predict

the relative performance of the algorithms. Ahammed and Moscato (2011) also generate in-

stances of the travelling salesman problem that take a state-of-the-art solver a long time to

solve, but use a simple local search algorithm instead of an EA.

Some researchers have employed metaheuristics to evolve objective or fitness functions

that are challenging for another, problem-solving metaheuristic. Using a common EA and

Genetic Programming (GP), which is a special kind of EA, Oltean (2004) generate one-

dimensional functions for which one metaheuristic performs badly relative to another, where

the tested algorithms include some simple local search procedures with restarts as well as

random search. Similarly, Langdon and Poli (2007) develop a GP algorithm to evolve two-

dimensional functions that are comparatively hard for one metaheuristic relative to another

regarding the time required to find a global optimum. They apply this algorithm to a variety of

metaheuristics, particularly different variants of particle swarm optimisation, and reveal some

of their strengths and weaknesses by a visual analysis of their search behaviour on the evolved

functions. Shirakawa et al. (2010) employ (Cartesian) GP to generate two-dimensional func-

tions for which two metaheuristics show a large performance difference, but use a performance

measure that takes into account the whole search process of a metaheuristic, specifically the

best objective function value found at each point in time. They further develop a multiobjective

version of the algorithm that considers the complexity of functions as a secondary criterion.

The algorithm is applied to a number of EAs, based on different crossovers, as well as random

search and shown to find some simple functions that illustrate advantages and shortcomings

of each crossover operator.

Simple heuristics such as dispatching rules are by definition designed to produce solutions

of acceptable quality in a short time. Hence, in the case of heuristics it is only sensible to

search for problem instances for which the tested algorithm yields poor (or good) solutions,

as their runtime is generally not an issue. Kosoresow and Johnson (2002) develop an EA that

searches for instances of combinatorial problems that are hard for a given heuristic, where

hardness of an instance is measured by the ratio of the objective function value of the heuristic

solution to that of the optimal solution. They apply the EA to some heuristics for the taxicab
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problem and obtain lower bounds on their worst-case performance. Similarly, Julstrom (2009)

uses an EA to generate instances of the quadratic knapsack problem that are badly solved by a

simple heuristic, and discovers some structural properties in those instances that explain why

the heuristic fails.

These studies show the potential of using EAs to evolve problem instances that reveal

weaknesses of solution methods, and heuristics in particular. However, this work appears

to be the first to apply the idea to the area of scheduling. Moreover, the proposed EA is

designed to search for instances where the poor performance of a tested dispatching rule can

be attributed to a single suboptimal decision, which is a key difference to previous work. The

advantage of focussing on single decision points is that it greatly facilitates the analysis of

problem instances and the identification of conditions that cause the rule to fail, as illustrated

by the application in Section 5.3.

5.2 Algorithm Design

In general, the EA operates as described in Section 4.1, and the focus of this section is to

detail the algorithm-specific components, namely the encoding of candidate solutions and the

evaluation, selection and reproduction of individuals.

5.2.1 Encoding of Solutions

Since the EA is designed to generate difficult instances of the job shop problem, candidate so-

lutions are in fact problem instances in this case. The encoding of job shop problem instances

is illustrated in Figure 5.1. Each instance is represented by an n × 2l two-dimensional array

containing solely non-negative integer values. The n rows correspond to the processing orders

Job Op. 1 Op. 2 Op. 3 Op. 4

1 3 20 4 48 1 26 2 16

2 3 15 1 26 2 41 1 25

3 2 21 3 10 1 37 3 44

4 3 15 4 30 1 1 2 32

5 1 18 4 4 3 30 2 6

6 4 44 2 9 4 34 3 13

Figure 5.1: Example of the encoding of job shop problem instances as n× 2l two-dimensional
arrays for an instance with n = 6 jobs, consisting of l = 4 operations (grey parts are added for
illustration purposes).
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of n jobs consisting of l operations. Each operation is defined by the values in two successive

columns, which refer to the index of the required work centre and the processing time, e.g. the

first operation of Job 1 in the shown problem instance is to be executed on Work Centre 3 and

lasts 20 time units. Values for the operation processing times are restricted to the (problem-

specific) interval [pmin, pmax], while work centre indices can take values in the range of 1 to

c, where c denotes the number of work centres in the shop. The encoding thus only specifies

job attributes, other parameters of the scheduling problem such as the number of work centres

or the objective function are not part of the encoding and are shared among all individuals.

Although revisitations of work centres are allowed, the EA is prevented to generate instances

in which two consecutive operations of the same job have the same work centre index as this

technically corresponds to a violation of the no preemption assumption (see Section 2.1.2),

given that the two operations can be considered as one.

5.2.2 Evaluation

Figure 5.2 presents the procedure to evaluate individuals, which comprises the following steps.

First, individual x is decoded into the associated problem instance OP(x), which is then con-

verted into a mathematical programme and solved to optimality. Pan and Chen (2005) for-

mulate a mixed integer programme for the static job shop problem, which is adopted for this

purpose, and the SCIP solver (Achterberg et al., 2003) is used to solve the programmes. After

determining the optimum with objective function value Z∗(OP(x)), the tested dispatching rule

is applied to the problem and the resulting solution is obtained from simulation. Since dis-

patching rules typically produce active schedules, which possess the property that it is impos-

sible to start any operation earlier without having to postpone another (Pinedo, 2008, Chapter

2), the optimal schedule is transformed into an active schedule before comparing both solu-

tions. In this comparison, the operation starting times are checked one by one in chronological

order until an operation is encountered for which the starting times deviate in the two sched-

ules. This reflects the first point in time at which the dispatching rule takes a decision that is

presumably not optimal. Then, a constrained scheduling problem CP(x) is generated by fix-

ing the starting times of all examined operations, including the first one for which the starting

times differ, to the corresponding values of the rule solution. This problem is again optimally

solved, resulting in a solution that contains exactly one suboptimal decision, as all subsequent

decisions have been reoptimised. The fitness of the individual is then given by the difference

of the objective function value of the optimal solution to the constrained problem to the objec-

tive function value of the optimal solution to the original problem, i.e. Z∗(CP(x))−Z∗(OP(x)).

Hence, the individuals with the highest fitness values are those problem instances for which

the rule takes a single suboptimal decision with large negative consequences on the achievable

objective function value. In contrast, a problem instance that is optimally solved by the tested
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Figure 5.2: Evaluation of job shop problem instances.

dispatching rule receives the worst possible fitness value of 0, since Z∗(CP(x)) = Z∗(OP(x))

in this case.

5.2.3 Selection

For the selection of promising individuals, the µ+λ breeder of ECJ is employed (Luke et al.,

1998). This selection scheme chooses the µ individuals with the highest fitness values from

the current population to produce λ children, with which together they form the population

of the next generation. The population size is therefore µ + λ. However, only one of two

parents required for the crossover operation is taken from the set of the µ best individuals,

the other is determined as the better of two randomly sampled individuals from the current

population. Note that this selection scheme is elitist, i.e. the best individuals of each generation

are guaranteed to survive into the next generation.
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5.2.4 Reproduction

New individuals are created by successively applying the crossover and mutation operators de-

scribed in the following. In general, it is the early and later operations of jobs that respectively

compete for machine time within a problem instance. This motivates the design of a crossover

that cuts through the processing orders of every job (at a random point) rather than through

the job set, which would result in the exchange of whole jobs. Figure 5.3 presents an example

of the crossover, where the white and grey part within the child originates from the first and

second parent, respectively. Only crossover points that separate entries of two different opera-

tions are permitted. Moreover, a cut is never made at a point that would lead to a processing

order with two consecutive operations on the same work centre, since this is infeasible. Thus,

the only possible crossover point for Job 6 in the example is the one shown, as the other two

options would result in Job 6 having two consecutive operations on Work Centre 2 or 4. If no

feasible crossover point can be found at all for a job, its whole processing order is taken over

from the first parent.

3 20 4 48 1 26 2 16

3 15 1 26 2 41 1 25

2 21 3 10 1 37 3 44

3 15 4 30 1 1 2 32

1 18 4 4 3 30 2 6

4 44 2 9 4 34 3 13

3 20 1 40 3 37 2 19

3 15 1 26 2 41 3 6

2 21 3 10 4 31 3 38

3 15 4 30 1 1 4 15

1 18 2 4 3 28 1 11

4 44 1 16 2 41 4 22

4 27 1 40 3 37 2 19

2 8 4 5 1 37 3 6

4 39 3 45 4 31 3 38

4 9 2 39 1 34 4 15

4 11 2 4 3 28 1 11

2 37 1 16 2 41 4 22

Crossover

Figure 5.3: Example of the crossover operation for job shop problem instances. Each process-
ing order is cut at a random point, and the parts before and after the crossover points of the
two parents (illustrated in white and grey) are recombined to produce a new individual.

The mutation operator, illustrated in Figure 5.4, modifies individuals by adding a normally

distributed random variable to operation processing times. The altered entries are encircled

in Figure 5.4, e.g. the processing time of the third operation of Job 4 is changed from 1

to 0. Any operation with a processing time of 0 is treated as nonexistent by the EA and is
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removed during the decoding of the individual into a problem instance. Similarly, a previously

nonexistent operation may be added if its processing time of 0 is increased to a positive value.

Hence, the mutation operator is capable of changing the number of operations of a job. A final

step further assures that all processing times of a mutated individual lie inside the permitted

interval of [pmin, pmax], setting values that are smaller than the lower bound to 0, or pmin

if the former would create an infeasible processing order (with two subsequent operations

on the same work centre), and values that exceed the upper bound to pmax. Both crossover

and mutation are applied with a certain probability, which are parameters of the EA that are

specified in the following section.

3 20 1 40 3 37 2 19

3 15 1 26 2 41 3 6

2 21 3 10 4 31 3 38

3 15 4 30 1 1 4 15

1 18 2 4 3 28 1 11

4 44 1 16 2 41 4 22

3 20 1 40 3 32 2 19

3 15 1 26 2 41 3 6

2 21 3 10 4 31 3 38

3 15 4 30 1 0 4 15

1 18 2 4 3 28 1 11

4 46 1 16 2 41 4 22

Mutation

Figure 5.4: Example of the mutation operation for job shop problem instances. The processing
times of operations are modified by adding a normally distributed random variable.

5.3 Application to a Benchmark Rule from the Literature

To illustrate the benefits of the proposed method, a step-by-step application is presented in

this section. This starts with the selection of a problem and a benchmark rule from the lit-

erature, which the EA is configured to evolve difficult instances for. The resulting instances

are analysed via Gantt charts for conditions that explain the failure of the rule. Based on the

identified weaknesses of the benchmark rule, a new rule is developed that is able to overcome

these limitations. At this point, the process can be started once again with the new rule being

the one tested as demonstrated in Section 5.3.5.

5.3.1 Scenario Description

The method is applied to the PT+WINQ rule, which is one of the best rules for the Jm|r j|C

problem with balanced workloads (see Section 3.4.1). PT+WINQ is particularly suitable to

show the potential of the proposed method as it is a very effective rule, which makes the task

of coming up with a better rule generally challenging. Moreover, it is also a relatively simple

rule, which facilitates the analysis of its decisions in the evolved instances.

The PT+WINQ rule is found to be one of the best rules for minimising mean flow time in

the study by Rajendran and Holthaus (1999), who test a number of rules on several dynamic
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job shop problems, which are adopted as the scenario herein. Their shops contain ten, equally

utilised work centres, each consisting of a single machine, where new jobs arrive at shops

according to a Poisson process. In one shop, every job consists of ten operations that imply

visiting each work centre exactly once, while in the other the number of operations per job

varies between two and ten, and is drawn from a uniform distribution. The processing times

of operations are generally drawn from a discrete uniform distribution ranging from 1 to 49.

5.3.2 Parameter Setting

The EA is configured to search for instances that resemble the given problem, and operation

processing times are thus limited to the range of pmin = 1 to pmax = 49. Furthermore, the

number of work centres c (and machines) is set to 4 and the number of jobs (which are all

ready for processing from the start) n to 6, where each job consists of up to l = 4 operations.

Such small problem sizes do not only reduce the running time of the solver (which is the most

time-consuming part of the algorithm), but also facilitate the analysis of evolved instances.

The other parameters of the EA are set in line with commonly used EA parameter settings, as

indicated in Table 5.1.

Table 5.1: Parameter setting of the EA to generate difficult-to-solve job shop problem in-
stances.

Parameter

Number of generations 25
Population size 100
Initial population Randomly generated
Selection parameter µ 20
Selection parameter λ 80
Crossover probability 100%
Mutation probability 5%
Number of work centres c 4
Number of jobs n 6
Maximum number of operations per job l 4
Minimum operation processing time pmin 1
Maximum operation processing time pmax 49
Scheduling objective Minimise mean flow time

Since EAs are stochastic in nature, each run potentially returns a different problem in-

stance. They may exploit different weaknesses of the dispatching rule and a user might want

to look at the results of several runs. Hence, ten replications of the EA are run.
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5.3.3 Analysis of Problem Instances

The evolved instances are analysed with the help of a Gantt chart generator that has been

specifically designed for this purpose. Both the optimal machine schedule for the original

problem OP and the one for the constrained problem CP, as described in Section 5.2.2, are

displayed in a single chart. This facilitates a machine-by-machine comparison of the schedules

and the identification of the suboptimal decision made by the tested rule. The decision point

can be easily found by checking the schedules along the time axis for the first difference. The

effects of the decision of the rule can then be gathered from an analysis of the two schedules

following this first difference, after which both schedules represent an optimal solution to the

residual problem.

Figure 5.5 depicts one of the problem instances evolved by the EA. The earliest difference

between the two schedules for this instance can be observed at time 0 on Machine 1, where

PT+WINQ starts processing Job 3 (see CP schedule) as it is the only one waiting in the queue

(Job 1 requires Machine 3 for its first operation, Job 2 and Job 4 both require Machine 4 first,

while Job 5 and Job 6 require Machine 2). However, this decision leads to substantial delays

for Job 1 and Job 2, which complete their first operations on Machine 3 and Machine 4 after

only two and one unit(s) of time, respectively, arrive at Machine 1 (which they both require for

their second operation) shortly after the start of the operation of Job 3, and have to wait for that

operation (which occupies the machine for 49 time units) to finish. The delayed processing

of Job 1 and Job 2 at Machine 1 in turn results in a temporary starvation of Machine 4, i.e.

the machine with the highest workload by far, and consequently a large increase of mean flow

time. In this case, the workload of a machine is measured by the sum of processing times of

all operations to be performed on it, which respectively add up to 136, 169, 99 and 290 for

the four machines in the given problem instance. The optimal decision (indicated by the OP

schedule), on the other hand, is to wait for the completion of the first operations of Job 1 and

Job 2 and prioritise them at Machine 1 so that the bottleneck, i.e. Machine 4, does not starve.

An issue with this problem instance and other evolved instances is that the distribution of

workloads among the machines is not representative of the given problem, which is charac-

teristed by a balanced workload. In consequence, insights gained from the analysis of these

instances are unlikely to be of any value for the development of a rule that performs better on

the actual problem. To focus the search of the EA on more balanced problem instances, its fit-

ness function is modified such that the imbalance of workloads is penalised. More specifically,

a penalty that is equal to a tenth of the variance of workloads over machines is introduced. To

illustrate, the variance of workloads of the problem instance shown in Figure 5.5 is 5137.25,

resulting in a penalty of 0.1×5137.25 = 513.725, which is subtracted from the original fitness

value to give the final fitness value of the individual. Using this modified fitness function,

another ten replications of the EA are run.
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Job Op. 1 Op. 2 Op. 3 Op. 4

1 3 2 1 20 4 43 3 24

2 4 1 1 1 4 25 3 24

3 1 49 2 49 4 49 2 45

4 4 1 1 1 4 49 1 29

5 2 30 4 49 3 49 4 27

6 2 45 1 15 4 46 1 21

(a) Problem instance

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375

Time

Machine 1

Machine 2

Machine 3

Machine 4

OP

CP

OP

CP

OP

CP

OP

CP

(b) Optimal and constrained machine schedules

Figure 5.5: Problem instance solved ineffectively by PT+WINQ with respect to the minimum
mean flow time objective — a premature start of a long operation delays arrival of other jobs
at the bottleneck machine, which is starving consequently.
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Figure 5.6 presents the individual with the highest fitness value, discovered in these ten

additional replications. The first thing noticable is the nearly perfect balance of machine

workloads, which is also apparent in the other, subsequently discussed problem instances,

as a result of the introduced penalty. The first difference between the two schedules for this

instance can be observed at time 0 on Machine 4. The PT+WINQ rule chooses to process

Job 1 despite its long operation processing time (p1,i = 37) because it subsequently proceeds

to Machine 1, which has an empty queue at the time (Wz1,i+1 = 0). In the optimal solution, the

shorter operation of Job 5 (p5,i = 11) is processed first, which is not prioritised by the rule due

to the large work content of Machine 2, required for the next operation of Job 5 (Wz5,i+1 = 51).

The decision of the rule follows from a comparison of the priority indices of the two jobs, as

IPT+WINQ
1 = − (37 + 0) = −37 > −62 = − (51 + 11) = IPT+WINQ

5 (see Section 3.4.1), and it is a

bad one for two reasons. First of all, apart from Job 5 there are two more jobs with short op-

erations awaiting service on Machine 4, with another arriving shortly after. All three jobs are

largely delayed as the machine is occupied with the operation of Job 1 for a significant amount

of time, thereby increasing the local mean flow time at Machine 4. Second, the postponement

of Job 2 and Job 5 leads to extensive idle times on Machine 1 and Machine 3 later on, as there

is no other job available that could be processed on these machines. Both factors increase the

(global) mean flow time.

Another problem instance evolved by the EA for the PT+WINQ rule is shown in Fig-

ure 5.7. The suboptimal scheduling decision of PT+WINQ again occurs on Machine 4 at

time 0. As in the previous instance, the rule assigns a higher priority to the longer job, i.e. Job 3

(p3,i = 49 compared to p4,i = 30), due to a large difference in the WINQ values (Wz3,i+1 = 18

for Machine 3, Wz4,i+1 = 45 for Machine 2), which leads to some short jobs being delayed at

Machine 4. Moreover, the WINQ component shows to be incapable, in this case, of balancing

the work content among machines in order to avoid idle times, which is its original purpose

(see Section 3.4.1). This is due to the fact that the work contents of Machine 2 and Machine 3

change to a great extent while Machine 4 is busy with processing Job 3. When the operation

is finished, i.e. after 49 time units, it is Machine 2 that is now facing an empty queue after its

completion of Job 1. Job 1 has in turn proceeded to Machine 3, thereby largely increasing its

work content. The WINQ component does not consider these developments and in fact turns

out to be counterproductive in its attempt to balance work contents in this case. The optimal

decision, on the other hand, is to process Job 4 on Machine 4 first, which consequently keeps

Machine 2 busy.
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Job Op. 1 Op. 2 Op. 3 Op. 4

1 4 37 1 49 3 45 2 19

2 2 8 4 5 1 37 3 1

3 4 39 3 47 4 31 3 38

4 4 9 2 39 1 34 4 15

5 4 11 2 4 3 38 1 11

6 2 43 1 36 2 49 4 22

(a) Problem instance

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6

0 25 50 75 100 125 150 175 200 225 250 275

Time

Machine 1

Machine 2

Machine 3

Machine 4

OP

CP

OP

CP

OP

CP

OP

CP

(b) Optimal and constrained machine schedules

Figure 5.6: Problem instance solved ineffectively by PT+WINQ with respect to the minimum
mean flow time objective — prioritisation of a job with long operation delays jobs with short
operations and leads to idle times at other machines.
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Job Op. 1 Op. 2 Op. 3 Op. 4

1 2 45 3 35 1 29 2 7

2 3 16 4 1 3 26 1 30

3 4 49 3 36 2 22 3 12

4 4 30 2 16 1 8 2 37

5 3 2 1 25 3 3 4 29

6 1 34 3 2 2 1 4 21

(a) Problem instance

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6

0 25 50 75 100 125 150 175 200

Time

Machine 1

Machine 2

Machine 3

Machine 4

OP

CP

OP

CP

OP

CP

OP

CP

(b) Optimal and constrained machine schedules

Figure 5.7: Problem instance solved ineffectively by PT+WINQ with respect to the minimum
mean flow time objective — focus of WINQ component on current work contents causes a
decision that subsequently leads to unbalanced work contents and machine idle times.
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Based on the findings from the analysis of the above problem instances, the following

conclusions are drawn for the design of a better rule:

1. The increase of the local mean flow time at a given work centre that results from the

priorisation of a long operation should be measured more precisely, taking into account

all shorter operations that are delayed.

2. The component that assesses the conditions at downstream work centres should assess

the expected work content at the time the respective job arrives at that work centre, not

the current work content.

3. The focus should be on idle time avoidance rather than on balancing the work content

of the different work centres.

5.3.4 Design of a New Dispatching Rule

A new dispatching rule, developed on the basis of the above conclusions, is presented in this

section. The rule consists of two components. The first component, called Increased Flow

Time (IFT), is derived from the first conclusion, and its index is defined as

IFT j =
∑

y∈NQ,py,i<p j,i

(
p j,i − py,i

)
, (5.1)

where p j,i denotes the processing time of the imminent operations of job j, and NQ the set

of queueing jobs. The IFT j index measures the increase of total flow time at the local work

centre that would result from prioritising job j, which is equal to 0 for the job with the shortest

operation.

The second component, called Utilised Idle Time (UIT), is derived from the other two

conclusions and estimates how much machine idle time a job can fill in with its subsequent

operation if its imminent operation is started immediately. It incorporates an extended WINQ

component, in which the operation processing times of all look-ahead jobs, which are expected

to arrive at the respective work centre during the execution of the imminent operation of a

considered job j, are added to the current work content of the work centre. This refers to jobs

that require the same work centre for their next operation as job j and take less time to finish

their current operation. The complete index of the UIT component is given by

UIT j =



p j,i+1 if Wx
z j,i+1
− p j,i ≤ 0 ∧ t + p j,i + p j,i+1 ≤ ry,i,

ry,i −
(
t + p j,i

)
if Wx

z j,i+1
− p j,i ≤ 0 ∧ t + p j,i + p j,i+1 > ry,i,

p j,i+1 −
(
Wx

z j,i+1
− p j,i

)
if 0 < Wx

z j,i+1
− p j,i ≤ p j,i+1 ∧ t + p j,i + p j,i+1 ≤ ry,i,

ry,i −
(
t + Wx

z j,i+1

)
if 0 < Wx

z j,i+1
− p j,i ≤ p j,i+1 ∧ t + p j,i + p j,i+1 > ry,i,

0 otherwise,

(5.2)
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where Wx
z j,i+1

denotes the extended work content of the work centre z j,i+1 required for the next

operation of job j, as defined above, ry,i indicates the arrival time of the look-ahead job y that

is expected to arrive first at that work centre after job j, p j,i+1 denotes the processing time of

the next operation of job j, and t the current time. Note that ry,i is equal to infinity if there is no

such job y that satisfies the criteria. The UIT j index accounts for the fact that other machines

decrease their work content by up to p j,i time units while the current operation of job j is being

processed. Thus, the next machine on the route of job j will possibly be starving at the time of

its arrival if Wx
z j,i+1
− p j,i ≤ 0, in which case the whole processing time of the next operation of

job j can be utilised to fill in idle time, represented by the first case in Equation (5.2). However,

if another job is expected to arrive before the subsequent operation of job j is completed, only

the gap between the arrival of these two jobs may be filled in by job j (the second case). On

the other hand, if Wx
z j,i+1

exceeds p j,i, there will be work left of the amount Wx
z j,i+1
− p j,i when

job j arrives at its next machine and, depending on the time of the following job arrival, only

p j,i+1 −Wx
z j,i+1

+ p j,i (the third case) or ry,i − t−Wx
z j,i+1

(the fourth case) units of idle time can be

used. Finally, if the remaining work at the point of arrival of job j is greater than the duration

of its operation on that machine, i.e. Wx
z j,i+1
− p j,i > p j,i+1, no idle time can be utilised by job j

at all (the fifth case). Although UIT does not give a guarantee on the amount of idle time that

is actually used by the subsequent operation of a job, it is certainly a more suitable measure

than WINQ to prevent machines from running idle.

With its components defined, the priority index of the new rule, named IFT−UIT, is simply

computed as

IIFT−UIT
j = −

(
IFT j − UIT j

)
. (5.3)

Thus, the rule prioritises jobs that lead to a smaller increase of local flow time and can utilise

more idle time, and therefore seeks to efficiently resolve queues and avoid idle times at the

same time.

To illustrate the operation of the IFT−UIT rule, it is applied to the decision point at time 0

at Machine 4 of the problem instance from Figure 5.6. The available jobs and the attributes

that are relevant for the determination of their priority indices are listed in Table 5.2. The

IFT j index of each job is calculated according to Equation (5.1), e.g. the index of Job 1 is

Table 5.2: Determination of job priorities according to the IFT−UIT rule for the problem
instance from Figure 5.6 (ry,i = ∞ for all jobs).

j p j,i IFT j Wx
z j,i+1

p j,i+1 UIT j IIFT−UIT
j

1 37 54 0 49 49 -5
3 39 60 0 47 47 -13
4 9 0 51 39 0 0
5 11 2 51 4 0 -2
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equal to the sum of the differences of the processing time of its imminent operation and the

processing time of the shorter operations of Job 4 (37 − 11 = 26) and Job 5 (37 − 9 = 28),

i.e. IFT1 = 26 + 28 = 54. The UIT j indices are determined using Equation (5.2). To

illustrate, Job 1 requires Machine 1 for its subsequent operation (see Figure 5.6), which has

an empty queue at the time, with no look-ahead jobs expected to arrive during the execution

of the imminent operation of Job 1 (Wx
z1,i+1

= 0) or after (ry,i = ∞). Thus, it is expected that

Machine 1 will be starving at the time of the arrival of Job 1 and that the whole 49 units of

processing time of its next operation can be utilised to fill in idle time if its imminent operation

is started immediately (UIT1 = 49). In contrast, Job 5 requires Machine 2 for its subsequent

operation, which has a work content of 51, with Job 2 and Job 6 both waiting to be processed

(see Figure 5.6). Since the remaining work at the prospective point of arrival of Job 5 (after 11

time units) will still be greater than the duration of its operation on that machine (51−11 > 4),

no idle time can be utilised by Job 5 at all (UIT5 = 0). Subtracting the IFT j from the UIT j

indices, it is easy to see that Job 4 has the highest IIFT−UIT
j index and is therefore chosen by

the IFT−UIT rule.

5.3.5 Applying the Method to the New Rule

Although the IFT−UIT rule already outperforms PT+WINQ (see Section 5.4), the process

does not have to stop here. Instead, it can continue with testing the newly developed rule to

check for smaller or newly introduced flaws. The EA is thus applied again, but this time to

search for problem instances that the IFT−UIT rule cannot solve properly. All other parameter

settings remain the same as before, and ten replications are run again.

One of the evolved problem instances is depicted in Figure 5.8. Of the four jobs queueing

at Machine 1 at time 0, IFT−UIT chooses Job 4 since its subsequent operation is estimated to

utilise 49 units of idle time of Machine 3. However, Job 4 consists of three long operations and

favouring a single job with long operations over several jobs with shorter operations increases

the mean flow time. Furthermore, the potential benefit of utilising an extensive amount of idle

time of Machine 3 is not realised as this period can be largely filled with several other jobs,

provided that they are prioritised at Machine 1 as in the optimal schedule.

One quick fix to deal with this weakness of the IFT−UIT rule is to add a term to its

priority index that penalises jobs that have a long next operation, similar to how Holthaus and

Rajendran (2000) extend the PT+WINQ to the 2PT+WINQ+NPT rule (see Section 3.4.1).

The priority index of this modified rule, named IFT−UIT+NPT, is then given by

IIFT−UIT+NPT
j = −

(
IFT j − UIT j + p j,i+1

)
. (5.4)
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Job Op. 1 Op. 2 Op. 3 Op. 4

1 2 42 3 39 2 25 4 49

2 1 12 2 11 3 15 2 41

3 2 28 4 49 3 11 4 39

4 1 28 3 49 1 47 4 0

5 1 12 4 12 3 16 1 3

6 1 31 2 5 3 22 1 9

(a) Problem instance

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6

0 25 50 75 100 125 150 175 200 225 250

Time
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(b) Optimal and constrained machine schedules

Figure 5.8: Problem instance solved ineffectively by IFT−UIT with respect to the minimum
mean flow time objective — IFT−UIT delays short jobs by prioritising a job with a long
subsequent operation due to the large amount of idle time it is estimated to fill in, which turns
out to be inaccurate.
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5.4 Experimental Results

The newly developed rules are evaluated by replicating the experiments of Rajendran and

Holthaus (1999). In particular, the rules are applied to the two job shops described in Sec-

tion 5.3.1, operating under two different levels of utilisation, namely 80% and 95%. For these

utilisation levels the warm-up period has been determined to comprise the completion of 1000

and 7000 jobs, respectively. The performance measurements are generally based on a sample

size of n = 50000 jobs per simulation run.

Regarding the selection of benchmarks, it is obviously necessary to include PT+WINQ

in the performance comparison to assess whether the analysis of its weaknesses has actually

led to the development of a better rule. Moreover, SPT and 2PT+WINQ+NPT are selected as

benchmark rules due to their reported strong performance for the Jm|r j|C problem (see Sec-

tion 3.4.1). The PT+WINQ and 2PT+WINQ+NPT rules are further modified by replacing the

WINQ component by the extended version that is used within the UIT component, providing

two more benchmarks. The job-based relative of SPT, the LWKR rule, and the simple FCFS

rule complete the set of benchmark rules.

Table 5.3 presents the results of the simulation experiments. The values in bold indicate

the best performance achieved by any rule for the respective problem, while those marked with

the same superscript, e.g. the mean flow time values of SPT and PT+WINQ for the problem

with 2–10 operations per job and 80% utilisation, are not significantly different from each

other according to the Bonferroni-Dunn test, at the overall 5% significance level. The results

are consistent with previous findings in the literature in that SPT outperforms LWKR and that

Table 5.3: Mean flow time performance of newly designed and benchmark rules for ideal job
shops at different utilisation levels. Differences between performance values marked with the
same superscript are not significant at the overall 5% significance level. The best performance
values are in bold.

Dispatching rule Mean flow time

Shop type 2–10 ops. per job 10 ops. per job

Utilisation 80% 95% 80% 95%

FCFS 509.4 1752.5 819.0 2592.9
LWKR 492.9 1903.3 770.3 2672.6
SPT 384.8a 1000.9 616.7a 1425.0a

PT+WINQ 384.6a 961.6 616.2a 1421.8a

PT+WINQx 383.4 955.6 613.5 1409.3
2PT+WINQ+NPT 381.4 898.2 608.9 1317.4
2PT+WINQx+NPT 378.5 889.1a 602.7 1296.5
IFT−UIT 372.9 887.0a 596.5 1274.7
IFT−UIT+NPT 363.3 835.9 582.5 1211.7
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PT+WINQ is at least as effective as SPT, with 2PT+WINQ+NPT dominating both. Further-

more, the extended WINQ component, denoted by WINQx in Table 5.3, is shown to generally

improve the mean flow time performance of rules incorporating WINQ, though improvements

are relatively minor (around 1%). Most notably, both IFT−UIT and IFT−UIT+NPT prove to

dominate all other rules, where IFT−UIT+NPT is the best rule in every single case, achieving

a mean flow time reduction of 4–8% over the previous best rule, 2PT+WINQ+NPT. Hence,

it can be concluded that the approach of employing an EA to search for difficult problem in-

stances has been successful in prompting the design of a superior rule for the given problem,

i.e. the Jm|r j|C problem with balanced workloads.

In their paper, Rajendran and Holthaus (1999) further study the impact of the flow pattern

on the relative effectiveness of dispatching rules by altering their problems so that jobs visit

work centres in increasing order of the work centre index, with other problem parameters

left unchanged. Consequently, the shop in which each job visits each work centre exactly

once becomes a flow shop, while the other one becomes a flow-dominant job shop. Although

the IFT−UIT and IFT−UIT+NPT rules are designed for ideal job shops and thus cannot be

expected to perform well for these problems, the experiments are replicated herein to assess

the robustness of the rules to different flow patterns.

Table 5.4 presents the results of these additional experiments, which show both rules to be

surprisingly robust. In fact, the IFT−UIT+NPT rule continues to yield the lowest mean flow

time, even for the flow shop problems, which is remarkable considering that its design is based

on the analysis of instances of the job shop problem.

Table 5.4: Mean flow time performance of newly designed and benchmark rules for flow-
dominant job shop and flow shop at different utilisation levels. Differences between perfor-
mance values marked with the same superscript are not significant at the overall 5% signifi-
cance level. The best performance values are in bold.

Dispatching rule Mean flow time

Shop type Flow.-dom. job shop Flow shop

Utilisation 80% 95% 80% 95%

FCFS 464.6 1656.0 619.8 2051.6
LWKR 424.8 1408.8 553.3 1545.5
SPT 358.8 946.6 510.1a 1202.5b

PT+WINQ 357.1b 912.4 510.1a 1202.5b

PT+WINQx 356.5a 907.6 510.1a 1202.5b

2PT+WINQ+NPT 357.6 891.1 512.7b 1275.5c

2PT+WINQx+NPT 356.2a 881.5 512.7b 1275.5c

IFT−UIT 356.4a,b 868.0 523.5 1157.0a

IFT−UIT+NPT 345.6 842.6 503.0 1154.3a
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5.5 Critical Appraisal and Future Work

In summary, the method presented in this chapter has led to the development of superior dis-

patching rules for a well-studied scheduling problem, which demonstrates the potential of

using an EA to reveal the weaknesses of current benchmark rules. However, there are a few

issues with regard to both the generation and the analysis of problem instances that limit the

usefulness of the method.

The first point concerns the computational time needed to generate a problem instance.

While in the above application the runtime for a replication of the EA has been less than two

hours (on a 2.66 GHz Intel Core 2 Duo with 2 GB RAM), which is certainly acceptable, the

runtime will quickly become a restrictive factor if the integrated solver is required to solve

more complex scheduling problems, e.g. involving sequence-dependent setup times or batch

processing. One way to deal with this issue would be to stop the solver after a certain maxi-

mum time (if it has not returned the optimum yet) and return the best feasible solution found

so far. Alternatively, some other type of solution method such as a metaheuristic could be

used to solve the problem instances. In any case, the scale of the problem instances have to

be rather small to be able to generate good solutions in a reasonable amount of time, raising

the question of the representativeness of these instances for the kind of large-scale dynamic

problems to which dispatching rules are typically applied.

In Section 5.3, problem instances with only four work centres and six jobs have revealed

weak points in the design of dispatching rules, whose elimination has resulted in rules with a

better performance on dynamic problems with ten work centres. This is an indication for that

the conditions found in the static instances are likewise encountered in the dynamic problems.

On the other hand, as illustrated by the instance depicted in Figure 5.5 and the need to introduce

a penalty for workload imbalance, the generation of representative and insightful instances is

not trivial. In fact, there is no guarantee that modifying the logic of a dispatching rules based

on the insights gained from a specific instance will actually improve the performance of the

rule. Thus, the development of dispatching rules remains a trial-and-error process with this

method, though becoming more systematic.

Another reason for configuring the EA to search for small problem instances is that larger

instances are harder to analyse for a human expert. Given that the potential to develop more

effective dispatching rules appears to be bigger for complex problems, the requirement for

instances to be easy to analyse clearly presents another limitation of the method in its current

form. Hence, better user support in the analysis phase, e.g. in form of a user interface that au-

tomatically identifies critical operations that cannot be delayed without impact on the objective

function value, is an important area of future work. A step further would be to automate the

analysis of instances by employing a machine learning algorithm. However, such an algorithm

would need to be able to extract the context of suboptimal rule decisions that explains both the

causes and effects of the decisions, which seems rather challenging.



Chapter 6

Automatic Rule Generation by
Genetic Programming 1

The characterisation of the development of dispatching rules as an iterative process suggests

the employment of EAs to automate this search for an effective rule. Such methods that oper-

ate on a search space of heuristics are commonly referred to as hyper-heuristics (Burke et al.,

2010). Since dispatching rules are essentially defined by their priority indices, i.e. mathe-

matical expressions, a particularly suitable type of EA for the generation of dispatching rules

appears to be Genetic Programming (GP) as it is well designed for evolving mathematical

expressions (see, e.g. Poli et al., 2008, Chapter 4).

This chapter presents a GP hyper-heuristic that generates composite dispatching rules from

basic job and machine attributes. The next section reviews related work, followed by a detailed

description of the algorithm in Section 6.2. The hyper-heuristic is applied to some complex

problems from semiconductor manufacturing as described in Section 6.3, and the performance

and robustness of the evolved rules is assessed in Sections 6.4 and 6.5, respectively. The

chapter concludes with a critical appraisal of the method and some suggestions for future

work.

6.1 Related Work

The basic idea to automate the development of dispatching rules by means of a hyper-heuristic

has been around for a long time. An early paper on this topic is the one by Hershauer and Ebert

(1975), who combine a deterministic pattern search algorithm with simulation to generate

a composite rule that minimises a specific cost function of a dynamic job shop. They test

their procedure with different cost functions and find that its effectiveness strongly depends

1This method is published in C. W. Pickardt, T. Hildebrandt, J. Branke, J. Heger, and B. Scholz-Reiter (2013),
Evolutionary generation of dispatching rule sets for complex dynamic scheduling problems, International Journal
of Production Economics 145(1), 67–77. However, the experimental results presented in this chapter deviate from
those reported in the paper due to a slightly different experimental setup.

84
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on aspects such as the predefined format of the priority indices of the composite rules and the

starting solution of the search. These findings further motivate the use of GP for the automatic

generation of dispatching rules as it is flexible to evolve priority indices of different formats

and lengths, and like any EA operates on a set of (starting) solutions.

Several researchers have developed GP-based hyper-heuristics to generate dispatching

rules for various scheduling problems. Atlan et al. (1994) use GP to evolve rules for particular

instances of the Jm||Cmax problem. They find that the evolved rules yield (near-)optimal solu-

tions to the respective (training) instance and outperform a simple benchmark rule on a wider

set of instances, given that they are not too different from the training instance. Miyashita

(2000) evolves dispatching rules for a dynamic job shop problem by means of GP, which show

to be more effective than some common rules from the literature. Dimopoulos and Zalzala

(2001) address the 1||T problem in this way and obtain rules that prove to outperform EDD

and SPT. Their results further highlight the importance of ensuring that the training instances

are representative of the problem(s) that the rules are supposed to solve. Geiger et al. (2006)

develop a GP hyper-heuristic to generate dispatching rules for a range of single machine prob-

lems and report that it is able to discover the optimal rules where they are known, e.g. SPT

for the 1||C problem and EDD for the 1||Tmax problem, and very competitive ones for all other

problems. In particular, the rules evolved for the 1|r j|C problem are generally found to re-

produce the performance of SPT, while those evolved for the 1||T and 1|r j|T problem show

to be similarly effective as ATC, MDD and COVERT. In a follow-up paper, Geiger and Uz-

soy (2008) apply their hyper-heuristic to some single batch processing machine problems.

Again, the hyper-heuristic is shown to be effective, evolving rules that perform as good as

the optimal BSPT rule for the 1|B f |C problem, as well as rules that outperform BSPT on the

1|r j, B f |C problem, and BATC and BEDD on the 1|B f |T and 1|r j, B f |T problem. Jakobović

and Budin (2006) employ GP to evolve dispatching rules for the 1|r j|wT and Jm||wT problem

and find that the evolved rules achieve a better performance than some variants of the ATC

rule amongst others. In another paper, Jakobović et al. (2007) address several parallel machine

problems, where the GP rules again show to outperform the benchmark rules in every case,

including ATC for the Qm||wT problem, X-ATC for the Qm|r j|wT problem and ATCS for the

Qm|se f |wT problem. Jakobović and Marasović (2012) extend this work by examining differ-

ent parameter settings of the hyper-heuristic and by testing it on a wider range of scheduling

problems. Their results largely confirm the earlier findings in that the hyper-heuristic is gener-

ally able to evolve rules that are more effective than the best benchmark rules, i.e. ATC and its

variants for the 1||wT , 1|r j|wT , 1|se f |wT and Jm||wT problem. Moreover, the performance of

the hyper-heuristic is found to improve if a higher number of training instances is used in the

evaluation of individuals. Tay and Ho (2007, 2008) use GP to generate dispatching rules for

some flexible job shop problems and report that the evolved rules perform slightly better than

several simple rules from the literature.
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In some of these studies, GP has been further employed to evolve several dispatching rules

simultaneously, where each rule is tailored to a certain (group of) work centre(s). Geiger

et al. (2006) propose a simple extension of their hyper-heuristic for multi-stage problems that

involves the generation of a different rule for every work centre in the shop. They apply this

hyper-heuristic to the F2||Cmax problem, for which it shows to generate rule sets that yield

close-to-optimal solutions. Miyashita (2000) develops a GP hyper-heuristic that is based on a

predetermined classification of work centres into bottlenecks and non-bottlenecks and evolves

one rule for each class of work centres. The hyper-heuristic is tested on two job shop problems

with five work centres, of which one or two, respectively, are bottlenecks, and found to be more

effective than a GP hyper-heuristic that evolves a single rule for all work centres or one that

evolves a different rule for every work centre. Encouraged by these results, Jakobović and

Budin (2006) design a GP hyper-heuristic that optimises the classification of work centres

while searching for good dispatching rules. More specifically, each individual consists of

three mathematical expressions, where one of them is a function of attributes relating to the

workload of a work centre that determines which of the two dispatching rules, encoded by the

other two expressions, to apply. Jakobović and Budin report that the best rule set generated

for the Jm||wT problem in 20 replications of this hyper-heuristic performs significantly better

than the best rule evolved in 20 replications of a hyper-heuristic that generates a single rule for

all work centres.

GP has also been successfully employed for the automatic generation of other types of

scheduling heuristics. Yin et al. (2003) use GP to evolve so-called predictive heuristics, which

aim to construct schedules that are robust to unpredictable breakdowns of machines. Vázquez-

Rodrı́guez and Ochoa (2011) create variants of the NEH flow shop heuristic by letting GP

modify the rule that is used for sorting the jobs in the initial step of the heuristic. Nguyen

et al. (2012) develop a GP hyper-heuristic for the simultaneous generation of dispatching and

due date assignment rules that is based on the principles of cooperative coevolution, in which

one population of dispatching rules coevolves with another population of due date assignment

rules.

Other hyper-heuristics that are not based on GP have also been proposed for the genera-

tion of dispatching rules. Nie et al. (2010) propagate the use of Gene Expression Programming

(GEP), a close relative of GP, to evolve dispatching rules and find it to be slightly more ef-

fective than GP. However, they apply both hyper-heuristics with a parameter setting that is

optimised for the GEP hyper-heuristic, thus introducing a bias in favour of the latter. Eguchi

et al. (2008) design a hyper-heuristic that is composed of a neural network and a simulated

annealing metaheuristic, but hint that its effectiveness is strongly dependent on a suitable pa-

rameter setting and starting solution. Olafsson and Li (2010) combine an EA with a decision

tree algorithm, where the role of the EA is to determine a subset of training instances so that the

dispatching rule that results from the application of the decision tree algorithm to this subset



CHAPTER 6. AUTOMATIC RULE GENERATION BY GENETIC PROGRAMMING 87

performs well on the test instances. This implies that the rules are optimised on the test in-

stances and are therefore likely to be overfitted to them. El-Bouri et al. (2000) employ a neural

network algorithm to learn dispatching rules from optimal schedules, while Ingimundardottir

and Runarsson (2011) use a linear classification algorithm in a similar manner. However, such

an approach presupposes the availability of (near-)optimal solutions, and thus is not practical

for dynamic problems.

Overall, this literature review indicates that the generation of dispatching rules by means

of GP is very promising. However, a shortcoming of the previous work is that it predominantly

focusses on problems of small to moderate size, which are further often static. In fact, some

of the above studies provide rules with future information such as the number of jobs still to

arrive and their release dates, which is unavailable in a truly dynamic environment. Conse-

quently, the rules evolved in most of these papers are tailored to static problem instances of

moderate size. However, such problems are likely to be better solved by some global solution

method, whereas the advantage of dispatching rules lies in their ability to deal with complex

and dynamic problems, as discussed in Section 2.2. This work investigates the potential of GP

hyper-heuristics to generate effective rules for complex, dynamic problems.

6.2 Algorithm Design

In general, the GP hyper-heuristic operates as described in Section 4.1, and the focus of this

section is to detail the algorithm-specific components, namely the encoding of candidate solu-

tions and the evaluation, selection and reproduction of individuals.

6.2.1 Encoding of Solutions

In GP, candidate solutions are typically encoded as syntax trees, where candidate solutions

are dispatching rules in this case. Each dispatching rule is thus represented by a syntax tree,

which encodes the priority index that the rule applies to determine the job to process next on

a given machine, i.e. the job with the highest index. If the considered machine is a batch

processing machine, the priority index further determines the composition of batches, which

are filled with (other compatible) jobs in non-increasing order of their indices. The encoding

of dispatching rules is illustrated in Figure 6.1, where GP trees are read recursively, starting

from the root node, and from left to right, which yields the priority index I j = w j(2 + p j) − p j

for the tree shown in the figure. The priority index can be any function of attributes that are

provided to the hyper-heuristic, e.g. the weight of a job w j or its processing time p j, and an

important design decision thus concerns the selection of adequate terminals (attributes) and

functions (operators) as they define the search space and the rules that can be generated.

One aspect that is not specified by the encoding is which jobs are to be considered in the

decision making of a dispatching rule. By default, the information horizon of dispatching
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Figure 6.1: Example of the encoding of dispatching rules as GP trees, where rules prioritise
jobs in non-increasing order of their indices I j.

rules is restricted to jobs that are already queueing at the respective work centre. However,

as discussed in Section 3.4, in can be beneficial to also take into account look-ahead jobs that

arrive at the work centre in the near future. The effect of extending the horizon to look-ahead

jobs that are in process at an upstream work centre and visit the local work centre for their

next operation is briefly discussed in Section 6.6.

6.2.2 Evaluation

Following the decoding of an individual into the corresponding dispatching rule, a simulation

experiment is run to evaluate the performance of the rule for the given objective, which mea-

sures the fitness of the individual. However, there are some particular challenges involved in

this approach, commonly known as simulation(-based) optimisation (Fu et al., 2005).

First of all, simulation optimisation is computationally expensive and there is a need to

use simulation time efficiently. In this work, only one replication of the simulation is run to

evaluate an individual, with the same random number stream for all individuals belonging to

the same generation. The use of common random numbers helps to reduce the variance of the

relative performance of dispatching rules, which is essential for selecting the best individuals

in each generation of the hyper-heuristic. In contrast, different streams are used across gener-

ations to avoid that the resulting rules are overfitted to one specific stream. While this setting

is shown to be favourable in Branke (2001), it implies that all individuals have to be reevalu-

ated in every generation. The actual length of the individual simulation runs is determined by

experimentation (see Section 6.3.2).

Another issue that arises in dynamic problems, especially with the presence of work cen-

tres with sequence-dependent setup times or batch processing capabilities, is that some rules

or individuals, which may be present particularly at the start of the run of the hyper-heuristic,

can lead to an unstable system (see also Sections 3.2 and 3.3). To prevent wasting excessive

time on the evaluation of such inferior rules, the number of jobs in the shop is monitored dur-

ing the simulation run and the run is aborted if a preset threshold value for the number of jobs
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is exceeded. The corresponding individual then receives a high penalty on its fitness value,

which ensures that it is quickly discarded. The threshold value is simply set to a value that is

well above the number of jobs in the shop observed for stable benchmark rules.

6.2.3 Selection

Individuals are selected for reproduction using tournament selection. This scheme, which is

the most commonly used in GP (Poli et al., 2008, Chapter 2), randomly samples a number of

individuals from the current population, called the tournament size, of which the one with the

highest fitness is chosen as a parent. The thusly selected parents then produce the individuals

that form the population of the next generation. It follows that every population consists of en-

tirely new individuals with this selection scheme. However, to ensure that the best individuals

of each generation survive into the next generation, an elitist strategy is employed in addition,

which directly inserts the best individual(s) of every generation into the next one, irrespective

of whether they are selected for reproduction or not.

6.2.4 Reproduction

New individuals are created by applying one of two standard GP operators, called subtree

crossover and subtree mutation. The subtree crossover recombines two individuals by ran-

domly picking a node in each individual and swapping over the connecting subtrees, thereby

producing two new individuals. Figure 6.2 presents an example of the crossover, where the

white and grey parts within the two children originate from the first and second parent, respec-

tively. The subtree mutation operator, on the other hand, modifies an individual by replacing

a randomly selected node and the connecting subtree with another, randomly generated tree.

Figure 6.3 illustrates this operation, where altered parts of the tree are indicated in grey. In both

operations, non-leaf nodes are chosen with 90% and leaf nodes with 10% probability, which

ensures that larger subexpression are exchanged more frequently (see also Poli et al., 2008,

Chapter 2). The probability of selecting either subtree crossover or mutation for reproduction

is a parameter of the hyper-heuristic, which are specified in the following section.



CHAPTER 6. AUTOMATIC RULE GENERATION BY GENETIC PROGRAMMING 90

Crossover

jp

−

jw

×

2

+

jp

/

+

jw

+

1p jp

jp

− /

+

1 jp

jw

+

p

jw

×

2

+

jp

Figure 6.2: Example of a subtree crossover operation. A node is randomly selected in each
parent (the leftmost ‘×’ and ‘+’ nodes in this case) and the connecting subtrees are swapped.
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Figure 6.3: Example of a subtree mutation operation. A randomly selected subtree of the
individual (the rightmost ‘p j’ leaf node in this case) is replaced with a randomly generated
tree.

6.3 Application to Scheduling Problems from
Semiconductor Manufacturing

To assess its effectiveness, the GP hyper-heuristic is tested on several scheduling problems, as

described in this section.

6.3.1 Scenario Description

The hyper-heuristic is employed to generate dispatching rules for two shops from the MASM

testbed (Feigin et al., 1994), which includes data sets for a number of simulation models that

are based on real-world semiconductor manufacturing systems. The shops, which correspond
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to the Fab4r and the Fab6 data set of the testbed, feature most of the complex characteristics

that are typical of the industry, such as (identical) parallel machines, sequence-dependent setup

times, batch processing and revisitations of work centres by jobs, making the manual design of

effective dispatching rules very challenging. Hence, they represent a typical scenario in which

one may want to resort to a hyper-heuristic for the development of dispatching rules.

Table 6.1 lists some characteristic features of the two shops, which differ largely in terms

of their size and the number of operations required per job. Each of the two shops produces

a limited set of different products, where jobs of the same product type have exactly the same

processing requirements, which implies that they follow the same route. New jobs arrive con-

tinuously at the shops according to a Poisson process, with arrival rates as specified in the

MASM testbed in case of the Fab6 shop, which yield a bottleneck utilisation (or shop utilisa-

tion) of 92.3%. The arrival rates for the Fab4r shop, on the other hand, are altered to 4.5 and

10.5 jobs per day of product type A and B, respectively, to create a more challenging problem

with several highly utilised work centres and a bottleneck utilisation of 93.8%. Upon their

arrival, each job is assigned a weight, drawn from a discrete uniform distribution on the [1, 10]

interval, and a due date, generated by means of the Total Work Content (TWK) method. The

TWK method, which is widely used in the literature (Baker, 1984), simply assigns each job

an allowance that is a multiple of its total processing time, i.e. d j = r j + K ×
∑l j

o=1 p j,o. In this

work, the allowance factor K for a job is randomly drawn from a continuous uniform distri-

bution on the [2, 5] or [1.2, 1.6] interval for the Fab4r and the Fab6 shop, respectively. These

distributions yield a moderate to tight due date setting for both shops operating under the afore-

mentioned job arrival rates. For each shop, the given objective is either to minimise mean flow

time or to minimise mean weighted tardiness, resulting in four different scheduling problems

altogether, which are denoted by FJc|r j, se f , B f |C and FJc|r j, se f , B f |wT , respectively. The

warm-up period for the Fab4r and the Fab6 problems has been determined to comprise the

completion of 3000 and 1500 jobs, respectively.

Table 6.1: Main features of the two semiconductor manufacturing shops.

Fab4r Fab6

Number of work centres (machines) 31 (36) 104 (228)
Number of products 2 9
Number of operations per job 92 or 19 234–355
Total processing time per job 7145 or 1175 15624–25298

6.3.2 Parameter Setting

The hyper-heuristic is provided with a number of terminals and functions that are used within

effective dispatching rules from the literature, including operation due dates, which are set
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as illustrated in Figure 3.3. The terminal set is further supplemented with some constants

to enable the hyper-heuristic to weight attributes differently, especially since the latter have

different units and can be of different magnitude, and a newly designed attribute called setup

time regret. The setup time regret measures the amount of setup time that can be saved for

a considered job if its imminent operation is processed on another parallel machine, given

their current setups. The function set, on the other hand, contains some basic arithmetic and

mathematical operations, and a ternary if-then-else (ifte) operator, which checks whether the

first argument is larger than or equal to 0 and returns the second argument if that is the case,

and the third otherwise.

To determine an adequate setting for the simulation experiments used to evaluate individ-

uals, some preliminary experiments have been conducted on the Fab4r problem with the min-

imum mean weighted tardiness objective. In particular, ten replications of the hyper-heuristic

have been run for each of several settings for the run length of the simulation experiments. In

general, the performance of the hyper-heuristic can be expected to degrade with shorter sim-

ulation runs as they yield less precise measures of the actual performance of a rule, and are

therefore more likely to mislead the selection of good individuals. However, the box plot of the

performance of the ten respective dispatching rules evolved with different run length settings,

shown in Figure 6.4, indicates no significant difference between the tested settings. Hence, an

intermediate setting is used and the simulation run length is set to 15000 job completions, or
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Figure 6.4: Effect of simulation run length, used in the evaluation of individuals, on the per-
formance of the GP hyper-heuristic, measured by the performance of evolved rules.
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five times the warm-up period rather, which corresponds to 7500 job completions in the case

of the Fab6 problems.

With the run length fixed to 15000 job completions, another set of experiments has been

carried out to examine whether the evaluation of individuals should account for the warm-up

period or whether the fitness values should be based on all jobs completed in a simulation run.

Figure 6.5 presents the box plot for the four different settings tested, which cover the whole

range from including all jobs in the fitness calculations to discarding the first 3000 jobs, i.e.

accounting for the whole warm-up period. The plot, which again is based on ten respective

replications of the hyper-heuristic, does not indicate any significant difference between the

different settings, and the fitness function is thus simply defined to incorporate all jobs.
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Figure 6.5: Effect of accounting for warm-up in the evaluation of individuals on the perfor-
mance of the GP hyper-heuristic, measured by the performance of evolved rules.

Table 6.2 summarises the parameter setting of the GP hyper-heuristic, which follows gen-

eral GP guidelines, including the generation of the initial population by means of the ramped

half-and-half method with a depth range of 2 to 6 (Poli et al., 2008, Chapter 3). Ramped

half-and-half fills half the population with trees whose leaves are all at the same depth and the

other half with trees whose leaves are at various depths up to a predetermined limit, where the

depth (limit) of a tree is randomly sampled from the specified range. Using this setting, the

GP hyper-heuristic is applied to the four scheduling problems, running 20 (new) replications

for each of the two Fab4r problems and 10 replications for each of the two Fab6 problems.
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Table 6.2: Parameter setting of the GP hyper-heuristic.

Parameter

Number of generations 50
Population size 1000
Initial population Randomly generated using

ramped half-and-half (depth 2 to 6)
Tournament size 7
Elitism 1%
Crossover probability 90%
Mutation probability 10%
Maximum tree depth 17
Simulation run length 5 × warm-up period
Terminals Number of remaining operations of job (l j − i + 1),

remaining job processing time (
∑l j

o=i p j,o),
imminent operation processing time (p j,i),
average operation processing time of queueing jobs (p),
setup time for imminent operation (se f j,i),
setup time regret if job is processed on current machine,
average setup time for queueing jobs (s),
number of queueing jobs of the same setup/batch family (nQ

f j,i
),

batch size (min(nQ
f j,i
, B f j,i)),

number of jobs in the queue (nQ),
0, 1, 2, 10,

(only wT problems) job weight (w j),
remaining allowance of job (d j − t),
remaining allowance of imminent operation (d j,i − t)

Functions +, −, ×, ÷, max, min, ifte

6.4 Experimental Results

The evolved rules are evaluated on the respective problem they have been generated for, by

running additional simulation experiments with different random number streams than those

used in their generation. Moreover, data collection in these experiments only starts after the

end of the warm-up period, as usual, where performance measurements for the Fab4r and the

Fab6 problems are based on a sample size of n = 50000 and n = 30000 jobs per simulation

run, respectively. The performance of the rules evolved for the two FJc|r j, se f , B f |C problems

is discussed first, followed by a presentation of the results for the FJc|r j, se f , B f |wT problems.
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6.4.1 Minimising Mean Flow Time

Since the problems at hand involve sequence-dependent setup times and batch processing, the

best benchmark rules are likely to be rules that explicitly account for these characteristics.

Various extensions of the effective SPT rule have been developed to address problems with

these processing characteristics (see Sections 3.2 and 3.3). Two rules that integrate SNSPT

and the exhaustive FSASPT rule with BSPT in such a way that they reduce to SNSPT (or

FSASPT-SPT) for work centres with setups, to BSPT for batch processing work centres, and

to SPT for simple serial processing work centres are included as benchmarks, where the rule

name succeeding the ‘-’ identifies the rule used to prioritise jobs within a family chosen by

FSASPT, i.e. SPT in this case. These rules are denoted by BSNSPT and FSASPT-BSPT in the

following. The SNSPT and FSASPT-SPT rules are further combined with the MCB rule so

that the former serve as tie-breaking rules for MCB at batch processing work centres, providing

two more benchmarks. The non-parallel machine version of DJAH, which reduces to SPT for

serial processing work centres, BLWKR, PT+WINQ, 2PT+WINQ+NPT and FCFS complete

the set of benchmark rules (see Section 3.4 for their definitions). However, since none of

the latter rules take into account setup times, they are all implemented as exhaustive rules,

i.e. jobs of the same family always receive highest priority at work centres with sequence-

dependent setup times. Moreover, BLWKR, PT+WINQ and 2PT+WINQ+NPT are combined

with MCB in the same way as SNSPT and FSASPT-SPT to ensure an efficient operation of

batch processing work centres (see also Section 3.3).

Table 6.3 presents the results of the simulation experiments for the Fab4r problem, com-

paring the mean flow time (and mean queueing time) performance of the best and the worst of

the 20 rules, generated in 20 replications of the GP hyper-heuristic, with that of the benchmark

rules. In the following tables, the values in bold indicate the best performance achieved by any

rule for the respective problem, while those marked with the same superscript, e.g. the mean

flow time values of BSNSPT and FSASPT-BSPT in Table 6.3, are not significantly different

from each other according to the Bonferroni-Dunn test, at the overall 5% significance level. To

distinguish the different GP rules, the shop and objective that a rule has been evolved for are

given in brackets in the tables. Table 6.3 shows that the hyper-heuristic is well able to generate

rules that perform significantly better than the manually developed rules for this problem, with

even the worst of the 20 rules outperforming the best benchmark rule, MCB-PT+WINQ. It fol-

lows that the mean flow time produced by the evolved rules on average is also lower (equal to

9635.7). The average performance of the evolved rules is an unbiased measure of the effective-

ness of the hyper-heuristic, i.e. in a single run the hyper-heuristic can be expected to generate a

rule that yields a mean flow time close to 9635.7 in this case. However, the relative advantage

of the evolved rules is comparatively small, with the best GP rule yielding a 3% reduction of

mean flow time, or a 4% decrease of its reducible component, the mean queueing time, over

MCB-PT+WINQ. Table 6.3 further shows that the best benchmark rules are all based on the
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Table 6.3: Performance of evolved and benchmark rules for the Fab4r shop regarding mean
flow time and mean queueing time. Differences between performance values marked with the
same superscript are not significant at the overall 5% significance level. The best performance
values are in bold.

Dispatching rule
Mean Mean
flow time queueing time

FCFS 12661.9 9698.8
DJAH 10818.7 7855.6
BSNSPT 10469.2a 7506.1a

FSASPT-BSPT 10437.1a 7474.0a

MCB-BLWKR 10152.2 7189.1
MCB-SNSPT 10091.7 7128.6
MCB-FSASPT-SPT 10049.8 7086.7
MCB-2PT+WINQ+NPT 9903.9 6940.8
MCB-PT+WINQ 9849.0 6885.9
GP Worst(Fab4r, C) 9670.4 6707.3
GP Best(Fab4r, C) 9581.2 6618.1

MCB rule, which strongly suggests that the efficient operation of batch processing work cen-

tres is key to achieving a low mean flow time in this shop. The superior performance of the

PT+WINQ and 2PT+WINQ+NPT rules, on the other hand, is surprising given that they are

specifically designed for balanced job shop problems, whereas the workloads of work centres

in this shop are highly unbalanced. It indicates that further improvements might be realised by

the hyper-heuristic if it is provided with the WINQ attribute.

Table 6.4 lists the mean flow time produced by the best GP rule and the best benchmark

rules, classified according to the product type of a job. It shows that the evolved rule does not

gain its advantage by favouring one product over the other, but that it achieves a lower mean

flow time for both products, thus increasing the overall efficiency of the shop.

Table 6.4: Mean flow time performance of the best evolved rule and the best benchmark rules
for the Fab4r shop, subdivided by product type. The best performance values are in bold.

Dispatching rule Mean flow time

Product type A B

MCB-2PT+WINQ+NPT 22541.2 4500.3
MCB-PT+WINQ 22375.8 4492.7
GP Best(Fab4r, C) 22192.0 4188.9
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In many ways, the results for the Fab6 problem resemble those for the Fab4r problem.

Table 6.5 compares the mean flow time (and mean queueing time) performance of the best

and the worst of the ten rules, generated in ten replications of the hyper-heuristic, with that of

the benchmark rules. Again, the GP rules prove to yield a significantly lower mean flow time

(27585.7 on average) than the benchmark rules, with the best GP rule achieving a reduction

of 1%, or 4% if measured in mean queueing time. However, the ranking of the benchmark

rules indicates that batch processing work centres are less critical than in the Fab4r shop. This

notion is particularly supported by the observation that the rules that apply BSPT at batch

processing work centres tend be slightly more effective than their counterparts based on MCB.

Moreover, there is some evidence that avoiding setup times is very important in this shop as

the best benchmark rules are based on the FSASPT rule, which has a strong focus on the

minimisation of setup times. This illustrates a general strength of hyper-heuristics, namely

that they automatically adapt to the specific structure of a given problem by generating (or

selecting) a heuristic that is particularly suitable for it.

Table 6.5: Performance of evolved and benchmark rules for the Fab6 shop regarding mean
flow time and mean queueing time. Differences between performance values marked with the
same superscript are not significant at the overall 5% significance level. The best performance
values are in bold.

Dispatching rule
Mean Mean
flow time queueing time

MCB-BLWKR 31611.5 12155.8
FCFS 30179.7 10724.1
MCB-2PT+WINQ+NPT 28387.7d 8932.0d

DJAH 28330.1d 8874.4d

MCB-PT+WINQ 28250.7b,c 8795.1b,c

MCB-SNSPT 28232.3c 8776.6c

BSNSPT 28188.8b 8733.2b

MCB-FSASPT-SPT 27903.2a 8447.6a

FSASPT-BSPT 27871.3a 8415.7a

GP Worst(Fab6, C) 27614.7 8159.0
GP Best(Fab6, C) 27546.6 8091.0

Figure 6.6 displays the mean flow time of jobs by product type, resulting from the ap-

plication of the best GP rule and the best benchmark rules, where the names of the products

are taken from the MASM data set (Feigin et al., 1994). Again, the evolved rule is shown to

reduce the mean flow time of every single product and increase the overall efficiency of the

shop.
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Figure 6.6: Mean flow time performance of the best evolved rule and the best benchmark rules
for the Fab6 shop, subdivided by product type.

6.4.2 Minimising Mean Weighted Tardiness

Regarding the selection of suitable benchmark rules for the FJc|r j, se f , B f |wT problems, a

rule that integrates the BATCx and ATCS rules in the same way as illustrated by Mason et al.

(2002) in the design of their BATCS rule is used as a benchmark. This rule, called BATCSx in

this work, accounts for sequence-dependent setup times and batch processing, and thus can be

expected to perform well for the given problems. In addition, the WMOD, ATCS, CR+SPT

and S/RPT+SPT rules are selected as benchmarks due to their reported effectiveness for multi-

stage problems with the minimum mean weighted tardiness objective (see Section 3.4). The

simple FCFS rule and a hierarchical rule, referred to as LW-OCR, that prioritises jobs in non-

increasing order of their weights and uses the OCR priority index to break ties complete the

set of benchmark rules. The motivation for including the LW-OCR rule in the performance

comparison is that such rules are widely used in practice (Pfund et al., 2006). Again, all rules

that do not explicitly consider setup times, i.e. all but BATCSx and ATCS, are implemented as

exhaustive rules, while WMOD, ATCS, CR+SPT, S/RPT+SPT and LW-OCR are combined

with the MCB rule as described above.

To determine a good parameter setting for ATCS and BATCSx, some preliminary experi-

ments have been run for each of the two problems, in which both rules have been tested with

100 different settings using values of 1.0, 1.5, 2.0, . . . , 5.0, 5.5 for k1 and 0.01, 0.05, 0.1,

0.25, 0.5, . . . , 1.25, 1.5, 2.0 for k2, covering the ranges of typical values (Lee, Bhaskaran, and
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Pinedo, 1997; Perez, Fowler, and Carlyle, 2005). The ATCS and BATCSx rules are subse-

quently applied with the parameter setting found to be best in those experiments.

Table 6.6 presents the results of the simulation experiments for the Fab4r problem, com-

paring the performance of the best and the worst of the 20 evolved rules with that of the

benchmark rules regarding mean weighted tardiness and other related criteria. The best GP

rule is shown to clearly outperform the best benchmark rules, MCB-WMOD, MCB-ATCS

and MCB-S/RPT+SPT, reducing mean weighted tardiness by about 43%. On the other hand,

the worst GP rule is shown to produce a significantly higher mean weighted tardiness than

MCB-WMOD and MCB-ATCS. Hence, it can be established that the hyper-heuristic has the

potential to generate outstanding rules for this problem, but is not always able to tap its poten-

tial. This can be partly attributed to the additional factors that have to be taken into account in

minimising mean weighted tardiness, making the design of or search for effective dispatching

rules generally more difficult than for the mean flow time criterion. This is also reflected by

the huge performance differences between relatively simple rules, such as LW-OCR, and the

more sophisticated manually developed rules. However, the mean weighted tardiness achieved

by the 20 evolved rules on average is 789.4, which is clearly lower than that produced by the

best benchmark rules, and the hyper-heuristic can thus be expected to generate a better rule for

this problem in a single run, which illustrates its effectiveness. Table 6.6 further shows that the

best benchmark rules are all based on the MCB rule, while the performance of the BATCSx

rule, which does not explicitly prioritise fuller batches, is disappointing. This lends additional

support to the notion that the efficient operation of batch processing work centres is critical in

the Fab4r shop.

Table 6.6: Performance of evolved and benchmark rules for the Fab4r shop regarding mean
weighted tardiness and other due date-related measures. Differences between performance
values marked with the same superscript are not significant at the overall 5% significance
level. The best performance values are in bold.

Dispatching rule
Mean weight. Mean Proportion Cond. mean
tardiness tardiness tardy (in %) tardiness

FCFS 15022.3 2734.3 83.1 3287.2
MCB-LW-OCR 3437.3 1666.9 37.0 4499.0
BATCSx(k1 = 5.5, k2 = 0.1) 2295.0 1269.3 41.5 3053.2
MCB-CR+SPT 1084.4c 609.2 33.2 1825.4
MCB-S/RPT+SPT 1031.3a,b 634.6 28.6b 2208.7
MCB-ATCS(k1 = 4.0, k2 = 0.01) 1017.5a 442.6 22.0 1992.3
MCB-WMOD 1007.5a 429.0 26.9a 1581.3
GP Worst(Fab4r, wT ) 1102.4b,c 373.0 31.4 1169.9
GP Best(Fab4r, wT ) 576.1 286.6 27.3a,b 1030.2
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Although the evolved rules are specifically optimised for the mean weighted tardiness

criterion, Table 6.6 indicates that the dominance of the best rule carries over to other common

measures of due date performance. For the minimisation of mean tardiness and conditional

mean tardiness, the best GP rule is found to remain best, and is only found to be outperformed

by the MCB-ATCS rule with respect to the proportion of tardy jobs. In other words, the rule

effectively minimises the average delay of all jobs, irrespective of their weight, and tends to

avoid extreme due date violations. This can also be seen in Figure 6.7, which displays the

mean weighted tardiness of jobs, classified by weight, that results from the application of the

best evolved rule and the best benchmark rules. The evolved rule is shown to reduce the mean

(weighted) tardiness of jobs with smaller weights while accepting a marginally higher delay

of jobs with larger weights than MCB-S/RPT+SPT.
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Figure 6.7: Mean weighted tardiness performance of the best evolved rule and the best bench-
mark rules for the Fab4r shop, subdivided by job weight.

Table 6.7 presents the results for the Fab6 problem, comparing the performance of the best

and the worst of the ten rules, generated by the hyper-heuristic, with that of the benchmark

rules. For this problem, the hyper-heuristic proves to generate rules that generally yield a

significantly lower mean weighted tardiness (2672.2 on average) than any of the manually

developed rules, with the best GP rule achieving a 23% reduction over MCB-WMOD, the best

benchmark rule. The BATCSx rule, on the other hand, again fails to produce a competitive

performance and is clearly outperformed by its base rule ATCS (in combination with MCB),

indicating that its design is flawed to some extent.
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Table 6.7: Performance of evolved and benchmark rules for the Fab6 shop regarding mean
weighted tardiness and other due date-related measures. Differences between performance
values marked with the same superscript are not significant at the overall 5% significance
level. The best performance values are in bold.

Dispatching rule
Mean weight. Mean Proportion Cond. mean
tardiness tardiness tardy (in %) tardiness

FCFS 19159.6 3491.3d 73.4 4744.9
MCB-LW-OCR 5569.6c 2772.5 42.8 6470.4
MCB-S/RPT+SPT 4970.4b 2489.6 39.7 6262.1
BATCSx(k1 = 5.5, k2 = 0.1) 4823.2a,b,c 3776.5d 29.2 12825.5
MCB-CR+SPT 4255.4a 2308.5 38.6 5967.4
MCB-ATCS(k1 = 1.5, k2 = 0.01) 3362.0 1613.7a 32.7 4918.2
MCB-WMOD 3290.1 1672.9b,c 31.8 5242.0
GP Worst(Fab6, wT ) 2863.4 1725.9c 30.9 5561.8a

GP Best(Fab6, wT ) 2538.4 1668.3a,b 30.5 5447.4a

The best GP rule further shows to effectively minimise other due date-related measures.

More specifically, it is found to be among the best rules for mean tardiness and to be only

slightly outperformed by the (otherwise non-competitive) BATCSx rule with respect to the

proportion of tardy jobs. However, the fact that the evolved rule does not achieve a (significant)

reduction of mean tardiness over the best benchmark rules indicates that it gains its advantage

by trading off a larger delay of jobs with small weights for a decrease of mean (weighted)

tardiness for jobs with large weights. This is also illustrated by Figure 6.8, which compares

the mean weighted tardiness performance of the evolved rule and the best benchmark rules

for jobs classified by weight. It shows that the evolved rule reduces the mean (weighted)

tardiness for all jobs with weight larger than 1 at the expense of a substantial increase of mean

(weighted) tardiness for jobs with weight 1.

In summary, for each of the four examined problems the GP hyper-heuristic proves to

generate dispatching rules that are significantly better than manually developed benchmark

rules, which demonstrates the effectiveness of the method. Moreover, the relative advantage

of the best rules evolved for the wT problems is larger than that of the best rules evolved for

the corresponding C problems. This suggests that the potential of the GP-based generation

of dispatching rules is generally higher for more complex problems, for which the manual

design of effective dispatching rules is more difficult. On the other hand, the larger variances

of the performance of rules evolved in different replications of the hyper-heuristic for the wT

problems indicate that the larger (three additional terminals) and more complex search space

also poses a challenge to the hyper-heuristic, implying that it may have to be run several times

to tap its full potential.
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Figure 6.8: Mean weighted tardiness performance of the best evolved rule and the best bench-
mark rules for the Fab6 shop, subdivided by job weight.

Since the hyper-heuristic optimises on a simulation model with a specific set of parameter

values, the generated rules could be expected to be overly sensitive to changing conditions in

the shop. If these alterations are the result of a deliberate decision, e.g. the introduction of a

new product or the purchase of a new machine, the hyper-heuristic could be simply rerun with

an adapted simulation model to generate a new rule that fits the new conditions. However,

some changes, e.g. in the job arrival pattern, might be a very subtle and difficult to detect. If

the performance of the evolved rules were to strongly deteriorate in such a case, this would cer-

tainly question the practicality of the whole approach, and the following section thus examines

the robustness of the evolved rules.

6.5 Sensitivity Analysis

The sensitivity analysis is carried out for the best of the rules, evolved for each of the four

scheduling problems. These four rules are tested for their robustness to changes in the job

arrival rates, while those evolved for the wT problems are also subjected to different due date

settings. A suitable benchmark for the robustness of an evolved rule is the performance of

the rule that one would employ without access to the hyper-heuristic, i.e. MCB-PT+WINQ

and FSASPT-BSPT for the Fab4r and the Fab6 problem with the minimum mean flow time

objective, respectively, and MCB-WMOD for both wT problems. These rules are likely to be
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robust as, contrary to the ATCS-based rules, they do not possess any parameters that have been

optimised for the original problem.

6.5.1 Arrival Rates

As described in Section 6.3.1, the default arrival rates lead to a shop utilisation of 93.8% and

92.3% for the Fab4r and Fab6 shop, respectively. Figure 6.9 compares the performance of

the best evolved and the best benchmark rule for the four scheduling problems under different

utilisation levels, resulting from an increase or decrease of the total job arrival rate. In every

of the four cases, the GP rule proves to dominate the benchmark rule across the whole range
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(d) Fab6, wT problem

Figure 6.9: Performance of the best evolved and the best benchmark rule for the four schedul-
ing problems under varying levels of utilisation.
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of examined utilisation levels, which indicates that the rules evolved by the hyper-heuristic are

generally robust to changes in the total job arrival rate.

In addition to an increase or decrease in the total arrival rate, the share of job arrivals that

belong to a certain product type may also change, thus resulting in a different product mix. A

side effect of this is a possible change in the location of the bottleneck. To test the sensitivity of

rules to variations in the product mix, the utilisation of the bottleneck, whereever its location,

is held constant. Figure 6.10 presents the results of these experiments for the Fab4r problems,

where the share of product A in the original mix is 30% (see Section 6.3.1). It shows that both

GP rules, evolved for the two different objectives, outperform the best benchmark rule across

a wide range of product mixes.
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Figure 6.10: Performance of the best evolved and the best benchmark rule for the two Fab4r
problems under varying product mixes.

Given that there are nine products in the Fab6 shop, it is impractical to systematically

examine all variations from the original mix. Instead, a random sampling scheme is used

to investigate whether rules are robust with respect to changes in the product mix. In this

scheme, a mix is generated by randomly assigning each product to one of two groups with

50% probability. The share of the first group in the product mix is then increased by 10%

and the share of the second group decreased by 10%, where the arrival rates of the individual

products within each group are changed in proportion to their original arrival rates. Using this

scheme, ten different product mixes are generated, which are listed in Table 6.8.

Figure 6.11 displays the performance of the best GP rules, evolved for the two Fab6 prob-

lems, and the best benchmark rules under these ten product mixes. Both GP rules prove to

consistently maintain their relative advantage, despite comparatively big fluctuations in the

absolute performance values. Hence, it can be concluded that the hyper-heuristic generates

rules that are generally robust to changes in the product mix.
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Table 6.8: Product mixes generated for the Fab6 shop by means of the random sampling
scheme. A ‘+’ and ‘−’ indicates that the corresponding product is included in the group
whose share is increased and decreased, respectively.

Product mix B5C B6HF C4PH C5F C5P C5PA C6N2 C6N3 OX2

1 − − − + + − + + −

2 + + + + − + − + +

3 − + − + − − + + −

4 − + − − − − + − +

5 + + − − + + − + −

6 + + − + − − + + +

7 − + + − + − + + −

8 − − + + + − − − −

9 + + + + − − − + +

10 − + + − − − + + −
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Figure 6.11: Performance of the best evolved and the best benchmark rule for the two Fab6
problems under varying product mixes.

6.5.2 Due Date Setting

The application of the TWK due date assignment method with uniformly distributed allowance

factors involves two parameters that control the tightness and the range of job due dates, re-

spectively. In particular, the mean allowance factor µ reflects the due date tightness, where a

higher mean allowance factor corresponds to looser due dates, while the range of allowance

factors R measures the variability of due dates in terms of their tightness. Both parameters are

varied in the following to assess whether the evolved rules are sensitive to changes in them.

Figures 6.12 and 6.13 compare the performance of the best GP rule and the best benchmark

rule for the two wT problems for different values of µ and R, respectively, where the default
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setting corresponds to µ = 3.5 and R = 3 for the Fab4r shop, and to µ = 1.4 and R = 0.4 for the

Fab6 shop (see Section 6.3.1). For both problems, the evolved rule is shown to remain superior

to the benchmark rule for larger mean allowance factors, but to loose its relative advantage

with a decreasing mean allowance factor until it is eventually outperformed (see Figure 6.12).
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Figure 6.12: Performance of the best evolved and the best benchmark rule for the two wT
problems under varying levels of due date tightness. Due dates are generated by means of
the TWK method with allowance factors drawn from a uniform distribution on the interval
[µ − R

2 , µ + R
2 ].
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Figure 6.13: Performance of the best evolved and the best benchmark rule for the two wT
problems under varying levels of due date range. Due dates are generated by means of
the TWK method with allowance factors drawn from a uniform distribution on the interval
[µ − R

2 , µ + R
2 ].
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In other words, the GP rules are not robust to tighter due date settings. On the other hand,

Figure 6.13 indicates that the GP rules are able to maintain their relative advantage for different

ranges of allowance factors. Overall, these results suggest that the hyper-heuristic evolves rules

that are robust to changes in the due date setting, with the exception of an increased level of

due date tightness.

6.6 Critical Appraisal and Future Work

In summary, the GP hyper-heuristic presented in this chapter has shown to generate superior

dispatching rules for several complex and dynamic scheduling problems, which are generally

robust to changes in the job arrival pattern and due date setting. The relative performance

of the evolved rules is only found to deteriorate considerably if due dates become tighter.

However, this weakness can be addressed in two ways. First of all, a large change in the due

date setting could probably be detected by monitoring the due dates of incoming jobs, in which

case the hyper-heuristic could be run again to generate a rule suitable for the new conditions.

Secondly, the hyper-heuristic could be configured to evolve more robust rules, e.g. by basing

the fitness of individuals on several simulation experiments with different settings for the due

date tightness level. The evolved rules are then less tailored to one setting, i.e. they can be

expected to be more robust to changes, though possibly at the expense of a slightly worse

performance for the default tightness level. While the above results demonstrate the potential

of using GP to generate dispatching rules for complex and dynamic scheduling problems, there

are several areas in which the hyper-heuristic could be improved.

A drawback of the hyper-heuristic in its current form are its high computational require-

ments. The runtime of one replication has been around 5 hours (on a 2.9 GHz Intel Quad-Core

Xeon with 8 GB RAM) for the Fab4r problems, and has shown to increase to approximately

16 hours (on a similarly powerful 2.8 GHz Intel Quad-Core i5 with 4 GB RAM) for the Fab6

problems due to the larger shop (see Section 6.3.1), which is computationally more expensive

to simulate. Even though one could argue that such a long runtime is acceptable given that the

hyper-heuristic is supposed to be only run once and offline, and that the manual development

of an effective dispatching rule typically takes a lot longer, improving the efficiency of the

hyper-heuristic should clearly be a main aim of future work.

Such efforts to make the hyper-heuristic more efficient should particularly focus on the

reduction of the number and length of simulation runs used for the evaluation of individu-

als, which take up the largest amount of computational time by far. Apart from tuning the

GP parameters, specifically the number of generations and the population size, one way to

reduce the number of simulation runs could be to retain the random number seed for a num-

ber of consecutive generations before changing it, or to (re)use a limited number of seeds in

a round-robin fashion. This would save simulation runs for individuals that have survived
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from previous generations and have already been evaluated with a given seed. Concerning the

length of simulation runs, a trade-off can be expected between the runtime and performance

of the hyper-heuristic due to the reduced precision of performance measurements associated

with shorter simulation runs. However, it may be possible to save some time without compro-

mising the effectiveness of the hyper-heuristic by starting with relatively short runs that allow

the hyper-heuristic to focus on the promising areas of the search space, and then increasing

the run length, and therefore the precision, as the search proceeds. In general, the effects of

using a certain simulation setting will depend on a number of factors, such as the nature of

the search space, the selection scheme and the variance of the relative performance of rules

that is due to the random number seed, making the optimisation of the number and length of

simulation runs a difficult task.

A different approach to saving simulation runs could be to incorporate a procedure to

detect duplicates in the population that is run prior to the evaluation of individuals. Then, all

individuals that are found to represent the same rule can be evaluated by a single simulation

run. The motivation for such a procedure arises from the observation that one dispatching rule

can be encoded in numerous ways, e.g. −p j,i, −(p j,i + min(se f j,i ,−10)) and 1/(p j,i × p j,i) are

three different priority indices representing the SPT rule as setup times, by definition, cannot be

negative (and thus be smaller than −10) and prioritising jobs in non-increasing order of −p j,i,

−(p j,i − 10) or 1/(p j,i × p j,i) all corresponds to SPT. The detection of duplicates, however,

is not easy and a simple comparison of the syntax not sufficient in general. To illustrate,

even a procedure that eliminates redundant and ineffective subexpressions that do not affect

the ranking of priorities, such as constants, before comparing the (remaining) expressions can

only establish the identity of the first two of the above indices, but not that they are equal to

the third. Hence, an effective duplicate detection procedure should go beyond a simple syntax

comparison.

Besides making the hyper-heuristic more efficient, there is some potential for improving

the effectiveness of the hyper-heuristic by providing it with up- and downstream information.

In fact, some experiments have been conducted in which the eligible job set and the queue ter-

minals have been extended to include look-ahead jobs that have started their current operation

and require the considered work centre for their next operation. Furthermore, the terminal set

of the hyper-heuristic has been supplemented with the arrival time attribute max(r j,i − t, 0),

which allows for queueing jobs (r j,i − t ≤ 0) and look-ahead jobs (r j,i − t > 0) to be dis-

tinguished (see also Section 3.4). On the one hand, the results of these experiments have

been encouraging in that the best rules evolved by this extended hyper-heuristic for the two

FJc|r j, se f , B f |C problems have shown to clearly outperform the best rules evolved with the

default setting. On the other hand, the hyper-heuristic has been found to become less reliable,

generating very poor or even unstable rules in about a third of the runs. This illustrates that,

while the incorporation of up- and downstream information within the GP hyper-heuristic is
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promising, it also creates new challenges such as a more complex search space, which require

further attention.

Finally, another issue concerns the nature of the evolved priority indices, which tend to

be composed of hundreds of (terminal and functional) symbols. This makes it impossible for

a practitioner to understand the decision logic of an evolved rule, who is required to blindly

trust that the decisions of the rule are justified and will lead to the desired outcome in the long

term. This is likely to adversely affect the acceptance of the method in practice, and should

therefore be addressed in some way in the future.



Chapter 7

Automatic Generation of Sets of
Work Centre-Specific Rules 1

In multi-stage problems, different dispatching rules may be used at different work centres,

which has been found to be beneficial for some problems where work centres vary with re-

spect to their position in the shop (Barrett and Barman, 1986; LaForge and Barman, 1989;

Mahmoodi et al., 1996; Sarper and Henry, 1996; Barman, 1997, 1998) and/or workload (Ra-

man, Talbot, and Rachamadugu, 1989; Ruben and Mahmoodi, 1998; Bokhorst, Nomden, and

Slomp, 2008). In consequence, some researchers have moved on to designing a set of work

centre-specific rules instead of one rule for the whole shop (e.g. Cigolini et al., 1999; Lee

et al., 2003). However, this substantially increases the development effort as each rule has to

match the other rules in the set so that together they operate the interdependent work centres

effectively.

This chapter presents a hyper-heuristic that (automatically) generates sets of work centre-

specific rules by selecting a (potentially) different rule for each work centre from a number

of given rules. The next section reviews related work, followed by a detailed description of

the algorithm in Section 7.2. The hyper-heuristic is applied to some complex problems from

semiconductor manufacturing as described in Section 7.3, and the performance and robustness

of the evolved rule sets is assessed in Sections 7.4 and 7.5, respectively. The chapter concludes

with a critical appraisal of the method and some suggestions for future work.

1An earlier version of this method is published in C. W. Pickardt, T. Hildebrandt, J. Branke, J. Heger, and B.
Scholz-Reiter (2013), Evolutionary generation of dispatching rule sets for complex dynamic scheduling problems,
International Journal of Production Economics 145(1), 67–77. Apart from the extensions made to the method,
a slightly different experimental setup is used in this chapter, and experimental results thus deviate from those
reported in the paper.
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7.1 Related Work

In the literature, various types of hyper-heuristics have been proposed for the generation of

sets of work centre-specific dispatching rules. Ishii and Talavage (1994) design a heuristic

search algorithm that proceeds by selecting work centres roughly in decreasing order of their

utilisation and choosing the best of a number of given rules for the respective work centre,

where work centres not yet optimised operate under some default base rule. They test this

hyper-heuristic on several dynamic job shop problems, for which it shows to discover rule

sets that are more effective than applying any of the given rules at all work centres. Baek

et al. (1998) extend this work in several ways. First, their hyper-heuristic, which proceeds

in a similar sequential fashion, operates on a search space of composite rules, whose priority

indices are weighted linear combinations of priority indices of some common rules. Second,

they examine how its performance is affected by employing a different base rule or a different

criterion for the optimisation order of work centres. Baek et al. apply their hyper-heuristic

to two FJc|r j|C problems and find that it generates rule sets that yield a significantly lower

mean flow time than all benchmark rules, including those that form the components of the

composite rules. Moreover, they observe that the best rule sets are obtained if the hyper-

heuristic optimises work centres in decreasing order of their utilisation and starts with a good,

rather than a bad base rule. One drawback of hyper-heuristics that select or generate work

centre-specific rules one-by-one is that they implicitly assume that the relative effectiveness of

a candidate rule for a considered work centre is more or less independent of the rules used at

the other work centres in the shop, which is generally not the case.

Some researchers have developed hyper-heuristics that optimise all rules simultaneously,

which are predominantly based on EAs. Caskey and Storch (1996) use an EA, which operates

on the search space of all possible combinations of a number of given rules, to search for good

sets of work centre-specific rules, but do not report on the performance of the evolved rule

sets. Lee, Piramuthu, and Tsai (1997) embed a similar EA in a decision tree algorithm that is

designed to learn effective job release policies. While their results show the overall method

to be effective, it is unclear to what extent the EA contributes to these results. Yang et al.

(2007) also develop an EA-based hyper-heuristic that selects a (potentially) different rule for

each work centre from a number of given rules. The hyper-heuristic is tested on the FFc|se f |T

problem and shown to evolve rule sets that perform better than some simple benchmark rules.

In contrast, Azadeh et al. (2012) propose a neural network algorithm for the selection of dif-

ferent rules for different work centres but do not establish whether it is actually effective in

guiding the search towards promising rule sets. Following up their previous work, Baek and

Yoon (2002) design a coevolutionary hyper-heuristic that maintains one population of com-

posite rules for each work centre and coevolves these populations in parallel. They apply this

hyper-heuristic to the FJc|r j|T problem and find that it evolves rule sets that outperform single

benchmark rules and yield a similar mean tardiness as the rule set generated by the sequential
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hyper-heuristic from their earlier paper (Baek et al., 1998). Geiger et al. (2006) address the

F2||Cmax problem with a Genetic Programming (GP) hyper-heuristic that evolves a separate

rule for each of the two work centres, which is shown to generate rule sets that yield close-to-

optimal solutions. However, a disadvantage of hyper-heuristics that simultaneously generate

or select a separate rule for every work centre in the shop is that their search space grows

exponentially in the number of work centres, which is likely to impair their effectiveness for

larger problems.

A possible way to limit the size of the search space is to classify similar work centres

and let the hyper-heuristic evolve only one rule for each class of work centres. In this regard,

Miyashita (2000) compares three different GP hyper-heuristics — one that evolves a single

rule for all work centres, one that evolves a different rule for every work centre, and one that is

based on a predetermined classification of work centres into bottlenecks and non-bottlenecks

and evolves one rule for bottlenecks and another for non-bottlenecks. The hyper-heuristics are

tested on two job shop problems with five work centres, of which one or two, respectively,

are bottlenecks. Overall, the classification approach is found to be most effective, while the

hyper-heuristic that evolves one rule per work centre is shown to be susceptible to overfitting,

i.e. the resulting rule sets perform very well on the training instances but poorly on the test

instances. On the other hand, it can be difficult to classify work centres beforehand in terms

of how to operate them, especially if they differ not only with respect to their workload, but

also with regard to other aspects such as their setup requirements, batch processing capacities

and their relative position in the shop. Then, an alternative could be to use a hyper-heuristic

that undertakes the classification of work centres while searching for good dispatching rules,

such as the one proposed by Jakobović and Budin (2006). In their GP-based hyper-heuristic,

an individual consists of three mathematical expressions, where one of them is a function of

attributes relating to the workload of a work centre that determines which of the two dispatch-

ing rules, encoded by the other two expressions, to apply. Jakobović and Budin report that the

best rule set generated for the Jm||wT problem in 20 replications of this hyper-heuristic per-

forms significantly better than the best rule evolved in 20 replications of a GP hyper-heuristic

that generates a single rule for all work centres. However, it is not clear whether such a

hyper-heuristic is able to generate larger sets of specialised rules as its search space becomes

extremely complex with an increasing number of rules it is supposed to evolve.

Overall, this literature review indicates that despite the apparent potential of using dif-

ferent rules at different work centres, there are not many papers that study the performance of

hyper-heuristics for the generation of sets of work centre-specific dispatching rules. Moreover,

a shortcoming of the existing studies is that they focus on small problems with ten or fewer

work centres, which implicate a small search space. This work investigates the potential of

EA-based hyper-heuristics to generate sets of work centre-specific rules for complex, dynamic

problems that feature a large set of heterogeneous work centres. The proposed hyper-heuristic
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is specifically designed for shops that contain both serial and batch processing work centres,

and further extends previously developed hyper-heuristics by optimising the information hori-

zon of each work centre, i.e. the degree to which jobs that are expected to arrive in the near

future are considered in the decision making. The motivation for the latter extension is that it

may be beneficial to wait for future jobs at some work centres, e.g. to save a long setup time

or to support the operation of a downstream bottleneck, while it may be counterproductive at

others, e.g. at highly utilised work centres (see also Section 3.4).

7.2 Algorithm Design

In general, the hyper-heuristic operates as described in Section 4.1, and the focus of this section

is to detail the algorithm-specific components, namely the encoding of candidate solutions and

the evaluation, selection and reproduction of individuals.

7.2.1 Encoding of Solutions

The encoding of candidate solutions, i.e. rule sets in this case, is illustrated in Figure 7.1.

Each rule set is represented by a one-dimensional array (or genome), consisting of three seg-

ments of length c, where c denotes the number of work centres in the shop. The first segment

contains non-negative integer values that refer to the indices of the dispatching rules used at

the respective work centres. However, most dispatching rules are designed to select jobs, not

Work 
centre

1 2 3 4 1 2 3 4 1 2 3 4

2 9 21 5 1 5 1 2 0.21 0.7 0.35 0.81

Dispatching rule Index

SPT 0

SRPT 1

FOPNR 2

… …

FSASPT-SPT 20

BSPT 21

Batch rule Index

MBS(0.125) 0

MBS(0.25) 1

MBS(0.375) 2

… …

FB 9

Look-ahead
parameters

Figure 7.1: Example of the encoding of dispatching rule sets as one-dimensional arrays for a
problem with c = 4 work centres (grey parts are added for illustration purposes).
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batches, and have to be combined with an additional rule to constitute a dispatching rule for

batch processing work centres. These batch rules, which do not have any effect on the opera-

tion of serial processing work centres, are specified in the second segment. Finally, the third

segment contains the values for the so-called look-ahead parameters, i.e. real values on the

[0, 1) interval that determine the information horizon of each work centre. More precisely, a

look-ahead value close to 1.0 implies that all jobs that are expected to arrive at the work centre

before t + 1.0 × max j∈NQ(se f j,i + p j,i + s f j,ie) are considered in the decision making, where t

denotes the current time, p j,i the processing time of the imminent operation of job j, se f j,i and

s f j,ie the setup time for changing over to the setup required for that operation and back to the

current setup, and NQ refers to the set of queueing jobs. The motivation for this upper bound

is that all jobs arriving within this time horizon are potentially affected by the next decision

of a given dispatching rule, which may well prioritise the job with the longest operation in

the queue. Moreover, the upper bound takes into account that, in the worst case, the quickest

way of changing over to the setup required by the subsequent job may be by changing back to

the original setup first. On the other hand, a natural lower bound for the information horizon

is to restrict the decision making to jobs in the queue, which corresponds to a value of 0 for

the look-ahead parameter. To illustrate, the individual in Figure 7.1 encodes a rule set for a

problem with four work centres, where Work Centre 1 operates according to the MBS(0.25)-

FOPNR rule and considers all jobs that arrive before t + 0.21 × max j∈NQ(se f j,i + p j,i + s f j,ie).

Clearly, a rule set can only consist of rules that are provided to the hyper-heuristic, and an im-

portant design decision thus concerns the selection of adequate rules as they define the search

space and the rule sets that can be generated.

7.2.2 Evaluation

Following the decoding of an individual into the corresponding rule set, a simulation exper-

iment is executed to evaluate the performance of the rule set for the given objective, which

measures the fitness of the individual. The simulation setting used within the GP hyper-

heuristic (see Section 6.2.2) is adopted for this purpose, i.e. one replication is run to evaluate

an individual, the same random number stream is used for all individuals belonging to the

same generation, and the random number streams are changed from generation to generation.

Furthermore, to detect individuals that lead to an unstable system and save time on their eval-

uation, the number of jobs in the shop is monitored again and the simulation run aborted, if

the number of jobs exceeds a certain threshold value, resulting in a high penalty on the fitness

value of the corresponding individual.

7.2.3 Selection

For the selection of promising individuals, the µ+λ breeder of ECJ is employed (Luke et al.,

1998). This selection scheme chooses the µ individuals with the highest fitness values from
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the current population to produce λ children, with which together they form the population

of the next generation. The population size is therefore µ + λ. However, only one of two

parents required for the crossover operation is taken from the set of the µ best individuals,

the other is determined as the better of two randomly sampled individuals from the current

population. Note that this selection scheme is elitist, i.e. the best individuals of each generation

are guaranteed to survive into the next generation.

7.2.4 Reproduction

New individuals are created by successively applying two standard EA operators, called uni-

form crossover and uniform mutation. The uniform crossover recombines two individuals by

randomly swapping over genes between them, where each gene is swapped with a 50% prob-

ability. Figure 7.2 presents an example of the crossover, where the white and grey parts within

the two children originate from the first and second parent, respectively. Though the uniform

crossover yields two new individuals, only one of them is kept by the hyper-heuristic. This

individual is then subjected to the uniform mutation operator, which modifies individuals by

replacing the value of a gene with a random value generated from a uniform distribution on the

respective range of feasible values. Figure 7.3 illustrates this operation, where altered entries

are encircled. Both crossover and mutation are applied with a certain probability, which are

parameters of the hyper-heuristic that are specified in the following section.

2 9 21 5 1 5 1 2 0.21 0.7 0.35 0.81

13 12 4 3 9 3 2 2 0.13 0.41 0.62 0.52

Crossover

13 9 21 3 1 3 2 2 0.21 0.41 0.35 0.52

2 12 4 5 9 5 1 2 0.13 0.7 0.62 0.81

Figure 7.2: Example of a uniform crossover operation. Genes are swapped between the parents
with a 50% probability.
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2 12 4 5 9 5 1 2 0.13 0.7 0.62 0.81

2 12 4 12 9 5 8 2 0.13 0.7 0.62 0.81

Mutation

Figure 7.3: Example of a uniform mutation operation. Gene values are replaced with random
values generated from a uniform distribution.

7.3 Application to Scheduling Problems from
Semiconductor Manufacturing

To assess its effectiveness, the hyper-heuristic is tested on several scheduling problems, as

described in this section.

7.3.1 Scenario Description

The hyper-heuristic is applied to the same four scheduling problems as the GP hyper-heuristic

from Chapter 6, which are denoted by FJc|r j, se f , B f |C and FJc|r j, se f , B f |wT , respectively

(see Section 6.3.1). These problems feature different types of work centres that vary with

regard to their setup requirements, batch processing capacities, number of parallel machines,

workload and their position in the shop. Hence, they represent a typical scenario in which

one may want to use a set of work centre-specific rules, and are therefore well suited to test

the proposed hyper-heuristic. Moreover, by applying the rule set hyper-heuristic to the same

problems as the GP hyper-heuristic, the rules evolved by the latter can be provided to the

former in the attempt to generate even better rule sets.

As described in Section 6.3.1, the problems involve two shops, referred to as Fab4r and

Fab6, that contain 31 and 104 work centres, respectively. However, some of these work centres

have such a low utilisation that their impact on the overall performance of the shop is likely

to be negligible. Table 7.1 lists the (most) critical work centres of the two shops, which have

been identified by examination of the average queue lengths that arise at the various work

centres if the respective shop operates according to the FCFS rule, where the names of the

work centres are taken from the MASM data set (Feigin et al., 1994). Note that the utilisation

of work centres involving sequence-dependent setup times and batch processing generally

depends on the dispatching rule used. Hence, a lower bound is given in Table 7.1 for the

utilisation of these work centres, which is based on the assumption that only full batches are



CHAPTER 7. AUTOMATIC GENERATION OF WORK CENTRE-SPECIFIC RULES 117

Table 7.1: Critical work centres of the two semiconductor manufacturing shops.

Shop Name Special properties Utilisation Position index

Fab4r AME135 – 93.8% 0.89
D1-9 Parallel machines 91.1% 0.53
DFC4 – 89.1% 0.91
PE1-5 Parallel machines; Setups ≥ 74.3% 0.51
QLESS Batch processing ≥ 64.8% 0.52

Fab6 AME 4+5+7+8 Parallel machines; Setups ≥ 56.2% 0.64
ASM B2 Batch processing ≥ 90.5% 0.13
CAN 0.43/MII Parallel machines 87.6% 0.54
LTS 3 Parallel machines 92.3% 0.64

processed and setups can always be avoided. Clearly, these work centres can quickly become

the bottleneck if operated in an inefficient way, e.g. by regularly conducting time-consuming

setups or processing near-empty batches.

The position of a work centre is captured by an index that is computed as follows. First, the

index of each operation is normalised to the length of the associated route (in terms of number

of operations) so that the indices of the first and last operation of each route take the values of

0 and 1, respectively. Then, the position index of a work centre is calculated as the weighted

average of the normalised indices of operations to be performed on that work centre, where

operations are weighted by their relative frequency, which is determined by the job arrival

rates. Hence, a higher position index indicates that the work centre is further downstream.

Moreover, in the extreme case of a flow shop, the position indices are uniformly distributed

on the [0, 1] interval, where the first work centre has an index of 0 and the last an index of 1,

while in the other extreme of an ideal job shop all work centres have an index of 0.5.

7.3.2 Parameter Setting

As shown in Table 7.2, the rule set hyper-heuristic is provided with a number of dispatching

rules from the literature, including those that are known to be effective for similar problems.

A description of these rules can be found in Chapter 3, except for LW, FOPNR and S/OPN,

which prioritise jobs in non-increasing order of their weight, and in non-decreasing order of

their number of remaining operations and slack per remaining operation, respectively. Some

of the rules, especially those whose application often results in two or more jobs having the

same priority, incorporate a secondary rule to break ties. These rules are identified by a ‘-’

in the table, separating the primary rule from the tie-breaking rule. BATCSx, which reverts

to ATCS for serial processing work centres, and MBS are further provided with a range of

common parameter values (Lee, Bhaskaran, and Pinedo, 1997; Perez, Fowler, and Carlyle,

2005), where Bmax denotes the maximum possible batch size for the given problem.
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Table 7.2: Parameter setting of the rule set hyper-heuristic.

Parameter

Number of generations 250
Population size 200
Initial population Randomly generated
Selection parameter µ 100
Selection parameter λ 100
Crossover probability 100%
Mutation probability 5%
Simulation run length 5 × warm-up period
Dispatching rules SPT, LWKR, FOPNR, WINQ, PT+WINQ,

2PT+WINQ+NPT, BLWKR, BLWKRx

(all as exhaustive and non-exhaustive rules),
SSPT, SNSPT, FSAST-SPT, (exhaustive) FSASPT-SPT, BSPT,

(only wT problems) EDD, ODD, S/OPN, CR, OCR, MDD, MOD,
LW-EDD, LW-ODD, LW-S/OPN, LW-CR, LW-OCR,
LW-MDD, LW-MOD, WMDD, WMOD, CR+SPT,
S/RPT+SPT (all as exhaustive and non-exhaustive rules),
BATCSx(k1 = 1.0, 1.5, . . . , 5.5, k2 = 0.01, 0.05, . . . , 2.0)

Batch rules MBS(L = 1/Bmax, 2/Bmax, . . . , 1), MCB, FB

The other parameters of the hyper-heuristic are set in line with commonly used EA pa-

rameter settings, as indicated in Table 7.2, where the simulation setting for the evaluation of

individuals is adopted from the GP hyper-heuristic (see Section 6.3.2). Using this parameter

setting, the hyper-heuristic is applied to the four scheduling problems, running 20 replications

for each of the two Fab4r problems and 10 replications for each of the two Fab6 problems.

In addition, another series of experiments is conducted in which the rule set hyper-heuristic

is also provided with a rule evolved by the GP-hyper-heuristic to assess the potential of com-

bining the two hyper-heuristics. The GP rule, i.e. an individual encoding a rule set that implies

the use of the GP rule at every work centre, is then further included in the initial population

of the rule set hyper-heuristic. Again, 20 and 10 replications of the hyper-heuristic are run

for each of the two Fab4r and Fab6 problems, respectively, using the same random number

streams.

7.4 Experimental Results

The evolved rule sets are evaluated on the respective problem they have been generated for, by

running additional simulation experiments with different random number streams than those

used in their generation. The performance measurements for the Fab4r and the Fab6 problems

are based on a sample size of n = 50000 and n = 30000 jobs per simulation run, where
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the warm-up period has been determined to comprise the completion of 3000 and 1500 jobs,

respectively. The performance of the rule sets evolved for the two FJc|r j, se f , B f |C problems

is discussed first, followed by a presentation of the results for the FJc|r j, se f , B f |wT problems.

7.4.1 Minimising Mean Flow Time

Since the hyper-heuristic is applied to the same problems as the GP hyper-heuristic, the same

rules, particularly those that are found to be most effective in Section 6.4, are used as bench-

marks. Table 7.3 presents the results of the simulation experiments for the Fab4r problem,

comparing the mean flow time (and mean queueing time) performance of the best and the

worst of the 20 rule sets, generated in 20 replications of the hyper-heuristic (without access to

a GP rule), with that of the best benchmark rule, MCB-PT+WINQ. In the following tables, val-

ues in bold indicate the best performance achieved by any rule (set) for a given objective, while

those marked with the same superscript, e.g. the mean flow time values of MCB-FSASPT-SPT

and FSASPT-BSPT in Table 7.5, are not significantly different from each other according to

the Bonferroni-Dunn test, at the overall 5% significance level. To distinguish the different rule

sets, the shop and objective that a Rule Set (RS) has been evolved for are given in brackets

in the tables. Table 7.3 shows that the hyper-heuristic is well able to generate rule sets that

outperform the best benchmark rule for this problem, with even the worst rule set yielding

a significantly lower mean flow time than MCB-PT+WINQ. On average, the evolved rule

sets produce a mean flow time of 9544.2, which is an unbiased measure of the effectiveness

of the hyper-heuristic, i.e. in a single run the hyper-heuristic can be expected to generate a

rule set that yields a mean flow time close to 9544.2. However, the relative advantage of the

evolved rule sets is comparatively small, with the best rule set reducing mean flow time over

MCB-PT+WINQ by 4%, and mean queueing time by 5%.

Table 7.3: Performance of evolved rule sets and benchmark rules for the Fab4r shop regarding
mean flow time and mean queueing time. The best performance values are in bold.

Dispatching rule (set)
Mean Mean
flow time queueing time

MCB-PT+WINQ 9849.0 6885.9
RS Worst(Fab4r, C) 9580.6 6617.6
RS Best(Fab4r, C) 9490.4 6527.4

To determine whether the combination of the two hyper-heuristics is beneficial, the per-

formance of the rule sets evolved with access to a GP rule, subsequently referred to as GP rule

sets, is compared to the performance of the better of the respective GP rule and rule set that re-

sult from applying the two hyper-heuristics separately from each other, using the same random

number streams. This is considered a fair benchmark as the computational time for running
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both hyper-heuristics separately is similar to running them in sequence, which is necessary to

generate a GP rule set. Figure 7.4 illustrates this replication-wise comparison of GP rules and

rule sets, evolved for the Fab4r shop with the minimum mean flow time objective, with the GP

rule sets. The comparison reveals that, despite achieving a lower mean flow time on average

(9499.7 compared to 9544.2), only 14 of the 20 GP rule sets perform significantly better than

the corresponding conventional rule set (which are generally better than the GP rules) at the

overall 5% significance level. In other words, while there are some indications that providing

the rule set hyper-heuristic with a GP rule may allow for the generation of a superior rule set,

it cannot be concluded that the combination of the two hyper-heuristics is generally beneficial

for this problem.
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Figure 7.4: Performance of GP rules and rule sets, evolved with and without access to the
respective GP rule, for the Fab4r shop with the minimum mean flow time objective.

Table 7.4 lists the mean flow time produced by the best overall rule set, which results from

a run in which the hyper-heuristic is provided with a GP rule, and the best single rule, i.e. the

best GP rule, for jobs classified by their product type. It shows that the GP Rule Set (GPRS)

gains its relative advantage by decreasing the mean flow time for the shorter and more frequent

product B at the expense of a slightly higher mean flow time for product A.

Table 7.5 presents the results for the Fab6 problem, comparing the performance of the

best and the worst of the ten rule sets, evolved without access to a GP rule, with that of

the best benchmark rules. They indicate that the hyper-heuristic is rather ineffective for this

problem as the best rule set is found to perform only marginally better than the benchmark

rules, decreasing mean flow time and mean queueing time by less than 1%. Moreover, the
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Table 7.4: Mean flow time performance of the best rule set and the best single rule for the
Fab4r shop, subdivided by product type. The best performance values are in bold.

Dispatching rule (set) Mean flow time

Product type A B

GP Best(Fab4r, C) 22192.0 4188.9
GPRS Best(Fab4r, C) 22309.8 3955.8

Table 7.5: Performance of evolved rule sets and benchmark rules for the Fab6 shop regarding
mean flow time and mean queueing time. Differences between performance values marked
with the same superscript are not significant at the overall 5% significance level. The best
performance values are in bold.

Dispatching rule (set)
Mean Mean
flow time queueing time

MCB-FSASPT-SPT 27903.2a 8447.6a

FSASPT-BSPT 27871.3a 8415.7a

RS Worst(Fab6, C) 28052.2 8596.6
RS Best(Fab6, C) 27800.2 8344.6

evolved rule sets yield a mean flow time of 27916.1 on average, which is higher than that

achieved by the FSASPT-BSPT or the MCB-FSASPT-SPT rule. In other words, the hyper-

heuristic cannot be expected to generate a better rule set in a single run.

In view of these disappointing results, it is surprising to find that the hyper-heuristic is able

to generate very effective rule sets for this problem if it is provided with a GP rule, with the best

GP rule set achieving a 1% reduction of mean flow time, or 4% reduction of mean queueing

time, over the best GP rule. In fact, the replication-wise comparison, illustrated in Figure 7.5,

shows that all ten GP rule sets, which yield a mean flow time of 27355.1 on average, perform

significantly better than the respective GP rule and conventional rule set (and therefore better

than the better of the two) at the overall 5% significance level, which indicates that the hyper-

heuristics complement one another very well in this case.

Figure 7.6 displays the mean flow time of jobs by product type, resulting from the applica-

tion of the best (GP) rule set and the best single (GP) rule. As in the case of the Fab4r problem,

the rule set is shown to gain its relative advantage by accelerating the processing of the shorter

products, thereby delaying the completion of the longer ones.
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Figure 7.5: Performance of GP rules and rule sets, evolved with and without access to the
respective GP rule, for the Fab6 shop with the minimum mean flow time objective.
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Figure 7.6: Mean flow time performance of the best rule set and the best single rule for the
Fab6 shop, subdivided by product type.
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7.4.2 Minimising Mean Weighted Tardiness

Table 7.6 presents the results for the Fab4r problem with the minimum mean weighted tardi-

ness objective, comparing the performance of the best and the worst of the 20 rule sets, evolved

for this problem, with that of the best benchmark rules. It shows that the hyper-heuristic has

the potential to generate rule sets that significantly outperform the benchmark rules, reducing

mean weighted tardiness by about 25%, but that it is not always able to tap its potential, as

demonstrated by the relatively poor performance of the worst rule set. On the other hand,

the mean weighted tardiness achieved by the rule sets on average is 861.1, which is clearly

lower than that produced by the benchmark rules. Thus, the hyper-heuristic can be expected

to generate a better rule set in a single run, which illustrates its effectiveness.

Table 7.6: Performance of evolved rule sets and benchmark rules for the Fab4r shop regarding
mean weighted tardiness and other due date-related measures. Differences between perfor-
mance values marked with the same superscript are not significant at the overall 5% signifi-
cance level. The best performance values are in bold.

Dispatching rule (set)
Mean weight. Mean Proportion Cond. mean
tardiness tardiness tardy (in %) tardiness

MCB-S/RPT+SPT 1031.3a 634.6 28.6 2208.7
MCB-ATCS(k1 = 4.0, k2 = 0.01) 1017.5a 442.6 22.0 1992.3
MCB-WMOD 1007.5a 429.0 26.9 1581.3a

RS Worst(Fab4r, wT ) 1106.2 602.3 35.6 1685.5
RS Best(Fab4r, wT ) 754.2 311.9 20.1 1531.2a

In addition, providing the hyper-heuristic with a GP rule proves to be highly effective for

this problem. The replication-wise comparison reveals that all GP rule sets yield a signifi-

cantly lower mean weighted tardiness than the better of the GP rule and the rule set evolved

without access to the GP rule (see Figure 7.7), which strongly suggests that combining the

hyper-heuristics is generally beneficial in this case. This conclusion is further supported by

the big difference between the average performance of the GP rule sets, which achieve a mean

weighted tardiness of 633.6, and the mean weighted tardiness of 768.9 that results from aver-

aging the 20 performance values of the better of the GP rule and the conventional rule set of

each replication. In particular, the best GP rule set is found to reduce mean weighted tardiness

over the best GP rule by another 15%.

Regarding other measures of due date performance, the best (GP) rule set is found to de-

crease the proportion of tardy jobs over the best single (GP) rule by 7.1 percentage points, but

to increase mean tardiness by 5%. This indicates that the rule set gains its relative advantage

by focussing on the timely completion of jobs with larger weights, while accepting relatively

large due date violations for jobs with small weights. Figure 7.8, which displays the mean

weighted tardiness that results from applying the best GP rule set (GPRS Best) and the best
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Figure 7.7: Performance of GP rules and rule sets, evolved with and without access to the
respective GP rule, for the Fab4r shop with the minimum mean weighted tardiness objective.

GP rule (GP Best) for jobs classified by weight, confirms this notion. It shows that the rule set

yields a lower mean (weighted) tardiness for jobs with weight equal to or larger than 3 at the

expense of a further delay of jobs with smaller weights.

Table 7.7 compares the performance of the best and the worst of the ten rule sets, evolved

for the Fab6 problem, with that of MCB-WMOD, the best benchmark rule, regarding mean

weighted tardiness and other related criteria. Again, the hyper-heuristic proves to be effective,

generating rule sets that generally yield a significantly lower mean weighted tardiness (2872.3

on average) than the benchmark rule, with the best rule set achieving a reduction of 15%.

Table 7.7: Performance of evolved rule sets and benchmark rules for the Fab6 shop regarding
mean weighted tardiness and other due date-related measures. Differences between perfor-
mance values marked with the same superscript are not significant at the overall 5% signifi-
cance level. The best performance values are in bold.

Dispatching rule (set)
Mean weight. Mean Proportion Cond. mean
tardiness tardiness tardy (in %) tardiness

MCB-WMOD 3290.1 1672.9 31.8 5242.0
RS Worst(Fab6, wT ) 2995.4 1803.4 27.5 6539.4a

RS Best(Fab6, wT ) 2796.3 1699.9 26.0 6494.4a
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Figure 7.8: Mean weighted tardiness performance of the best rule set and the best single rule
for the Fab4r shop, subdivided by job weight.

Moreover, Figure 7.9 shows that providing the hyper-heuristic with GP rules allows for

the generation of even better rule sets, with all GP rule sets, which yield a mean weighted

tardiness of 2409.0 on average, performing significantly better than the respective GP rule

and conventional rule set (and therefore better than the better of the two). Hence, it can be

concluded that the combination of the two hyper-heuristics is beneficial for this problem. In

particular, the best GP rule set is found to reduce mean weighted tardiness over the best GP

rule by another 12%.

The dominance of the best GP rule set over the best GP rule proves to carry over to other

measures of due date performance. More specifically, the rule set achieves a 7% lower mean

tardiness and decreases proportion of tardy jobs by 4.5 percentage points, while increasing

conditional mean tardiness by 10%. In other words, it minimises the average delay of all

jobs, irrespective of their weight, by completing more jobs on time. This is also reflected by

Figure 7.10, which shows that the rule set yields a lower mean (weighted) tardiness than the

single rule for almost every category of jobs, classified by weight.

In summary, for each of the four examined problems the hyper-heuristic proves to generate

sets of work centre-specific rules that are significantly better than single benchmark rules from

the literature, which demonstrates the effectiveness of the method. For three of the four prob-

lems, the hyper-heuristic further shows to generate even better rule sets if it is provided with a

GP rule, which also outperform the respective GP rule, indicating that there is some potential
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Figure 7.9: Performance of GP rules and rule sets, evolved with and without access to the
respective GP rule, for the Fab6 shop with the minimum mean weighted tardiness objective.
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Figure 7.10: Mean weighted tardiness performance of the best rule set and the best single rule
for the Fab6 shop, subdivided by job weight.
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in combining the two hyper-heuristics. Moreover, the relative advantage of the best rule sets

evolved for the wT problems is larger than that of the best rule sets evolved for the correspond-

ing C problems, which is in line with the findings for the GP hyper-heuristic and supports the

conjecture that the automatic generation of (work centre-specific) dispatching rules by means

of hyper-heuristics is more promising for more complex problems.

Table 7.8 specifies the rules and look-ahead values of the best rule set, evolved for each

of the four scheduling problems, for the critical work centres. As expected, the best rule sets,

which all result from running the hyper-heuristic with access to a GP rule, consist of a mixture

of the respective GP rule and some common rules. More specifically, the GP rules are primarily

selected for work centres with complex properties such as batch processing capabilities or

sequence-dependent setups (see also Table 7.1), for which it is more difficult to develop good

rules manually. Given that these rule sets are the result of a twofold optimisation on the

simulation model representing the original problem, they can be considered to be even more

tailored to this problem than the single GP rules. Hence, they could be expected to be very

sensitive to changing conditions in the shop, which is examined in the following section.

Table 7.8: Dispatching rules and look-ahead values used at critical work centres as part of the
respectively best rule set.

Shop Work centre (C problem) (wT problem)
Rule Look-ahead Rule Look-ahead

Fab4r AME135 BLWKR 0.38 ATC(k1 = 4.0) 0.07
D1-9 BLWKR 0.00 WMDD 0.00
DFC4 BLWKRx 0.31 GP rule 0.00
PE1-5 GP rule 0.02 GP rule 0.12
QLESS MCB-GP rule 0.14 FB-GP rule 0.04

Fab6 AME 4+5+7+8 GP rule 0.65 GP rule 0.08
ASM B2 BSPT 0.09 GP rule 0.14
CAN 0.43/MII GP rule 0.20 ATC(k1 = 1.0) 0.00
LTS 3 SPT 0.00 GP rule 0.00

7.5 Sensitivity Analysis

The sensitivity analysis carried out for the GP rule sets is similar to the one conducted for the

GP rules in Section 6.5, i.e. all four rule sets are tested under different job arrival rates, while

those evolved for the wT problems are also subjected to different due date settings. Again, the

best rules from the literature, which are considered to be robust, are used as benchmarks for

the robustness of a rule set.
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7.5.1 Arrival Rates

Figure 7.11 compares the performance of the best rule set and the best benchmark rule for the

four scheduling problems under different utilisation levels, resulting from a different total job

arrival rate, where the default arrival rates lead to a utilisation of 93.8% and 92.3% for the

Fab4r and Fab6 shop, respectively. In every of the four cases, the rule set proves to dominate

the benchmark rule across the whole range of examined utilisation levels, which indicates that

the rule sets evolved by the hyper-heuristic are generally robust to changes in the total job

arrival rate.
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Figure 7.11: Performance of the best rule set and the best benchmark rule for the four schedul-
ing problems under varying levels of utilisation.
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The effect of a change in the product mix, resulting from an increase and/or decrease of

the arrival rate of certain products, on the relative performance of the evolved rule sets is

shown in Figure 7.12, where the original mix for the Fab4 shop corresponds to a 30% share

of product A and the product mixes for the Fab6 shop are derived from the original mix as

described in Section 6.5.1. Again, the utilisation of the bottleneck, whereever its location,

is held constant in these experiments. Despite comparatively big differences in the absolute

performance values, the rule sets show to more or less maintain their relative advantage, which

indicates that they are generally robust to changes in the product mix.
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Figure 7.12: Performance of the best rule set and the best benchmark rule for the four schedul-
ing problems under varying product mixes.
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7.5.2 Due Date Setting

The GP rule sets evolved for the wT problems are assessed for their robustness to two parame-

ters of the due date setting, namely the tightness and range of due dates, which are respectively

controlled by the mean µ and the range R of the uniform distribution used to generate the al-

lowance factors for the TWK due date assignment method (see Section 6.3.1). Figures 7.13

and 7.14 compare the performance of the best rule set and the best benchmark rule for the two

wT problems for different values of µ and R, respectively, where the default due date setting

corresponds to µ = 3.5 and R = 3 for the Fab4r shop, and to µ = 1.4 and R = 0.4 for the Fab6

shop. Similar to the single rules evolved by the GP hyper-heuristic, the rule sets are found to

be robust to changes in the due date setting apart from an increasing tightness of due dates,

i.e. a decreasing mean allowance factor, for which they show to loose their relative advan-

tage. However, the comparatively smaller gradient indicates that they are less sensitive than

the single GP rules (see Section 6.5.2), which is surprising given that the GP rule sets can be

considered to be more tailored to the original setting.
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Figure 7.13: Performance of the best rule set and the best benchmark rule for the two wT
problems under varying levels of due date tightness. Due dates are generated by means of
the TWK method with allowance factors drawn from a uniform distribution on the interval
[µ − R

2 , µ + R
2 ].



CHAPTER 7. AUTOMATIC GENERATION OF WORK CENTRE-SPECIFIC RULES 131

0 

600 

1200 

1800 

2400 

3000 

1.5 2.5 3.5 4.5 

M
ea

n 
w

ei
gh

te
d 

ta
rd

in
es

s 

Allowance factor range (R) 

MCB-WMOD 

GPRS Best 

(a) Fab4r problem

0 

1200 

2400 

3600 

4800 

6000 

0.1 0.3 0.5 0.7 

M
ea

n 
w

ei
gh

te
d 

ta
rd

in
es

s 

Allowance factor range (R) 

MCB-WMOD 

GPRS Best 

(b) Fab6 problem

Figure 7.14: Performance of the best rule set and the best benchmark rule for the two wT
problems under varying levels of due date range. Due dates are generated by means of
the TWK method with allowance factors drawn from a uniform distribution on the interval
[µ − R

2 , µ + R
2 ].

7.6 Critical Appraisal and Future Work

In summary, the hyper-heuristic presented in this chapter has shown to generate sets of work

centre-specific dispatching rules for several complex and dynamic scheduling problems that

are superior to single rules and generally robust to changes in the job arrival pattern and due

date setting. The relative performance of the evolved rule sets is only found to deteriorate

considerably if due dates become tighter (though at a slower rate than the GP rules from

Chapter 6), which could be addressed in the same way as described in Section 6.6 for the GP

hyper-heuristic. While these results demonstrate the potential of using a hyper-heuristic to

generate sets of work centre-specific rules for complex and dynamic scheduling problems, the

hyper-heuristic could be improved and extended in several ways.

First of all, like the GP hyper-heuristic from Chapter 6, the hyper-heuristic is characterised

by extensive runtimes that are mainly due to the simulation-based evaluation of individuals.

The runtime of one replication has been around 5 hours (on a 2.9 GHz Intel Quad-Core Xeon

with 8 GB RAM) for the Fab4r problems, and has shown to increase to around 30 hours (on

a similarly powerful 2.8 GHz Intel Quad-Core i5 with 4 GB RAM) for the Fab6 problems

because of the larger shop (see Section 6.3.1), which is computationally more expensive to

simulate. One main aim of future work should therefore be to improve the efficiency of the

hyper-heuristic, e.g. by implementing some of the measures suggested in Section 6.6.

A possible way to further improve the effectiveness of the hyper-heuristic could be by a

more sophisticated design of the look-ahead parameter so that the information horizon is set
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proportionally to the operation processing time of the queueing job with the highest priority

(according to the given dispatching rule), rather than the processing time of the longest op-

eration in the queue. The rationale behind this is that the job with the highest priority is the

one that would be processed next if future job arrivals were not considered, and waiting for a

future job should thus be assessed as an alternative to starting the operation of this candidate

job. In particular, this modified look-ahead parameter would prevent the consideration of jobs

that arrive after the processing of the candidate job would complete, which makes sense as

such jobs are not affected by the decision to start the operation.

In view of the superior performance of the rule sets that result from the (sequential) com-

bination of the two hyper-heuristics, another promising area for future work appears to be

the development of a GP hyper-heuristic that generates several work centre-specific compos-

ite rules in parallel. However, in designing such a hyper-heuristic, one has to deal with the

problem that the search space grows exponentially both in the number of rules and in the

(maximum) number of parameters or symbols that define a rule. Hence, evolving a separate

GP rule, i.e. priority index, of arbitrary complexity for every single work centre in the shop

will generally not be feasible for shops of realistic size. Instead, the size of the search space

has to be limited by restricting the complexity and/or the number of rules to be evolved.

Restricting the complexity of the GP rules, which is controlled by the maximum tree depth

parameter, is based on the assumption that rules designed for specific work centres do not have

to be as complex as rules designed for a whole shop in order to be effective. It has the positive

side effect that simpler rules may be intelligible to practitioners, thereby increasing the accep-

tance of the method. On the other hand, setting the tree depth parameter to a low value does

not only reduce the size of the search space but may also adversely affect the effectiveness of

the GP search operators. The challenge is therefore to determine a (problem-specific) param-

eter value that sufficiently reduces the size of the search space without impairing the ability of

the hyper-heuristic to generate good rules, which may not even be possible.

In contrast, the restriction of the number of rules to be evolved appears to be relatively

straightforward. Often, the performance of a shop is mainly determined by a small subset of

the present work centres, in which case the hyper-heuristic should obviously be configured to

evolve rules for these important work centres while the others can be simply operated with

some default base rule. However, the identification of important work centres may not always

be easy. In fact, some experiments that involved running the critical work centres of the Fab4r

and the Fab6 shop with the rules of the best rule sets (see Table 7.8) and all other work centres

with the simple FCFS rule have shown that it is generally not sufficient to focus only on the

highly utilised work centres. To further illustrate, consider a lowly utilised work centre that

is located directly downstream of a batch processing work centre. Jobs are likely to arrive at

the considered work centre in batches, in which case its dispatching rule can select among a

number of jobs, from time to time, and may have a larger effect on the shop performance than
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the rule of another, moderately utilised work centre at which jobs arrive one by one. Hence, the

importance of work centres generally depends on a number of factors, not just the utilisation.

An additional way to reduce the number of rules to be evolved is to group similar work centres

and generate only one rule per group. However, this creates the problem of determining an

adequate classification of work centres, which, as briefly discussed in Section 7.1, can itself

be very challenging.



Chapter 8

Conclusion

In this thesis, three methods, based on Evolutionary Algorithms (EAs), have been proposed

for the design of dispatching rules for complex and dynamic scheduling problems. The first

method employs an EA to search for job shop problem instances on which a given dispatching

rule performs badly, which can be analysed to reveal weaknesses of the rule, thereby providing

guidelines for the development of a better rule. The method has been applied to a benchmark

rule for a well-studied dynamic job shop problem with the objective of minimising mean flow

time, prompting the design of a new rule that does not only outperform all benchmark rules on

the job shop problem but also on the corresponding flow shop problem, across different levels

of utilisation. The other two methods fall into the category of hyper-heuristics and automate

the rule development process by employing an EA directly to search for effective dispatching

rules. The first hyper-heuristic is based on Genetic Programming (GP) and generates a single

rule from basic job and machine attributes, whereas the second hyper-heuristic generates a set

of work centre-specific rules by selecting a (potentially) different rule for each work centre

from a number of existing rules. Both hyper-heuristics have been applied to some dynamic,

flexible job shop problems from semiconductor manufacturing with the objectives of min-

imising mean flow time and mean weighted tardiness, respectively, for which they both have

shown to generate (sets of) dispatching rules that outperform the benchmark rules from the

literature and are generally robust to changes in the job arrival pattern and due date setting.

Moreover, a sequential combination of the two hyper-heuristics, in which a rule evolved by

the GP hyper-heuristic is provided to the rule set hyper-heuristic, has been found to be bene-

ficial in most cases, with the resulting rule sets achieving an even better performance than the

(sets of) rules evolved separately by the hyper-heuristics. In summary, the application of each

method has resulted in dispatching rules that perform better than the best benchmark rules,

which demonstrates the effectiveness of the methods.

Although the potential of these methods is generally higher for more complex problems,

for which it is more difficult to design effective dispatching rules manually, a high problem

complexity also poses a challenge to them. In particular, the method that evolves problem

134
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instances requires a solution method that can generate schedules of a high solution quality in

a reasonable amount of time, which can quickly become a restrictive factor for more complex

problems. In addition, an expert has to fully understand the generated schedules, especially

the causes and effects of a bad decision taken by a tested rule, to be able to come up with

suggestions on how to design a better rule, which may be too demanding if the problem is

very complex. In contrast, the suitability of hyper-heuristics appears to be less affected by

the problem complexity as they operate largely abstract from the considered problem. On the

other hand, a more complex problem is often associated with a larger and more complex search

space, which does affect the performance of a hyper-heuristic, as indicated by the results for

the two proposed hyper-heuristics. Then, it becomes crucial to design the hyper-heuristic in

an intelligent way, e.g. by providing it only with the most important attributes or by focussing

its search on a subset of important work centres, which again requires a certain expertise and

understanding of the problem. In other words, any of the proposed methods may prove to be

impractical for extremely complex scheduling problems. However, in such a case it is also

highly questionable whether an effective dispatching rule (set) can be designed without any

methodic support.

Clearly, there are a number of issues that could be addressed in the future. Each of the

methods can be further developed in various ways and some directions on future work have

respectively been given in Chapters 5–7. There may also be additional potential in combin-

ing the methods, e.g. the method that evolves problem instances could be used to identify

important information that could then be provided as an (aggregate) attribute to the GP hyper-

heuristic. Above all, scheduling problems occur in many other areas that are characterised by

complex and dynamic environments, e.g. airport traffic control, project management or health

care operations, which could be addressed in a similar way. Thus, there are numerous oppor-

tunities to extend the scope of the methods by adapting and applying them to other problem

areas in the future.



Appendix A

p-Values of Pairwise Comparisons

p-Values relating to Chapter 5

Table A.1: p-values of pairwise comparisons relating to Table 5.3 (job shop with 2–10 ops.
per job and 80% utilisation).

[2] [3] [4] [5] [6] [7] [8] IFT−UIT+NPT

[1] FCFS < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[2] LWKR < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[3] SPT 0.5665 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[4] PT+WINQ < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[5] PT+WINQx < 0.0001 < 0.0001 < 0.0001 < 0.0001

[6] 2PT+WINQ+NPT < 0.0001 < 0.0001 < 0.0001

[7] 2PT+WINQx+NPT < 0.0001 < 0.0001

[8] IFT−UIT < 0.0001

Table A.2: p-values of pairwise comparisons relating to Table 5.3 (job shop with 2–10 ops.
per job and 95% utilisation).

[2] [3] [4] [5] [6] [7] [8] IFT−UIT+NPT

[1] FCFS < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[2] LWKR < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[3] SPT < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[4] PT+WINQ 0.0002 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[5] PT+WINQx < 0.0001 < 0.0001 < 0.0001 < 0.0001

[6] 2PT+WINQ+NPT < 0.0001 < 0.0001 < 0.0001

[7] 2PT+WINQx+NPT 0.3419 < 0.0001

[8] IFT−UIT < 0.0001
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Table A.3: p-values of pairwise comparisons relating to Table 5.3 (job shop with 10 ops. per
job and 80% utilisation).

[2] [3] [4] [5] [6] [7] [8] IFT−UIT+NPT

[1] FCFS < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[2] LWKR < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[3] SPT 0.1891 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[4] PT+WINQ < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[5] PT+WINQx < 0.0001 < 0.0001 < 0.0001 < 0.0001

[6] 2PT+WINQ+NPT < 0.0001 < 0.0001 < 0.0001

[7] 2PT+WINQx+NPT < 0.0001 < 0.0001

[8] IFT−UIT < 0.0001

Table A.4: p-values of pairwise comparisons relating to Table 5.3 (job shop with 10 ops. per
job and 95% utilisation).

[2] [3] [4] [5] [6] [7] [8] IFT−UIT+NPT

[1] FCFS 0.0008 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[2] LWKR < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[3] SPT 0.1871 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[4] PT+WINQ < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[5] PT+WINQx < 0.0001 < 0.0001 < 0.0001 < 0.0001

[6] 2PT+WINQ+NPT < 0.0001 < 0.0001 < 0.0001

[7] 2PT+WINQx+NPT < 0.0001 < 0.0001

[8] IFT−UIT < 0.0001

Table A.5: p-values of pairwise comparisons relating to Table 5.4 (flow-dominant job shop
with 80% utilisation).

[2] [3] [4] [5] [6] [7] [8] IFT−UIT+NPT

[1] FCFS < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[2] LWKR < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[3] SPT < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[4] PT+WINQ < 0.0001 0.0009 < 0.0001 0.0029 < 0.0001

[5] PT+WINQx < 0.0001 0.0293 0.7122 < 0.0001

[6] 2PT+WINQ+NPT < 0.0001 < 0.0001 < 0.0001

[7] 2PT+WINQx+NPT 0.1557 < 0.0001

[8] IFT−UIT < 0.0001
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Table A.6: p-values of pairwise comparisons relating to Table 5.4 (flow-dominant job shop
with 95% utilisation).

[2] [3] [4] [5] [6] [7] [8] IFT−UIT+NPT

[1] FCFS < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[2] LWKR < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[3] SPT < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[4] PT+WINQ < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[5] PT+WINQx < 0.0001 < 0.0001 < 0.0001 < 0.0001

[6] 2PT+WINQ+NPT < 0.0001 < 0.0001 < 0.0001

[7] 2PT+WINQx+NPT 0.0001 < 0.0001

[8] IFT−UIT < 0.0001

Table A.7: p-values of pairwise comparisons relating to Table 5.4 (flow shop with 80% utili-
sation).

[2] [3] [4] [5] [6] [7] [8] IFT−UIT+NPT

[1] FCFS < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[2] LWKR < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[3] SPT 1.0000 1.0000 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[4] PT+WINQ 1.0000 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[5] PT+WINQx < 0.0001 < 0.0001 < 0.0001 < 0.0001

[6] 2PT+WINQ+NPT 1.0000 < 0.0001 < 0.0001

[7] 2PT+WINQx+NPT < 0.0001 < 0.0001

[8] IFT−UIT < 0.0001

Table A.8: p-values of pairwise comparisons relating to Table 5.4 (flow shop with 95% utili-
sation).

[2] [3] [4] [5] [6] [7] [8] IFT−UIT+NPT

[1] FCFS < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[2] LWKR < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[3] SPT 1.0000 1.0000 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[4] PT+WINQ 1.0000 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[5] PT+WINQx < 0.0001 < 0.0001 < 0.0001 < 0.0001

[6] 2PT+WINQ+NPT 1.0000 < 0.0001 < 0.0001

[7] 2PT+WINQx+NPT < 0.0001 < 0.0001

[8] IFT−UIT 0.2670
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p-Values relating to Chapter 6

Table A.9: p-values of pairwise comparisons relating to Table 6.3.
[2] [3] [4] [5] [6] [7] [8] [9] [10] GP Best(Fab4r, C)

[1] FCFS < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[2] DJAH < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[3] BSNSPT 0.0135 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[4] FSASPT-BSPT < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[5] MCB-BLWKR 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[6] MCB-SNSPT < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[7] MCB-FSASPT-SPT < 0.0001 < 0.0001 < 0.0001 < 0.0001

[8] MCB-2PT+WINQ+NPT < 0.0001 < 0.0001 < 0.0001

[9] MCB-PT+WINQ < 0.0001 < 0.0001

[10] GP Worst(Fab4r, C) < 0.0001

Table A.10: p-values of pairwise comparisons relating to Table 6.5.
[2] [3] [4] [5] [6] [7] [8] [9] [10] GP Best(Fab6, C)

[1] MCB-BLWKR < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[2] FCFS < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[3] MCB-2PT+WINQ+NPT 0.0180 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[4] DJAH 0.0003 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[5] MCB-PT+WINQ 0.3169 0.0040 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[6] MCB-SNSPT 0.0003 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[7] BSNSPT < 0.0001 < 0.0001 < 0.0001 < 0.0001

[8] MCB-FSASPT-SPT 0.0082 < 0.0001 < 0.0001

[9] FSASPT-BSPT < 0.0001 < 0.0001

[10] GP Worst(Fab6, C) < 0.0001

Table A.11: p-values of pairwise comparisons relating to Table 6.6 (mean weighted tardiness).
[2] [3] [4] [5] [6] [7] [8] GP Best(Fab4r, wT )

[1] FCFS < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[2] MCB-LW-OCR < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[3] BATCSx(k1 = 5.5, k2 = 0.1) < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[4] MCB-CR+SPT < 0.0001 < 0.0001 < 0.0001 0.3936 < 0.0001

[5] MCB-S/RPT+SPT 0.2145 0.0232 0.0046 < 0.0001

[6] MCB-ATCS(k1 = 4.0, k2 = 0.01) 0.0250 < 0.0001 < 0.0001

[7] MCB-WMOD < 0.0001 < 0.0001

[8] GP Worst(Fab4r, wT ) < 0.0001
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Table A.12: p-values of pairwise comparisons relating to Table 6.6 (mean tardiness).
[2] [3] [4] [5] [6] [7] [8] GP Best(Fab4r, wT )

[1] FCFS < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[2] MCB-LW-OCR < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[3] BATCSx(k1 = 5.5, k2 = 0.1) < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[4] MCB-CR+SPT < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[5] MCB-S/RPT+SPT < 0.0001 < 0.0001 < 0.0001 < 0.0001

[6] MCB-ATCS(k1 = 4.0, k2 = 0.01) < 0.0001 < 0.0001 < 0.0001

[7] MCB-WMOD < 0.0001 < 0.0001

[8] GP Worst(Fab4r, wT ) < 0.0001

Table A.13: p-values of pairwise comparisons relating to Table 6.6 (proportion tardy).
[2] [3] [4] [5] [6] [7] [8] GP Best(Fab4r, wT )

[1] FCFS < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[2] MCB-LW-OCR < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[3] BATCSx(k1 = 5.5, k2 = 0.1) < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[4] MCB-CR+SPT < 0.0001 < 0.0001 < 0.0001 0.0012 < 0.0001

[5] MCB-S/RPT+SPT < 0.0001 < 0.0001 < 0.0001 0.0186

[6] MCB-ATCS(k1 = 4.0, k2 = 0.01) < 0.0001 < 0.0001 < 0.0001

[7] MCB-WMOD < 0.0001 0.2350

[8] GP Worst(Fab4r, wT ) < 0.0001

Table A.14: p-values of pairwise comparisons relating to Table 6.6 (conditional mean tardi-
ness).

[2] [3] [4] [5] [6] [7] [8] GP Best(Fab4r, wT )

[1] FCFS < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[2] MCB-LW-OCR < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[3] BATCSx(k1 = 5.5, k2 = 0.1) < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[4] MCB-CR+SPT < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[5] MCB-S/RPT+SPT < 0.0001 < 0.0001 < 0.0001 < 0.0001

[6] MCB-ATCS(k1 = 4.0, k2 = 0.01) < 0.0001 < 0.0001 < 0.0001

[7] MCB-WMOD < 0.0001 < 0.0001

[8] GP Worst(Fab4r, wT ) < 0.0001

Table A.15: p-values of pairwise comparisons relating to Table 6.7 (mean weighted tardiness).
[2] [3] [4] [5] [6] [7] [8] GP Best(Fab6, wT )

[1] FCFS < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[2] MCB-LW-OCR < 0.0001 0.0014 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[3] MCB-S/RPT+SPT 0.4773 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[4] BATCSx(k1 = 5.5, k2 = 0.1) 0.0143 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[5] MCB-CR+SPT < 0.0001 < 0.0001 < 0.0001 < 0.0001

[6] MCB-ATCS(k1 = 1.5, k2 = 0.01) < 0.0001 < 0.0001 < 0.0001

[7] MCB-WMOD < 0.0001 < 0.0001

[8] GP Worst(Fab6, wT ) < 0.0001
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Table A.16: p-values of pairwise comparisons relating to Table 6.7 (mean tardiness).
[2] [3] [4] [5] [6] [7] [8] GP Best(Fab6, wT )

[1] FCFS < 0.0001 < 0.0001 0.1392 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[2] MCB-LW-OCR < 0.0001 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[3] MCB-S/RPT+SPT < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[4] BATCSx(k1 = 5.5, k2 = 0.1) < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[5] MCB-CR+SPT < 0.0001 < 0.0001 < 0.0001 < 0.0001

[6] MCB-ATCS(k1 = 1.5, k2 = 0.01) < 0.0001 < 0.0001 0.0041

[7] MCB-WMOD 0.0243 0.7754

[8] GP Worst(Fab6, wT ) 0.0005

Table A.17: p-values of pairwise comparisons relating to Table 6.7 (proportion tardy).
[2] [3] [4] [5] [6] [7] [8] GP Best(Fab6, wT )

[1] FCFS < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[2] MCB-LW-OCR < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[3] MCB-S/RPT+SPT < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[4] BATCSx(k1 = 5.5, k2 = 0.1) < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[5] MCB-CR+SPT < 0.0001 < 0.0001 < 0.0001 < 0.0001

[6] MCB-ATCS(k1 = 1.5, k2 = 0.01) < 0.0001 < 0.0001 < 0.0001

[7] MCB-WMOD < 0.0001 < 0.0001

[8] GP Worst(Fab6, wT ) < 0.0001

Table A.18: p-values of pairwise comparisons relating to Table 6.7 (conditional mean tardi-
ness).

[2] [3] [4] [5] [6] [7] [8] GP Best(Fab6, wT )

[1] FCFS < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0002 < 0.0001 < 0.0001 < 0.0001

[2] MCB-LW-OCR < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[3] MCB-S/RPT+SPT < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[4] BATCSx(k1 = 5.5, k2 = 0.1) < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

[5] MCB-CR+SPT < 0.0001 < 0.0001 < 0.0001 < 0.0001

[6] MCB-ATCS(k1 = 1.5, k2 = 0.01) < 0.0001 < 0.0001 < 0.0001

[7] MCB-WMOD 0.0002 0.0003

[8] GP Worst(Fab6, wT ) 0.0255
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p-Values relating to Chapter 7

Table A.19: p-values of pairwise comparisons relating to Table 7.3.
[2] RS Best(Fab4r, C)

[1] MCB-PT+WINQ < 0.0001 < 0.0001

[2] RS Worst(Fab4r, C) < 0.0001

Table A.20: p-values of pairwise comparisons relating to Figure 7.4.
Replication GP rule set vs. GP rule GP rule set vs. Rule set

1 < 0.0001 < 0.0001

2 < 0.0001 < 0.0001

3 < 0.0001 < 0.0001

4 < 0.0001 0.3282

5 < 0.0001 0.0004

6 < 0.0001 < 0.0001

7 < 0.0001 < 0.0001

8 < 0.0001 0.0044

9 < 0.0001 0.6468

10 < 0.0001 0.0004

11 < 0.0001 < 0.0001

12 < 0.0001 < 0.0001

13 < 0.0001 0.0389

14 < 0.0001 0.1722

15 < 0.0001 < 0.0001

16 < 0.0001 < 0.0001

17 < 0.0001 0.0002

18 < 0.0001 < 0.0001

19 < 0.0001 < 0.0001

20 < 0.0001 0.4461

Table A.21: p-values of pairwise comparisons relating to Table 7.5.
[2] [3] RS Best(Fab6, C)

[1] MCB-FSASPT-SPT 0.0082 < 0.0001 < 0.0001

[2] FSASPT-BSPT < 0.0001 < 0.0001

[3] RS Worst(Fab6, C) < 0.0001
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Table A.22: p-values of pairwise comparisons relating to Figure 7.5.
Replication GP rule set vs. GP rule GP rule set vs. Rule set

1 < 0.0001 < 0.0001

2 < 0.0001 < 0.0001

3 < 0.0001 < 0.0001

4 < 0.0001 < 0.0001

5 < 0.0001 < 0.0001

6 < 0.0001 < 0.0001

7 < 0.0001 < 0.0001

8 < 0.0001 < 0.0001

9 < 0.0001 < 0.0001

10 < 0.0001 < 0.0001

Table A.23: p-values of pairwise comparisons relating to Table 7.6 (mean weighted tardiness).
[2] [3] [4] RS Best(Fab4r, wT )

[1] MCB-S/RPT+SPT 0.2145 0.0232 < 0.0001 < 0.0001

[2] MCB-ATCS(k1 = 4.0, k2 = 0.01) 0.0250 < 0.0001 < 0.0001

[3] MCB-WMOD < 0.0001 < 0.0001

[4] RS Worst(Fab4r, wT ) < 0.0001

Table A.24: p-values of pairwise comparisons relating to Table 7.6 (mean tardiness).
[2] [3] [4] RS Best(Fab4r, wT )

[1] MCB-S/RPT+SPT < 0.0001 < 0.0001 < 0.0001 < 0.0001

[2] MCB-ATCS(k1 = 4.0, k2 = 0.01) < 0.0001 < 0.0001 < 0.0001

[3] MCB-WMOD < 0.0001 < 0.0001

[4] RS Worst(Fab4r, wT ) < 0.0001

Table A.25: p-values of pairwise comparisons relating to Table 7.6 (proportion tardy).
[2] [3] [4] RS Best(Fab4r, wT )

[1] MCB-S/RPT+SPT < 0.0001 < 0.0001 < 0.0001 < 0.0001

[2] MCB-ATCS(k1 = 4.0, k2 = 0.01) < 0.0001 < 0.0001 < 0.0001

[3] MCB-WMOD < 0.0001 < 0.0001

[4] RS Worst(Fab4r, wT ) < 0.0001

Table A.26: p-values of pairwise comparisons relating to Table 7.6 (conditional mean tardi-
ness).

[2] [3] [4] RS Best(Fab4r, wT )

[1] MCB-S/RPT+SPT < 0.0001 < 0.0001 < 0.0001 < 0.0001

[2] MCB-ATCS(k1 = 4.0, k2 = 0.01) < 0.0001 < 0.0001 < 0.0001

[3] MCB-WMOD < 0.0001 0.0266

[4] RS Worst(Fab4r, wT ) < 0.0001
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Table A.27: p-values of pairwise comparisons relating to Figure 7.7.
Replication GP rule set vs. GP rule GP rule set vs. Rule set

1 < 0.0001 < 0.0001

2 < 0.0001 < 0.0001

3 < 0.0001 < 0.0001

4 < 0.0001 < 0.0001

5 < 0.0001 < 0.0001

6 < 0.0001 < 0.0001

7 < 0.0001 < 0.0001

8 < 0.0001 < 0.0001

9 < 0.0001 < 0.0001

10 < 0.0001 < 0.0001

11 < 0.0001 < 0.0001

12 < 0.0001 < 0.0001

13 < 0.0001 < 0.0001

14 < 0.0001 < 0.0001

15 < 0.0001 < 0.0001

16 < 0.0001 < 0.0001

17 < 0.0001 < 0.0001

18 < 0.0001 < 0.0001

19 < 0.0001 < 0.0001

20 < 0.0001 < 0.0001

Table A.28: p-values of pairwise comparisons relating to Table 7.7 (mean weighted tardiness).
[2] RS Best(Fab6, wT )

[1] MCB-WMOD < 0.0001 < 0.0001

[2] RS Worst(Fab6, wT ) < 0.0001

Table A.29: p-values of pairwise comparisons relating to Table 7.7 (mean tardiness).
[2] RS Best(Fab6, wT )

[1] MCB-WMOD < 0.0001 0.0004

[2] RS Worst(Fab6, wT ) < 0.0001

Table A.30: p-values of pairwise comparisons relating to Table 7.7 (proportion tardy).
[2] RS Best(Fab6, wT )

[1] MCB-WMOD < 0.0001 < 0.0001

[2] RS Worst(Fab6, wT ) < 0.0001

Table A.31: p-values of pairwise comparisons relating to Table 7.7 (conditional mean tardi-
ness).

[2] RS Best(Fab6, wT )

[1] MCB-WMOD < 0.0001 < 0.0001

[2] RS Worst(Fab6, wT ) 0.0347
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Table A.32: p-values of pairwise comparisons relating to Figure 7.9.
Replication GP rule set vs. GP rule GP rule set vs. Rule set

1 < 0.0001 < 0.0001

2 < 0.0001 < 0.0001

3 < 0.0001 < 0.0001

4 < 0.0001 < 0.0001

5 < 0.0001 < 0.0001

6 < 0.0001 < 0.0001

7 < 0.0001 < 0.0001

8 < 0.0001 < 0.0001

9 < 0.0001 < 0.0001

10 < 0.0001 < 0.0001
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Geiger, C. D., R. Uzsoy, and H. Aytuğ (2006). Rapid modeling and discovery of priority

dispatching rules: an autonomous learning approach. Journal of Scheduling 9(1), 7–34.

Gere, W. S. (1966). Heuristics in job shop scheduling. Management Science 13(3), 167–190.

Glassey, C. R. and W. W. Weng (1991). Dynamic batching heuristic for simultaneous process-

ing. IEEE Transactions on Semiconductor Manufacturing 4(2), 77–82.

Graham, R. L., E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan (1979). Optimization

and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete

Mathematics 5, 287–326.

Hart, E., P. Ross, and D. Corne (2005). Evolutionary scheduling: a review. Genetic Program-

ming and Evolvable Machines 6(2), 191–220.

Haupt, R. (1989). A survey of priority rule-based scheduling. OR Spektrum 11(1), 3–16.

Hershauer, J. C. and R. J. Ebert (1975). Search and simulation selection of a job-shop se-

quencing rule. Management Science 21(7), 833–843.

Hildebrandt, T. (2012). Jasima — an efficient Java Simulator for Manufacturing and Logistics.

http://code.google.com/p/jasima/ (last accessed 14 January 2013).

Holthaus, O. (1997). Design of efficient job shop scheduling rules. Computers & Industrial

Engineering 33(1–2), 249–252.

Holthaus, O. and C. Rajendran (1997a). Efficient dispatching rules for scheduling in a job

shop. International Journal of Production Economics 48(1), 87–105.

Holthaus, O. and C. Rajendran (1997b). New dispatching rules for scheduling in a job shop

— an experimental study. The International Journal of Advanced Manufacturing Technol-

ogy 13(2), 148–153.

Holthaus, O. and C. Rajendran (2000). Efficient jobshop dispatching rules: further develop-

ments. Production Planning & Control 11(2), 171–178.

Holthaus, O. and C. Rajendran (2002). A study on the performance of scheduling

rules in buffer-constrained dynamic flowshops. International Journal of Production Re-

search 40(13), 3041–3052.

Holthaus, O. and H. Ziegler (1997a). Improving job shop performance by coordinating dis-

patching rules. International Journal of Production Research 35(2), 539–549.



REFERENCES 151

Holthaus, O. and H. Ziegler (1997b). Look ahead job demanding for improving job shop

performance. OR Spektrum 19(1), 23–29.

Huffman, B. J. (2001). An object-oriented version of SIMLIB (a simple simulation package).

INFORMS Transactions on Education 2(1), 1–15.

Hunsucker, J. L. and J. R. Shah (1994). Comparative performance analysis of priority rules

in a constrained flow shop with multiple processors environment. European Journal of

Operational Research 72(1), 102–114.

Ingimundardottir, H. and T. P. Runarsson (2011). Supervised learning linear priority dispatch

rules for job-shop scheduling. In C. A. Coello Coello (Ed.), Learning and Intelligent Opti-

mization, pp. 263–277. Berlin and Heidelberg: Springer.

Ishii, N. and J. J. Talavage (1994). A mixed dispatching rule approach in FMS scheduling.

The International Journal of Flexible Manufacturing Systems 6(1), 69–87.

Jackson, J. R. (1955). Scheduling a production line to minimize maximum tardiness. Technical

report, University of California, Los Angeles.
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Abbreviation Full name Description on page(s)

2PT+WINQ+NPT (variant of the PT+WINQ rule) 45
ATC Apparent Tardiness Cost 22, 51
ATCS Apparent Tardiness Cost with Setups 29
ATCSR Apparent Tardiness Cost with Setups and Ready Times 54
BATC Batch Apparent Tardiness Cost 34
BATCx (variant of the BATC rule) 34
BATCR Batch Apparent Tardiness Cost with Ready Times 55
BATCS Batch Apparent Tardiness Cost with Setups 34
BEDD Batch Earliest Due Date 33
BLWKR Bottleneck-based Least Work Remaining 46
BLWKRx (variant of the BLWKR rule) 46–47
BSPT Batch Shortest Processing Time 31
BWSPT Batch Weighted Shortest Processing Time 33
CD Cooperative Dispatching 47–48
COVERT Cost Over Time 22, 49
CR Critical Ratio 20, 49
CR+SPT (combination of the CR and SPT rules) 53
DBH Dynamic Batching Heuristic 39
DD/BJ 56–57
DJAH Dynamic Job Assignment Heuristic 43
ECR Enhanced Critical Ratio 29–30
EDD Earliest Due Date 18–19
FB Full Batch 32
FSASPT Family Shortest Average Setup and Processing Time 26–27
FSASPT AD Adaptive Family Shortest Average Setup and Processing Time 27–28
FSASPT GA Gated Family Shortest Average Setup and Processing Time 27
FSASPT HY Hybrid Family Shortest Average Setup and Processing Time 27–28
FSAST Family Shortest Average Setup Time 26
LWKR Least Work Remaining 37
MCB Most Complete Batch 33
MCR Minimum Cost Rate 41–42
MBS Minimum Batch Size 32
MBSBSPT (combination of the MBS and BSPT rules) 32
MDD Modified Due Date 19
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MOD Modified Operation Due Date 50
MS Minimum Slack 21
NACH Next Arrival Control Heuristic 40–41
OCOVERT Operation Cost Over Time 50
OCR Operation Critical Ratio 50
ODD Earliest Operation Due Date 57
PT+WINQ Processing Time plus Work In Next Queue 45
PUCH Processing Urgency Classification Heuristic 35–36
RR Raghu and Rajendran 56
SASPT Shortest Average Setup and Processing Time 25–26
SNSPT Shortest Normalised Setup and Processing Time 25
SPT Shortest Processing Time 18, 37
SSPT Shortest Setup and Processing Time 25
SST Shortest Setup Time 24
S/RPT Slack per Remaining Processing Time 21
S/RPT+SPT (combination of the S/RPT and SPT rules) 53
(TPT+DD)/BJ 56–57
WMDD Weighted Modified Due Date 20, 21, 49
WMOD Weighted Modified Operation Due Date 50
WSPT Weighted Shortest Processing Time 18
X-ATC (variant of the ATC rule) 54



List of Symbols

B f Maximum batch size of family f

C j Completion time of job j

c Number of work centres

d j (db) Due date of job j (of batch b)

d j,o (d j,i) Due date of operation o (of imminent operation) of job j

l j Number of operations of job j

m Number of machines

Nb Set of jobs in batch b

NL (NL
f ) Set of look-ahead jobs (of family f )

NQ (NQ
f ) Set of queueing jobs (of family f )

n Total number of jobs

nb Number of jobs in batch b

nQ (nQ
f ) Number of queueing jobs (of family f )

p j (pb) Processing time of job j (of batch b)

p j,o (p j,i) Processing time of operation o (of imminent operation) of job j

p Average operation processing time of queueing jobs

q̂ j Estimated queueing time of job j

q̂ j,o (q̂ j,i) Estimated queueing time of operation o (of imminent operation) of job j

r j (rb) Release date of job j (of batch b)

r j,i Arrival time of job j at the work centre required for its imminent operation

S j Slack of job j

s f g (se f ) Setup time for switching from family f to family g (e represents current setup)

s Average setup time for queueing jobs given the current machine setup

T j Tardiness of job j

t Current time

w j (wb) Weight of job j (of batch b)
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