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Abstract

Direct injection spark ignition engines are growing rapidly in popularity, largely due to
the fuel efficiency improvements in the turbo-downsized engine configuration that are
enabled by direct injection technology. Unfortunately, direct injection spark ignition
engines also emit higher concentrations of particulate matter than conventional port
fuel injected engines. In light of evidence linking particulate matter to adverse human
health impacts, particulate emissions standards have been strengthened in both the
United States and in Europe. A great deal of research seeking particulate emissions
reductions is ongoing. This study contributes to this body of research by offering a
refined explanation of the soot formation process in direct injection engines under
cold-idle operating conditions. A number of engine and rapid compression machine
experiments were conducted in order to understand the impacts of engine operating
conditions and fuel composition on particulate matter emissions. Using these data,
a conceptual model describing the formation of soot in direct injection engines is
outlined. This model suggests that soot forms after the main combustion event in
fuel vapour plumes surrounding liquid fuel films on cylinder surfaces through pyrolytic
reactions enabled by heat transfer from burned gases from the primary combustion
event.
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Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

Few inventions have impacted society as profoundly as the internal combustion en-

gine. Its development enabled accessible, reliable, affordable and relatively rapid

transportation which has changed our outlook on distance and has forever reshaped

our landscape. Unfortunately, this transportation revolution has been accompanied

by severe environmental challenges, most notably air pollution. While there have

been vast improvements since the advent of emissions controls in the early 1970s, the

transportation sector remains a significant contributor to air pollution [1]. Emissions

of greenhouse gases, such as carbon dioxide, are of particular interest recently, owing

to their impact on global climate change, but particulate matter (PM) emissions are

also a major (and growing) concern because of their health effects.

Efforts to reduce greenhouse gas emissions have led to investment and innova-

tions oriented toward limiting fuel consumption. To this end, we have witnessed

widespread adoption of Direct Injection, Spark Ignition (DISI) engine technology [2].

DISI engines, which see the air/fuel charge prepared in-cylinder, have enabled im-

proved engine efficiency, especially in turbo-downsized configurations. Unfortunately,

these engines are also associated with increased PM emissions when compared to con-

ventional SI engines [3]. This is especially apparent during cold-start and cold-idle

operating conditions [4].

In light of the health impacts associated with PM exposure, PM emissions limits

are being strengthened [5] and automakers are making strong efforts to reduce PM
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emissions from their vehicles. Progress is being made in the reduction of PM emis-

sions, but cold-start and cold-idle PM emissions remain a significant challenge; there

remains a lack of understanding of the fundamental processes through which PM is

formed in-cylinder.

1.1 Background

Throughout the past decade, DISI has rapidly progressed from an emerging tech-

nology to a fully mainstream technology. DISI engines are found in all segments of

the automotive market from economy cars to high-performance sports cars. Like

traditional spark ignition (SI) engines, in DISI engines, a pre-mixed mixture of fuel

and air is ignited by a spark. The difference lies in the method of mixture prepara-

tion. Carburetion was the dominant method until being replaced in the mid 1980s

with throttle body and later multi-port fuel injection. In the case of carburetion,

mixing should be essentially complete within the intake manifold, since the fuel is

well-atomized and there is a long mixing distance. In the case of port fuel injection,

the process is somewhat more complicated. In this case, the liquid fuel is sprayed

toward the back of the intake valve, which is relatively hot, vaporizing much of the

liquid. In part-load conditions, upon the intake valve opening, there will then be a

flow of hot residual gases into the intake runner, which will further help to vapor-

ize remaining liquid fuel. Finally, when flow begins into the cylinder, the turbulent

flow through the intake valve serves to further enhance mixing [6]. The result is a

well-mixed, homogeneous charge being admitted to the engine cylinder.

In a DISI engine, by contrast, only air is inducted to the cylinder. The fuel is

injected inside the cylinder and all air/fuel mixing occurs in-cylinder. The heat of

vaporization for fuel evaporation is drawn from the air charge. or from engine surfaces,

and mixing is largely dependent on charge motion. This presents some benefits in

terms of engine efficiency. Volumetric efficiency is improved by inducting only air as

well as by the charge cooling effect of vaporizing fuel, which increases charge density

[2]. This charge cooling effect also increases the maximum cylinder pressure allowable
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before knock is likely. This has enabled the recent increase in popularity of downsized

and turbocharged engines [2, 7].

The liquid fuel in cylinder and resulting compromises related to mixing, however,

contribute to difficulties in limiting PM emissions. DISI engines emit substantially

more PM than PFI engines and in some cases more even than Diesel engines equipped

with particulate filters [8]. This PM is attributed to the presence of liquid fuel in-

cylinder during the combustion event. This fuel may be present in the form of free

droplets, but of most importance to PM formation is liquid films on cylinder surfaces.

It is generally reported that these films result in diffusion flames in which soot incep-

tion takes place [9]. This is especially true during cold-start and cold-idle operating

conditions when cold engine surfaces and inlet air do not support evaporation and

low engine speeds may not provide adequate charge motion for good mixing [10].
Compounding this problem is the issue that the engine operating conditions under

these cases may be more susceptible to soot formation due to efforts to reduce other

emissions. In particular, the spark and injection timings are sometimes retarded

to promote faster catalyst light-off with the goal of reducing hydrocarbon emissions

[11, 12].

In response to these emissions challenges, engine researchers in both industry and

academia have been undertaking studies designed to better understand PM emissions

in the context of SI engines and to develop strategies for reducing emissions in order

to meet government emissions standards.

1.1.1 Literature Review

The study detailed in this thesis is not the first to address PM emissions in DISI

engines, nor will it be the last. In order to appreciate this study's contribution to this

field of study. one must be familiar with the state of research regarding PM and DISI

engines. This section offers a summary of those previous works that are relevant to

this study of PM from DISI engines. When viewed as a collection, it is possible to

identify the weaknesses present in the current understanding of PM emissions from

DISI engines, serving as motivation for the research objectives of this study.
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Health and Environmental Impacts of Particulate Matter

Soot, a carbonaceous form of PM, has long been associated with negative health

impacts. In fact, it was the first substance identified as an occupational carcinogen

based on cancers caused in chimney sweeps in the 18th century [13]. Since that

time, suspicion of PM as a cause or contributor to a wide variety of illnesses and

environmental impacts has continued to grow.

Today, few people are employed as chimney sweeps, but there remain many sources

of PM, a major one being transportation [1]. A number of studies have identified re-

lationships between PM and human mortality. For example, a review of European

studies by Pelucchi et al. [14] found that while there was some heterogeneity in results

based on exposures and locations, total mortality rates were directly asscoiated with

long-term exposure to PM. The excess mortality seen in these studies was due mainly

to cardiovascular and respiratory illnesses. Questions were raised about the mecha-

nisms through which PM impacts health. In particular, there remains uncertainty

over whether the health impacts are caused by PM mass or chemical composition.

Atmospheric PM typically displays a tri-modal size distribution [15], but most

studies have narrowed in on fine particles as the likely culprits in health impacts. Also

in Europe, Boldo et al. [16] have studied the public health of PM2 .5 (the collection of

particulates smaller than 2.5pm in diameter), finding that reductions in exposure to

PM2.5 may increase life expectancy in European cities. Kaiser et al. [17] notes that

the link between PM2 .5 exposures and long-term mortality risks have been largely

confirmed, with increases in the long-term death risk estimated to be 4% for every

10bg/m 3 increase in PM2.5 concentrations. Short-term exposure to PM2.5 is also

identified as a potential health risk. Some people may experience a tripling of their

risk of heart attack in the hour following exposure to traffic-related PM [17, 18]. Peters

et al. [18], in discussing the cardiac risk of traffic-related PM exposure note that

ultrafine particles are especially prevalent in traffic-related PM emissions. Based on

this idea, it has been suggested that ultrafine particles, that is, particles smaller than

0. 1pm, may be the main culprits in PM-related illnesses. This hypothesis is supported
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by PM respiratory deposition modeling which suggests that smaller particles are far

more efficiently deposited in the human respiratory tract than larger particles [19].

Kaiser et al. [17] note that it is not clear whether it is the small size or the chemical

composition of ultrafine particles that may enable the added risk. It is suggested that

the risk may be due to some combination of size and chemistry.

While this idea remains controversial [20], it has found support in other studies

as well. McCreanor et al. [21] found that lung function is negatively affected by PM

exposure. This was found to be especially true for those suffering from asthma or

other existing respiratory illnesses and was most consistently associated with ultrafine

particles and elemental carbon.

The growing understanding of these health impacts have largely been the motiva-

tion behind increasingly stringent emissions limits. DISI engines emit particles much

smaller than 2.5[pm, tending toward sub-micron particles with mean diameters be-

tween 60 and 100nm [22]. It is in light of this that engine manufacturers are seeking

strategies for limiting PM emissions from DISI engines.

Emissions Legislation

In light of the potential health impacts, government regulations limiting PM are

increasingly stringent, for the first time intending to limit SI engine emissions of

PM. In the United States, thus far, the limits remain measured on a mass basis. In

Europe, however, a particle number limit has been enacted in addition to a mass

limit [23]. The final number limit will be 6x1011 particles/km, measured with a lower

size limit of 23nm and a 50% upper cut size of 2.5pm. For vehicles emitting small

particles, this number limit of 6x10" particles/km (6x101 2 particles/km during the

phase-in) is more difficult to satisfy than the mass limit as DISI engines typically

emit a reasonably low mass of PM, but relatively high numbers of small particles. In

fact, it was reported in 2008, that many then-current DISI engines would emit more

PM on a number basis than modern Diesel engines equipped with particulate filters

[8]. Few would be surprised if a similar limit were mandated in the United States at

some point in the future.
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Engine emissions have been under scrutiny since an understanding of the adverse

effects of vehicle emissions began to emerge in the 1940s and 1950s, but it was not

until the early 1960s that governments began establishing programs targeted to reduce

emissions. The first such effort came in California when it was mandated that vehicles

be equipped with crankcase ventilation systems that recirculate the blowby gases into

the intake air to be burned. By the late 1960s, photochemical smog was acknowledged

as a problem outside of California and a desire for nationwide emissions standards

emerged. In 1970, the U.S. Environmental Protection Agency (EPA) was authorized

to set these emissions standards by amendments to the Clean Air Act [24]. The Clean

Air Act was further amended in 1977 and again in 1990, when the Tier I and Tier II

emissions programmes were established. The Tier I emissions standards were phased-

in between 1994 and 1997 [25], and the Tier II standards were phased in between 2004

and 2009 [26].

While studies of the impacts of PM were required by the Clean Air Act as early

as 1977 [27], until now, particulate emissions standards have not been aimed at SI

engines. This will change, however, as the recently finalized Tier III rules come into

effect. While lacking the number limit seen in Europe, there is a stringent mass limit

of 3mg/mi attached to the new standards [28]. The efforts in the U.S. and in Europe

to reduce PM emissions have provided a strong driving force behind research oriented

toward understanding PM emissions.

PM Emissions Measurement

The particle concentrations permissible under upcoming emissions standards in the

U.S. and in Europe are low enough that they pose a measurement challenge for

traditional PM measurement techniques. When discussing mass measurements, as

are used in the U.S., for DISI and clean-Diesel engines, the mass of PM deposited on

the filters is so small that it may be on the same order of magnitude as the deposited

mass attributed to the background PM and condensed gaseous hydrocarbons in the

sampling system [29]. In addition. number measurements, as are performed in this

study, are also difficult since PM is not an easily defined substance because it does
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not have a uniform composition [30]. Instead, PM is a mixture of solid particles,

largely carbonaceous soot (but also some metal particles), and droplets of volatile

liquids. The volatile fraction is a major contributor to the difficulty of measuring PM

for regulatory purposes, since the volatile fraction is very sensitive to the emissions

sampling techniques. With diluted samples, for example, the dilution ratio can have

a profound effect on the PM composition [10]. With the advent of number-based

emissions standards in Europe, it has been necessary to standardize PM measurement

techniques to allow repeatable measurements of particle number concentrations in a

number of different locations.

Toward this end, the Particle Measurement Programme (PMP) was started. The

PMP includes an international effort to develop a standard measurement technique

for PM emissions. These standards were initially set with Diesel engines in mind, but

have been adapted to consider DISI engines as well. Changes to the initial protocol

have been suggested by various members en route toward the final protocol. For

example, the UK recommended the addition of a cyclone pre-classifier and changes

to the filtration setup for mass measurements [31].

For this study, the PMP protocol for number measurements was of particular

interest as it helped to guide the design of the sampling system. One of the major

goals of the protocol for number emissions is to eliminate the volatile PM component,

since the solid particles can be measured more repeatably. This was accomplished

through the use of a condensation particle counter measuring only particles between

23nm and 2.5pm. The lower size cut-off helps to eliminate volatile particles. In

addition, the sample is pre-conditioned in an evaporation tube heated to 300'C.

These techniques were validated by using a single, "golden" test vehicle. Emissions

from this vehicle were measured in a number of regulatory labs in various countries in

Europe as well as in the United States. A summary of this inter-laboratory correlation

report is included in [32].
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Soot Formation

A high fraction of the PM from DISI engines is soot [33]. Thus, in order to gain a

full understanding of PM formation in engines, it is helpful to be familiar with the

fundamentals of soot formation in flames. A review by Haynes and Wagner [34] offers

a thorough overview of the processes involved in soot formation. Two separate stages

are discussed in the initial soot formation process. The first is particle inception and

the second is particle surface growth. Surface growth is then followed by growth via

coalescence. All of these processes are taking place in competition with oxidation

processes.

In the particle inception stage, gaseous products of fuel oxidation or pyrolysis

reactions condense to form particles with diameters of approximately 20A. Unsatu-

rated hydrocarbons such as acetylene or polycyclic aromatic hydrocarbons (PAH) are

thought to be the most likely precursors of these particle nuclei. This process takes

place near the primary reaction zone in a flame and defines the initial number of soot

particles.

In the particle surface growth stage, the mass (or volume fraction) of soot is

increased, while the number of particles remains constant. During surface growth, gas

phase hydrocarbons readily deposit or release from the soot surface, which is highly

reactive. These primary particles then may undergo coalescence to form chain-like

agglomerates. In this case, the number will decrease while the total soot mass remains

constant. Soot formation and growth is occuring at the same time as oxidation

processes. In typical flames, most of the soot formed will be oxidized prior to be

being emitted, OH being the primary oxidant.

Mansurov [35] offers a similarly thorough review, describing essentially the same

processes. Here, particle nucleation is explained by a process through which large

PAH are formed through reactions of smaller PAH with acetylene, other PAH or PAH

radicals, with the main nucleation path being via reactions between PAH and PAH

radicals. Surface growth reactions are described as being similar to the aforemen-

tioned PAH reactions, with acetylene and PAH as the growth species. This growth
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competes with surface oxidation. Finally, coalescence is described in two stages. In

the early stages of coalescence, collisions between growing particles yields new, larger

spherical particles. In the later stages, the particles agglomerate into chain-like struc-

tures.

Brezinsky et al. [36] discusses this process in the context of different flame types.

In premixed flames, sooting is observed to decrease with increased flame tempera-

ture. This is explained by noting that attack by OH increases more rapidly with

temperature than does the formation of soot precursors. The formation of OH and

soot precursors both depend on the number of carbon-carbon bonds in the fuel, but,

otherwise, the fuel composition has little effect. In diffusion flames, by contrast,

the rate of soot formation increases with increasing temperature and is affected by

the fuel structure which impacts how the fuel pyrolytically decays. This study also

looks at the formation of soot in an oxidative pyrolysis, offering some insight into

the formation of soot in diffusion flames. This study agrees with those above in the

understanding that PAH are the precursors leading to nucleation, though it is not

confirmed experimentally.

Nucleation and surface growth driven by acetylene has been described by the

Hydrogen Abstraction, C2H2 Addition (HACA) mechanism. In cases where acetylene

concentrations are much larger than those of aromatics, it is expected that the PAH

leading to nucleation grow by the addition of acetylene molecules to the aromatic

rings, forming additional rings in the process. When the aromatic concentration is

closer in magnitude to that of acetylene, it may be more likely that the PAH growth

will occur through the condensation of existing aromatic rings. These mechanisms do

not address the formation of the initial aromatic rings which grow to form PAH, but

it is suggested that this likely proceeds from a polymerization of acetylene molecules

[37].

In studies of pyrolysis, there has been, however, some debate over the mechanism

of nucleation. Krestinin [38] in outlining a model of soot formation, questions the

"aromatic model" discussed above. Instead, the model was based on the "acetylene

pathway." In this model, acetylene, which, unlike other hydrocarbons, increases in
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thermodynamic stability at elevated temperatures, along with polyacetylenes and

PAH are formed in pyrolysis reactions. Acetylenes, considered a major intermediate

in both pyrolysis and flames, grow simply and quickly, while PAH grow relatively

slowly in a multi-stage process. The breeding of radical sites in polyacetylenes permits

fast polymerization, which may lead to nucleation, growing into a polymeric globule

(primary soot particle). In this model, coalescence forming new spherical particles

continues until polymeric growth ceases, at which point agglomeration may take place.

The application of this mechanism to traditional flames is not clear, since the lack of

oxygen in pyrolysis simplifies the chemical pathways greatly.

These questions about the roles of aromatics or acetylenes are not new. They

were raised in 1965 by Scully and Davies [39] who were able to identify PAH in their

experiments of carbon black production. It was unclear at that time whether the PAH

were side-products, or intermediates in the combustion and soot formation processes.

Looking more practically at flames, a number of studies have examined the loca-

tions of soot formation in flames and have attempted modelling of soot formation.

Moss et al. [40] identified soot formation in a fuel rich pyrolysis region of an ethylene-

oxygen laminar diffusion flame. Santoro et al. [41] similarly examined soot formation

in an ethylene-air flame, looking at soot growth by observing soot characteristics at

different points along the flame. By observing the particle concentrations along the

length of the flame, some insight was gained into the temperature-time history of

soot particles in flames. The soot was found to form in the annular flame region, on

the fuel side of the flame. Through modelling and experiments. Smooke et al. [42]

similarly outline soot formation and evolution through the flame with the main soot

formation regions appearing to be in the annular region of the flame in a fuel-rich

region on the fuel-side of the reaction.

While fuel structure impacts on soot formation rates are not entirely clear when

discussing nucleation and suface growth, in practical applications, sooting tendencies

do vary with fuel type. As outlined in Glassman and Yetter [43], early attempts

to establish sooting trends for premixed flames or laminar diffusion flames met with

some difficulty due to confounding variables such as flame temperature changes ac-

30



companying fuel changes. Controlling flame temperature, however, it was possible to

obtain a more reliable index of fuel sooting tendencies based on fuel structure. It was

found that sooting tendency correlates closely to the number of carbon-carbon bonds

contained in a fuel, with the sooting tendency increasing with more carbon-carbon

bonds. Similar results were obtained by Ladommatos et al. [44], who found sooting

tendencies to increase with carbon number for paraffins, olefins and acetylenes. The

trends reported for cyclic hydrocarbons were more complicated, depending on the

type and location of side chains, though it was clear that aromatics had a higher

sooting tendency than naphthalenic rings.

Soot Formation in DISI Engines

For more than a decade, PM emissions from DISI engines have proven to be of great

interest to engine developers and researchers. A large number of studies have been

completed with the intent of understanding PM formation in the context of DISI

engine combustion. Most of these studies have focused on the mechanical processes

through which soot forms, while some effort to understand the chemical pathways to

soot has also been made.

Early in the development of modern DISI engines, the fuel/air mixing process

was identified as a major contributor to engine emissions. Efforts to understand

these mixing processes drove much of the early research [45]. PM emissions were

linked to the mixing process early on as well. Early experiments noted changes in

PM emissions with spark timing, which were related to the cylinder temperature and

pressure changes associated with varied combustion phasing, but injection timing

was identified as having a very strong impact on PM emissions. With late injection

timings found to increase PM emissions, mixing time and charge stratification were

identified as likely culprits in PM formation [46].

Optical Experiments In order to examine the mixing process., a number of studies

have made use of optical engines to observe the fuel injection and mixture preparation

processes. The work of Stevens and Steeper [47] made use of an optical engine,

31



equipped with laser-induced fluorescence imaging of the fuel injection process. They

found that the cylinder pressures and temperatures affected the spray morphology.

Their work was extended, in a second paper, to examine the formation of PM [9].

They found that the fuel impingement on cylinder surfaces persits throughout the

combustion and exhaust processes, giving rise to soot-producing reactions described

as pool fires. The soot formed in these pool fires was observed to persist throughout

the exhaust stroke, being emitted with the bulk gases.

Alger et al. [48], also completed optical experiments. These used Schlieren imaging

to observe the evaporation process for piston fuel films. It was observed that the fuel

films evaporate late in the power stroke, resulting in fuel vapour plumes. The fuel

volatility was found to play an important role as it determined the time needed for

evaporation. More volatile fuels weren't necessarily better. In warm engines, with hot

piston surfaces, volatile fuel components may experience film boiling. This Leidenfrost

effect creates a layer of vapour which insulates the less-volatile fuel components from

the piston surface, extending their lifetime. It was found that, in some cases, fuel

films may persist for several cycles.

In [49]. it was similarly found that mixture stratification is an important issue, as

soot forms in fuel-rich regions. It was found that there were no droplets remaining

in the bulk charge by the time combustion occurs, but significant liquid fuel mass

remained as fuel films. In [50], yet another optical study, a distinction was made

between soot forming early in the cycle and that which forms late in the cycle. Early

soot was observed to form in rich, but pre-mixed regions of the cylinder, while late

soot was found to form in the type of pool fire suggested in [9]. Through the imaging

of piston fuel films, it was found that only approximately 0.1% of the injected fuel

typically forms a fuel film, yet the smoke emissions remain closely related to the

mnaximumnn wall filn mass.

Even recently, optical experiments have continued to be employed in studies of

PM formation. Velji et al. [51] used the light extinction technique and laser-induced

incandescence to visualize soot and fuel sprays. Again, pool fires were considered to

be the main cause of soot formation, but. in stratified operation, soot formation was
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also observed in rich pre-mixed regions in the cylinder. Similar observations were

made in [4]. Here, inadequate mixing and stratification were again implicated in

soot formation, but, some effort was also made to understand the impacts of the fuel

spray on the formation of liquid films. It was found that there is a tradeoff between

fuel atomization and impingement. Better atomization, with the intent of improv-

ing in-flight evaporation, achieved through increased fuel pressures also resulted in

increased spray penetration, increasing impingement. Costanzo et al., visualized the

ignition of diffusion flames around liquid films after the main combustion event in an

experimental, square-piston optical engine [52]. Here, it was seen that the luminous

soot particles persisted into the exhaust stroke.

While in cold engines it seems that most PM is produced in reactions surrounding

surface films, it was found in [53] that for warm engines, soot producing reactions are

also likely around the injector tip (especially if it is coked) as well as other regions of

the cylinder containing carbon deposits. This study urged a focus on the injector tip

as a, source of PM in warm engines.

The impact of fuel composition on PM emissions has also been studied. In an

optical experiment similar to those discussed above, the same observations of soot

being emitted in proportion to spray impingement were made, but a look at the

formation of films was examined with varied injection timing as well as varied fuel

composition. In this case, ethanol/gasoline blends were examined, with wider spray

cone angles observed for ethanol blends [54]. The dependence on fuel composition

had earlier been observed in [55]. In this optical study, it was found that the fuel

composition impact was also related to the coolant temperatures as the spray was

strongly affected by coolant temperature for fuels with boiling points near the coolant

temperature.

Emissions Measurements Optical experiments offer good insight into soot forma-

tion mechanisms, but emissions measurements are also very useful for understanding

the impact of engine operation on PM emissions. Many studies have been able to

detail the impacts of mixture composition through exhaust PM measurements. For
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example, a direct correlation between PM emissions and the engine body temper-

ature was observed in [10]. In [56], it was similarly observed that particle number

emissions decreased with increasing coolant temperature (up to 500 C). In addition,

it was found that rich mixtures increased particle number emissions as did low fuel

pressures. The injector spray angle was also found to be important. A high sensitiv-

ity to equivalence ratio was observed through emissions measurements in [57]. This

study also identified long injection durations as problematic, reinforcing the idea that

poor mixing leads to soot formation. Excursions into rich operation, or high fuelling

rates in a transient manner are not always easily avoided. For this reason, it has been

suggested that efforts are needed to achieve PM reductions when operating outside

of the optimal engine settings, although it is often difficult to reduce particle number

and mass emissions simultaneously [58].

Through a more thorough analysis of exhaust emissions, including speciation, it

was possible to correlate nanoscale particles to gaseous species [59]. Here it was found

that slight chemical differences can make large differences in PM emissions. It was

found that acetylene and benzene play key roles in the nucleation phase of particle

development, as is expected based on fundamental studies of soot formation. It was,

however, found that benzene and other aromatics played a larger role in the growth

of particles than acetylene. Thorough analyses of the soot composition have also

been completed. As an example, a study of cold-start emissions found that PM was

dominated by volatile materials, but that in the solid fraction, both amorphous and

graphitic particles were observed [60]. The fuel temperatures were also observed to

affect the composition of particles, with higher temperatures resulting in decreased

mass and decreased particle diameters [61].

Fuel Effects Much of the effort in understanding PM formation and emissions has

gone into understanding the impacts of fuel composition with a fairly strong focus on

alcohol blends. This is largely for practical reasons. One of the reasons is that pump

fuel in the United States already contains ethanol. A second relates to the synergies

between decreased PM and improved knock resistance afforded by ethanol/gasoline
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blends [62, 63].

One study of oxygenated fuels attributed decreases in PM emissions, in part, to

changes in volatility with the addition of alcohol. The addition of ethanol, for exam-

ple, despite its high latent heat of vaporization, may improve the mid-range volatility

of a gasoline blend, improving mixing and reducing PM [64]. While some studies

report decreased number emissions with no change in size distribution [65], it should

be noted that the decreases observed in PM emissions with ethanol addition were

not uniform for all particles. In some cases, increases were seen in nucleation mode

particles, but decreases were seen in accumulation mode particles. The mixing ben-

efits with ethanol blending were not universally observed. In [66], less homogeneous

mixtures were observed with ethanol blending. Other studies did find improvements

associated with ethanol, but the improvements did not necessarily correlate linearly

with increased ethanol content. One study found better evaporative properties with

ethanol blends, but the PM reductions began to decrease when the ethanol fraction

was increased above 10% [67]. It was thought that the higher ethanol content may

actually impede the evaporation of heavier gasoline components due to the charge

cooling effect. In addition to the ethanol experiments, this study also looked at fuels

more generally to try to find relations between the composition and the PM emis-

sions. In this case, high boiling point aromatics were found to be the best predictor

of PM emisisons.

There have been several attempts to develop predictive models relating fuel prop-

erties to vehicle PM emissions. In a study conducted at Honda [68], it was found

that high boiling point, and high double-bond-equivalent aromatics were associated

with increased particle number emissions while high boiling point, low double-bond-

equivalent, components had only a minor effect on PM. Here, a PM index was devel-

oped, which was then verified for different fuels and engines, with a specific effort to

ensure it applied for fuels available in a variety of countries. In a study by Leach et

al. [69], a refinement to this index for particle number emissions was validated with

fuel mixtures carefully blended to offer independent control of volatility and aromatic

content.
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PM Control Strategies

Much work has gone into attempts to understand the processes through which PM

is formed in DISI engines. As discussed above, the main contributor to PM seems

to be soot formed in reactions involving fuel from liquid films, with contributions

from pre-mixed combustion in locally rich regions. While there may be some detail

lacking in these explanations of soot formation, they nevertheless provide a practical

framework that enables the development of systems designed to limit PM emissions.

Strategies to reduce PM emissions fall into two broad types: in-cylinder strategies

and aftertreatment strategies. Owing to the cost and complexity of aftertreatment

systems, in-cylinder PM reduction strategies are more desirable. These generally

involve efforts to improve the mixture homogeneity through injection strategies,or

the control of combustion parameters.

Early attempts at reduced emissions through injection design included Toyota's

development of a fan-shaped injector for use in stratified charge operation [70]. This

was targeted at reductions in emissions at moderate loads and engine speeds. Under

cold-start conditions, the goal was to use this system while reducing wetting [71].

In the experiments, this was accomplished by injecting heated fuel and using careful

injection strategies to minimize wetting with stratification and the aforementioned

fan-shaped sprays. More recently, the prospects of lean, stratified charge combustion

seem less promising, but similar spray optimization efforts are ongoing. For example,

in developing the combustion system for their 3.6L DISI V6 engine, GM engineers

optimised the injector flowrate, orifice geometry and spray pattern to balance the

power, torque, fuel consumption, driveability and emissions needs of the engine [72].

This engine does still incorporate a piston bowl for cold-start, but efforts were made

to characterize the interactions between the fuel spray and this bowl.

The work of Whitaker et al. [4] offers a thorough review of some of the options

currently available for reducing PM emissions with in-cylinder strategies. The fo-

cus was on the optimization of the fuel injection system and the combustion system.

A tradeoff between fuel atomization and impingement was identified, with the key
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to reduced emissions being the reduction of impingement. Four distinct operating

regimes were identified, and soot reduction strategies were offered for each. Most

relevant to this study are the cold-start and catalyst-heating operating conditions.

Under both conditions, optimized injection strategies are important. In addition to

the injector design, high injection pressures have been used to aid in atomization and

multiple injections are used to limit penetration. For the catalyst light-off phase,

the cam timing and ignition timing were also identified as areas with potential for

optimization. These parameters are related to the combustion phasing and tempera-

tures, influencing the soot formation and oxidation reactions. The multiple injection

strategy has been studied in several locations and is seen as a promising technology

for the reduction of other emissions, such as hydrocarbons, in addition to PM [73].

Other strategies have also been considered for improving injection characteristics.

One example is the use of supercritical injection pressures [74]. In this system, at

high pressures, good mass flow can be maintained despite being supercritical, and the

fuel condenses to very small droplets, which should evaporate easily, after injection.

Piock et al. [3] offer similar injection strategies for the reduction of PM emissions.

They suggest increased fuel pressures and temperatures, multiple injections, mini-

mized wall wetting, careful control of the equivalence ratio, good atomization and

optimized spray patterns. An emphasis, in this paper, seems to be on maintaining

elevated temperatures to reduce the effects of fuel impingement. In addition, heated

inlet air, and optimized valve timing and residual gas mixing are suggested. Control

of the cam timing seems geared toward controlling internal exhaust gas recirculation

(EGR) rates. External EGR has also been considered as a means of reducing PM

emissions. Cooled EGR has been found to be effective at reducing particle num-

ber and mass emissions [58]. Though it is generally a challenge to reduce mass and

number emissions simultaneously, it was found that the use of EGR can help to re-

duce emissions when operating outside the optimal settings. Of course, most of these

strategies will require different optimizations depending on the fuel being used.

While injection and combustion optimization are promising strategies for PM

reductions, it is possible that they may not be sufficient. In this case, revised or ex-
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panded aftertreatment systems may be necessary. For meeting particle number limits,

it has been suggested that three-way catalysts (TWC) could be effectively optimized

to reduce the concentration of small particles in the exhaust, though the concentra-

tion of large particles will likely experience modest increases [75, 76]. Should this

still not be sufficient, it may be necessary to follow the lead of Diesel manufacturers

and use particulate filters. Recent studies of "gasoline particulate filters" (GPF) have

demonstrated efficiencies of approximately 80% [22]. Since cold start is a major area

of concern, a study was conducted to examine GPF performance at cold ambient tem-

peratures. For cold engines, when filter regeneration could be avoided, the ambient

temperature had little effect on the filtration efficiency, even though the engine-out

particulate emissions changed. During regeneration at cold temperatures, however,

the filtration efficiencies were significantly reduced, with similar concentrations of

ultrafine particles observed upstream and downstream of the filter [77].

1.2 Research Objective

This study was intended to examine the physical processes leading to the formation

of particulate matter, in cylinder, during cold-idle operation in DISI engines. The

primary goal was to offer a thorough explanation of the mechanism through which

liquid fuel films on cylinder surfaces give rise to reactions supporting soot formation.

A complete conceptual model of particulate formation, including a full under-

standing of the reactions involving liquid fuel would be of great value to the automo-

tive industry as it strives to meet increasingly stringent emissions standards. When

equipped with a full understanding of the underlying processes leading to particulate

formation, it is expected that combustion specialists will be better able to design

engine combustion systems which successfully avoid particulate formation.
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1.3 Research Approach

The ultimate goal of this research project was to gain a more complete understanding

of the soot formation processes in DISI engines. In working toward this goal, the

research effort was guided by two hypotheses. The first was referred to as the "residual

fuel effects" hypothesis and the other was the "fuel effects" hypothesis.

Based on observations reported in previous works [9, 47, 52], the residual fuel

effects hypothesis suggests that, in cold engines, PM results primarily from residual

fuel, present after the wetting of in-cylinder surfaces, which will be burned with

residual oxygen from burned gases. It was thought that this combustion would behave

as a very fuel-rich flame with the associated sooting propensity.

In the fuel effects hypothesis it was predicted that differences in PM emissions

observed [78] for different fuels could be related to physical or chemical properties of

those fuels. Different evaporation properties would affect the residual fuel composi-

tion, the mixture stoichiometry would affect the sooting propensity given constant

mixing properties (i.e. with a given amount of fuel and air, a fuel with a higher

stoichiometric air/fuel ratio would yield a more fuel-rich mixture) and soot formation

chemistry may result in different emissions based on the soot formation pathways

followed.

An experimental approach was chosen for this work, but this had to be accom-

plished without the ability to visualize the combustion process. Instead a series of

engine and rapid compression machine (RCM) experiments were designed to allow

inferences of the in-cylinder soot formation processes based on the emissions response

to changes in engine operating conditions or fuel compositions.

1.3.1 Engine Experiments

In order to measure engine exhaust concentrations of PM. a particulate sampling sys-

tem was installed on a 2.0L, turobcharged, DISI engine. These experiments provided

an opportunity to test the residual fuel effects hypothesis. Experiments were designed

to allow some inference of the impacts of engine operating parameters on PM forma-

39



tion, with a focus on examinations of the effects of piston fuel films. The emissions

response to spark timing, injection timing, coolant temperature, fuel volatility, fuel

composition and residual oxygen content were examined.

These experiments were chosen since they provide some insight into the dynamics

involved in the fuel-film soot generation. The size and location of fuel films are

affected by these parameters, as are the conditions of the residual gases with which

it is expected fuel arising from surface films must react.

1.3.2 Rapid Compression Machine Experiments

The rapid compression machine (RCM) offers an opportunity to observe PM for-

mation under carefully-controlled mixture conditions. In an engine, it is difficult to

know the mixture composition for an individual cycle, and, further to that, it was

not possible to measure particulate matter emissions on a cycle-resolved basis. The

RCM was equipped with optical access, so, using the light extinction technique, it

was possible to measure the soot volume fraction for an individual combustion event.

Granted, the combustion process is not representative of what takes place in an en-

gine, but, it provides a useful tool for characterizing the sooting propensity of fuels.

These experiments provided useful data for examining the fuel effects hypothesis.

The fuel/air mixture was controlled very precisely and the mixture of intert gases

in the synthetic air could be chosen in order to provide known temperatures upon

compression. Heaters in the RCM combustion chamber allowed specification of the

initial temperatures, allowing measurements of soot formation threshold for a variety

of ignition temperatures, pressures and fuel compositions.
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Chapter 2

Experiments

This chapter provides a detailed description of the experiments conducted in this

study. In the first section, the physical implementation of the experiments is de-

tailed, while the second section outlines the procedures which were followed during

the experiments.

2.1 Experimental Setup

In this section, details of the physical set-up and instrumentation of the experiments

will be discussed. This includes both engine experiments as well as RCM experiments.

2.1.1 Engine Experiments

The bulk of the experiments used to test the hypotheses laid out in this thesis were

based on measurements of engine emissions. A 2.OL, 4 cylinder, turbocharged, DISI

engine was used. This engine, which has been used in a variety of vehicles including

the Chevrolet Cobalt SS, the Pontiac Solsice GXP and the Saturn Sky Redline, is

illustrated in figure 2-1. with a focus on the exhaust system.
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Figure 2-1: 2.OL, Turbocharged, Direct Injection Spark Ignition Engine @GM Com-
pany.

Engine Specifications

The engine was manufactured by General Motors and is code-named LNF. It is a

spray-guided engine, with side-mounted injectors, 4 valves per cylinder and centrally-

mounted spark plugs. The engine is equipped with variable valve timing (VVT) for

both the intake and exhaust valves. This engine was used for this study of PM as

well as a parallel study of unburned hydrocarbon emissions. The basic specifications

of this engine are shown in table 2.1.

As mentioned., this is engine was equipped with VVT. The VVT system uses vane-

type hydraulic camshaft phasers and is capable of advancing the inlet valve timing by
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Table 2.1: LNF engine layout and geometry information

Engine type In-line 4 cylinder
Displacement [cc] 1998

Bore [mm] 86
Stroke [mm] 86

Wrist pin offset [mm] 0.8
Connecting rod [mm] 145.5

Compression ratio 9.2:1
Fuel system Side-mounted gasoline direct injection

16 valve DOHC,
dual cam phaser

Valve configurationdulcmpae
35.1 mm intake valve diameter

30.1 mm exhaust valve diameter
Max. torque 353 N-m at 2500 rpm
Max. power 194 kW at 5300 rpm

up to 500CA and retarding the exhaust valve timing by up to 50 CA. The valvetrain

specifications along with the VVT system capabilities are summarized in table 2.2.

Table 2.2: Basic valve timing and lift (cam phasers inactive)

Opens Max opening Closes
Base timing +11ATDCcompr. +126 0 ATDCgas.ex. +61 0 ABDCcompr.

Intake valve Max advance -39 0ATDC compr. +76 0 ATDCas.ex. +11 0ABDCcompr.
Lift [mm] 0.25 10.3 0.25

Base timing +52 0BBDCeXP. -125 0ATDCas.cx. -10 0ATDCcompr.
Exhaust valve Max retard +2 0BBDCeXP. -75 0ATDCgas.ex. +40 0 ATDCcompr.

Lift [mm] 0.25 10.3 0.25

Engine Controls, Installation and Modifications

The engine was installed on a test-bed. mated to a Froude-Consine AG-80 eddy

current dynamometer and an electric motor via a driveshaft and compliant rubber

coupling. The setup of the engine and instrumentation is illustrated schematically in

figure 2-2. The coupling served to damp out fluctuations in engine torque. There was

also an enlarged flywheel assembly used to minimize speed fluctuations. The test-bed

motor was not powerful enough to start the engine. so the stock starter motor was
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retained and was used to crank the engine before engaging the test-bed motor.

Ambient Air IN

High Pressure Fuel IN

Horiba NDIR
(CO, CO 2 A)

LICOR NDIR
(0-2% CO 2)

Air Chiller and
Dehumidifier

J Diluter N2 Diluent IN SMPS

, ilute exhaust*...............9...........................

Figure 2-2: The engine is
emissions analyzers.

equipped with inlet air conditioning and instrumented with

Intake and Exhaust The intake and exhaust manifolds were modified by adding
ports to allow pressure and temperature measurements. Also, the catalytic converter
and housing were removed. This study was interested in PM formation and, as
such, measured engine-out emissions, upstream of the usual catalyst location. Since
the catalyst was not used, it was replaced with an empty housing in order to avoid
damaging a catalyst due to prolonged operation at high exhaust temperatures.

Engine Control The engine was controlled electronically using a C-based code,
developed at MIT. The control code operates on a pair of PCs. Using the "Master"

computer, a variety of engine operating parameters were specified. These data were
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sent to the "Slave" computer on which the control code was executed. The computer

was equipped with digital-to-analogue and analogue-to-digital capabilities and, as

such, is capable of reading engine sensor outputs and sending control signals. On

the "Master" computer, spark timing, injection timing, injection duration, number of

injections, spark dwell and valve timing were specified. The code then executes the

control commands in an infinite loop following a set schedule which is timed using

the crankshaft encoder signal. There are cut-off switches for the injector and spark

signals, as well as a main kill switch which may be used to terminate the control loop.

All four cylinders received the same control signals in this configuration, though it is

possible to modify the code to support cylinder-to-cylinder differences.

Fuel Supply The engine's mechanical fuel pump was bypassed and replaced with

a fuelling system consisting of a hydro-pneumatic accumulator, pressurized by a com-

pressed nitrogen cylinder, feeding the fuel rail directly. The accumulator was filled by

venting the pneumatic side and filling the fuel side using an automotive low-pressure

electric fuel pump. This accumulator system allows constant fuel pressures regardless

of engine speed or operating condition. The pressure could be specified between 30bar

and 150bar. A chiller was used, along with a single pass counter-flow heat exchanger

to control the fuel temperature.

The injectors were controlled using the aforementioned C code in tandem with a

Siemens injector driver. This injector driver converts the injector control pulse from

the slave computer into to the high peak current, low-hold current injection pulse used

to actuate the fuel injectors. The high initial current enables fast injector opening.

After the injector has begun to open, a lower current is used to hold it open.

Valve Timing The VVT system discussed earlier was also controlled using MIT's

custom code. The lift profile and duration were constant. but, by varying the phaser

position, the timing could be changed. The system is controlled by energizing a

solenoid valve which controls the oil flow to the camshaft phasers. When not en-

ergized, the phasers remain locked in their parked position. When energized, the

45



solenoids allow a flow of oil, proportional to the energizing voltage, to flow into the

phaser. This moves the vanes, resulting in relative motion between the rotor (attached

to the camshaft) and the stator, which is driven by the timing chain.

Lambda The equivalence ratio was not controlled by a feedback loop, but was

monitored using an ETAS LA-4 wideband UEGO oxygen sensor and chosen manu-

ally through specification of intake manifold pressure (via throttle position) and fuel

injection rate (pulse width and pressure). The lambda sensor was mounted in the ex-

haust, downstream of the turbocharger in a custom housing that was built to replace

the catalytic converter. The throttle position was controlled using a custom micro-

controller host H-bridge PWM (pulse-width modulation) controller. This allowed the

user to specify the throttle plate angle. It was also built with the capability to con-

trol the intake manifold absolute pressure (MAP) or the net Indicated Mean Effective

Pressure (IMEP), though these capabilities were not employed in this study.

Cooling and Air Conditioning The engine was cooled using an electric chiller

which circulated a 50/50 mixture of water and ethylene glycol through the engine's

existing cooling circuit. The chiller was capable of controlling the coolant temperature

over a wide range, including the ability to chill the coolant to below 00 C.

Alternatively, a coolant heating/cooling circuit was installed to allow high-temperature

experiments with minimal warm-up time. This system consisted of a coolant storage

vessel equipped with a heater as well as a liguid-to-liquid heat exchanger which was

used for cooling. City water was used on the cold side of this heat exchanger. The

solenoid valve controlling water flow as well as the heater were controlled using an

Omega CN7800 digital PID controller.

The test bed was equipped with an oil cooling system, but it was not used during

the experiments conducted for this project. Instead, the production oil cooler installed

on the engine was used, with the coolant supplied from the main engine cooling circuit.

The engine was also equipped with an inlet air conditioning system consisting

of a air-to-liquid intercooler, an electric chiller, a condensate trap and an air heater.
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The electric chiller, equipped with a temperature controller, circulated chilled coolant

through the intercooler circuit to cool the inlet air. The inlet air could be heated with

the resistive heater (controlled by an Omega CN7800 digital PID controller).

The humidity could also be specified psychrometrically by first chilling the air,

until it is at the desired saturation temperature, then heating the air to the desired

temperature and relative humidity.

Engine Instrumentation

The engine was thoroughly instrumented for the purposes of engine control and com-

bustion analysis. The instrumentation included a series of thermocouples, pressure

transducers, exhaust gas analyzers and a crankshaft position encoder. Data from

most of these instruments were collected using a National Instruments data acqui-

sition (DAQ) system along with National Instruments LabView software. Those

instruments connected to the DAQ are summarized in table 2.3.

Table 2.3: DAQ sensor details
Crankshaft position BEI encoder, 3600 per rev.
Cylinder pressure Kistler 6125A sensor, Kistler 5010b charge amplifier
Intake pressure (MAP) Honeywell SA-001-BAC1DE sensor
Exhaust pressure OMEGA PX209-030A5V sensor
Fuel pressure OMEGA PX309-3KG5V pressure transducer
Intake cam timing OEM intake cam sensor
Exhaust cam timing OEM intake cam sensor
Temperature K-type thermocouples
Air-fuel ratio ETAS LA-4 Lambda Meter
Exhaust composotion Horiba MEXA-554JU and Horiba MEXA-584L

Crankshaft Position The crankshaft position is measured using the optical en-

coder which is connected to front of the crankshaft. The encoder's bottom dead centre

(BDC) signal was aligned with that of cylinder #4 on the engine using an AVL-428

capacitive piston position sensor.

Pressure Measurements The pressure of cylinder #4 was measured using a

Kistler 6125A pressure transducer. The signal was routed through a type 5010b
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charge amplifier before being recorded by the DAQ system. To minimize the effects

of thermal shock caused by the flame, the transducer is fitted with a flame arrestor.

This transducer and charge amplifier combination experiences an offset drift, requiring

the signal to be pegged to a value provided from another pressure measurement. In

this case, the intake pressure was used for pegging. The pegging routine is completed

in the LabView software and is detailed in [79].

The intake manifold absolute pressure (MAP) sensor was located in the intake

runner for cylinder #4, approximately 5cm upstream of the port. Usually, the MAP

would be measured in the intake plenum, but, for the pegging purposes mentioned

above, this location provided a good compromise of MAP measurement and utility

in pegging the cylinder pressure to the intake runner pressure at BDC. The exhaust

manifold pressure was measured in the runner of cylinder #4, approximately 8cm

downstream of the exhaust port. The fuel pressure sensor was located in the fuel

supply line, upstream of the fuel rail.

Cam Timing The intake and exhaust cam timing were measured using the pro-

duction Hall-effect sensors mounted at the rear of the camshafts.

Temperatures A number of K-type thermocouples were mounted on the engine.

These included three thermocouples in the intake. One was upstream of the compres-

sor, but downstream of the inlet air heater, another was downstream of the compressor

and the third was in the intake runner for cylinder #4. There were also three ther-

mocouples mounted in the engine cooling circuit. One was at the coolant inlet to

the engine, one was at the coolant outlet and the third was mounted in the heated

coolant reservoir. The exhaust was fitted with a total of four thermocouples. One

was in the exhaust runner of cylinder #4, approximately 8cm from the exhaust port.

This thermocouple was equipped with an aspirated radiation shield in an attempt to

measure accurate exhaust thermal enthalpy data [80]. The other three were mounted

downstream of the turbine and were not equipped with radiation shields, so for high

temperatures (above 700 C) some error (up to 50 C)is expected in the temperature
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measurement. One of these was located close to the turbine outlet, one was mounted

upstream of the production catalyst location and the third was mounted downstream

of the catalyst location. The fuel inlet temperature was measured with a thermo-

couple mounted upstream of the fuel rail and the lubricating oil temperature was

measured using thermocouples mounted at the inlet and outlet of the oil cooling

circuit.

Air and Fuel Flowrates The inlet airflow rate was measured using an EPI Flow

thermal air flow meter (model number 8716-MPNH-SSS-133-AC115-AIR). This flow

meter is mounted horizontally upstream of the inlet air conditioning system.

The fuel system is not equipped with a flowmeter, but, instead, the mass per

injection was measured against injection pulsewidth signal to provide a calibration

allowing the fuel flow rate to be calculated. These calibration data are found in

Appendix A.

The air/fuel ratio can, theoretically, be calculated using the airflow and fuel flow

measurements, but, due to uncertainties over the amount of fuel contributing to oil

dilution (oil dilution has been observed), the air/fuel ratio was instead measured using

a lambda sensor.

Lambda and Exhaust Gas Analysis The air/fuel ratio was measured using

an ETAS LA-4 UEGO sensor. The catalyst housing, where it would normally be

mounted was replaced by a hollow housing, but an attempt was made to locate the

UEGO sensor close to the stock location. The sensor was located downstream of the

turbocharger, and thus measured the average equivalence ratio across all cylinders.

It was noted during experiments that there were significant cylinder to cylinder

variations in equivalence ratio (cylinder #4 ran substantially more rich than the

average). In situations where the equivalence ratio for cylinder #4 was important,

the Horiba gas analyzer could be used. Using the CO and CO2 measurements and

given the fuel properties, it performed an internal carbon balance to calculate lambda.

The sampling line was located in the same position as the exhaust manifold pressure
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transducer. Initially, a MEXA-554JU analyzer was used. This was a Non-Dispersive

Infrared (NDIR) analyzer which measured CO, C0 2 , unburned hydrocarbons (HC)

and 02 concentrations. This analyzer was damaged and was replaced by a Horiba

MEXA-584L analyzer. This analyzer was also an NDIR analyzer, but it was not

equipped with an 02 measurement cell.

The Horiba analyzers measure emissions on a dry basis. In order to dehumidify the

exhaust gases, a condensate trap was included upstream of the NDIR. The condensate

trap consists of coiled copper tubing submerged in an ice reservoir. The condensate

and exhaust gases then flow into a pyrex flask. The gases are sampled by the NDIR

from a position near the top of this flask, while the condensate collects in the bottom

of the flask. The sample is also drawn through a Drierite desiccant.

Particulate Instrumentation

In addition to those instruments discussed in the previous section, series of instru-

ments were installed to measure PM emissions. These included a custom dilution

system, a Scanning Mobility Particle Sizer (SMPS) and two NDIR sensors measuring

CO 2 emissions for dilution purposes. The exhaust sample for particulate analysis was

collected in the exhaust runner of cylinder #4, approximately 10cm from the exhaust

port.

SMPS For this study, a TSI model 3934 SMPS was used. The SMPS system

consists of a model 3071A Electrostatic Classifier and a model 3010 Condensation

Particle Counter (CPC). The Electrostatic Classifier operates by first imparting a

known charge distribution on the aerosol sample using a bi-polar charger, which

contains Kr8 5 . Then, the particles are separated based on mobility. In the classifier,

there is a Differential Mobility Analyzer (DMA) column. The DMA consists of a rod

and an outer tube, between which there is a voltage difference. The aerosol sample

is admitted along the inner diameter of the tube, separated from the rod by a sheath

flow of filtered air. The flow velocities of the aerosol sample and the sheath flow are

equalized using a series of flowmeters and needle valves. When a. voltage difference is
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applied between the rod and the inner tube, particle paths will be deflected toward

the rod depending on the charge which they acquired in the neturalizer. There is

a slot in the bottom of the inner tube which feeds an outlet tube. Those particles

which are deflected such that they enter a flowstream leaving the DMA through the

slot in the inner rod will proceed to enter the CPC as a monodisperse aerosol flow.

This is shown in figure 2-3. In the CPC, the particle-laden flow passes over a bath

of n-butanol, which condenses onto the particles, increasing their size such that they

can be counted optically (see figure 2-4). The voltage difference is scanned such

that the particle sizes sampled will change to span the entire range of interest. The

particles are counted in discrete bins of particles sizes. The SMPS functions (DMA

voltage scanning and CPC number data collection) are managed using TSI's Scanning

Mobility Particle Sizer software, version 3.2, which communicates with the SMPS via

a serial connection.
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Figure 2-3: The Operation of tlh TSI Model 3071A Electrosttitc Classifier [8]

This SMPS model was designed primarily for use in sampling atmospheric aerosols,

but it, has been widely used in engine emissions research [83-87]. It is not suitable
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Figure 2-4: The Operation of the TSI Model 3010 Condensation Particle Counter [82]

for engine-out emissions, but with proper dilution, it can effectively measure engine

exhaust PM emissions. Perhaps the largest compromise that is made is that the mea-

surements are limited to steady-state experiments due to the long sampling intervals

(in this case, 90 seconds) needed to complete a full scan.

The SMPS is configured with a 0.0457cm diameter orifice in the impactor assembly

and the flowrate is set at 0.7slpm. This results in a size measurement range of 9.31 to

365nm. The SMPS is operated in the under-pressure mode. meaning that the sample

is drawn through the system by a vacuum pump rather than being driven through

by a pressure differential.

Dilution The diluter is an integral part of the PM sampling system. Broadly

speaking, exhaust dilution serves three roles. The first is to reduce the exhaust

concentration to a level that can be measured by the instrumentation. The second

is to keep the sample sufficiently dilute to prevent agglomeration. The third is to

attempt to replicate the processes undergone by tailpipe emissions as they are mixed

with the atmosphere. This is important because engine-out emissions are not what
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affects the environment or human health. It is, instead those emissions which have

dispersed in the atmosphere which affect air quality and health.

In this study, since the exhaust was sampled upstream of the turbocharger, two

additional concerns had to be addressed when designing a dilution system. The first is

that the SMPS is designed to accomodate samples at atmospheric pressure. Because

the sample is drawn upstream of the turbocharger, the sample pressure is slightly

above atmospheric. This was especially true under exceptionally inefficient operating

condtions (e.g. a very late spark requires relatively high fuelling and airflow rates to

maintain the desired load). Thus, the dilution system had to be designed to minimize

the effects of the elevated exhaust pressure on the analyzer. The second concern

was the pressure pulses that are encountered when sampling in an exhaust runner.

Typically, exhaust is sampled much farther downstream in the exhaust system, where

the pulses from several cylinders effectively average to a steady pressure. In this case,

however, since engine out exhaust was desired, it was necessary to sample upstream of

the turbocharger, where pressure pulses are present. It was necessary for the dilution

system to dampen the effects of these pressure pulses, since the oscillatory nature of

flow in this case may not allow the flow within the DMA to remain laminar. The flow

through the DMA must remain laminar in order for particles to be properly classified

according to diameter.

In order to accomplish the dilution task while accounting for these concerns, a

new dilution system was designed for this project. It consists of a heated aluminium

block containing two 0.020"x2" orifice tubes and a sampling chamber as shown in

figure 2-5. The first orifice tube is mounted between the exhaust manifold and the

sampling chamber. This orifice was sized to dampen the pressure pulsations while

allowing adequate flow for the sampling devices. The sampling chamber is connected

to a large-diameter chamber open to atmosphere. This ensures that the sample drawn

into the dilution tube is always at atmospheric pressure. The constant outward flow

of exhaust (at a larger volume rate than is sampled) ensures there is no back-flow of

air into the sampling chamber.

The second orifice was located between the sampling chamber and the dilution
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Figure 2-5: The dilution block provides a sampling location at constant atmospheric
pressure.

tube. A vacuum supply is connected to the opposite end of the dilution tube which

creates a slight vacuum, drawing a sample into the dilution tube. The diluent (nitro-

gen) is injected into the tube perpendicular to the exhaust flow. The length of the

dilution tube was chosen to permit adequate mixing of the exhaust sample with the

dilution gas. Nitrogen was chosen to eliminate any oxidation reactions, but air or an-

other diluent could also be used. At the end of the dilution tube, the sample is drawn

for the SMPS measurement. The vacuum level in the dilution tube is controlled by

way of a needle valve which throttles a flow of air into the vacuum pump. Closing the

valve permits less ambient air to be drawn by the pump, causing a decreased pressure

in the dilution tube. The diluter assembly is shown in figure 2-6.

In order to replicate the action of a thermodenuder. the use of which is specified in

the Particle Measurement Programme (PMP) protocol [881, the dilution block is fitted
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Figure 2-6: Custom dilution system.

with 6 cartridge heaters controlled by a PID controller. These are used to heat the

block to a temperature of 200'C. This accomplishes two things. Firstly, the elevated

surface temperatures in the sampling block help to minimize thermophoretic losses

in the orifice tubes. Secondly. the high tenplratulre pievented volatile hydrocarbons

from condensing before dilution. After dilution,. the hydrocarbon concentrations were

likely too low to permit nucleation. Few nucleation mode particles were observed in

the PM data.

In order to quantify the dilution ratio. a differential measurement of CO 2 con-

centrations is used. The upstream (undiluted) concentration is measured using the

Horiba NDIR gas analyzer. The Horiba NDIR measures CO 2 concentrations between

0 and 20%vol. The downstream (diluted) CO 2 concentration is measured using a Li-

Cor LI-820 NDIR CO 2 analyzer. which measures over the range of 0-20.000ppm with

an error of less than 3% of the reading. The diluted sample is drawn approximately



5cm upstream of the SMPS inlet (impactor). To allow simple calculations, this mea-

surement is also on a dry basis, being dehumidified using the same condensate trap

setup as the Horiba NDIR.

2.1.2 Rapid Compression Machine

A rapid compression machine is a device commonly used to study fuel ignition charac-

teristics under conditions approximating the pre-mixed combustion phase in a Diesel

engine [89]. It works by compressing a uniform mixture of fuel and oxidant in a

combustion chamber. The rapid rise in temperature and pressure associated with

compression causes the mixture to autoignite. An RCM is a single-stroke device

which provides a force balancing the combustion pressure in order to enable a con-

stant volume combustion event.

RCM Design MIT's RCM #1 was used in this study. It consists of a combustion

cylinder, a hydraulic cylinder, a pneumatic cylinder and a compressed air tank (see

figure 2-7). The compressed air tank provides the driving pressure for the pneumatic

cylinder which powers the piston assembly. The ball valve is in place to allow the

compressed air tank to be pressurized without pressurizing the pneumatic cylinder.

The hydraulic piston is equipped with a face seal, which, when sealed allows the

hydraulic cylinder to be pressurized, resisting the force from the pneumatic cylinder.

This serves as a lock on the piston assembly. The hydraulic cylinder is filled with

silicone oil. Since the compressibility of this fluid is very low, when the gas pressure

used to pressurize the hydraulic cylinder is released, the hydraulic pressure releases

nearly instantly, allowing the pneumatic pressure to force the piston assembly forward.

This compresses the air/fuel mixture in the combustion cylinder, resulting in the

autoignition of that mixture. The design of this RCM is detailed in the doctoral

thesis of loannis Kitsopanidis [89]. The only changes made to this design was the

addition of a second seal on the combustion piston, and the replacement of the 1/4"

capscrews on the pneumatic shaft with 3/8" capscrews.

To measure the cylinder pressure during the combustion event, the RCM com-
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bustion chamber is equipped with a Kistler 6125A pressure transducer, connected

to the National Instruments PCI-6025E data acquisition card through a Kistler type

5010 charge amplifier and a National Instruments BNC 2090 terminal block. The

transducer is oriented perpenicular to the axis of the RCM.
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Figure 2-7: The MIT Rapid Compression Machine

Soot Measurement Optical access windows allow the Light Extinction Method

to be used to measure the soot formation in the combustion chamber. In this imple-

mentation, the light source is a 30mW He-Ne LASER with a wavelength of 632.8nm.

The LASER beam is directed through the combustion chamber into an integrating

sphere. which transforms the concentrated LASER light into a diffuse light source,

the intensity of which is then measured using a photomultiplier tube. The photomul-

tiplier tube is equipped with a line filter. which seeks to minimize the transmission of

light at wavelengths other than 632.8nm. It is also equipped with a collimator, which

serves to keep any light, passing through the line filter perpendicular to the filter face,

since its effectiveness decreases sharply as the light, beams stray from perpendicular.

The LASER measurement system layout is shown in figure 2-8.
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Figure 2-8: The MIT Rapid Compression Machine Light Extinction Method Appa-
ratus

Mixture Preparation In addition to the RCM is a mixture preparation apparatus

which is used to prepare a homogeneous mixture of fuel, oxidizer and inert gases. The

apparatus consists of a pressure vessel fitted with a vacuum septum, three metering

valves, two "high" pressure transducers (1000 Torr). one "low" pressure transducer

(100 Torr), a mixing fan (driven through a magnetic vacuum pass-through), an array

of heaters and a pressure-relief valve. The vessel is fitted to a vacuum pump. The low

pressure transducer is used measure the vacuum level in the vessel. One of the high

pressure transducers is used to measure the partial pressures of gases in the mixing

process and the other is used to measure the pressure in the feed line to the RCM

combustion chamber. Liquid fuel is injected through the septum. The fuel vapourizes

because the vessel is under vacuum and heated. This mixture preparation system is

a tremendous improvement over the system used in previous work at MIT [89] as it

allows not only easier mixture preparation. but also a larger volume of mixture to be

prepared at one time. allowing the RC to be fired several times with a consistent

mixture.
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2.2 Experimental Procedures

This section outlines the procedures that are followed to collect data during engine

and RCM experimentation. Data processing will also be discussed.

2.2.1 Engine Experiments

Engine experiments yielded the bulk of the data used in this project. This section

describes the experimental and analytical procedures followed during the course of

this study.

Engine and Instrumentation Preparations

Engine Before beginning experiments, the engine must be chilled to operating tem-

perature and fuelled. To bring the engine to operating temperature, first the city

water valve is opened until enough water pressure (approximately 25psi) is available.

The laboratory water recirculating pump should be enabled during all experiments.

Then the large chiller is powered by first turning on the circulating pump, then the

compressor. When running chilled experiments, the chiller was allowed to run for

approximately 1 hour to allow the engine to reach operating temperature. When

experiments are performed on a warm engine, using the heated coolant system, the

coolant was recirculated for less time before firing and the engine was then allowed

to reach its operating temperature while firing. If the air chiller is being used, this

chiller should also be powered in order to cool the intercooler body.

To fill the fuel delivery system, the "pressure cooker" fuel tank is first filled and

then the lid is sealed. With the accumulator pneumatic bypass valve opened, the

low pressure fuel pump is powered with the valve assembly directing fuel to the

hydraulic side of the accumulator. When the accumulator is full, the pressure in the

fuel delivery system will rise. This can be seen on the pressure regulator pressure

gauge. At this time, the pump may be turned off, and the fuel 3-way directional

valve may be turned to supply the engine. Finally, the compressed gas bypass valve

is closed and the fuel accumulator is pressurized by opening the compressed nitrogen
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valve. The fuel pressure is specified using the tank-mounted regulator.

The fuel system chiller should be powered during the warm-up period to allow the

fuel system components to be brought to operating temperature before starting the

engine.

Instrumentation A number of sensors and analyzers must be warmed up, con-

figured or calibrated before beginning an experiment. The following devices require

some action before beginning experiments:

" UEGO Sensor

" Horiba NDIR exhaust gas analyzer

* Li-Cor NDIR CO 2 analyzer

" Exhaust dilution system

" Scanning Mobility Particle Sizer

" Data acquisition system

" Cylinder pressure transducer

The UEGO sensor has to be configured for the fuel composition. The H/C ratio,

C/O ratio, stoichiometric air/fuel ratio and H20 content are input. These values are

needed for the wideband action of the sensor. The UEGO should be powered before

beginning experiments.

The Horiba and Li-Cor NDIR analyzers must be warmed-up and calibrated be-

fore experiments may begin. The Horiba analyzer performs a 5-minute warm-up

routine following application of power. The Li-Cor analyzer requires approximately

30 minutes of warm-up time. For both anlayzers, during the warm-up period and for

approximately one half-hour following, dry air is used to purge the detector before

calibration. The air is dried using the condensate trap which should be filled with ice

upon powering the NDIR analyzers.

Before calibration, the Horiba analyzer is first leak-checked using the internal

function. To do so, first close the 3-way valve at the inlet of the condenser coil and

then enable the leak-check in the calibration menu. If it passes, continue with the
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calibration following the instructions provided on-screen. Air is used as the zero gas,

and a mixture of 1600ppm propane, 1.9% CO and 13% CO2 with a nitrogen balance

is used as the span gas. The Li-cor analyzer is calibrated using nitrogen as the zero

gas and a custom mixture of 15000ppm CO 2 in a nitrogen balance is used as the span

gas. This calibration is performed by connecting the calibration gases to the ambient

side of the 3-way valve on the Li-cor sampling line. The gases are then admitted to

the analyzer and the needle valve is used to ensure the flowrate is below 1 slpm.

The dilution system and SMPS both require approximately one hour to warm to

operating temperature. During the warm-up phase, the CPC should be inspected to

ensure an adequate fluid (n-butanol) level. Also. the SMPS inlet impactor surface

must be cleaned and a thin film of vacuum grease applied to the surface (this helps

to trap large particles which strike the impactor, preventing them from being re-

entrained in the flow). During the warm-up period, a flow of ambient air is allowed

through the SMPS system, with no volage applied across the DMA.

To enable the data acquisition system, the test-cell power must be on, and the

instrument power must be switched on at the front panel. Then the National In-

struments SCXI DAQ chassis is turned on. The cylinder pressure transducer can be

enabled by switching the charge amplifier to operate mode.

Starting the Engine

Once the engine and instrumentation are warmed-up and calibrated, the engine may

be started. The procedure for starting the engine and preparing to collect data is

outlined below:

1. Ensure that the front-panel and instrumentation circuits are powered.

2. Ensure that the cooling water is flowing and that the laboratory trench exhaust

fan is running.

3. Apply power to the electric motor and motor controller by closing the breaker

labelled "motor."

4. Apply power to the dynamometer controller.
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5. Configure the Siemens injector driver for the appropriate operating pressure

range.

6. On the Master computer, run the program Multi_06am.exe and specify the

spark dwell, the ignition timing, the injector pulsewidth, the start of the first

injection, the start of the second injection, the fraction of fuel injected in the

first injection, the fraction of fuel injected during the second injection, the intake

valve advance and the exhaust valve retard.

7. Turn on power to the throttle controller and ensure the throttle is wide-open.

8. Enable the starter motor.

9. Enable the test-bed electric motor.

10. Turn the key to crank the engine using the starter motor. When the starter

motor is no longer audibly strained (at a speed of approximately 300rpm),

release the key. The test-bed motor should continue bringing the engine up to

speed.

11. Set the electric motor speed to be slightly slower than the intended operating

speed (e.g. in the case of a 1200rpm operating case, the electric motor is set to

run at approximately 1180rpm). This ensures that the motor is not over-loaded

when the dynamometer is engaged.

12. Start the LabView DAQ interface.

13. With the engine motoring, ensure the cylinder pressure trace is correct. If it is

out of phase, flip the phase switch which is located on the platform above the

engine.

14. With the engine motoring, check the oil pressure and perform a walk-through

in the test cell to ensure normal operation.

15. With the engine motoring, begin the dilution gas flow by opening the nitrogen

cylinder valve and turning on the mass-flow controller.

16. Ensure the engine controller is powered and that the "kill switch" is in the "on"

position.

17. Ensure the fuel injector switch is in the "off- position.
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18. Engage the dynamometer clutch.

19. On the Slave computer, run the program Multi-06.exe.

20. Set the throttle position to achieve the appropriate MAP value for the desired

start-up fuelling.

21. Move the injector switch to the "on" position.

22. Adjust the throttle position to ensure the equivalence ratio is stoichiometric.

23. Turn directional 3-way valves on the NDIR analyzers to sample from the engine.

24. Fine tune the operating parameters to reach the desired operating condition.

25. Allow the engine to run for approximately 15 minutes to reach a steady-state.

Setting the Dilution Ratio

After the engine has been allowed to reach steady-state, then emissions and com-

bustion data may be collected, but first, in order collect PM data, the dilution ratio

must be set. This should be done while the engine is running at the desired operating

point. With all sampling equipment connected to the dilution system, begin with the

vacuum bypass valve open 103/4 turns and a diluent flow of at least 5 slpm. Observe

the Li-Cor NDIR CO 2 concentration and wait until it reaches a steady-state. At this

point, adjust the diluent flowrate to achieve the desired dilution ratio.

Once the dilution ratio is specified, the SMPS flowrates must be set according

to the procedures laid out in the operating manual [81]. The process of setting the

SMPS flowrates and the dilution ratio may include some fine-tuning.

Collecting Data

Data are collected using 3 parallel data acquisition systems. Engine and combustion

data are collected using the National Instruments DAQ in conjunction with LabView

software, the PM data are collected using a serial connection to a desktop computer

and TSI's SMPS software and the diluted CO 2 concentration data are collected with

a serial connection to the same computer, but, using Li-Cor's sampling software.

To collect PM data, the SMPS is set-up to run a 60 second upward scan and
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a 30 second downward scan. Before beginning a scan, the Li-Cor NDIR sampling

sofware should be run to collect data continuously. Then 3 consecutive SMPS scans

are completed at each operating point.

Also, at the beginning of each scan the DAQ is triggered to collect engine and

combustion data. The quantity and sampling frequencies of the engine data collected

are described in table 2.4.

Table 2.4: Typical data collection quantity and frequency
Signal Collection Frequency Amount collected
Cylinder pressure, intake 1/[CA] 100 consecutive cycles
manifold pressure, exhaust
manifold pressure
Ignition, start of injection, 1/[CA] 10 consecutive cycles
camshaft position
Engine speed, equivalence 1/[cycle] 5 consecutive cycles
ratio, NDIR emissions, air
flow meter, oil pressure, fuel
pressure
Temperatures (13 ch.) 1/[cycle] 5 cycles
Injector pulse width 100 [kHz] 3.0 [s]
Transient temperatures 1 [Hz] User set

Data Processing Post-processing of PM data is relatively straightforward. The

size and number data are corrected for dilution and then the three runs are averaged.

The dilution ratio is determined by comparing the upstream CO 2 concentration mea-

sured with the Horiba NDIR to the downstream CO 2 concentration measured with

the Li-Cor NDIR analyzer. The upstream CO 2 value is taken from the DAQ data

matching the corresponding SMPS scan. The downstream value was obtained by

finding the CO 2 concentration recorded at the time corresponding to the beginning

of the corresponding SMPS scan.

Processing of the engine and combustion data is far more complex. A MATLAB

code developed for the processing of these data (with minor modifications) was used.

Details of the post processing program are found in the PhD thesis of Kevin Cedrone

[79].
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Experimental Descriptions

This section will describe the details of the experiments that were conducted for this

project. These experiments included spark sweeps, injection timing sweeps, dual in-

jection timing sweeps, investigations of fuel composition and fuel volatility, engine

speed investigations and an investigation of the impact of burned gas oxygen con-

centrations. All of these experiments are focused on examining the formation of

PM in-cylinder during the cold-idle engine operating condition. The basic cold-idle

operating condition is defined in table 2.5. This operating point was defined in col-

laboration with industrial sponsors and was designed to represent a realistic cold-idle

period operation.

Table 2.5: Cold-idle operating point specification
Engine parameter Value Units
Engine Speed 1200 rpm
NIMEP 2 bar
Spark Varied CAD ATDCOmMP.
Fuel/Air Equiv. Ratio (4b) 1
Dilution External EGR 0 %
Coolant/Oil Temperature 20 "C
Fuel Inj. Timing Production intent CAD ATDCasex.
Fuel Inj. Pressure 5.0 MPa
Ambient pressure 100 kPa
Intake Air Temperature 20 OC
Intake Air Vapour Pressure 1 kPa
Exhaust Back Pressure 0.5 kPa

It was discovered early in the course of experiments that there are sinificant cylin-

der to cylinder variations in equivalence ratio, with cylinder #4 running significantly

more rich than the global equivalence ratio suggested by the UEGO sensor. For this

reason. in all of the experiments described below, the equivalence ratio is specified us-

ing the lambda value calculated through a carbon balance done by the Horiba NDIR.

Due to the sampling location, this value offers an estimate of the local equivalence

ratio in cylinder #4.
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Spark sweep The spark sweep was used to gain some understanding of the impact

of mixing time, combustion phasing and in-cylinder temperatures on the formation

and emission of PM. The experiment was completed beginning with the default cold

idle condition shown in table 2.5 with a spark timing of 25 0CA BTDCOmp. From

this point, the spark was gradually retarded until reaching a limit of engine stability

beyond which it was not possible to ensure 3 SMPS scans could be completed without

the engine stalling.

At each new spark timing point, the fuelling rate and throttle position were ad-

justed to maintain a constant load of 2 bar net IMEP as well as a constant equivalence

ratio. Also, the dilution ratio was adjusted to maintain a roughly constant value.

Injection timing investigation The injection timing sweep was used to gain some

insight into the effects of fuel impingement on various cylinder surfaces. In this case,

the spark timing was held constant at 250 CA BTDCCOmP while the start of injection

timing for a single injection was varied between TDCintake and the limit of engine

stability in increments of 20 0CA. At each operating point, the injector pulsewidth

and throttle position were adjusted to maintain a constant load of 2 bar net IMEP as

well as a constant equivalence ratio. The dilution ratio was also adjusted to maintain

a constant value.

Dual injection timing investigation The sweep of second injection timing was

used to further gain insight into the effects of fuel impingement on in-cylinder sur-

faces, wetting of the piston crown, in particular. The spark timing was kept constant

at 11 0CA ATDCcomp. This was the latest stable spark timing studied in the single

injection spark sweep and it was chosen in order to allow some insight into the inter-

actions between the fuel spray and the piston crown bowl, which is designed to direct

the fuel spray toward the spark plug, creating a slightly rich mixture near the spark

plug which enables improved stability at late spark timings. The first injection timing

was set at 80'CA ATDCintake, which is an injection timing that was observed to pro-

duce little soot in the single injection timing sweep. The second injection was then
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varied between 2000CA ATDCintake and 3400 CA ATDCintake. Again, fuelling and

throttle position were adjusted to maintain a constant load and equivalence ratio.

The dilution ratio was adjusted as needed to keep it roughly constant.

Fuel composition investigation For the study of fuel composition, the spark

sweep, injection timing sweep and second injection timing sweep were conducted as

described in the previous paragraphs. In order to use different fuels, however, the

fuelling system had to be drained and purged, the fuel characteristics had to be

changed in the ETAS UEGO sensor controller as well as in the Horiba NDIR and, of

course, the fuels had to be prepared.

The fuelling system is drained by applying a vacuum to the drain port on the fuel

system valve panel. The vacuum is drawn until the flow ceases, at which time the fuel

filter is replaced with a clean filter (a different filter is used for each fuel) and the fuel

system is filled with the new fuel. Upon initial startup with the new fuel, the engine

is allowed to run at a steady state until a change is seen in the lambda value reported

by the UEGO sensor, indicating a change in the fuel composition being combusted.

This is a signal that the old fuel has been purged from the system. At this time,

experiments can proceed as usual.

The fuel mixtures are prepared by splash-blending. All fuels are blended on a

volume basis, using the same Haltermann HFO 437 certification fuel as the base.

For this study, mixtures of gasoline and ethanol were used to study the sensitivity to

oxygenate/alcohol content, and gasoline and toluene were used to study the sensitivity

to aromatic content.

Fuel volatility investigation In addition to the fuel studies discussed previously,

an additional study was performed to examine the effects of fuel volatility more

closely. In this case, an abridged version of the dual injection timing investigation

was performed for a variety of mixtures of isooctane and isopentane. Isooctane served

as the low-volatility fraction of the fuel while isopentane served as the high-volatility

fraction. Pure isooctane as well as mixtures of 10%, 20%, 30% and 40% (by volume)
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isopentane in isooctane were examined. The intent was to examine the impact of

smaller fuel films present due to an increased volatile fraction. The load was kept

constant at 2 bar net IMEP, and the tests were conducted at a stoichiometric equiv-

alence ratio.

Engine speed investigation The engine speed variation experiment was per-

formed to obtain a general understanding of the impact of in-cylinder mixing time

on PM formation. The dual injection timing investigation was repeated at 1500rpm

and 1800rpm, while maintaining the same load of 2 bar net IMEP. This is a low load

for this engine speed, but it was chosen in an attempt to limit the fuelling increase

that would be necessary were a more realistic load chosen. The fuelling rate is very

important as it has a strong impact on the fuel impingement on cylinder surfaces. All

of these experiments were conducted under stoichiometric conditions.

Burned gas oxygen content investigation Finally, the burned gas oxygen con-

tent investigation was performed to examine the impact of changing the end gas

oxygen content on the growth and oxidation of PM in-cylinder. In order to examine

this, the engine was operated at a steady gasoline fuelling rate, and the overall mix-

ture was then enriched by adding propane to the intake manifold. The experiment

was conducted in two different ways in an attempt to confirm the trends that were

observed. In the first, the engine was first run at the standard cold-idle operating

point and the mixture was then leaned-out by opening the throttle without changing

the fuelling rate. The mixture was then enriched by propane addition in equivalence

ratio increments of 0.05.

In the second method, the same initial point was chosen, but instead of first

leaning-out the mixture, the propane was immediately used to enrich the mixture

beginning from the stoichiometric case. This was repeated at spark timings of 250 CA

BTDCcomp and 11 CA ATDCcomp. In the early spark case, injection timings of 40'CA

ATDCintake and 100 0CA ATDCintake were considered. offering one highly sooting con-

dition and one low sooting condition, respectively. At the late spark timing, a second
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injection at 320'CA ATDCintake was studied to examine a highly-sooting condition

with late fuel interaction with the piston. In these experiments, the engine load

was permitted to float, instead keeping the throttle position and liquid fuelling rates

constant.

Experimental Matrix

The series of experiments to be completed using the engine is summarized in table

2.6.

Table 2.6: Experimental matrix for engine-based experiments
Spark SOI S012  Resid. Speed Temp.
Sweep Sweep Sweep 02 Study

Gasoline e (x2) * (x5) . (x3) . .
Gasoline + 15% . .
Toluene
Gasoline + 30% . .
Toluene
Gasoline + 15% . .
Ethanol
Gasoline + 30% . .
Ethanol
Iso-octane
Isooctane + 10%
Isopentane
Isooctane + 20
% Isopentane
Isooctane + 30
% Isopentane
Isooctane + 40
% Isopentane

2.2.2 Rapid Compression Machine

The RCM is a bench-scale experiment designed primarily to study the ignition char-

acteristics of fuels, but, in this case, to offer insight into the sooting tendencies of

fuels. Here, the experimental procedures and data processing will be discussed.
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Pre-experiment Preparations

Before beginning experiments, the RCM assembly and mixture preparation system

should be inspected to ensure they are in proper working order. It should be verified

that the nitrogen cylinders powering the device are full (one feeds the compressed gas

tank for the pneumatic circuit, while the other is used to pressurize the oil cylinder).

The optical windows should be inspected for cleanliness and should be removed for

cleaning if any soot build-up is visible. Once clean, the LASER alignment is verified.

If it is acceptable, then the combustion cylinder heaters and the mixture preparation

heaters are turned on and the system is allowed to reach its operating temperature.

Once at the operating temperature, experiments may proceed.

Mixture Preparation

The mixture is prepared using the apparatus discussed in the previous section. The

mixture composition is chosen in order to specify the equivalence ratio as well as

the temperature and pressure upon compression. The ratio of specific heats of the

mixture determines the temperature and pressure following compression. In addition

to changing the mixture composition, the temperature upon compression can also be

varied by varying the initial mixture temperature. The air mixture was composed

of 21% oxygen with a balance of nitrogen-and argon. The nitogen/argon ratio was

varied in order to specify the ratio of specific heats. In order to determine the nec-

essary mixture composition, the fuel, equivalence ratio, initial temperature and fuel

concentration upon compression were input to a FORTRAN code which performed

stoichiometry and thermodynamic calculations yielding estimates of the temperature

after compression, the peak temperature of combustion, the ratio of specific heats and

the mole fractions of each mixture component for a range of nitrogen/argon ratios.

The nitrogen/argon ratio was then interpolated based on the desired temperature

after compression.

Knowing the mixture composition, the component partial pressures were calcu-

lated by scaling the mixture fractions by the desired mixture mass. The mixture
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mass was chosen to permit a series of tests using the same mixture while maintaining

an above-atmospheric pressure in the mixture preparation vessel. This is in order to

avoid contamination with ambient air should the vessel leak.

In order to prepare the mixture, first the mixture preparation vessel is evacuated.

All valves were kept closed during this process except the valve to the vacuum pump

and the valve to the low-pressure Baratron pressure transducer, which is used to

measure the vacuum pressure. When the vacuum level was adequate, the valve to

the vacuum pump was closed, isolating the mixture preparation vessel. While under

vaccuum, the desired volume of liquid fuel was injected through the septum. The

pressure on the low pressure vacuum gauge was observed until the reading stabilized,

indicating complete vaporization of the fuel. At this point, the low-pressure vacuum

gauge was isolated by closing the valve.

Then, the simulated air mixture is prepared. Using the mixture preparation pres-

sure gauge, first the oxygen micrometer valve is slowly opened to admit oxygen to the

vessel until the total absolute pressure is equal to the sum of the partial pressures of

fuel and oxygen. Then, the same process is followed for nitrogen and argon. When

the mixture has been prepared, the mixing fan is turned on for 10 minutes to ensure

that the mixture is homogeneous.

RCM Firing Sequence

While the mixing fan is running, the combustion chamber should be evacuated. To do

so, first a vaccuum is applied to the pneumatic cylinder, drawing the piston assembly

backward until the hydraulic piston strikes the sealing surface, creating a face seal.

At this time, the hydraulic chamber may be pressurized by opening the valve con-

necting it to the compressed nitrogen supply. This locks the piston assembly in place.

Once retracted, the combustion chamber 3-way valve was turned toward the mixture

preparation unit and the vacuum valve is opened. It was found that approximately

10 minutes of evacuation was sufficient. The pressure of the combustion cylinder

could be monitored using the "high" -pressure Baratron pressure transducer. When

evacuated, the vacuum valve is closed and the pressure is monitored briefly to ensure
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that there are no leaks in the combustion chamber. If the chamber is air-tight, the

mixture is admitted by slowly opening the valve connecting the mixture preparation

unit to the heated transfer line to the combustion cylinder. This valve is closed when

the desired pressure is reached in the combustion cylinder. This pressure is important

as it determines the mixture density. That is, the amount of fuel and air participating

in the combustion event. Once the mixture is admitted at the proper pressure, the

mixture is allowed to equilibrate with the RCM temperature for 10 minutes. This

determines the initial temperature of the mixture. The 3-way valve is kept open to

allow verification that the combustion chamber is not leaking.

After the equilibration period, with the hydraulic chamber pressurized, the com-

pressed gas bypass valve is opened to equilibrate the pressure in the pneumatic cylin-

der with that in the compressed gas tank. Then, the 3" ball valve is then opened and

the combustion chamber 3-way valve is closed. Finally, the DAQ recorder is started

and then the RCM is fired by releasing the pressure in the hydraulic chamber. The

DAQ is configured to record based on a pressure-rise trigger and 1 second of data are

collected at 100kHz. Pressure data and light intensity data from the photomultiplier

tube (PMT) are collected.

Data Processing

Using a MATLAB script, the raw data are first passed through a filter to eliminate

the mechanical noise present in the pressure and LASER signals. With the clean

signal, a simple analysis is performed by identifying the decrease in the measured

light intensity. With the change in intensity, the volume fraction of soot can then be

calculated using the following formula where C, is the volume fraction of soot, A is

the light wavelength, L is the length of light travel through the combustion chamber,

m is the refractive index of soot, I is the attenuated light intensity and 1o is the initial

light intensity [90].

C 6 = In -

67LIm r2+m2
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The volume fraction of soot in the cylinder is used to calculate a soot yield, which

is a useful measure of the sooting tendencies of a combustion event. It is the mass of

soot formed, normalized by the mass of fuel carbon present in the initial mixture. It

is calculated as shown below, where SY is the soot yield, p, is the density of soot, C,

is the volume fraction of soot, MC is the molecular mass of carbon and [C]comp is the

molar concentration of fuel carbon in the unburned mixture upon compression [89].

SY = PsC,
MC [C]comP

Using these values, a measure of the equivalence ratio threshold for soot formation

was determined. On a soot yield versus equivalence ratio plot, the sooting threshold

was initially identified as the point at which the slope of the curve increased most

rapidly (i.e. the point on the curve with the highest second derivative). It was found

that this value coincided closely with the point of 50% attenuation on a LASER

attenuation versus equivalence ratio curve. In the interest of simplicity (and quick

diagnosis), it was decided to define this point as the threshold equivalence ratio for

soot formation.
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Chapter 3

Results

A large number of experiments were conducted over the course of this study. This

chapter discusses those experiments which are relevant to the objective of understand-

ing the mechanism of PM formation during cold-idle operating conditions. The first

section will discuss results from the study of engine emissions. The second section will

discuss results from the study of fuel sooting tendencies completed using the rapid

compression mchine.

3.1 Engine Experiment Results

Here, the results of a series of engine experiments will be presented. These results

are those which are relevant to the questions laid out in the experimental hypotheses

defining this program of study. An attempt will be made here to explain the obser-

vations drawn from the experimental results. Further discussion of these results in a

broader context are included in chapter 4.

3.1.1 Spark Timing Sweep

The experimental investigation of the impact of spark timing on particulate matter

was completed for two reasons. Firstly, spark retard is commonly used as a cold

start strategy as the associated elevated exhaust temperatures accelerate catalyst

light-off [113. The experiment was also intended to offer some insight into the effects
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of mixing time, combustion phasing and cylinder temperatures on PM emissions.

In some capacity, this was meant to test the residual fuel effects hypothesis. A

retarded spark timing results in more time for fuel and air mixing, but the change in

cylinder temperature and pressure profiles may also change the evaporation properties

of deposited fuel. With retarded spark, the exhaust gas and, consequently, the residual

gas temperatures are elevated when compared to more advanced spark timings [91].

Further to this, due to changes in combustion phasing the peak temperatures and

combustion durations are changed, with lower peak temperatures (depending on load)

and extended combustion durations.

In previous studies, it was found that PM, on both a number and mass basis,

does not vary monotonically with spark timing. Instead, at advanced ignition tim-

ings (25 0CA BTDCcoQ to 450 CA BTDCOmp), retarding the spark will reduce PM

emissions. This was attributed to an increased time for mixing as well as increased

post-flame oxidation. At retarded spark timings (later than 20 0CA bTDC), however,

it was found that retarding the spark increased PM emissions. This was attributed

to reduced combustion quality [66].

In these experiments, it was similarly found that retarding the spark timing (at

late timings) results in an increase in particulate number emissions with spark retard.

This is shown for gasoline fuelling in figure 3-1.

Similar to the conclusions drawn in [66], it was seen that along with increased

PM emissions, the combustion stability was decreased, as indicated by an increased

coefficient of variation (COV) of the gross IMEP. This is shown in- figure 3-2. Also, it

was observed, as expected, that the combustion phasing is later with retarded spark.

This is seen in figure 3-3. The late combustion phasing leads to increases in late-

cycle charge temperatures and pressures, which may both impact soot formation and

oxidation processes (high temperatures can increase the rate of soot oxidation, while

high pressures may increase soot formation) [3, 343, though their combined impact is

unclear in this case.

One should note that, in this experiment, the engine speed, load and equivalence

ratio were held constant. Consequently, due to the reduced efficiency associated with
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Particle Number Concentration vs. Spark Timing
Gasoline, SOI=60*CA aTDC
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the late ignition timing, it was necessary to increase the fuelling rate in order to

maintain the net IMEP setpoint of 2 bar. The result of this is that, due to the

increased fuel injection duration, it is likely that there was more fuel impingement on

the piston crown and possibly on the cylinder liner. As shown in previous studies,

liquid fuel films are associated with PMI formation through what are often described

as pool fires or diffusioii flames [9, 50, 51]. Thus. it is expected thiat the increcasedI

fuelling rate plays a significant, role in the increased PM formation, obscuring any

effects from elevated temperatures and pressures. To illustrate this, figure 3-4 plots

the particle number concentration and the fuelling rate versus spark timing.

Finally. by examining the size distributions of the PIM emissions at the studied

ignitijon timingos (shown1 in figuire 3-5), it, was seen that while there are different mag-

nitudes at different spark timings. the mode particle bin midpoint diameters are very
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Particle Number and COV vs. Spark Timing
Gasoline, SOI=60'CA aTDC
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Figure 3-4: Spark timing effects on PM emissions with gasoline (=1., 1200rpm. 2
bar net IMEP)

similar as are the overall distributions. This suggests that the particles are formed

through similar mechanisms regardless of ignition timing. Further experiments shed

more light. on these soot, formation mechanisms.
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Particle Size Distribution with Varied Spark Timing
4b= 1, Net IMEP= 2bar
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Figure 3-5: Particle Size Distributions

3.1.2 Injection Timing Investigation

Based on earlier investigations, liquid fuel films are known to give rise to PM [9., 50,

53]. The injection timing plays a large role in the formation of fuel films. The LNF

engine used in these studies features side-mounted injectors, so the injection timing

determines not only the amount of liquid fuel impinging on surfaces, but also the

location of impingement. Very early or very late injection results in large liquid films

on the piston crown due to the proximity of the piston to the injector tip during the

injection event. This is illustrated in figure 3-6. Understanding the behaviour of PM

emissions resulting from liquid fuel films is the key to testing the residual fuel effects

hypothesis.

These experiments were conducted in order to understand the importance of the

location of fuel impingement, in the formation of PM in a DISI engine. Beginning
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Figure 3-6: LNF engine fuel injection @GM Company.

with an injection starting at TDCintake, when the fuel stream is expected to impinge
on the piston, it was found that, as the injection timing was retarded, PM emissions

were reduced until the timing when the fuel is no longer expected to impinge on
the piston crown. At this point, the PM emissions remain at a relatively steady

concentration until, at late start of injection (SOI) timings, the PM emissions again
begin to increase, corresponding to the wetting of the piston crown surface. Figure

3-7 shows the particulate number concentration in the exhaust versus the SOI timing
for gasoline at a spark timing of 250 CA BTDCcomp with the load and temperatures

matching the baseline cold-idle specification. The load and speed were held constant

throughout the sweep of injection timing.

The trend of increased PM emissions corresponding to impingement of fuel on pis-
ton surfaces held reasonably constant regardless of spark timing, though the increases
in emissions are greater at later spark timings. In this situation it seems that the
combustion instabilities associated with highly retarded spark timings couples with
the formation of fuel filns leading to PM emissions. This is seen in figure 3-8.

Through the plotting of particle size (listributions for each of the injection tim-
ings. it becomes clear that the location and magnitude of surface impingement is an
important factor in determining the magnitude of the PM concentration in engine
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Particle Number Emissions vs. Start of Injection
Spark timing: 25TA BTDCCOMP
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Figure 3-7: PM emissions vs. SOI timing for gasoline. The engine did not run due
to combustion instability in the region represented by a dashed line.

exhaust. Figure 3-9 shows the size distributions for early injections. figure 3-10 shows

the size distributions for moderately early injection timings, figure 3-11 shows the

size distributions for moderately late injection timings and figure 3-12 shows particle

size distributions for late injection timings.

For early injection timings, when it is expected that liquid fuel will impinge on the

piston, the magnitude is larger and the mode bin mid-point diameter is significanthly

larger than that seen as the injection timings are retarded(see figure 3-9). At more

moderate injection timings, when the fuel is sprayed into open air. there are differ-

ences of magnitude., but the particle size distribution shapes are consistent, with the

mode mid-point diameter being relatively small (20-30nm). This is seen in figures

3-10 and 3-11. Differences in magnitude may be attributed in part to differences in

mixing times as well as the possibiliv of fuel splashing off of liner surfaces onto the
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Particulate Matter Map, Single Injection
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Figure 3-8: PM emissions vs. SOI timing for gasoline at various spark timings.

Particle Size Distribution for Varied SOI
(single injection after TDCi,,,ak,)
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Figure 3-9: Early SOI Figure 3-10: Early/moderate SOI

piston crown or cylinder head. At very late injection timings there are two major

phenomena affecting PM emissions. The first is that with late injection timing, there

is insufficient mixing time for complete mixing. This leads to mixture inhomogeneities

which result in poor combustion stability (as is noted when the engine cannot sustain

power and stalls at injection timings around 265 0CA ATDCit1.k). as well as regions

of mixture that may be sufficiently fuel-rich to promote soot growth as there are am-

ple hydrocarbons for particle surface growth with little oxygen for particle oxidation

[57].
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At very late injection timings (320-330 CA ATDCintake), however, the engine again

fires with reasonable stability. In this case, the stability is improved through the

interaction of the fuel spray with the shallow piston bowl. The bowl serves to direct

some of the injected fuel toward the spark plug, resulting in a fuel-rich mixture in the

vicinity of the spark plug. This fuel-rich mixture supports robust combustion, but

the impingement of liquid fuel on the piston crown also promotes the formation of

PM, as is seen in figure 3-12.

Particle Size Distribution for Varied SOI Particle Size Distribution for Varied SOI
(single injection after TDCm,,,) (single injection after TDCinake)
Spark timing: 25TA BTDCmW Spark timing: 25CA BTDC.Jnp

0.12 14

9 0.1 -12 .

U 0.08 ... ..........CL CL
102/ . 100 - - - 200

0.06 !6 - -120 220
140 6 . . . ..

0.04 Y, '160 W 260

'.0 2 -- .

0 
1o 100 10 100

Particle Diameter (nm) Partide Diameter (nm)

Figure 3-11: Moderate/late SOI Figure 3-12: Late SOI

Impact of SOI Timing at Elevated Coolant Temperature

As has already been mentioned, the evaporation and combustion of fuel films plays

an important role in the formation, oxidation and emission of particulates [9, 47, 48,

50, 92]. Thus, it should come as little surprise that the coolant temperature can have

a significant impact on PM emissions [10, 781. Generally, at higher coolant temper-

atures. with the associated increase in engine component temperatures, liquid fuel

that impinges on cylinder surfaces will evaporate more readily, resulting in less liquid

fuel being available t,( participate in pool fires or diffusion flames and. consequently,

less PM is emitted. This is seen in figure 3-13 where it is seen that at early and

moderately late SOI timings, the higher coolant temperature leads to a reduction in

PMi emissions.

In addition. it can be seen that the engine component temperatures affect not
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Figure 3-13: PM emissions vs. Sol timing for gasoline at cold and warm engine
coolant temperatures.

only the PM concentration, but also the size distribution. Figures 3-14, 3-15 and

3-16 show the particle size distributions at injection timings of 20 0CA ATDCintake,

100 0CA ATDCintake and 2550 CA ATDCintake, respectively. It is observed that in

those situations where the injection timing leads to piston impingement, the increased

temperature not only reduces the magnitude of the PM emissions, but also the mode

bin midpoint diameter. This supports the idea that the mechanisms leading to soot

formation depend on temperature and suggests that, at warm coolant temperatures,

not only are the liquid films reduced in size, but the composition of the fuel remaining

in the films may also change. For example, it is possible that a light aromatic, which

does not evaporate under cold coolant operating conditions might evaporate under

warm operating conditions. possibly reducing the ability of the liquid film to support

the formation of soot nucleation and surface growth precursors. At moderate injection
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timings, when fuel should not impinge on the piston crown, it is possible that the

warm liner temperatures may allow less-volatile components which form soot surface

growth precursors to slowly evaporate, taking part in combustion in rich regions. The

reduced number would then be accounted for by the reduced volume of fuel forming a

film on the liner and the increased mode bin mid point diameter would be accounted

for by the heavier hydrocarbons able to participate in combustion. It should be

noted that the piston crown is expected to be significantly hotter than the liner, so

the effects of temperature on fuel film composition is. as seen here, not expected to

be uniform depending on the film location.

Particle Size Distribution
Single injection, SOl=20CA ATDCtake

Spark timing: 25*CA BTDCO,.p
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Figure 3-14: Early SOI
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Figure 3-15: Moderate SOI

Particle Size Distribution
Single injection, SOl=255'CA ATDCIke
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Figure 3-16: Late SOI
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3.1.3 Dual Injection Investigation

The LNF engine was designed with a shallow piston bowl that enables partially strat-

ified charge operation under cold-start conditions. This design offers an opportunity

to conduct some interesting experiments designed to test the residual fuel effects

hypothesis by examining the impact of fuel impingement in various regions of the

combustion chamber. The partially-stratified operation is accomplished by injecting

the majority of the fuel during the intake stroke with the remainder injected late dur-

ing the compression stroke. The goal of this operating regime is to produce a region

of fuel-rich mixture in the vicinity of the spark plug in order to enhance combustion

stability at late spark timings. The PM emissions response to this operating regime

is of interest due to the advantages of retarded ignition timing in terms of catalyst

light-off [11], but, in this study, this operating regime is of more interest because it

allows fuel films to be created on the piston crown late in the compression stroke,

when there will be little time for evaporation and mixing. This allows a better infer-

ence of the location of liquid fuel films during the combustion event than was possible

during the study of single injection timing. For these experiments, 70% of the fuel

was injected during the main, intake stroke injection. The start of injection timing for

the main injection was held constant at 800CA ATDCintake. This timing was chosen

as it is early enough for thorough mixing, but late enough in the cycle to ensure there

will be little if any impingement of the fuel spray on the piston crown (see figure 3-8).

The remainder was injected during the compression stroke. The engine was operated

at the cold-start conditions outlined in table 2.5, but with late spark timing. The

spark timing was held at 11 0CA ATDComp. There were two reasons for this. The

first. as mentioned already, is because of the practice of retarding spark to accelerate

catalyst light-off. The second is that this spark timing allows a wide range of injection

timings to be studied with reasonable combustion stability. Later injections may also

be of interest, but the combustion stability is not sufficient to allow SMPS data to

be collected.

It was, again, observed that particulate emissions are elevated in situations where
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piston-wetting is expected. Figure 3-17 graphs the PM emissions (all particle number

data are total particle number between 22.08nm and 365nm) versus the timing of

the start of the second injection (SOI 2 ). For relatively early second injections, the

emissions are relatively low, since the mixing process behaves similarly to a single

injection with low levels of liquid fuel impingement on cylinder surfaces. When the

second injection is retarded, and the spray begins to interact with the piston crown

surface, the emissions increase signifeantly. This is especially obvious in figure 3-18

which shows the same data plotted with a logarithmic y-axis. Here it is seen that there

are two orders of magnitude in difference between the results of the early injections

and the results of the later injections.

Particle Number Concentration vs. S012

Spark: 11*CA ATDComP, Injection split: 70/30, Gasoline

0.

0

. 2.. 2.. ... 27. 29. ... ---.

T 19dcras 215 235so seen 275ee s295 njcto t315g 32an 30C

ATDCuake is attributed to the interaction of the fuel spray with the shallow piston

bowl. In this situation. the shallow bowl directs the fuel spray toward the spark plug.
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Particle Number Concentration vs. 5012
Spark: 11*CA ATDCCOMP, Injection split: 70/30, Gasoline
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Figure 3-18: P'M emissions with double injection (semi-log axes)

creating a rich region near the spark plug which enhances early combustion stability.

The improved stability is accompanied by reductions in PM emissions. At very late

injection timings, the bowl no longer directs the spray properly toward the spark

plug, but the spray still impinges on the piston crown. creating liquid films. which

are known to lead to PM emissions [9, 50, 53]. At these late injection timings. the

proximity of the piston to the injector tip likely results in reduced in-flight evapora-

tion allowing a large volume of fuel to coat the piston crown. Some fuel also may

splash off of the piston crown, impinging on other surfaces.

Figure 3-19 illustrates the orientation of the piston. relative to the injector centre-

line at a series of start of second injection timings. It is obvious in these illustratons

that as the piston rises toward the cylinder head (the piston is travelling upward in

all of these images), the fuel spray will impinge more directly on the piston crown. At

late injection timings, the fuel spray is expected to strike the piston very close to the
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injector tip. Please note that, in this engine, the fuel spray is not perfectly parallel to

the injector body. Instead, there is a downward deflection angle which is not shown

here, since it has not been disclosed by the engine manufacturer. Nevertheless, the

reader should be mindful of the fact that the spray is oriented in such a way that its

centreline likely strikes the piston a few crank-angle degrees earlier than is illustrated

here.

200*CA ATDCintke

320"CA ATDCin tak

275"CA ATD, 295-CA ATDC 310-CA ATDC

330*CA ATDCI!,a, k 335"CA ATDCintake 345*CA ATDCintake

Figure 3-19: Piston positions (dimensions based oil figure 3-6)

It is. again. valuable to examine the particle size distributions to gain an under-

standing of the mechanisms of soot formation under the different, conditions. These

are shown in figure 3-20. Early second injection timings result, in low PM emissions,

with relatively small mode bin mid-point diameters. The number and particle diam-

eters increase as the second injection timings are retarded. but there is a decrease in

the mode bin mid-point diameter apparent for those injection timings that correspond

to interactions between the piston bowl and the fuel spray. At late timings there are
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high numbers of large particles emitted.

It seems that there are two phenomena at play in determining the PM emissions.

Firstly, the size and location of the fuel films are important. Those closer to the

injector tip appear to yield larger particles. Secondly, the combustion stability is

important. Operating conditions with improved stability yielded fewer and smaller

particles, seeming to suggest a better efficiency at vaporizing fuel, mixing fuel and air

or burning up soot particles.

Particle Size Distribution, 1200 rpm, 4=1
Spark: 11*CA ATDCompF Inj. split: 70/30, Tee0 =200C -2
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Figure 3-20: Particle size distributions for double injection.

Impact of Coolant Temperature on PM Emissions with Dual Injection

As was done in the single injection experiments, the second injection timing sweep

was repeated under additional temperature conditions. The first repeated run was

completed at a coolant temperature of 800 C with the operating conditions otherwise

the same as those of the baseline case. This experiment allows an understanding of
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the impact of increased cylinder surface temperatures. Given the ability to infer the

locations of fuel impingement, the temperature change was expected to provide some

valuable information about the influence of fuel films on soot formation.

The second repeat of the injection timing sweep was completed with heated inlet

air, but otherwise the operating conditions were the same as those in the baseline

case. In this case, the intent was to examine the effect of in-flight evaporation of fuel.

Increased in-flight evaporation should enhance mixing and reduce the volume of fuel

impinging on cylinder surfaces.

Figure 3-21 shows the number concentration versus second injection timing on a

semi-log plot. It is seen that, apart from injection timings of 250 - 2950CA ATDCintake

there is little change attributable to the temperature differences. For the injection

timings of 250 - 295 0CA ATDCintake, a decrease was observed with increased coolant

temperatures. At these injection timings, the fuel spray is likely to impinge slightly

on the edge of the piston farthest from the injector. The reduction in PM emissions

here is attributed to improved evaporation of the relatively small amount of liquid

impinging on the piston under these conditions which is enabled by the elevated

surface temperatures. There is no notable difference in PM emissions with increased

inlet air temperature.

Examining the particle size distributions at the different temperature conditions

provides more insight into the mechanism of soot formation beginning with liquid fuel

films (see figures 3-22. 3-23, 3-24 and 3-25).

These figures show four different S0I2 timings. The first, figure 3-22, is an early

timing when there is expected to be little, if any, impingement of liquid fuel on the

piston crown. In the second figure, figure 3-23, the SO12 timing shown is expected to

result in mild impingement on the piston crown. At this point there was a decrease

in emissions with increased coolant temperature. The distributions for an injection

timed to interact with the piston bowl are plotted in figure 3-24 and the emissions

for a very late injection resulting in severe piston crown impingement are plotted in

figure 3-25. There are some differences in the magnitudes of the PM emissions seen

in these distributions, but, as shown in figure 3-21 the differences in magnitude are
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Particle Number Concentration vs. S12, 1200 rpm
Spark: 11"CA ATDCcomp, Inj. split: 70/30, (0=1

1 0 ...........1...... ...... .. .... ...... ....... ... .. .... ... .. ...... ..........
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Figure 3-21: PM number concentration with second injection timing at warmed-up
coolant and inlet air conditions.

Particle Size Distribution, 1200 rpm
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Figure 3-22: No impingement.
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Figure 3-23: Mild impingement.

not significant except ini the case of ]lil1 inlpingemient.

Instead. of more interest is the shape of the size distributions. There appears to

be little difference in the mode bin mid-point diameters or the overall distribution
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Particle Size Distribution, 1200 rpm Particle Size Distribution, 1200 rpm
S012=320-CA ATDCinJ,. S0l2=340'CA ATDCi,,k,
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Figure 3-24: Bowl interaction. Figure 3-25: Severe impingement.

shape between the baseline case and the heated inlet air experiment. The heated

coolant experiment, however, consistently appears to produce larger particles. This

suggests that the increase in combustion chamber component surface temperatures

supports the evaporation of the more volatile fractions of the gasoline, resulting in
fuel films with higher concentrations of low-volatility compounds which may support

enhanced surface growth of soot particles (though nucleation rates may not change

much, or, in some cases, may actually decrease). This is apparent regardless of the

presence or severity of piston impingement.

Impact of Engine Speed on PM Emissions

In order to examine the PM emissions impact of the time available for evaporation and

mixing of liquid fuel from surface films, the investigation of second injection timing
was repeated at engine speeds of 1500rpm and 1800rpm. The dual-injection strat-

egy was repeated as it provides insight into several different injection/impingement

regimes, thus helping to explain the mechanisms of soot formation under a variety of

operating conditions. These reasonably small absolute (though reasonably large rel-

ative) increases in the engine speed should not drastically change the charge motion

characteristics, but will reduce the time available for evaporation and mixing. If the

residual fuel effects hypothesis is correct, reduced time for evaporation and mixing

should leave more time for soot nucleation and growth.
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In conducting the experiments, the load was held constant as the speed was in-

creased. This required the throttle to be open wider as well as a slight increase in the

fuelling rate. Unfortunately, this makes it somewhat difficult to fully interpret the

results from this experiment. Figure 3-26 is a plot of total particle number concen-

tration (integration of the particle size distribution from 22.08nm to 365nm). One of

the most easily explained changes with increased engine speed is the narrowed region

reflecting the interaction of the fuel spray with the piston crown at higher engine

speeds. This occurs because, while the piston travels faster at higher engine speeds,

the fuel spray does not. Thus, there are few crank angle degrees during which the

fuel spray may interact with the piston bowl.

Particle Number Concentration vs. S012
Spark: 11*CA ATDComp., Injection split: 70/30

215 235 25

1800 ri'

R

-------- ----- ............ .......... ... ....

27. 29...315..35
.0 1 ........ .A..D..m... .....

Figure 3-26: PM Emissions vs. S0I2

In addition. it appears that the number emissions are increased at the higher

engine speeds. This would appear to support the hypotheses suggesting that the

evaporation of residual fuel in surface films are heavily involved in the soot formation
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mechanisms, but due to the necessary increases in fuelling rate to maintain the engine

load, it is not clear whether the changes in emissions are due to reduced mixing time

or instead reduced to larger fuel deposits on the cylinder surfaces.

The particle sizes are also of interest as they provide further information about

the soot formation process. In figure 3-27 the mode bin mid-point diameters are

plotted against injection timing for second injections timed to begin between 305 and

3200CA ATDCintake. These S0I2 timings capture the fuel/bowl interaction for the

1800rpm case and for portions of the 1200rpm and 1500rpm cases. The mode particle

diameter at 1200rpm is consistently larger during this range of injection timings. This

suggests that the particle size is dependent on engine speed. It seems that a plausible

explanation is that the lower speed provides a longer time for particle growth and

agglomeration to take place, resulting in larger particles being emitted.

Mode Particle Diameter vs. Second Injection Timing
140

1200rpm<

4-.4,

0

1. 0 - - - --_

0
0

305 307 309 311 313 315 317 319
Start of Second Injection (*CA ATDCintekJ

Figure 3-27: Mode Particle Diameter vs. S012
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3.1.4 Study of Fuel Effects

In order to test the fuel effects hypothesis relating to in-cylinder soot formation in DISI

engines, the fuel injeection timing experiments were extended to consider additional

fuels. The fuel injection timing experiments were chosen as the bases for the fuel

component study because they offer a unique opportunity to examine the impact

that the location and size of fuel films have on PM emissions. Blends of Haltermann

HFO 437 gasoline with ethanol and toluene are considered in this series of experiments

in order to examine the impact of alcohols and aromatics.

Impact of Fuel Composition on PM Emissions with Varied Single Injection

Timing

To build upon the questions raised by observations of fuel film composition effects

seen in the last section, experiments were performed to more carefully examine the

effects of fuel composition on PM emissions in order to expand the investigation of the

residual fuel effects hypotheses while also considering the fuel effects hypothesis. The

sensitivity of PM emissions to aromatic and ethanol content were studied. Aromatic

content is of interest as high boiling point aromatics have been shown to be a primary

predictor of particulate emissions levels [67, 93] and aromatics, more generally, are

widely understood as playing an important role in the formation of soot precursors

[34]. Ethanol content is of wide interest due to the potential reductions in greenhouse

gases associated with biomass-derived alcohol fuels, government mandates requiring

ethanol to be blended in road fuels and the extended knock margins enabled by the

higher octane number and enhanced charge cooling effect associated with ethanol

blending in gasoline [62, 63]. Many studies of PM emissions with ethanol blending

have been conducted. Some have found that poor mixing due to the high heat of

vaporization of ethanol results in high carbonaceous content in soot [66], while oth-

ers have identified " significant and obvious" reductions in in-cylinder soot formation

attributed to ethanol content [54]. Many studies identify reduced particulate number

emissions when using gasoline/ethanol blends [65, 78].
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Aromatic Content In examining the sensitivity of PM emissions to fuel aromatic

content, two different fuel blends were studied in addition to the baseline Haltermann

HFO 437 gasoline fuel. The first is a blend of 15%, by volume, Toluene and 85%

Haltermann gasoline, while the second is 30% Toluene and 70% Haltermann gasoline.

The Haltermann HFO 437 fuel contains 28% aromatics, by volume.

Figure 3-28 displays the particle number concentrations measured in exhaust from

the LNF engine operated at varied fuel injection timing for gasoline/toluene blends.

It is seen that at early injection timings, the PN emissions with the gasoline/toluene

mixtures are greater than those with the gasoline baseline, but, except at the earli-

est timings, there is little difference observed between the different gasoline/toluene

blends. It is interesting to note that the PN emissions remain high at later injection

timings than is seen with the gasoline baseline. The explanation for this is somewhat

unclear, but it seems that the added aromatic content may support particle nucle-

ation and surface growth despite smaller liquid fuel films. Also, as the SOI timing is

retarded, the emissions increase at earlier SOI timings with gasoline/toluene blends

than it does with neat gasoline. In these later SOI timings, more predictably, the PN

emissions are seen to increase with increased toluene (aromatic) content. This should

come as no surprise given the understanding of the importance of aromatics and PAH

in soot nucleation and surface growth [34]. Note that there is little time for fuel to

evaporate with late SOI timings.

Examining the particle size distributions with the addition of toluene, it is clearly

seen that the addition of aromatic components to the fuel enhances the growth of soot

particles, leading to larger mode bin mid-point particle diameters at early and late

SOI timings, when piston crown fuel films are expected. This is shown in figures 3-29

and 3-31. Figure 3-30 shows the particle size distributions at a moderate injection

timing, when the fuel spray is not expected to impinge on the piston crown surface.

In this case, the particle number concentration increases with toluene content, but

the size distribution otehrwise maintains a similar shape, though with an increased

number of particles less than 20nm in diameter. This may be attributed to increased

nucleation enabled by the presence of aromatic compounds, but with surface growth
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Figure 3-28: PM Emissions vs. SOI for Gasoline/Toluene blends

counter-acted by effective oxidation, since the mixture is likely more homogeneous in

the situations without piston impingement.
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Figure 3-30: Moderate SOI
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Particle Size Distribution
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Figure 3-31: Late SOI

Ethanol Content The impact of ethanol content on PM emissions was studied in

a similar way. Blends of 15% and 30% Ethanol, by volume, in Haltermann HFO 437

gasoline were considered. Figure 3-32 shows the particle number concentration in the

engine exhaust versus the SOI timing.

Particle Number Concentration vs. SOI
Spark: 25*CA BTDCcomp, TC001=20*C

.................-

... .... ...

50 100 150 200 250 300 350
Sol (*CA ATDCIfiakJ)

Figure 3-32: PM Emissions vs. SOI for Gasoline/Ethanol blends
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The general trend is similar to that seen with neat gasoline - increased emissions

at early and late SOI timings, when the fuel spray is expected to impinge on the

piston crown. It is, however, difficult to make definitive statements about emissions

magnitudes based on this plot, since the is some overlap in the data. Overall, there

is little notable difference caused by the addition of ethanol to the fuel blend.

It is also instructive to look a the impact of ethanol content on particle sizes.

Particle size distributions for the ethanol blends are plotted in figures 3-33, 3-34 and

3-35.
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Figure 3-33: Early SOI

Partick
SOl=240*CA ATDC

E .. .....

0.-

0-
10

0.05

0.045

004

0.035

t 0.03

CL 0.02

0.015

0.01

0.005

0

Particle Size Distribution
SOl=120'CAATDCai Spark: 25*CA BTDCc

-V

S 15 Etha

-.. ....

10 I00
Particle Diameter (nm)

Figure 3-34: Moderate SOI

Size Distribution
, Spark: 25'CA BTDCo,. P

10r

Particle Diameter (nm)

Figure 3-35: Late SOI

Examining these particle size distributions, it is difficult to draw any conclusions

about the impact of ethanol content on particle number emissions, but there is some
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valuable information in looking at the particle sizes. The mode bin mid-point diameter

consistently decreases with increasing ethanol content. While the oxygen content is

a potential culprit in smaller particles, it seems, instead, that the displacement of

aromatic components from the base gasoline by ethanol likely limits the availability

of soot precursors for particle surface growth, resulting in smaller particles.

Impact of Fuel Composition on PM Emissions with Dual Injection

Given the observations of increased particle size with increased coolant temperature,

it seemed prudent to extend the study of second injection timing in order to test the

fuel effects hypothesis in addition to the residual fuel effects hypothesis. The same

fuel blends were used in this set of experiments as those used in the fuel composition

investigation with a single injection. Unlike the examination of fuel effects in the single

injection strategy, the sweeps of the start of second injection timing were completed

at two different coolant temperatures (20'C and 80'C) for each fuel.

Aromatic Content Acetylenes and PAH are understood to play a key role in soot

nucleation and surface growth [34, 35]. Since aromatic compounds provide a pathway

to PAH formation during flames and pyrolysis [34], their impact on PM emissions

are of interest, and the emissions sensitivity to aromatic content should be easily

observed. This was, in fact, the case, especially in the 20'C coolant experiment.

As is seen in figure 3-36, the particle number concentrations increase significantly

with the addition of toluene in situations where low to moderate piston impingement

is expected. In those cases with severe piston impingement or where the fuel spray

interacts with the piston bowl, there remains only a slight increase in particle number

concentration.

At early and moderate injection timings, it seems likely that the addition of aro-

matic content to the fuel has enabled increased particle nucleation, accounting for

the increased numbers. At later injections, the severe piston wetting and anticipated

large liquid films likely ensure enough liquid fuel and aromatic content in rich com-

bustion regions arising from the films to form soot regardless of aromatic content,
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Figure 3-36: PM Emissions for Gasoline/Toluene Blends.

rendering the changes in aromatic content less consequential.

In addition to number, the size and composition of the PM emissions are of inter-

est. For this study, the composition and morphology were not studied, but the size

has been considered. These data do offer some insight into the impact of aromatic

fuel components on the in-cylinder soot formation processes. Figures 3-37 and 3-38

illustrate the size distributions of PM emissions for gasoline and blends of gasoline

and toluene at one early start of second injection timing and one late start of second

injection timing. respectively. The early timing (200 0 CA ATDCintake) plot is rep-

resentative of a case with little if any fuel impingement on the piston surface and

the late injection timing (330 0 CA ATDCiftak,) plot is representative of a case with

severe impingement of liquid fuel on the piston crown. In both cases, it is seen that

the particle size distributions indicate that larger particles are emitted as the aro-

matic fraction of the fuel is increased. This is consistent with the idea that PAH can
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contribute to soot particle surface growth, yielding larger particle diameters [34].

Particle Size Distribution SO 2=200TA ATDCr. Particle Size Distribution S012=330'CA ATDCintake
Spark: 11*CA ATDC mP, inJ. split: 70/30, T.,s1=20*C Spark: 11"CA ATDComp, lnj. split: 70/30, T0, 1 = 20'C
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Figure 3-37: Early SOI, 20'C Figure 3-38: Late SOI, 20'C

At a coolant temperature of 80'C, the results look significantly different than

those seen above. In the plot of particle number concentrations versus start of second

injection timing shown in figure 3-39, there is a slight increase in emissions seen with

the elevated aromatic content fuels at moderate SO12 timings, but, otherwise, there

is little if any difference between the baseline gasoline emissions and the emissions for

the gasoline/toluene blends. There is an explanation for this. but it is more easily

outlined after examining particle size distributions associated with these data.

Figures 3-40 and 3-41 plot the size distributions for an early injection case with

little expectation of piston impingement and a late injection expected to result in

significant piston wetting, respectively. Here, it is seen that, unlike in the 20'C data

presented above, there is very little difference in the particle size distribution based on

toluene content. Instead, the size distributions are very uniform. This suggests that

the same fuel components are taking place in the soot formation reactions. regardless

of toluene content, indicating that the elevated coolant temperature has enhanced the

evaporation of the volatile components in the gasoline blends. among which toluene

is likely a part. This results in only the low-volatility fuel components remaining

in liquid filns or other poorly mixed regions. The implication that fuel does not

evaporate uniformly comes as no surprise. but the fact that this selective evaporation

related to component temperatures is reflected in the PM emissions offers strong
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Figure 3-39: PM Emissions for Gasoline/Toluene Blends.

evidence that the engine surfaces play a key role in PM formation. This provides

strong support for the residual fuel hypotheses being tested throughout this research

programme.
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Ethanol Content Studying the effects of ethanol content on PM emissions pro-

vides similar insight into the PM formation mechanisms taking place in DISI engines.

Figures 3-42 and 3-43 show the total particle number emisisons (of diameters between

22.08nm and 365nm) versus second injection timing at coolant temperatures of 20'C

and 80'C, respectively. It was observed that, at both operating temperatures, there

was a decrease in emissions with the addition of ethanol at second injections later

than 310'CA ATDCintake. At earlier injections, the trends are unclear for the 20 0C

case , but, at coolant temperatures of 80'C, there is also a decrease in emissions with

the addition of ethanol. The reason for the "spike" in particle number concentration

for E30 blends at a second injection timing of 2750 CA ATDCintake is not clear at this

time.

The unusual behaviour at early second injection timings seen in the 20'C plot is

attributed to unusual engine performance with the E15 blend at the low engine coolant

temperature. The engine suffered from severe combustion instability at these injection

timings and it was, thus, not possible to collect PM emissions data. No mechanical

faults were identified with the engine to explain the unusual engine behaviour with

E15 but not with E30.

Particle Number Concentration vs. SOt 2  Particle Number Concentration vs. SOl1
Spark: 11*CA ATDC.mt, Inj. split: 70/30, T 0=20*C Spark: 11*CA ATDCcOmP Inj. split: 70/30, T2,e=80"C

10

E0 .7

0.00

4 0.01 
E15

195 215 235 255 275 295 315 3.5 355 195 215 235 255 275 -95 315 335 ,55

S012 ('CA ATDC,.k.) Sol 2 ('CA aTDC intake)

Figure 3-42: PM emissions at 20'C Figure 3-43: PM emissions at 80'C
(Gasoline/ethanol blends) (Gasoline/ethanol blends)

In comparing the particle size distributions for the gasoline base fuel. E15 and E30

at an injection timing of 3200CA ATDCi,,take it is seen that the mode bin mid-point

particle diameter decreases when ethanol is added to the fuel. though the difference
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in size depending on the volume of ethanol blended is less clear (see figures 3-44 and

3-45). This is observation is consistent at coolant temperatures of 20'C and at 80'C.

The addition of ethanol displaces a certain volume of gasoline including those highly-

sooting compounds such as aromatics. Since ethanol has less propensity to soot than,

for example, toluene or benzene [43], it is expected that the PM resulting from a

blend of ethanol and gasoline will experience less efficient surface growth processes

leading to smaller primary particles. The smaller size of primary particles would then

lead to smaller agglomerates.

Particle Size Distribution S012=320*CA ATDCs.P Particle Size Distribution SO 2=320*CA ATDCtke
Spark: 11*CA ATDC.mP, InJ. split: 70/30, Tc0s=20'C Spark: 11*CA ATDC mP, Inj. split: 70/30, Tc 0 =80'C
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EElE
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Figure 3-44: PM emissions at 200 C Figure 3-45: PM emissions at 800 C
(Gasoline/ethanol blends) (Gasoline/ethanol blends)

It is also instructive to compare the size distributions for the individual ethanol

blends at the two different operating temperatures. First, figures 3-46 and 3-47 show

the particle number concentrations in the emissions with E15 and E30, respectively.

In both figures, the data for 200C and 800 C are plotted on the same axes. Apart from

the strange response seen with El5 at early and moderate injection timings, there are

few differences obvious when examining the plots. At late second injection timings,

when significant piston wetting is expected, the plots are nearly identical.

The uniformity of the plots in figures 3-46 and 3-47 is somewhat surprising after

examining the particle size distributions for the same data. For E15, size distri-

butions are plotted at second injection timings of 3200 CA ATDCn)0k, and 3450 CA

ATDCintaje. These represent injection strategies with spray interaction with the pis-

ton howl. and severe piston impingement. respectively. The data are plotted in figures
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3-48 and 3-49.
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Figure 3-46: E15 PM Emissions
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Figure 3-47: E30 PM Emissions
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Figure 3-49: E15,
SOI2=3450 CA ATDCintake

For E30, size distributions are plotted at second injection timings of 2250 CA

ATDCintake, 320 0CA ATDCnte and 345 0CA ATDCintake. These represent injection

strategies with little or no piston crown impingement, spray interaction with the pis-

ton bowl. and severe piston impingement, respectively. Data at 2250CA ATDCintake

were unfortunately not available for E15 fuels due to the unexpected poor combustion

stability at cold coolant temperatures discussed earlier. The data for E30 are plotted

in figures 3-50, 3-51 and 3-52.

The results shown in these size distributions may at first seen counter-intuitive.

Eariler it was observed that. particle diameters were smaller for ethanol blends com-
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Particle Size Distribution SO2=225*CA ATDCinl,
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Figure 3-52: E30, SOI2=3450 CA ATDCntake

pared to the base gasoline. Further to this, one may expect that with increased

coolant temperature, the mass of liquid fuel in-cylinder would decrease, leading to

fewer particles and less mass for particle growth. However, when comparing the

emissions for a particular ethanol blend at different operating ternperatures, it was

observed that the particle size actually increased with warmer coolant temperatures.

The differences are. in some cases, slight, but it is clear that the mode bin mid-point

diameters are higher at temperatures of 800 C than they are at 200 C. This observation

was seen consistently across all ethanol blends and injection timings.

The explanation for this is really quite simple and providles strong support for

the hypothesis that liquid fuel is responsible for PM emissions. As was seen with
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toluene blending, at the elevated coolant temperatures, it is likely that ethanol is

among the volatile components that evaporate quickly in-flight, or upon contact with

cylinder surfaces. The result is that less volatile components, that may have a greater

sooting propensity, are left behind. Thus, highly sooting components make up a larger

fraction of the liquid fuel at coolant temperatures of 80 0C than they do at coolant

temperatures of 200 C. It has also been suggested that the evaporation of ethanol

in this manner may actually inhibit the evaporation of the low-volatility, highly-

sooting fuel components since ethanol's high latent heat of vaporization will lower

the temperatures in the vicinity of the fuel films [67].

3.1.5 Fuel Volatility Investigation

Based on the study of the effects of fuel composition on PM emissions from DISI

engines under a dual-injection, late spark timing operating condition, which revealed

notable changes in emissions based on fuel composition that could be related to cylin-

der surface phenomena, it was decided that further study of fuel composition should

be completed with a focus on volatility. In these experiments, the goal is not so much

to identify the sooting propensity of fuels, but rather to further test the residual fuel

effects hypothesis. In these experiments, a fuel mixture is created that possesses only

two components: isooctane and isopentane. Isooctane represents the "low-volatility"

component of the fuel while isopentane represents the "high-volatility" component.

By increasing the isopentane fraction, the volatile fraction is increased. Relative to

Isooctane, Isopentane is a very volatile hydrocarbon [94, 95] and it was expected

that it would vaporize readily under typical in-cylinder conditions. By using a fuel

made up of this very volatile fraction and a less volatile fraction, it was possible to

modify the mass of liquid fuel participating in soot-producing phenomena. By con-

ducting a simplified sweep of injection timing with a dual injection strategy, with

varied volatile fractions (and, consequently, varied liquid masses) a straightforward

test of the hypothesis of fuel films giving rise to soot formation was achieved. In

addition to their volatilities, isooctane and isopentane were chosen because isooctane

is a heavily-used fuel in internal combustion engine research and isopentane has a
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similar sooting tendency with a significantly higher volatility [44].

A baseline experiment was conducted with neat isooctane to verify the PM emis-

sions response to second injection timing with the single-component fuel. As always,

the first injection was timed to start at 80 CA ATDCintake with the engine loaded

to 2bar net IMEP at 1200rpm. The coolant was chilled to 20'C for all tests in the

volatility investigation. As seen in figure 3-53, the trend observed for isooctane is

very similar to that seen with gasoline, though the magnitude of the particle number

concentration is significantly lower, except at extremely late injection timings.

Particle Number Concentration vs. S012
Spark: 11*CA ATDCCOMP, Inj. split: 70/30, Te.. 1=2 0 C
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Figure 3-53: PN vs. S012 for Isooctane

Since it is a single component fuel, the size distributions for isooctane are more

uniform with second injection timing than was seen for gasoline. The size distri-

butions for isooctane are showii in figure 3-54, but the differences in the response

to second injection timing betweenl isooctane and gasoline are more clearly seen in

figures 3-55 and 3-56, where extremely late SO 2 timings are omitted. Here it is

110



observed, firstly, that the particle diameters with isooctane are substantially smaller

than those seen for gasoline fuel. This is not surprising considering the paraffinic na-

ture of issoctane. The pathway to producing acetylene and PAH (and, consequently,

soot) is more complicated beginning with a paraffin than it is beginning with a fuel

containing aromatic components [6]. Secondly, it is seen that while there is some in-

crease in diameter with moderate injection timings, and a slight decrease again when

the injection timing leads to interactions between the fuel spray and the piston bowl,

the changes in mode bin mid-point diameter are less pronounced than they are with

gasoline.
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Figure 3-54: Particle Size Distributions for Isooctane

Using the isooctane emissions measurements as a baseline, particle number and

size data were collected for blends of 10%, 20%, 30% and 40% isopentane. by volume.

If the hypothesis of soot, formation originating form liquid fuel on cylinder surfaces

(primarily the piston crown) holds. then it stands to reason that the particulate
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Figure 3-55: Isooctane Figure 3-56: Haltermann HFO 437
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number emissions should decrease corresponding to decreased fuel film mass and

size, as caused by the evaporation of ispoentane. Data were collected for a single

injection at 800CA ATDCintake and under dual-injection conditions with the first

injection timed to begin at 800 CA ATDCinteke and the start of the second injection

at 225, 295, 310, 320, 330 and 3400CA ATDContake. This set of second injection

timings provides data points in each of the fuel wetting configurations of interest. As

shown in figure 3-57, the typical trend for particle number concentration versus second

injection timing is still captured in this simplified sweep of secolld injection timing.

The differences in emissions are not exceptionally stark, but it should, nevertheless

be apparent that, especially during those conditions with piston impingement, the

particle number concentration decreases with the addition of isopentane.

To more clearly illustrate the changes in emissions with increasing isopentane

fraction, in figures 3-58. 3-59 and 3-60 the particle number concentration in the engine

emissions are plotted against the isopentane fraction for each injection timing. For a

single injection, or dual injection strategy with early second injection. the decrease in

emissions is fairly rapid with the addition of isopentane. At these injection timings.

there may be some impingement on the liner (as evidenced by observed oil dilution

with fuel). but it seems unlikely that there would be significant impingement on other

surfaces such as the piston crown, which tends to produce elevated PM emissions. In

this case, instead of relying on reduced film sizes. it may be that the bulk of the
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Particle Number Concentration vs. S0l 2
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Figure 3-57: Particle Number Emissions for Isopentane/Isooctane Mixtures

soot is formed in rich (or droplet-containing) regions in the bulk cylinder gases. The

differential in volatility between isopentane and isooctane may enhance evaporation

of the entire mixture since the evaporation of isopentane may cause fuel droplets to

break-up more quickly, further enhancing evaporation.

At moderate second injection timings, when the fuel spray is expected to interact

with the piston bowl, it seems that, the main fuel effects hypothesis holds. The reduc-

tions in particle number concentrations track reasonably closely with the isopentane

fraction in the fuel mixtures. To reiterate, in this situation, isopentane should evapo-

rate readily. either in-flight or after contacting the relatively hot piston crown surface,

leaving behind only isooctane in the liquid state. Thus. the volume of liquid fuel in

piston crown films will decrease in proportion to the isopentane fraction. This is

best illustrated for the injection timing of 320'CA ATDCiftkf. where there is a 50%

decrease in emisisons with a 40%. by volume. mixture of isopentane and isooctane.
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Figure 3-60: Late Injection

Examining the particle size distributions, with varied fuel content at each injection

timing studied, shown in figures 3-61 through 3-67, it is observed that. with the

exception of the second injection timing of 2250 CA ATDCintake, the particle size

distributions are remarkably consistent in shape, with reasonably uniform mode bin

mid-point diameters among fuel blends at each injection timing point. This suggests

that the particulates being emitted have a common fuel origin. In this case, given

the evaporation properties of the fuel, it is known that the particles are originating

from isooctane. At an injection timing of 2250 CA ATDCintake. for neat isooctane,

the particle size distribution dlisplays a shape different from the isopeutane/isooctane

blends. The cause of this is not immediately clear. It seems that there may have

been a measurement fault. perhaps an unobserved change in dilution ratio during the
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SMPS scan.

Particle Size Distribution
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Figure 3-61: Single Injection

Particle Size Distribution SO 2=295*CA ATDCi,,,
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Figure 3-63: SOI2 =2950 CA ATDCintake
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Figure 3-64: SOI2=310 'CA ATDCake

This study of fuel volatility, in a situation where there is expected to be a strati-

fication of fuel composition, meaning that the liquid fuel is expected to be of a single

component., provides further evidence in support of the residual fuel effects hypothesis.

These data demonstrate the reduction in PM emissions associated with a, decreased

presence of liquid fuel in-cylinder. They further confirm the more general hypothesis

that liquid films on cylinder surfaces are important in the formation of particulate

matter.
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Particle Size Distribution S0l 2=320CA ATDCi,,,4I
Spark: 11CA ATDCOmP, Injection split: 70/30
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Figure 3-65: S012=320'CA ATDCintake
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Figure 3-66: S012=3300 CA ATDCintake
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Figure 3-67: SOI 2=340 'CA ATDCintake

3.1.6 Effects of Burned Gas Oxygen Content

The results presented thus far affirm the basic statement outlined in the residual

fuel effects hypothesis suggesting that P\I originates in combustion events involving

liquid fuel present on cylinder surfaces. The hypothesis. however, also proposes some

details of the physical characteristics of soot-producing reactions. Specifically, it

was suggested that the soot-producing reactions do not, take place in a pool fire or

diffusion flame as these concepts are traditionally understood. The term "diffusion

flame" describes a flame in which the rate of fuel consumption is determined by

the rate at which fuel and oxygen are brought together in proportions that. support

a reaction [431. The term "pool fire- simply describes a diffusion flame in which

the fuel is in a, pool of liquid. Generally. when discussing diffusion combustion. the
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combustion reactions occur in an interface between air and fuel where the fuel mixes

with fresh air (or another oxygen-rich oxidizer) as the reaction is taking place. Since

it can be demonstrated that liquid fuel films are supplying the fuel for soot-forming

reactions, it seems likely that a mixing process between oxidizer and the evaporating

fuel largely determines the rate of the reaction. The nature of the oxidizer is where

it is hypothesized that the soot-producing reactions in a DISI engine depart from the

traditional understanding of diffusion combustion. The combustion of fuel films, as

demonstrated by Costanzo et al. [52] occurs after the main combustion event. This is

a critical observation, as it indicates that the "oxidizer" is likely made up of burned

gases with very low oxygen concentrations. This idea forms the second part of the

residual fuel effects hypothesis, suggesting that soot is formed in reactions between

fuel vaporizing from films and burned gases.

In order to test this aspect of the residual fuel effects hypothesis, the burned

gas oxygen content experiment was completed. In this experiment, the engine was

primarily fuelled with liquid gasoline (Haltermann HFO 437), but the mixture was

further enriched through the addition of propane to the inlet air. By running the

engine with a constant rate of liquid fuel injection, then enriching the mixture with

propane, it was possible to observe the impact of burned gas oxygen content on the

formation of particulate matter, with the goal of testing the hypothesis that soot for-

mation occurs in a reaction between fuel and oxygen from burned gases. Maintaining

a constant rate of liquid fuel injection ensures that the liquid fuel phenomena do not

change with the equivalence ratio and, thus, the size of liquid films and mass of liquid

in-cylinder should remain constant, providing a true measure of the impacts of resid-

ual oxygen rather than results confounded by changes in fuel impingement. Propane

was used as the enriching fuel for two reasons. Firstly, as a gaseous fuel injected

upstream of the compressor, it will be well-mixed, ensuring there is no stratification

producing regions rich in propane. Secondly, propane has a low sooting propensity

[43], so any changes in PM emissions can be attributed to changes in the reactions

involving gasoline components.

The experiment was repeated twice, once with a fuel-lean baseline operating condi-
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tion and once with a stoichiometric baseline operating condition. For each of these ex-

perimental methods, the experiment was repeated at three different injection timings:

a single injection at 40'CA ATDCintake, a single injection at 1000 CA ATDCintke and

a dual injection strategy with the 70% of the liquid fuel injected at 80 0CA ATDCintake

and 30% of the liquid fuel injected at 320 CA ATDCintake. The fraction of the total

fuel that was liquid, in terms of the heating value, is outlined for the various exper-

iments in table 3.1. The maximum value of the liquid fuel contribution to the total

heating value corresponds to the baseline case with no propane enrichment. The

minimum value corresponds to the maximum propane enrichment case.

Table 3.1: Liquid Fuel Contribution to Mixture Heating Value (%)
Lean Baseline Stoichiometric Baseline
Max Min Max Min

SOI 40'CA ATDCintake 100 84 100 85
SOI = 100'CA ATDCintake 100 84 100 85
SOI = 80/3200 CA ATDCintake 100 83 100 87

The single injection at 100 0CA ATDCinte case represents an operating condition

with good mixing and little, if any, liquid fuel impingement. The early single injection

case represents an operating condition with severe pison impingement. It is expected

that the volume of fuel hitting the piston will be quite large, but there is some time for

evaporation and mixing. The dual injection case represents operating conditions with

the fuel spray interacting with the piston bowl, as would be the case in a partially-

stratified, late spark timing catalyst light-off operating condition. In this case, fuel is

injected with the piston very close to the injector tip, with little time for evaporation

and mixing before ignition.

The data for the lean baseline experiment are shown in figure 3-68. Here it, is

seen that the particle number concentration increases as the mixture is enriched by

propane. This is especially obvious for the cases with piston impingement. There is

an increase with equivalence ratio for the moderate single injection case as well, but it

is not very pronounced on this plot due to the relatively low magnitude of the particle

number concentrations. These observations suggest, that. the reduction in oxygen in
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the burned gases does indeed increase the rate of soot production. The fact that there

are no abrupt changes in the soot formation rate (for example, at the stoichiometric

condition) suggests that, as hypothesized, soot formation is not determined by the

global cylinder equivalence ratio, but rather by the local equivalence ratio in regions

surrounding fuel films.

Particle Number Concentration vs. Equivalence ratio
(Lean Baseline)
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Figure 3-68: PN vs. 6 (Lean Baseline)

Figure 3-69 plots the data from the stoichiometric baseline experiments. Similar

to the results from the lean baseline experiment, it was found that PM emissions tend

to increase with increasing equivalence ratio. The single injection timing at 1000 CA

ATDCintake again produces emissions at a much lower magnitude than those seen

in the cases with piston wetting. The single injection timing at 40'CA ATDCintak,

in this experiment. did not display the increase in emissions seen in the lean base-

line experiment. Here. instead. it is not possible to identify a significant trend. If

anything. it seems that the emissions remain relatively stable. On its own. this ex-
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periment offers no insight beyond that derived from the lean baseline experiment.

When plotted on the same axes as the results from the lean baseline case (see figure

3-70), however, these data provide further support for the idea that local (not global)

mixture properties determine the likelihood of soot formation. This is because, even

beginning with a different baseline (though the same rate of liquid fuel injection) the

trends remain reasonably consistent, with no abrupt changes when transitioning from

lean to rich combustion.

Particle Number Concentration vs. Equivalence ratio
(Stoichiometric Baseline)

S01, 80, SOGV1 320 A ATDCit __

SO =.40"CA ATDCi, h

- - - - -4-

soil 100*CA ATDCntake

.. .... ...
0.95 1 1.05 1.

Equivalence Ratio (4)

1 1.15 1.2

Figure 3-69: PN vs. # (Stoichiometric Baseline)

The particle size distributions for the lean baseline case are plotted in figures 3-

71. 3-72 and 3-73. It is seen in all three of these plots that the size distributions

remain uniform. with consistent mode bin mid-point diameters and overall shapes.

Of course. the particle number emissions do increase in magnitude, extending the

size distribuiton upward as the mixture is enriched. The implication from these data

is that, the particles all form following the same process. involving the same fuel
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Particle Number Concentration vs. Equivalence ratio
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Figure 3-70: PN vs. #b (Overview)

components. This means that the PM emissions are affected by the change in oxygen

content, not by changes in evaporation and mixing processes. This suggests that this

experiment was successfully implemented and that the reactions leading forming soot

do indeed occur with residual gases.
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3.1.7 RCM Study of Fuel Effects

In the engine-based experiments, there were a number of investigations involving

fuel composition. It was observed that with added aromatic content and a cold

engine, particulate matter emissions increased and particle sizes increased. It was also

found that smaller particles were emitted with blends of ethanol and gasoline. The

most instructive aspect of the engine-based fuel composition investigations, however,

came along with the combination study of blended fuels and warmed-up coolant

temperatures. In this case, it was possible to attribute changes in emissions to the

interaction of fuel and cylinder surfaces. This provided strong support for the residual

fuel effects hypothesis, but it did little to strengthen support for the fuel effects

hypothesis.

Existing studies have done a good job of quantifying the sooting propensity of

fuels in the form of a PM index, so, the idea that different fuels will result in soot

formation at different equivalence ratios already enjoys reasonably strong support

[68, 69, 93]. It was, however, desired to conduct a simple experiment to verify the

broad trends seen in the engine studies, while avoiding the complications associated

with surface temperatures and injection properties. If, as outlined in the residual fuel

effects hypothesis, the PM is formed in regions of rich mixture surrounding fuel films,

using the RCM with rich mixtures was seen as a possible method of examining soot

formation under rich combustion without the complications associated with engine

combustion.

In order to ensure the results from the RCM were relevant to engines, an attempt

was made to match the temperatures and pressures at the end of the RCM compres-

sion event with values that might realistically be seen by the end-gas in a modern

DISI engine. The conditions of the end-gas are of interest because, if the residual fuel

effects hypotheses are correct, then the soot-producing reactions in an engine will oc-

cur near the cylinder walls or piston-crown, likely toward the end of the combustion

event. A simple first-law model was used to estimate the temperature and pressure

of the unburned gas toward the end of the combustion event. For a 1200rpm, 2bar
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gross IMEP operating condition, it was estimated that pressures of 8bar and temper-

atures of 720K would be experienced by the end-gas. This value was used as a rough

starting point for the RCM study. As described in Chapter 2, the temperatures and

pressures after compression were specified by tuning the argon to nitrogen ratio in

the synthetic air mixture.

The cylinder pressure and light intensity are the only data recorded during the

RCM experiment. From the light intensity data, the soot volume fraction and soot

yield can be calculated. The pressure data can be used to estimate the cylinder tem-

peratures and volume using the adiabatic core hypothesis of isentropic compression

in the mixture outside the boundary layer which surrounds the RCM surfaces [96].

Before further calculations were completed, both the pressure and the light intensity

data were filtered to eliminate the high-frequency noise associated with the mechan-

ical vibrations generated during the firing sequence. As an example, pressure and

light transmission data are plotted in figures 3-74 and 3-75, respectively. These data

were collected for a fuel blend of 20% (by volume) toluene in Haltermann HFO 437

with an equivalence ratio of 2.7, a target compression temperature of 750K and a

target mixture density of 0.14kmol/m 3
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Figure 3-74: Cylinder Pressure Figure 3-75: LASER Transmission

As is seen in figure 3-74, after the initial compression, there is a short ignition delay.

followed by a steep increase in pressure corresponding to the combustion event. The

decrease in pressure in the remainder of the recorded data is due to heat transfer to
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the RCM walls and likely some leakage past the piston seals. The light intensity data

shown in figure 3-75 show a steep decrease in intensity coinciding with the combustion

event. This indicates that soot has formed in-cylinder. Following the steep decrease

is a very modest rebound in intensity. This corresponds to the oxidation of a fraction

of the soot that was initially formed. The intensity data plotted here are normalized

by the average of the first 100 data points.

From the light intensity data, the soot yield was calculated. Figure 3-76 plots the

soot yield versus experiment time for this example case. The shape is essentially the

inverse of the light intensity chart. The soot yield increases rapidly coinciding with

the combustion process. This is then followed by a decrease, corresponding to soot

oxidation, before reaching a steady value. For the purposes of these experiments, it

is this steady-state value that is of interest. For each experimental point, the steady-

state attenuation is measured and is used in the determination of the equivalence ratio

threshold for soot formation, which was defined as the equivalence ratio at which the

attenuation is equal to or greater than 50%.
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Figure 3-76: Soot Yield

By recording the attenuation percentage as the equivalence ratio is gradually

enriched, an s-shaped attenuation curve can be plotted. The curve asymptotically

approaches unity as the mixture is enriched. It is on this curve that the threshold

may be identified. Interpolation is used to estimate the equivalence ratio at an at-

tenuation of 50%. Figure 3-77 plots the attenuation curve for the baseline gasoline
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fuel at a target compression temperature of 695K and a target mixture density of

0.14 kmol/m 3 . In this case, the threshold equivalence ratio, following the simplified

definition, is found to be approximately 2.65.

Attenuation vs. Equivalence Ratio
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Figure 3-77: Light Attenuation vs. Equivalence Ratio

The attenuation data are useful for identifying trends in fuel PM formation char-

acteristics, but they are not particularly useful in actually understanding the more

fundamental ideas behind soot formation. In that case, calculating the soot yield

based on the attenuation data provides a more valuable measure of soot formation.

Figure 3-78 plots the soot yield versus the equivalence ratio for the same data as

those shown in figure 3-77. These data offer a better representation of the impact of

equivalence ratio on PM emissions. Here. there is no asymptotic approach toward a

saturation value. Instead, the soot yield appears to continue increasing with increased

equivalence ratio. In the context of a real engine. this is important to note, since poor

mixing may result in regions of mixture that are significantly more rich than the global
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cylinder equivalence ratio. Given that the soot formation potential increases quite

significantly as the mixture is enriched, it is important to avoid such regions, be they

caused by evaporating liquid films, or stratification due to poor charge motion and

mixing.
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Figure 3-78: Soot Yield vs. Equivalence Ratio

With these basic analytic techniques. the effects of three parameters on P4 for-

mation were examined using RCM data. The first is the impact of fuel composition.

The second is the impact of compression temperature and the third is the impact of

mixture density.

Fuel Effects As was done in the engine experiments, it was planned to examine

the effects of aromatic content and ethanol content. Unfortunately, due to the auto-

ignition resistance of ethanol., it was not, possible to collect data for ethanol/gasoline

blends as these mixtures would not ignite with a reasonable ignition delay. Data were
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collected for a blend of 20% toluene in gasoline as well as for the baseline gasoline.

Figure 3-79 plots the soot yield curves for gasoline at three different mixture densi-

ties and the gasoline/toluene blend at two different mixture densities. The mixture

density is, essentially, the pressure. A higher density results in a higher pressure

upon compression. With the toluene blend, it was not possible to reach the desired

temperatures at a mixture density of 0.12kmol/m 3, so that point was excluded for

the blended fuel.
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Figure 3-79: Soot Yield vs. Equivalence Ratio

There are noticeable., though not entirely consistent changes in soot yield with

the change in mixture density, but the most obvious observation from this plot is

the increase in the soot yield with the addition of toluene to the fuel. Effectively,
by adding toluene, the soot yield curves are shifted toward lower equivalence ratios.

This supports the hypothesis that different fuels possess different equivalence ratio

thresholds for soot formation. It is consistent, with the observations from the engine
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experiments, which, under cold operation, when fuel films were expected to evapo-
rate slowly, resulting in fuel-rich regions in their vicinity, resulted in increased PM
emissions associated with the addition of toluene to the fuel.

Compression Temperature The impact of the compression temperature, that is,
the temperature at which ignition begins, is interesting. The change in equivalence
ratio threshold for soot formation versus the compression temperature is plotted for
gasoline at three different mixture densities in figure 3-80.

Threshold vs. Temperature
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Figure 3-80: Threshold vs. Compression Temperature

These data are interesting because there appears to be different behaviour in dif-
ferent temperature regimes. At lower temperatures. the threshold equivalence ratio
increases (i.e. the sooting propensity decreases) with increasing temperature. This is
not surprising. as the rate of soot oxidation generally increases faster with temperature

than the rate of soot formation. resulting in less soot formation at high temperatures
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[43]. At higher temperatures, however, the threshold equivalence ratio remains con-

stant. This is a valuable result as it may open the door to future engine experiments

in which the soot formation in the bulk charge can be distinguished from those cre-

ated due to fuel films. This is because the soot arising from fuel films is strongly

dependent on evaporation processes, dependent on the engine surface temperatures,

which determines the amount of fuel participating in soot-producing reactions. For

soot formed in the bulk charge, however, the combustion temperature may still play

a role in the soot formation at lower temperatures, but it may be independent of the

flame temperatures at higher temperatures. These observations are consistent across

all of the mixture densities studied. It may be of interest to extend this study to

examine additional fuels.

Mixture Density Finally, the impact of mixture density was examined. This gives

some insight into what effects might be expected based on engine load or operating

conditions, when the cylinder pressures are changed. At high loads, it seems intu-

itive that the cylinder pressures will increase. There are other operating conditions,

however, which are also accompanied by changes in cylinder pressure. One exam-

ple is changes in spark timing. Retarding the spark timing will result in lower peak

pressures.

The equivalence ratio threshold for soot formation is plotted versus the mixture

density in figure 3-81. The lack of change in the threshold is quite remarkable. Here is

shown only one example for the baseline gasoline case, but data at other temperatures

showed consistent results. These may be useful data as they suggest that, under

similar fuelling and mixing rates, the rate of PM formation in a DISI engine should

not vary significantly with load. Engine experiments to explore this question might

prove interesting, though difficult, since it would be hard to change the engine load

without changing the amount of fuel and, consequently, the mixing process.
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Threshold vs. Mixture Density After
Compression

Fuel Gasoine
Compression Temperature: 695 K

I I K
0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155

Mixture Density (kmol/m 3)

Figure 3-81: Threshold vs. Mixture Density
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Chapter 4

Discussion

In Chapter 3, the data obtained from the engine and RCM experiments were outlined

and an attempt was made to relate the results to physical processes occurring in-

cylinder. In this chapter, the results will be further analyzed and discussed, first in

the context of testing the hypotheses laid out in the first chapter of this thesis, then in

the context of a coherent conceptual model explaining the physical processes leading

to soot formation in a modern DISI engine, under cold-idle operating conditions.

4.1 Support for Hypotheses

At the beginning of this programme of study, two hypotheses detailing soot formation

in DISI engines were outlined. The first, termed the residual fuel effects hypothesis,

suggested that the sooting propensity under cold-idle operating conditions may be

attributed mainly to the presence of residual liquid fuel on cylinder surfaces, which

reacts with residual oxygen in the burned gases at the end of the combustion event. It

was hypothesized that the combination of liquid fuel and low oxygen concentrations

would result in reactions resembling very rich combustion, with the associated soot

formation potential.

The second hypothesis, the fuel effects hypothesis, is more straightforward, but it

was necessary in order to complete the story of soot formation in DISI engines since

the residual fuel effects hypothesis does not really address chemical effects, rather it
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focuses on mechanical processes. The fuel properties, however, are expected to play

an important role in the soot formation process. Since there is more than one chemical

pathway to soot formation, some of which are more efficient than others, it should

come as no surprise that some fuels generate more soot than others. Considering the

residual fuel effects hypothesis, however, some further explanation may be possible.

If the residual fuel effects hypothesis holds, then, under identical mixing conditions, a

fuel which forms soot at lower equivalence ratios will result in greater PM emissions

than a fuel requiring a very rich mixture in order to form soot. Thus, it is hypothesized

that the equivalence ratio threshold for soot formation plays an important role in

determining engine-out PM emissions. This hypothesis is coupled to the residual

fuel effects hypothesis via the evaporation properties of the fuel, which play a role in

determining the mass of residual fuel and the mixing processes.

This section examines the ways in which the data presented in chapter 3 support

or refute these hypotheses. Where applicable, refinements to the original hypotheses

may be included.

4.1.1 Residual Fuel Effects

The residual fuel effects hypothesis can be divided into two distinct components. The

first is the hypothesis that, during cold engine operation, soot is primarily produced

in regions of fuel vapour which form surrounding liquid fuel films on cylinder surfaces.

The second is the hypothesis that the combustion of these fuel vapours takes place

with residual oxygen from the burned gases after the main combustion event.

Evaporation of Fuel Films The first question that is raised by the assertion

that soot forms in regions surrounding liquid fuel films is whether or not it can be

confirmed that fuel films are indeed formed during these operating conditions. This

question is not whether or not fuel films can form in a DISI engine; it is already

known that they can and do [9, 47]. The question is, instead, whether or not they

form in this specific engine under these operating conditions. This question must be

answered since if there were not fuel films forming on piston or liner surfaces, then
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the residual fuel effects hypothesis was not actually being tested by the experiments

that were completed.

Based on the data presented in chapter 3, it is clear that, at the very least, there

is, indeed, fuel impingement on the piston crown, and likely on the cylinder liner.

Looking at the injection and cylinder geometries, it is clear that impingement on the

piston crown and on the liner is possible, depending on the fuel spray penetration

characteristics. Using emissions data, however, it was possible to relate emissions

levels to likely impingement on the piston crown. This was clear in both the studies

of single injection timing as well as the study of second injection timing in a dual-

injection strategy. The increases in emissions corresponding to piston positions that

enable wetting of the piston crown with fuel indicate quite clearly that liquid films

are formed on cylinder surfaces, creating at least the most basic conditions needed

for soot formation to occur following the process suggested by the residual fuel effects

hypothesis. As for fuel impingement on the liner, there was evidence during experi-

ments that fuel was striking the liner, resulting in dilution of the lubricating oil in the

crankcase. This was especially obvious when ethanol blends were used. In this case,
when the oil was drained, it appeared as a frothy, milky emulsion. To verify that it

was fuel dilution and not another problem with the engine operation, a sample of the

oil was heated and the oil quickly returned to the typical dark colour of used engine

oil once the diluent was evaporated.

With this question settled, it is possible to address the main question in this com-

ponent of the hypothesis. That is, whether or not the soot is formed in regions of

fuel vapour which has evaporated from liquid films. Here, the consideration of the

data presented in chapter 3 must be more careful as the support for soot formation in

regions of fuel vapour is more subtle than is the support for film formation. The varia-

tion of the coolant temperature provides the strongest support for the suggestion that

the fuel films evaporate during the cycle, and that soot forms through reactions in-

volving these vapours. This is especially true when the base gasoline was blended with

ethanol or toluene. In both of these cases, changing the coolant temperature, while

maintaining the other operating temperatures at constant levels, results in changes

135



not only in particle number concentrations, but also in the particle size distributions.

This suggests that, depending on coolant temperatures (and the related engine com-

ponent temperatures), the fuel components participating in soot-producing reactions

may change. The implication of this observation is that fuels do not evaporate uni-

formly. Instead, there may be stratification of the fuel components. Importantly,

however, this suggests that the fuels do, indeed, evaporate after contacting cylinder

surfaces and before participating in soot-producing reactions. It would appear that

soot-producing reactions are initiated with the fuel components that evaporate slowly.

As an example, when toluene was added to the fuel, at cold coolant temperatures, the

particle number concentrations increased dramatically with the addition of toluene

and the particle sizes were increased, presumably due to the added aromatic content.

At warm coolant temperatures, however, the number concentrations did not change

markedly and, interestingly, the particle size distributions remained consistent, indi-

cating that the toluene added to the fuel was among the volatile portions of the fuel

that evaporated and burned in the bulk charge before the soot-forming reactions were

initiated. In this case, regardless of toluene content, the same fuel components were

left behind in evaporating fuel films to produce PM.

Combustion with Residual Gases Having offered support for the hypothesis

that the evaporation of fuel films leads to soot formation, the details of the soot

formation reactions can be clarified by considering the hypothesis that the combustion

of the fuel vapours occurs in residual gases. The study of burned gas oxygen content,

performed by enriching the charge with propane, seems to refute the hypothesis that

combustion occurs. By adding propane to the inlet air, enriching the mixture while

maintaining constant liquid fuel characteristics, it was observed that reducing the

burned gas oxygen content leads to an increased particle number concentration, but

it does not change the general shape of the particle size distributions. The fact

that the emissions change at all with the change in burned gas oxygen content is

encouraging as it supports the idea that the condition of the burned gases does impact

soot formation, meaning that the soot that is emitted is formed near the end of
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the combustion event. The observation that the number changes but that the size

distributions don't change suggests, however, that the soot formation mechanism does

not change with the changing oxygen content. Instead, it seems that a reduction in

oxygen concentration results in larger fuel-rich regions supporting PM formation.

In light of these observations, it seems that the use of the term "combustion" in

the formulation of the residual fuel effects hypothesis may not be accurate. Were

combustion taking place, one would expect the changing oxygen content to lead to

more pronounced changes in PM emissions than was observed. This is not only

true for number concentrations, but also for size distributions, since the different

flame temperatures expected at different oxygen concentrations should lead to larger

changes in soot characteristics in a true combustion reaction. Instead, it seems possi-

ble that soot is formed in reactions more closely resembling pyrolysis using the heat

conducted from the hot burned gases, without the presence of a reacting flame. While

the observations do not explicitly confirm this, given the very low burned-gas oxy-

gen concentrations seen with propane-enriched combustion, it seems likely that the

soot-forming reactions are a sort of oxidative-pyrolysis rather than a typical fuel-rich

combustion reaction. This would suggest that the luminosity observed in optical en-

gine studies [9, 52] may have simply been radiation from the hot particulates formed

in the pyrolysis reactions.

4.1.2 Fuel Effects

The fuel effects hypothesis can also be divided into two distinct components. The

first is the hypothesis that the evaporation properies of the fuel are at least partly

responsible for the amount of liquid fuel forming films on cylinder surfaces. This

point couples the fuel effects hypothesis to the residual fuel effects hypothesis. The

second component of the fuel effects hypothesis is the suggestion that, under the same

mixing rate. fuel stoichiometry may affect the soot formation. Related to this is the

suggestion that different fuels experience different soot formation chemistry. These are

related since the mixture stoichiometrv is decided by the fuel chemical composition,

as is the equivalence ratio at which soot forms, which is really the key point in
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considering the soot formation chemistry. Knowing the actual chemical mechanism

of soot formation is not critical. Instead, it is desired to know the likelihood of soot

formation given a particular fuel composition.

Evaporation Properties In order to test the hypothesis that fuel evaporation

properties may be responsible for the ultimate size of fuel films, the fuel volatility

study was completed. By creating a two-component fuel with known volatile and rel-

atively non-volatile fractions (isopentane and isooctane, respectively), it was possible

to examine the impact of fuel volatility on emissions. The reductions in PM emis-

sions with increasing isopentane fraction under operating conditions with identifiable

piston impingement were of the same order as the increases in isopentane fraction.

This indicates that the addition of volatile fuel components decreased the size of the

piston crown fuel films. This offers reasonable support to this aspect of the fuel effects

hypothesis.

Fuel Chemical Composition It was possible to relate PM emissions to fuel chem-

istry, but it is difficult to quantify. in a useful way, the sooting tendencies of fuels from

engine experiments. The studies of ethanol and toluene content provided support for

the idea that different fuel compositions will result in different PM characteristics.

This is not, however, a novel discovery. A number of studies have established PM

indices which may be used to examine the sooting tendencies of fuels based on their

chemical characteristics [68, 69, 93].

The more salient question to be answered for this hypothesis is whether or not

the mixture stoichiometry, specifically, may affect soot formation. In order to test

this hypothesis, the RCM experiments were conducted. While the experiments were

not completely representative of what might be expected in a real engine, they were,
nevertheless useful for ranking fuels based on their equivalence ratio threshold for soot

formation. It was found that different fuels do, indeed. require different equivalence

ratios for soot to form. The implication from these data is that while one fuel may

not produce soot under the mixing conditions in the cold-idle operation, another
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fuel, with a lower threshold equivalence ratio may result in substantial PM emissions.

These observations do not prove this hypothesis, but they do, at least, suggest that

it is plausible.

4.2 Conceptual Model of Soot Formation in DISI

Engines

The engine and RCM experiments discussed in this study offer support for and allow

refinement of the residual fuel effects hypothesis and the fuel effects hypothesis. These

hypotheses are, however, quite general, and their implications in a real engine may

not be immediately obvious. In this section, the basic hypotheses will be refined

to describe a conceptual model of PM formation in DISI engines under cold-idle

operating conditions. The intent is to outline the mechanisms of PM formation in

DISI engines in a similar way to what was accomplished by Dec for Diesel combustion

[97]. As was done in the discussion of the hypotheses, above, the conceptual model

will refer back to the results from engine and RCM experiments for support.

The model presented here outlines the physical processes leading to soot formation,

following the formation of fuel films, in a DISI engine operating with a dual-injection

strategy and late spark timing. The dual injection strategy was chosen because it

illustrates two different fuel sources for soot formation - liner impingement and piston

crown impingement. This conceptual model can, however, be adapted to apply to

soot formation from fuel films on any surface.

The model is composed of four main events. These are the fuel injection and

establishment of liquid films, the formation of fuel vapour plumes, the soot-producing

reactions, and the exhaust process.

4.2.1 Fuel Injection and Film Formation

The first steps in this model of soot formation is for fuel to be introduced to the cylin-

der and for the impingement of liquid fuel on cylinder surfaces to form liquid films.
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The location of films depends largely on the injection timing. Generally speaking,

very early and very late injections are likely to impinge on the piston crown. Moderate

injection timings may or may not result in liquid impingement on the cylinder liner

depending on the spray penetration (this, in turn, depends on several factors, includ-

ing the fuel pressures, temperatures and the injection duration). The first injection,

in the modelled case is at a moderate timing in the intake stroke, while the second

injection is at a late timing in the compression stroke. Illustrations are included in

order to help explain the conceptual model. Please note, however, that these are

merely illustrations, they are not based on optical data, so, while instructive, they

may not accurately represent the geometry of the processes taking place.

First Injection In this description of soot formation, the first injection is at a

moderate timing of 80'CA ATDCintake. At this injection timing, the fuel spray is not

expected to impinge on the piston crown. This idea is supported by the data shown

in figure 3-7, which shows elevated particle number concentrations at very early and

very late injection timings, coinciding with conditions where the fuel spray is expected

to impinge on the piston crown. The first injection is illustrated in figure 4-1. Here,

the piston is drawn at its location at the end of the first injection. It is seen that the

spray, even with a modest downward deflection, should not strike the piston crown.

During the injection process, a large fraction of the fuel should evaporate in-

flight, mixing with the incoming air and forming the bulk mixture. Some of the fuel,

however, will not evaporate and may strike the cylinder liner. Of this fuel, some may

splash off of the liner to be mixed in the main charge or to impinge on other cylinder

surfaces, some may evaporate from the liner surface and mix with the main charge,

and some may form a film on the liner surface. Of this last fraction, some may mix

with the oil film. eventually flowing to the crankcase. resulting in oil dilution. The

remaining fuel likely remains on the liner surface, possibly mixed with lubricating oil,

where it may slowly evaporate or be scraped off of the liner by the top piston ring

before taking part in soot-forming reactions.

The idea that some fuel escapes the combustion event is well-estblished based
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Figure 4-1: Illustration of First Injection

on observations of severe oil dilution under cold operating conditions. This was

especially obvious with ethanol blends. This oil dilution confirms that fuel does

impinge on the liner walls. Observations from experiments at cold and warm coolant

temperatures suggest that some of the liquid fuel in liner films (that does not end up

in the crankcase) will, as suggested, lead to soot formation. This is seen looking at

the data included in figures 3-19. 3-36, 3-37, 3-39 and 3-40.

If one examines the P1\ emissions from gasoline/toluene blends with a first injec-

tion timed at 80 CA ATDCintake and a second injection timed at 200'CA ATDCin/ake,

it can be determined that PM emissions do form in reactions involving fuel from liquid

films on the cylinder liner. This dual injection scenario closely approximates the con-

ditions at a single injection at a moderate injection timing. Both 800CA ATDCi,,t0 Ag

and 200'CA ATDCintk,, result in sprays that do not impinge on the piston but may

impinge on the liner. This is illustrated in figure 3-19. Figure 3-36 shows the PM

emissions for gasoline/toluene blends versus the start of second injection timing at
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a coolant temperature of 20'C. It is clearly seen that the emissions increase with

the addition of toluene. At a coolant temperature of 800C, however, there is little,

if any, difference in emissions based on toluene content. This is seen in figure 3-39.

Clearly, since the coolant temperature is the only variable that was changed, the

soot formation process is related to the interaction between the fuel and the liner.

To further understand what is happening, figures 3-37 and 3-40 are also instructive.

These figures indicate that, at cold temperatures, the addition of toluene results in

significant incrsases in the diameters of emitted particles, but that, at warm temper-

atures, the particle size distributions maintain the same general profile regardless of

toluene content. This suggests that the more volatile fraction of the fuel evaporates

upon contact with the liner. In this case, at engine coolant temperatures of 80'C, the

added toluene is among the more-volatile components of the fuel.

The implication of all of this is that, in the first injection, some liquid fuel does

impinge on the liner, and that some of that fuel mixes with the oil (oil dilution),

some evaporates quickly (the volatile fraction - including toluene at 80'C coolant

temperatures) and some will participate in late, soot-producing reactions. These

observations are reflected in the description of the first injection in this conceptual

model.

Second Injection The second injection in this description was timed to begin

at 3200 CA ATDCintake. This is a late injection during the compression stroke which

results in the impingement of liquid fuel on the piston crown. Impingement is expected

at this injection timing based on the data presented in figure 3-17, where the injection

at 320 CA ATDCintake coincides with fuel spray interaction with the piston bowl. The

second injection process is illustrated in figure 4-2. Here, the piston position is drawn

at its location at the end of the second injection. It is clear from the illustration that,

given the proximity of the piston to the injector tip, fuel impingement on the piston

crown is highly likely.

During the second injection process, some of the fuel will evaporate in-flight, with

the remainder striking the piston crown. Of the fuel that strikes the piston, some will
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splash off of the piston crown to evaporate and mix in the main charge or to impinge on

other surfaces. The volatile fraction of the fuel may evaporate quickly after contacting

the relatively warm piston crown and mix with the bulk charge. The remainder of

this fuel should form a slowly evaporating fuel film that later participates in soot-

producing reactions. It should be noted that the fuel remaining in piston-crown films

has significantly less time to evaporate before ignition than do liner films.

In addition to the mixture dynamics of the fuel delivered in the second injection,

the fuel from the first injection is still undergoing evaporation and mixing processes.

Most of the fuel from the first injection should be mixed in the bulk charge, which,

at the start of the second injection is lean of stoichiometric. Also, at this point,

the piston is travelling upward, approaching the cylinder head. Thus, some of the

fuel vapours, which surround liquid liner films, may be forced upward by the piston

motion. Some liquid fuel (or mixture of liquid fuel and lubricating oil) may also be

scraped off of the liner by the upward motion of the piston top ring. This scraped fuel

may be entrained in the bulk charge where it may evaporate and mix. Alternatively,

it may remain as free-flowing droplets which may also lead to soot formation. This

process involving liner liquid fuel films and vapour plumes has not been confirmed

experimentally, so it will not be discussed further in this thesis beyond noting that

it seems likely that the piston ring/liner interactions do influence the behaviour of

liquid films on the liner and the fuel vapours formed surrounding them prior to soot

formation.

The link between piston wetting and PM emissions is well-established based on

exisiting studies [9, 50, 51]. While piston impingement is not directly observed in this

study, it may be inferred quite reliably from emissions measurements. For example,

looking at the emissions data for dual injection with isooctane fuelling, plotted in

figure 3-53, it is seen that there is a significant increase in PM emissions, accelerating

at a start of second injection timing of approximately 2950CA ATDCintake. As shown

in figure 3-19, at injection timings later than this, it would appear that piston wetting

is likely. The increase in PM emissions coinciding with this likelihood of piston

wetting strongly suggests that piston fuel films produce favourable conditions for
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Figure 4-2: Illustration of Second Injection

soot formation.

Furthermore, the study of fuel volatility offers further support for the suggestion

that fuel films are responsible for soot formation since the particle number concen-

trations decrease roughly in proportion to the increase in the volatile fraction of the

fuel (see figure 3-59). The decrease in emissions with increased isopentane fraction

is understood to be a result of the evaporation of isopentane resulting in smaller

films of isooctane remaining on the piston crown. At the injection timing of 320'CA

ATDCintake, figure 3-65 shows that, regardless of isopentane fraction, the size distri-

bution maintains a uniform shape (though the particle number magnitude changes).

This confirms that isooctane produces the bulk of the soot and that the isopentane

fraction evaporates and mixes with the bulk charge. The close correlation between

isopentane fraction (and, thus. the amount of liquid fuel in-cylinder) and PM emis-

sions provides strong support for the idea that fuel films do form. and that they are

a major contributor to PM emissions.
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Similar to the first injection, the study of coolant temperatures also offers sup-

port for the behaviour of the second injection, as described in this conceptual model.

As seen in figures 3-46 and 3-47, there is little difference in the particle number

concentrations at warm or cold engine coolant for both E15 and E30 blends. It is in-

teresting, therefore, to note that, at a second injection timing of 320'CA ATDCintake,

for both E15 and E30, the particle size distributions shift toward larger diameters

with increased temperature (see figures 3-48 and 3-51). Despite being somewhat

counter-intuitive, these data suggest that piston films are important sources of PM

since the coolant and, thus, piston temperature influences the PM composition. This

means that the composition of piston fuel films influences the PM emissions (in this

case, the temperatures are high enough for the ethanol content to evaporate, leaving

behind components that are more likely to enable soot surface growth) and, more

fundamentally that piston films exist and support soot formation.

4.2.2 Fuel Vapour Plume Formation

After the injection events have been completed, the mixture will continue to develop.

Most of the fuel will be reasonably well-mixed in the bulk charge. Surrounding the fuel

films, however, plumes of fuel vapour will form as the films evaporate. This process

continues from the end of injection until the flame front from the main combustion

event meets the plume.

Plume Formation Before Ignition Before ignition, most of the mixture is uni-

form and near-stoichiometric. Fuel plumes, which are regions of fuel vapour (or very

rich mixtures of fuel vapour and air) form surrounding the liquid fuel films as the fuel

evaporates. The energy for evaporation is likely drawn primarily from the component

surfaces. The mixture temperature should also be quite high following compression,

but without knowing the thermodynamic condition of the liquid fuel, it is difficult to

predict the influence of the gas pressures on the fuel evaporation [98]. A prediction

of the early plume formation is illustrated in figure 4-3, which displays the plume

formation near TDC of the compression stroke. Apart from the developing plume,
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the shape of which is not well-known, the mixture is expected to be mostly uniform.

Figure 4-3: Illustration of Early Plume Formation

Plume Formation During the Early Flame Development Immediately after

ignition, the fuel vapour plume is not strongly impacted by the developing flame

front. At this time, only the uniform mixture is consumed by the flame front. The

fuel vapour plumes will continue to develop in the regions surrounding the fuel films.

In the very early stages of combustion, the flame should not have much influence

on the shape or size of the fuel vapour plumes as little expansion should have taken

place.

The periphery of the fuel vapour plumes will approach the equivalence ratio of

the bulk, uniform charge, but the equivalence ratio will increase progressively toward

the centreline of the plume, as well as toward the filn surface. The core of the

plume should be quite quite rich at this time. The plume formation during the early

flame development is illustrated in figure 4-4. The illustrated time corresponds to
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approximately 10% mass-fraction burned. Again, the actual shape of the plume is

not known.

Figure 4-4: Illustration of Early Flame Development

The main source of support for this plume formation process comes from the work

of Costanzo et al. [52]. The primary focus of this work was to study the impact of

liquid fuel films on the emissions of unburned hydrocarbons, but the experiments also

offered valuable insight into the formation of particulate matter. The experiments

included videos of the combustion process obtained in MIT's square piston optical

engine. In these videos, it was possible to see luminosity directly above a piston fuel

film. The luminosity was visible innediately as the main flame front, passed by. The

shape of the luminous region suggests that a very fuel-rich region of fuel vapour was

present before the main flame reached the area. In this study. this fuel-rich region is

understood to be the fuel vapour plume.

147



4.2.3 Soot-Producing Reactions

The formation of fuel vapour plumes continues throughout the main combustion

event. As shown in figure 4-4, above, it seems likely that, during the main combustion

event, the plume growth process would continue in a similar fashion to the process

prior to ignition. Once the main flame front reaches the fuel vapour plume, however,

the process becomes more complicated. The plume growth should continue, likely

accelerated by the heat transfer from the flame, but reactions will also be initiated

within the plume.

Early Interaction Between the Vapour Plume and the Main Flame Front

As mentioned earlier, as the fuel vapour plume grows, near the centreline and film

surface, the mixture will be very fuel-rich, but the periphery of the plume should

approach the equivalence ratio of the bulk mixture - generally close to stoichiometric.

Since the periphery of the plume is reasonably well mixed, as the flame front passes

through it, the near-stoichiometric, though rich, periphery should burn in a rich

pre-mixed flame. Portions of such flames may be sufficiently fuel-rich to support soot

formation, but their contribution to the total PM emissions should be relatively small.

In the richer portions of the plume, however, the equivalence ratio is expected to

be far too rich to burn. Instead, it is suggested that the low oxygen concentration in

the fuel vapour plume, in conjunction with heat transfer from burned gases (from the

main flame and the rich pre-mixed combustion) create an environment supporting

pyrolysis reactions in which soot is formed. Due to the high temperatures of the

burned gases and the heat release from pyrolysis, those soot particles formed in these

regions will also be very hot. As a result of these high temperatures, soot particles

will emit visible radiation [99].. As shown in figure 4-5, these soot-forming reactions

(and soot incandescence) should begin as the flame front and burned gases first meet

the fuel vapour plume. This incandescence is likely the luminosity typically identified

as diffusion flames or pool fires.
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Figure 4-5: Illustration of Early Plume Ignition

After the Completion of the Main Combustion Event At the end of the main

flame front, the bulk mixture has been consumed in the main combustion event., but

the soot-forming reactions continue in the fuel vapour plume. It must be reiterated

that this is not a typical diffusion flame as there is not a diffusion of air (or another

oxygen-rich gas) into the fuel vapour plume. Instead, there may be a diffusion of

burned gases (with very low oxygen content) into fuel vapours. This process does

not supply sufficient oxygen for combustion. The luminosity visible immediately

after the main flame is complete, typically identified as a flame, is more likely soot

incandescence at the interface between the fuel vapours (in which pyrolysis is leading

to soot formation) and hot burned gases. This process is illustrated in figure 4-6.

where the rich core of the plume is seen. with luminous soot particles at the periphery

of the fuel vapour plume.

As was the case for the general hypothesis of plume formation, support for the

soot formation process is drawn partly from the work of Costanzo et al. [52]. In
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Figure 4-6: Illustration of Early Soot-Producing Reactions with Luminosity

the engine combustion videos seen in the square piston optical engine study, it is

observed that as the flame front passes over the fuel films, a luminous region appears

in the location of an apparently pre-existing fuel vapour plume. This region remains

luminous well after the completion of the main combustion event.

In a typical diffusion flame, such as a candle flame or a co-flow diffusion flame,

luminous soot is also visible, but most of the particles are oxidized before being

emitted. In this case, however, there is very little oxygen in the surrounding gases,

so it is unlikely that much oxidation will take place. In fact, due to the lack of

oxygen, the luminosity (and, thus. the particles) persists into the exhaust process.

These videos provide strong evidence for the presence of a fuel vapour plume and the

formation of soot in these regions despite the lack of oxygen.

In addition to these data, the study of engine speed on PM emissions, outlined in

figure 3-26, offers some support for the ideas presented here. The increased emissions

at higher engine speeds might be partly explained by the decreased time for the
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fuel vapour plume to evaporate and mix with the bulk charge. The result of less

evaporation and mixing is that more fuel will be left behind to form the very rich

core of the fuel vapour plume, which is expected to be the major source of PM

emissions.

Reactions Involving the Core of the Vapour Plume The core of the fuel

vapour plume is also far too rich to burn since there is effectively no oxygen in

the plume and insufficient oxygen in the burned gases to support combustion. It

is still, however, suspected that some of the PM emissions originate from these fuel

components.

It seems likely that, in a similar way to the early soot-producing reactions, heat

conduction from the burned gases in the bulk charge is sufficient to enable pyrolysis

of the fuel vapours even at the core of the fuel vapour plume (though it is not clear

exactly how far into the plume heat conduction is sufficient to enable pyrolysis).
Under these conditions, soot precursors such as acetylene and PAH can be readily

formed from the hydrocarbons in the fuel vapours. With the temperatures high

enough, these precursors are able to support the nucleation and surface growth of soot

particles [34, 36, 38, 39]. Due to the lack of oxygen in the burned gases and within the

fuel vapour plume, there is little, if any, surface oxidation of soot particles to compete

with surface growth, allowing the particles to grow rapidly. This process, in which

pyrolysis occurs in the core of the fuel vapour plume, enabled by the high temperatures

of the burned gases is illustrated in figure 4-7. The presence (or intensity) of luminous

soot particles in the core of the plume is not clear from this work or from previous

studies since the luminosity of the outer shell of the plume, where most of the soot

should form, obscures the core. In this figure, the core is shown as being dark to

illustrate the presence of soot, but it is possible that the soot in this region may

also be radiating in the visible spectrum. As in all of the illustrations, the plume

shapes described here are for instructive purposes only. The actual appearance of

these processes (in this engine) is not known.

The propane enrichment experiment discussed in Chapter 3 offers justification for

151



N14

Figure 4-7: Illustration of Late Soot-Producing Reactions

the assertions above regarding soot formation in the core of the fuel vapour plume

via pyrolysis reactions. This experiment varies the burned gas oxygen concentration

by using propane to enrich the charge. The use of propane to enrich the mixture

allows the liquid fuelling rate to remain constant while still changing the equivalence

ratio. This means that the evaporation properties should remain relatively constant.

Propane should not contribute to additional soot formation for two reasons. Firstly,

it has a relatively low sooting propensity [43]. Secondly, it is added to the inlet air

upstream of the compressor, so it should be well-mixed and should take part in the

main combustion, in which little soot should be formed.

Figures 3-68 and 3-69 plot the particle number concentrations versus the equiv-

alence ratio for mixtures enriched with propane beginning with a lean baseline or

a stoichiometric baseline condition. respectively. Figure 3-70 offers a summary of

both the lean and stoichiometric baseline experiments. Viewing these figures. it, is

clear that., for the late dual injection case. as described in this conceptual model.
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the particulate emissions increase monotonically with propane enrichment, that is,

with a decreased burned gas oxygen concentration. This information, alone, doesn't

offer much insight since the idea that soot emissions increase with equivalence ra-

tio is nothing new. Looking at figures 3-71, 3-72 and 3-73, however, makes it clear

that, with decreasing burned gas oxygen content, the soot formation mechanism likely

doesn't change. In a rich pre-mixed flame, or a rich conventional diffusion flame, one

would expect the increased equivalence ratio to lead to increased particle sizes due

to the additional fuel taking part in the soot formation process and the changes in

the formation process (different temperature profiles, for example). In this case, how-

ever, the number concentration changes, but the sizes do not. The size distributions

remain remarkably uniform regardless of equivalence ratio. This suggests that the

soot is formed following the same mechanism in each case with only the volume of

fuel vapour participating in the soot-formation reactions increasing with decreasing

burned gas oxygen content.

The basic idea is that, as the burned gas oxygen concentration decreases, the

fraction of the fuel plume that is too rich to support combustion increases. The

result is that a larger volume of fuel vapour is contained within the core of the plume,

where the equivalence ratio is far too rich to burn. While combustion cannot be

sustained, the high temperatures of the burned gases from the main flame and the

rich pre-mixed combustion of the plume periphery are still high enough to initiate

pyrolysis reactions in the core of the plume. -As the plume core enlarges, both the

surface area and the volume of the plume core increase. Since the actual shape of

the fuel vapour plume is not known, it is not possible to determine which dimension

determines the soot formation characteristics. It may be related primarily to the

surface area of the plume core, since it is the outer periphery of the plume that will

be in thermal contact with the hot burned gases. With effective enough heat transfer,

however, it could also be related to the volume of the vapour plume, as there will be

fuel vapour contained within the entire volume. It is likely that the relation between

emissions and plume dimensions lies somewhere between surface area and volume.

In addition to the propane enrichment study, the study of engine speed also offers
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some support for the soot formation reactions described in this model. Figure 3-27

plots the mode bin mid-point particle diameter, that is, the diameter with the largest

particle number concentration, versus the start of second injection timing during the

regime in which the fuel spray interacts with the piston bowl on the LNF engine.

It is seen that, during this regime, the peak particle diameter is consistently larger

for slower engine speeds. This is true even though the particle number decreases at

slower engine speeds, as shown in figure 3-26. The implication of these observations

is that, at slower speeds, there is more time for soot particle surface growth in the

absence of oxygen, resulting in larger particles. Nucleation occurs relatively quickly

[100], so the engine speed should not have a tremendous impact on nucleation, but

surface growth, oxidation and agglomeration are ongoing. Under most conditions,

oxidation and particle growth are competing processes, making it difficult to identify

the impacts of time. In this case, however, there is very little, if any, oxygen present

in the plume pyrolysis reaction zone. Thus, the increased time at slower engine speeds

is correlated to increased particle sizes.

4.2.4 Exhaust Process

Finally, to complete this conceptual model, there is the exhaust process. This is il-

lustrated in figure 4-8. In the exhaust stroke, the soot, which could not be oxidized

in-cylinder due to the lack of oxygen in the burned gases is emitted with the bulk

charge. During the blowdown process, the plume(s), now containing a high con-

centration of PM, expand toward the exhaust valve due to the pressure drop. This

process causes some mixing of the particulates with the bulk charge, but oxidation

still does not take place due to the lack of oxygen remaining in the bulk charge. The

illustration of this process is largely based on observations from the videos produced

by Costanzo et al. [52].
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Figure 4-8: Illustration of the Exhaust Process

4.2.5 Soot Formation Pathways

To summarize the physical processes leading to PM emissions. the conceptual model

is presented in this section as a flowchart mapping the soot formation process from

injected fuel to soot. The flowchart is seen in figure 4-9. This flowchart shows the

paths that liquid fuel can follow before the exhaust process. Those termini that

are grey and labelled "combustioi" refers to non-sooting combustion in the main

combustion event. The black termini labelled "soot" refers to fuel which is involved

in the soot-producing reactions.
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Figure 4-9: Summary of Soot Formation Processes
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Chapter 5

Conclusions and Recommendations

This chapter offers a summary of the experiments completed in this study, the results

of these experiments and their significance. This includes a summary of the conceptual

model developed based on a refinement of the study hypotheses in light of the data

collected in this study. The conceptual model offers an explanation of soot formation

in DISI engines under cold-idle operating conditions. Following this, some concluding

remarks are made regarding the study findings and their significance to the field of

internal combustion engines. Finally, recommendations are made to help orient future

academic studies of particulate matter formation in DISI engines.

5.1 Research Summary

This study of PM emissions in DISI engines involved a large number of engine and

RCM experiments designed to test two hypotheses regarding the formation and emis-

sion of PM from these engines. This section will offer a brief summary of the exper-

iments conducted during this study and their significance to the questions raised in

the hypotheses. The two hypotheses considered during this study were the residual

fuel effects hypothesis and the fuel effects hypothesis.

Residual Fuel Effects Hypothesis The residual fuel effects hypothesis predicted

that, in cold engines, PM forms in reactions involving residual fuel (fuel not partici-
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pating in the main, pre-mixed combustion event) resulting from the impingement of

liquid fuel on cylinder surfaces. More specifically, it was suggested that regions of fuel

vapour form surrounding the residual fuel films and that fuel-rich combustion occurs

in these regions with residual oxygen from burned gases.

Fuel Effects Hypothesis The fuel effects hypothesis predicted that the differences

in PM emissions observed for different fuels can be related to differences in fuel

evaporation properties, mixture stoichiometry under identical mixing rates and soot

formation chemistry. The evaporation properties of fuels couples the fuel effects

hypothesis to the residual fuel effects hypothesis, since fuel evaporation should play

a role in determining the mass of residual liquid fuel.

5.1.1 Experiments

The bulk of the data used to test the hypotheses and to develop the conceptual model

of soot formation were collected from engine experiments. Some data used to test the

fuel effects hypothesis were collected using RCM experiments. Here, the key insights

from the experiments are summarized.

Spark Timing Investigation The study of the effects of spark timing on PM

emissions was conducted by varying the spark timing while holding the engine speed,

load, equivalence ratio and operating coolant temperatures constant. The result was

that the PM emissions increased with retarded spark timing. This was attributed

largely to reduced combustion stability and the retarded combustion phasing, but the

increased fuelling rate needed to maintain a constant load may also contribute to the

increased emissions by increasing the mass of residual fuel. The size distributions were

uniform regardless of ignition timing, suggesting a common formation mechanism.

This offers some. albeit weak, support for the idea that soot forms in secondary

combustion events, since it would appear that the soot formation process is not fully

dependent on the behaviour of the main combustion event.
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Injection Timing Investigation The injection timing investigation was composed

of a sweep of injection timing while maintaining constant engine load, speed, equiv-

alence ratio and temperatures. The measured particle number concentrations were

significantly higher for very early, or very late injection timings. It was at these tim-

ings that the fuel spray was expected to impinge on the piston crown, considering the

proximity of the piston to the injector tip during the injection process. In addition

to the increased number concentration, larger diameters were observed in the PM

emissions produced when piston impingement was expected. These data provided

good support for the residual fuel effects hypothesis, demonstrating that the soot

characteristics can be correlated to the locations and nature of fuel films.

Repeating the same experiment at a higher coolant. temperature resulted in re-

duced PM emission concentrations as well as reduced particle diameters. It seems

that the increased coolant temperature, which should correspond to increased cylin-

der component temperatures, enabled better evaporation of the fuels from cylinder

and piston surfaces, resulting in less residual liquid fuel and different fuel components

remaining in those films. This provides support for both of the hypotheses.

Dual Injection Investigation The study of injection timing for a dual injection

strategy was conducted to further understand the impact of film locations on PM

emissions. The experiments were conducted with 70% of the liquid fuel injected

during the first injection (timed to avoid piston impingement), creating a reasonably

uniform mixture in the bulk of the cylinder. The remainder of the liquid fuel was

injected during a second injection during the compression stroke. The timing of the

start of this second injection was varied while maintaining a constant engine speed

and load. Similar to the results of the single injection timing study, it was found that

the particle number concentrations were as much as two orders of magnitude higher

for those injection timings where severe piston wetting is expected. Further to that,

the particle sizes are increased as well. There is a range of injection timings through

which the fuel spray interacts with the piston bowl; here, the particle emissions remain

relatively uniform.
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Upon repeating the experiments, once with increased coolant temperatures and

once with increased inlet air temperatures, it was found that there was little difference

in total particle number concentrations. In the case of the heated inlet air, the goal of

which was to examine the impacts of in-flight evaporation, there was also no change in

the particle diameters. With heated coolant, however, the particle diameters increased

noticeably. This suggests that the volatile fraction of the fuel evaporates more readily,

leaving heavier, more highly-sooting components behind. Together, these experiments

show that in-flight evaporation has little impact on soot formation, while surface

temperatures prove to be very important, thus confirming the hypothesis that fuel

films are the main source of particulates at these cold operating conditions.

Fuel Composition Effects Interesting results were obtained when the dual injec-

tion timing experiments were repeated using different fuel blends. Blends of 15% and

30% toluene (by volume) in gasoline, as well as 15% and 30% ethanol in gasoline were

studied. The emissions trends with injection timing were the same as those seen with

the gasoline baseline, but the addition of toluene resulted in higher particle number

concentrations with 20'C engine coolant, especially when piston wetting was unlikely.

The addition of ethanol did not lead to significant differences in total particle num-

ber concentrations. The most interesting results were observed when comparing the

particle sizes for each fuel at the two different coolant temperatures studied.

In the case of ethanol addition, increasing ethanol content resulted in smaller

particles, at both temperatures. Comparing the emissions from a single fuel at the

two temperatures, however, showed that the particle sizes actually increase at higher

coolant temperatures, suggesting that the fuel components with low soot formation

potential evaporate readily at the higher coolant temperatures. In the case of toluene

addition. it was seen that, at coolant temperatures of 20 0C, the particle diameters

increased with toluene content, but, at coolant temperatures of 800 C, the particle

sizes were uniform regardless of toluene content. This suggests, again, that the fuel

volatility is important, since it appears that, in the warmed-up engine case, the same

fuel components are participating in the soot-producing reactions regardless of toluene
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content.

These observations offer further support for the residual fuel effects hypothesis,

but offers strong support for the assertion that fuel evaproation characteristics are

important for soot formation. Similar results were obtained from the fuel variation

study with single injection.

RCM Experiments In addition to the fuel injection studies, RCM experiments

were used to study the equivalence ratio threshold for soot formation for gasoline

and gasoline/toluene mixtures. As hypothesized, it was found that the threshold for

soot formation does vary with fuel composition. It was also found to vary based on

combustion temperatures, but there seemed to be little variability associated with

changes in the mixture density.

Fuel Volatility Study The fuel volatility study provides good confirmation of the

hypothesis that PM arises from fuel films. Blending isopentane and isooctane pro-

duces a fuel with a volatile fraction and a less-volatile fraction. The volatile fraction,

isopentane, should evaporate readily either in-flight or upon surface contact, leaving

behind only isooctane in fuel films, which evaporates more slowly. The reductions in

PM emissions are comparable (though slightly greater than) the isopentane fraction

in the fuel blend. This confirms the connection between the volume of liquid fuel in

the cylinder and the PM emissions. The decrease in emissions may be greater than

the volume fraction of isopentane because of evaporation interactions between the two

fuel components. The size distributions are consistent for each operating condition

regardless of isopentane content, signifying that only isooctane is participating in the

soot-forming reactions.

Burned Gas Oxygen Content Investigation The main insight from the study

of burned gas oxygen content was that the equivalence ratio of the bulk mixture

does not significantly influence particulate emissions. If it did, one would expect

to see a sharper change in PM emissions at the transition between lean and rich

equivalence ratios. Instead, there is a steady increase in PM emissions with increasing
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equivalence ratio. In this experiment, the rate of liquid fuelling was held constant

and the equivalence ratio was increased by adding propane to the inlet air. Propane

does not contribute significantly to the PM production, and the liquid evaporation

properties should remain constant, so the main effect of the addition of propane is that

the oxygen concentration in the burned gases is decreased. The increase in particle

number concentration, while the particle size distributions maintain consistent shapes

suggest that the soot formation mechanism does not change with decreased oxygen

content. Instead, it implies that the regions where soot-forming reactions take place

are enlarged, and that the soot-forming reactions are likely pyrolytic in nature, rather

than combustion reactions. This result was instrumental in allowing the development

of a conceptual model of soot formation in DISI engines.

5.1.2 Conceptual Model of Soot Formation in DISI Engines

Under Cold-Idle Operating Conditions

As detailed in this conceptual model, it is thought that PM emissions from DISI

engines operating under cold-idle conditions originate primarily in pyrolytic reactions

in fuel vapour plumes created through the evaporation of liquid fuel from cylinder

surfaces. During the injection process, liquid fuel may impinge direcly on cylinder

surfaces including the piston crown, the liner surface and the intake valves. Fuel may

also impinge indirectly on cylinder surfaces, including those mentioned above as well

as other parts of the combustion chamber. This indirect impingement occurs after

liquid fuel droplets splash off of the primary location of impingement. It is expected

that much of the injected fuel will evaporate in-flight (that is, before striking any

surfaces) and be thoroughly mixed with the incoming air, forming a uniform mixture.

The volatile fraction of the fuel deposited on cylinder surfaces should also evaporate

quickly. With sufficient charge motion. these vapours should be incorporated into

the main charge before ignition. Some of the fuel deposited on the liner will not

evaporate, instead mixing with the lubricating oil film, with which it is transported

to the crankcase. While this portion of the fuel does not contribute to PM emissions,
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it is, nevertheless a serious concern, as it dilutes the lubricating oil.

The remainder of the fuel that is deposited in liquid films on cylinder surfaces is

likely composed of relatively low-volatility components that will evaporate compara-

tively slowly. The evaporation from these fuel films, driven mainly by heat transfer

from cylinder surfaces will give rise to plumes of fuel vapour, or very rich mixtures of

fuel vapour and air surrounding the fuel films. The mixture in the periphery of these

plumes will approach the equivalence ratio of the bulk mixture, but the mixture will

become progressively more fuel-rich as the centreline of the plume and the fuel film

are approached.

After ignition, the main combustion event will proceed as usual. The combustion

of the main charge should produce little PM. As the flame front reaches a fuel vapour

plume, the periphery of the plume should be consumed in a rich pre-mixed combustion

process. Depending on the ignition limits and critical sooting equivalence ratios of

the fuel components, there may be some PM produced from this rich pre-mixed

combustion.

Finally, the core of fuel vapour plumes are too rich to support combustion. Instead

of combustion, it is expected that heat transfer from the bulk burned gases may be

sufficient to initiate pyrolysis of the fuel vapours in the core of the plume. It is

expected that soot precursors will be formed through these reactions, resulting in

the nucleation and surface growth of soot particles. The high temperatures of the

burned gases accelerate the evaporation of the fuel film, providing more fuel vapour

to participate in these reactions. In addition, the high temperatures cause the soot

particles to emit visible radiation (this is the luminosity often described as a diffusion

flame). It is expected that these pyrolytic, soot-producing reactions are the primary

source of PM in a DISI engine under cold-idle operating conditions.

5.2 Conclusions

The idea that liquid fuel films contribute to particulate matter emissions from DISI

engines during start-up and cold-idle operation is not new. For over a decade, fuel
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films have been known to be one of the major sources of PM. Typically, the soot-

forming reactions involving fuel from these liquid films were described as pool fires or

diffusion flames. It appears, however, that these descriptions were inaccurate. While

soot incandescence, like that usually attributed to diffusion flames, is observed in

DISI engines, the lack of oxygen in the bulk burned gases suggests that combustion

reactions are unlikely in these regions.

This study has demonstrated that in a cold engine, instead of a conventional

soot-producing diffusion flame (or pool fire), the soot-forming reactions occurring in

fuel vapour plumes may be better described as the pyrolysis of fuel vapours in the

near absence of oxygen, enabled by heat conduction from hot burned gases. Soot

precursors, such as acetylenes and PAH are formed during these pyrolysis reactions,

enabling soot particle nucleation and surface growth. The low oxygen concentrations

result in little, if any, surface oxidation to compete with the particle growth.

These findings are significant as they offer a complete explanation of the genesis

of particulate matter in-cylinder and provide the background information needed to

devise methods of minimizing PM emissions. The importance of avoiding film forma-

tion is already appreciated within the engine design and calibration communities, but

this study allows renewed attention to be paid to fuel blends as a means of achieving

PM emissions reductions.

Additionally, one of the implications of the previously accepted explanation of the

soot-forming reactions was that the key to reducing emissions was to eliminate fuel

films. This is certainly still a viable strategy for PM reductions, but, given the new

understanding of the soot-forming reactions as pyrolytic in nature, it may be possible

to further contribute to the emissions reductions by attempting to increase the oxygen

content in the regions surrounding fuel vapour plumes, or by using creative charge

motion strategies to mix vapour plumes with the bulk charge.
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5.3 Recommendations for Future Work

The conceptual model outlined in this work provides a good understanding of the soot

formation mechanism in cold DISI engines operating at idle speeds. This is a very

important operating regime to understand, since it contributes a large fraction of the

total emissions permitted over the course of the regulatory certification test cycle. It

is not, however, the only operating condition of interest. In particular, start-up and

transient operation are also of interest. Given the transient nature of these processes,

it is likely that fuel films are less persistent, so it is not clear what implications, if

any, from this work may be applied to these operating regimes.

Thus, it is recommended that a similar effort to that completed in this study be

conducted with a focus on engine transients. If a fast particle sizer is available, this

can be completed in a similar method to that employed here. By relating emissions to

physical processes known to be occurring in-cylinder, it may be possible to identify the

probable locations of soot formation without requiring the use of an optical engine.

To confirm the hypothesis that pyrolytic reactions are involved in soot forma-

tion, optical experiments to visualize the growth of vapour plumes would be helpful.

Laser-induced fluorescence may be used to measure equivalence ratios, providing an

understanding of what reactions are possible given the known fuel and air concen-

trations, but this is difficult once soot has begun to form, since the soot luminosity

obscures the inner portions of the fuel vapour plume. It may be necessary to complete

such a project using simulations.
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Appendix A

Injector Pulse-Width Calibration

The injection pulse-width was correlated to the mass of fuel delivered per injection

using a simple calibration procedure. The fuel rail was mounted in a test fixture

that held the injectors in place during the calibration. The injector tip was inserted

into top of a glass container and the injector was fired. The fuel was collected in the

glass container and was then weighed on a microbalance to determine the mass of

fuel delivered. A single injection delivers far too little fuel to obtain repeatable mass

measurements, so hundreds or even thousands of pulses (depending on the length

of the pulse) were completed and the final mass of fuel was averaged over the total

number of pulses. The glass container was mounted in an ice bath to ensure the

fuel did not vapourize after the injections. Any condensation on the container was

carefully removed before the fuel was weighed. Figure A-1 is a plot of the calibration

data. It is seen that, for pulse-widths longer than 500ps, the fuel mass delivered is

related nearly linearly to the fuel injection pulse-width. At pulse-widths shorter than

500ps, the injector operates in its "ballistic" regime, and the relation between mass

delivered and pulse-width is non-linear. There is a pressure dependence. As shown

in figure A-2. the mass flow rate appears to be related to the square root of pressure.
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Fuel Mass per Pulse vs. Injection Pulse-width
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Figure A-1: Fuel Injector Mass Calibration
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Fuel Mass per Pulse Normalized by p112 vs.
Injection Pulse-width
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Figure A-2: Normalized Fuel Injector Mass Calibration
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Appendix B

Haltermann HFO 437 Fuel

Specifications
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haltermannsolutions
fucng .poe s(lut0 '24

Telephone: (800) 969-2542

Product Information
FAX: (281) 457-1469

Johann Haltermann Ltd.

PRODUCT: EPA TIER 11 EEE Batch No.: AJ0221LT1O
FEDERAL REGISTER

PRODUCT CODE: HF0437 Tank No.: 105
Date: 1013/2012

TEST METHOD UNITS HALTERMANN Specs RESULTS
MIN TARGET MAX

Distillation - IBP ASTM D86 OF 75 95 87
5% OF 110
10% OF 120 135 126
20% OF 149
30% *F 175
40% OF 204
50% OF 200 230 223
60% OF 234
70% OF 244
80% OF 263
90% OF 305 325 319
95% OF 342
Distillation - EP OF 415 411
Recovery vol % Report 96.9
Residue vol % Report 1.1
Loss vol % Report 2.0
Gravity ASTM D4052 *API 58.7 61.2 59.2
Density ASTM D4052 kg/I 0.734 0.744 0.742
Reid Vapor Pressure ASTM D5191 psi 8.7 9.2 9.2
Carbon ASTM D3343 wt fraction Report 0.8646
Carbon ASTM E191 wt fraction Report 0.8631
Hydrogen ASTM E191 wt fraction Report 0.1339
Hydrogen/Carbon ratio ASTM E191 mole/mole Report 1.847
Stoichiometric Air/Fuel Ratio Report 14.580
Oxygen ASTM D4815 wt % 0.05 None Detected
Sulfur ASTM D5453 wt % 0.0025 0.0035 0.0031
Lead ASTM D3237 g/gal 0.01 None Detected
Phosphorous ASTM D3231 g/gal 0.005 None Detected
Silicon ASTM 5184 mg/kg 4 <1
Composition, aromatics ASTM D1319 vol % 35 28
Composition, olefins ASTM D1319 vol % 10 1
Composition, saturates ASTM D1319 vol % Report 71
Particulate matter ASTM D5452 mg/ 1 0.6
Oxidation Stability ASTM D525 minutes 240 1000+
Copper Corrosion ASTM D130 1 1a
Gum content, washed ASTM D381 mg/100mis 5 <0.5
Fuel Economy Numerator/C Density ASTM E191 2401 2441 2426
C Factor ASTM E191 Report 0.9991
Research Octane Number ASTM D2699 96.0 96.5
Motor Octane Number ASTM D2700 Report 88.6
Sensitivity 7.5 7.9
Net Heating Value, btu/lb ASTM D3338 btu/lb Report 18492
Net Heating Value, btu/lb ASTM D240 btu/lb Report 18475
Color VISUAL a _I _ IReport Undyed
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