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Abstract

We combine pressure, velocimetry and birefringence measurements to study three phe-
nomena for which the fluid rheology plays a dominant role: 1) shear banding in micellar
fluids, 2) extension-dominated flows in microfluidic devices, and 3) flow-induced particle
migration in microchannels.

Firstly, worm-like micellar solutions are model non-Newtonian fluids having a single
relaxation time A. At shear rates larger than - > A-, however, these systems exhibit
shear banding and non-linear rheological behavior, whose importance is characterized
by the Weissenberg number Wi A ky. We develop a stability criterion for the onset of
a purely viscoelastic instability for shear-banding fluids, to establish the limitations of
conventional rheometric techniques for studying these fluids.

A second challenge for conventional rheometers is inertially-driven secondary flows.
The onset of these flows is governed by the Reynolds number Re = UD/v, where U is the
velocity, D is the flow geometry length and v is the fluid kinematic viscosity. We develop
microfluidic devices to impose shear and extensional deformation rates up to 0(105) S-1

at low Re. These experiments combine pressure measurements, micro-particle image
velocimetry (p-PIV) and birefringence measurements. We develop a microfluidic chip
that enables applied rheologists to quantitatively differentiate between fluid formulations
intended for applications at high deformation rates.

Finally, we study the interplay between fluid inertia and elasticity on particle migra-
tion. The inertially-dominated case is governed by the channel Reynolds number Re,
and particle Reynolds number Rep = Rec(a/D)2 , where a is the particle diameter. In
a microfluidic device, the particle and channel size are on the same order, and hence
migration occurs at Rep ~1_0 1, in the so-called 'inertial focusing' regime which may have

applications in clinical medicine. However, most physiological fluids are viscoelastic and
therefore particle migration in these fluids occurs at high Reynolds and Weissenberg
numbers, which is a mostly unstudied regime. We combine pressure measurements,
streak imaging, p-PIV and particle trajectory analysis (PTA) to study the migration of
polystyrene beads. Inertia drives particles toward the channel walls, whereas elasticity
drives particles toward the channel centerline even at Re, - 2000.
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Chapter 1

Introduction

1.1 Motivation

Water-based polymeric and surfactant solutions are encountered across a broad range

of industries and applications, from rheological modifiers in foodstuffs (e.g. xanthan

and guar gum) and consumer products (e.g. sodium laureth sulfate), to inks and paints

(e.g. cellullose derivatives), to additives for drag reduction in turbulent pipe flows (e.g.

polyethylene oxide and polyacrylamide) and hydraulic fracturing fluids for enhanced oil

recovery (Kefi et al., 2005). Furthermore, polymer solutions are found in a large number

of physiological fluids in the human body. For example, hyaluronic acid is found in

synovial fluid (Kogan et al., 2007), mucin is a major component of saliva (Haward et al.,

2011), and the addition of drag reducing polymers to blood has been suggested as a

means of preventing death from hemorrhagic shock (Kameneva, 2012).

The addition of a polymer to a Newtonian solvent, even at dilute concentrations,

introduces viscoelasticity to the resultant liquid, which can dramatically alter its rheo-

logical behavior and suitability for a particular application. A viscoelastic material is

one that exhibits both a fluid-like (i.e. viscous) and a solid-like (i.e. elastic) behavior

in response to an imposed deformation or stress (Bird et al., 1987). There are gen-

erally two dimensionless groups that are used to quantify the relative importance of

viscoelasticity in a flow (Dealy, 2010). The first is the Deborah number De which is a

measure of the importance of elasticity in a transient flow. This number is defined as

13
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(a) Enhanced oil recovery (b) House-hold products (c) Inkjet printing (d) Lab-on-a-chip experiments

Figure 1.1.1: Common applications of micellar and surfactant solutions.

the ratio of the relaxation time of the material A to the timescale of observation teo,

hence De = A/t,,b. The second group is the Weissenberg number Wi = A , defined as

the product of the material relaxation time and the imposed deformation rate. It is a

measure of the strength of the non-linearity in a fully developed flow.

The primary viscoelastic materials considered in this study are the aforementioned

surfactant systems (Larson, 1998). Surfactants are amphiphilic, rheological modifiers,

that are composed of both hydrophobic and hydrophilic groups and can associate or

self-assemble into large molecular aggregates, known as micelles. Micellar solutions are

found in consumer products and inks, and they are used for turbulent drag reduction

(Rothstein, 2008) and enhanced oil recovery (Kefi et al., 2005) as depicted in Figure 1.1.1.

Depending on temperature, salinity and concentration (Israelachvili, 2007), the aggre-

gates take on a variety of shapes and sizes (e.g. spherical, bilayer, cylindrical), which

significantly influence the rheological properties of the material. Here the focus is on

worm-like micelles (WLM), which take the form of flexible cylinders and are often called

living polymers, due to their ability to associate reversibly and dynamically and their

entangled structure that is topologically similar to that of many entangled polymeric so-

lutions. WLM solutions mimic the generic rheological behavior of many other entangled

polymeric systems and they are commonly considered to be model rheological fluids,

because in the limit of small deformations and deformation rates their linear viscoelastic

behavior can be described by the single-mode Maxwell model (Cates, 1990; Rehage &

Hoffmann, 1991; Cates & Fielding, 2006). Unlike typical polymeric systems which ir-

reversibly degrade at large stresses, WLM can reversibly self-assemble after undergoing

stresses significant enough to break the aggregates, and hence they are suitable also for

the study of non-linear rheological behavior.

14
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(a) Cylindrical Couette (c) Cone-and-Plate

Figure 1.1.2: Commonly used fixtures for use with rotational rheometers.

The rheological characterization of these surfactant systems and other complex fluids

is therefore of paramount importance in evaluating their performance for a particular

application. Rheometry is the practical science of measuring the material properties of

a viscoelastic material under flow (Macosko, 1994). Accordingly, a rheometer is a scien-

tific instrument used to measure quantities such as viscosity, normal stress coefficients

and other rheological material functions. One of the most commonly used rheometers is

the torque-based rotational rheometer, which imposes a stress or a deformation rate on

a material sample and measures the corresponding deformation rate or stress, respec-

tively. Generally, the material sample is contained in the gap between two coaxial solid

surfaces, which rotate relative to each other, in configurations such as those depicted in

Figure 1.1.2. Most conventional macroscale rheometers can be used to measure the ma-

terial functions of a test fluid at shear rates up to at most - < O(103) s-1, depending on

the test fixture dimensions and the rheological properties of the particular test fluid. At

higher shear rates, inertially or elastically-driven instabilities give rise to secondary flows

including turbulent flows, which prevent accurate measurement of viscometric material

functions.

The dimensionless control parameter for inertial instabilities is the Reynolds number

Re = Ut/v, where U is a characteristic velocity of the flow, f is the characteristic length

15



scale of the flow geometry and v is the kinematic viscosity of the fluid. Conversely,

the control parameter for an elastically-driven instability is typically proportional to the

aforementioned Weissenberg number Wi. Generally, if either of these numbers is larger

than some critical value that depends on the flow geometry, the base flow becomes un-

stable. Many of the flow instabilities that are relevant to rheometry have been reviewed

by Larson (1992), and they include the inertial and elastic Taylor-Couette instabilities

in the cylindrical Couette geometry (Taylor, 1923; Larson et al., 1990), as well as edge

fracture in the free surface of the parallel plate and cone-and-plate geometries (Tanner

& Keentok, 1983; Lee et al., 1992). These instabilities place an upper bound on the

deformation rates at which conventional rotational rheometers can be used to measure

material functions.

In all cases, however, the characterization of a complex fluid must be completed

over a range of deformation rates relevant to its intended industrial process, many of

which occur at significantly higher shear rates than those that can be achieved with

conventional rheometers. For example, high rate deformations can be achieved even for

moderate velocities when the characteristic length scale of the flow is small such as in

flow through porous media, the chewing of foodstuffs, coating flows and flows through

small orifices. For the flow of ink through the nozzle of an inkjet printer, where the

length £ of the smallest printable feature may be on the order of tens of microns and

ejection velocities U are on the order of meters per second, characteristic deformation

rates are easily on the order of y -U / - 0(105) s-1. An alternative measurement

technique is therefore necessary for accurate rheological characterization at these large

deformation rates.

1.2 Flows of Complex Fluids in Microfluidic Devices

1.2.1 Microfluidic Rheometry

A microfluidic device is composed of a channel or a set of channels that have been

etched or molded into a material such as glass or a silicon elastomer, for which the

smallest length scale of the channels is on the order of tens or hundreds of micrometers.
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Figure 1.2.1: Measured flow curves. Solid symbols correspond to data measured on a
rotational rheometer. Hollow symbols correspond to data measured using a microfluidic
slit rheometer. The fluids are a Newtonian S3 calibration oil, 1 wt% 6 MDa poly-
acrylamide solution and 300:405 mM cetyltrimethylammonium bromide:sodium nitrate
solution.

The ability to manipulate small volumes of fluids with these devices has enabled their

widespread adoption in research areas from biomedicine to microelectronics (Whitesides,

2006). The relatively low cost and ease of fabrication associated with microfluidic devices

have also resulted in their growing use amongst applied rheologists over the last decade,

(Pipe & McKinley, 2009; Galindo-Rosales et al., 2013). The key insight behind the use

of microfluidic devices for rheometry is that by shrinking the characteristic length scale

of the geometry and holding the characteristic velocity constant, the Reynolds number is

reduced while the characteristic deformation rate is simultaneously increased. Therefore,

microfluidic rheometry is a rheometric technique that exploits the small length scales of a

microchannel to characterize the rheological properties of a complex fluid at deformation

rates generally on the order 103 < ' 106 S-1.

To illustrate the value of using microfluidic devices, the flow curves of a Newto-

nian calibration oil, a polyacrylamide solution and surfactant solution are shown in

Figure 1.2.1. The measurements at low shear rates plotted with the solid symbols were

obtained using a conventional macroscale rotational rheometer. As discussed above,

inertial or elastic instabilities limit the upper bound of accessible shear rates with this

rheometer. To extend the measurements to shear rates as large as : -, 3.3 x 105 s-1, a

microfluidic slit rheometer fabricated with internal pressure sensors was used. The com-
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Basic Equipment for Microfluidic Rheometry

Microchannel

- Soft lithography

- Glass extrusion
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Figure 1.2.2: Equipment for microfluidic rheometry.
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bination these two rheometric techniques enables viscosity measurements for a single

fluid over as much as eight orders of magnitude of shear rates.

The basic array of equipment that is necessary for microfluidic rheometry is given in

the schematic flow diagram in Figure 1.2.2. Clearly, a microfluidic device on its own is

not sufficient for the quantitative determination of a material function such as the shear

viscosity. Instead, it must be complemented with an instrument such as a syringe pump

to the control flow rate through the channel, and with equipment to measure mechanical

pressure, flow kinematics and other quantities such as flow-induced birefringence.

Flow Control and Pressure Measurements

Whereas on a rotational rheometer a torque or angular displacement is applied to the

fixture and thereby imposed on the test sample, for a microfluidic device the analogous

control parameters are the pressure drop across the device and the volumetric flow rate

through it, respectively. Typically, the volumetric flow rate though a microchannel is

controlled by a positive displacement syringe pump and the pressure drop across the

channel is recorded using differential pressure transducers or sensors based on micro-

electromechanical systems (MEMS) that are embedded in the channel. In certain cases,

however, it is more convenient to impose a pressure drop across the channel and measure

the corresponding volumetric flow rate through the channel.

For a rheometric instrument, the mathematical relationships between these quantities

and the stress and deformation rate imposed on the test material are functions that are

specific to the configuration and dimensions of the test geometry. While there are many

geometries for a rotational rheometer for which exact mathematical relationships are

available (Macosko, 1994), there are comparatively few configurations for a microfluidic

device for which similar relationships can be rigorously derived from first principles.

It is therefore often the case when using a microfluidic device for rheometry, that the

imposed flow kinematics cannot be known precisely a priori, and thus it is necessary

to incorporate velocimetry measurements to accurately determine the experimentally

realized deformation field.
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Particle-based Flow Visualization Techniques

The ability to obtain spatially-resolved measurements of the a flow field is one of the

most powerful tools for an experimental rheologist to study the roles of viscoelasticity

and inertia in the behavior of a test fluid in a complex flow. Among the many flow

visualization techniques (Smits & Lim, 2012), particle-based imaging has been widely

adopted to study the flow in microfluidic devices. According to this method, small tracer

particles are seeded in the fluid and their trajectories are recorded under the assumption

that the particles faithfully follow the local flow field. The exact size, buoyancy, seeding

density and optical properties of the tracer particles must be tailored to the particular

application, but typically for visualization measurements in microfluidic devices particles

are approximately neutrally buoyant and one micrometer in diameter.

One of the simplest particle-based flow visualization techniques is streakline imaging,

whereby particle streaks are recorded by increasing the exposure time of the imaging

system to allow the tracer particles to travel through a large fraction or all of the field of

view in a single image. This imaging technique has been used prolifically to study flows

in complex geometries at the macroscale (Van Dyke, 1982) and the microscale (Groisman

& Quake, 2004; Rodd et al., 2005). Streakline imaging enables the experimentalist to

gain qualitative information about a complex flow, but it cannot be used to extract

quantitative information about the velocity field.

Alternative imaging methods such as particle tracking velocimetry (PTV) (Malik

et al., 1993) and particle image velocimetry (PIV) (Raffel et al., 1998) can instead be

used to determine velocity magnitudes in a microchannel. Both methods require short

exposure times to capture the instantaneous position of all particles in the field of view.

The respective particle positions in a sequence of images that are captured at regular

time intervals are then compared to reconstruct the local velocity field. In PTV, gen-

erally the particle seeding is sufficiently low that the trajectories of individual particles

can be identified, whereas PIV is a correlative technique that tracks the local average

trajectory of a collection of particles in an interrogation region in the field of view. A

further distinction must be made between the illumination methods used for experi-

ments in macroscale and microscale geometries. For PTV/PIV, typically a laser is used
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to form a thin focused light sheet to illuminate a particular cross-section of the flow

for visualization. In a microfluidic device, however, optical access may be restricted or

the effective thickness of the light sheet may be on the order of the dimensions of the

geometry (Meinhart et al., 2000). So instead, the alternative approach for experiments

in microchannels is known as volume illumination, whereby the entire volume of a re-

gion of flow is illuminated and the spatial resolution of all measurements is controlled

by selecting the appropriate combination of optical components (e.g. objective, light

wavelength, camera resolution etc.). This illumination technique is what differentiates

conventional PTV/PIV from p-PTV/p-PIV.

Flow-Induced Birefringence

The microstructure of many optically transparent complex fluids, such as the polymer

solutions studied in this work, is isotropic under quiescent equilibrium conditions. When

a complex fluid is subject to an imposed stress, however, its microstructure becomes pref-

erentially oriented, and this structural anisotropy gives rise to optical anisotropy, also

called flow-induced birefringence (FIB), which can be quantified using appropriate imag-

ing techniques. Accordingly, optical rheometry is the measurement of the interaction of

light with an optically anisotropic material in order to determine its state of structure

(Fuller, 1990). In certain cases, FIB measurements can also be related to the stress

in the material with the semi-empirical stress-optical rule (Fuller, 1995). Simply put,

this rule states that the difference between the principal indices of refraction An in the

imaging plane is linearly proportional to the principal stress difference in the fluid Auo.

The coefficient of proportionality is the stress-optical coefficient C, which is normally an

empirically determined constant for a given fluid. Hence An = CAu. According to this

rule, it is therefore possible to obtain optically non-invasive measurements of the state

of stress in a flowing complex fluid.

For experiments in macroscale geometries, birefringence measurements are commonly

completed with a columnated light source, such as a laser, whose spot size is on the or-

der of one millimeter. For flows through a microfluidic device, the spatial variations in

birefringent quantities occur on much smaller length scales, so accurate measurements
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require a birefringence microscopy system with optical resolution on the order of microm-

eters. The ABRIOTM imaging system (CRi, Inc.) is a commercially available instrument

designed to obtain such highly spatially-resolved measurements with an optical micro-

scope, and it has been used for all optical rheometry experiments in microfluidic devices

studied in this thesis.

The combination of flow visualization methods, and pressure and flow-induced bire-

fringence measurements forms a versatile tool kit for the applied rheologist to study the

rheological behavior of a wide range of viscoelastic materials undergoing large deforma-

tion rates in microfluidic devices. In this thesis, the measurement techniques have been

used for the rheometric characterization of WLM and other polymeric solutions in both

shear and extension-dominated flows at low Reynolds number.

1.2.2 Inertial Effects in Microfluidic Devices

As mentioned above, a major benefit of using microfluidic devices is their small char-

acteristic length scales, which generally minimize the role of inertial effects in the flow

through the device. Yet, over the last decade there have been a number of emerging

applications that rely on high-speed flows through microfluidic devices. For instance,

many important biomedical processes require the isolation of micron-sized particles or

cells from a background fluid. The performance of many of the current microfluidic

technologies used for such biomedical separation processes, however, greatly diminishes

with increasing flow rate (Gossett et al., 2010). Therefore it is a major challenge to

carry out this task at biomedically-high processing rates (flow rates Q > 1 mL.min- 1 ),

and few experimental techniques are capable of precisely localizing particles in a flow

field.

One possible revolutionary technology in this area is called "inertial focusing" (Di

Carlo, 2009a), a label-free, high flow rate technology in which particles of a given size,

transported by a flow through a channel, preferentially migrate to well-defined posi-

tions in the channel cross-section. In this phenomenon, the channel Reynolds number,

defined in terms of the hydraulic diameter of the channel dh, is actually quite large
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(10 < Rec < 2000). Furthermore, because the hydraulic diameter of a microchannel is

usually on the same order as the particle diameter a, inertial effects even in the imme-

diate vicinity of a particle are also significant. These effects are characterized by the

particle Reynolds number Rep = Rec(a/dh)2 , which is often greater than unity in a mi-

crofluidic device, and is the reason particles are driven or focused to a few very specific

locations in the channel cross-section in this regime.

The physical phenomenon of particle migration in channel flows of Newtonian fluids

is commonly called the Segr6-Silberberg effect and was discovered over fifty years ago in

large-scale systems (Segr6 & Silberberg, 1961). It originates from a competition between

a wall effect lift pushing the particle away from the wall and a particle shear lift pushing

it towards the wall. Yet at the time, there were few proposed applications for large-

scale devices. With the current growth in the use of microfluidic devices, however,

particle migration was rediscovered at the microscale (Di Carlo et al., 2007), where it

offers great promise for impactful biomedical applications, including disease diagnostics

and treatment. In particular, this technology has been proposed as a compact and

inexpensive alternative to current high-speed flow cytometers and for applications in

point-of-care diagnostics (Yager et al., 2008; Chin et al., 2012). It has also been identified

as a potential breakthrough technique for high-throughput cell manipulation and the

sorting of diseased cells from the bloodstream.

Despite the robustness of particle focusing in Newtonian fluids, its practical imple-

mentation for real-world applications has been limited, in part, due to a rudimentary

fundamental understanding of the phenomenon and due to the lack of available en-

gineering design guidelines. Furthermore, in most studies with whole blood and other

clinically relevant physiological fluids, it has been necessary to dilute the samples, partly

because the undiluted fluids are complex, non-Newtonian suspensions displaying non-

linear rheological properties whose role in particle focusing at high-flow rates has not yet

been addressed. This dilution step also increases the complexity of any such particle-

focusing procedure, thereby mitigating the viability of this otherwise simple, reliable,

and inexpensive biomedical technology.

Therefore, the migration behavior of polystyrene beads, white blood cells and other
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cells in water, physiological saline, dilute and semidilute polymer solutions and blood is

studied. The use of viscoelastic carrier fluids introduces the channel Weissenberg num-

ber Wic as an additional control parameter for this phenomenon, allowing for the study

of particle migration in the Rec-Wi, phase space. Special attention is given to particle

migration at simultaneously high Reynolds and Weissenberg numbers, which is a regime

that has not been thoroughly studied previously. This study utilizes many of the tech-

niques that have been used for microfluidic rheometry, such as pressure measurements,

long exposure fluorescence (streak) imaging, and p-PTV and p-PIV. Additionally, parti-

cle trajectory analysis (PTA) is an imaging technique that is developed to determine the

distribution of the particles in the channel cross-section by scanning for optically in-focus

particles at a sequence of vertical positions in the microchannel. Whereas, streak imag-

ing and p-PTV/p-PIV provide information about the distribution of particles in one

dimension of the channel, PTA is capable of determining the two-dimensional particle

distribution function in the channel cross-section. The results gathered by this experi-

mental study of flow-induced particle localization in complex fluids are valuable for the

eventual exploitation of this migration phenomenon for real-world particle sorting and

separation processes.

1.3 Goals of this Thesis

This thesis is partitioned into nine chapters, including this introductory section, Chap-

ter 1. There are three primary areas of focus in studying the role of viscoelasticity in

flows of complex fluids at high deformation rates. These topics are 1) the effects of

shear rate localization in flow of worm-like micellar fluids, 2) the rheological character-

ization of shear banding and other complex fluids in microfluidic devices in shear and

extension-dominated flows, and 3) the effects of viscoelasticity on the migration behavior

of micron-sized particles and cells in high Reynolds number flows in microchannels. The

interrelations between each of these topics is shown in Figure 1.3.1. Literature reviews of

previous studies in areas of relevance for all three of these topics are given in Chapter 2.

The results of experiments and analysis on each of these research topics form the basis
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of the subsequent chapters.

In Chapter 3, a detailed rheological characterization of the worm-like micellar test

fluids used in this study in shear flows is presented. The characterizations include mea-

surements of steady shear viscosity q (), first and second normal stress coefficients T1()

and T2('), relaxation modulus G(t, -yo), step strain stress relaxation measurements, and

the rheological behavior in small amplitude oscillatory shear (SAOS) using conventional

cone-and-plate rheometry (Bird et al., 1987) and particle image velocimetry (Raffel et al.,

1998). In the following Chapter 4, the diffusive Johnson-Segalman model (Radulescu

et al., 1999) is studied for rectilinear, steady shear flows and used to develop a stabil-

ity criterion for the onset of a purely elastically-driven secondary flow in shear-banding

fluids. The basic framework for the criterion comes from the already established un-

derstanding of the onset of secondary flows driven by inertia or elasticity in flows with

curved streamlines shown schematically in the Wi - Re plane in Figure 1.3.1. The insta-

bility criterion proposed in Chapter 4 is aimed to extend to a regime of high Weissenberg

number and finite lengthscale ratio parameter , since the thickness of the shear-banding

interface is a finite fraction of the characteristic width of the flow geometry.

The development and use of microfluidic devices for the low Reynolds number rhe-

ological characterization of complex fluids at high deformation rates are discussed in

Chapters 5 and 6. In particular, the calibration of a birefringence microscopy system

(ABRIOTM System; CRi, Inc.) is presented, in order to demonstrate the suitability of

the device for optical, microfluidic rheometry in a rectilinear shear flow. This imaging

technology is then combined with kinematics and pressure measurements to study the

rheological behavior of the micellar solutions and other complex fluids in an extension-

dominated flow.

In Chapter 7, the use of microfluidic devices is extended to high Reynolds number in

order to study inertially-driven particle migration of polystyrene beads and blood cells.

The same flow velocimetry techniques utilized in the microfluidic rheometry experiments

discussed in the preceding chapters are refined to experimentally determine the equilib-

rium distribution of particles in the microchannel cross-section. Essentially all previous

studies of the particle migration phenomenon in microchannels have been in either the
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Figure 1.3.1: Operating diagram for flows of complex fluids as a function of Reynolds
number Re, Weissenberg number Wi a lengthscale ratio ratio 0 < < 1. Here the
lengthscale ratio is loosely defined to be some ratio of a characteristic length scale of
the fluid or suspended medium to the characteristic length scale of the flow geometry.
The gray shaded regions indicate regimes in which secondary flows occur. Di Carlo
et al. (2007): Ordered particle trains flowing in a microchannel at Re, = 120. Gauthier
et al. (1971): Images illustrating radial migration of rigid spheres in non-Newtonian
liquids. (Upper) Particles migrate to the walls in a shear-thinning liquid. (Lower)
Particles migrate to centerline in a liquid with significant normal stresses. Groisman &
Steinberg (2000): Flow patterns in an elastically turbulent flow of polyacrylamide in a
viscous syrup at Wi = 13. Larson (1992): Elastically-driven secondary flow patterns
in the Taylor-Couette flow of a viscoelastic Boger fluid. Matas et al. (2004b): Moss
& Rothstein (2010): Birefringent patterns of a worm-like micellar fluid flowing past a
cylinder. Pranay et al. (2012): Snapshots of simulations of flexible capsule migration at
the inlet of a channel (left) and downstream (right). The formation of a depletion layer is
analogous to the the Fihrous-Lindqvist effect in blood. Rodd et al. (2005): Streakline
image of the flow of a polyethylene oxide solution through and abrupt contraction-
expansion at Re = 56 and Wi = 212. Van Dyke (1982): Generation of turbulence by a
grid.
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inertially-dominated regime (i.e. Re, > 1, Wic ~ 0) or the elastically-dominated regime

(i.e. Re, ~ 0, Wi > 1) at a finite particle diameter to channel size ratio ~ 0(0.1).

Therefore in Chapter 8, small amounts of polymers, such as polyethylene oxide or

hyaluronic acid are added to the fluid in order to study the role of viscoelasticity in

a relatively unexplored regime indicated in the three-dimensional operating diagram in

Figure 1.3.1 of finite lengthscale ratio and simultaneously high Reynolds number and

Weissenberg number.

In the last section, Chapter 9, concluding remarks on these high deformation rate

rheometry measurements are made and perspectives for future work are considered. At

the conclusion of this thesis are the appendices that contain mathematical derivations

of many of the results used in this work along with other useful reference material.
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Chapter 2

Background & Literature Review

The research topics considered in this thesis fall broadly into three different categories.

Firstly, a worm-like micellar (WLM) fluid is characterized using a range of conventional

rheometric flows in order to study the effect of shear banding and other flow inhomo-

geneities at low to moderate Weissenberg numbers. The study is then extended to large

Weissenberg numbers using microfluidic devices. Finally, the role of inertia and vis-

coelasticity on flow-induced particle migration in microchannels is studied using dilute

and semidilute polymer solutions. A short introduction and motivation for studying

these topics was discussed in Chapter 1, but in this Chapter a more extensive review of

all three research areas is presented to provide the context for the work in this thesis.

For each of these topics, the prevailing focus is the role of the non-linear rheological

behavior of the test fluids on the observed flow kinematics and stress.

The research overview presented here is divided into separate Sections for each topic.

The purpose of partitioning the literature survey in this way is to allow the reader to

consider each topic individually, yet within the overriding framework of applying flow

diagnostic measurements to develop microfluidic devices for rheometry.

2.1 Rheology & Rheometry

Rheology is the study of the flow and deformation of matter. Rheometry is the branch

of rheology that is concerned with the practical science of measuring rheological ma-
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terial functions of a test specimen undergoing a deformation. A material function is

a parameter that is used to quantitatively characterize the behavior of a material un-

der flow. These parameters can depend on the deformation rate, frequency, duration

or some other feature of the flow, and they include quantities such as shear viscosity,

normal stress coefficients, relaxation modulus and so forth. They are also commonly

used as inputs to rheological constitutive models. A list of some of the most commonly

measured material functions is given by Bird et al. (1987).

Each material function is measured by forcing the material to undergo a particular

flow type. A subset of these rheometric flows is briefly described below to introduce

the reader to the material functions that can be measured with each flow type. A more

comprehensive description of flows used in rheometry is given by Macosko (1994).

2.1.1 Small Amplitude Oscillatory Shear (SAOS)

A small amplitude oscillatory shear (SAOS) 1 measurement is one of the simplest tests

to determine the linear viscoelastic properties of a material. In this test, an oscillating

shear strain or stress is imposed on a material, such that the shear strain of the material

follows the relation -y(t) = -yo sin(wt), where 'Yo is the shear strain amplitude, W is the

frequency of oscillation and t is time as shown schematically in Figure 2.1.1 (a). Since

this test is performed in the limit of small strains, it is a probe of the near-equilibrium

rheological properties of the material, which are independent of the magnitude of the

applied strain. It follows that the corresponding shear stress also varies sinusoidally in

time and its amplitude depends linearly on the applied strain according to the relation

T(t) = G'(w)yo sin(wt) + G"(w)yo cos(wt). In this way, the stress has been decomposed

into an elastic contribution in phase with the applied strain and characterized by the

storage modulus G' and into a viscous contribution in phase with the strain rate and

characterized by the loss modulus G". Both of these parameters can depend on the

frequency of the applied deformation.

'The use of the phrase small amplitude is in contrast to large amplitude, for which the strain
amplitude yo is sufficiently large that it can no longer be assumed that the amplitude of the measured
stress wave depends linearly on strain nor that the stress is composed of only a single harmonic. For
an introduction to non-linear viscoelasticity see Dealy & Wissbrun (1990) and an overview of large
amplitude oscillatory shear (LAOS) see Ewoldt et al. (2008).
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lim y(t) = -yo sin(wt) Y(t) = -y(t) = yoH(t)
-to
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(a) SAOS (b) Steady shear (c) Step strain

Figure 2.1.1: Rheometric flows for measuring rheological material functions. (a) Small
amplitude oscillatory shear (SAOS). (b) Steady shear flow. (c) Step strain stress relax-
ation. H(t) is the Heaviside function.

The simplest model for linear viscoelastic behavior is the single-mode Maxwell model

(see Appendix A). The mechanical analogue of this model consists of a linear spring

with modulus Go, and a linear dashpot with damping coefficient 7o = GOA, where A is

the relaxation time of the material. The value of this parameter is the characteristic

timescale over which a stress grows or decays in the material. The storage and loss

moduli for the Maxwell model are

G'(w) = Go (A) 2  & G"(w) = Go (2.1.1)
1 I+ (Aw)2 )(1 + (Aw)2

When Aw = 1, the moduli are equal G' = G". At this frequency the elastic and viscous

properties of the material are of equal relative importance. Accordingly, the relaxation

time of a material that exhibits Maxwellian behavior can be readily identified from

SAOS measurements since it is equal to the inverse of the angular frequency at which

the storage and loss moduli cross over.

2.1.2 Viscometric Steady Shear

A rheologically steady shear flow or viscometric flow is a unidirectional shear flow for

which the shear rate y is constant in time for a given material element (Bird et al., 1987).

There are a variety of flow geometries that can be used with a rotational rheometer to

experimentally realize a viscometric flow (Macosko, 1994), but the main objective in

performing any such experiment is to measure the shear viscosity as well as the shear-
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induced normal stress differences in the test material.

The steady shear viscosity is defined as the ratio of shear stress r,, to the imposed

shear rate - at steady state,

770) = - . (2.1.2)

In the limit of small shear rates, most fluids exhibit a constant dynamic viscosity known

as the zero-shear-rate viscosity 7o. For a Newtonian fluid this quantity is by definition

constant for all shear rates in an isothermal flow and is typically denoted by the symbol P.

Conversely, the shear viscosity of a non-Newtonian fluid can depend on shear rate. For

such fluids, generally at shear rates that are approximately equal to or greater than

the inverse of the longest relaxation time of the fluid (i.e. A- ~ 0(1)) the viscosity

deviates from the zero-shear-rate value. Most polymer solutions exhibit a shear-thinning

behavior, and thus above a critical shear rate the viscosity decreases with increasing '.

For this reason, the viscosity is usually measured over many orders of magnitude of shear

rates, and the resultant plot of the shear stress or viscosity versus shear rate is called a

flow curve.

In addition to a shear viscosity, most non-Newtonian fluids exhibit a non-zero first

normal stress difference, N1, =T, - -ry, and possibly a second normal stress difference,

N 2 = ryy - Tzz. These stress differences result from shear-induced tension in the fluid

microstructure as described in Bird et al. (1987), and they are characterized by material

functions called the first and second normal stress coefficients, T, and X2, respectively.

N,(() _r ) - Tyy (2.1.3)

2( N2() - T y - T ) (2.1.4)

Like the viscosity, both T, and T2 can depend on shear rate. The first normal stress

coefficient can be measured using a cone-and-plate fixture with a rheometer equipped

with an axial force transducer. Typically, the values of T, and I2 have opposite sign,

(i.e. sign(T 1) = - sign(XI 2 )), and the magnitude of T, is larger than that of T2, (i.e.

ITI > I[2I). Measurement of the second normal stress coefficient is generally more
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complicated and is discussed by Macosko (1994) as well as Jackson & Kaye (1966).

2.1.3 Step Strain Stress Relaxation

In a step strain stress relaxation test, a finite shear strain yo is instantaneously applied

to the test material and the subsequent evolution of stress is measured. The stress

measured in a step strain stress relaxation test is given by T.,(t) = G(t, yo)yo, where

G(t, Yo) is the relaxation modulus. As in the case of SAOS measurements, in the limit of

small strain amplitudes, the relaxation modulus is independent of the strain amplitude,

hence

lim G(t, yo) = G(t) (2.1.5)

For a Maxwell fluid the stress relaxation modulus decays exponentially in time following

the relation G(t) = Go exp(-t/A), where Go is the same parameter as that in Eq. 2.1.1.

For step strain measurements performed with a cone-and-plate geometry it is also

possible to measure the evolution of the first normal stress difference in time. It is often

found that although the values of the first normal stress difference and the shear stress

decay in time, their ratio is constant and given by

= 70 (2.1.6)

This observation is commonly called the Lodge-Meissner rule (Bird et al., 1987).

At large strain amplitudes, the relationships given in Eq. 2.1.5 and 2.1.6 do not

necessarily hold. For this reason, step strain stress relaxation measurements provide a

systematic way of quantitatively characterizing the transition from linear to non-linear

behavior with increasing strain amplitude y, which can also be used for the validation

and development of constitutive models for viscoelastic liquids (Larson, 1988).
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2.2 Rheology of Worm-Like Micellar Fluids

2.2.1 Linear Rheology of Worm-Like Micellar Fluids

A micelle is an aggregate of amphiphilic surfactant molecules, which are themselves

composed of a hydrophilic head group and a hydrophobic tail group. Some examples

of the type of surfactant molecules that have been used to study the rheological behav-

ior of micellar solutions include erucyl bis(2-hydroxyethyl) methyl ammonium chloride

(EHAC) studied by Yesilata et al. (2006), cetyltrimethylammonium tosylate (CTAT) by

Berret et al. (2002), cetylpyridinium chloride (CPyCl) by Rehage & Hoffmann (1991)

and cetyltrimethylammonium bromide (CTAB) by Shikata et al. (1994). The molec-

ular structures of the latter two surfactants are depicted in Figure 2.2.1 (a) and (b).

In both of these molecules, the head group is polar or ionic and the long tail group is

an organic, covalently bonded, non-polar molecular chain. Depending on the polarity

of the surrounding medium (e.g. water, oil), one group of the surfactant molecule will

be more soluble than the other, such that, for a given temperature, if the surfactants

are present above a minimum concentration, called the critical micelle concentration,

it is energetically favorable for them to aggregate in order to increase exposure of the

more soluble group to the surrounding medium while minimizing the contact of the

other group (Israelachvili, 2007). For example, in a polar medium such as water, the

surfactant molecules will micellize to maximize exposure of the hydrophilic heads to

the surrounding water and to isolate the hydrophobic tails from the polar solvent. The

morphology and size of the micelles depend on the surfactant concentration, prevail-

ing ionic activity, law of mass action, and the relative size of head and tail groups. It

is therefore common to add a salt or counterion, such as sodium salicylate (NaSal) or

sodium (NaNO3) shown in Figure 2.2.1 (c) and (d), to alter the charge screening between

the surfactant molecules and thereby control the morphology of the micellar structures.

Possible morphologies include single molecules, spheres, multilayered spheres, vesicles,

bilayers, and rigid or flexible cylindrical chains (Larson, 1998).

Under appropriate conditions of temperature, concentration and salinity, it is ener-

getically favorable for the surfactants to form cylindrical micelles (Israelachvili, 2007;
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Figure 2.2.1: Molecular structures of the surfactant molecules and counterions com-
monly considered in rheological studies of micellar fluids. In (a) and (b) the positively
charged nitrogen, is a constituent of the hydrophilic, polar head group, while the flexible
hydrocarbon backbone forms the hydrophobic, non-polar tail group.

Larson, 1998). In this regime, the end-caps of the cylinders have an associated energy

penalty due to their necessary deviation from the preferred cylindrical configuration

(Cates & Fielding, 2006), which drives the formation of long cylindrical micelles to min-

imize the number of higher energy end-caps in the system. If the length of the cylindrical

micelle is substantially greater than its persistence length 2 , a flexible or even entangled

network of micelles can be expected. It is this entangled network that gives rise to the

viscoelastic behavior of giant, worm-like micellar (WLM) solutions.

Micelles taking the form of worm-like, flexible cylinders are often known as living

polymers, on account of their ability to associate reversibly and dynamically and their

entangled structure that is topologically similar to that of many entangled polymeric

solutions. WLM fluids have been extensively reviewed in the literature (Rehage &

2 Persistence lengths are commonly on the order of 10-20 nm, as reported in Cates & Fielding (2006),
but may be as large as 40 nm for neutral WLM as reported in Berret (2006).
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Figure 2.2.2: Schematic diagram of various surfactant aggregate morphologies. Increased
concentration and salinity facilitate the formation of entangled, worm-like micelles which

are responsible for the viscoelasticity of such systems.

Hoffmann, 1991; Cates & Fielding, 2006; Anderson et al., 2006; Rothstein, 2008) and

in textbooks (Israelachvili, 2007; Larson, 1998). Along with being used as rheological

modifiers, entangled WLM solutions, depicted in Figure 2.2.2, are considered model

rheological systems, because they exhibit ideal linear viscoelastic behavior in the limit of

small deformations and deformation rates, which can be described by the Maxwell model

with a single relaxation time A. Furthermore, unlike typical polymeric systems which

degrade at high deformation rates, the ability of WLM to dynamically self-assemble

after undergoing deformations significant enough to have broken the aggregates makes

them suitable also for the study of non-linear rheological behavior (Rehage & Hoffmann,

1991; Cates & Fielding, 2006).

Whereas the relaxation processes of many polymeric systems is only describable by

a spectrum of relaxation times, the single relaxation time characteristic of many WLM

systems arises from their special ability to break and reform dynamically. This unique

timescale, however, results from a combination of stress relaxation mechanisms that can

each have a different timescale. These relaxation processes include reptation (de Gennes,

1979), breaking and recombination (Cates, 1987), as well as breathing and Rouse modes

(Larson, 1998). Each of these processes is schematically depicted in Figure 2.2.3.
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Figure 2.2.3: Schematic depictions of various relaxation processes of a WLM chain
confined to a curvilinear tube.

In a reptative process, the path of movement of an unbranched polymer chain in a

sufficiently entangled polymeric network is assumed to be constrained by its neighboring

polymer chains to an imaginary tube which encompasses the molecule. The timescale on

which the equilibrium polymer network responds to an external perturbation is the rep-

tation time Arep, which is proportional to the time required for the individual, constituent

polymer chains to diffuse along the confining tube to a new preferred configuration.

Since surfactant molecules in a micelle are bound together by relatively weak Van

der Waals forces, the micelles are capable of breaking and reforming dynamically. The

lifespan of a typical micelle is therefore equal to the breakage time Aiweak, which is the

average timescale between consecutive scission and fusion reactions.
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Other non-reptative relaxation processes pertinent to micelles are described by Lar-

son (1998). These processes include primitive-path fluctuations or breathing modes,

which refer to the independent relaxation of individual constituent elements of the WLM.

For example, the extremities of the chain can diffuse on a timescale Abreathe by retracting

into the confining tube causing the length of the tube to fluctuate in time and thereby

expedite the collective relaxation process of the micelle. A chain can also relax via Rouse

modes in which only a particular portion of the chain relaxes on a timescale ARonue, by

reconfiguring itself within the tube to a more entropically favorable orientation. Both

mechanisms typically occur rapidly compared to the macroscopic relaxation time of the

network A (Granek & Cates, 1992), and hence they can only be identified experimentally

with high frequency deformations.

Cates (1987) showed that for a polymer network that can both reptate and break

and reform, in the limit Abreak -* oo, the stress relaxation would follow the relation

T(t) ~ exp ( - (t/A)a) (2.2.1)

where A = Arep and a = 1/4. In this limit, breaking occurs so infrequently that the mi-

celles relax entirely through a reptative process. This limiting value of a was observed

experimentally by Rehage & Hoffmann (1991) for low salt concentrations. For WLM

solutions with increased salinity, however, the increased ionic screening expedites break-

ing and recombination processes, thereby reducing the value of Abreak. In the case that

Abreak $ Arep, Cates (1987) found that a -+ 1 and A = AIoreakArep, leading to a faster

overall relaxation process. The monoexponential stress response described in this limit

has also been found experimentally by Shikata et al. (1987) and Cates & Candau (1990)

among others. The shorter net relaxation time comes from the breaking process which

causes a more rapid progressive reduction in the length of the confining tube. A more

thorough physical and quantitative explanation for this scaling can be found in (Larson,

1998). Since the values of Abreak and Aep are independent, they cannot be determined

from the measurement of the Maxwell relation time of the fluid A alone, but instead

using the techniques discussed by Turner & Cates (1991, 1992) and Turner et al. (1993).

In viscometric steady shear flows in the limit of sufficiently small shear deformation
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rates, ' < A- 1 , WLM solutions exhibit a constant shear viscosity qo and deform homo-

geneously across the gap. Normal stress differences also scale quadratically with shear

rate in this regime, as predicted by simple fluid theory (see Appendix A). The rele-

vant dimensionless control parameter for this flow is the Weissenberg number Wi = A ,

which is less than unity in this flow regime. As this parameter is increased above unity,

the rheological behavior can deviate strongly from the predictions of simple fluid theory,

coinciding with the onset of a strongly non-linear phenomenon known as shear banding

that is ubiquitous to semi-dilute and concentrated WLM fluids.

2.2.2 Shear Banding in Worm-Like Micellar Fluids

By shear banding, scientists can mean several things. For some non-Hookean solid mate-

rials, shear banding refers to the notion of strain localization. When a solid material is

deformed, the strain can take large values in narrow zones of the sample. Similarly, for

some non-Newtonian fluids, shear banding refers to the notion of strain rate localization.

When a fluid material is sheared, the strain rate can take large values in narrow zones

of the sample. In both cases, for solids or liquids, shear banding is linked to a sharp

inhomogeneity in the deformation or deformation rate field. Clear domains of different

strains or strain rates are identifiable. This phenomenology is associated with complex

materials as it is clearly distinct from the simpler homogeneous deformation or defor-

mation rate fields in ideal Hookean solids and Newtonian fluids, or even weakly plastic

or weakly shear-thinning materials (Larson, 1998).

Even when restraining the list of examples to only liquids, there are numerous classes

of non-Newtonian fluids known to exhibit shear banding (Olmsted, 2008), from telechelic

polymers (Manneville et al., 2007; Sprakel et al., 2008), entangled polymer melts (Tapa-

dia et al., 2006; Hu, 2010), emulsions (Coussot et al., 2002; Becu et al., 2006), dispersions

(Divoux et al., 2010), granular materials (Losert et al., 2000), various kinds of yield stress

fluids (Moller et al., 2008; Divoux et al., 2010) and to foams (Gilbreth et al., 2006). In

this thesis, the steady shear-banding phenomenon in micellar solutions is described for

the range of concentrations and temperatures in which surfactants form WLM at equi-

librium (Britton & Callaghan, 1997; Salmon et al., 2003; Manneville et al., 2004a,b;
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Lopez-Gonzalez et al., 2006; Boukany & Wang, 2008; Lettinga & Manneville, 2009).

When a semi-dilute or concentrated WLM system is deformed in a Couette flow,

the fluid deforms homogeneously as depicted in Figure 2.2.4 (a), provided the average

imposed shear rate is sufficiently small, ' = U/H < A- 1, where U is the imposed wall

velocity, and H is the gap height. In this limit, the fluid exhibits a constant zero-shear-

rate viscosity 7o, and a first normal stress difference N1 = 7,2 - T, that is usually small

compared to the applied shear stress T... However, for larger shear rates, ;> A-', the

fluid begins to shear band as depicted schematically in Figure 2.2.4 (b). This inhomo-

geneous velocity field typically occurs over a range of average shear rates -1 < - < 2,

often spanning multiple orders of magnitude. In this regime, the first normal stress

difference typically exceeds the shear stress and the sample exhibits a particularly re-

markable shear-thinning behavior, in that its effective viscosity scales inversely with

shear rate such that an essentially constant shear stress can be applied to deform the

material over the entire range of shear rates. This stress plateau is a striking example of

the non-linear rheological behavior of WLM solutions and is discussed in many review

articles (Berret, 2006; Cates & Fielding, 2006; Olmsted, 2008; Lerouge & Berret, 2010).

It is generally believed to arise from a non-monotonicity in the underlying flow curve of

the material, depicted schematically in Figure 2.2.4 (c), resulting in an unstable range of

shear rates for which the shear stress associated with homogeneous kinematics decreases

with increasing shear rate. In this shear rate regime, it is not possible for a system both

to lie simultaneously on a single stable branch of the flow curve and to satisfy the average

shear rate A. Consequently, the system partitions itself into adjacent layers of material,

each undergoing different deformation rates, nominally -, and '2, yet coexisting at the

same applied shear stress Tc.

In the simplest approximation, the fraction of the gap height occupied by the low

shear rate band /1 and the high shear rate band 32 may be determined by the lever rule

such that the average imposed shear rate - is equal to the imposed shear rate, namely

- = 1= + 2Y2 (2.2.2)H

where #1+32 = I (Cates & Fielding, 2006). This lever rule has been observed experimen-
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Figure 2.2.4: (a) Homogeneous Couette flow with average shear rate
Ya = Ua/H < '1 ~ A-', where A is the fluid relaxation time. (b) Inhomogeneous
Couette flow for which A1 < Yb = Ub/H < A2. (c) Non-monotonic underlying flow curve.

tally for a CPyCl:NaSal:NaCl system (Salmon et al., 2003), but it was found inadequate

for describing the shear-banding behavior of other systems (Lerouge et al., 2008; Feindel

& Callaghan, 2010). The coexistence of more than two bands is also possible (Miller &

Rothstein, 2007). Evidently, Eq. (2.2.2) should be taken only as a simplistic generaliza-

tion of the complicated shear-banding phenomenon. Much experimental effort aimed at

understanding more fully the complex rheological behavior in the shear-banding regime

has focused on complementing the rheometry of the bulk flow, such as the studies of

Rehage & Hoffmann (1991); Berret et al. (1994); Schmitt et al. (1994); Cates & Fielding

(2006); Lerouge & Berret (2010), with detailed measurements of the interplay between

flow kinematics and microstructure of the fluid (Manneville, 2008). Such measurements

can serve as sensitive tests of the predictions of different proposed constitutive models

for shear-banding materials.

There are numerous experimental techniques that have been used to study shear

banding and other types of spatial heterogeneities in steady shear flow. These include

NMR velocimetry (Callaghan, 2008; Moller et al., 2008; Davies et al., 2010), in which

velocity fields are extracted from the spin polarization of nuclei that interact with a

strong external magnetic field gradient. Another widely used method is ultrasound

velocimetry (Manneville et al., 2005; Gibaud et al., 2008), which involves using high

frequency ultrasonic pulses to produce ultrasonic speckle patterns from which velocity

fields across the gap of a Couette cell can be extracted. Finally, numerous workers have

used particle tracking methods (Meeker et al., 2004a,b; Tapadia et al., 2006; Fardin
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et al., 2009; Helgeson et al., 2009a; Dimitriou et al., 2011) in order to quantify local

velocity and deformation fields.

In much of the recent work that has used particle tracking methods to observe flow

in shear-banding fluids, experiments have been carried out in the limit of low seeding

density, where individual particles are tracked in order to determine the velocity field

within the fluid. This type of tracking method is called particle tracking velocimetry

(PTV). When the seeding density in the fluid is higher, the displacement of local groups

of particles is determined by spatial correlations rather than tracking individual particles.

This method is referred to as particle image velocimetry, or PIV (Adrian, 1991, 2005).

Both PTV and PIV are well suited for observing transient responses in fluid flows, due

to the good temporal and spatial resolution of these methods (Manneville, 2008), and

this has been exploited by some workers to study transient evolution of shear banded

flows (Miller & Rothstein, 2007). Both PTV and PIV are therefore a good choices

for probing shear banding in oscillatory flows, although recent developments in Rheo-

NMR techniques discussed by Callaghan (2008) and Davies et al. (2010) have provided

spatial and temporal resolutions that rival those of PIV/PTV methods. One advantage

of PIV over PTV is that it is a whole field technique, returning velocimetric data on

a uniformly-spaced grid (Raffel et al., 1998). Vector fields obtained from PTV tend

to be sparser than those obtained from PIV, and the individual vectors are located

randomly throughout the imaged domain due to the randomly positioned particles in

the flow (Adrian & Westerweel, 2011). This disadvantage in general makes subsequent

data analysis, including computation of differential quantities such as shear rate and

vorticity, more cumbersome for PTV.

Some of the earliest investigations of shear banding in WLM solutions studied the

phenomenon using Rheo-NMR in a cone-and-plate geometry (Britton & Callaghan, 1997,

1999). This approach is reasonable because it is well known that when viscometric ap-

proximations hold, spatial variations in the stress in a cone-and-plate geometry are

very small (Bird et al., 1987). Subsequent velocimetric studies have focused more of-

ten on observing banding in cylindrical Taylor-Couette geometries (Salmon et al., 2003;

Manneville et al., 2004b; Miller & Rothstein, 2007). These velocimetry studies have
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shown that there is a clear difference between the structure of the shear-banded profiles

observed in the two geometries. Typically a two-banded profile develops in the Taylor-

Couette case above a critical shear rate (one low and one high shear rate band) shown

in Figure 2.2.5 (a) and (b), whereas three-banded profiles appear in the cone-and-plate

geometry shown in Figure 2.2.5 (c) and (d) (two low shear rate bands near the upper

and lower rigid plates, and a higher shear rate band at midgap). These differences arise

presumably because of the curvilinear nature of the flow fields in each device - the the-

oretical study by Adams et al. (2008) has discussed this in detail for a particular case

of the Johnson-Segalman model. Some recent studies have also suggested that wall slip

plays an important role in the shear banding behavior of WLM solutions (Boukany &

Wang, 2008; Lettinga & Manneville, 2009; Feindel & Callaghan, 2010), further high-

lighting the value of incorporating velocimetry measurements when interpreting bulk

rheology measurements.

In addition to studies of banding in Taylor-Couette cells, velocity profiles of WLM

in Poiseuille flow in macroscale devices have also been observed using nuclear magnetic

resonance measurements (Mair & Callaghan, 1997), particle image velocimetry (Mendez-

Sanchez et al., 2003) and particle tracking velocimetry (Yamamoto et al., 2008). Gen-

erally, as the flow rate through the pipe is increased, a transition from a Newtonian-like

velocity profile to a profile with thin regions of high shear rate near the walls and plug-

like flow in the core of the fluid is observed. For the flow rates coinciding with the high

shear rate bands, a marginal change in wall shear stress can lead to very large changes

in the volumetric flow rate, this phenomenon known in the literature as spurt (McLeish

& Ball, 1986; Renardy, 1995). There have also been velocimetric studies of the onset

of shear banding in these fluids within pressure driven microchannels (Mendez-Sainchez

et al., 2003; Marifn-Santibafiez et al., 2006; Nghe et al., 2008). Although the stress and

kinematics of steady complex fluid flow in a microchannel are spatially inhomogeneous,

these experiments have been useful because they can be used to probe the non-linear

rheology of the fluids at much higher shear rates than is usually possible and can probe

the onset of non-local effects (Lu et al., 2000) when the characteristic length scale of the

geometry and of the shear band become comparable. Non-locality refers to the notion
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Figure 2.2.5: (a) & (b) Velocity profiles measured in Taylor-Couette flow. A marked
two-banded profile is visible at all measured shear rates. Figures and caption adapted
from Manneville et al. (2004b). (c) & (d) Velocity profiles measured in a cone-and-plate
geometry for two WLM fluids. A (c) gradually and (d) abruptly varying three-banded
profile that evolves in time is visible at the shear rate measured. Figures and caption
adapted from Britton & Callaghan (1999).

that a local physical quantity, such as stress, not only depends on other local quanti-

ties, such as the local shear rate, but also on physical quantities at other locations in

the entire spatial domain, such as the shear rate some distance away from the point of

interest. Thus in flows with large spatial gradients in stress, it has been observed that

the measured flow curve of WLM solutions is not necessarily solely dependent on the

local shear rate (Masselon et al., 2008, 2010).

2.2.3 Flow-Induced Birefringence

The role of non-local effects are a consequence of spatial inhomogeneities in the mi-

crostructure of the fluid which cannot be determined using velocimetric measurements.
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Hence, a valuable addition to rheological experiments with WLM systems are microstruc-

tural probes such as birefringence measurements (Fuller, 1990, 1995) to measure the

molecular anisotropy and its relationship to shear banding and elastic stresses. Flow-

induced birefringence (FIB) measurements can be used to observe the degree of molecular

alignment and stretching in a material, and provided the deformation of the microstruc-

tural network is affine, these measurements may be related to the stress in the material

through the stress-optical rule (Fuller, 1995; Larson, 1998). According to this rule, the

optical anisotropy An, in a homogeneous, viscoelastic network of Gaussian chains is

linearly proportional to its principal stress difference Au, such that An = CAu, where

C is the stress-optical coefficient, which is generally an empirically determined value for

a particular material. A list of published values of stress-optical coefficients for relevant

micellar fluids is given in Table 2.2.1. The magnitudes of C for WLM systems are large

(typically 100 times greater than that of polymer systems) making these systems well

suited to experimental studies in microfluidic devices. Furthermore, C is found to vary

only weakly with temperature, but it does exhibit a slight dependence on concentration.

A number of papers have used FIB measurements to probe the molecular structure

of WLM systems and to test the validity of the stress-optical rule for micellar systems

(Wunderlich et al., 1987; Rehage & Hoffmann, 1991; Shikata et al., 1994; Decruppe et al.,

1997). A comprehensive review is available in (Lerouge & Berret, 2010). Typically, the

stress-optical rule holds at shear rates below which the onset of a rate-dependent viscosity

occurs. However, it often fails at stresses on the order of the stress plateau for the shear-

banding fluids, and for stresses near the onset of shear-thinning for the shear-thinning

fluids (Decruppe & Ponton, 2003). In the CTAB:NaNO 3 system, deviations between the

predictions of the stress-optical rule and experimental results were attributed to a devi-

ation from Gaussian chain statistics for large deformation rates (Lerouge et al., 2000).

Complex spatio-temporal flow behavior, discussed in Section 2.2.5, has also been ob-

served in FIB measurements for shear rates coinciding with the stress plateau, including

striations in the birefringence across the gap and the existence of three distinct bire-

fringent bands at higher shear rates (Lerouge et al., 2004). Point-wise measurements of

birefringence of a shear-banding system across the gap width in a Couette cell geometry
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Table 2.2.1: Published values of the stress-optical coefficient for micellar systems.

System C x 107 Temperature Source

[Pa-1] [0C]
100:60 mM CPyCl:NaSal

10-100:50-300 mM CTAB:NaSal
300:100 mM CTAB:KBr
300:200 mM CTAB:KBr
300:300 mM CTAB:KBr
300:400 mM CTAB:KBr

400-600:100 mM CTAB:KBr
300:1790 mM CTAB:NaNO 3

30:230 mM CTAB:NaSal
100:51-340 mM CTAC:NaSal

5.9:1.4 wt% CPyCl:NaSal, 500 mM NaCl
[CPyCl]:[NaSal]=2, 500 mM NaCl

-2.3
-3.1

-0.25
-0.36

-(0.46 - 0.41)
-0.62

-(0.42 - 0.96)
-2.78
-2.77

-(2.5 - 6.1)
-1.2

-1.74

20
25
30
30

30-38
30
30
30
25
25
23

22.1

Rehage & Hoffmann (1991)
Shikata et al. (1994)

Humbert & Decruppe (1998)
Humbert & Decruppe (1998)
Humbert & Decruppe (1998)
Humbert & Decruppe (1998)
Humbert & Decruppe (1998)

Lerouge et al. (2000)
Takahashi et al. (2002)

Decruppe & Ponton (2003)
Hu & Lips (2005)

Raudsepp & Callaghan (2008)



were obtained by (Lee et al., 2005). The authors attributed the observed change in sign

of the birefringence between the low and high shear rate bands to the existence of two

phases, suggesting that a shear-induced phase separation was an underlying cause of the

banding behavior.

In two studies of a concentrated CTAB:D 20 system by Helgeson et al. (2009a,b), mea-

surements of velocity profiles, birefringence and small angle neutron scattering (SANS)

in a wall-driven flow were combined to develop a more complete pictures of the mi-

crostructural features of the shear-banding fluid under flow. The authors found that

shear banding in this system was coupled to a flow-induced isotropic-to-nematic tran-

sition that could be modeled in terms of an anisotropic drag on the worm-like chains

leading to segment-level flow alignment of the micelles. In their study, the nematic phase

was found to coincide with the high shear rate band. This result seemed to contradict

the earlier findings that the flow-induced nematic phase had a higher viscosity than

that of the isotropic phase (Fischer & Callaghan, 2000, 2001). The difference between

shear-thinning and shear-banding WLM solutions using 2:1 molar CPyCl:NaSal systems

of varying concentrations in 0.5 M NaCl has also been investigated (Hu et al., 2008).

In the first study of birefringence of a WLM solution flowing in a microchannel,

measurements of FIB were coupled with velocimetry measurements to test the stress-

optical rule for extensional and shear flows in a 100:60 mM CPyCl:NaSal system and

a 30:240 mM CTAB:NaSal system (Pathak & Hudson, 2006) in a shallow cross-slot

geometry. The authors observed that the stress-optical rule failed in extensional flow

for deformation rates at which a sharp birefringence band appeared, indicating high or

nearly saturated molecular alignment with the flow. It was also found that the stress-

optical rule failed at a lower critical Weissenberg number in extensional flow than in

shear flow. More recently, FIB measurements were used to study the onset of a purely

elastic instability in a range of WLM fluids with different surfactant concentrations in

a cross-slot geometry (Haward et al., 2012a; Haward & McKinley, 2012; Dubash et al.,

2012). Shear banding was observed to play a key role in the onset of the flow instability

even in this extension-dominated flow.
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2.2.4 Constitutive Modeling of Shear-Banding Fluids

Despite considerable experimental effort over the last two decades, a universal expla-

nation for the molecular mechanism behind the shear-banding phenomenon in WLM

fluids has not yet been realized (Cates & Fielding, 2006). One of the most persistent

ideas in modeling shear banding is the notion of some kind of underlying flow-structure

coupling. Mechanisms for such coupling include entanglement effects, breakage, liquid-

crystalline effects, changes in charge and association, or changes in topology (Olmsted,

2008). Shear banding may even be a generic macroscopic phenomenon, able to spring

out of many different underlying mechanisms. For instance, it was thought for some

time that shear banding was necessarily associated with non-monotonic constitutive re-

lations (Hunter & Slemrod, 1983; McLeish & Ball, 1986) but it has subsequently been

realized that other mechanisms such as stress inhomogeneity inherent to the geometry

- in large gap Taylor-Couette geometry for instance - or boundary effects can lead to

shear-banding-like flows (Adams & Olmsted, 2009a; Wang, 2009; Adams & Olmsted,

2009b).

Many see a solid understanding of shear banding in micellar fluids as a necessary

first step toward a clearer view of the phenomenon in general. In other systems such

as dispersions, foams or granular materials, the shear-banding phenomenon is not as

well characterized empirically (Divoux et al., 2011), and most models are not tensorial

(Coussot & Ovarlez, 2010; Bocquet et al., 2009). In micellar solutions, since the seminal

study by Rehage & Hoffmann (1991) much theoretical and experimental effort has been

devoted to understand the phenomenon. The most recent review on the subject by

Lerouge & Berret (2010) referenced more than three hundred articles. From a theoretical

perspective, it is often challenging to understand the connections between the different

modeling approaches of shear banding that have been proposed

For WLM, the original idea of an underlying non-monotonic flow curve is most likely

to be relevant to almost all experimental situations investigated so far. Theoretically,

this idea is justified the reptation-reaction model (Cates & Fielding, 2006). This statis-

tical theory of micelles is an adaptation of the reptation theory of polymers, including

micellar breaking and recombination processes (Cates & Fielding, 2006). This theory
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can both predict linear rheology with great accuracy and the onset of shear banding, due

to an underlying inhomogeneity of the flow curve (Cates & Fielding, 2006). Nonethe-

less, this model becomes highly intractable in the non-linear flow regime where shear

banding occurs, and it has been of little or no help to understand shear banding in

more detail. Other researchers have extended the model of Cates to accurately pre-

dict many of aspects of the non-linear rheological behavior of WLM solutions (Vasquez

et al., 2007; Zhou et al., 2008). However, these models have many fitting parameters

and it can be a considerable challenge to use them to derive analytical descriptions of

the flow in the non-linear regime. Therefore, simpler quasi-linear constitutive models

(Bird et al., 1987) have been used (Larson, 1998; Cates & Fielding, 2006; Fielding, 2007)

to obtain more tractable predictions in the non-linear flow regime. These more basic

constitutive models, which rely on very general material frame invariance principles, do

not usually contain all the information on the microstructural dynamics and deal with

coarse-grained quantities defined at the macroscopic scale. They usually at least include

a tensorial stress field, and a tensorial velocity gradient field (Larson, 1998).

In the last few years, one particular constitutive model has been used extensively,

namely, the diffusive Johnson-Segalman (dJS) equation and its mechanistic interpreta-

tion (Cates & Fielding, 2006; Fielding, 2007). It is one of the simplest tensorial models

able to predict shear banding. Because it is a quasi-linear model with only few parame-

ters, it is also analytically tractable in many cases. Thus, despite some known shortfalls,

especially its violation of the Lodge-Meissner rule, and its troubles in extensional flows

and step strains (Larson, 1998), the dJS model has generally been a very useful guide

to interpret empirical data and to suggest new experiments.

Like the Maxwell model, the dJS model can be constructed from a handful of mechan-

ical elements (i.e. spring, dashpot and slipping element), and therefore when this model

was initially developed for modeling the rheology WLM fluids, it was used to support

the claim that shear banding arose from a mechanical instability in the material. This

view often seemed to be in contrast, however, with the apparent similarities between

shear banding and phase transitions, suggesting that it resulted from a thermodynamic

instability instead. Thus two seemingly dichotomous approaches to understanding shear
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banding emerged, and it often appeared difficult to reconcile the mechanical and the ther-

modynamical viewpoints (Berret et al., 1994; Schmitt et al., 1995; Porte et al., 1997).

However, more recently it has been shown that it is possible to construct models includ-

ing ingredients from both perspectives (Fielding & Olmsted, 2003). The so-called dJS-f

model includes both mechanical and concentration subspaces, coupled to each other

(Fielding & Olmsted, 2003). More broadly, Cates & Fielding (2006) have recently re-

marked that the distinction between mechanical banding instabilities and shear-induced

structural instabilities is likely to be less clear-cut than was initially thought. Later,

Olmsted (2008) added that in practice there is little difference between the two. This

claim was made even clearer last year by Sato et al. (2010). In their paper, they derived

a pseudo-thermodynamic potential from the dJS model, though only at the cost of a

reduction of the number of degrees of freedom in order to obtain an equation that is not

strictly equivalent to the original dJS model.

Overall, the dJS has proven to be a valuable tool for modeling the rheology of WLM

solutions. It has been used to predict the onset of shear-banding in various flow geome-

tries (Radulescu et al., 1999; Lu et al., 2000; Radulescu et al., 2000; Fielding, 2007), to

understand transient effects (Radulescu et al., 2003) and most importantly, to realize

that shear-banding flows could themselves become unstable to elastic instabilities, i.e.

effects linked to normal stresses differences across bands (Fielding, 2005, 2007, 2010).

2.2.5 Flow Instabilities in Shear-Banding Fluids

It is well known that for flows with curved streamlines, Newtonian fluids can exhibit

increasingly unstable flows for large values of the Reynolds number. In a seminal paper

by Taylor (1923), the author studied the flow of a Newtonian liquid in a Taylor-Couette

geometry with inner and outer radii R, and R0 shown schematically in Figure 2.2.6 (a),

and showed that the purely annular flow eventually becomes unstable as the rotation

speed of the cylinder Q is increased. Above a critical rotation speed Q, a secondary vor-

tex flow sets in, with periodicity f - d along the vorticity direction, where d = R, - Ri.

Later, is was shown by Larson et al. (1990) that the Taylor-Couette flow of viscoelastic

polymer solutions was also prone to a Taylor-like instability. Although the kinematics
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Figure 2.2.6: (a) Schematic diagrams of flow in the Taylor-Couette geometry with sta-

tionary outer cylinder and rotating inner cylinder. At low rotational speeds Q, the flow

is stable and follows curvilinear streamlines. Above a critical speed Q, secondary flows

emerge. (b) Spatio-temporal diagrams of the evolution in gray scale of (1) & (3) the

interface profile and (2) & (4) the reflected intensity distribution in a WLM fluid as

a function of time during step shear rate from rest to (1) & (2) - = 35 -1, (3) & (4)

y = 75 -1. Figure adapted from Fardin et al. (2009).

of the instability in Newtonian and viscoelastic liquids is similar, (i.e. after a critical

threshold velocity, Taylor-like vortices appear), the destabilizing mechanisms arise from

very different non-linearities.

When only the inner cylinder is rotating, the Reynolds number depends on the

rotation rate of the inner cylinder Q, such that Re = RaQd/v where v is the kinematic

viscosity of the fluid (Chandrasekhar, 1981). In a Newtonian fluid, the deviatoric stresses

depend linearly on shear rate, so the only non-linearity in the equations of motion that

can drive a flow instability comes from the advective term on the velocity (V' - V)V'. The

Reynolds number Re is linked to the relative magnitude of this term with respect to the

dissipation terms.

In viscous polymer solutions, and in many non-Newtonian fluids, the primary non-

linearity usually comes from the constitutive equation for stress rather than from the

momentum balance. The constitutive equation is dynamical, in that it relates to the

stress relaxation dynamics and typically includes a convected derivative on the stress T

(Larson, 1998). In this convected derivative, consistency between Eulerian and La-
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grangian descriptions requires a convective term, now applied on the stress (V-'i V)T,

and material frame invariance requires additional terms of similar dimensionality VJ - T

(Larson, 1998; Larson et al., 1990). The dimensionless group linked to the magnitude of

these non-linear terms is the Weissenberg number Wi = Ai, where - = RiQ/d is the typ-

ical shear rate in the flow and A is the stress relaxation time (Dealy, 2010). The analogy

between Re and Wi becomes clearer by defining Re as a function of the viscous diffusion

time Avd = d2 /v, Re = Avd (Groisman & Steinberg, 1998). The Reynolds number con-

trols the magnitude of the inertial non-linearity, while the Weissenberg number controls

the magnitude of the elastic non-linearity (Morozov & van Saarloos, 2007). In general,

both Re and Wi are non-zero, but in many practical cases for polymer solutions and

melts, the elasticity number El _ Wi/Re = A/AVd is large, leading to negligible inertial

effects.

For the simplest Taylor-Couette flow in the small gap limit, (i.e. d < Ri), with only

the inner cylinder is rotating, there exist two analogous dimensionless groups govern-

ing the onset of secondary flows. The first is relevant to the purely inertially-driven

instability E = VXRe and was derived and observed by Taylor (1923). The second

governs the purely elastically-driven instability Ee = VXWi and was found by Larson

et al. (1990). Here, A - d/R is the geometrical ratio linked to the streamline curvature,

which is necessarily non-zero for the instability to be linear (Taylor, 1923; Morozov &

van Saarloos, 2007). In the purely inertial case, the flow becomes unstable for E > m',

whereas in the purely elastic case, the flow becomes unstable for Ee > M. Both m' and m

are coefficients of order unity, whose precise values depend on the boundary conditions

(Chandrasekhar, 1981; Khayat, 1999).

In a series of recent experiments and reviews on Taylor-Couette flows of WLM solu-

tions (Lerouge et al., 2006, 2008; Lerouge & Berret, 2010; Fardin et al., 2009, 2012a,b;

Fardin & Lerouge, 2012), it has also been shown that the interface between the bands

undulates due to an underlying secondary vortex flow that is mainly localized in the

high shear rate band. The observed spatio-temporal fluctuations, shown for example

in Figure 2.2.6 (b), appear to be driven by an elastic instability similar to the one ob-

served in polymer solutions. This rationale was reinforced by a recent linear stability

52



analysis of the diffusive Johnson-Segalman (dJS) model (Fielding, 2010). The onset of

a secondary flows as well as elastic turbulence (Fardin et al., 2010) in shear-banding

WLM fluids poses a challenge for the accurate rheological characterization of these sys-

tems using viscometric measurements, which can be addressed by the development of

an appropriate stability criterion for shear-banding fluids.

2.2.6 Present Study

In Chapter 3, a shear-banding WLM fluid composed of 100 mM cetylpyridinium chloride

(CPyCl) and 60 mM sodium salicylate (NaSal) and a system of cetyltrimethylammonium

bromide (CTAB) with NaSal or sodium nitrate (NaNO 3) are characterized in oscillatory

shear, steady shear and in step strain stress relaxation measurements. The rheological

behavior of the shear-banding CPyCl:NaSal solution in the steady shear is studied with

a a cone-and-plate geometry through simultaneous bulk rheometry and localized veloci-

metric measurements. In addition to the kinematic measurements of shear banding, the

methods used to prevent wall slip and edge irregularities are discussed in detail, and

these methods are shown to have a measurable effect on the stability boundaries of the

shear banded flow.

Subsequently, in Chapter 4, a brief historical account of different interpretations

the diffusive Johnson-Segalman (dJS) equation for modeling shear-banding flows is dis-

cussed. In the case of anisotropic diffusion, the dJS governing equations for steady flow

are analogous to the equations of the dynamics of a particle in a quartic potential, which

can be used to derive analytically interesting features about the role of non-local effects

on shear banding. These findings are then extended to derive a stability criterion for

the onset of a purely elastic instability in the flow of shear-banding liquids.

2.3 Microfluidic Rheometry

Macroscale rheometry alone cannot be used to obtain a complete picture of shear-

banding, since it is often confounded by the onset of edge fracture, flow instabilities

and air entrainment (Tanner & Keentok, 1983; Wheeler et al., 1998; Fardin et al., 2009),
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limiting the maximum observable shear rates to values y ,< y2 (see Figure 2.2.4). Mi-

crofluidic devices, however, offer a means of overcoming this limit in observable defor-

mation rates, facilitating investigation of the connection between flow kinematics and

microstructual feature of WLM systems in the non-linear regime.

More generally, microfluidic devices are invaluable for many rheometric experiments

because they can be easily designed to mimic the micron-sized features of geometries

that are found in many industrial applications, (e.g. in fiber extrusion spinnerets, the

processing of foodstuffs, and as model porous media (Ferer et al., 2011)). Such devices

are also inexpensive and easy to fabricate, they require only small sample volumes and

allow the rheologist to impose large deformation rates (102 < ' < 106 s-1) in complex

fluids at low Reynolds number and thus without complications from inertial effects

(Pipe et al., 2008; Pipe & McKinley, 2009). Large deformation rates may be found

in the case of the nozzle of an inkjet printer, for example, where the length f of the

smallest printable feature may be on the order of tens of microns and ejection speeds U

are on the order of meters per second, making for characteristic deformation rates of at

least c ~ U/ - O(104) s-'. Furthermore, microfluidic devices can be used to generate

mixed flows that have shear as well as extensional components, which are more realistic

for many real world applications.

2.3.1 Microfluidic Rheometry for Shear Flows

Microfluidic shear rheometry typically focuses on straight, high aspect ratio rectangu-

lar ducts of width W, height H and length L, for which W < H < L. For rectilinear

flows, the shear stress at any position along the width of the channel is known from

direct integration of the equation of motion and the corresponding shear rate can be

calculated from the local velocity profile which is often measured with micro-particle

image velocimetry (p-PIV). Knowledge of the local shear rate and shear stress can then

be used to directly ascertain the flow curve, as has been shown for aqueous polymer

solutions at shear rates up to y ,< 0(106) s-1 (Kang et al., 2005, 2006). This process,

however, cannot provide information on local elastic stresses, which instead can be mea-

sured using rheo-optical probes such as flow-induced birefringence. For shear-thinning
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Figure 2.3.1: (a) Homogeneous Poiseuille flow for which the characteristic shear rate
a = (Ua)/W < 1, where (U) is the average velocity in the channel. (b) Inhomogeneous

Poiseuille flow for which '1 < b = (Ub)/W < '2. (c) Shear stress distribution in
Poiseuille flow where y, is the channel position at which Ty = Tc.

or shear-banding micellar solutions in Poiscuille flow, a transition from a Newtonian,

parabolic profile at low flow rates depicted in Figure 2.3.1 (a), to a banded profile in

Figure 2.3.1 (b), occurs above a critical wall shear stress (Masselon et al., 2008; Nghe

et al., 2008), coinciding with Weissenberg number of order unity (Wi = A(U)/W ~ 1).

The microfluidic rheometry of shear-thinning polyethylene oxide solutions has been

studied in a rectangular, polydimethylsiloxane (PDMS) microchannel (Degre et al.,

2006). They found good agreement between their measurements of viscosity from the

flow in the microchannel and that measured with a conventional Couette rheometer,

but noted that a more rigid geometry was needed to test highly viscous fluids. A silica

glass geometry was used to study a worm-like CPyCl:NaSal:NaC1 system by (Guillot

et al., 2006), who found good agreement between their viscosity measurements in the

microchannel and from the rheometer for all shear rates examined.

An important feature noted in microfluidic studies of complex fluids in rectilinear

shear flows has been the role of channel size and aspect ratio. This issue was con-

sidered in detail using numerical simulation (Nghe et al., 2010; Cromer et al., 2010).

In contrast to flows of simple Newtonian fluids, the confining effects of channel walls

of a 1 mm x 200 pm glass channel were found to give rise to non-local (i.e. diffusive)

effects that influence the numerical value of the stress plateau in CPyCl:NaSal:NaCl and

CTAB:NaNO3 systems (Masselon et al., 2008). Experiments with the same CTAB:NaNO 3

solution in a 1 mm x 67 pm glass channel, however, were found not to affect the overall



flow curve (Nghe et al., 2008).

The body of scientific literature regarding flows of micellar solutions at the microscale

is considerably smaller than that for corresponding macroscale flows. Additionally, very

few microfluidic studies have considered anything beyond the kinematics in shear flows

offering little insight into the corresponding state of microstructural stress and orien-

tation of the fluid. Microstructural probes, such as spatially resolved measurements

of flow-induced birefringence serve to enhance the present understanding of the com-

plex relationship between stress, flow kinematics and the microstructural state of WLM

systems.

2.3.2 Microfluidic Rheometry in Extension-Dominated Flows

The use of microfluidic technology for extensional rheometry has recently been reviewed

by Pipe & McKinley (2009) and Galindo-Rosales et al. (2013). To generate an internal

extensional flow, the test fluid typically travels through a converging region or a contrac-

tion such that the mean axial velocity U of a fluid element changes in the flow direction

as the sample travels through the device, (i.e. so that OU/x =4 0). Careful consideration

must be given to the shape of the contraction in order to realize the desired extensional

deformation. Some of the most commonly used geometries are shown schematically in

Figure 2.3.2. Many of the earliest studies with converging geometries utilized abrupt

or constant-angle, tapered macroscale contractions (Cogswell, 1978; Binding & Walters,

1988). The hyperbolically-shaped contraction is unique in that it can be used to impose

a nominally constant extension rate along its centerline for a given volumetric flow rate,

as discussed by James (1991). It was first studied in an axisymmetric configuration by

Everage & Ballman (1978), but the corresponding planar configuration, was first studied

only recently by Oliveira et al. (2007). These authors studied the detailed kinematics of

planar hyperbolic contraction flows both experimentally and numerically for Newtonian

fluids, noting that for creeping flow, the effects of viscous shearing are the dominant

contribution to the total pressure drop along the contraction and that it is difficult to

isolate purely extensional effects.

For viscoelastic fluids, however, there can be a significant additional elastic contribu-
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Figure 2.3.2: Commonly used contraction geometries for extensional rheometry mea-
surements.

tion to the total pressure drop as a result of the transient elongational flow experienced

by the fluid elements passing through the contraction. This facilitates the measurement

of an effective extensional viscosity using a hyperbolic contraction device. Many studies

using a range of model fluids and viscoelastic constitutive models have been performed

to assess the suitability of converging dies for measuring extensional viscosity, typically

by attempting to decouple the viscous and elastic contributions to the measured pres-

sure drop (James & Saringer, 1982; Rajagopalan, 2000; Feigl et al., 2003; Pandey &

Lele, 2007; Oliveira et al., 2008; Wang et al., 2010; Sousa et al., 2011). In the com-

putational study of Rajagopalan (2000), for example, the Phan-Thien-Tanner (PTT)

model was used to predict the pressure field in the flow through both abrupt and ta-

pered contractions, from which an extensional viscosity was calculated using different

analytical techniques and compared against the predicted extensional viscosity for the

PTT model in a homogeneous extensional flow. In general it was found that the ana-

lytical procedures for extracting an extensional viscosity from the inhomogeneous flow

field gave results that were in agreement with the true extensional viscosity expected

in a homogeneous extensional flow, provided the extension rates were sufficiently large.

Furthermore, for the range of PTT model parameters considered, Hencky strains of at

most EH = 4.5 were required to attain steady state, and with decreasing strain rates, the

minimum Hencky strain required to attain steady state decreased. Tamaddon-Jahromi

et al. (2011) performed a parametric study using the PTT and the Bautista-Manero

models for simulating the flows of worm-like micellar systems in steady shear and homo-

geneous extensional flows, as well as flow through an abrupt contraction. In this study,
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it was found that the respective predictions of vortex growth and pressure drop values in

the contraction flow differed most between the two models for fluids exhibiting increasing

levels of strain hardening in homogeneous extensional flow. Nystr6m et al. (2012) used

the FENE-CR model to study a range of axisymmetric abrupt, hyperbolic and tapered

contractions to determine the optimal geometry for generating a constant extension rate

along the centerline of the contraction. The hyperbolic geometry was found to be best

for imposing a spatially uniform extension rate and no upstream vortices were observed

in this geometry. In the numerical study of Afonso et al. (2011), the Oldroyd-B and PTT

models were used to simulate flows through axisymmetric and three-dimensional square

abrupt contractions at Deborah numbers up to O(104). The formation of upstream vor-

tices was observed as flow rate was increased, along with a transition to unsteady flow

at a critical Deborah number and a frequency-doubling behavior with further increases

in flow rate ultimately leading to a chaotic regime.

For the experimentalist studying contraction flows, the challenge lies in using kine-

matic and pressure measurements to extract a quantitative measure of the extensional

flow resistance of the test fluid. To illustrate this point, pressure drop measurements

for a range of polyethylene oxide (PEO) solutions in the same Newtonian solvent across

a planar hyperbolic contraction-expansion at different low Reynolds number flow rates

are shown in Figure 2.3.3. For all of the PEO solutions, the pressure drop increases

non-linearly with flow rate, and it can be many times larger than the corresponding

Newtonian value at a given flow rate. Therefore, it would be valuable to have a method

for systematically quantifying the importance of viscoelastic contributions in these total

pressure drops in order to quantitatively compare the rheological behavior of different

fluids in an extension-dominated mixed flow.

To that end, within the last decade, there have been many experimental studies of

extension-dominated mixed flows of non-Newtonian fluids in microfluidic devices. The

small length scales of these test geometries facilitate flows at low Reynolds number but

large deformation rates, enabling experimentalists to study the importance of viscoelastic

effects in high Weissenberg number extensional flows. The viscoelastic flow of polyacry-

lamide solutions through a series of contraction-expansions has been suggested as a novel
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Figure 2.3.3: Measured pressure drop across the planar 7.75:1 hyperbolic contraction-

expansion AP 23 as a function of flow rate Q for low viscosity solutions of high molecular

weight PEO (2 x 106 g.mol- 1, overlap concentration c* = 8.58 x 10-' g.mL- 1; Sigma-

Aldrich) in a water:glycerol solvent (p = 8.2 mPa.s). The solid black line has been added

to guide the eye for the results of the Newtonian solvent. Inset figure is a streakline image

of the creeping flow (Re < 1 and De < 1) through the contraction (channel thickness

h = 200 pm, inlet width w,, = 3100 pm, throat width w, = 400 pm and contraction

length l = 825 pm).

way to create a microfluidic rectifier (Groisman & Quake, 2004). Recently, Sousa et al.

(2012) compared the flow of a Newtonian fluid with a high molecular weight PEO solu-

tion in a microfluidic rectifier device composed of a series of hyperbolic contractions and

different channel depths, finding that diodicity ratios as high as 6.4 could be achieved

using the viscoelastic fluid even at very low Reynolds numbers. The competing roles of

fluid inertia and viscoelasticity on the kinematics and pressure drop in the flow of PEO

solutions through a planar abrupt contraction were studied by Rodd et al. (2005, 2007).

PEO and hydroxyethyl cellulose solutions were used to study the importance of end

effects in the pressure drop across a straight microchannel by Kang et al. (2006). They

found that for these fluids the dominant contribution to the Bagley correction came from

the flow in contraction and expansion regions upstream and downstream of the channel,

rather than from the development region in the straight channel itself. Experiments in

a T-channel geometry with PEO (Soulages et al., 2009) and xanthan gum (Bandalusena

et al., 2009) have also been studied and corresponding computational studies have been

preformed by Bandalusena et al. (2010). Microfluidic analogues of the four-roll mill have
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been studied for imposing mixed extensional and shear flows Hudson et al. (2004); Lee

et al. (2007).

Recently, Wang & James (2011) studied the flow of Newtonian and PEO solutions

in a planar microfluidic hyperbolic contraction (19:1 contraction ratio) by using both

miscible and immiscible, low viscosity Newtonian lubricating fluids to facilitate a more

homogeneous elongational flow in the inner viscoelastic fluid. In calibration experiments

with a Newtonian fluid, but no lubricating fluid, very good agreement was found between

the velocimetry and pressure measurements and analytical predictions based on the

lubrication approximation. In the lubricated experiments with a viscoelastic core fluid,

the flow was found to be stable only if the the immiscible fluid was used as the lubricating

fluid. However, the location of the fluid-fluid interfaces was dependent on flow rate

and thus flow visualization measurements were necessary to complement the pressure

measurement for accurate determination of the extensional viscosity.

WLM fluids have also been studied in extension-dominated flows using millifluidic

and microfluidic devices (Hashimoto et al., 2006; Stone et al., 2006; Pathak & Hudson,

2006; Marifn-Santibaifiez et al., 2009; Haward et al., 2012a; Dubash et al., 2012; Haward

& McKinley, 2012). The ability of these fluids to shear band enables the formation of

effective lubrication layers at the channel walls, facilitating a plug-like flow in the core

of the fluid that can be beneficial for obtaining a more homogeneous extensional flow

field in a contraction geometry.

From all of these prior studies, it is clear that for extension-dominated flows in mi-

crofluidic devices, viscoelasticity plays a crucial role in the resulting kinematic and stress

fields making determination of the extensional viscosity challenging. Therefore, a valu-

able addition to pressure and velocimetry measurements are flow-induced birefringence

measurements, which can be used to observe the degree of molecular alignment and

stretching in material elements as they flow through the device and in certain cases

these measurements can be related to the stress in the material with a stress-optical

rule (Fuller, 1990). Such measurements have been used extensively for polymeric and

WLM fluids in macroscale geometries, (Fuller, 1990; Lerouge & Berret, 2010), including

contraction flows, (Adams et al., 1965; Han & Drexler, 1973a,b; Schuberth & Miinstedt,
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2008). Recent studies of birefringence in microchannels have focused on WLM fluids

(Pathak & Hudson, 2006; Haward et al., 2012a; Dubash et al., 2012; Haward & McKin-

ley, 2012), largely, because WLM systems are typically around one hundred times more

birefringent than polymeric systems, so the small optical path lengths associated with

microfluidic devices can still provide a strong enough signal for experimental measure-

ments. In these studies, birefringence and velocimetry measurements were used to char-

acterize the flow instabilities and conformational hysteresis of shear banding WLM fluids

in extensional flow in microfluidic cross-slot geometries.

2.3.3 Present Study

In Chapter 5, two different entangled WLM fluids, one of which exhibits shear banding

and one which shows shear-thinning are compared in a high deformation rate shear flow.

The rheological and rheo-optical properties of the fluids are first characterized using con-

ventional macroscale rheometric measurement techniques. Spatially-resolved birefrin-

gence measurements of the flow are obtain using a commercial birefringence microscopy

system (ABRIOTM; CRi, Inc.). These measurements are compared against correspond-

ing macroscale measurements of the stress-optical rule in a conventional rheometer, to

validate the use of this system for microfluidic optical rheometry. Then in Chapter 6,

an 'extensional viscometer-rheometer-on-a-chip' (EVROC) is used as a microfluidic ex-

tensional viscosity indexer to quantify the rheological behavior of complex fluids in an

extension-dominated mixed flow. The combination of pressure, birefringence and ve-

locimetry measurements in this microfluidic contraction-expansion geometry offers the

experimental rheologist the ability to obtain spatially resolved measurements of the state

of stress as well as the molecular stretching in elastically-dominated flows of complex

fluids.

The over arching focus of both Chapters 5 and 6 is on the development and refinement

of microfluidic-based rheometric techniques for measuring the rheological behavior of

complex fluids undergoing high rate deformations, for which the viscoelasticity of the

material plays an important role in the stress generated in response to an imposed

deformation. The strain rates associated with the flow of micellar solutions in microscale
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geometries are evaluated with micro-particle image velocity (p-PIV) measurements using

standard equipment. The corresponding stresses associated with the flow are measured

with pressure transducers and from optically, non-invasive measurements of flow-induced

birefringence. The measurements of stress and strain rate may ultimately be coupled

to the predictions of select constitutive models to test the performance of those models

in predicting the high rate rheology of worm-like micellar solutions. Although these

experiments focus on micellar systems, the experimental techniques used are readily

transferable to the study of other transparent, complex fluids.

2.4 Particle Migration and 'Inertial Focusing'

It is well known that inertial effects give rise to secondary flows as well as turbulence in

flows of Newtonian fluids (Taylor, 1923; Tennekes & Lumley, 1972). The relevant control

parameter for such instabilities is the ratio of a characteristic inertial to viscous stresses

introduced previously in Section 2.2.5 and is the Reynolds number Re = UW/v, where U

is the mean channel velocity, f is the characteristic length scale of the flow geometry and

v is the kinematic viscosity of the fluid. Similarly, it is known that even in low-speed

flows of viscoelastic liquids, elastic stresses can give rise to laminar secondary flows along

with elastic turbulence (Larson, 1992; Groisman & Steinberg, 2000). The corresponding

control parameter for these flows is the ratio of elastic to viscous stresses in the flow.

This ratio is approximately equivalent to the ratio of the relaxation time of the fluid A

to the intrinsic timescale of the flow, being proportional to an imposed deformation rate

A1 U/, given by the Weissenberg number Wi - Ay, which was first introduced in

Section 2.2.5. Although both inertia and elasticity are non-linear effects that tend to

destabilize a flow, if they are simultaneously important, as for example in the case of

Taylor-Couette flows (Larson, 1992; Crumeyrolle et al., 2002) discussed previously, or

turbulent polymer drag reduction (Graham, 2004; White & Mungal, 2008), they can

act together, in fact, to stabilize it. The relative importance of elastic to inertial stress

is given by the elasticity number El = Wi/Re = Avf 2 , which is the ratio of the two

control parameters and is, in principle, independent of the dynamics of the flow.
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Figure 2.4.1: (a) Particle concentration as a function of radial and longitudinal position
in a cylindrical tube. Initial concentration is one particle per milliliter. Particle size is
0.8 < 2a < 1.6 mm, pipe radius R = 5.8 mm. Dimensionless variables 7?. r/R and

S Re,(L/R). Figure and caption adapted from Segr6 & Silberberg (1961). (b) -

(1) Particle distribution p(JZ) over a cross-section and (2) the corresponding histogram
showing the probability as a function of the dimensionless radius, for Rec = 350 and
R/a = 9. Axes are labelled with lengths scaled by the tube radius, and the bar at the
lower right-hand side shows the mean particle diameter on the same scale. Figure and
caption adapted from Matas et al. (2004b).

For an experimentalist, the challenge is to measure the flow kinematics to better

understand the governing dynamics of the flow. Some of the most commonly employed

experimental techniques for observing the flow field in a channel include particle tracking

velocimetry (PTV) and particle image velocimetry (PIV), in which the velocity of small

tracer particles that have been seeded in the fluid are measured under the assumption

that the particles faithfully follow the local flow field. However, it is not always the case

that this assumption is valid. For example, sedimentation effects or particle inertia in

a laminar or turbulent flow can prevent a tracer bead from precisely moving with the

local fluid velocity (Maxey, 1987; Snyder & Lumley, 1987). In fact, even in Stokes flow

the Fax~n relations predict that the velocity of neutrally buoyant particles may differ

from the local fluid velocity if the flow is nonuniform (Happel & Brenner, 1983; Maxey

& Riley, 1983), and only a minute amount of fluid inertia is necessary to cause particles

to migrate across streamlines (Ho & Leal, 1974).
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Indeed, this inertially-driven particle migration in laminar channel flows of Newto-

nian fluids at moderate to high Reynolds number is a topic that has received a resur-

gence in research interest in recent years. The phenomenon, commonly called the Segr-

Silberberg effect (Segr6 & Silberberg, 1961, 1962a,b), was famously observed in Poiseuille

flow in macroscale cylindrical pipes, wherein the millimeter-sized particles of diameter

a, suspended in a Newtonian carrier fluid moved away from the pipe wall and centerline

such that on average they were distributed in an annulus whose radius was some fraction

of the pipe radius depending on the channel Reynolds number Re, = Udh/v, where dh is

the hydraulic diameter of the channel. See Figure 2.4.1. The migration phenomenon is

attributed to a balance between a wall effect lift force that pushes the particle away from

the wall and a shear gradient force that drives the particle to regions of higher shear

rates (Ho & Leal, 1974; Matas et al., 2004a). Subsequent analytical modeling of particle

migration have typically been in the limit of infinitesimal particle Reynolds numbers,

Rep = Rec(a/dh) 2, which is a measure of the relative importance of inertia at leading

order in the vicinity of the particle. The characteristic length scale in this number is

taken as the particle diameter a, and the characteristic velocity is based on the relative

velocity between the fluid and the particle at a distance a away from the particle based

on the characteristic shear rate in the channel c ~ U/dh as illustrated in Figure 2.4.2

(where H and dh are interchanged). These studies confirmed the existence of preferred

particle equilibrium positions in a simplified two-dimensional geometry and predicted

the displacement of particles closer to the wall as the channel Reynolds number is in-

creased, up to the transition to inertial turbulence (Schonberg & Hinch, 1989; Hogg,

1994; Asmolov, 1999). These predictions were later substantiated by experimental work

(Matas et al., 2004b).

The basic picture of the migration phenomenon in channel flows of Newtonian liquids

at low particle Reynolds number Rep < 1 is schematically illustrated in Figure 2.4.2. A

non-zero drag force arising from the curvature of the velocity profile acts to slow down

the particle relative to the local fluid velocity. This drag force is counterbalanced by a

Stokes drag that prevents the particle from accelerating upstream. The velocity gradient

also causes viscous stresses to exert a torque on the particle causing it to spin with a rate
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Figure 2.4.2: Schematic illustration of the drag and lift forces acting on a particle in the
channel flow at low particle Reynolds number Rep < 1 in the inertial case, and gradients
in streamwise tension driving particles to regions of low shear rate in the viscoelastic
case. Note that Urn is the maximum fluid velocity, whereas U is the mean fluid velocity.

proportional to the local shear rate. The spin of the particle can be thought to give rise

to a Magnus force pushing the particle toward the centerline of the channel. Conversely,

the curvature in the velocity profile causes the relative velocity of the fluid on the face of

the particle closer to the wall to be larger than that on the other half facing the channel

centerline. The larger relative velocity on the wall-side of the particle gives rise to a

larger suction pressure due to the Bernoulli effect which thus counteracts the Magnus

force and drives the particle toward the wall. The lateral forces therefore arise from

non-linear effects associated with the inertia of the fluid. For the migration in complex

fluids, however, the non-linearities such as streamwise tension arise from viscoelasticity

and hence the equilibrium migration behavior can be different from that in Newtonian

liquids.

In truth, the migration phenomenon is more complicated than the description offered

here due to other non-linear effects such as the size of the wake behind the particle,

especially as the particle Reynolds number becomes large. However the basic picture

depicted here can be interpreted as a rudimentary guide to the mechanisms underlying

the migration effect.
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2.4.1 Particle Migration in Microchannels

Despite the progress made over the last fifty years in understanding and characteriz-

ing this inertially-driven particle migration, it was only very recently with the advent

of microfluidics based on soft photolithography (McDonald & Whitesides, 2002) that

promising applications of the migration phenomenon emerged (Di Carlo et al., 2007).

Microfluidic devices are well suited to handling the sample volumes typically encountered

for biomedical applications and point of care diagnostics (Chin et al., 2012). Further-

more, due to the fact that the characteristic dimensions of a microchannel are generally

on the same order as the size of the particles or a typical blood cell (6 < 2a < 10 Am),

particle migration in microfluidic devices occurs in the regime of moderate to large

particle Reynolds numbers Rep 0(1), for which inertial lift forces are found to scale

differently than in macroscale flow (Di Carlo et al., 2009b) and particles are driven or

focused to a few, very specific locations in the channel cross-section as seen experimen-

tally (Choi et al., 2011; Di Carlo et al., 2009b), and numerically (Chun & Ladd, 2006;

Di Carlo et al., 2009b) as shown in Figure 2.4.3. It is widely believed that this robust

localization of micron-sized particles in this regime, often called inertial focusing (Di

Carlo, 2009a), can be exploited for biomedical and clinical applications such as high-

speed flow cytometry (Hur et al., 2010; Oakey et al., 2010; Chung et al., 2012) (flow

rates Q > 1 mL.min- 1), particle enrichment (Hur et al., 2011a; Bhagat et al., 2011; Wu

et al., 2009; Mao & Alexeev, 2011) and the isolation of rare and diseased cells from the

bloodstream.

Particle migration across streamlines on the microscale was observed experimentally

(Di Carlo et al., 2007; Choi et al., 2011; Bhagat et al., 2008) and numerically (Chun &

Ladd, 2006) in straight square channels, in which randomly distributed particles focus

to four positions centered along each face of the channel. As the aspect ratio of the

channel increases (i.e. a very wide or very tall channel), particle focusing reduces to

predominantly two equilibrium positions centered on the long face of the channel (Di

Carlo et al., 2009b; Kim & Yoo, 2008). Numerical modeling and direct experiments of

varying size particles flowing through straight square channels have yielded scalings of

the inertial lift force FL (Di Carlo et al., 2009b). The inertial lift force on a particle near
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Figure 2.4.3: Three high-speed images (2 ps exposure) are shown, demonstrating ordered
spatial distribution of particles at the four equilibrium positions. Particles are 10 pm
in diameter and the flow is at Re, = 120. Colored arrows below the images indicate
particles at specific positions in the y-z plane that correspond to the legend. Figure and
caption adapted from Di Carlo et al. (2007).

the channel centerline scales as FL _ pU2 a3 /H, while FL ~ pU2a6/H 4 near the channel

wall, where p is the fluid density, U is the mean flow velocity, a is the particle diameter,

and H is the channel dimension. Various other microchannel geometries have been used

to study the inertial focusing behavior of particles suspended in simple buffer solutions

or in highly diluted blood, including spiral channels (Martel & Toner, 2012), channels

with multiple turns (Gossett & Di Carlo, 2009; Oakey et al., 2010), arrays of pillars and

Weir-type geometries Gossett et al. (2010); Chung et al. (2012). The introduction of

curvature to the flow gives rise to a Dean flow which can produce single stream focusing,

but it ultimately destabilizes the particle focusing quality at flow rates that are generally

much lower than can be achieved in a straight channel.

2.4.2 Particle Migration in Physiological Fluids

One aspect of inertial focusing that has not been thoroughly studied is how particles

suspended in complex fluids such as whole or minimally diluted blood respond to iner-

tial forces in microchannels. Particle focusing in whole or minimally diluted blood has

not been studied or utilized due to performance limitations in the imaging techniques

(e.g. high-speed brightfield imaging and long exposure fluorescence (streak) imaging)

commonly used to observe particle migration. In high-speed bright-field imaging, res-
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olution speeds exceeding 105 frames per second using shutter speeds down to 0(1) [ts

have been used to measure size, rotation rate, and/or interparticle spacing of individual

particles flowing through the channel (Hur et al., 2011a; Di Carlo et al., 2009b; Lee

et al., 2010). In long exposure fluorescence imaging, the signal intensity of fluorescently

labeled particles accumulated over a time interval on the order of 0(1) s has been used

to measure mean equilibrium position, full width at half maximum, and/or separation

efficiency of multiple particles flowing through the channel (Oakey et al., 2010; Bhagat

et al., 2008; Gossett & Di Carlo, 2009). Both of these imaging techniques have been used

to characterize particle focusing in samples consisting of physiological saline or highly

diluted blood (Hur et al., 2010, 2011a; Bhagat et al., 2011). The utility of these imaging

techniques becomes limited in samples consisting of whole or minimally diluted blood,

however. In one milliliter of whole blood, there are approximately 5 x 109 red blood cells

(RBCs), 5 x 106 white blood cells (WBCs), and 3 x 108 platelets suspended in plasma.

High-speed bright-field imaging is limited by the overwhelming presence of RBCs ob-

scuring vision of individual particles in the channel, while long-exposure fluorescence

imaging is limited by attenuation of incident light by hemoglobin absorption and RBC

light scattering in the visible region. For both imaging techniques, it is difficult to gather

information along the y-axis (i.e. along the height dimension of the channel).

In vitro studies of blood flow through capillary tubes have shown that blood behaves

as a Newtonian fluid for tube diameters larger than 500 pm, and as a non-Newtonian

fluid for tube diameters smaller than 500 pm. This non-Newtonian behavior, known as

the Fahrous-Lindqvist effect, is marked by a decrease in apparent blood viscosity for

smaller tube diameters (Fahrous & Lindqvist, 1931). This is due to the formation of a

cell-free layer near the tube wall that has a lower viscosity relative to the RBC-rich tube

core (Cokelet & Goldsmith, 1991; Long et al., 2004). Initial studies on the behavior of

RBCs in shear flow were primarily limited to dilute blood suspensions due to the lack of

imaging techniques capable of obtaining both direct and quantitative measurements of

multiple RBC motions in concentrated blood suspensions. Visualization and detection

of tracer RBCs at HCT > 10% was first achieved using ghost cells (i.e. ruptured RBCs

that were resealed in the absence of hemoglobin) and a traveling microscope for channel
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Reynolds numbers Re, = Umdh/V = 0.3, where Umn is the maximum channel velocity,

dh is the hydraulic diameter, and v is the kinematic viscosity (Goldsmith & Marlow,

1979). Ghost cells were used as models of RBCs due to attenuation of incident light by

hemoglobin absorption and RBC light scattering when measuring high concentrations

of normal RBCs.

The development of spinning disk (Nipkow) confocal microscopy combined with laser

illumination made it possible to generate a sufficient signal-to-noise ratio for detecting

RBC motion for HCT > 10% (Lima et al., 2008). Recent work utilized fluorescent dye

labeling, scanning confocal microscopy, and micro-particle image velocimetry (P-PIV) to

observe near-wall RBC motion at physiological values of hematocrit (i.e. HCT = 48%)

blood in a rectangular microchannel for Re, = 0.03 (Patrick et al., 2011). The intensity

of Nd:YAG (or comparable) laser illumination is such that only brief pulses (10 ns) of

light are needed to detect fluorescently labeled particles found in the optical path. Such

an imaging technique could be used to identify various properties (e.g. three-dimensional

position, particle diameter, rotation rate) of individual particles in whole blood flowing

through the channel at high Rep. In order to make quantitative measurements of particle

focusing behavior in whole blood. Moreover, an experimental frame of reference can be

provided for in silico studies of RBC (and other particle) motion in blood that account

for both the deformability of an individual RBC and the cell-cell interactions from a

large number of RBCs. In particular, it may be possible to provide a physical basis for

particle focusing in blood using computational models that quantitatively predict the

rheological properties and dynamics of blood flow (Owens, 2006; Fedosov et al., 2011).

2.4.3 Particle Migration in Model non-Newtonian Fluids

At present, however, it has proven challenging to realize any practical implementation

of this technology for whole blood or other clinically relevant biofluids, due to the need

to pre-process and dilute the samples (Hur et al., 2011a). This is partly because the

undiluted fluids are complex, non-Newtonian suspensions displaying non-linear rheo-

logical properties whose role in particle focusing at high particle Reynolds numbers in

microfluidic devices is currently poorly understood. On the other hand, low Reynolds
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number flows of viscoelastic suspensions have elicited research interest in hematology

(Fhhraus & Lindqvist, 1931; Goldsmith & Skalak, 1975), as well as for commercial flu-

ids such as drilling fluids (Tehrani, 1996; Boek et al., 1997) and paints (Patton, 1979).

In flows of polymeric liquids, two competing effects are known to govern particle mi-

gration dynamics. At low Reynolds and low to moderate Weissenberg numbers, normal

stress differences have been shown experimentally (Gauthier et al., 1971; D'Avino et al.,

2012), and theoretically (Ho & Leal, 1976) to drive particles to regions of low shear rate.

Conversely, shear-thinning has been seen to drive particles to regions of high shear rate

(Gauthier et al., 1971). The effect of channel aspect ratio, blockage ratio, shear-thinning

and viscoelasticity in an inertialess flow have been studied numerically with the Phan-

Thien Tanner and Giesekus models recently by Villone et al. (2011a,b, 2013). These

studies found that viscoelasticity drives a secondary flow in the channel as shown in

Figure 2.4.4 (a). The particles then tend to be driven either to the channel centerline or

walls depending on their position at the inlet of the channel as shown by the trajectories

for the case of cylindrical pipe flow in Figure 2.4.4 (b). The location of the separatrix,

and therefore the fraction of the particles that move to the centerline or wall depends on

the degree of shear-thinning in the fluid, with stronger shear-thinning driving particles

more toward the wall.

Numerical simulations have also investigated the roles of inertia, viscoelasticity and

blockage ratio on the equilibrium positions of single particles in Couette and Poiseuille

flow (Huang et al., 1997). However, there have been very few studies of particle mi-

gration in non-Newtonian fluids in microfluidic devices at concurrently large Reynolds

and Weissenberg numbers. For approximately two-dimensional flows of dilute polymer

solutions at low Re, and moderate Wie in a microchannel, particles have been observed

to migrate to the channel midplane (Leshansky et al., 2007). It is only recently that the

effects of inertia and elasticity on particle migration have been considered simultaneously

for moderate to large elasticity numbers (1 < El < 10) (Yang et al., 2011), but only

at small Re, and Wic. Yet, the high Rec-Wic regime has not been thoroughly studied,

likely because of a broadly held notion that high-speed flows of viscoelastic liquids in

microfluidic devices are useful for enhancing mixing by generating elastic turbulence
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Figure 2.4.4: (a) Secondary flow field for a Giesekus fluid flowing in a square microchan-

nel in the inertialess limit. Figure and caption adapted from (Villone et al., 2013).

(b) Particle trajectories in the inertialess flow of a Giesekus fluid in cylindrical pipe of

radius R, particle size is a/R = 0.1. The particle position r and its axial position z are

made dimensionless with pipe radius R. The cyan line r = r* is the neutral cylindrical

surface. The green area is the unaccessible channel region due to the finite particle size

and the excluded volume effect. Figure and caption adapted from (D'Avino et al., 2012).

(Groisman & Steinberg, 2001), precluding the possibility of a laminar flow conducive

to high-throughput particle sorting technologies. A further challenge is the inability of

conventional siloxane-based microchips to withstand the large pressures associated with

high flow rates, requiring more exotic fabrication methods (Ciftlik et al., 2013).

2.4.4 Present Study

In Chapter 7, the effect of RBCs on particle motion in inertia-dominated flow for

Re, 0(1) and Re, < 0(100) is characterized. Fluorescently labeled particles are sus-

pended in physiological saline, diluted blood, or whole blood prior to being processed

in a straight rectangular channel with a 2:1 aspect ratio. Images taken at multiple

vertical positions in the channel are used to find optically in-focus particles and deter-

mine their particle diameter and two-dimensional spatial coordinates within the channel

cross-section using particle tracking analysis (PTA). The inertial focusing behavior of

polystyrene beads, WBCs, and PC-3 human prostate cancer cell lines is characterized

as a function of flow rate Q and RBC volume fraction fABC. Rheometer measurements

of blood viscosity and shear rate are used to provide insight into PTA measurements of
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PC-3 cell focusing behavior in diluted and whole blood.

In Chapter 8, the study of particle migration is extended to channel Reynolds num-

bers Re, > 2000, enabling the experimental investigation of the breakdown in focusing

behavior in water and the transition to inertial turbulence in a microchannel. Par-

ticle migration in dilute and semi-dilute polymer solutions is also studied at equally

high channel Reynolds numbers and at channel Weissenberg numbers Wi ,< 0(100).

The introduction of viscoelasticity into the carrier fluid drives the particles toward the

channel centerline even for small channel elasticity numbers El, = Wic/Rec < 0(1).

Furthermore, the centralized particle migration persists to flow rates that are larger

than the critical flow rate at which transition to turbulence occurs in the corresponding

experiments in a Newtonian carrier fluid. This finding could enable a breakthrough in

development of microfludic separation technologies that can process at flow rates up to

or above Q > 20 mL.min- 1 .

It is eminently clear that non-linear viscoelasticity plays a major role in the observed

flow kinematics of a wide range of flows. From shear banding in flows of worm-like

micellar fluids to extension-dominated flows in microfluidic devices, and to flow-induced

particle migration in microchannels, the rheological behavior of non-Newtonain fluids

at high deformation rates give rise to a broad range of exciting and interesting physical

phenomena, which must be characterized to optimize a particular complex fluid for a

given application.
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Chapter 3

Rheological Characterization of the

Worm-Like Micellar Solutions

3.1 Introduction

The bulk rheological behavior of a shear-banding solution of cetylpyridinium chloride

(CPyCl) with sodium salicylate (NaSal) and a shear-thinning system of cetyltrimethy-

lammonium bromide (CTAB) with NaSal or sodium nitrate (NaNO 3) is characterized

using a range of standard rheometric flows. The linear rheology of these worm-like micel-

lar (WLM) systems is characterized with small oscillatory measurements, and in steady

shear and step strain stress relaxation tests. The results of these measurements indicate

that the linear viscoelasticity of these fluids is well described by the Maxwell model with

a single relaxation time A.

The non-linear rheological behavior of these systems is characterized in steady shear

and with stress relaxation tests. Non-linearities set in for shear rates i /> A in steady

shear and strain amplitudes 70 > 1 for stress relaxation tests. Measurements of first

N1 and second N 2 normal stress differences are also reported. Highly spatially-resolved

velocimetry measurements are then obtained using a Rheo-PIV system developed by

Dimitriou et al. (2011) to study the shear-banding kinematics of the CPyCl:NaSal sys-

tem in a cone-and-plate geometry. Some of the experimental issues encountered when

carrying out velocimetric measurements on WLM systems are outlined, including a dis-
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cussion of the effect of secondary flows on imaging, an experimental method used to

delay the onset of wall slip, and the consequences of employing a rigid bounding surface

at the edge of the cone-and-plate geometry to improve image quality.

3.2 Materials and Methods

3.2.1 Test Fluid Formulations

Three different worm-like surfactant formulations have been examined in the present

experiments. The first solution consists of 100 mM cetylpyridinium chloride (CPyCl)

(Alfa Aesar) and 60 mM sodium salicylate (NaSal) (Alfa Aesar) in de-ionized water.

This system is studied in Chapters 3-5. A solution with this composition was also

discussed at length by (Rehage & Hoffmann, 1991). The second solution consists of

30 mM cetyltrimethylammonium bromide (CTAB) (Sigma Aldrich) and 240 mM NaSal

(Alfa Aesar) in de-ionized water. This system is studied in Chapters 3 and 4. Similar

CTAB:NaSal solutions were studied by (Shikata et al., 1994). Both of these solutions

were also studied by Pathak & Hudson (2006). The third system is composed of 100 mM

CTAB and 300 mM sodium nitrate (NaNO3) (Sigma Aldrich) and has been studied by

Cappelaere & Cressely (1997). This system is studied only in this Chapter for normal

stress measurements. The surfactant and counter ion concentration ratios were selected

because it is known that for these ratios the molecules form worm-like micelles (WLM).

The solutions were allowed to equilibrate at room temperature, in a dry and unlighted

environment for more than one month from the time of their preparation before any

experiments were conducted. All three solutions are strongly shear-thinning, but only

the CPyCl:NaSal system exhibits a stress plateau across many decades of shear rates.

It is also well known that the rheological behavior of WLM solutions can be sensitive

to the preparation protocol. Hence there can be variations in the quantitative values

of the material functions between different batches of each fluid, even if the qualitative

behavior between batches is similar. Therefore, in order to avoid apparent ambiguities

in any tabulated values of the material functions, a batch number has been specified for

each WLM fluid whenever quantitative results are presented.
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3.2.2 Strain and Stress-Controlled Rheometry

A rotational, or torsional rheometer is a device that is designed to measure the shear

rheology1 of a material over a range of shear strains -yo or shear strain rates . The

archetypal rotational rheometer consists of a stationary plate and an axially symmetric

fixture, illustrated in Figure 3.2.1, separated by some distance H, which can vary with

radial position. The test sample is then positioned between the fixture and the plate, and

the fixture is rotated at either some angular velocity Q or with an imposed torque, such

that the shear rate at any r and z is -zo = ov/oz, and the resultant torque or angular

velocity, respectively, is measured, along with any axial loads exerted by the material

on the fixture and plate. These measured quantities are then related to the material

functions of the test sample through appropriate mathematical relations presented, for

example, given by Bird et al. (1987) and Macosko (1994).

There are two basic control strategies for the design of a rotational rheometer. The

first type is torque or stress-controlled, in which the torque imposed on the sample is the

directly controlled parameter, although using feed-back control it is possible to use this

type of rheometer to impose constant strain rates on a sample instead. The second type is

displacement or strain-controlled, for which the imposed strain is the directly controlled

parameter. The two main stress-controlled rheometers used in this thesis are the AR-G2

(TA Instruments) and the Discovery Hybrid Rheometer (DHR3, TA Instruments). The

strain-controlled rheometer used in this thesis is the Advanced Rheometric Expansion

System (ARES) LS-2 strain-controlled rheometer (TA Instruments). Both the DHR3

and ARES are equipped with a force rebalance transducer enabling measurement of

axial loads in addition to torque. All rheometers are also equipped with temperature

control instrumentation.

Two commonly used fixtures with a rotational rheometer are the cone-and-plate

(CP) and the plate-plate (PP) geometries, portrayed in Figure 3.2.1. A CP geometry,

depicted in Figure 3.2.1 (a), consists of a flat bottom plate and an upper cone, whose

angle with respect to the flat bottom plate is 9. For small 9, the gap height may be

'Torsional rheometers can also be adapted for extensional rheometry measurements using an opposed
jet device (Fuller et al., 1987) or the Sentmanat extensional rheometer (Sentmanat, 2004).

75



JTC tyCp %'JTpp typp

test R -. test R
sample sample

& H~r)z * r H

(a) Cone-and-Plate (b) Parallel Plate

Figure 3.2.1: Commonly used fixtures for use with rotational rheometers.

shown to increase linearly with radial position, such that H(r) = r tan ~ - r9, where H

is the gap height at some radial position r. The shear rate imposed by a CP is ',O = Q/0

and it is therefore invariant to radial position. A PP fixture shown in Figure 3.2.1 (b)

consists of two parallel plates separated by some user-selected gap height H, which is

constant for all radial positions. The shear rate for a PP fixture is defined = /H,
and it varies linearly with radial position.

Both geometries rely on kinematically driven Couette flow for steady shear measure-

ments. A linear velocity profile in the material is assumed based on the kinematics of

the geometry, such that the velocity in the gap follows vo(r, z) = rQz/H(r). In order to

determine applied stress rzo, it is necessary to relate the measured torque T, applied on

the sample by the rheometer to the applied shear stress rz+ = 7(Az+)4zo. The measured

torque is the integral of the product of the applied force, 27rq( z+)izordr, and radial

position r, from r = 0 to r = R, where R is the radius of the fixture.

T = 27r q(zo) zor'dr (3.2.1)

Since the viscosity q( zo) of a sample is not known a priori, evaluation of the integral

requires careful consideration. The principal advantage of the CP geometry is that it

imposes a spatial homogeneous shear rate, and thus Eq. (3.2.1) can be directly integrated

since the viscosity can be assumed constant. It can be shown (Bird et al., 1987), that

the torque Tcp acting on the CP geometry is

T = 1 q(3.2.2)

21rR 3 
-3
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where R is the radius of the geometry, 7 is the shear viscosity and YR is the shear rate

at the rim. For the CP, the rim shear rate is IR = 42o = Q/0.

In certain cases, it is desirable to use the PP geometry, since its gap height is inde-

pendent of radial position. The shear rate is not independent of position, however, so

the relationship between torque Tpp and viscosity in the PP geometry must be derived

using the Leibniz rule (Macosko, 1994) and it is

___P 3 dln(Tp/27rR3)(
2R3 3+ dl(Y) ]= r(i$')Y (3.2.3)27rR3 I dIn ( R) _

where the shear rate at the rim is YR = RQ/H.

The first normal stress coefficient '1(AR) can also be measured for a CP if the

rheometer is equipped with an axial force transducer. The axial force acting FCp on the

CP geometry is

FCP _ 1
rR 2  T 1AR (3.2.4)

where is the first normal stress coefficient of the test material. The axial force Ypp

acting on the PP geometry is

2P [2 + = nTp~R2 'Pl( R) R - 'F2( ) R2 (3.2.5)
7rR2 d In ( R)

where T2(AR) is the second normal stress coefficient of the test material.

In principle, the second normal stress coefficient can be measured by performing two

steady shear tests with the same material in the CP and PP geometry. The value of

T,1() can then be determined over a range of shear rates using Eq. (3.2.4) and then

substituting these values into Eq. (3.2.5) to determine XI 2 (A). This method of measuring

T2(') can be challenging, however, since the need to use two separate material samples

can be detrimental to measurement repeatibility.

A possible alternative method of measuring I2() is with the offset cone-and-plate

(OCP) geometry of Jackson & Kaye (1966). The OCP geometry is shown schematically

in Figure 3.2.2. This fixture uses a CP geometry that is offset by a gap height H that

can be varied for a set of tests. This geometry is a hybrid between the CP and PP

fixtures. The shear rate in the OCP is given by A(r) = rQ/(H + rO) (Ohl & Gleissle,
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Figure 3.2.2: Offset cone-and-plate geometry.

1992). Therefore the shear rate at the rim is

Q _ RQ 1
- (3.2.6)0 1+r, H 1+K

This geometry is a compromise between the CP and PP fixtures based on the ratio

r = RO/H, which is the ratio of the gap height at the rim for the CP geometry to the

gap height between the apex of the cone and the lower plate. The equations relating

torque Tocp and axial force .Focp measured using an OCP to the material functions are

derived in Appendix B and they are

TOCP 1 dln 1CP (T2Cp/R 3) 1 Tocp 3 d n (TOCp /2rR 3)
27rR3 [ + d ln (R) 2wR 3 [3 dIn ()

(3.2.7)

and

FOCP 1 d n (Focp1rR2 ) 1 o C IP dn(focp/1wrR 2) 2 1 22+ =rR 2+ = 1ik - lF2 RrR 2 [ + d n (R) J R2 d[2n () 1 1+ K Y

(3.2.8)

The limit , -* oo corresponds to the CP geometry, whereas in the limit K --+ 0 the

OCP resembles the PP geometry. In these respective limits the equations for torque and

axial force given by Eqs. (3.2.2)-(3.2.5) are recovered. The OCP geometry can be used

to make a sequence of measurements over a range of rotation rates and gap heights (i.e.

multiple , values) in order to evaluate the derivative terms in Eqs. (3.2.7) and (3.2.8)

with more data than would otherwise be available from only the two tests that can be

obtained with the CP and PP geometries. Furthermore, these measurements can be

done with a single material sample, by performing the measurements over a sequence of
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decreasing gap heights (i.e. increasing r values).

3.2.3 Rheo-PIV Apparatus

In order to directly observe the local velocity field within the fluid under steady shear,

an experimental Rheo-PIV apparatus (Dimitriou et al., 2011) that mounts to the AR-

G2 rheometer was designed and fabricated. The apparatus is similar to experimental

designs used by other workers that implement particle tracking techniques to observe

shear banding and wall slip in rheometers (Meeker et al., 2004a; Tapadia et al., 2006).

Two schematic diagrams of the Rheo-PIV system are shown in Figure 3.2.3. This

system consists of a laser light sheet which is directed downward into the sample. The

sample is loaded into an inverted CP geometry, with the transparent quartz, upper plate

(R = 25 mm), and a precision machined black anodized aluminum cone (R = 25 mm,

0 = 40). A CCD camera (MatrixVision BlueFox) fitted with a macroscopic imaging

zoom lens (Edmund Optics Techspec VZM 600i) is positioned such that the imaging

plane coincides with the location of the laser light sheet. The light sheet is aligned

tangentially to the direction of flow, and approximately 2 mm into the fluid from the

edge of the geometry (R, = 23 mm), illuminating seed particles at different positions

along the vertical (shear) direction.

The velocity field within the fluid is determined using digital particle image ve-

locimetry (PIV), whereby a cross correlation algorithm is applied to a pair of images

separated by a time F-', (for this system the frame rate is F = 60 fps typically). Two

consecutively captured images are divided into interrogation windows and the 2D cross

correlation function between the two successive frames in each window is computed. The

point at which the cross correlation function is a maximum corresponds to the average

displacement of fluid elements within the window between the two exposures. The 2D

velocity field is formed from the ensemble of these displacements obtained from each

interrogation window. Because the lateral width of the laser light sheet (Ax - 2 mm)

and its thickness (~ 0.25 mm) are both small compared to the value of Ri, the flow can

be assumed to be translationally invariant along the x-direction. This approximation

essentially takes a small enough arc segment on the surface of a sphere (and any move-
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Figure 3.2.3: Schematic diagram (a) of the Rheo-PIV system. 3D Model (b) showing
how a plano concave lens can be placed up against the edge of the cone-and-plate ge-
ometry, in addition to how the transparent film is placed on the upper plate and lower
cone. The coordinate system used in discussions is annotated in the box.

ment of particles on this surface) and describes it using a rectangular coordinate system

(x, y) with x ~_ Rjq and y ~ RjO. The resulting time resolved velocity field is thus a full

2D vector field of the form i- = [vx (x, y), vy (x, y)]. Combined with the fact that there is,

on average, no flow in the y-direction (discussed in detail in section 3.4.2), this allows

for each 2D velocity field to be averaged along the direction of flow to produce a single

velocity profile per image pair vx(y).

In this study, two optional features of the Rheo-PIV system that are used to facilitate

the measurement of the local velocity field within the WLM system are considered. The

first is a removable plano-concave lens with radius R = 25 mm which can be placed

up against the edge of the CP geometry, as shown in Figure 3.2.3 (b). A flat front

face prevents distortion of the image of the seed particles under flow, because rays

reflected from the seed particles towards the CCD camera travel through the air-solid

and solid-liquid interface at a direction normal to these interfaces. When the surface is

not flat, refraction of the optical rays due to differences in the indices of refraction of the

different media result in a distortion of the apparent location of the seed particles making

it difficult to determine the true velocity profile. This lens serves to provide a planar

outer-facing surface through which the camera can image the field of view containing

the illuminated seed particles, and its role on imaging with the viscoelastic test fluid
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Table 3.2.1: Comparison of surface roughness and equilibrium contact angle of
CPyCl:NaSal test fluid for the aluminum cone and the quartz plate with, and with-
out the transparent adhesive film. The roughness is measured using a Mitutoyo Surftest
SJ-210 profilometer and the contact angle is measured with a Ram6 Hart Model 590
contact angle goniometer. Surface roughness measures are Ra (arithmetic average of
roughness values), Rq (root mean squared roughness) and R, (maximum roughness).

Aluminum
Material Cone Quartz Plate Quartz + Film
Roughness
Ra (Mm) 0.28+0.04 0.014+0.001 0.045±0.007
Rq (Pm) 0.35+0.06 0.018+0.001 0.067+0.01
R, (pm) 1.8+0.5 0.115+0.006 0.5+0.09
Contact Angle 42±30 27.3+1.40 43±30

will be discussed in Section 3.4.

The second feature is a transparent adhesive polymer film (SS-45 screen protector,

Vivitar) which can be placed on either (or both) the upper or lower geometry, such

that the fluid is in contact with this film instead of the polished quartz upper plate

or the machined aluminum lower conical fixture. When affixed to the upper quartz

geometry, the film has the effect of increasing the roughness of the upper surface, as

well as making the surface slightly more hydrophobic. Table 3.2.1 compares the contact

angle of a sessile drop of 100:60 mM CPyCl:NaSal system on the quartz surface with

and without the adhesive plastic film, as well as the measured surface roughness. As

shown in Section 3.4, a result of this modified surface is that slip effects which are often

observed for CPyCl:NaSal solutions at high shear rates (such as those seen by Lettinga

& Manneville (2009)) can be suppressed to a substantial degree. The effect of surface

roughness and hydrophobicity on inhibition of slip is not surprising, and these effects

have been documented in previous studies (Masselon et al., 2010).

Data from calibration experiments are presented in Figure 3.2.4 (a). The velocity

profiles obtained by the Rheo-PIV system are linear over a wide range of shear rates

spanning those used in this work, for a Newtonian fluid (seeded heavy mineral oil with a

viscosity of p = 0.1 Pa.s and a density of p = 880 kg/m 3 ). The velocity profiles v,/,U are

averaged over approximately 450 frames of video (i.e. 7.5 seconds of flow) and plotted
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Figure 3.2.4: Scaled velocity profile of a viscous Newtonian fluid undergoing steady shear
at two different shear rates in (a), indicating linearity of the profiles. In (b), the velocity
profile within the same Newtonian fluid at a fixed shear rate (': = 0.5 s') is compared
for when the upper and lower plates are covered with the transparent adhesive film.
The inset in (b) shows the probability distribution of the measured velocity values at a
height of y = 0.75 mm from the lower cone. In each plot, the black line indicates the
anticipated homogenous velocity profile.

against y/H, where y is the position across the gap (y ~ R&), H ~ RE is the gap

height at the position r = R, (H = 1.6 mm) and U is the velocity of the top surface

given by U = RQ = -H. Additionally, a comparison of the velocity profile measured

for a Newtonian fluid undergoing a shear rate of - = Q/0 = 0.5 s-1 when the upper

and lower geometries are covered with the adhesive film and left uncovered is shown in

Figure 3.2.4 (b). As expected, the presence of the film does not alter the velocity profile.

The inset in Figure 3.2.4 (b) gives a Gaussian probability distribution of the measured

velocity values at a height of y = 0.75 mm from the lower cone. The standard deviation

of the velocity measured at that location is 0.02 mm.s-1, which is approximately 5%

of the measured velocity (determined from - 14000 PIV correlation measurements).

The variation arises primarily from small mechanical vibrations in the frame which

holds the camera/lens assembly. This results in small random and uncorrelated relative

displacements of the camera and rheometer, which are interpreted as small nonzero

velocities in the flow by the PIV analysis on the order of the standard deviation. While

these vibrations do not have an effect on the time averaged velocity profiles, there is still

some small systematic deviations of the time averaged velocity profile from the predicted
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linear velocity profile in Figure 3.2.4. These deviations are chiefly a result of the air-fluid

interface at the outer sample edge which is not perfectly flat. Despite the fact that the

interface is pinned at the upper and lower plates, small variations in sample volume

always result in a slightly curved air-fluid interface. While these slight variations in

sample volume are impossible to eliminate entirely, inspecting the shape of the interface

by eye is typically sufficient to ensure that reliable velocity profiles are obtained by the

Rheo-PIV apparatus.

3.3 Bulk Rheology Characterization

3.3.1 Linear Viscoelasticity

The storage and loss moduli G'(w) and G"(w) of the CPyCl:NaSal and CTAB:NaSal

micellar solutions were measured over a range of temperatures with the ARES strain-

controlled rheometer using a CP geometry (R = 25 mm, 0 = 2.30) and are shown in

Figure 3.3.1. The resulting data from the small amplitude oscillatory shear tests have

been fitted with the single mode Maxwell model given in Eq. (2.1.1), following the

method of Turner & Cates (1991), by which a least squares regression of a single mode

Maxwell model was fitted only to the moduli at frequencies equal to or less than the

frequency at which G" reaches its maximum.

G'(w) = Go (A(, 2 ) & G"(w) = Go (2.1.1)
1 I+ (Aw)2 )1 I+ (Aw)2

FRom this fit, values of Maxwellian stress relaxation time A, zero-shear rate viscosity

mo, and elastic modulus Go = no/A, in Table 3.3.1 were determined. Both fluids have

Maxwell relaxation times on the order of one second.

In addition to this, the steady shear viscosity exhibits a strong shear-thinning be-

havior and a clear stress plateau for rates larger than 1 ~ 0.3 s-1. In Figure 3.3.1,

the predicted shear stress obtained by using the Cox-Merz rule is also plotted. The

Cox-Merz rule is an empirical relation that predicts that the magnitude of the complex

viscosity is equal to the shear viscosity at corresponding values of frequency and shear

rate (Bird et al., 1987):
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Figure 3.3.1: Storage and loss moduli of (a) 100:60 mM CPyCl:NaSal (Batch 1) and (b)
30:240 mM CTAB:NaSal (Batch 1) solutions in SAOS at 22 'C. The solid and dashed
lines are the resultant fit of the low frequency data (w < A- 1) of a single mode Maxwell
model with relaxation time A, and modulus Go given in Table 3.3.1. The small gray
symbols correspond to the shear stress predicted from the dynamic data using the Cox-
Merz rule (Bird et al., 1987). Cole-Cole plots of (c) CPyCl:NaSal and (d) CTAB:NaSal.
The black semicircle corresponds to ideal Maxwellian behavior and the dashed black line
has slope -1 for extracting the value of G, using the method of Turner & Cates (1991).
Temperature dependence of linear viscoelastic material functions for (e) CPyCl:NaSal
and (f) CTAB:NaSal.
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Table 3.3.1: Rheological and rheo-optical properties of the test solutions at 22 'C.
*Persistence length for CPyCl:NaSal has been assumed. *Persistence length for CTAB
solution given in Shikata et al. (1994) has been assumed. tThe stress-optical coefficient
was measured at 23+1 'C, but previous studies (Humbert & Decruppe, 1998), indicate
a weak temperature dependence of C over a temperature range of +1 'C.

100:60 mM 30:240 mM Batch
CPyCl:NaSal CTAB:NaSal

Maxwell Model A [s] 3.3 2.1 1
77o [Pa.s] 96.6 9.4 1
Go [Pa] 29.4 4.4 1

T1,0 [Pa.s 2 ] 637 39.5 1
Ellis Model 77o [Pa.s] 83 8.3 2

a 25 2.8 2
71/2 [Pa] 15 4.1 2

Step Strain Go [Pa] 30 4.5 3
(yo < 1) A [s] 3.0 1.3 3

_'_0.71 0.18 3
Additional T 1 [Pa.s 2] 3 3 1
Parameters Abreak [s] 0.6 1.2 2

Arep [s] 2.0 4.1 2
G, [Pa] 36.9 5.4 2

G1m [Pa] 2.01 0.42 2
[nm] 51.7 97.8 2

lpersist [nm] 20* 26*
le [nm] 97.4 236 2

(1) [Am] 1.42 2.47 2
tC x 107 [Pa- 1] -1.1 -3.8 1

n() = (3.3.1)

From the Cox-Merz rule and the relationship between complex modulus and complex

viscosity (7* = G*/iw) a prediction of the shear stress under steady shear can be obtained

from oscillatory data. As can be seen in Figure 3.3.1, there is a progressive deviation of

this predicted shear stress from the measured value for shear rates larger than ' ~ 0.3 s1

- this is in agreement with the observations made in previous studies (Pipe et al., 2010).

It is also possible to estimate the breaking time Abeak for each system, based on

the work of Turner & Cates (1991). On the Cole-Cole plots in Figure 3.3.1 (c) and

(d), a line of slope -1 was fitted to the storage and loss moduli for which the slope
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between adjacent points was -1 t 0.5. The intersection of this line with the abscissa

corresponds to an asymptotic plateau modulus Gp. The storage and loss moduli can

be non-dimensionalized by G, in order to calculate the diameter of the fitted semicircle

DFS ~ G"(w = A- 1)/Gp, which is then related to the breaking time Abreak according

to the theory of Turner & Cates (1991). The reptation time Arep is then obtained

from the relation Arep = A2 A-'es. These timescales are listed in Table 3.3.1. At high

frequencies w > A- 1 , both fluids exhibit a minimum in G", indicating the importance

of the breathing and Rouse relaxation modes discussed in Section 2.2.1.

The temperature dependence of the linear viscoelastic material functions of the two

WLM solutions are plotted in Figure 3.3.1 (e) and (f). For many entangled polymer

solutions, the variation of these quantities with temperature can be captured nicely

with a parameter called the shift factor (Bird et al., 1987; Larson, 1998) given by

a, r o(T)Topo
aT - (3.3.2)

m o(To)T p

where qo(T) is the zero-shear-rate viscosity at an absolute temperature T, po is a refer-

ence density at an arbitrary reference absolute temperature To and p is the density at T.

The shift factor is described by an Arrhenius relation

FAH(1 1 N
aT= exp (3.3.3)

kB (T To

where AH is called the activation energy for flow and kB is the Boltzmann constant2 .

For fluids whose density is relatively constant with temperature, the temperature-

dependence of the viscosity can be simplified to r(T) = Go(T)A(T), where A(t) = AoaT

with Ao being the relaxation time at To and aT is given by Eq. 3.3.3, and Go(T) is given

by

Go(T) kBT (3.3.4)

The parameter is the correlation distance, which is the absolute distance between en-

tanglement points in the microstructure of the liquid (Doi & Edwards, 1986), shown

schematically in Figure 3.3.2 along with other microstructural length scales described

2 kB = 1.3806503 x 10-23 J/K
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Figure 3.3.2: Schematic depiction of an entangled polymer network.

below. Hence the relaxation time scales exponentially with the inverse of absolute tem-

perature and the plateau modulus scales linearly with temperature provided the quantity

( is constant.

Fits of the shift factor are shown in Figure 3.3.1 (e) and (f) with To = 295 K

(22 'C). The value of the activation energy for CPyCl:NaSal is AH = 2.77 x 10-9 J

and for CTAB:NaSal is AH = 2.22 x 10-19 J. The plateau modulus of the CTAB:NaSal

system in (f) increases approximately linearly with temperature, but in the CPyCl:NaSal

system the modulus actually decreases slightly with temperature and hence a fit of the

shift factor has only only been plotted for the relaxation time in (e). Values of for the

CPyCl:NaSal and CTAB:NaSal micellar systems in this study are listed in Table 3.3.1.

Another microstructural quantity is the entanglement strand length le, which is the

arc length along the micelle between two adjacent entanglement points may be estimated

as

1 - 5/(3.3.5)
iper

where 1pe, is the persistence length, which can be interpreted as the length scale on which

the micelle acts as a rigid rod. This quantity can be determined from measurements of

optical anisotropy in a material as outlined by Shikata et al. (1994).

An estimate of the average contour length (1), which is the arc length of a fully

extended micelle, can be determined according to the work of Granek & Cates (1992).

In the case of Abreak > AR,,,e, where ARose is the Rouse relaxation time of the micelle,
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a lower bound for the ratio of length is

le G"1-m-i" (3.3.6)
(l) Go

where G' ,n is the value of the loss modulus at the local minimum in the Cole-Cole

plots at high frequencies (w > A-'). Here, le and (1) have been determined based on

reasonable assumptions for l1,, all of which are presented in Table 3.3.1.

3.3.2 Steady Shear Rheology

The steady shear rheology of these systems at 22 'C and at moderate shear rates

( ,< A-') was measured using a 50 mm diameter, 2.30 cone-and-plate geometry on

an ARES LS-2 strain-controlled rheometer (TA Instruments). The steady shear data

is presented in Figure 3.3.3, and summarized in Table 3.3.1. In the limit of low shear

rates (- < A-'), both fluids exhibit Newtonian behavior. For shear rates of the order

~ A- or greater, both fluids exhibit shear-thinning, which may be fit empirically with

the Ellis model in the form (Bird et al., 1987):

9 = q ,_ (3.3.7)
1 + \71/2/

where g7o is the zero-shear-rate viscosity, T1/ 2 is the value of the shear stress at which the

viscosity is equal to half its zero-shear rate value, and a is a fitting coefficient as listed

for both fluids in Table 3.3.1. The Ellis model reduces to the simpler Ostwald Power

Law model, y = m- "-1 (Bird et al., 1987), in the limit of Txy>> T 1/ 2 , with a = n- 1. Fits

of this model to the flow curve of each fluid are shown in Figure 3.3.3 (b). It is apparent

from Figure 3.3.3, that for shear rates 1 > A-1 0.25 s-1, the CPyCl:NaSal exhibits

a pronounced stress plateau r ~ 15 Pa, suggesting a possible shear-banding behavior

(Cates & Fielding, 2006; Rothstein, 2008). In this regime, the large value of a indicates

that the viscosity of the CPyCl:NaSal system is essentially inversely proportional to

shear rate. These results for the CPyCl:NaSal system are very similar to those reported

by (Lee et al., 2005). For the shear rates measured with the ARES, the CTAB:NaSal

system may be seen to exhibit clear shear-thinning, with 7 ~ -. 6 , for measured shear
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Figure 3.3.3: Steady shear rheology of 100:60 mM CPyCl:NaSal (Batch 2) and
30:240 mM CTAB:NaSal (Batch 2) solutions at 22 'C. (a) Steady shear stress and
first normal stress difference. (b) Steady shear viscosity. The fitted curves are those
of the Ellis model with parameters from Table 3.3.1. The solid black line of slope -1
indicates an inverse proportionality in viscosity with shear rate.

rates ;> 0.5 s-1, but it does not show a constant stress plateau at any point.

For the CPyCl:NaSal system, at > 2 10 s-1, and for the CTAB:NaSal system at

> > 30 s-1, the meniscus of the test fluid becomes unstable and a large fraction of the

sample is ejected from the gap. This instability is not a result of the large centripetal

acceleration associated with the rotational motion of the fluid, but rather the large

normal stress difference associated with the high deformation rate which overcomes the

resisting Laplace pressure of the meniscus (Tanner & Keentok, 1983). This instability

renders high shear rate rheometry of these fluids with a rotational rheometer impossible,

and provides further motivation for pursuing microfluidic rheometry as discussed in

Chapter 5.

Normal Stress Measurements

The first normal stress differences of the CPyCl:NaSal and CTAB:NaSal are measurable

at shear rates greater than ' v> A- ~ 1 s-1. Both fluids exhibit similar dependence of

first normal stress differences N1 on shear rate in Figure 3.3.3 (a). The first normal stress

difference for both fluids increases initially quadratically with shear rate, N - A2, which
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is depicted by the black line in Figure 3.3.3 (a). The quadratic scaling is in agreement

with the predictions of the upper convected Maxwell model, see (Bird et al., 1987), for

which the first normal stress coefficient is predicted to be N1/y 2 = I'1,0 = 2r'oA. This

value is, however, a substantial over-estimate of the actual measured first normal stress

coefficient, since, for the shear rates at which N was measured, the viscosity of nei-

ther fluid is close to the respective zero-shear rate value. In reality, for both systems in

the plateau regime, T, - 3 Pa.s2 . The quadratic scaling of N for this shear-banding

CPyCl:NaSal fluid in the shear-banding regime differs from the subquadratic or linear

scaling with shear rate observed for other shear-banding micellar fluids in the plateau

regime, (Helgeson et al., 2009b; Pipe et al., 2010). There is also some variation in the val-

ues of N1 between different batches of the same CPyCl:NaSal WLM system used in this

thesis, suggesting that the macroscopically measured values of N1 in this 100:60 mM

CPyCl:NaSal system may be interrelated to the shear-banding dynamics of the par-

ticular fluid sample as described further for step strain experiments in Section 3.3.3.

As discussed above, at shear rates above > 10 s-1 for the CPyCl:NaSal system and

' > 30 s-1 for the CTAB system, the sample is ejected from the gap, preventing mea-

surements of N at higher shear rates.

Measurements of second normal stress difference N2 pose the added challenge that

multiple tests must be completed as discussed in Section 3.2.2. The magnitudes of

N2 are also typically smaller than those of N1, making it more difficult to reliably

extract N2 values at the lower end of the dynamic range of the axial force transducer

where most of the measurements with the WLM solutions used in this study occur.

Furthermore, the limited upper range of accessible shear rates for the CPyCl:NaSal and

CTAB:NaSal fluids considered so far is too restrictive to justify using these systems

to measure N2 . Therefore, a system of 100 mM CTAB (Sigma Aldrich) and 300 mM

NaNO 3 (Sigma Aldrich) has been used for these viscometric measurements. This system

has been studied previously by Cappelaere & Cressely (1997) and it has been selected

to be studied here because it can be tested in a CP geometry at shear rates up to

,< 0(103) -1 without showing edge instabilities or being ejected from the gap.

Torque and axial force measurements with this WLM system were completed on the
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DHR3 with an acrylic PP (R = 30 mm) and CP (R = 30 mm, 6 = 1.010) geometry

in the OCP configuration described in Figure 3.2.2. A range of logarithmically equally-

spaced angular velocities were selected (0.01 < Q < 10 rad.s-1 ) and kept constant for

all tests with the PP and OCP configurations. It is known that at high enough shear

rates, normal stress differences in shear banding liquids can cause edge instabilities in

the meniscus of the sample that invalidate the accuracy of the measurements (Skorski &

Olmsted, 2011). For this reason, the maximum angular velocity was chosen so that for

all gap heights, the shear rates were low enough that no edge fracture occurred in the

experiments. Measurements were completed over a sequence of decreasing gap heights

starting at H = 5RO = 0.48 mm ( = RO/H = 0.8) and ending at H = 0 (r, = oo).

Each test was performed using a decreasing sweep of shear rates since this order was

found to provide the most reliable and repeatable measurements. In order to account

for the transient evolution of N1 and N2 at each rotation rate, the data were recorded

using time-resolved measurements to ensure that each point had attained steady state.

After each test, the fixture was lowered to the next gap height and any excess liquid was

removed from the edge of the geometry using a razor blade. A solvent trap was used to

minimize evaporation of the sample over the duration of the tests.

The measured torque Tocp and axial force FOcp values are plotted in Figure 3.3.4 (a)

and (b). Measurements completed with a PP geometry (K = 0) at two different gap

heights H = RO = 532 pm and 2R9 = 1064 pm have also been included. In general, the

corresponding values of torque and axial force at a given angular velocity Q decrease

with larger gap heights (i.e. smaller K). This trend is clearly seen in the isocontours

of Q/0 for the torque and axial force measurements plotted in Figure 3.3.4 (c) and (d).

Each isocontour was determined from a third order polynomial fit, whose slope is used

to evaluate the derivative terms in Eqs. 3.2.7 and 3.2.8, which are repeated here for

convenience.

S. ToCP 1 d n TOCP/2irR3) 1 TCP 3 dln (ocp/2rR 3)
2 1R3 1+ r d ln(YR) 2wR 3  d In (r,)

(3.2.7)
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Figure 3.3.4: Measurements of (a) torque TOCp and (b) axial force Focp for the
100:300 mM CTAB:NaNO3 solution (A = 0.084 s) at 30 0C using the offset cone-and-
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(3.2.8)

On the other hand, at a given rim shear rate 'R, the axial force actually increases

with increasing gap heights (i.e. smaller r,) as shown in Figure 3.3.4 (b). At first glance,

this trend is surprising because it can be shown that for both the upper convected

Maxwell (UCM) model (Bird et al., 1987) and a simple viscoelastic liquid with constant

normal stress coefficients, provided I12/'1' I< 1, at constant rim shear rate the axial

force measured in the OCP must decrease as the gap height is increased (i.e. smaller ii;),

(see Section B.4.2 in Appendix B). This behavior for a simple viscoelastic liquid can

be rationalized by the fact that at larger gap heights in the OCP geometry, for a given

rim shear rate R, the shear rate at all r < R is equal to or smaller than that in the CP

and so the measured torque and axial force are likewise lower in the OCP than in the

CP geometry. However, for a more general viscoelastic liquid with shear-rate-dependent

normal stress coefficients, analysis will show that it is possible for the trends in .FOCp

with K at constant YR seen in these OCP measurements to occur (see Section B.4.3 in

Appendix B).

It is also straightforward to rule out the relevance of inertial effects on the axial force

measurements. At high angular rotation rates, the curvature of the streamlines in the

OCP geometry can give rise to strong enough centrifugal acceleration so as to create a

measurable suction force on the upper fixture (Macosko, 1994). For a Newtonian fluid,

this suction pressure due to inertial acceleration is given by

_ 3
Yn 3 -p(RQ) 2  (3.3.8)

7rR2 40

where p is the density of the fluid. For the range of angular velocities used in the OCP

measurements and a characteristic density of the liquid of p ~~ 1000 kg.m-3, the inertial

suction pressure ranges from 6.8 x 10-6 < -- Fi/7rR2 < 6.8 Pa. These values are always

significantly smaller than the magnitude of the of the axial force measurements shown

in Figure 3.3.4 (b), and accordingly inertial effects on the axial force measurements are

negligible.
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The plots of viscosity and first and second normal stress difference are shown in

Figure 3.3.4 (e) and (f). Each curve in (e) and (f) corresponds to a constant value of K

at which the derivative terms in Eqs. 3.2.7 and 3.2.8 were evaluated. Since each test

was performed with the same set of angular rotation rates Q, the corresponding rim

shear rate values differ between tests. For the torque measurements, this feature of the

OCP tests does not affect the evaluation of shear stress in Eq. 3.2.7. The viscosity data

collapse onto the same underlying flow curve, which shows significant shear-thinning but

no marked stress plateau suggesting that this fluid does not shear band. For the normal

stress measurements, the first normal stress difference can only be determined using the

CP geometry (i.e. K -> oo), and therefore when evaluating N2 = 'I2'R for a test at a

finite r., it is necessary to determine the precise value of N = 'Q'1y at a particular value

of YR = 2 from interpolation. Therefore, in order to avoid possible errors due to

extrapolation of the N data, N 2 values have been calculated only over the range of rim

shear rates measured in the CP.

Both normal stress differences vary monotonically with shear rate. The values of N1

are positive, whereas all calculated values of N2 are negative, although there is some

variation for each r, value for reasons explained below. The measurements with the PP

are also shown by the hollow symbols. The equation for evaluating N 2 from the PP

geometry, given below, corresponds to the limit of Eq. 3.2.8 as r, -- 0 and Q/0 -+ oo.

_F_ 2 d ln(Fpp/7rR 2 ) -@1(Yi4'R2 - qJ2CyR)R (3.25)
7rR 2 [2+ d ln('R) =

According to this equation, unlike measurements in the OCP, at a given rim shear rate

the measurement of N2 with the PP is independent of the gap height, provided practical

issues associated with parallax at small gap heights are not significant (Pipe et al., 2008).

The clear agreement between the N2 values measured at two gap heights with the PP

confirms that small gap effects are not important, however they are approximately one

half the magnitude of the values measured with the OCP. The source of this discrepancy

is unclear, but may be the result of slip on the PP geometry which had a visibly smoother

surface than that of the CP geometry. At shear rates below 'R < 60 s- the magnitude

of N2 is actually larger than that of N 1. This result is also found in the measurements
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with the PP geometry shown by the hollow symbols.

In order to determine the relative magnitude of N2 to N 1, the ratio of the average

value of XF2 to T1 is plotted against the rim shear rate YR in Figure 3.3.5. As discussed

above, since it is the set of Q/0 values that is held constant for each test, the set of

rim shear rates in fact varies between tests at each r, value, and therefore each rim

shear rate at which the XI'2 values are averaged corresponds to the closest value of R

from the measurement with the CP configuration (i.e. r, -+ oo). The horizontal error

bars in Figure 3.3.5 indicate the range of rim shear rates over which the values of T2

were averaged and the vertical error bars correspond to the standard deviation in these

values. Two curves are shown in the plot to indicate the calculated values of N2 using

either form of the derivative term in Eq. 3.2.8 evaluated with respect to ln(:yR) or ln(r,).

These derivatives are mathematically equivalent, but they can show some variation when

actually evaluated numerically. This ratio is negative as is expected for most entangled

polymeric systems (Larson, 1998), but there is large scatter in this ratio at low shear

rates. The measurements of N 2 in a CPyCl:NaSal system of Pipe et al. (2010) also show

that the ratio -X2/h1 is positive and less than unity corroborating the findings here at

high 'R for WLM fluids.

Unlike the shear stress measurements with the OCP, the calculated values of the sec-

ond normal stress difference N2 shown in Figure 3.3.4, show some degree of scatter. The

discrepancy in the calculated values of N2 (y) likely arises for a number of reasons. Firstly,

the dynamic range of the axial force transducer on the DHR3 is 5 x 10-3 <F < 200 N

(2 < F/rR2 < 17680 Pa for a plate with R = 30 mm). Hence many of the axial force

measurements at the lower rim shear rates plotted in Figure 3.3.4 (b) coincide with the

lower bound of the dynamic range where it can be challenging to obtain reproducible

measurements. This fact may explain why the the axial force measurements at the in-

termediate gap heights (0.8 < r, < 2) are actually larger than the respective values in

the CP and PP limits at the low rim shear rates ,< 50 s-1. A second difficulty may

arise in the numerical evaluation of the derivative terms from the polynomial fits at the

extreme values of ,. Since these points lie at the edges of the fitting domain, the local

slope of the fitted curve is more liable to be inaccurate due to errors associated with
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Figure 3.3.5: Ratio of normal stress coefficients in viscometric shear flow of the of
100:300 mM CPyC:NaNO 3 solution at 30 'C measured with the offset cone-and-plate
(OCP). Vertical error bars correspond to the standard deviation of the values of T2 cal-
culated using Eq. 3.2.8 and shown in Figure 3.3.4 (f). Horizontal error bars correspond
to the range of rim shear rates over all r. values used to calculate each data point. A
black horizontal line is plotted at -2/I'1 = 1 to guide the eyes.

Runge's phenomenon when extrapolating a high order polynomial beyond the fitting

domain.

Accurate measurement of N2 using the OCP geometry becomes progressively more

difficult as the value of K increases (i.e. at lower gap heights), because the geometry

approaches the CP configuration and the axial force on the fixture is dominated by

contributions from N 1. In this limit 2OCp/7rR 2 -+ 'i'gy (see Eq. 3.2.4) and therefore

the difference between these terms in Eq. 3.2.8 becomes small, causing the calculated

value of N2 = T 2 -R to be very sensitive to any noise in the measurement of the axial

force on the OCP. Any small errors are further amplified by the multiplication of (1 + ,)
which becomes increasingly large at small gap heights.

Despite these challenges, careful measurements with the OCP geometry have the

advantage over the combination of the CP and PP, because the OCP can enable the

rheological characterization of both the first and second normal stress coefficients using

the same fluid sample. A sequence of tests with the OCP also provides a larger amount

of data over which to calculate the values of N 2. WLM solutions are especially suited to

measurements with the OCP, since these fluids do not degrade with successive measure-

96



ments and therefore a single fluid sample can be used to extract reliable measurements

of both normal stress coefficients over a range of shear rates.

3.3.3 Step Strain Stress Relaxation

Step strain measurements were performed over a sequence of increasing strains on the

ARES using a CP geometry (R = 25 mm, 0 = 2.30). The shear stress and normal stress

difference were recorded at 100 Hz until the measurements fell below the instrument

resolution. The relaxation modulus measured for shear strains 10-3 < yo < 10 for the

CPyCl:NaSal system is plotted in Figure 3.3.6 (a) and (b) and for the CTAB:NaSal

system in Figure 3.3.7 (a) and (b). For the range of strain amplitudes measured, the

relaxation modulus G(tyo) = Txy(t, 7o)/7o at long times decays exponentially, following

the equation

G(t, yo) = G(yo) exp(-t/A) (3.3.9)

where G ,(-yo) is the strain-dependent modulus at long times (t -- oc) and A is the

Maxwell relaxation time.

At small strains -yo < 1, the long time relaxation modulus is independent of strain

and approaches a limiting value G, (-yo -+ 0) = Go . For both WLM systems the value

of these parameters at small strains is listed in Table 3.3.1 and they are very similar to

their respective values measured in SAOS.

For increasing strains the stress relaxation modulus at long times t > A also decays

exponentially in time, but its magnitude and initial behavior for t < A is dependent on

the strain magnitude. The strain-dependence is made clearer by plotting the modulus

normalized by the value of Go,(yo) in Figure 3.3.6 (c) and (d), and Figure 3.3.7 (c) and

(d). This non-linear behavior was noted and rationalized for a similar WLM system

by Pipe et al. (2010). It results because at early times t < A,eak < A, high frequency

(short time) relaxation mechanisms such as the Rouse and breathing modes discussed

in Section 2.2.1 dominate, facilitating a rapid but short-lived change in the micellar

network giving rise to the initial stress relaxation. On the other hand, the relaxation

modulus at long times recovers the exponential behavior and Maxwell relaxation time
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observed at small strains because sufficient time has elapsed for multiple chain scission

and fusion reactions to occur so that the initial microstructural configuration has been

more fully forgotten.

The measured values of Go(yo) and A obtained by fitting Eq. (3.3.9) to the stress

relaxation data over the range of times at which the stress relaxation was exponential

are shown in Figure 3.3.8 (a) and (c). The drop in the relaxation modulus that occurs at

large strains is commonly called strain softening. It is possible to collapse the relaxation

modulus measurements using a shift factor called the damping function h(yo) based on

the approximate form predicted by the single-mode partially-extending convected (PEC)

tube model for an infinitely fast step strain (Larson, 1988) given by

1
h(yo) = 1 (3.3.10)

1 + 1 'yO2

where ' is the non-linear breakage parameter. The fit of the damping function to the

values of G.(-yo) is shown in Figure 3.3.8 (b) and (d), and the value of ' is listed

in Table 3.3.1. The normalized storage modulus G'(w, yo)/G'(w, yo -- 0) measured at

w = 0.5 rad.s-i in oscillatory shear is also shown in these plots. In both step and

oscillatory shear strains, the onset of non-linear behavior occurs at strains yo - 1.

Deviations from linear behavior in step strains at critical strains of this order have also

been seen in WLM solutions experimentally (Pipe et al., 2010; Brown et al., 1997) and

in numerical simulations with the VCM model (Vasquez et al., 2007; Zhou et al., 2008).

In the experiments with a CPyCl:NaSal system (Pipe et al., 2010), the fluid exhibited

strain softening due to chain disentanglement resulting in non-affine deformations of the

microstructure that are predicted by the PEC model. Conversely, earlier studies with

a CTAB:NaSal system (Shikata et al., 1988; Brown et al., 1997) found that the fluid

exhibited either strain hardening or softening depending on the concentration of the

salicylate ion. It is well known that the addition of salt or a strongly binding counterion

such as NaSal to a micellar solution enhances the formation of worm-like micelles and

thereby increases the viscoelasticity of the liquid (Berret, 2006). Hence the precise

features at the onset on non-linear behavior in WLM fluids are clearly sensitive to the

exact features of the microstructure of the network.
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Figure 3.3.7: Step strain stress relaxation measurements for the CTAB:NaSal system
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strains. (c) & (d) Normalized time evolution of the relaxation modulus at different
strains. The black curve is the prediction of the Maxwell model. (e) & (f) Time evolution
of the ratio of first normal stress difference to shear stress.

100

10

CF 0

10

10-21

103
0

0 yo=0.025
A -yo 0.04

'Y 700063
S70=0.1

'Y 70016
y. 0:25.

3

x70=o0.4
o 7o0063

O To= 1.6
yo= 2.5
yo 74

yo6.3
*70=10

62 4
t [s]

(a)

--

10 2

10 1

10
10
10

-31016-

~0

a lye =.0

0 7o0.025
A 70o 0.04
<1 -to0.063
> 70O0.1
* 70.016
'a-Y 70.25
x 70o0.4
o fo 0.63

0 YO 1.6
7yo 2.5

<0y 74
yo 6.3

*Y =10

2 4
t/A

(c)

6

0

10210 2



oG00000000000000

0Y~0ooo(0 000 00

- -- 2" ' - - " - ----
10-2 10

^t0
100

0

000-

10 1

10 0

10-1

10 10-
10 1 10-3

(a) 100:60 mM CPyC1:NaSal

10-1 100

10 1

100

1 10~-1
0 101

-to

(c) 30:240 mM CTAB:NaSal

10-2 10~
'YO

(b) 100:60 mM CPyC1:NaSal

-h(o) Fit

* G'(wLyo)/G'(w,yo -0)

--

10-1 100
Yo

(d) 30:240 mM CTAB:NaSal

Figure 3.3.8: Step strain stress relaxation measurements for the (a) & (b) CPyCl:NaSal
and (c) & (d) CTAB:NaSal systems at 22 'C. (a) & (c) Modulus and relaxation time
at different strain amplitudes. (b) & (d) Normalized modulus in step strain and storage
modulus in oscillatory shear and fit from Eq. (3.3.10).

101

102

10'

01

0oo(Y)/G0o
h(ryo) Fit

G'(w, -yo) / G'(w, -to -+0)
Lii

10, 10

0 0 E-

Ei G. ((yo)
0 A

-00000000000000 -- "- -- d

10

10

10-L 101

- - ------- - - --..... - - ------- - - -----

9 w w a am 46

10
10-3

I

2



The time evolution of the first normal stress difference was also recorded to evalu-

ate the adherence of the WLM systems to the Lodge-Meissner rule given previously in

Eq. 2.1.6. For affine deformations, it follows from this rule that the ratio Ni(t)/zy (t) = Yo

is constant throughout the duration of a step strain test. These ratios are shown in Fig-

ure 3.3.6 (e) and (f) and Figure 3.3.7 (e) and (f).

For the CPyCl:NaSal system, the Lodge-Meissner rule is followed for strains -Yo < 4,

but at higher strains the value of N1 decays more rapidly than -r . In numerical sim-

ulations with the VCM model (Vasquez et al., 2007), Zhou et al. (2008) find that the

Lodge-Meissner rule is uniformly valid for a shear-banding fluid up to Yo < 2.5, but at

higher strains the onset of shear banding introduces non-affine deformations into the

network and thus the Lodge-Meissner rule is no longer obeyed. The large overshoots

in the stress ratio seen at early times for Yo > 4 was also observed in a shear-banding

CTAB:NaSal system by Brown et al. (1997), who attributed it to the formation of shear

bands. In their case, however, the overshoots were sustained even at long times.

For the CTAB:NaSal system, the Lodge-Meissner rule is obeyed up to the maximum

strain measured -yo = 10. In steady shear measurements, the CTAB:NaSal system does

not show a stress plateau suggesting that this fluid does not shear band. Therefore,

the discrepancy between the apparent affine behavior of the CTAB:NaSal system in-

ferred from the stress ratio measurements and the non-affine behavior observed from the

measurements of stress relaxation modulus at large strains strongly suggests that shear

banding effects the evolution of normal stresses in the CPyCl:NaSal system. Accord-

ingly, further insight into this peculiar dynamical behavior in the CPyCl:NaSal system

can be gained from a more detailed study of the deformation kinematics at the onset of

shear banding.

3.4 Velocimetry Measurements

In order to better characterize the shear-banding behavior of the CPyCl:NaSal system,

flow visualization experiments were completed using the Rheo-PIV setup discussed in

Section 3.2.3. A new fluid sample (Batch 4) of 100:60 mM CPyCl:NaSal was prepared
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and seeded with 0.001 wt.% Titanium Dioxide particles (average size 3 pm, density

4200 kg/m 3 from TSI Inc.) for the PIV measurements. The seeding (or number) density

of particles was high enough to carry out PIV measurements, but still at low enough

volume fraction (05 ~ 2 x 10-1) such that the particles did not significantly affect the

rheology of the fluid. All rheometry measurements with the Rheo-PIV setup were

carried out on a AR-G2 stress-controlled rheometer (TA instruments) equipped with a

CP geometry (R = 25 mm, 0 = 4' quartz plate and aluminum cone) at 25 0C.

In order to visualize the velocity profile across the gap it is crucial to have a flat

interface, through which to image. For the experiments performed with the Rheo-

PIV system, the upper and lower geometries have the same diameter, and so for most

Newtonian liquids the meniscus is pinned at the top and bottom edges resulting in an

almost flat meniscus profile. Therefore, when measuring local velocity fields within a

Newtonian fluid, it is typically not necessary to use any optical components such as a

plano-concave lens. However, it is well known that viscoelastic fluids that exhibit shear

banding are also likely to exhibit edge instabilities, which will result in an irregularly

shaped meniscus even when it is pinned at the upper and lower edges (Keentok & Xue,

1999; Inn et al., 2005; Sui & McKenna, 2007). Previous workers used circular bounding

films to prevent these edge irregularities (Tapadia et al., 2006). However, the effects of

such bounding films can markedly change the local material response (Sui & McKenna,

2007) and should therefore be avoided if possible. The plano-concave lens used in this

work serves a similar purpose to a circular bounding film, but it does not surround the

entire sample. This has the effect of lowering the incremental frictional torque that is

imposed on the rotating fixture by such a surface. Nonetheless, there is still a measurable

additional frictional force that is present when this lens is in place, due to the change in

boundary conditions at the edge of the geometry and possible secondary flows induced

near the rigid wall. This additional frictional force registers as an increase in the shear

stress as measured by the rheometer for the CPyCl:NaSal system at a particular shear

rate. In Figure 3.4.1 the flow curves for the fluid with and without the lens in place are

compared. The decrease in the shear stress for the final data point when the lens is in

place is a result of the fluid being ejected from the gap, which is delayed to higher shear
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Figure 3.4.1: Comparison of the flowcurve of the CPyCl:NaSal system measured using
different configurations. Circle symbols are without the lens or film. Square or diamond
symbols are either with the lens, or with the film, but not both. The presence of the lens
results in an additional frictional torque being applied to the rotating quartz geometry,
which leads to an increase in the apparent shear stress measured by the instrument.

rates when the lens is not in place. A second modification that has been incorporated

into these experiments is a film attached to the upper geometry in order to reduce the

effects of fluid slip at the wall. Unlike the lens, however, this film does not have a

considerable effect on the flow curve shown in Figure 3.4.1.

3.4.1 Steady Shear-Banding Flow

Britton & Callaghan (1997, 1999) showed, using NMR velocimetry, that in a CP geome-

try a 100:60 mM CPyCl:NaSal system (identical to the one used in this work) exhibited

a three-banded velocity profile, in which a high shear rate band is observed in the middle

of the gap, connected to two lower shear rate regions near the upper and lower surfaces.

Since the WLM system studied in this thesis is identical to that of Britton & Callaghan

(1997, 1999) (with similar values of the measured relaxation time and critical shear rate),

and a similar flow configuration (R = 12 mm and 0 = 40 , or R = 8 mm and 0 = 7'

ceramic cone and plate with an outer containment jacket at the edge), it is reasonable

to expect that the velocity profiles observed with the Rheo-PIV system should exhibit

a similar three-banded profile.
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Figure 3.4.2: Steady state velocity profiles measured at y = 0.75 s-1 under different con-
figurations of the Rheo-PIV system. The dashed black line indicates the homogeneous,
no-slip velocity profile. The black arrows indicate the magnitude of the slip velocity V.
When the plano-concave lens is not used, the film clearly eliminates slip at this shear
rate. When the lens is used, the film is less effective and the banded behavior exhibited
by the fluid is different showing a narrower band appears near the midgap.

In order to understand the the exquisite sensitivity of Rheo-PIV observations to the

imposed boundary conditions, the velocity profiles measured with and without the film

and lens are shown in Figure 3.4.2. The measured velocity profiles are different in all

four cases. The profiles (c) and (d) show that when the lens is not used, the additional

presence of the film on the upper plate prevents wall slip from occurring at that surface.

The presence of this wall slip in Figure 3.4.2 (d) results in a lower shear rate within the

bulk of the fluid, causing the velocity profile to appear homogeneous for shear rates lower

than - = 0.75 s-1. This result suggests that when the plano-concave lens is not used,

the transparent film eliminates wall slip and facilitates the formation of the centrally
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located high shear rate band. However, when the lens is used, as in Figure 3.4.2 (a)

and (b), a rather different behavior is observed. Now, the addition of the transparent

film only reduces the degree of slip that is present, and does not completely eliminate

it. In addition to this, the appearance of the shear-banded velocity profile for the case

when the lens is used (Figure 3.4.2 (a)) is now characterized by a highly localized high

shear rate band in the center (only 2 or 3 data points in width) which more closely

resembles a discontinuity in the velocity, as opposed to the more gradual variation in

the shear rate across the gap that is observed in Figure 3.4.2 (c). In general, these narrow

bands, resembling discontinuities in the velocity profile, have only been observed when

the plano-concave lens is used as a bounding surface. However, this behavior is mostly

erratic and difficult to predict since the bands can be observed in different positions

across the gap for the same imposed shear rates, and in other instances a larger degree

of wall slip may occur on the upper surface resulting in a less pronounced high shear rate

band. Two high shear rate bands have also been observed at some of the larger shear

rates. One possible explanation for this irreproducible behavior is that the presence of

the lens may result in an earlier onset of secondary flow within the region of the fluid

near the lens, due to the altered boundary condition at the bounding surface.

In order to avoid any potential artifacts that may arise from this plano-concave

lens, and also in order to avoid artifacts in the bulk rheological data (Figure 3.4.1),

the configuration shown in the lower left corner of Figure 3.4.2, i. e. an adhesive film

attached to both upper and lower fixtures and no lens at the outer edge, was utilized

to observe the shear-banding behavior at transitional shear rates at the onset of the

stress plateau. This configuration results in reproducible and self consistent behavior as

shown in Figure 3.4.3. Furthermore, in Figure 3.4.4 it is clear that at the range of shear

rates probed in Figure 3.4.3, no irregularities in the fluid meniscus at the edge of the

CP geometry are observed. This shows that a plano-concave lens or any other bounding

film is in fact not required in this CPyCl:NaSal fluid for velocimetric measurements at

these shear rates.

The velocity field within the CPyCl:NaSal solution observed using the Rheo-PIV

system at a number of different imposed shear rates are shown in Figure 3.4.3. Evidently,
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Figure 3.4.3: Series of steady state velocity profiles observed in the CPyCl:NaSal test
fluid as the shear rate is incrementally changed from 1 = 0.1 s-1 to 0.75 s- 1. At the

lowest shear rate the profile is clearly linear, but develops into a three-banded profile
with a region experiencing a higher shear rate near the center of the gap. The dashed
grey lines indicate the location of this high shear rate region.

the velocity profiles evolve from a linear response to three-banded profiles as the shear

rate is incremented slowly from 4 = 0.1 s1 to 0.75 s1 and into the stress plateau region.

The three-banded profile in Figure 3.4.3 at a shear rate of 4 = 0.75 s- 1 is characterized

by a high shear rate region near the middle of the gap, and lower shear rate regions near

the upper and lower surfaces. The behavior at the high shear rates is thus consistent

with the three-banded profiles observed by Britton & Callaghan (1997, 1999). However,

Britton and Callaghan generally measured their shear banded proffles at even higher

shear rates well into the stress plateau region (their use of an outer containment jacket

allowed for this by preventing sample from being ejected from the gap). They therefore

did not probe the behavior of the fluid in this transitional regime at lower shear rates.

During the transition from linear to three-banded profiles (for imposed shear rates of

4 = 0.3 s-1 and 4 = 0.45 s 1 ) the material exhibits an intermediate behavior in which

the flow profile appears to have two developing shear bands instead of three clearly

distinct bands. This is in contrast to some shear banding scenarios which have been

observed in other geometries (such as those observed by Salmon et al. (2003) in Taylor-

Couette flow) where the shear rate in the highly sheared band remains constant and the
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(a) (b)

Figure 3.4.4: Photographic image of fluid meniscus for CPyCl:NaSal undergoing a shear
rate of = 0.1 s-1 (a) and y = 0.75 s- 1 (b). In both cases, the meniscus remains flat
and unperturbed.

interface between the low and high shear rate regions moves as the apparent shear rate

is increased.

3.4.2 Onset of Secondary Flow

(a) (b)

Figure 3.4.5: Images taken during steady shear at - = 2 s-1 (with Reynolds number
Re = p R 68/r/ = 0.001, and Weissenberg number Wi = 2.9) on the left, and - = 5 s-1
(Re = 0.006, Wi = 7.3) on the right. The distortions seen near the outer edge for
the higher shear rate case are a result of the onset of secondary flow. The distortions
begin appearing near the outer edge at a critical Weissenberg number Wi - 6, and grow
towards the center over time. The timescale for the distortions to fill the gap is much
greater than the relaxation time A.

The velocimetric data presented in Figures 3.4.2 and 3.4.3 are only given for shear

rates as high as - = 0.75 s-1. At much larger shear rates, the local shear banded be-
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havior of the fluid becomes much more difficult to observe for several reasons. Firstly,

the likelihood of a severe edge irregularity in the meniscus arising is much greater. As

described in Section 3.2.3, this results in larger errors in the measured velocity values.

While the use of the plano-concave lens (or any other type of bounding film) to impose a

planar imaging surface may avoid the issue of these edge irregularities, it still affects the

bulk measured stress (Figure 3.4.1) as well as the flow kinematics by altering boundary

conditions near the edge resulting in the erratic behavior that was discussed in Sec-

tion 3.4.1. Another difficulty that is faced at very large shear rates (typically exceeding

P > 3 s-, or Weissenberg numbers Wi = Ay > 4.4) is that at the given magnification

of the camera/lens, the displacement of seed particles between frames becomes large

enough such that the cross-correlation algorithm is unable to resolve the displacement

value. This may be avoided by using a lower lens magnification, but at the cost of

a concomitant loss of spatial resolution for the velocity profiles. As a result of these

difficulties, this study of the CPyCl:NaSal solution is restricted to shear rates generally

lower than - < 2 s- (or Wi < 2.9), where secondary flows are less likely to occur and

experimental artifacts will not play an important role in the measurements.

To verify that there are not any appreciable secondary flows at these lower shear rates,

an alternative imaging method was used to observe flow of the CPyCl:NaSal solution

under steady shear in the CP geometry. Specifically, a small amount of Kalliroscope AQ-

RF rheoscopic fluid (http://www.kalliroscope.com/) was added to the micellar solution.

This rheoscopic fluid contains a high concentration of plate-like mica seed particles.

Flow alignment of these seed particles allows for macroscopic flow in the CPyCl:NaSal

solution to be visualized and for qualitative changes with increasing shear rate to be

observed. These seed particles have been used previously to observe secondary flows

in other viscoelastic fluids (McKinley et al., 1995; Fardin et al., 2009). The sample is

placed in the CP geometry (with upper transparent quartz plate) and illuminated from

above using a white light source. A black anodized lower cone is utilized to enhance

contrast of the seed particles and a camera with a telecentric zoom lens is used to observe

the evolution of flow induced structures in the fluid. Figure 3.4.5 shows two images

obtained from the imaging system during steady shear of the CPyCl:NaSal solution at
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two different shear rates. At the low shear rate (' = 2 s-1) the fluid appears homogenous

with no patterns emerging during the purely tangential flow. However at the higher

shear rate (- = 5 s- 1) radial and tangential striations in the flow field are clearly seen,

as evidenced by the regions of varying contrast in the fluid further away from the center.

By observing the evolution of these structures during start-up of steady shear at these

higher shear rates, it is apparent that the regions of varying contrast begin to form

near the rim of the sample, grow in time and propagate radially towards the center.

Corresponding measurements of the total torque exerted on the fixture show the growth

of temporal fluctuations (Yesilata et al., 2006; Pipe et al., 2010). This suggests that a 3D

unsteady secondary flow first develops near the outer edge where the sample meniscus is

located, and propagates towards the center. The images in Figure 3.4.5 are not intended

to provide quantitative detail about the exact nature of the viscoelastic secondary flow

that develops in this micellar fluid (i.e. direction, magnitude), however they do show

what regions of the fluid are first afflicted, and can be used as a guideline to understand

at what shear rates one might expect 2D velocimetric data from Rheo-PIV to begin to

show artifacts that arise from significant secondary flow.

3.5 Summary

In this Chapter, the bulk rheological behavior of a selection of WLM fluids has been

characterized in oscillatory and steady shear and step strain stress relaxation tests with

a cone-and-plate geometry. The values of all measured material functions are listed in

Table 3.3.1. The linear viscoelasticity of a 100:60 mM CPyCl:NaSal and a 30:240 mM

CTAB:NaSal system is very well described by a single-mode Maxwell model at low to

moderate frequencies (w </ A-) with modulus Go, relaxation time A and viscosity rqo.

At high frequencies in oscillatory shear, relaxation mechanisms occurs on short time-

scales such as Rouse and breaking modes are detectable, enabling the estimation of the

breaking and reptation times, as well as estimates of physical properties of the molecular

network.

The step strain stress relaxation tests enabled the rheological characterization of
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the onset of non-linear effects in the WLM systems. At small strains ('o < 1), the

relaxation modulus decays exponentially with a time constant approximately equal to A

measured in oscillatory shear, and the first normal stress evolves according to the Lodge-

Meissner rule. For larger strains, both WLM systems exhibit strain softening. The first

normal stress difference follows the Lodge-Meissner rule for strains up to Yo = 10 in the

CTAB:NaSal system, but this rule is violated for strains -yo < 4 in the CPyCl:NaSal

system and likely coincides with the onset of the shear banding.

In viscometric steady shear flow, both systems exhibit a constant zero-shear-rate-

viscosity qo equal to the value measured in oscillatory shear, but they shear-thin at

shear rates above > /> A- 1. In this regime, the viscosity in the CTAB:NaSal system scales

with shear rate q ~ -. 6 , whereas the CPyCl:NaSal system shear bands and exhibits a

marked stress plateau with q - 4-'. Measurements of the first normal stress difference

in both fluids show an approximately quadratic scaling with shear rate N - 92, however

this scaling in N shows more sensitivity to the particular batch of fluid than the more

robust scaling of the shear viscosity with shear rate. The magnitudes of the N are 10

to 100 times larger than the corresponding shear stress T, at the highest shear rates

before which the sample is ejected from the gap ( 0 ~ 0(10) s- 1). In order to make

measurements of the normal stress coefficients at higher shear rates, a shear-thinning

CTAB:NaNO 3 system has been tested using the offset cone-and-plate configuration. For

all measured shear rates, the ratio -N 2/N1 > 0, but at shear rates below ' ~ 5A- 1 s-1

this ratio is anomalously larger than unity. As this shear is increased the ratio approaches

approximately 0.5.

The interplay between shear banding and flow kinematics in a 100:60 mM CPyCl:NaSal

WLM system has also been studied in a cone-and-plate geometry using particle image

velocimetry. The shear banded velocity profiles that are observed in the cone-and-plate

device are similar to the three-banded profiles observed by Britton & Callaghan (1997)

and they distinctly differ from the two-banded profiles that have been observed for flow

of WLM solutions in Taylor-Couette cells. Some consideration has also been given to

two different experimental techniques that can be used to mitigate wall slip effects that

are endemic to Rheo-PIV experiments with complex fluids, and some of the effects that
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edge irregularities in the cone-and-plate rheometer can have on the PIV measurements.

Specifically, the use of a plano-concave optical lens placed at the geometry edge to im-

prove image quality was discussed, and it was shown that the change in the boundary

condition at the edge due to this rigid no-slip surface can result in a considerable qualita-

tive change in the velocity profile observed within the fluid. Additional flow visualization

in the flow-vorticity plane was used to determine the critical shear rates beyond which

secondary flows become detectable, and these imaging results were used to select test

conditions for which there is minimal secondary flow occurring that might corrupt the

PIV measurements. This combination of localized velocimetric measurements and bulk

rheological measurements provide detailed insight into the spatio-temporal dynamics of

complex fluids under simple viscometric flows.

The onset of a secondary flow driven by elasticity ultimately leads to an edge insta-

bility causing the ejection of the fluid sample from the gap. Such elastic instabilities can

severely limit the range of shear rates over which conventional macroscale rheometric

techniques can be successfully used for the rheological characterization of a material. It

is therefore important to understand and to predict the conditions under which elas-

tic instabilities occur in flows of shear-banding WLM fluids, which forms the basis of

Chapter 4. It is also advantageous to develop experimental methods of measuring vis-

cometric material functions at much higher shear rates than than be achieved with

the rotational-based rheometric instruments used in this Chapter, which is the topic of

Chapters 5 and 6.
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Chapter 4

Potential Ways of Thinking about

the Shear-Banding Phenomenon

4.1 Introduction

Shear banding is a curious but ubiquitous phenomenon occurring in soft matter. The

phenomenological similarities between the shear-banding transition and phase transi-

tions has pushed some researchers to adopt a thermodynamical approach, as opposed to

the more classical mechanical approach to understanding these flows. In this Chapter,

the diffusive Johnson-Segalman (dJS) model is studied in the context of shear banding

to demonstrate why these two approaches are not so dissimilar. The historical develop-

ment of the dJS model is briefly reviewed along with the analogy between this model

and reaction-diffusion equations. In the case of anisotropic diffusion, it can be shown

that the dJS governing equations for steady shear flow are analogous to the equations

of the dynamics of a particle in a quartic potential. This model is then used to derive

a stability criterion for purely elastic Taylor-Couette (TC) instability for shear-banding

flows.
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4.2 Johnson-Segalman Model and Sketch of Shear

Banding

The model originally proposed by Johnson & Segalman (1977) was a modification to the

Upper Convected Maxwell model (UCM), the canonical rheological model for viscoelas-

ticity (Larson, 1998; Bird et al., 1987). In order to allow for rate-dependent material

properties in steady simple shear, the JS model supposes that network strands in the

material can slip with respect to a purely affine deformation. This slipping yields an

effective velocity gradient field which is given by

L = VV'- 2(D (4.2.1)

where ( is a scalar slip coefficient in the range 0 < 7 1, VV' is the velocity gradient

tensor, and D = j((Vb)t + Vi) is the strain rate tensor. The new convected derivative

operator is

( ( )( L (4.2.2)
Dt

where Do)E +ai6. V( )is the material derivative. The resulting constitutive equation

for the polymeric stress tensor T, is written

T + AZ = 29,qp (4.2.3)

where A is the polymer relaxation time and 77 - GOA is the polymer viscosity, defined

with respect to the polymer elastic modulus.

In recent publications (Fielding, 2007), Eq. (4.2.3) is usually rewritten in an equiva-

lent form involving a rescaled 'slip parameter a = 1 - 2(, where -1 < a < 1:

DT T
+ - = a(D -T + T -D)+ (Q - T - T - Q) +2GD (4.2.4)

Dt A

where Q = (VY) t - VV' is the vorticity tensor. The case of a = 1 corresponds to

the UCM model, for a = -1, the lower convected Maxwell model, and if a = 0 the

co-rotational Maxwell model (Bird et al., 1987). In a steady simple shear flow, the

velocity is V = [u(y), 0,0], and gradients in the flow properties exist only in the y-
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Figure 4.2.1: Non-monotonic homogeneous flow curve for simple steady shear of the
JS model, for a = 0.3 and 77 = 1/16. Wi = AU/H is the global Weissenberg number.
The fine dashed lines are the polymeric and solvent contributions to the shear stress.
The horizontal dashed lines highlight the range of stress in which the flow curve is
multivalued. Without any plateau selection rule, the stress can take any value in between
the two horizontal dashed lines.

direction, between y = 0 and y = H. In this reference frame the plate at y = 0 is

fixed, (i.e. u(0) = 0), while the plate at y = H is moving with u(H) = U. Then, the

characteristic global shear rate as 'j' U/H, itself frame independent. The homogeneous

solution for this flow is defined as the solution in which the local shear rate is constant

(y) = 7. Then, if jal # 1, the polymeric shear stress, obtained from Eq. (4.2.4) and

shown in Figure 4.2.1, is non-monotonic, and drops to zero as y -- 0. To cure this

pathology, the common practice is to add a solvent contribution to the stress. Then, the

total deviatoric stress of the material is given by the sum of the polymeric stress and

the solvent stress E - T + 2qD, where n, is the solvent viscosity.

In a simple shear geometry, the momentum balance imposes the value of the local

deviatoric shear stress to be constant E,(y) = 2,, where E are the components of E.

Then, as pictured in Figure 4.2.1, the global flow curve E,y(y) = f () is known to be

non-monotonic if q fA < 1 (Espanol et al., 1996; Cates & Fielding, 2006; Fielding,

2007), which was identified early as being one of the sufficient criteria for triggering

shear banding (Hunter & Slemrod, 1983; McLeish & Ball, 1986). Early studies on the

JS model (Renardy et al., 1987; Kolkka et al., 1988; Renardy, 1995), empirical observa-
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tions (Rehage & Hoffmann, 1991) and a clear analogy with first order phase transitions

(Berret et al., 1994) - especially the pressure/specific volume graphs - strongly sup-

ported the idea that this non-monotonic flow curve was the signature of an instability of

the homogeneous flow. It was commonly observed that in a range of global shear rates

[i, 72], in the vicinity of the decreasing part of the flow curve, the flow would become

inhomogeneous, (i.e. -(y) # 7). For global shear rates 'in the shear-banding regime',

i.e. for *71 <-y < '2, the flow would be split in domains with local shear rates 31 and

'2, with the proportion of the sample in high (a) or low (1 - a) shear rates domains

defined following a lever rule:

= a2 + (1 - a)71 (4.2.5)

From the momentum balance, the total stress must be homogeneous in simple shear.

Thus, over the entire shear-banding regime, increasing the global shear rate will not

increase the global shear stress, be it will change the relative proportions of the two

bands. The additional injected power is used in turning more of the sample into the high

shear rate domain, (i.e. in increasing a). But contrary to first order phase transitions for

which the Maxwell equal area law (Reif, 1965) gives a criterion to select precise values of

[A1, '2] and thus also the plateau value of the stress, it was unclear what criterion could

be used in the context of the JS model. For some time, it was even believed that such

plateau selection would not be possible in any mechanical approach such as JS (Porte

et al., 1997).

4.2.1 dJS Model and Plateau Selection

After the initial studies of shear banding using the JS model, it was quickly realized

that a key ingredient to the model was missing. The degeneracy in the selection of the

plateau value was linked to the absence in the JS model of a characteristic length scale

that would set the interface thickness between the shear bands, a point raised earlier

in consideration of a simpler but similar model (Spenley et al., 1996). Subsequently,

many arguments, inspired from dynamical systems (Lu et al., 2000) or from kinetic

considerations (Radulescu et al., 2000; Fielding & Olmsted, 2003), were proposed to
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rationalize this new length scale as arising from a diffusion or non-local term missing

in the JS equation. Rheological equations such as JS or UCM can be derived from

the kinetic theory of dumbells (Larson, 1998; Bird et al., 1987). And indeed, a careful

treatment of the Fokker-Planck equation underlying the kinetic theory leading to the

JS models or even the UCM model, brings a diffusion term coming from the finite size

of the dumbells (El-Kareh & Leal, 1978). From those considerations, the JS model was

modified to account for this diffusion term, leading to the so-called diffusive JS model

(dJS). For anisotropic stress diffusion, the diffusion term takes the form V -D -VT (Bird

et al., 2002). Then, the dJS model is defined as:

DT T
+ - = a(D - T + T - D) + (D -T - T - Q) + 2GD + V -D - VT (4.2.6)

Dt A

Evidently, the units of the diffusion coefficients Dij are [m 2 .s-']. A diffusion length scale

fij = VrDThA can be defined from each diffusion coefficient, which will be involved in the

scaling of the typical width of the interface between shear bands.

The additional governing equations for the isothermal and incompressible flow are

the continuity equation and the Cauchy momentum equation:

V. = 0 (4.2.7)

and the Cauchy momentum equation:

P ( +v- V = V - (T + 27r,D - pI) (4.2.8)

p is the isotropic pressure and p is the density of the fluid, including the polymeric and

the solvent part. I is the unit tensor.

4.2.2 Simple Shear and Dimensionless Groups

In simple shear flow, the governing equations for the polymer stress take the form given

by:

Txx + A jTx - (1 + a)Airxy = 5 rxx (4.2.9)
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Tyy + A Try + (1 - a)ArT, = a rT, (4.2.10)at ,y Y y2TY(.10

a f2
rzz + A rzZ Z2TZZ (4.2.11)

r2z, + A(IY + Ai[(1- a)Tr2 - (1 + a)ryy = 9h1 + T (4.2.12)

Finally, the x-component of the momentum equation is Eq. (4.2.8),

p =T- + a (4.2.13)
t ay +??ay2

Eqs. (4.2.9)-(4.2.13) are the governing equations of the fluid dynamics in simple shear

flow. These equations are still dimensional, and seem to involve many quantities (vari-

ables and parameters). Dimensional analysis suggests dimensionless groups that reduce

the apparent number of quantities. The different variables and parameters can be recast

into six categories, using stress, time, viscosity, length and density as independent units.

Then, from there the relevant dimensionless groups can be easily constructed. The stress

variables turn into Trx/Go, Tyy/Go, Tzz/Go, Try/Go. The time variable turns into the in-

verse of the Deborah number De- 1 = t* = t/A and the local Weissenberg number is

Wi = A(y) = AL (Dealy, 2010). The viscosity ratio is already defined - / /. The

length variable turns into y* = y/H and hence the Knudsen numbers for stress diffusion

is ij -= £/H. A Knudsen number is a ratio of the length akin to the mean free path

associated with a diffusive process to a macroscopic length. From the density, one could

construct the familiar Reynolds number, but since the main interest is in the creeping

flow regime, instead the elasticity number is more relevant El = -= 2 G. Wi = j is

the global Weissenberg number, and Re - P-H is the global Reynolds number. Conven-

tionally, the Reynolds number is constructed from the total viscosity of the fluid 7 + 77,

but it is assumed that 77p > , and so this approximation is accepatble. Finally, the slip

parameter a (already dimensionless) is another relevant parameter.
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4.3 Reaction-Diffusion Interpretation

To simplify even more the form of the governing equations, one can use dimensionless

variables introduced previously by Radulescu et al. (1999)

au
K - ,1 - a2A- = -1 - a2 AV (4.3.1a)

ay

S = v/1 - a2 7XY (4.3. 1b)
Go

N (1 - a) Tx (1+ a) ' (4.3.1c)
2Go 2Go

A final quantity is

Z (1 - a) 2 0 + (1+ a) 2 0  (4.3.1d)2Go 2Go

The total dimensionless stress is then o- = S + K and is equal to its global value 2

everywhere in the sample, for a steady simple shear flow. Moreover, Radulescu et al.

(1999) used a constant Knudsen number o for every stress component. Then, after

ignoring the z-component, the governing Eqs. (4.2.9)-(4.2.13) can be transformed into

their dimensionless counterparts:

* N = KS - N + 02 N (4.3.2)

0 82 z Z = -Z +602 Z (4.3.3)

S= -KN+K-S-602 a2 K (4.3.4)
at* ay*2

1 a a2
=-K =- S + K (4.3.5)

El t* ay*2

Where the last equation is obtained by differentiating Eq. (4.2.13) with respect to y. The

utility of these equations is their independence from the value of the slip parameter a,

when jai = 1. When the problem was expressed in this form, its connection to the more

general class of reaction-diffusion problems was noticed by Radulescu et al. (1999).

The governing equation for Z being decoupled, its analysis is not usually carried out

119



(Radulescu et al., 1999, 2000). Moreover, in most experimental situations El >> 1. Thus,

from Eq. (4.3.5), it is apparent that the dynamics of K happen on a much shorter time

scale than the dynamics of S and N. For this reason, the evolution of the kinematics

with time is not seen as an independent dynamical variable in the limit El -+ 00, and

the reaction-diffusion problem is written in terms of only two degrees of freedom, a

dimensionless shear stress S and a dimensionless normal stress difference N (Radulescu

et al., 1999, 2000):

r =2a2 S + C(S, N; K) (4.3.6)

where

-K-KN
C(S, N; K) = - + KSK (4.3.7)

Within this framework, Radulescu et al. (1999, 2000) derived a variety of important

properties of shear banding flows. Here those those properties will be reconsidered in a

different approach, but repeated connections with their approach will be made.

4.3.1 Steady Simple Shear and the Particle Analogy

Here, only steady flows (i.e. De = 0) are considered (Dealy, 2010), but transient effects

have previously been discussed by Radulescu et al. (1999, 2003). For steady flows,

Eq. (4.3.6) gives

2 () = -C(S, N; K) (4.3.8)
Y(N

Radulescu et al. (1999) noted that this equation is analogous to Newton's second law

for the movement of a particle. The same analogy had been used previously by Spenley

et al. (1996) also in the context of shear banding, and more generally by Pomeau (1986).

But with two degrees of freedom S and N, the complexity of Eq. (4.3.8) made it difficult

to find an analytic solution to the inhomogeneous shear-banding flow.

If the diffusion in the non-linear flow regime becomes anisotropic, a single Knudsen
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number o cannot describe the flow. If diffusion only concerns the shear component of

the stress, then (g = 0 for every i and j except , = . In this case, dimensional

considerations suggest that the diffusion can be expressed in terms of the shear rate

tensor, rather than the stress tensor. In this alternate version of dJS, the diffusion term

is of the form 21Do V2 D, with Do = H
2 . Note that the sign of this term has to

be taken in accordance with the definition of the sign of the shear rate. This type of

term was used recently by Sato et al. (2010) because it is much more mathematically

tractable, as was already apparent in a simpler diffusive model used by Dhont (1999).

No clear physical argument for the dominance of diffusion on shear components of the

constitutive equation has yet emerged, and the assumption of a diffusion coefficient with

no dependence on the shear rate is motivated by its mathematical simplicity.

In order to build on the recent developments by Sato et al. (2010), here it is assumed

that the diffusion is of the anisotropic kind. More information on how this approach

differs from from taking an isotropic stress diffusion coefficient (Radulescu et al., 1999,

2003) is discussed by Sato et al. (2010). With diffusion on the shear rate and steady

flow (De = 0), the system of Eqs. (4.3.2)-(4.3.5) is replaced by

N=KS (4.3.9)

Z = 0 (4.3.10)

02  K=-KN+K-S (4.3.11)

S+K =0 (4.3.12)

Eq. (4.3.12) is redundant since the total stress must be spatially uniform. Eq. (4.3.10)

is trivial. Eq. (4.3.9) can be used to replace N in Eq. (4.3.11). Then, it is convenient

to regard K as the main variable of the problem and by using o- = = S + 7K, S is

expressed as a function of K

2 K
2 9K= 7K3 _ .K2 + (1 + 7)K - a- = 0 (4.3.13)ay *2
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If y* is reinterpreted as a time variable, then Eq. (4.3.13) is analogous to the equation

of the motion of a particle of mass m e 2 and position q +-+ K under a force deriving

from a quartic potential energy function V(q) depending on the parameters E and 77.

This analogy was stated explicitly in the recent study by Sato et al. (2010), building on

the idea invoked earlier with Eq. (4.3.8). Using the chain rule, Eq. (4.3.13) is transformed

into its energy form:

M42 + V(q) = E (4.3.14)
2

141 1
V(q) = Fq4 + Dq 3 +Cq 2 + Bq + A -+ - - -(1+ )q2 + aq (4.3.15)

4 3 2

where E is the total energy of the system, which is conserved. The analogy is 4 d.

To make the analogy explicit, the analogy t +-+ y* is made. The double arrow '-'

is used here to mean stands for when defining the quantities in the particle analogy

to differentiate these definitions with regular definitions using '='. In the language of

mathematicians, the new variables are used to 'define a new model' for the dJS equation

(Hodges, 1997). This is what is meant by 'making an analogy'. In some sense, one

could have even used +-+ in defining the dimensionless variables K, S, N and Z, since

they carried the new meaning given in the framework of reaction-diffusion by Radulescu

et al. (1999).

This new interpretation enables a fuller realization of the syntactic power of the

dJS equation, but before the analogy is further exploited, from Eq. (4.3.13), it can be

used to obtain the non-monotonic homogeneous flow curve mentioned previously. For a

homogeneous flow K(y) = k - (1 - a2 ) 1/ 2Wi. Then ay.2K = 0 (where ay.2 stands for

) for Eq. (4.3.13) reaches

0- - +rqK (4.3.16)
1 + K 2

Note that this solution can also be obtained by taking 2 = 0, (i.e. the particle has no

mass). This is another way of thinking about why the inhomogeneous flow curve can

only be obtained by the addition of a diffusive term in JS.
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4.3.2 Properties of the Potential

In the particle analogy, it is important to realize that regions where the shear rate changes

abruptly correspond to time intervals where the particle is moving fast, i.e. near local

minima of the potential V(q) - the inner solution described by Radulescu et al. (1999).

On the contrary, regions of fairly constant shear rate correspond to time intervals where

the particle is moving slowly, near the turning points of the potential V(q) (Landau

& Lifshitz, 1976) - the outer solution. The potential V(q) is a quartic potential. The

general solution of the motion of a particle in a quartic potential is well known and

involves elliptic functions for q(t). A short recent summary of important analytical

results can be found by Sanchez et al. (1993), who describe the various possible shapes

for the quartic potential, depending on relations between the coefficients of the potential

(A, B, C, D, F). Evidently, the shape of the potential is critical in determining the

solution. To simplify the study of the shape of the potential, three equilibrium points

(i.e roots of the algebraic equation dV(q)/dq = 0) are defined following the ordering

q, < q, < qn. Those solutions are real if q < 1/8, i.e. when the homogeneous flow

curve is non-monotonic. Since F < 0, limq-ioo V(q) = -oc, and by continuity, q, and

qh are unstable equilibrium points whereas qm is a stable equilibrium, as illustrated on

Figure 4.3.1. The particle will move fast near q, and slowly near q, and qh.

To be able to use tabulated coefficient relations of Sanchez et al. (1993), it is conve-

nient to rescale the variable q to eliminate the linear term of the potential by using the

middle root q of the equation dV(q)/dq = 0. The idea is to translate the coordinate

system such that it is centered on the middle root value, hence x - q - qm. Then, from

Sanchez et al. (1993) a new potential is found V*(x) = A*x2 + B*x3 + C*x4, such that

-m2 + V*(x) = E* = E - V(qm) (4.3.17)
2

With

2 +q 2 qA* 2C +3Dqm + 6Fq = + o gm - 2,qqm

B* D + 4Fqm =--qm (4.3.18)

C* 2F = -?7/4

123



q, qm qh

Figure 4.3.1: Sketch of the quartic potential with regions of fast moving and slow moving
particle. q, < qm < qh are the equilibrium points. The dashed line is the total energy
line above which the motion is unbounded, because the particle may escape the local
potential well from the left.

In the rheological framework, the stress must be homogeneous, but the local shear

rate can be inhomogeneous. The shear rate associated with a given stress can take a

range of values. On the global scale this leads to the so-called stress plateau. For a value

of 2 one can realize several values of K. This degeneracy means that given a value of

stress in the bulk 2, there is no bulk mechanism capable of selecting a value of k. This

degeneracy means that the solution q(t) contains an arbitrary parameter linked to the

arbitrariness of the value of k. As a particular consequence, the equilibrium points q,

and qh need to have the same relative stability, i. e. as stated by Sato et al. (2010) the

potential V(q) or V*(x) needs to be symmetric'.

For the potential to be symmetric, the coefficients must obey the relation B*2 = 4A*C*.

Using Eq. (4.3.18), this equation, together with 1 = 0 readsdq m

B*2 = 4A*C* + m _ ( + ) 0 (4.3.19)9 2 3 2

dV 3

-i-- =a0 q- + (1 +)qm - a =0 (4.3.20)
q

Therefore, there are two algebraic equations with unknowns (qm, E). By eliminating

'This symmetry is derived mathematically in greater detail in Appendix C.
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the variable q, one obtains

o-(9, - 18,q2 - 2o2)

3V/7 -2n2 (4.3.21)
c- =± or o-=O0f2

The negative and positive values correspond to the arbitrariness of the stress sign.

Thereafter, E > 0 by convention. From Eq. (4.3.21) it is evident that for a given value

of the material parameter 7, there is a unique value of stress P corresponding to the

inhomogeneous solution. For the complete solution to the inhomogeneous flow, one

should then replace any instance of the mean stress 2 by its value depending on 'q. In

particular, now the expression for the three equilibrium points of the potential are:

gi --

qm = n -2 (4.3.22)

qh-

Note that since the potential is symmetric, qm = = . From Eqs. (4.3.21) and

(4.3.22), A*, B* and C* are written as functions of q only

A* 1-8n
4

B* =0 (4.3.23)

C* =_-q/4

Figure 4.3.2 draws the original potential V(q) and the rescaled potential V*(x), for

a few values of q. As already mentioned, the potential V(q) has a unique equilibrium

point qm when 7 > 1/8. At the point 7 = 1/8, qm is a multiple root and A* = 0. This

point is the critical point.

The characteristic frequency of the particle near qm is given by the harmonic approx-

imation of V(x) near x = 0, i.e by w = '. 1/wo is the time scale of the problem.

This is a crucial point, as the time interval [0,1] was indefinite and so it is now clear that

the time for the particle to translate from q, to qh is in units of the harmonic period near

qm. Note that at the critical point, wo = 0, because the lowest order of the potential

near qm is quartic, the particle time scale diverges.

Returning to the original rheological framework, the inverse of the harmonic fre-
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Figure 4.3.2: Plot of (a) the original quartic potential V(q) and (b) the rescaled potential
V*(x), for q = 0.03, 0.06, 0.08, 1/8, 0.2.

quency is identifiable with the dimensionless width of the interface between domains of

different shear rates w +-* 1/wo. This corresponds to the inner solution in the reaction-

diffusion framework (Radulescu et al., 2000). Thus, the interface width appears to

diverge as q approaches the critical point.

4.3.3 Naive Flow Curve and Law of Equal Distances

Returning to the rheological framework, the values K, +-+ q, and Kh +-+ qh are the

outer solutions. As explained already by Radulescu et al. (1999, 2000), in the limit

where < 1, one has to seek matching between the homogeneous solution with the

shear-banding solution at K and Kh. Then, K, and KAh are identified as the boundary

of the stress plateau with magnitude 2. Figure 4.3.3 displays the homogeneous and

inhomogeneous flow curves for 7 = 0.04, highlighting the connection points K and Kh

between the two solutions. Ultimately, the flow curve that would be measured for a

steady simple shear is

+ 7K if 7>! or [K, Kh]
^(K) -+ 2K 2 (4.3.24)

if q < - or R E [KI, Kh]
v/2

The plateau intersects the homogeneous flow curve at three locations KI, Km and

Kh. Then, the symmetry of the potential implies Km KI.Kh Thus the plateau is such
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Figure 4.3.3: Dimensionless homogeneous and inhomogeneous flow curve for r = 0.04.
The dashed line is the unstable homogeneous solution. The black circles highlight the
connection points K, and Kh between the inhomogeneous and homogeneous solution.
The connection points are related by Km - K, = Kh - Km.

that Km - K, = Kh - Km. By analogy with the law of equal areas, the constraint can be

called the law of equal distances. A similar law was found by Dhont (1999) on a scalar

model analogue of the dJS model. This result would be an easy criterion, but it does not

seem to be recovered by numerical simulations of the dJS model (Fielding, 2005, 2007).

The difference arises because a key ingredient has been forgotten in the derivation. This

key ingredient was also missing in the derivations of Sato et al. (2010).

4.4 Role of Diffusion on the Flow Kinematics

Sato et al. (2010) made use of the naive flow curve to obtain a solution for the shear rate

profile from Eq. (4.3.13). They considered two boundary conditions for K, ay.K = 0

at y* = 0 and 1, assumed to come from o8ySlo,1 = 0, which is supposed to represent

the fact that there is no flux of polymeric components at the wall (Rossi et al., 2006;

Sato et al., 2010). In the particle analogy, the boundary conditions translate into the

requirement that the particle start with no initial velocity at t = 0 and end with no

velocity at t = 1 (in units of 1/wo.) If the outer part of the inhomogeneous solutions is

required to connect with the homogeneous solutions (Radulescu et al., 1999, 2000), then
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it is assumed that q(0) = q, and q(1) = qh and 4(0) = 0 and 4(1) = 0, the particle is

moving from left to right on the potential. Note that by symmetry one could have chosen

q(0) = qh and q(1) = q, as well, (i.e. the particle moves from right to left). Since the

total energy of the particle is conserved, its value is given by the value of the potential

at q, or qh. Then, in the reduced variable x, the energy of the system is given by,

E* = V*(qi - q.) = (8-)2
16q

(4.4.1)

Returning to Eq. (4.3.17), which reads,

1 2 17-89)2 77 4 (87 - 1)2
2Mx + 4 x 4 x = 16,q

(4.4.2)

This equation is separable, [E* - V*(x)] 1/2 dx = -dt. Using the convention that

the particle moves from left to right, the solution is found, written with the particle

notation x(t), or with the dimensionless rheological notation K(y*),

x(t) 2 tanh (wo(t - to)) > q(t) = + 2 tanh (wo(t - to))

K + K Kh -Ki y*__y
K(y*) = + -tanh YYo

2 2 W
= Km + tanh ( Y

2 W

(4.4.3)

where the plateau range is defined AK = Kh - K and w = 2 /1 - 8q. The governing

equation for the parameters N and Z are given in Eq. (4.3.9) and (4.3.10), respectively,

and hence their values across the gap are given by

N(y*) = (a--qKm) Km+- tanh (Y -j tanh Y*Y) Km+- tanh (* 1 Y)
2 W 2 W 2 4

(4.4.4)

Z(y*) = 0 (4.4.5)

The dimensional shear rate, polymeric shear stress and normal stress differences are

given by the equations

1 K

#1- a2A
(4.4.6a)
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G0  G0  G_ 3___ - 292
Y o 2 S = (a- -U K) = 3 - K (4.4.6b)

v/ -a 1 -a 1 -- a2  K2

2GO 2G
N1 = rx - =ry 1 2 (N + aZ) = 2 N (4.4.6c)

1 -a -a

N2 = TyGy - zz = (Z - N) - = N (4.4.6d)
1+a 1+a

At this point, y* is an unknown constant which represents the location of the interface

between bands in the gap. Following the naive shear-banding scenario described in the

introduction, from Eq. (4.2.5) it is expected that y* = (1 - a) =Kh- . Indeed, this is

the value of yo set by Sato et al. (2010). But as will be shown in Section 4.4.1, this value

is not strictly rigorous.

4.4.1 Modification of the Lever Rule by non-Local Effects

The rigorous value of y* needs to be deduced from the requirement that the integral of

the shear rate in the sample should be equal to its macroscopic value, or equivalently,

that the fluid velocity at y* = 1 is equal to the upper wall velocity. This was indeed

noted by Sato et al. (2010) and stated in dimensionless form (Eq. (7) of Sato et al.

(2010)):

K(y*)dy* = k (4.4.7)

where k = V1 -a2Ai/H. By integrating the profile obtained in Eq. (4.4.3), one obtains

the velocity profile in the gap

U(y*) = Kmy* + -w In cosh YYO cosh -) (4.4.8)
2 W )/ (W )

where U =/1 - a2Au/H, and u(y) is the dimensional local velocity across the gap

introduced in Section 4.2. The rigorous expression for yo is determined by satisfying

Eq. (4.4.7), and it is actually given by

1 2a-11
W e T - e'

Y* = -In 2 (4.4.9)
e w e -
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Figure 4.4.1: Modification of the lever rule y*. Value of a for various values of
w = 0.01, 0.1, 0.2, 0.3. This analytic result has only a heuristic purpose since the precise
incorporation of the constraint on the average value of the shear rate would modify the
form of this result.

Then, only at the lowest order in (2a - 1) and 1/w, is y* = 1 - a, i.e. the interface is

located at the position expected from the lever rule. If the interface is too close to the

walls, or if the width of the interface w starts to be large, this approximation is invalid.

This constraint was explicitly stated in the reaction-diffusion framework by Radulescu

et al. (1999) in terms of non-asymptotic effects. The case where w becomes large occurs

if the Knudsen number is not negligible. It corresponds to the limit in which non-local

effects are important (Masselon et al., 2008, 2010). In Figure 4.4.1 the modification of

the lever rule yo(a) by non-local effects for various values of w is shown. A key point is

that if w f 0, there are always non-local effects when one of the shear bands - low or

high - is small.

In the framework of the energetic potential, the result comes from the inconsistency in

the assumptions that the particle starts at a local maximum in the potential at K, + q-

or at Kh - qh where dV/dK = dV/dq = 0 and that it also starts with no initial velocity

dK/dy* = dq/dt = 0 due to the condition of no diffusion at the walls. Without any

initial velocity and without any local gradient in the potential to provide an accelerative

force, the particle must remain stationary and therefore cannot traverse the potential,

thereby preventing the shear rate from reaching its asymptotic values K, and Kh in
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the gap interval y* E [0, 1]. As stated in Radulescu et al. (1999), matching rigorously

happens only if y* E [-o, oc]. Moreover, the errors made on the boundary conditions

are related. For instance, if the interface is close to the wall at y* = 0, then K(0) = K,

and Oy.K(0) = 0 will be poorly satisfied whereas K(1) = Kh and Oy.K(1) = 0 will

be approximately correct. Physically, this paradox can be interpreted by the fact that

for any finite interface width (i.e. > 0), in the limit of either A -* A1 or 1 -* A 2 , the

interface width cannot vanish as it is squeezed closer to the wall. In either limit then,

it is not possible for the interface to lie next to the wall and to satisfy the condition of

no flux through the wall, since the gradients in shear rate are necessarily finite in the

interface between the bands. This point is elaborated further along with comments on

some of the mathematical challenges associated with redressing the problem by Fardin

et al. (2012b).

In the strictest sense, the solution for the shear rate and velocity profiles given by

Eqs. (4.4.3) and (4.4.8), respectively, are only valid in the limiting case of w <-+ 0. In

this case the interface becomes vanishing small such that for any value of 0 < a < 1,

the interface effectively lies infinitely far away from either wall and the effects of non-

locality do not propagate to the walls. As the strength of the stress diffusion increases,

either at small gaps or for large diffusion coefficients, the accuracy of these solutions will

diminish. Nevertheless, experimental measurements of non-local effects in the flow of

shear-banding WLM solutions indicate that typical interfacial widths are on the order of

f ~ 0(10) pm (Masselon et al., 2008; Helgeson et al., 2009a,b), whereas the gaps sizes in

most TC flows are on the order of d ~ 0(1) mm. This disparity in length scales suggests

that most viscometric experiments with WLM systems using conventional rotational

rheometers occur in the limit < 1 and w < 1, where the approximations made to

obtain Eqs. (4.4.3) and (4.4.8) are most valid. These results can then be utilized further

to obtain estimates of the stresses across the gap in the flow of a shear-banding fluids,

enabling the development of a theoretical dimensionless stability criterion for the onset

of secondary flows in WLM fluids.
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4.5 Criterion for Purely Elastic Taylor-Couette In-

stability in Shear-Banding Flows

In the past twenty years, shear-banding flows have been probed by various techniques,

such as rheometry, velocimetry and flow birefringence. In micellar solutions, many of

the data collected exhibit unexplained spatio-temporal fluctuations. Recently, it has

been suggested that those fluctuations originate from a purely elastic instability of the

flow. In cylindrical Couette geometry, the instability is reminiscent of the Taylor-like

instability observed in non-shear-banding viscoelastic polymer solutions. The stability

criterion has been previously discussed in Section 2.2.5 and in the remainder of this

Chapter, this criterion for a purely elastic TC instability is adapted to shear-banding

flows. Three categories of shear-banding flows with curved streamlines are also proposed

based on this stability criterion.

4.5.1 Rheological and Geometric Scaling of Purely Elastic Flow

Instabilities

In Section 2.2.5, the TC instability of the purely Newtonian fluid and the purely elastic

fluid was discussed. These are both idealizations that facilitate the analysis, but which

capture only the behavior of very specific fluids. In general, however, non-Newtonian

fluids can exhibit other attributes such as a Newtonian solvent contribution to the stress,

a spectrum of relaxation times instead of a single relaxation time A, and shear-thinning

(Larson, 1998). Experiments with such non-Newtonian fluids have documented the

effects of these rheological behaviors on the elastic TC instability (Larson et al., 1994).

To rationalize these observations as well as to generalize the elastic instability criterion

to different kinds of flows with curved streamlines, McKinley and coworkers established

a general criterion for elastic instabilities (Pakdel & McKinley, 1996; McKinley et al.,

1996). If Re = 0, then the flow of a viscoelastic fluid is unstable if

> /M (4.5.1)

where N = -r - Tyy is the first normal stress difference, T,. is the shear stress, C is
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the characteristic distance over which perturbations relax along a streamline (Pakdel &

McKinley, 1996), and R is the characteristic radius of curvature of the streamlines. For

a purely viscoelastic fluid, L ~ AU ~ ARjQj = Wid, R ~ R, and N1/, ~ Wi (Pakdel

& McKinley, 1996) and one recovers the criterion of Larson et al. (1990) for the purely

elastic instability: VXWi > m (Larson et al., 1990).

In the remainder of this Chapter, a general criterion for the onset of flow instabilities

in shear-banding WLM fluids is proposed. The aim is to determine the functional form

of the dimensionless ratio g framed with respect to the general criterion derived by

(Pakdel & McKinley, 1996; McKinley et al., 1996). By analogy with polymer solutions,

one can expect that this ratio can be expressed in terms of a relevant geometric ratio

and an appropriately defined Weissenberg number.

Effective Gap

Roughly speaking, a shear-banding flow is reminiscent of a first-order phase transition

as discussed in Section 4.2. Above a lower critical Weissenberg number Wil, the shear

stress plateaus. Then, up to a second higher critical Weissenberg number Wih, the flow

is inhomogeneous, split into two bands with local Weissenberg numbers Wil and Wih.

To leading order, for Wi E [Wil, Wih], an increase in the value of the macroscopic Weis-

senberg Wi only increases the proportion a E [0, 1] of the high-Wi band, following a

lever rule Wi ~ aWih + (1 - a)Wi presented previously in Eq. (4.2.5). This scenario

has been roughly confirmed experimentally with various techniques (e.g., pure viscom-

etry, velocimetry, birefringence, etc.) but many fluctuating behaviors were observed in

all the gathered data (Lerouge & Berret, 2010).

The relevant geometric ratio can indeed be inferred from experiments through the

notion of an effective gap. In recent experiments (Fardin et al., 2009, 2010), it was

observed that the vortices were mainly localized in the high-Wi band, and that each

interfacial wavelength between the bands corresponded to a pair of counter-rotating

vortices (Fardin et al., 2009), as illustrated in Figure 4.5.1 (a). It was also found that

the wavelength increases upon the increase of the global shear rate, so one could infer

the scaling l/d - Wi (Lerouge et al., 2008; Fardin et al., 2009). Then, by combining
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Figure 4.5.1: Effective gap scaling. (a) Overlay of two visualization techniques showing
the secondary vortex flow in the high-Wi band for a ~ 0.4 (Fardin et al., 2009). (b)
Wavelength scaling, following 1 = nad, with n = 3.8 0.1. For a > 0.6, the spatio-
temporal dynamics of the vortex flow do not allow us to extract a single wavelength
(Lerouge et al., 2008; Fardin et al., 2009). For a < 0.05, the size of the band is smaller
than the spatial resolution.

this scaling and the lever rule it was noted that 1 = nad instead of 1 = nd, where n is

a number of order unity, whose precise value depends on the boundary conditions. The

extent of the high-Wi band acts as the effective gap. Increasing the global Wi increases

a and so increases 1. The validity of this scaling is shown in Figure 4.5.1 (b) by re-

plotting 21/d, (i.e. twice the wavelength of vortices), against a instead of Wi (Lerouge

et al., 2008).

Local Weissenberg Number

As explained in the introduction, in a shear-banding flow, the global value of Wi is not a

good measure of the local Weissenberg number in the parts of the flow that are unstable.

Instead, the dimensionless group relevant to the flow instability is the local value of Wih

in the high shear rate band. In the instability criterion, one must replace Wi by Wih.

Accordingly, the criterion for elastic instabilities in shear-banding flows should involve

the term

E* = V/aAWih (4.5.2)
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Figure 4.5.2: Experimental and theoretical 'flow-phase diagrams' (Berret et al., 1997) measured with a cone-and-plate device.
(a) Dimensionless flow curves for varying temperatures with a 100:60 mM CPyCl:NaSal system. (b) Dimensionless flow curves
for varying concentration in an N:300 mM CTAB:NaNO3 system. The arrow points in the direction of higher c or lower T. The

orange X lies at the same Wi--r.,/yGo value indicating the approximate location of the critical point in the flow curves which is

very similar for both systems suggesting they have a similar values for the coefficient a in the framework of the dJS model. For

systems with clearly different critical points, refer to Figure 2 (a) in Fardin et al. (2011). (c) Analytical dimensionless flow curves
obtained for the dJS model in simple shear. The different flow curves are obtained for varying q. The color map gives the value

of te sale diensinles citeion dys= 1-s 2. The arrow points in the direction of lower 77.



It has been observed in experiments that increasing the concentration c of surfactant,

or decreasing the temperature T tends to increase the value of Wih. This fact is illus-

trated in Figure 4.5.2 (a) in the flow curves of two different surfactant systems (Berret

et al., 1997; Cappelaere & Cressely, 1997). Note that as c increases, the dimensionless

stress plateau decreases and its range of Weissenberg numbers increases. In particular,

Wih shifts to higher values. For the most concentrated solutions, viscometric measure-

ments had to be stopped because the sample was ejected from the rheometer. This

phenomenon is believed to be due to an instability of the free surface of the system,

driven by the underlying bulk viscoelastic instability. However, the instability of the

free surface could be triggered by second normal stress differences (Skorski & Olmsted,

2011). Furthermore, owing to the larger values of Wih solutions of high c or at low T

are more likely to be unstable.

4.5.2 A Stability Criterion Based on the dJS Model

So far, a new relevant dimensionless group for elastic instabilities in shear-banding flows

has been suggested, without appealing to any particular rheological model. To en-

hance this argument, the form of the instability criterion will be based on the diffusive

Johnson-Segalman (dJS) model discussed above. Recently, it has even been used in

numerical simulations confirming the presence of a secondary vortex flow triggered by a

bulk viscoelastic instability in the high-Wi band (Fielding, 2010).

An analytic expression for the stress ratio in the high-Wi band is needed to evaluate

the ratio in Eq. (4.5.1). In the small gap limit of the TC geometry, one can assume

that the stress profile across the gap is homogeneous in order to use the inhomogeneous

plane Couette solution recently derived previously in this Chapter. For steady flow in

the shear-banding regime, the dimensionless shear stress is

- = 3 (4.3.21)

and the first normal stress difference is related to the dimensionless quantity N given by

N = KS = K(- - qK) (4.3.9)
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where K(y*) = V1 - a2Wi(y*) and S(y*) = v1 - a2 T (y*) are, respectively, a dimen-Go

sionless shear rate and a polymeric shear stress, both functions of the position in the

gap. In the shear-banding regime, K(y*) is given by Eq. (4.4.3), and in the limit of small

diffusive effects, (i.e. w --+ 0) the dimensionless shear rates in the low and high shear

rate bands are given by

Ki =I1/_7 (4.5.3)

Kh = 1 2 (4.5.4)

In the high shear rate band, K ~ Kh = v1 - a2 Wih. Thus, from Eqs. (4.3.21),

(4.3.9) and (4.5.4) one can obtain the following expressions:

N, N 2 Khao - qKh) 2 2 1 - 8,q
= - 2 = -Wih (2- (4.5.5)

T-y a 2 v- -- N1 -- a2 3 1 - 271

Then, if L~ Wihad and R ~ Ri,

EdJS = -\/aAWihf(77) = E*f(q) (4.5.6)

Therefore, the result obtained using dJS is slightly more complex than the naive

criterion E* since it also depends on the viscosity ratio. A shear-banding fluid requires

7 < 1/8, so 0.7 < f(g) < 1.3. This result is indeed not surprising, since E* has been

obtained in analogy with the purely elastic case derived using the upper convected

Maxwell model, where 7 = 0 (Larson, 1998). In the homogeneous and non-shear-banding

elastic case, adding a Newtonian solvent also modifies the dimensionless group by the

addition of a function f(I) ~ F-2- (Pakdel & McKinley, 1996).

Note that the expression for EdJS can also be expressed in terms of the two di-

mensionless variables K and o-. Indeed, from the lever rule, a = K-K , and frommensonles vriabes KandKh-K
Eqs. (4.5.3) and (4.5.4), K and Kh can be expressed in terms of 7, which can be sub-

sequently expressed in terms of - using Eq. (4.3.21). Ultimately, one can reach the

following equivalent alternative expression for EdJs:

E1S a 2ZdJs(K, a) (4.5.7)
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where EdJs(K, o-) = (2 -- C) + Q0.3/2] is a function of K and o- only, whose pre-

cise functional form is a little too cumbersome to be written explicitly. Figure 4.5.2 (b)

plots the flow curves computed from Eqs. (4.3.21), (4.5.3) and (4.5.4), together with

the magnitude of tdJS. As the shear rate is increased, the proportion of the high-Wi

band increases, the magnitude of the scaled criterion ZdJs increases and the flow is in-

creasingly unstabile. By comparing the experimental flow curves in Figure 4.5.2 (a) and

the flow curve derived in the case of dJS in Figure 4.5.2 (b) one can see that the effect

of decreasing the Newtonian solvent contribution q to the total stress is similar to the

effect of increasing the concentration of surfactant, or decreasing the temperature.

4.5.3 Boundary Conditions and Classes of Unstable Shear-Banding

Flows

More generally, one can expect the relevant dimensionless group for elastic instability

in shear-banding flows to be Esb E*f*(y), where f* is a function of the ratio between

the zero shear and infinite shear viscosities. The specific form of f* will depend on

the constitutive model used to study shear banding (Cates & Fielding, 2006). Elastic

instabilities will generate a secondary vortex flow with wavelength 1 = nad for Esb > m.

As mentioned already, the precise values of n and m depend on the boundary conditions.

Of prime importance are the values of m obtained for soft (m,) or for hard (Mh) boundary

conditions (Fardin et al., 2010). Essentially, the hard case usually corresponds to a no-

slip Dirichlet boundary condition, while the soft case usually corresponds to imposing a

Neumann boundary condition on the continuity of the stress. In both the purely inertial

case (Chandrasekhar, 1981) and the purely elastic case (Khayat, 1999), it is known that

M, < Mh. Khayat (1999) performed stability analysis of the Oldroyd-B fluid for two

different sets of boundary conditions. In the first case, one boundary was soft, the other

hard, and the threshold was found to be 5.77. In the second case, both boundaries were

hard and the threshold was found to be 5.92. For a banded flow with Wi E [Wi, Wih],

the interface with the low-Wi band should act as a sort of soft boundary for the high-Wi

band. But for Wi> Wih, a = 1, the flow becomes homogeneous again and the boundary
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Figure 4.5.3: Schematic instability diagram in the plane (Max[Wih, Wi], aA). The
black lines represent the stability limits for soft and hard boundaries, Esb = m, -#

aA = (m,/Wih) 2 and Esb = mh * aA = (mh/Wih) 2 . To enhance the visibility of
the different categories of shear banding m, = 1 and mh = 3. The dashed black line
represents the value of 1 x A = 1.13/13.33, the maximum curvature corresponding to
recent experiments (Fardin et al., 2010; Fielding, 2007, 2010; Larson et al., 1994). Above
this line, the shaded region is inaccessible. The three paths 1., 2. and 3. illustrate the
three possible types of shear banding. The direction of the arrows represent the path
followed by the state of the flow as the global Weissenberg number Wi is increased. ac,
aci and ac2 are the critical proportions of the high-Wi band at which the flow state
crosses a stability limit. Wie is the threshold at which the type-1. trajectory becomes
unstable for the first time, and at which the type-2. trajectory becomes unstable after a
short relaminarization.

switches from soft to hard. The thresholds m, and mh, in the case of shear-banding flows

would most likely be different than the values computed for the homogeneous flow of

the Oldroyd-B fluid. Nonetheless, it is still expected that m, < mh and that there may

be a larger difference of values mh - M,.

Therefore, for a given geometry, (i.e. a given value of A), simple Boolean logic can

be used to classify shear-banding flows into three possible categories depending only on

the value of Wih:

1. For sufficiently low Wih - i.e. high T and low c - the shear-banding flow is stable

for any a, since Esb < m, even for a = 1. The flow can then become unstable for
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Weissenberg numbers above a critical value Wic > Wih as in the case of a regular

viscoelastic fluid, i.e. following the scaling Ei = vAfWi.

2. For intermediate values of Wih - i.e. intermediate T and c - the shear-banding flow

is unstable above a critical value a, when Esb > m, for a > ac. Then as the imposed

shear rate is increased and a -+ 1 the boundary conditions change and the flow is

stabilized, because the flow is below the threshold mh. Eventually for Wi > Wic > Wih

the flow becomes unstable again. This case was observed in recent experiments (Fardin

et al., 2010).

3. Finally, if Wih is high enough - i.e. for low T and high c - there are two critical

band widths ai and ac2. For a > a,, Esb > m. And for a > a,2, Esb > mh. In this

case, there is no stabilization for Wi > Wih. The flow remains unstable, although the

spatio-temporal characteristics may change.

The three possible shear-banding scenarios can be illustrated on a stability diagram

in the plane (Max[Wih, Wi], aA), as presented in Figure 4.5.3. When the global Weis-

senberg number Wi is increased above Wil, the flow state is given by a constant abscissa

depending on the value of Wih (which is a function of the concentration and temperature

of the solution). As Wi increases, the thickness of the high shear rate band a increases

and so the state of the flow moves vertically to larger ordinates. Once the entire gap is

filled, aA reaches its maximum depending on the geometry of the chosen TC system.

Then, since Wi > Wih, the state of the flow is given by a constant ordinate A and

moves horizontally as Wi increases. Any flow state with aA < A will be stable if below

the stability limit Esb = m, and unstable if above Esb = m, and a fortiori if above

Es = Mh. Any flow state with aA = A will be stable if on the left of the stability limit

EsA = Mh, and unstable otherwise.

Interaction with Interface Modes

So far, only elastic instabilities arising in the bulk of the high-Wi band have been

considered. But there exist other elastic instability mechanisms (Larson, 1992). In

particular, Fielding has shown that the jump in normal stresses between the bands

could generate interfacial modes, even in the plane Couette flow (Fielding (2007). In her
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recent study in TC flow, Fielding suggested that the interfacial and bulk elastic modes

lie in two separate regions of the space (A, Nlah), i.e. of the space (A, Wih) (Fielding,

2010). The bulk mode prevails at high Wih and high curvature A. The interfacial mode

prevails at low Wih and low A. Fieldings study would suggest the existence of another

unstable region in the lower left corner of the stability diagram sketched in Figure 4.5.3.

Nonetheless, only axisymmetric perturbations were considered in Fieldings study, and

the stability analysis was performed for a single value of a and 'r.

Wall Slip and non-Local Effects

The instability criterion that has been derived for shear-banding flows can be a powerful

guide to interpret experiments on WLM fluids. Nonetheless, the criterion is fallible since

there are at least two additional phenomena that can strongly compromise the validity of

the scaling, which have both been shown to be relevant in some experimental situations.

In both phenomena the local Weissenberg value in the high shear rate band may not

be equal to the upper boundary of the shear-banding regime on the flow curve. The

first phenomenon is wall slip, which has been reported recently and may actually be a

common feature of many shear-banding flows (Lettinga & Manneville, 2009). The second

phenomenon is geometric confinement. The present scaling may be inadequate if non-

local effects become dominant (Masselon et al., 2008). Non-local effects are apparent in

confined geometries when the size d becomes comparable to the typical interfacial width

, ~ pm, linked to the stress diffusion coefficient (Fielding, 2007; Sato et al., 2010). Even

in a macroscopic geometry with d > , non-local effects can be important when the

lateral extent of one of the bands is very small, i.e. a = 0 or a = 1.

4.6 Summary

This Chapter has focused on two seemingly different ways of thinking about the shear-

banding phenomenon. In both approaches the diffusive Johnson-Segalman model has

been used, but it has been possible to go from what can be viewed as a purely me-

chanical approach, to a more thermodynamic approach based on an energy potential.
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The distinction between the two is obviously less clear cut that was once thought. An

interesting point can be made by studying the logical implications between the different

approaches. The most general formulation of the law governing the motion of mechanical

systems is the principle of least action (Landau & Lifshitz, 1976) in that the equations

of motion are governed by an explicit dependence on the energy in a system. In this

regard, the integral thermodynamic approach seems to be more powerful. Neverthe-

less, this approach is only possible by the use of an anisotropic diffusion coefficient, so

more care should be taken to justify this assumption and future experiments should

be conducted to test this hypothesis. An important limitation of the thermodynamic

approach comes from the fact that the form of the potential is dependent on the flow

geometry. In contrast, the original mechanical approach starts from Eq. (4.2.6), which

can be evaluated in any geometry. In this respect, the mechanical approach seems to

be more powerful, especially if there is a systematic procedure to generate the correct

potential for any geometry. In particular, the spatial inhomogeneity of the stress in a

Poiseuille or cylindrical Couette flow translates into a time dependent potential.

Analytical solutions for the shear rate, shear stress, normal stress differences and

velocity profile in plane Couette flow based on an energy potential derived from the dJS

model have been derived. The inclusion of a non-local term in the governing equation

for the polymeric stress ensures the robust selection of a unique value for the stress

plateau in the shear-banding regime. These solutions are strictly only valid in the limit

of a vanishingly thin interface between the shear rate bands, but experimental findings

indicate that most viscometric measurements of WLM solutions in the Taylor-Coutte

geometry do in fact occur in this limit.

The analysis of shear banding with the dJS model was then extended to derive a

useful dimensionless criterion to rationalize the onset of secondary flows in the base

shear-banding flow of worm-like micelles. Recent experiments by Fardin & Lerouge

(2012) have undertaken a large study of the stability of shear-banding flows for many

different surfactant types, concentrations and temperatures. Ultimately, the criterion

could be extended to other flows with curved streamlines, if the localization and number

of bands are known.
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Chapter 5

Microfluidic Optical-Rheometry:

Shear Flow

5.1 Introduction

In this Chapter, micro-particle image velocimetry (p-PIV) and a commercial birefrin-

gence microscopy system for making full-field, quantitative measurements of flow-induced

birefringence (FIB) are combined for the purpose of microfluidic optical-rheometry of two

worm-like micellar (WLM) solutions. A microfluidic slit rheometer is used to study the

properties of a shear-banding solution of cetylpyridinium chloride (CPyCl) with sodium

salicylate (NaSal) and a nominally shear-thinning system of cetyltrimethylammonium

bromide (CTAB) with NaSal at shear rates up to < O(105) s-1. Velocimetry measure-

ments are used to quantify the local kinematics and the birefringence microscopy system

is used to obtain high-resolution measurements of the changes in molecular orientation

in the worm-like fluids under strong deformations in a microchannel. The FIB measure-

ments reveal that the CPyCl:NaSal system exhibits regions of localized, high optical

anisotropy indicative of shear bands near the channel walls, whereas the birefringence

in the shear-thinning CTAB:NaSal system varies more smoothly across the width of the

channel as the volumetric flow rate is increased. The experimental results are compared

to the predictions of a simple constitutive model, and the breakdown in the stress-optical

rule is documented as the characteristic rate of deformation is increased.
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5.2 High Shear Rate Rheology of WLM Test Fluids

The high shear rate rheology of both solutions was determined with the microfluidic

Viscometer/Rheometer-on-a-Chip (VROC, RheoSense Inc.). The VROC device is a high

aspect ratio, rectangular microfluidic slit rheometer. It was necessary to use two devices,

in order to span the full range of shear rates, from the maximum shear rate attainable

with a rotational rheometer (i.e. ' ~ 0(10) s 1 ) to the maximum shear rates that could

be measured with the VROC technology (i.e. ' = 3.4 x 105 s- 1). Each channel is fitted

with four inline, 800 x 800 Am 2 MEMS-based pressure transducers along the centerline,

additional details of this system are described in (Pipe et al., 2008). The first device (ID:

11RB10100212) had dimensions of width, height and length, respectively W = 99.6 pm,

H = 3.2 mm and L = 8.8 mm. This device was used with a 2.5 mL syringe (Hamilton

Gastight, Reno, NV) at shear rates in the range 10 < < 104 s-'. The second device

(ID: 12RE05100139) had dimensions W = 52.7 pm, H = 2.08 mm and L = 8.8 mm,

and was used with a 10 mL syringe (Hamilton Gastight, Reno, NV) for shear rates

103 r< < 3.4 x 105 S-.

The temperature of the test fluids was controlled with a thermal jacket system

(Rheosense Inc.), coupled with an F12-ED Refrigerated/Heating Circulator (Julabo

Inc.). Temperature within the channel was recorded with an integrated sensor in the

VROC device, and varied between 22 and 22.5 0C throughout the duration of the tests.

The pressure drop AP, along the length of the channel was measured for each imposed

flow rate and related to the wall shear stress by T = APW/2L. The Weissenberg-

Rabinowitsch-Mooney correction in Eq. (5.2.1) was applied to account for shear-thinning

and to determine the true wall shear rate (Pipe et al., 2008), using:

S3(2+ d In ) (5.2.1)

where AN = 6Q/HW 2 is the wall shear rate of a Newtonian fluid corresponding to the

volumetric flow rate Q, in the rectangular channel. Finally, a third order polynomial

was fit to five consecutive data points to determine numerically the local differential

correction term in Eq. (5.2.1) for each data point. The resultant flow curves are presented
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in Figure 5.2.1.

For the CPyCl:NaSal solution a stress plateau for apparent shear rates 0.2 < - < 500 s-

can be observed in Figure 5.2.1 (a). There is a very clear reduction in the measured

value of the stress plateau from Tp,ARES ~ 15 Pa as measured on the macroscale, ARES

rheometer to Tp,VROC ~ 12 Pa as measured with the microfluidic-slit rheometer. This

reduction in the value of rp may possibly be caused by slip or non-viscometric effects

in the entrance and exit regions of the channel, but it is also qualitatively in agreement

with the predictions of the VCM model for WLM flowing in rectangular channels, when

non-local effects (see Chapter 4) on the flow curve are considered (Cromer et al., 2010).

Non-local effects result in the reduction in value of rp as the slit width of the chan-

nel is decreased due to the increasing importance of diffusive effects and the coupling

between stress and microstructure of the micellar system when the length scale of the

flow geometry is on the same order as the width of the interface between shear bands

(Olmsted, 2008). This interfacial width, e = VD/A, depends on the relaxation time of

the system A, and the self-diffusion coefficient D. Taking D - 0(10-11 - 10-9) m2 /s

(Helgeson et al., 2009b; Cromer et al., 2010), an estimate for the CPyCl:NaSal system

in this study, 5 < f < 50 pm, which is of the same order as W, the channel width of the

VROC, confirming that non-local effects can influence the resultant, high shear rate flow

curve in Figure 5.2.1 (a). Note, however, that the exact values of and differences between

the stress plateaus measured with a cone-and-plate geometry on a rotational rheometer

and with the VROC depend on the specific batch of fluid, including the case for which

there is practically no difference between the values measured with both rheometer, for

example, as seen by Haward et al. (2012a).

At shear rates greater than approximately g2 > 500 s-1, the shear stress increases

once again with increasing shear rate. In this high shear rate branch of the flow curve,

the Reynolds number defined by the rate dependent viscosity, Re = p(U)D/r( w),

(p = 1100 kg/m 3 , hydraulic diameter Dh = 2HW/(H + W) ~ 2W = 100 pm) remains

less than unity for all shear rates indicating viscous, laminar flow. For this fluid, the

viscometric measurements show that the stress increases sublinearly with shear rate

(T ~ 92/3) for 1 ;> Y2, suggesting that the classical assumption of a high shear rate
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Figure 5.2.1: Steady shear rheology of 100:60 mM CPyCl:NaSal (Batch 5) and 30:240
mM CTAB:NaSal (Batch 5) solutions at 22-22.5 *C obtained with a microfluidic rheome-
ter (VROC). (a) Shear stress of 100:60 mM CPyCl:NaSal. (b) Shear stress of 30:240 mM
CTAB:NaSal. The Weissenberg-Rabinowitsch-Mooney Correction in Eq. (5.2.1) is ap-
plied to all results measured with VROC. Solid symbols correspond to results measured
with a cone-and-plate fixture. Symbols labeled 'VROC1' correspond to data obtained
with chip 11RB10100212, and those labeled 'VROC2' with chip 12RE05100139. The
large black circles indicate the Weissenberg numbers, Wi = A c = A(U)/W, corre-
sponding to the flow rates in the microchannel experiments. The solid black lines with
indicated slope have been added only to guide the eye. (a) Symbols 1 and :2 indicate
the limiting shear rates at the beginning and end of the stress plateau.
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branch with constant, Newtonian-like viscosity, as for example in the Johnson-Segalman

model (Johnson & Segalman, 1977) is inadequate for describing this fluid. Theoretical

descriptions of the rheology of WLM fluids on the high shear rate branch remain rel-

atively unestablished, and further study of this power-law scaling for y > 12 , possibly

through molecular dynamics simulations (e.g. Anderson et al. (2006)) is warranted.

The flow curve of the CTAB:NaSal solution is presented in Figure 5.2.1 (b). At

all shear rates measured with VROC, this system exhibits a continually shear-thinning

response, but for a small range of shear rates spanning 30 < A < 100 s-1, for which

CTAB:NaSal solution exhibits a local stress plateau indicative of shear-banding. At

high shear rates beyond, - > 300 s1, the stress increases more weakly with increasing

shear rate (T ~ 1/3) than observed for the CPyCl:NaSal fluid. It is also noteworthy

that the scaling of stress with shear rate is roughly the same for 0.5 < A 30 s1 and

y > 300 s-.

5.3 Flow-Induced Birefringence Measurements

In the present study, the material stresses and molecular orientation are also determined

from measurements of flow-induced birefringence. The stress-optical rule states that

the principal stress differenceAU U1  - U2 , is linearly proportional to the difference

between the ordinary and extraordinary indices of refraction An, with stress-optical

coefficient C as the proportionality coefficient. This rule is written

An = CAu (5.3.1)

The principal stresses ui and U2 , are the eigenvalues of the two-dimensional stress tensor

which characterizes the deviatoric stresses associated with a material deformation, and

may be related to the stresses in the xy-frame by

Ao = N2 + 4 (5.3.2)

where Txy is the shear stress and N = 72: - r, is the first normal stress difference.

The second quantity of interest is the azimuthal angle x, and corresponds to the
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orientation of the molecules with respect to the x-axis, the direction of flow in the

channel. For the systems studied here, the stress-optical coefficient is negative (C < 0)

and hence the value of x indicates the orientation of the fast optical axis of the micelles.

The azimuthal angle is related to -rx and Ao- by

X 1 sin ( 2Tr, (5.3.3)

5.3.1 Measurement of the Stress-Optical Coefficient of the Test

Fluids

The optical anisotropy cannot be measured directly, but must be inferred from measure-

ments of sample retardance 6. This quantity may be related to the optical anisotropy

of a material, if a constant value for the refractive index difference An can be assumed

along the direction of light propagation. In this case, for a birefringent sample having

depth H, along the direction of light propagation, the retardance and optical anisotropy

are related by the expression

6 _ AnH (5.3.4)
27r A,

where A, is the wavelength of the incident light. Provided this relationship is valid,

Eq. (5.3.1) and (5.3.4) can be combined and separate measurements of birefringence An,

and mechanical stress Ao-, can be combined to determine the stress-optical coefficient C.

Measurements of flow-induced birefringence were made at an ambient tempera-

ture of 23 ± 1 'C, with a Taylor-Couette (TC) cell (R1 = 15 mm, R 2 = 17 mm, gap

d = R2- R, = 2 mm, optical path length of H = 20 mm) using the optical analyzer

module (OAM) on the ARES rheometer and the same forward-backward stepped shear

rate procedure described in (Helgeson et al., 2009b). The time-averaged values are

shown in Figure 5.3.1. Eq. (5.3.1) and Eq. (5.3.3) may be rearranged to obtain a linear

relationship of the stress-optical rule between the quantity 11 An sin(2E) , and the shear

stress r-y. From Figure 5.3.1, it is clear that this relationship holds for low stresses. The

onset of a breakdown in the stress-optical rule coincides with y - A- 1 for both fluids.

On account of the finite spot size of the incident laser (dspt ~ 1 mm), measurements at
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Figure 5.3.1: Flow-induced birefringence and shear stress against shear rate as measured
using the optical analyzer module (OAM) on the ARES rheometer at 23+1 *C: (a) 100:60
mM CPyCl:NaSal system, C = -1.1 x 10-7 Pa- 1, (b) 30:240 mM CTAB:NaSal system,
C = -3.8 x 10-7 Pa 1 . The stress-optical coefficient of each system was determined
from the linear portion of the data corresponding to shear rates with constant shear
viscosity qo. The data are plotted semi-logarithmically to accommodate the large range
of shear rates. Inset plots on log-log scale. The dashed lines indicate the flow curve
given by -r; = yo' for each system.

shear rates coinciding with shear-banding 'Y> 1, may correspond to spatially averaged

quantities across the width of the gap. The flow at shear rates y> 2 s-1 in the TC cell

was also prone to foaming and air entrainment leading to further uncertainty in bire-

fringence measurements and therefore optical data at these shear rates have not been

included in Figure 5.3.1.

For the CPyCl:NaSal system, C = -1.1 x 10-7 Pa- 1, which is very close to the

value given by Hu & Lips (2005), listed in Table 2.2.1, for a similar system, but it is a

factor of two smaller than the value given in the initial work by Rehage & Hoffmann

(1991) for the same system studied here. The magnitude of C = -3.8 x 10-7 Pa- 1, for

the CTAB:NaSal system is greater by about 20% than the reported value for similar

systems given by Shikata et al. (1994).
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5.4 Experimental Methods for Microfluidic Rheom-

etry

The basic components for each experiment consisted of a microscope, an imaging sys-

tem, test geometry and fluid, glass syringe (Hamilton Gastight), and a syringe pump,

PHD 4000 programmable pump (Harvard Apparatus). Syringes were connected to test

geometries using Tygon@ microbore tubing (inner diameter 0.508 mm) (Cole Parmer

Instrument Co.). In all tests, the length of the tubing was kept to a minimum (10 cm)

in order to reduce compliance in the entire system, thereby shortening the duration of

experimental transients. Experiments were performed in climate controlled rooms in

which the temperature fluctuated between 22-24 'C for the duration of all experiments.

5.4.1 Microchannel Fabrication

For the microfluidic experiments in the present study, it is necessary to construct a high

aspect ratio channel, precluding the use of most lithographic techniques. Therefore, the

microchannel was manufactured using a technique similar to that described by Guillot

et al. (2006). Two anodized, 1 mm x 2 cm x 8 cm aluminum strips were used to

construct the sidewalls of the channel as shown in Figure 5.4.1. The inside walls of

the channel were polished with 2000 grit sandpaper and thoroughly cleaned. A spacer

was placed between the two strips to ensure a constant width between the strips, and

they were glued together with a two-part epoxy (Devcon). Once the epoxy had set, the

spacer was removed and the distance between the strips was checked with an optical

microscope in order to ensure that the channel walls were parallel, to within fabrication

errors of t5 pm. Thin layers of the same epoxy were spread on the top and bottom of

the strips and 150 pm thick microscope cover slips were pressed onto the adhesive. Care

was taken to ensure that no epoxy seeped into the channel. Luer stub adapter syringe

tips were then adhered to the channel at both ends and additional epoxy was added

where needed to ensure the channel was sealed. The dimensions of the straight channel

used in this study were width W = 130 ± 5 pm, height H = 1, 000 t 10 pm, and length

L = 5 cm.
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Figure 5.4.1: (a) Perspective view of straight microchannel. (b) Cross-section of straight
channel. Schematic depiction is roughly to scale.

5.4.2 Micro-Particle Image Velocimetry

Micro-particle image velocimetry (p-PIV) is a correlative technique, in which one im-

ages the temporal displacement of micron sized particulate markers, convecting with a

flowing fluid in order to infer the local fluid velocity field (Raffel et al., 1998), as shown

in Figure 5.4.2. The p-PIV experiments utilize epifluorescent illumination, whereby the

entire volume of a region of flow is illuminated and the spatial resolution of all mea-

surements must be controlled by selecting suitable optical components (Meinhart et al.,

2000).

Both test fluids were seeded with 0.02 wt.%, dp = 1.1 pm diameter fluorescent parti-

cles (Invitrogen), having excitation and emission wavelengths of 520 and 580 nm, respec-

tively. For neutrally buoyant uncharged particles, the volume fraction of the seed parti-

cles is approximately as <D = 2 x 104, for which the Einstein correction (Larson, 1998),

is used to predict a minimal increase in viscosity, 7 = 70(1 + 2.54D + O(<D2)) = 1.0005770.

The p-PIV system utilizes epifluorescence microscopy (TE-2000, Nikon, Melville,

NY) and is discussed in detail elsewhere (Rodd et al., 2005). This system consisted

of a 1.4 megapixel (1376 x 1024 pixels) CCD camera (PIV-Cam 14-10, TSI Instru-

ments, Shoreview, MN) with spacing between pixels, e = 6.45 pm, and a double-pulsed

532 nm Nd:YAG laser (LaVision, Ypsilanti, MI) with pulse width, Rt = 5 ns. A G-
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Figure 5.4.2: Schematic depiction of p-PIV and FIB raw signal measurements on micro-
scope. The xyz-coordinate system is centered along the centroidal axis of the rectangular
channel.

2A filter was also used to allow only the emitted light with wavelengths, A > 580 nm

to enter the camera. For a given flow rate, the elapsed time between consecutive im-

age pairs At, (1.2 < At < 60, 000 ps), was selected to achieve a particle displacement

(2dp < Ax < 7.5dp) suitable for analysis.

Measurements of velocity profiles in the channel were completed with a 10x 0.25 NA

objective. This objective yielded a viewing area encompassing the entire channel width

and approximately 1 mm sections along the length (x-axis) of the channel. For the cam-

era and objective used here, the distance over which sample features may be considered

in focus is the depth of field, which is 6z = 15.8 pm. The depth of measurement (Mein-

hart et al., 2000), which is equal to the distance over which additional particles within.

its vicinity of the focal plane contribute substantially to the overall signal detected by

the camera, is 6 zm = 47.3 Pm.

At least 35 consecutive image pairs were ensemble-averaged to determine full-field

maps of the steady flow velocity profiles using a conventional cross-correlation PIV

algorithm (TSI Insight software). Interrogation windows of 16 x 16 pixels were used

in the correlation scheme, hence the uncertainty in the y-positions of a velocity vector

are the width of the interrogation window, corresponding to the error bars parallel to
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the y-axis shown in velocity profile plots. Each quadrant of an interrogation window

was overlapped by the respective quadrant of an adjacent window. Post-processing to

remove spurious velocity vectors and any subsequent data analysis of the velocity profiles

was completed using MATLAB (Mathworks, Natick, MA) with a script written by the

authors.

A series of measurements were taken at focal planes with a spacing of 50 pm across

the channel height. The bottom of the channel was identified as the lowest plane for

which a stationary fluorescent particle was in focus. The uncertainty in the vertical

position of a focal plane was accordingly the depth of field 5z. Measurement planes

more than 450 pm above the bottom of the channel, were found, in general, to capture

an insufficient number of particles to determine velocity fields. This weakened signal

was attributed to reduced light intensity at higher image planes caused by reflection and

absorption of light at lower imaging planes.

The average x-component of the velocity profile at a particular y-position was deter-

mined from the ensemble average of all the measured x-velocities in the viewing area at

that particular y-position. The error in the value of the x-velocity, therefore, was taken

as the standard deviation of the ensemble average, corresponding to the longitudinal er-

ror bars in velocity profile plots. The cross-channel, y-components of the velocity profile

were found to be negligibly small in comparison to the x-component at any position in

the channel.

5.4.3 Measurement of Birefringence in a Microchannel

The ABRIOTM imaging system (CRi, Inc.) is a commercially available instrument orig-

inally designed to measure the birefringence of biological samples. The system can

measure retardance to within 0.02 nm and yields much higher spatial resolution (pixel-

size Ax, Ay ~ 1 pm) than can be obtained with the 1 mm spot size of the ARES OAM

system. In the present study, the ABRIO system has been adapted in order to measure

the birefringence of flowing complex fluids in microscale geometries. The optical train

of this device is shown in Figure 5.4.3. The basic components of the device are the

interference filter and circular polarizer, the liquid crystal compensator optic and the
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Figure 5.4.3: ABRIO Optical Train.

CCD camera.

The white light source, interference filter and circular polarizer together provide a

monochromatic (A, = 546 nm), circularly polarized light wave. The beam then impinges

on a birefringent sample and reports both a local retardance 6(x, y), and an orientation

angle E(x, y), which by definition, for the ABRIO system corresponds to the angle

between the slow optical axis of the sample and the optical axis of the analyzer, (which

for these experiments coincides with the x-axis as described below). For the WLM

systems studied here, the stress-optical coefficient is negative (C < 0), and hence the

slow optical axis, with angle E, is perpendicular to the azimuthal angle x, corresponding

to the direction of stretching of the molecules. Thus for the systems in this study,

E = X + I, and the azimuthal angle conventionally reported in birefringence studies and

orientation angle reported by the ABRIO system are different quantities.

After passing through the sample, the wavefront then passes through a liquid crys-

tal compensator containing two birefringent elements with fixed orientation angles and

variable, but known retardances, 6a and 6b, and a linear polarizer with a fixed orienta-
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tion. The emerging beam then impinges on a CCD array detector, which measures the

pixelwise intensity of the beam. Provided there is perfect transmittance and no offset

of the intensity signal, the ratio of this measured final intensity, I(x, y), and the initial

intensity of the beam, Ii,(x, y) is obtained from Mueller calculus (Fuller, 1995), and is

given by the following relationship:

I= 1+cos(J) sin(2E) sin(J)+cos(J) cos(6) sin(6a) - cos(2E) sin(J) sin(6a) sin(Jb)
'in 2 L a)s(2)csbJ

(5.4.1)

where for compactness, the local spatial variation of each of the quantities 6, e and I

has not been explicitly indicated.

The operating principles of the ABRIO system are discussed at greater length by

Shribak & Oldenbourg (2003). When evaluating a single birefringence image, the ABRIO

system records five distinct images, varying the birefringence of the liquid crystal com-

pensator and imposing a swing angle ,p, whose value depends on the prevailing specimen

retardance, according to the five frame algorithm listed in Table 5.4.1. From these five

images, a single full-field map of retardance and orientation angle is generated (see

Figure 5.4.2). The five separate measurements are required to apply the background

correction, account for any absorbance of light by the sample or an offset of the inten-

sity signal and to ensure equal sensitivity for all sample orientation angles. The exposure

time of each frame depends on the sample birefringence, but it is generally 0.02 to 0.1

seconds.

Once the five intensities have been measured at the specified combinations of 6a and

6b given in Table 5.4.1, Eq. (5.4.1) can be simplified and the local values of two intensity

ratio parameters, A(x, y) and B(x, y), may be calculated from the following relationships

A = 11-12 tan - = sin(2e) tan(S)
I1 +I2 - 21o 2 (5.4.2)

B = 1 - 1 tan -) = cos(26) tan(6)I4 + 13 - 2I0 (2 /

where again the spatial variation in the intensities, 6, and 6 have not been explicitly

indicated. The local values of the retardance, 6(x, y), and orientation angle, e(x, y), at

each point can then be finally calculated from the expressions
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Table 5.4.1: Five frame algorithm for the ABRIO system. For each frame, a unique
combination of Ja and Jb is used, and the corresponding measured intensity is related
to the birefringence of the imaged sample by Eq. (5.4.1). The set of five measured
intensities are then used to determine the parameters A and B given by Eq. (5.4.2),
which are then used to determine the sample retardance 6, and orientation angle e,
with Eq. (5.4.3) and Eq. (5.4.4).

Frame 6a 6b Measured
Number Intensity

0 7r/2 _r I_

1 /2- v ir I1
2 -r/2+ 7r 12
3 7r/2 7r - o 13

4 7r/2 -r + W 14

arctan(v/A2 + B 2) if 11 + 12- 21o 0 (5.4.3)
7r - arctan(VA2+B 2) if I1 + 12- 21o < 0

arctan(A) for A > 0 & B > 0

E= + arctan (A) for B < 0 (5.4.4)

r + arctan () forA<0&B>0

The ABRIO system can also apply a separate background correction to account for

any residual birefringence of the sample. This feature is especially useful for FIB imaging

as the optical anisotropy of the fluid sample at rest should be identically zero. The cor-

rection is made by recording a user-specified background image, to calculate the reference

values of Abg(X, y) and Bbg(x, y) from Eq. (5.4.2) for the image, and then subtracting the

values of Abg(X, y) and Bbg(x, y), respectively, from the values of Aim(x, y) and Bim(x, y)

from all subsequent images, to obtain the corrected values of A(x, y) and B(x, y). This

correction is only applicable in the small retardation limit (Li & Burghardt, 1995), when

the retardance of the sample and background are small compared to the wavelength of

incident light (Shribak & Oldenbourg, 2003).

Measurements of FIB in the microchannel were completed with a 20x 0.5 NA ob-

jective with the bottom plane of the channel in focus. In order to minimize possible

blurring of the measured birefringence, the half angle of the incident cone of light as set
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by the condenser aperture was 20, which was the minimum collection angle for which

the ABRIO system could obtain a strong enough signal to take measurements. Mean

birefringence profiles 6(y) in the fluid across the channel width were calculated from the

full field images 6(x, y) using the same streamwise averaging employed for the veloc-

ity profiles. In order to determine if stress-induced birefringence in the channel itself

was significant, glycerine, a non-birefringent Newtonian fluid, was pumped through the

channel using the syringe pump at a flow rate of Q = 300 bpL/hr, corresponding to a

relatively high calculated wall shear stress of -r = 30 Pa (-h, ~ 30 s-1 ). At this wall

shear stress no appreciable change in the birefringence (6 < 3 x 10-3 rad) of the channel

was observed.

5.5 Results and Discussion

5.5.1 Dimensional Analysis

For steady, two-dimensional flow with volumetric flow rate Q, in a channel of width W,

and height H, (W < H) the average velocity is (U) = Q/WH. Hence the characteristic

deformation rate in the channel is j0 = (U)/W, and the Weissenberg number can be

defined as

Wi = (5.5.1)

The experiments reported here correspond to 10-1 < Wi < 103. For Wi ~ 1, defor-

mations occur on timescales roughly equal to the relaxation time of the fluid and the

onset of non-Newtonian behavior is to be expected. As the magnitude of the Weis-

senberg number is increased, strong departures from Newtonian behavior are observed,

including shear-thinning and considerable optical anisotropy.

The Deborah number is defined as the ratio of the fluid relaxation time to a char-

acteristic timescale for the flow (Dealy, 2010); which here can be considered to be the

residence time of the fluid in the channel for a particular observation distance,

A (U)_
De = (5.5.2)

Lobs
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where Lob, is the distance downstream of channel entrance, at which the flow is observed.

The magnitude of the Deborah number gives an indication for how fully-developed the

flow is expected to be at the point of observation. For De < 1, the residence time is

sufficiently long for viscoelastic memory effects to have decayed. In the microchannel

experiments, 10-3 < De < 10.

The relative importance of inertia and viscosity is characterized by the Reynolds

number

Reo = p(U)Dh (5.5.3)

where the hydraulic diameter is Dh = 2HW/(H + W) $ 2W = 260 Mm for this chan-

nel. For the range of flow rates observed in this study, (10 pL/hr < Q < 104 pL/hr),

the Reynolds number is 10--8 Reo < 10- 3, indicating that inertial turbulence is never

a possibility. If the strong rate dependence of the characteristic viscosity of micellar

fluids (i.e. r/('c)) is accounted for, using the flow curves measured with VROC in Fig-

ure 5.2.1, then values of Re(yc) are higher, but never exceed unity, which is again far

from the critical Reynolds number required for the onset of turbulence (Re, - 2000).

The values of Reo obtained can also be used in an appropriate correlation for determin-

ing the entrance length for establishing a fully-developed flow with a Newtonian fluid,

Le/Dh = [(0.631) 1.6 + (0.0442Reo)1. 6]1 / 1.6 (Durst et al., 2005). According to this corre-

lation, for Reo < 1, Le d 0.631Dh < Lob,, thus arguments based on viscous Newtonian

fluid mechanics would indicate the flow is kinematically fully-developed. The effect of

shear-thinning on the entrance length has also been investigated by Poole & Ridley

(2007), who determined that the entrance length increases at most by 40% beyond the

Newtonian result in the creeping flow limit. As shown in Section 5.6, however, viscoelas-

ticity complicates this picture because of a convective coupling between evolving velocity

and stress profiles.

An additional dimensionless ratio is the elasticity number, which compares the mag-

nitude of elastic stresses to inertial effects in the flow,

Wi Mr_ T1,Oc2
Elo =- - - (5.5.4)

Reo pWDh p(U)2
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This parameter is independent of the kinematics of the flow, since it depends only on the

properties of the fluid and dimensions of the channel. For the present tests the values

given in Table 3.3.1 indicate that ElCPyCI = 7.0 x 107 and Elf TAB = 2.4 x 106. Alterna-

tively, one could define a rate dependent elasticity number using the measured first nor-

mal difference El( c) = N1 ( c)/p(U) 2 = Ji/pW2 = 1.6 x 10' for both the CPyCl:NaSal

and CTAB:NaSal systems. These large values of the elasticity number are unique to

flows in microchannels, and they indicate that inertial effects are negligible compared

to elastic stresses. Microfluidic rheometry thus enables measurements of the rheological

behavior of complex fluids at high shear rates in the absence of inertial complications.

5.5.2 Flow Kinematics

Velocity profiles were measured at successive positions, (-0.5 < -- < 0.5) across
_H -

the height of the channel at a fixed observation point downstream (L,,b = 3.5 cm,

Lobs/Dh = 134). Within statistical uncertainty, flow profiles were observed to be invari-

ant along the z-axis for heights corresponding to <-| < 0.4. Profiles measured between

approximately 200 and 300 pm above the bottom of the channel (0.2 < -L < 0.3) are
-

reported as the characteristic two-dimensional velocity profile for a given Wi, similar

to the approach of (Nghe et al., 2008). To verify this assumption of a characteris-

tic velocity profile, the measured velocity profiles were numerically integrated across the

channel width to determine the average measured plug velocity Up = - Eu ,Ay at that

value of -:- to be compared against the imposed nominal velocity (U). For all profiles,

1 < Up/(U) < 1.15, indicating that wall effects due to the finite aspect ratio of the chan-

nel effectively reduces the channel cross section by less than 15%, with three-dimensional

effects thus confined to } ;> 0.4.

Velocity profiles for the CPyCl:NaSal solution are shown in both dimensional and

scaled dimensionless form in Figure 5.5.1 for 1 < Wi < 45. The profiles appear to

extend beyond the channel width, on account of some variability in the width of the

channel (±5 pm) and the finite spatial error in the velocimetry measurements (5 Mm).

The most general feature in these profiles is the transition from a mixed Newtonian and

shear-banding profile at low Wi $ 1 to a very markedly shear-banding, nearly perfect
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Figure 5.5.1: Representative dimensional (a) and non-dimensionalized (b) velocity pro-
files for 100:60 mM CPyCl:NaSaI at different Weissenberg numbers in the rectangular
duct taken at 0.2 < -L < 0.3 above the bottom of the channel at Lob, = 3.5 cm
(Losl/Dh = 134).

plug-like profile, with ux,max = (U) at moderate Wi. At higher Wi > 10 a departure

from perfect plug-like flow is observed, with ux,max > (U), and a progressive increase in

the thickness of the shear-banding layer with Wi.

An additional noteworthy feature in the velocity profiles of the CPyCl:NaSal system,

especially at low Wi < 5 is what appears to be evidence of wall slip between the fluid

and the channel walls. At the lowest flow rate this apparent slip may be an artifact of

very thin shear-banding layers near the walls, which were too thin to be resolved by the

p-PIV system. The expected thickness of the shear-banding layers can be estimated by

assuming the previously described, classical picture of a shear-banding fluid, whereby the

shear rate within the band is assumed to be 2 ~ 500 s-1 which lies at the right hand end

of the stress plateau for the CPyCl:NaSal system presented in Figure 5.2.1 (a). To first

order, this thickness of the shear-banding layer is 1SB 92- (U)/z 2 . For Wi = 1, the average

velocity is (U) = 47 pm.s- and hence 1SB ~ 0.1 pm. At Wi = 5, (U) = 180 pm.s- 1 ,

the thickness only increases to 1SB ~~ 0.4 pm. For the p-PIV system used for these

experiments, the minimum resolvable feature e/M = 0.65 pm and accordingly the shear-

banding layer is too thin to be resolved by 1 -PIV at low Wi.

Dimensional and dimensionless velocity profiles of the CTAB:NaSal solution are
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Figure 5.5.2: Representative dimensional (a) and non-dimensionalized (b) velocity pro-
files for 30:240 mM CTAB:NaSal at different Wi in the rectangular duct taken at

0.2 < -L < 0.3 above the bottom of the channel at Lob, = 3.5 cm (Lobs/Dh = 134).

shown in Figure 5.5.2. This solution exhibits a very clear transition from a parabolic-

like velocity profile associated with the flow of a Newtonian fluid at low Wi < 1, to a

flatter U-shaped velocity profile characteristic of the flow of a moderately shear-thinning

fluid at moderate to high Weissenberg number (Wi > 1). To within experimental un-

certainty (error bars not shown in Figure 5.5.2), measured fluid velocities within 5 pm

of the wall are equal to or less than about 15% of the maximum velocity in the channel,

UW < 0.15uma,. Accordingly, wall slip is not a significant contribution to the flow profile

at any flow rate.

5.5.3 Birefringence and Stress

Evolution of the Birefringence Profiles

As the fluids flow down the length of the channel, the local deformation rate and therefore

the optical anisotropy varies along both the channel width and length, such that one

can expect ,(x, y), 6(x, y) and e(x, y). In order to observe the evolution of the optical

anisotropy in the channel, full-field pseudocolor retardance maps, for which the imaged

channel area was (Axim, Ayim) = (700 pm, 130 pm), were obtained at Lob, = 1.5, 2, 2.5,

3, 3.5 and 4 cm (LboS/Dh = 58, 77, 96, 115, 134, 154) downstream from the inlet of
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the channel. Since Axim < L, and variations in 6 are typically small in the x-direction

within the field of view Axim, the local quantity 6(x, y) can be averaged over the flow

direction for each image, to obtain the averaged one-dimensional profiles of 6(y) shown

in Figure 5.5.3. For these measurements, a background image was taken without the

channel in view, in order to apply the background correction for the residual birefringence

of the optical train only. This approach facilitated observation of the flow-induced

birefringence at different positions along the length of the channel without biasing the

background correction at all channel positions with that of a single, particular location

in the channel. Accordingly, any residual birefringence of the channel, though small

compared to the FIB of the flowing fluid, is not accounted for in these images.

For a particular value of Wi, the Deborah number De, is the dimensionless quantity

that dictates how fully-developed one can expect the viscoelastic flow and the optical

anisotropy to have become (Dealy, 2010). For Wi < 75, the Deborah numbers corre-

sponding to the different Lob, listed above are all less than unity, and the retardance

profiles were observed to reach a fully-developed profile within the channel length. The

spatially fully-developed nature of the flow is revealed by the superposition of retardance

profiles with decreasing De shown in Figure 5.5.3. For Wi > 75, the higher velocities

result in Deborah numbers (corresponding to the different observation positions Lobs) of

order unity or greater indicating that within the length of the channel a fully-relaxed

stress profile could not be obtained. Thus spatially-developing FIB profiles were observed

through the entire length of the channel.

Background Corrected Birefringence Profiles

Measurements of retardance 6(x, y), and azimuthal angle x(x, y), for which the residual

birefringence of the channel was corrected, were taken at Lob5 /Dh = 134. Full-field

pseudocolor plots of CPyCl:NaSal retardance, are presented in Figure 5.5.4. For fully-

developed flow, the quantities 6(x, y) and X(x, y) can be averaged in x, to obtain the

steady profiles of 6(y) and x(y) at a selection of Wi, for which De < 1, shown in

Figures 5.5.5.

At low Wi < 5, the retardance profiles increase linearly from the centerline of the
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Figure 5.5.3: Retardance profiles at different Deborah numbers, De, (corresponding to
different Lob,) in the rectangular duct. Error bars correspond to the standard deviation
of the retardance values. (a) 100:60 mM CPyCl:NaSal. Wi = 45, Q = 1000 pL/hr. (b)
30:240 mM CTAB:NaSal. Wi = 67, Q = 2500 pL/hr.

channel to the wall, taking on a characteristic V-shaped profile. Since r, varies linearly

across the channel for rectilinear pressure-driven flow, the linear variation in 6 indicates

that the shear stress ry, is the predominant contribution to Ao-, given by Eq. (5.3.2).

The contributions from the normal stress difference N 1, are confined to a thin region near

the wall and are negligibly small for low Wi. For increasing Wi > 10, regions of high,

but localized, retardance develop near the walls yielding a U-shaped profile, indicating

the growth in the thickness of high shear rate bands. The change in retardance at the

middle of the channel with increasing Wi is much more gradual when compared to the

rapid change in the high shear rate regions near the walls. At higher Wi, however,

the retardance along the channel centerline is finite indicating non-zero normal stress

difference along the center of the channel. The increased contribution of elastic stresses

even in regions of low shear rate near the channel centerline can be rationalized by

the possibility of diffusion of elastic stresses due to the importance of non-local effects

(discussed in Chapter 4) that have been documented in the microfluidic flows of other

complex fluids (Masselon et al., 2008), and recently studied numerically (Cromer et al.,

2010).

The azimuthal angle profiles exhibit odd symmetry about the centerline of the chan-
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Figure 5.5.4: Pseudocolor plots of retardance maps for the 100:60 mM CPyCl:NaSal
solution in the rectangular duct at Lob, = 3.5 cm (LosS/Dh = 134). Color bar indicates
linear scaling in retardance for each image. Areas beyond the channel width are shown
by the black bands.
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Figure 5.5.5: Experimental retardance and azimuthal angle profiles at increasing Wi
for the 100:60 mM CPyCl:NaSal solution in the rectangular duct at L,,b = 3.5 cm
(Lobs/Dh = 134). (a) Retardance Profiles. (b) Azimuthal Angle Profiles.

nel. At low Wi, the azimuthal angle is x = -45' (G) and x = 450 (2) on opposite sides

of the channel width. These limiting values for x predicted by Eq. (5.3.3) also confirm

that ry is considerably greater than N for this flow rate, with the change from -450

to 450 arising from the change in sign of ry on opposite sides of the channel. With

increasing Wi, the azimuthal angle approaches 00 at all points in the channel, further

confirming the presence of elastic stresses and high molecular alignment in the direction

of flow along the channel centerline.
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Background corrected measurements of the birefringence in the CTAB:NaSal system

were also taken at Losb/Dh = 134. Pseudocolor plots of retardance are shown in Fig-

ure 5.5.6 and the resultant spatially-averaged retardance and azimuthal angle profiles

are presented in Figures 5.5.7. For all Weissenberg numbers, retardance profiles take

on a consistently V-like shape, indicating that there are no banded regions of localized,

high shear rate and normal stresses that cause high, localized retardance near the walls.

As seen in the CPyCl:NaSal system, at higher flow rates for the CTAB:NaSal system,
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the retardance along the channel centerline is finite, and the retardance profiles increase

monotonically from the centerline to the wall for all Wi. For the sake of visual clarity,

however, error bars have not been shown in Figure 5.5.7. Beyond Wi ~ 1, the retardance

profile increases substantially and appears to saturate near the wall for Wi > 30.

Anti-symmetry in the azimuthal angle profiles about the channel centerline may

also be seen for this system. However, even for the lowest Wi examined here seen in

Figure 5.5.7 (b), the azimuthal angle did not attain the limiting values of x = +450, in-

dicating that the elastic stresses were substantial enough to partially align the molecules

in the flow direction at all positions across the width of the channel. For high Wi, the

azimuthal angle again approaches 00 across the entire channel, indicating high molecular

alignment in the flow direction.

5.5.4 Comparison of Measurements with Theoretical Predic-

tions

In order to validate the birefringence microscopy system for use in optical rheometry, the

stress-optical rule is assumed to be valid and the predictions of the Ellis model introduced

in Section 3.3.2 for pressure-driven rectilinear flow are compared to the independent

measurements of flow kinematics and FIB. Although this model is only a generalized

Newtonian fluid model, it has been selected here because it can compactly capture both

the zero-shear viscosity and the rate-dependent shear-thinning regime of the fluid and

can be used to obtain an analytical result for the velocity profile in the channel (given

in Eq. 5.5.7 below). For fully-developed, inertialess flow along the x-axis of the channel

with W < H < L (here H/W ~ 8), the governing equation of motion is

P OT" (5.5.5)
ax - y

where rx is the shear stress and P is mechanical pressure. This equation may be

integrated directly with the boundary condition y = tW, Txy = T-T, to obtain rx(y)

-rW, where -r,,=- . Eq. (3.3.7) may be multiplied by the shear rate, ', and with

rearrangement, one may obtain the following relation between the velocity gradient and

shear stress.
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Figure 5.5.8: Representative experimentally-measured and theoretically-predicted veloc-
ity, retardance and azimuthal angle profiles at low Wi in the rectangular duct . Data
are taken at 200 to 300 pm above the bottom of the channel at Lo,,/Dh = 134. (a)-(c)
100:60 mM CPyCl:NaSal (blue profiles), Wi = 1, Q = 25 pL/hr. (d)-(f) 30:240 mM
CTAB:NaSal (red profiles), Wi = 0.7, Q = 25 pL/hr.

du
dy 77o +71/2

(5.5.6)

Substitution for Trxy(y) in Eq. (5.5.6), integration and application of the no slip boundary

condition u, = 0 at y = 1 yields the resultant velocity profile:

ux = 2T W
4qo

E- +-1

+ 2 T
a + 1 r1/2

The average velocity is

1 fW/2
1 J-W/2 udy = (U)

W _W/2

Q
WH

6T 
W=6- --W
-1 3

+a + 2

( 1
a+1-

W
(5.5.7)

(5.5.8)(; -1

71/2

In the limiting case of a = 1, Eq. (5.5.7) and (5.5.8) reduce to the standard result for

a Newtonian fluid with viscosity p = 1yo, where the factor of . results from Eq. (3.3.7).

Since the flow rate Q, is prescribed in the present study, the wall shear stress rw must

be determined implicitly from Eq. (5.5.8) in order to determine the velocity profile for
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a given Q. In this manner, the predicted velocity profiles shown in Figures 5.5.8, 5.5.9

and 5.5.10 were obtained for comparison with the experimentally measured results.

For fully-developed viscous flow of any fluid in a high aspect ratio duct, the shear

stress varies linearly with position between -- r, < -r, < -r, and it is therefore neces-

sarily zero at the centerline of the channel. For a given volumetric flow rate Q, the

shear stress at all positions across the width of the channel can be determined, once Tr

is calculated from Eq. (5.5.8). In this way, the Ellis model was used to predict the

shear rate profile, while the distribution of the first normal stress difference across the

channel was predicted by interpolation of rotational rheometer data for N1 (i), with

the local shear rate calculated from the spatial gradient -(y) = &u,/Oy in Eq. (5.5.7).

When the imposed flow rate is so high that the resulting calculated shear rate at a

particular y-position across the channel is higher than the shear rates for which data

from the rotational rheometer could be obtained, no comparative data have been plot-

ted. The calculated values of deviatoric stresses, Txy(y) and N1(y), were then used to

calculate the principal stress difference A-(y) from Eq. (5.3.2). This value can then be

used to predict the expected optical anisotropy An(y), from the stress-optical rule in

Eq. (5.3.1). Finally, the optical anisotropy can be related to the measured retardance

6(y), using the assumption that variations in the flow along the height of the channel are

negligible so that An is invariant along the the z-axis. The anticipated azimuthal angle,

which indicates molecular orientation, was calculated from Eq. (5.3.3). For the results

presented here, x = 00 coincides with the direction of flow (x-axis), with x increasing

counterclockwise, such that X = 900 coincides with the y-axis.

At very high flow rates, the flow is not spatially fully-developed and exhibits stream-

wise variations as can be seen, for example, in the axial variations in retardance for

Wi = 266 in Figure 5.5.6. Therefore, the quantitative analysis is restricted to Wi < 67

and De < 1 where the flow is fully-developed and steady (see Section 5.6 for addi-

tional discussion). A comparison between model predictions and experimental results for

Wi ~ 1 are shown in Figure 5.5.8. The velocimetry measurements for the CPyCl:NaSal

system reveal a Newtonian-like core surrounded by thin shear bands of fluid with high

local shear rate. The linear increase in 6(y) with y in the core region is also quantitatively
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Figure 5.5.9: Representative non-dimensionalized experimental and predicted velocity
(a)-(c) and retardance (d)-(f) profiles at different Wi for the 100:60 mM CPyCl:NaSal
system in the rectangular duct at Lb 8/Dh = 134. (a) & (d) Wi = 5, Q = 100 pL/hr.
(b) & (e) Wi = 11, Q = 250 pL/hr. (c) & (f) Wi = 45, Q = 1000 pL/hr.

described by the Ellis model, confirming the validity of the stress-optical relationship

for this micellar system as well as the utility of this model in predicting fully-developed

channel flow of viscoelastic micellar liquids at low Wi. Note that the centerline retar-

dance in Figure 5.5.8 (b) is 6 = 2.5 x 10-3 rad (r = 0.22 nm, An = 2.2 x 10-7) which

is small enough to be in the experimental noise limit of the ABRIO system, confirm-

ing that spatial blurring due to the finite aperture of the incident light is negligible.

Similar profiles for the shear-thinning CTAB:NaSal system at Wi = 0.7 are shown in

Figure 5.5.8. The predicted velocity profile captures the measured results in the core

of the flow, and the profiles near the walls agree within experimental uncertainty. The

predicted retardance profile also agrees with experimental values in the middle of the

channel. The model over-predicts retardance near the walls due to the anticipated pres-

ence of normal stress there and the gradual breakdown in the stress-optical rule seen

for y > 0.5 s-1 in Figure 5.3.1 (b). The measured azimuthal angle also differs from the

predicted values indicating higher than anticipated molecular alignment with the flow

even at this low Wi.
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Now that the ability of the p-PIV system and the microfluidic birefringence measure-

ments to probe quantitatively the kinematics and state of stress in a flowing complex

liquid at moderate Weissenberg number has been established, these techniques are used

to explore strongly viscoelastic channel flows for larger Wi. A series of profiles for the

CPyCl:NaSal system at Wi > 1, but De < 1 are shown in Figure 5.5.9. The Ellis model

predictions capture the general form of the experimentally-measured velocity and retar-

dance profiles at Wi = 5 to within experimentally resolvable limits. The discrepancy

between the model predictions and experimental results increases at high Wi. The sys-

tematic underprediction of the velocity in the plug-like core may be due to the confining

effects of the upper and lower channel walls. The finite aspect ratio of the channel

(A = 7.7) necessitates a higher effective plug velocity than the prediction of the two

dimensional model. Velocimetry measurements at 5 < Wi < 100 also indicate that

three dimensional kinematic effects at the bottom of the channel are confined to less

than 15% of the channel height, as noted before from the numerical integration of the

velocity profiles. This systematic deviation is of the same order as the underprediction

shown in Figure 5.5.9 (b) and (c) (see Section 5.6). Additional uncertainty can be at-

tributed to the inability of the simple Ellis model to capture in any quantitative way the

underlying shear-banding dynamics associated with the CPyCl:NaSal solution as Wi is

increased. Specifically, it cannot describe the evolution in the underlying microstructure

that is associated with the stress degeneracy in the shear-banding regime correspond-

ing to Wi > 1 and which can be observed in the viscometric measurements, shown in

Figure 5.2.1.

With increasing Wi, narrow, localized regions of high retardance emerge near the

walls of the channel, whose intensity increases with increasing flow rate, see also Fig-

ure 5.5.4. These retardance bands confirm the existence of shear-bands in this fluid

and are at least qualitatively captured by the Ellis model. It is noteworthy that the

retardance in the unbanded region of the flow near the center of the channel, where

shear stress should dominate elastic stress, increases only slightly with increasing Wi,

compared to the large increase in retardance in the shear-bands near the wall. This

small change is well predicted by the Ellis model and is a result of the spurt effect
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seen previously for this CPyCl:NaSal system (Mair & Callaghan, 1997; Mendez-Sinchez

et al., 2003), whereby a constant wall shear stress is associated with a many fold in-

crease in the average velocity (U) and thus Wi. Quantitative discrepancies between the

measured and predicted retardance in the banded region of flow, especially for Wi = 45

in Figure 5.5.9 (f), may result from a break down in the stress-optical rule. The valid-

ity of the stress-optical rule was not verified for high shear rates in the shear-banding

regime, - ~ 0(102) s-1, by the measurements shown in Figure 5.3.1 (a), so it is unreal-

istic that extrapolations with this rule well into the stress plateau will yield completely

quantitative agreement with experiment.

In nearly all measurements for Wi > 1, a finite retardance (J > 5 x 10- rad) along

the centerline (y = 0) of the channel is observed, differing from the predictions of the Ellis

model for two dimensional flow. Since a near-zero centerline retardance was observed in

the CPyCl:NaSal at low Wi, it would seem this finite retardance is not an artifact of the

finite aperture of the incident light, and it can be attributed to several different reasons.

Firstly, the measured retardance is the result of an integrated signal along the pathlength

of the incident lightwave through a truly three-dimensional flow. Secondly, errors may

arise from the inability of the model to predict diffusive coupling of elastic stresses from

the regions of high to low shear rate shown in Figure 5.5.7 (b). Microstructural stress

diffusion can lead to non-local effects (Masselon et al., 2008), that are not captured by

the predictions of the simple Ellis model, and more sophisticated models, such as those

discussed by (Olmsted et al., 2000; Vasquez et al., 2007; Cromer et al., 2010) are needed

to capture non-local effects.

Velocity and retardance profiles for the shear-thinning CTAB:NaSal system at Wi > 1

and De < 1 are presented in Figure 5.5.10. In contrast to the CPyCl:NaSal system, the

velocimetry measurements of the CTAB:NaSal solution do not reveal plug-like flow pro-

files even up to the maximum flow rate (Wi = 67) for which velocimetry measurement

were made; the measured and predicted velocity profiles both indicate strong shear-

thinning behavior. No regions of localized, high retardance can be identified in the

birefringence measurements for the CTAB:NaSal system. The Ellis model is capable

of predicting only some of the features observed for the CTAB:NaSal solution at these
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Figure 5.5.10: Representative non-dimensionalized experimental and predicted velocity
(a)-(c) and retardance (d)-(f) profiles at different Wi for the 30:240 mM CTAB:NaSal
system in the rectangular duct at LOb/Dh = 134. (a) & (d) Wi = 3, Q = 100 pL/hr.
(b) & (e) Wi = 7, Q = 250 pL/hr. (c) & (f) Wi = 67, Q = 2,500 pL/hr.

Weissenberg numbers. As Wi is increased, the agreement between the experimental and

predicted velocity profiles is steadily reduced. In particular, using the model parame-

ters listed in Table 3.3.1 for Wi = 67 the measured shear rate near the channel walls is

greater than the predicted value by approximately a factor of two. This deviation from

predicted behavior indicates a more dramatically reduced viscosity than that predicted

by the Ellis model at the corresponding shear rate. Estimates of the shear rate near the

wall at this Wi using the Ellis model are on the order of A ~ 0(102) s-, which coincides

roughly with the apparent stress plateau observed for this fluid in Figure 5.2.1 (b).

Deviations between experimental and predicted results for the CTAB:NaSal system

at high deformation rates may be attributed to the same factors given previously for the

CPyCl:NaSal system, including a breakdown in the stress-optical rule for A- ;> 1 seen

in Figure 5.3.1 (b). The measured and predicted profiles typically differ by a factor of

at least two, which is approximately the extent to which the stress-optical rule fails in

Figure 5.3.1. Additionally, a simple generalized Newtonian model like the Ellis model

can only be expected to capture some of the gross features of the shear rheology of the
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Figure 5.6.1: 100:60 mM CPyCl:NaSal. Wi = 113, Re0 = 1.4 x 10-, Q =2, 500
pL/hr. (a) Uncorrected retardance profiles at different De (different Loi,) in the
rectangular duct. (b) Representative experimental and predicted velocity profiles for
De = 0.43, (LobS = 3.5 cm, z/H = 0.25). (c) Non-dimensionalized experimental veloc-
ity profiles taken at 50 < z < 900 jm above the bottom of the channel for De = 0.43,
(L- = 3.5 cm).

CTAB:NaSal system, since it cannot capture the combined shear-thinning and apparent

shear-banding behavior seen in this system for 30 <y < 100 s- in Figure 5.2.1 (b).

Clearly a more sophisticated viscoelastic constitutive model is necessary to predict ac-

curately the stress field and the resulting birefringence in complex micellar fluids for

Wi >10.

5.6 Three Dimensional and High Weissenberg Num-

ber Effects

In the previous sections, comparisons between experimental results and the predictions

of the Ellis model were made only for dimensionless shear rates corresponding to spatially

fully-developed flow, De < 1. For these conditions, comparison with the steady state

solution of a non-Newtonian constitutive model was appropriate. By contrast, as the

flow rate is increased and the residence time in the channel decreases (corresponding

to De> 1), the flow becomes increasingly unsteady in the Lagrangian frame and the

viscoelastic stresses may not be fully-developed at a particular observation point, Lb8 .

To explore this continuing spatial development in the flow, the birefringence micro-
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scope system is used to plot and compare lateral profiles in the retardance at different

axial positions along the channel. This spatial development in the flow can be noticed,

in particular, in the pseudocolor plot for the flowing CTAB:NaSal solution at Wi = 266

in Figure 5.5.6. At any selected y-position, the birefringence intensity increases in the

direction of flow even over the short distance ALxim = 700 pm of channel length that is

in view in a single microscope image. Furthermore, the magnitude of the peak retar-

dance across the width of the channel decreases with increasing flow rate for Wi > 133

in the CTAB:NaSal system and Wi > 454 in the CPyCl:NaSal system. These results

suggest that at high flow rates, the residence time for material elements in the channel

is insufficient for the local viscoelastic stresses to develop fully.

The evolving retardance profile for the CPyCl:NaSal fluid at Wi = 113 is captured by

the spatially averaged profiles shown in Figure 5.6.1 (a). With decreasing Deborah num-

ber (De = A(U)/L,,b), corresponding to observation distances further along the channel,

the retardance near the middle of the channel (-0.25 < y/W < 0.25) relaxes steadily as

the flow approaches the fully-developed limit, De -+ 0. For this reason, comparisons be-

tween the steady state predictions of Ellis model and the measured birefringence profiles

in Section 5.5.4 were restricted to measurements corresponding to De < 0.25.

The variation in ux(y) and ux(y, z) for the CPyCl:NaSal system at Wi = 113 are also

presented in Figure 5.6.1 (b) and (c), respectively. At this flow rate, the axial velocity

of the plug-like core, measured at z/H = 0.25, is roughly 20% greater than (U). This

core velocity is greater than the axial velocity for the ID profile predicted by the Ellis

model, in part, because the model does not include a finite high shear rate viscosity, so

it under predicts the thickness of the high shear rate regions in the velocity profile which

give rise to the higher core velocity seen experimentally. The higher core velocity is

also caused by the finite aspect ratio of the channel (A = 7.7) giving rise to the vertical

variations in the velocity profile shown in Figure 5.6.1 (c). The variations are confined

to less than 100 pm above the bottom of the channel. The Reynolds number for this

flow rate is sufficiently small (Reo = 1.4 x 10-5) that the estimated entrance length for

the flow kinematics is much shorter than the observation positions, (i.e. Le < LosS), as

given by the correlation in Section 5.5.1. Therefore, the kinematics remain steady and
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close to two dimensional in character, as expected for low Reynolds number flow, and

the evolution in the birefringence profiles observed at high Wi and De can be attributed

to relaxation in the viscoelastic stress field downstream of the abrupt entrance to the

flow channel.

5.7 Summary

The primary goal of the work in this Chapter has been the development and refinement

of non-invasive instrumentation for quantifying the rheological response of complex flu-

ids undergoing high rate deformations in microfluidic devices. Unique to this work

is the adaptation of a commercially available birefringence microscopy system, origi-

nally designed to examine biological systems (Shribak & Oldenbourg, 2003) for optical

rheometry. The greatest strengths of the ABRIOTM system in probing the rheo-optical

behavior of complex fluids are its ease of use and its ability to achieve highly spatially

resolved measurements of the the viscometric flow of a complex fluid as it deforms in a

microfluidic device.

The calibration experiments discussed here focused on the canonical case of flow in

a rectilinear microchannel. p-PIV and FIB measurements of two worm-like micellar so-

lutions were compared against the predictions of a relatively simple constitutive model

in order to demonstrate that the ABRIOTM system can be reliably used for quantitative

optical rheometry. The two test fluids, one a shear-banding 100:60 mM CPyCl:NaSal

system, and the other a shear-thinning 30:240 mM CTAB:NaSal system, were first char-

acterized using conventional macroscale as well as microscale rheometric techniques in

order to determine the viscometric material functions that can then be used to predict

their flow characteristics in more complex microfluidic geometries.

At the low to moderate Weissenberg and Deborah numbers (Wi < 10, De < 1) for

which use of a generalized Newtonian fluid model is anticipated to be most accurate,

there is near-quantitative agreement between the predictions of the model and experi-

mental measurements of the flow kinematics as well as the retardance measured with the

birefringence microscopy instrument. This agreement validates the use of the ABRIO
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system for quantitative optical microfluidic rheometry. At high Weissenberg numbers,

the pL-PIV and FIB results indicate that the material response of the fluids is more com-

plex than can be predicted by such a simple generalized Newtonian fluid constitutive

model. Clearly, simulations with a more realistic microstructurally-based constitutive

model would be necessary for more reliable predictions at high Weissenberg numbers.

Now that the ability of this coupled p-PIV/birefringence microscopy system for studying

a simple rectilinear channel flow has been demonstrated, it can confidently be used for

making FIB measurements in considerably more complex microfluidic flows with mixed

shearing/extensional kinematics, which is the subject of Chapter 6.
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Chapter 6

Microfluidic Optical-Rheometry:

Extension-Dominated Mixed Flow

6.1 Introduction

Microfluidic devices are ideally suited for the study of complex fluids undergoing large de-

formation rates in the absence of inertial complications. In the previous Chapter 5, high

deformation rate shear flows in a microfluidic device were discussed, and in this Chap-

ter, the same measurement techniques will be applied to study extensionally-dominated

flows. In particular, a microfluidic contraction geometry can be utilized to charac-

terize the material response of complex fluids in an extensionally-dominated flow, but

the mixed nature of the flow kinematics makes quantitative measurements of mate-

rial functions such as the true extensional viscosity challenging. In this Chapter, the

'extensional viscometer-rheometer-on-a-chip' (EVROC) is introduced. This device is

a hyperbolically-shaped contraction-expansion geometry fabricated using microfluidic

technology for characterizing the importance of viscoelastic effects in an extensionally-

dominated flow at large extension rates (Aa > 1, where A is the characteristic relaxation

time, or for many industrial processes ia > 1 s- 1). Measurements of flow kinematics,

pressure drop across the contraction and spatially-resolved flow-induced birefringence

are combined to study model rheological fluids as well as several representative liquid

consumer products to assess the utility of EVROC as an extensional viscosity indexer.
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6.2 Experimental Methods for Microfluidic Exten-

sional Rheometry

6.2.1 Microchannel Fabrication and the Hyperbolic Geometry

The microfluidic planar hyperbolic contractions were fabricated in Pyrex using standard

wet-etching techniques by RheoSense (San Ramon CA, USA) as described elsewhere

(Pipe et al., 2008). The pressure measurements were made with a chip constructed

by anodically bonding the Pyrex to a silicon wafer with four flush mounted microelec-

tromechanical systems (MEMS) pressure sensors. This fabrication technique, however,

produces a chip that must be housed in an opaque container, and therefore it could not

be used for flow visualization. Accordingly, a second, transparent contraction of the

same dimensions was fabricated from Pyrex and sealed to a 150 pm thick microscope

coverslip to enable direct flow visualization experiments. An optical microscopy image

and a schematic diagram of the contraction are shown in Figure 6.2.1, with channel

dimensions given in the figure caption. The throat of the contraction was positioned at

the mid-plane of the entire length of the channel (L = 13 mm), but for convenience the

origin of the experimental coordinate system is set to lie along the contraction centerline

and at the beginning of the contraction inlet as shown in Figure 6.2.1 (a). The hyper-

bolic contraction is a unique geometry because it can be used, in principle, to impose a

constant, nominal extension rate, owing to the fact that its cross-sectional area varies

inversely with axial position. Indeed, if the flow is inviscid, or perfect slip at the wall

occurs, for example if the flow is lubricated, then ,, = au/&x = const for a given vol-

umetric flow rate. For real fluids, however, the no-slip boundary condition at the wall

cannot be circumvented and a more detailed analysis of the kinematics is required.

For the contraction depicted in Figure 6.2.1 having length, l, height, h, upstream

width, we, width at the contraction throat, we, the width, w(x), at any x takes the

form w(x) = K/(xo + x), where xo = lcwc/(wu - wc) and K = xowu. Given a constant

volumetric flow rate, Q, through the contraction, the average velocity at any x-position

is u, = Q/hw(x), and so the apparent or nominal extension rate, t, neglecting any

shearing flow induced by the bounding walls is
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Figure 6.2.1: (a) Optical transmission microscope image of the planar hyperbolic
contraction-expansion geometry. Two curves outlining the contraction walls are su-
perimposed on the image. The origin of the experimental coordinate system lies along
the contraction centerline and at the contraction inlet as shown by the dashed white line.
(b) Schematic diagram of the hyperbolic planar contraction and representative pressure
profile, showing the coordinate system and variables used throughout the text. The con-
traction dimensions are h = 200 pm, l = 400 pm, w, = 400 pm and w. = 2920 pm. The
solid squares indicate the approximate size and location of the flush-mounted MEMS
pressure transducers. The schematic depiction is approximately to scale.

Q 1 1
Ea = - (6.2.1)

lh ( w, wU J
The Hencky strain experienced by a fluid element, 6 H, flowing into the contraction is

given by the equation

E Hg(X) = n (6.2.2)

The maximum Hencky strain occurs at the throat of the contraction and is therefore

equal to 6 H = ln(wu/wc). For the specific channel geometry considered here wu = 2920 pm

and w, = 400 pm, so the total Hencky strain is eH = 2.

Subsequent to the hyperbolic contraction region is a symmetric hyperbolic expan-

sion (l x < 21,). This configuration has been designed to generate a kinematically

reversible flow for Newtonian fluids at low Reynolds numbers and thus equal energy dis-

sipation in the contraction and expansion sections. There is a major difference between
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the contraction and expansion, however, in that the direction of molecular extension is

aligned with the flow through the contraction, but perpendicular to the primary flow

direction in the expansion.

6.2.2 Pressure and Kinematics Measurement

Pressure drop measurements were made with the EVROC, which was fabricated with

four inline, 800 x 800 pm 2 MEMS-based pressure transducers along the centerline, fol-

lowing the construction methods described in Baek & Magda (2003). The maximum

measurable pressure of the device was Pmax = 40 kPa, corresponding to the maximum

allowable deflection of the membrane of the MEMS transducer. Measurement preci-

sion is approximately 100 Pa (0.2% Pmczx). The temperature of the chip was controlled

by a thermal jacket (RheoSense Inc.), and an F12-ED Refrigerated/Heating Circulator

(Julabo Inc.). Before each test, the EVROC contraction geometry was washed with

ethanol and deionized water and then a sufficiently large amount of the test fluid was

flushed through the contraction to ensure that there were no air bubbles remaining in

the contraction. The test fluid was then allowed to rest in the microchannel for around

15 minutes, to allow the pressure field to equilibrate, after which the baseline pressure

was measured. All tests were completed with a 2.5 mL Hamilton Gastight glass syringe

(Reno, NV). For a given test fluid, a set of flow rates was selected so as to yield pressure

drops spanning the entire dynamic range of the pressure transducers or to maximize

the pump flow rate (Qmax = 5.2 mL.min- 1 ), whichever occurred first. The sampling

period of each flow rate was selected such that the pressure profile attained a steady

state value. Typically the lowest flow rates required on the order of minutes to become

steady and the highest flow rates required only seconds. Hence, multiple tests were

completed for each fluid to determine the necessary duration of each flow rate and to

ensure repeatability.

Representative pressure profiles along the microchannel are depicted schematically in

Figure 6.2.1 (b). The line labelled 'Plane Poiseuille P-Profile' represents the hypothet-

ical pressure profile that would be measured without a contraction-expansion using an

equivalent microfluidic chip designed for shear rheometry. The profile labelled 'Measured
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Planar Extensional P-Profile' indicates a typical non-linear profile that is measured using

the hyperbolic contraction-expansion geometry. The pressure drop between transducers

2 and 3 is denoted AP 23 . The pressure drop that is of interest for extensional rheology

measurements is the pressure drop associated with the contraction alone, APc, which is

somewhat different from AP 23 . This difference arises because the MEMS transducers

2 and 3 are located some distance upstream and downstream of the contraction en-

trance and exit as a result of fabrication constraints on the minimum relative spacing

between each transducer and to ensure that both transducers lie far enough up and

downstream of the contraction that they lie in regions of the channel where the rectilin-

ear shear flow provides the dominant contribution to the pressure gradient. To calculate

the value of APc, one can use the average of the pressure gradients for X, < X < X 2

and X 3 <X <X 4 to extrapolate the fully-developed shear flow pressure profile in the

upstream and downstream channels to the inlet and outlet of the contraction, similar to

the analysis of Wang et al. (2010). In making this extrapolation, fully-developed, recti-

linear shear flow at low Reynolds number is assumed to dominate between the second

transducer and the contraction inlet and between the contraction outlet and the third

transducer. Accordingly, under the assumption that any possible inertial contributions

to the pressure drop in the contraction region can be neglected, the true pressure drop

across the contraction AP, is related to the measured pressured drop AP 23 , by the

relation

APc = AP 23 1 - -_) L23 21,} (6.2.3)
2 P L

where L 23 = 3.8 mm, L - L12 = L34= 2.5 mm and lc = 400 pm.

A useful dimensionless pressure coefficient is defined in Eq. (6.2.3) as P AP 23 /AP 14

where AP 14 is the pressure drop between transducers 1 and 4. This coefficient is pos-

itive and generally less than unity. It is a measure of the relative importance of the

pressure drop in the extension-dominated region of the contraction-expansion geometry

compared to the overall pressure drop across the entire microchannel. For low Reynolds

number flows, this ratio is a constant independent of flow rate for Newtonian fluids, but

it can vary with flow rate for non-Newtonian fluids, reflecting the role of viscoelastic
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effects in the extension-dominated flow through the contraction. Therefore, this pres-

sure coefficient serves as a simple metric by which to gauge the relative importance of

viscoelastic effects in the contraction, and its use will be explained in more detail below.

These velocimetry measurements were performed in a climate-controlled room in

which the temperature was 24 ± 1 *C. The flow rate was controlled with a PHD Ultra

syringe pump (Harvard Apparatus). For streakline movies the test fluids were seeded

at 0.02 wt.% with fluorescent particles of diameter dp = 8 pm (Invitrogen), having ex-

citation/emission wavelengths of 520/580 nm. Images were recorded with a (640 x 480

pixels) CCD camera (Blue FOX, Matrix Vision) and a continuous illumination mercury

lamp with peak emission at 532 nm. In order to visualize the entire contraction region,

the images were recorded with a low magnification 2x, 0.06 NA objective, correspond-

ing to a depth of measurement, Jzm = 938 pm, using the formulae of Meinhart et al.

(2000). This depth is greater than the channel thickness, h = 200 pm, and accordingly

flow across the entire channel height was observed. Higher resolution images are readily

possible with a high magnification objective, but it is then not possible to observe the

full upstream and downstream flow in a single streak image.

The p-PIV system used in this study has been described in Section 5.4.2. Velocime-

try measurements were taken with a 10x 0.25 NA objective with the PIV-Cam 14-

10 (1376 x 1024 pixels) CCD camera (TSI Instruments,) and a double-pulsed 532 nm

Nd:YAG laser. Test fluids were seeded at 0.02 wt.% with monodisperse fluorescent

particles of diameter dp = 1.1 pm (Invitrogen). At this magnification, the depth of mea-

surement was 6 zm = 47 pm, and hence roughly one quarter of the contraction thickness

was resolved in the velocimetry measurements. Full-field velocity maps were measured

at the centerplane of the contraction, and these were ensemble-averaged using a con-

ventional cross-correlation PIV algorithm (TSI Insight software). The x-component

of the centerline velocity at a particular x-position was taken as the average of the

x-component of the velocity vectors in the middle third of the throat width of the con-

traction (i.e. -! = -67 < y <p 67 = Am). Error bars in the axial velocity profile plot6 67 Y 6  -- i

shown in Figure 6.3.2 (a) correspond to the standard deviation of those data points. All

post-processing of the velocity vector fields was performed in MATLAB with a script
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Table 6.2.1: Newtonian fluid properties at 25 'C measured with a cone-and-plate rota-
tional rheometer.

Fluid p
[kg/m 3] [Pa.s]

Deionized H2 0 1000 0.001
44:56 wt% H20:Gly 1130 0.0085
34:66 wt% H20:Gly 1160 0.0122

S60 oil 877 0.102
N1000 oil 846 2.0

written by the authors.

Measurements of flow-induced birefringence in the hyperbolic contraction geometry

were completed using the ABRIOTM microscopy imaging system (CRi, Inc., Woburn,

MA) described in Section 5.4.3. This system acquires a sequence of rapidly recorded

images with a liquid-crystal-based optical polarizer, to produce spatially-resolved pix-

elwise measurements of retardance 6(x, y), of the imaged specimen or flow field. For

microfluidic flow of a complex fluid, this retardance is related to the local degree of

stretching and orientation of the macromolecules in the fluid, and assuming the validity

of the stress-optical rule it can be used to evaluate the principal stress difference in the

material.

6.2.3 Test Fluids

Five Newtonian calibration fluids of different dynamic viscosities [, but similar densi-

ties p, were first studied. Deionized water was used for flow visualization experiments,

and two mixtures of water and glycerol and two silicone-based calibration oils of different

viscosities (S60 and N1000, Cannon Inst. Co) were used for pressure calibration mea-

surements in the EVROC device. The rheological properties of these fluids are listed in

Table 6.2.1. This selection of Newtonian fluids allowed for pressure measurements over

nearly eight decades of Reynolds number (10-5 < Reo < 103).

The model non-Newtonian fluids studied were 3000 ppm (2 x 106 g.mol- 1) polyethy-

lene oxide (PEO) in 34:66 wt% water:glycerol, and the same shear-banding worm-like

micellar solution, consisting of 100 mM cetylpyridinium chloride (CPyCl) (Alfa Aesar)

and 60 mM sodium salicylate (NaSal) (Alfa Aesar) in de-ionized water studied in Chap-
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Table 6.2.2: Non-Newtonian fluid properties at 25 'C measured with a cone-and-plate
rotational rheometer. *Assumed. tMeasured using a capillary break-up extensional
rheometer (CaBER)
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Figure 6.2.2: Steady flow curves of the non-Newtonian test fluids at 25 'C measured
with a cone-and-plate rotational rheometer. The dashed line shows the stress/shear rate
relationship for a Newtonian fluid with p = 10-3 Pa.s.

ters 3 and 5. Other commercial fluids that were studied include Herbal Essence shampoo

(Procter & Gamble) containing the surfactants sodium dodecyl sulfate (SDS) and sodium

laureth sulfate (SLES), DayQuil (Vicks) containing water-borne carboxymethycellulose

thickener and, finally, sweet chili sauce (Thai Kitchen) containing xanthan gum. The

sweet chili sauce was first filtered to remove food particulates and this filtrate showed

features of a critical gel in small amplitude oscillatory shear. The flow curves of these

fluids were measured using a cone-and-plate geometry on a DHR3 rheometer (TA In-

struments) and are shown in Figure 6.2.2.

All of these fluids exhibited a shear-thinning regime which has been fit with the

power-law model (Bird et al., 1987), for which the shear viscosity is given by q = m"-',
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[kg/M 3] [Pa.s] [Pa] [s] [Pa.s"]

yCl:NaSal 1000 40 26 1.5 15 0.01
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where m is the consistency index and n is the dimensionless exponent. The rheological

properties of the test fluids is given in Table 6.2.2. The linear viscoelastic properties

of the CPyCl:NaSal solution and the Herbal Essence fluid were obtained by fitting a

single mode Maxwell model to the storage and loss moduli measured in SAOS. The

relaxation times of the PEO solution and DayQuil were measured using a capillary

break-up extensional rheometer (CaBER) (McKinley & Tripathi, 2000). Because the

chili sauce exhibited a yield stress, its relaxation time was not measured with CaBER,

but instead was taken to be the inverse of the cross-over frequency in SAOS.

6.3 Results and Discussion

6.3.1 Dimensional Analysis

The relative importance of inertial effects in the device compared to viscous effects is

quantified by the Reynolds number

PdhlciaReo = (6.3.1)
?7o

where p is the fluid density and 7o is the zero-shear-rate viscosity of the test fluid, or

equivalently the dynamic viscosity p, if the fluid is Newtonian. For the flow in the hy-

perbolic contraction, the characteristic length scale is the hydraulic diameter defined at

the throat of the contraction as dh = 2hwc/(h + w,) = 267 pm. The hydraulic diameter

is also the appropriate length scale because it accounts for the two-dimensionality of

the channel cross-section, being calculated from both the height and width of the con-

traction simultaneously. The characteristic velocity is taken to be Ucha, = Ucia, which

is in fact equal only to the change in the average velocity from the inlet to the throat

of the contraction. For contractions with a large contraction ratio, however, the mag-

nitude of the change in the velocity through the contraction is of the same order as

the average velocity at the throat of the contraction (for the contraction used in this

study Q/hwc = 1.16lca), and hence it is an appropriate velocity scale for defining the

Reynolds number for the contraction used in this study. The Deborah number is defined

as the ratio of the fluid relaxation time to a time scale of observation. For the steady
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Table 6.3.1: Range of dimensional and dimensionless parameters explored in this study.

Fluid 6a [s- 1] Reo Dea Elo
H2 0 102 - 103 102 - 103 _

S60 1 102 10-2 _ _
N1000 0.1 - 10 10-5 - 10-3

CPyCl:NaSal 0.1 - 102 10-7 - 10-4 0.1 - 102 6.5 x 105

PEO 10 102 10-3 _ 1 0.1 - 102 66
Herbal Ess. 0.1 - 102 10-6 - 10-3 10-2 - 10 1.4 x 104

DayQuil 10 - 103 10-2 _ 1 0.1 - 10 12
Chili Sauce 10 - 103 - 1 - 102 _

converging flow in the EVROC, this is taken as the time required for a material element

to travel through the contraction, which is proportional to a-, as defined in Eq. (6.2.1).

Accordingly, the apparent or nominal Deborah number Dea, based on Eq. (6.2.1) is

defined

Dea = Ada (6.3.2)

The elasticity number, which characterizes the relative importance of elastic stresses

to inertial stresses is defined as

Dea _Ar 70El - Re - Ald (6.3.3)
Reo pledh

Here the elasticity number is defined in terms of the zero-shear-rate viscosity.

The range of magnitudes of these dimensionless groups experimentally realized in

the study of flow through a hyperbolic contraction are given in Table 6.3.1. For all the

fluids, El0 > 1, indicating that in the experiments with non-Newtonian fluids discussed

below inertial stresses were not of importance.

6.3.2 Flow of Newtonian Fluids

Pressure Measurements

Experimentally measured pressure profiles for the N1000 calibration fluid are shown in

Figure 6.3.1 (a) as the flow rate is progressively increased. The flow is viscously domi-
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nated and the profiles are self-similar with a pressure drop AP 23 ~ 5,. For a Newtonian

fluid at Reo < 1, the value of pressure coefficient pN ~ 0.71, shown in the inset plot

of Figure 6.3.1 (a), is independent of the viscosity or flow rate, and only a function of

the channel geometry. The pressure drop across the contraction alone AP, is calculated

using Eq. (6.2.3). The values of the dimensionless pressure drop APc/p a measured

with all Newtonian test fluids are plotted against Reynolds number in Figure 6.3.1 (b).

The onset of inertially-driven secondary flow begins around Reo ~ 10, coinciding with a

non-linear increase in AP, with increasing ta.

The governing equations for the steady flow of an incompressible Newtonian fluid

through the contraction geometry are the continuity equation, V - if = 0, and the steady

Navier-Stokes equation, pV = -Vp + pV2i, with the no-slip boundary condition on

the walls. The inertial non-linearity in the momentum equation requires the exact equa-

tions to be solved numerically, (Oliveira et al., 2007), but for the case of highly viscous

Newtonian flow kinematics in the contraction, the momentum equation can be simpli-

fied to obtain an approximate solution using the lubrication approximation, provided

Reo-h < 1. Since w(x) > l > h, the governing momentum equation is approximately

given by the equation for two-dimensional Stokes flow which is -= p . Here p is the

pressure, x and z follow the coordinate system given in Figure 6.2.1 (b) and u = u(x, z)

is the x-component of the velocity field. Using the lubrication approximation, the re-

lationship between the pressure gradient and the volumetric flow rate appropriate for

h < w(x) is given by

dpD 12Q 121 WW(6.3.4)

dx h 3w(x) - h2 (x) 6w.

Substituting the expression for w(x), therefore the anticipated pressure drop across the

contraction-expansion from x = 0 to x = 2lc is

P pD 12( ( Wu Wc) Ia (6.3-5)

The expected pressure drop given by Eq. (6.3.5) for the contraction-expansion used

in this study is AP2D/a = 63, which is indicated by the dashed horizontal line in

Figure 6.3.1 (b). For Reo < 1, however, experimental pressure measurements give
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Figure 6.3.1: (a) Pressure measurements as a function of streamwise distance along the
microchannel at different ta for the N1000 calibration oil. The dashed line indicates
the anticipated pressure gradient in the downstream section of the channel based on
Eq. (6.3.16) for a Newtonian fluid (n = 1) of the same viscosity as the N1000 calibration
oil given in Table 6.2.1 (m = p = 2.0 Pa.s). The inset plot shows the evolution of
the pressure coefficient P, defined for Eq. (6.2.3) in the text above. (b) Measured
dimensionless pressure drop for Newtonian fluids at varying Reynolds number. The
dashed horizontal line indicates the anticipated dimensionless pressure drop based on
the 2D lubrication approximation in Eq. (6.3.5) and the dotted line is based on the 3D
lubrication approximation in Eq. (6.3.8).
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APc/I a 0 200, hence the 2D lubrication approximation underpredicts the measured

pressure drop by roughly a factor of three.

The accuracy of the prediction can be improved by solving for the lubrication ap-

proximation in 3D, in order to correct for the finite aspect ratio of the contraction (i.e.

variations in the velocity field along y). The governing equation for a Newtonian fluid is

= [p( + ), from which the relationship between the pressure gradient and the

volumetric flow rate (White, 2003), appropriate for h < w(x) is

dr3 -1

dPcD 12lC 2 5 h tanh(j7rw(x)/2h) w (6.3.6)
dx h 2 W(X) w(x) j odd - W

Since h < w(x), the argument of the hyperbolic tangent, j-rw(x)/2h > 1 for all values

of j and x, hence the summation is approximately 1 + 1/35 + 1/55 + ... ~ 1, so we have

d p3D -1c2 wwS121- 1- 6 (21(5Uh C'U L pt (6.3.7)
dx h2 W _k /W(X)JkWUWcJ

As before, substituting the expression for w(x), and solving for the pressure drop across

the contraction-expansion from x = 0 to x = 2lc gives

D 10 922 2

{ 16 h(wu - Wc) 3072 h(wu - wc) Inin 2-h1 [h ta

1~~~~~~~~~ Arwo r won l () _ p2D
3 2 h(wp+wc) 6 2 h(wu - wc) 1 - 1 (_ 5

\7r WC)

(6.3.8)

For the geometry shown in Figure 6.2.1 the predicted pressure drop based on Eq. (6.3.8)

is AP3D/IMa = 81, and hence even this more accurate 3D lubrication approximation dif-

fers from the experimentally measured pressure drop across the contraction by a factor of

around two and a half. The cause of this significant difference can be better understood

by observing the flow kinematics in the microchannel, which is discussed below.

Flow Kinematics

To understand the discrepancy between the simple two-dimensional calculation of the ex-

pected pressure drop across the contraction-expansion given by Eqs. (6.3.5) and (6.3.8)

and the experimental measurements, the measured axial velocity profile is compared
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against three different characteristic axial velocity profiles. For the hyperbolically shaped

planar contraction in this study, the cross-sectional area is A(x) = hw(x) ~ x-1 . There-

fore, the simplest expected axial velocity profile is the nominal plug-like centerline veloc-

ity uaf(x) = Q/A(x), on which the apparent extension rate is based (i.e. a = du dx).

Thus in the contraction region (0 < x < lc), the average axial velocity profile is given by

uID(x) = (x0 + X) a (6-3-9)

The anticipated centerline velocity in the contraction region consistent with the two-

dimensional lubrication approximation from Eq. (6.3.4) is given by

flD(X) = 3(x 0 + X)5a (6--10)C1 2

where the tilde denotes a locally fully developed velocity consistent with the lubrication

approximation. Finally, the most accurate centerline velocity is given by the lubrication

approximation together with the expression for the velocity field in a rectangular channel

of finite aspect ratio, which can be found in White (2003), and for this contraction is

ii~f(x) = K(x)(xo + x)Ea (6.3.11)

where K(x) is defined

48 j=odd 3 cosh ( ilrw(x)

K(x) = -jrw(x) (6.3.12)
r 192 h tanh ( 2h

- ww(x) j
'j=odd

The expected velocity profiles in the expansion region are mirror images of the profiles in

the contraction due to the channel symmetry. Upstream of the contraction inlet (x < 0),

the cross-sectional area is constant, so the approximate velocities to be matched to these

profiles are

u f (x < 0) = XOa

3
u 2 (x < 0) = -06a (6.3.13)

2 

u D(x < 0) = KOXOta

where KO is defined
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Figure 6.3.2: (a) Experimentally measured u,, and anticipated velocity profiles
along the centerline of the contraction Ud(x) = u(x, 0, 0) in a Newtonian fluid at
Q = 10 pL/min, Reo - 0.5. The dashed solid line is the linear best-fit to the mea-
sured velocity profile in the converging section of the contraction (0 < x < lc) whose
slope equals the experimentally realized extension rate in the contraction, it. (b) Tue
extension rate tt determined from the slope of the best-fit line to the measured veloc-
ity profile as a function of the imposed e. The solid line indicates the ideal result of

tt = ta, whereas the dashed line indicates the result of a least squares fit to the measured
extension rate given by the equation it = 1.66,a.

0 21
K-d j3 cosh 1""

Ko = -8j=od2 (6.3.14)
Ir3 _192 h 00tanh (I~h )

75 5
j=odd

For the microchannel used in this study, Ko = 1.567.

The expected axial velocity profiles in the contraction-expansion region given by

Eq. (6.3.9), (6.3.10) and (6.3.11) are compared with the centerline velocity measured

using p-PIV in Figure 6.3.2 (a). Although the measured profile is qualitatively described

by i3D(x), it differs from the lubrication solution in two ways. Firstly, the measured

centerline velocity profile begins to exceed the anticipated profile starting roughly three

contraction lengths upstream of the contraction inlet, as indicated by the horizontal black

arrow in Figure 6.3.2 (a). This initial deviation can be attributed to the abruptness of the

contraction seen in Figure 6.2.1 (a). The importance of sudden changes in cross-section

on the kinematics and pressure field in viscously-dominated flows through microfluidic

devices was also previously noted in Oliveira et al. (2007). Secondly, the measured
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Figure 6.3.3: Schematic illustration of the scalloped profile at the contraction throat.

velocity exceeds ii3D (X) in the contraction region (0 < x < 2l), due to a "scalloping"

feature of the wet etching process which causes the idealized sharp corners to in fact

be rounded as shown schematically in Figure 6.3.3. To estimate the reduction in the

cross-section, one can take the radius of the scalloped sections as being equal to the

channel height, for which the cross-sectional area of the channel in the contraction

region is reduced by 22% from the anticipated rectangular cross-sectional area. The true

extension rate tt experimentally realized in the hyperbolic contraction can be calculated

from the slope of the best-fit line to the measured velocity profile in the contraction

region, and the resulting values are plotted against the nominal extension rate ta given

by Eq. (6.2.1) in Figure 6.3.2 (b). The true extension rate is roughly 66% greater

than the nominal value based on a linear regression to the measured extension rate.

These discrepancies between the measured and anticipated kinematics reveal why the

lubrication approximation cannot accurately predict the measured pressure drop shown

in Figure 6.3.1 (b).

6.3.3 Flow of non-Newtonian Fluids

Pressure Measurements

Measured pressure profiles for one of the non-Newtonian test fluids are shown in Fig-

ure 6.3.4 (a). As in the Newtonian case, the dominant contribution to the overall pressure

drop in the entire microchannel is AP23 , and this quantity is plotted as a function of
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Figure 6.3.4: Pressure measurements in the microfluidic contraction at different nominal
extension rates for the 100:60 mM CPyCl:NaSal system. (a) Measured pressure as a
function of streamwise distance along the microchannel. (b) Measured pressure drop
AP 23 for each fluid as a function of the nominal extension rate.

nominal extension rate for each fluid tested in Figure 6.3.4 (b). This apparent flow

curve of pressure drop verses flow rate, however, does not provide an immediately useful

metric of the contribution of viscoelastic effects in this mixed flow. One possible met-

ric for quantifying these effects in the contraction is the 'excess pressure drop' (EPD)

(Aguayo et al., 2008), which is the ratio of the pressure drop across the contraction for

a non-Newtonian fluid to the pressure drop for a Newtonian fluid with the same shear

viscosity at a given flow rate. With the exception of Boger fluids (whose shear viscos-

ity is constant), the shear viscosity of most non-Newtonian fluids is rate dependent,

and therefore without assuming a constitutive relationship for the shear viscosity of the

fluid (e.g. a power-law model as utilized in this work) the calculation and interpreta-

tion of the EPD for most viscoelastic materials is ambiguous. An alternative metric

for gauging the relative importance of non-Newtonian effects is the pressure coefficient

P AP 23/AP14 , that was introduced previously in Eq. (6.2.3). This quantity is plotted

in Figure 6.3.5 (a) and has the advantage that it is based on the uncorrected pressure

drop measurements alone and therefore its value can be determined unambiguously. As

the fractional contribution of the pressure drop in the contraction to the overall pressure

drop in the entire channel increases, the viscoelastic resistance to stretching becomes

increasingly important and the pressure coefficient P approaches unity.
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It is important to note that for the non-Newtonian test fluids the value of P may

be lower than the respective value for Newtonian fluids, and also that the value does

not necessarily asymptote to a constant value at low flow rates. Therefore, it is help-

ful to make an estimate of the value of P at the limiting flow rates for which viscous

shear effects would constitute the predominant contribution to the pressure drop. It is

common to assume that the overall pressure drop in the device can be decomposed as

AP, = APe + APo, whereby the total pressure drop is the superposition of a viscoelastic

component AP and a viscous component AP, due to shearing at the walls, (Cogswell,

1972). Without complementary numerical simulations, however, it is difficult to ascer-

tain the viscous contribution to the pressure drop with great precision, but for the flow

of a shear-thinning non-Newtonian fluid one can estimate the value of AP, using the

phenomenological power-law model (Bird et al., 1987) provided the flow is inertialess and

the shear stresses in the fluid are independent of net accumulated strain. This approach

for calculating AP, is consistent with other recent analyses for planar contraction flows,

(Wang et al., 2010). Since the thickness of the hyperbolic contraction flow channel is

always less than its width, h < w, < w, in the analysis it is assumed that the dominant

velocity gradient will be across the channel height (i.e. in the z-direction), and there-

fore in the 2D approximation, velocity gradients across the channel width (i.e. in the

y-direction) are neglected. For a power law fluid (denoted by the superscript PL), the

resulting pressure gradient due to the viscous shearing component of the flow is related

to the nominal extension rate ia by the equation

n n n
dp L 2n+ c WCWU Mtn

= -2 (2n - (6.3.15)
dx n h wU - C ) hw(x)n

Upstream and downstream of the contraction, w(x) = wu, and thus the pressure gradient

in these regions of the channel is constant with value

APPL 2n + I e n ,cn W1A = 2 ( -1 -Mt (6.3.16)
AX n h WU -e )(h) a

The approximate contribution to the pressure drop across the contraction and expansion

from x = 0 to x = 21, due to viscous shear stresses is found by integration of Eq. (6.3.15)

to be

194



AP PL 2 n+2 2n + 1 n C e 1e
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L ( n+1 n+1 (6.3.17)
(W-- -C(wj-~WC) }ma

In the limiting case of a Newtonian fluid, m = p and n = 1, and Eq. (6.3.17) reduces

to the result for simple 2D plane Poiseuille flow in Eq. (6.3.5). Therefore, the estimated

value of P for a power-law fluid is

pPL -(L 2 3 - 2lc) + APL
P- A+ PL (6.3.18)

Ap- L14 - 21c) + APc VL

where L23 and L 14 are the distances between transducers 2 and 3, and 1 and 4 respec-

tively. The result given in Eq. (6.3.18) is independent of m and ta, but depends on the

value of the power-law index n. This predicted variation in the pressure coefficient for

power-law fluids, PPL(n) is shown as the black curve in Figure 6.3.5 (a) for index values

in the range 0 < n < 1. The curve represents a lower bound for the pressure ratio, be-

cause it does not account for any elastic contribution to the pressure drop and it is based

on only a 2D approximation to the flow. Even for a Newtonian fluid, the prediction of

Eq. (6.3.18) is pPL(n = 1) = 0.56, which is lower than the typically observed experi-

mental value of pN ~ 0.71. This remaining difference arises from the three dimensional

effects in the flow field. Nevertheless, the utility of the dimensionless pressure coefficient

P lies in the fact that it is a primary measure of the relative importance of viscoelastic

contributions to the stresses which can be evaluated independently of the constitutive

model of the fluid. Indeed, in assessing the value of P with increasing sa, it becomes

clear that the pressure profiles for the non-Newtonian fluids differ qualitatively from

the Newtonian profiles in Figure 6.3.1 (b), and the contribution of viscoelastic effects

generally increases with increasing flow rates for the non-Newtonian test fluids. The two

exceptions to this general trend occur for the CPyCl:NaSal system and Herbal Essence

shampoo which both exhibit strongly shear-thinning viscosities. For the CPyCl:NaSal

system, the slight drop in the pressure coefficient coincides approximately with the on-

set of a time varying flow, which affects the pressure profile along the entire channel.

For the shampoo, the initial decrease in the pressure coefficient results because shear-
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Figure 6.3.5: (a) Pressure coefficient plot for different fluids. The black curve corresponds
to the minimum predicted value of the pressure coefficient for a power-law fluid with

index 0 < n < 1 using Eq. (6.3.18). Each of the five points on the curve indicates the
predicted minimum value of P corresponding to the value of n for each test fluid listed
in Table 6.2.2. (b) Corrected pressure drop AP, for each test fluid using Eq. (6.2.3).

thinning becomes more important as the flow rate increases (hence the estimate for the

minimum pressure coefficient based on the power-law model becomes more accurate).

The eventual increase in the pressure coefficient indicates that viscoelasticity dominates

the pressure drop across the contraction with increasing values of ?a.

The apparent extensional viscosity in an elongational flow is

_N 1
r/E,a --- (6.3.19)

a

where N1  - ry is the first normal stress difference. An approximate measure for

the value of N1 can be determined from the elastic contribution to the pressure drop

(after subtracting the viscous contribution), APe = APc - AFcf and then calculated

using the following energy argument. For a two-dimensional, incompressible flow, the

continuity equation requires that i = -tyy at each point in the flow. Furthermore,

the net rate of work per unit volume associated with a purely extensional deformation

is "' = XX + ryYy, or equivalently

D (W)= TXX - TYY x (6.3.20)
Dt aV
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where V denotes a unit volume. The incremental work must be equal to the external

mechanical work acting on the material, aW = -PV where P is pressure, or alterna-

tively OW/&V = -P. Substituting this result and the definition into Eq. (6.3.20) and

equating = , one obtains DP/Dt = -Nia. Integration of this equation across

the length of the contraction under the assumption that N is constant and using the

result of Eq. (6.2.2), one obtains N1 = AP/eH, and hence the approximate measure of

the apparent extensional viscosity for fully developed extensional flow in the hyperbolic

contraction is

1 APe
?IE,a = (6-3.21)

EH Ea

This result has previously been derived in Collier et al. (1998) and it is only valid for

an ideal planar elongational flow, provided the value of N is constant for the entire

duration of the deformation. Such an assumption does not capture the variation in the

normal stresses with net accumulated strain EH(x), and it also neglects experimental

transients. Furthermore, this derivation is only appropriate for a flow field in which the

maximum achievable value of EH is finite, and the net accumulated Hencky strain eH

is independent of the streamline followed by a material element in the flow, or equiv-

alently for the contraction here EH(X, y, Z) = EH(x). Note that the expression for 7 7E,a

given by Eq. (6.3.21) is specific to the contraction-expansion geometry used here, and

that it differs from the expression for extensional viscosity given for the cross-slot geom-

etry studied by Haward et al. (2011). This difference arises because the cross-slot flow

contains a stagnation point at which the theoretical Hencky strain diverges and the net

accumulated strain varies across streamlines. Accordingly, it is not possible to calculate

precisely a unique value of N1 for the entire flow field in the cross-slot, and therefore

its value is instead assumed to be approximately equal to the measured excess pressure

drop N ~ APexcess. Ultimately, however, the two respective expressions for apparent

extensional viscosity are consistent, because they are based on the same definition for

?7E,a given by Eq. (6.3.19).

To evaluate E,a( a), the corrected pressure drop AP, must first be determined us-

ing Eq. (6.2.3). The values of AP, are plotted against ta in Figure 6.3.5 (b) for each
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Figure 6.3.6: Calculated values of (a) apparent normal stress difference N,a = APe/6H
and (b) apparent extensional viscosity qE,a based on Eq. (6.3.21).

fluid. The apparent first normal stress difference and extensional viscosity, calculated

from Eq. (6.3.21) (based on the corrected elongational contribution to the pressure drop

AP), are shown in Figure 6.3.6. For all fluids, the apparent first normal stress difference

N,a increases with t,. When N,a is normalized by ia to calculate the apparent exten-

sional viscosity defined in Eq. (6.3.21), three classes of response emerge. The DayQuil

(carboxymethycellulose) and chili sauce (xanthan gum) both exhibit a nearly constant

value of YE,a, whereas the two surfactant systems (CPyCl:NaSal and shampoo) show

extensional thinning. Lastly, the PEO system shows extensional-thickening, similar to

the behavior of the highest concentration PEO solutions shown in Figure 2.3.3, for which

the measured pressure drop increases superlinearly with flow rate.

The Trouton ratio is defined as the ratio of the extensional viscosity to the shear vis-

cosity, and for a planar elongational flow for simple fluids at small extension rates this

limiting value is Tro = -2= 4. In these experiments, however, with the exception of

the CPyCl:NaSal system, the Trouton ratios are notably higher, and their values based

on the zero-shear-rate viscosities given in Table 6.2.2 at the smallest values of 9a for each

fluid are (a) CPyCl:NaSal: Tr a 2, (b) PEO: Tr ~ 22, (c) Herbal Essence: Tr a 14,

(d) DayQuil: Tr = 29. Such large Trouton ratios have also been reported previously for

flow through a hyperbolic contraction, (Wang et al., 2010). It is important to recall that
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this simple analysis assumes an ideal fully-developed planar elongational flow, whereas

the apparent extensional-thinning/thickening behavior and the experimental values of

the Trouton ratio are based on measurements of a transient extension-dominated mixed

flow. These metrics are therefore best considered as a relevant measure of viscoelastic

resistance to stretching in a mixed flow that is characteristic of what would be encoun-

tered in an industrial application (such as flow through a nozzle), but not in an ideal

homogeneous extensional flow.

Flow Kinematics

The deviations between the flow kinematics of the non-Newtonian test fluids in the

EVROC device and those expected in an ideal homogeneous extensional flow can be

investigated with velocimetry measurements. Accordingly, streakline images for all non-

Newtonian test fluids are shown together with complementary pseudocolor optical re-

tardance images of the flow-induced birefringence in Figure 6.3.7. The experimental

extension rates measured at the contraction mid-plane have been determined from the

slope of a linear regression to the centerline axial velocity profiles along the length of the

contraction as discussed previously for Newtonian fluids (cf. Figure 6.3.2). The true ex-

tension rate et, realized experimentally is plotted against the nominal extension rate e,

in Figure 6.3.8.

For most of the test fluids, at least two qualitatively different regimes of behavior are

observed with increasing flow rate. At sufficiently small rates, Dea < 0(1), all of the

non-Newtonian fluid systems exhibit kinematics that are qualitatively similar to the be-

havior seen at low Reynolds number in Newtonian fluids. The true extension rate in the

contraction is roughly constant and greater than the nominal value as previously noted

for the Newtonian case (cf. Figure 6.3.2 (b)). Additionally, the streaklines generally

follow the contours of the contraction sidewalls as shown in Figure 6.3.7.

At intermediate rates, Dea ~ 0(10), vortices in the upstream corners of the contrac-

tion emerge as is evident for the CPyCl:NaSal micellar fluid, PEO solution and DayQuil

in Figure 6.3.7. The distortion of the streamlines from those observed in the Newto-

nian case clearly indicates the influence of fluid elasticity on the flow kinematics even
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(a) 100:60 mM CPyCl:NaSal worm-like micellar fluid.

De= 1.3, Q = 37.2 pUmin De.= 9.1, Q = 268 pUmin De.= 25, Q = 719 p.Umin

(b) 3000 ppm PEO in 34:66 wto water:glycerol semidilute polymer solution.

flow

(c) Herbal Essence (concentrated surfactant system)
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(d) DayQuil (carboxymethycellulose)
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(e) Sweet Chili Sauce (xanthan gum)

Figure 6.3.7: Streakline images (upper half) and pseudocolor retardance maps (lower
half) of flow-induced birefringence for non-Newtonian test fluids flowing through the
hyperbolic contraction (w, = 400 pm). In all cases, the kinematics and retardance
images are symmetrical about the contraction centerline and flow is from left to right.
White curves have been overlaid to indicate the location of the contraction walls. The
colorscale is in units of radians. Note that birefringence in the PEO solution was too weak
to be observable and therefore no pseudocolor retardance images have been included.
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at vanishingly small Reo. Such vortices are well-known to occur in flows of viscoelastic

fluids through contractions (Rodd et al., 2005, 2007). Typically, the presence of vortices

also results in the onset of a non-linear dependency of the true extension rate it, on the

nominal value, a as shown in Figure 6.3.8.

Amongst these fluids, the behavior of the CPyCl:NaSal WLM system is unique. For

this fluid, at Dea > 0(1), the images presented in Figure 6.3.7 (a) show that the stream-

lines in the contraction region become increasing constricted near the throat resulting in

a nearly constant value of it across approximately one order of magnitude of apparent

strain rate, 1 < 6 a < 10 s-1. This is also reflected in the weak increase in true exten-

sion rate it with increasing flow rate shown in Figure 6.3.8. It is the ability of this

fluid to shear band (i.e. support localized regions of high shear rate) which causes the

value of it to plateau, since the shear bands function effectively as moveable internal

slip layers. The narrowing of the streamlines also reduces streamwise curvature, thereby

allowing the flow to remain steady up to large values of the apparent Deborah number

(Dea < 0(30)), before becoming time-varying. In this unsteady regime, measurement

of the true extension rate in the contraction was not possible. It is noteworthy that

the plateau in the experimentally realized extension rate, t for the CPyCl:NaSal sys-

tem roughly occurs conjointly with a plateau in the apparent value of N,a shown in

Figure 6.3.6.

The superlinear increase in the apparent normal stress difference N,a with a for the

PEO solution shown in Figure 6.3.6 coincides with the measured rapid increase in the

true extension rate it with flow rate. Therefore, it is important to recognize that evidence

for extensional thinning or thickening based on pressure measurements with EVROC,

may in fact be indicative of the onset of viscoelastic secondary flows such as the upstream

vortices seen in Figure 6.3.7 (b). As with virtually every rheometer, it is a challenge

with the EVROC to ensure that the flow kinematics remain self-similar and unchanged

across all experimentally accessible flow rates a. Accordingly this microfluidic device

should not be viewed as a true extensional rheometer, per se, since the realized flow

kinematics can vary with both the test fluid and the flow rate, even in the inertialess

flow regime. Instead the EVROC device is best employed as a microfluidic viscosity
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Figure 6.3.8: True extension rate tt determined from the slope of the best linear fit
u = ttx line to the measured centerline velocity near the contraction plane as a function
of apparent extension rate da given by Eq. (6.2.1). The solid black line indicates the
ideal result of it = s. Note that the same data are displayed on (a) linear and (b) log
scales.

indexer from which a semi-quantitative estimate of the extensional rheology of the test

sample can be ascertained in an extension-dominated flow at high deformation rates

(1 < ' < 103 S--1).

Flow-Induced Birefringence and Stress

Spatially resolved FIB measurements complement the streakline images by providing

optically non-invasive measurements of local flow-induced molecular anisotropy. Pseu-

docolor retardance images at different flow rates are shown in the lower halves of each

image in Figure 6.3.7. Provided the optical anisotropy An, (i.e. the difference between

the ordinary and extraordinary indices of refraction) in the sample can be assumed con-

stant along the direction of light propagation, then the optical retardance is given by

6 = 27rAnh/Ae, where h is the height of the contraction as before and At = 546 nm is

the wavelength of the incident light.

As discussed in Section 5.3, under the appropriate circumstances An can be related

to the principal stress difference Ao, in the sample by the stress-optical rule, (Fuller,

1990). This rule is given by the relation An = Ca-, where C is the stress-optical

coefficient, which is typically determined experimentally (Janeschitz-Kriegl, 1983). In a
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purely extensional flow, free from shear stresses, the principal stress difference is equal

to the first normal stress difference Au = N1 . Under the assumption of a purely two-

dimensional, planar elongational deformation, and the applicability of the stress-optical

rule, the normal stress difference in the fluid is thus related to the measured optical

retardance by the relationship

N = -i A (6.3.22)
27rC h

In reality, the fluid kinematics are not uniform along the direction of light propa-

gation (due to the presence of the bounding end walls), and therefore the retardance

images in Figure 6.3.7 are useful primarily for qualitatively assessing the stress field in

the geometry. The retardance fields exhibit qualitatively similar trends as those seen in

the flow kinematics measurements, especially with regard to the emergence of the up-

stream vortices which are characterized by slowly moving regions of low stress and low

birefringence that appear dark blue in Figure 6.3.7. It is also noteworthy that for flow

rates large enough to produce detectable levels of birefringence, (typically Dea > 0(1)),

the optical retardance does not exhibit fore-aft symmetry about the throat of the con-

traction (located at x = l), indicating the importance of tensile viscoelastic stresses as

fluid elements are convected and stretched through the converging section of the con-

traction. Furthermore, for essentially all of the values of ta for which the flow is steady

in time, the centerline retardance profile in the converging half of the contraction con-

tinues to grow monotonically with x-position as fluid elements travel towards the throat

of the contraction x --+ 1. This result suggests that the Hencky strain for this channel,

EH = 2, is not sufficiently large to provide sufficient time for the extensional stress in

the fluid element to attain its steady state value. This was a central assumption of the

energy analysis presented in Eq. (6.3.20) and (6.3.21) and thus provides an a posteriori

rationalization for the fact that only an approximate value of the planar extensional

viscosity can be measured with a hyperbolic microfluidic device such as EVROC that

develops a Hencky strain eH = 2.
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6.4 Improved Design for the Contraction Geometry

In Section 6.3.2, two issues with the channel construction were identified as the cause

of the discrepancy between both the experimentally measured pressure drop and the

flow kinematics for Newtonian liquids when compared with predicted values from the

lubrication approximation. Firstly, the contraction was so abrupt that its effects on the

kinematics propagated as much as three contraction lengths upstream and downstream

of the contraction (see Figure 6.3.2 (a)). Secondly, due to a feature of the wet etching

process the cross-sectional profile of the contraction was not rectangular, as desired,

which further altered the desired kinematics in the contraction region.

In order to improve the contraction design, the basic hyperbolic contraction-expansion

profile remains, but new contraction dimensions are considered as well as the introduc-

tion of expansion sections immediately upstream and downstream of the contraction.

The two basic contraction designs are shown in Figure 6.4.1. The basic design param-

eters of the contraction are the length 1c, height h, upstream width we, width at the

contraction throat we, and the expansion radius R. Each contraction tested here has the

same Hencky strain EH = ln(w,/Wc) = 2. The introduction of the rounded protrusion

sections with radius R is inspired by the simulation work of Alves (2007) and Haward

et al. (2012b) for optimizing the shape of a flow geometry subject to a fixed constraint

on the flow kinematics. Here the design objective is an axial velocity profile that effects

a more spatially homogeneous extensional flow along the contraction centerline by more

faithfully following the predictions of the three dimensional lubrication profile given by

Eq. (6.3.11). The length of the contractions l has been increased compared to the value

of the original contraction examined in the previous Sections, in order to reduce the

abruptness of the contraction. The concave protrusions are aimed at further reducing

the influence of the contraction on the kinematics upstream and downstream of the con-

traction by countering the accelerative effects beyond the contraction entrance due to

the converging streamlines. Since no exact function for the shape of the protrusion sec-

tion was specified in the work of Alves (2007), each profile has been simply constructed

from a quarter arc with radius R, followed by one half of a sinusoid with wavelength 4R.

The inclusion of a sigmoidal-like function allows the profile to smoothly transition back
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Figure 6.4.1: Two potential designs for the contraction profile.

to the inlet width of the contraction w,.

The profile of the Type I contraction is given by the following piecewise function.

wU for x < 0
K

xo + x
K

xO + 2l - x

for 0 < x < l

for l < x < 2l

(6.4.1)

wu for x > 2c

where K = lewusw/(wu - w,), xo = lcwc/(Wu - Wc) and 0 < x < lc. The profile of the

Type II contractions is given by the following piecewise function.
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Table 6.4.1: Nominal and true dimensions of the redesigned EVROC devices as measured
with an optical microscope.

Contraction Type le wU wC h R
Designation [Am] [Am] [Am] [Am] [pm]

W2000-L1000 I Nominal 1000 2000 267 2000 0
W2000-L1000 I True 970 1925 255 200 0

W2000-L1000-C333 II Nominal 1000 2000 267 200 333
W2000-L1000-C333 II True 965 1936 260 200 323

W3000-L1000 I Nominal 1000 3000 400 200 0
W3000-L1000 I True 968 2838 396 210 0

W3000-L1000-C500 II Nominal 1000 3000 400 200 500
W3000-L1000-C500 II True 970 2940 475 200 500

W3000-L2000 I Nominal 2000 3000 400 200 0
W3000-L2000 I True 1955 2937 445 200 0

wu

wu + R(1 + sin (7r(x + 2R)/(2R)) )

wu+2VR2 -(R+x) 2

K
xo + 3;

K
x0 + 2lc - x

w + 2 R 2 - (R + 2lc- x) 2

w, + R(1 + sin (wr(2lc - x + 2R)/(2R)))

WI'

for

for

for

for

for

for

for

for

x < -3R

-3R < x < -R

-R <x <0

0 < x < le

1c < x < 21c

1c <_ x < R + 2c

R + 21c < x < 3R + 21c

x > 3R + 2lc
(6.4.2)

The nominal dimensions of the contractions are given in Table 6.4.1.

The microchannels were made with a rapid prototyping fabrication technique de-

scribed later in Section 8.3.1 that was developed specifically to withstand high pressures

(P > 100 bar) with minimal bulging. This fabrication method also yielded channels

with rectangular cross-sections, thereby eliminating the scalloping effect that would oth-

erwise have occurred if the chip had been made with the wet etching process. During

the curing process, the exact dimensions of the channel are liable to change from their

nominal values listed in Table 6.4.1. With the exception of the channel height, all dimen-
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W3000-LIOOO

W2000-LIOOO

W3000-L2000

W2000-LIOOO-C333

W3000-L2000-C500

(a) Epoxy Chip (b) Type I W2000- (c) Type II W2000-L1000-C333
L1000

(d) Type I W3000- (e) Type II W3000-L1000-C500 (f) Type I W3000-L2000
L1000

Figure 6.4.2: New designs for the contraction profile. Scale bar corresponds to 1 mm.
The blue dashed curves correspond to the contraction shape based on the nominal di-
mensions in Table 6.4.1, and the red curves correspond to the profile based on the true
dimensions.

sions can accurately be determined from an image captured on an optical microscope.

The channel height and its uniformity throughout the channel are more challenging to

measure, but appropriate values can be determined by filling the channel with tracer

particles and observing the vertical distance between the visualization plane at which

particles are in focus at the top and bottom of the channel. The true contraction di-

mensions were measured under the microscope and they are given in Table 6.4.1. All

five contraction-expansion channels were made in one final chip that is shown in Fig-

ure 6.4.2 (a) together with the input and output tubing. Images of all five contractions

are shown in Figure 6.4.2 (b)-(f).
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6.4.1 Velocimetry Measurements

Representative streakline images of the flow through the redesigned contractions are

shown in Figure 6.4.3. In all cases, the streaklines display kinematic reversibility which

is to be expected for low Reynolds number flows. For viscously dominated flow in narrow

gap geometries with h < we, such as the contraction used here, the flow can be described

by the Hele-Shaw approximation, whereby the kinematics in the x-y plane are given by

a velocity potential (Kundu & Cohen, 2008). For irrotational potential flow, the velocity

potential <$ and the streamfunction V' constitute Cauchy-Riemann pairs, and hence the

flow through the contraction can also be described by a linear combination of a set of

basis streamfunctions.

The generic shape of a hyperbolic converging contraction can be obtained from the

combination of a free stream and point sources, sinks and vortices as shown in Fig-

ure 6.4.4 (a). The streamfunction for a free stream with speed Uo in the x-direction is

V = Uoy'. The streamfunction for a point source of strength A at (x', y') = (+b, ±a)

is )2 = AO = A tan-1 ((y' T- a)/(x' F a)), and for a point vortex of strength F at the

same position it is 3 = F ln(r) = F ln ((x' -F b) 2 + (y' - a)2). Here x' = r cos 0 and

y = r sin 9, where r is the radial coordinate emanating from point (b, a) and 9 is the

angle with respect to the x'-axis. Although the specific number and position of these

point sources and sinks within the flow domain is arbitrary, for simplicity the locations

of the point sources or sinks and vortices are chosen to be coincident and located at

(x', y') = (tb, ta).

The combined streamfunction is

(x = Uoy'+ A tan-1 ( ) + tan-' (y- a tan- (y+a) - tan-1 (y/ )Y ~x' + b x/'+ b) -x/- b x'-

+r In V(-x' + -b)2 +(y + a)2) - In (-I(x' + -b)2 +(y - a)2)

+ In ((x' - -b)2 +(y' + a)2) - In (\I(-x' - -b)2 +(y' - a)2)

(6.4.3)

where the parameters a and b are the vertical and horizontal distance between the point

sources and sinks and the origin, respectively. The streamlines coincide with isocontours
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(a) (b) (c

Figure 6.4.3: Streakline images of the flow of water through the contractions. Scale bar
corresponds to 0.5 mm. (a) Original design Q = 1000 pL/hr, Re = 0.80. (b) W2000-
L1000 Q = 100 pL/hr, Re = 0.10. (c) W2000-L1000-C333 Q = 100 pL/hr, Re =
0.10. The superposed red curves indicate the predicted streamlines based on the Hele-
Shaw approximation in Eq. (6.4.3), where Uo = 0.1 mm.s- 1, a = 960 pm, b = 120 pm,
A/Uob = 66 and F/Uob = 5.

of the streamfunction and are overlaid on the streakline images in Figure 6.4.3 (b) and

(c) for a = 960 pm, b = 120 pm, Uo = 0.1 mm.s-1, A/U 0b = 66 and F/Uob = 5.

The centerline velocity profile is given by the gradient of the streamfunction in y at

y = 0, and is

Ua + A(x'+ b) Fa - A(x' - b)
(x'+ b) 2 + a2  (x' - b) 2 + a2

This velocity profile along with the contributions due to the point sources and sinks

and the point vortices are shown in Figure 6.4.4 (b). Although this profile is non-linear

within the converging and diverging sections of the contraction, in the case of a > b for

x'-values around 1x'I ~ b, the velocity profile is approximately equal to

_____ 1
ud ~ Uo + 2 (Fa + Ab) -+ + Ax'( (6.4.5)

a2 4b2 + a2 a2 4b2 + a2

which is a linear scaling with position along the contraction centerline.

The velocity profiles along the centerline of the contraction were measured in all five

contractions using water seeded with 0.02 wt% d, = 1.1 pm fluorescent tracer particles

(Invitrogen). The entire length of the contraction was too long to be imaged in a single

image with a 10x objective. Therefore, velocimetry measurements were completed at
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(a) (b)

Figure 6.4.4: (a) Distribution of point sources, sink and vortices to describe the Hele-
Shaw flow through the contraction. (b) Centerline velocity profile based on Eq. (6.4.4)
for UO = 0.1 mm.s-1 , a = 960 pm, b = 120 Mm, A/Uob = 66 and l'/Uob = 5 given by the
green curve u,,. The solid blue curve is the contribution from the point sources and sinks

UA, the dashed red line is the contribution from the point vortices ur, and the black line
is the hypothetical anticipated velocity profile assuming a constant extension rate in the
contraction region equal to the maximum extension rate of the overall profile given by
the green curve.

evenly spaced intervals along the length of the contraction and each interval was then

combined to determine the entire velocity profile along the contraction length. All post-

processing of the velocity vector fields was performed in MATLAB. Example velocity

profiles are shown in Figure 6.4.5 compared against the velocity profiles expected from

the Hele-Shaw approximation in Eq. (6.4.4). This approximation is in good agreement

with the experimental measurements near the inlet of the contraction, but it provides

an underestimate of the velocity within the contraction region itself. This deviation is

to be expected because the Hele-Shaw approximation is not valid near the throat of the

contraction since the aspect ratio in that region of the channel approaches unity, which is

not sufficiently shallow for the flow kinematics to be described accurately by a velocity

potential. Furthermore, the no-slip condition at the walls results in an experimental

velocity profile that is higher than the potential flow theory which assumes perfect

slip at the walls. Instead, the lubrication approximation provides are more accurate

prediction of the velocity profile in the throat of the contraction.

In Figures 6.4.6 (a) and (b) the measured velocity fields and profiles in the 2 mm
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(a) W2000-L1000 Q = 100 pL/hr, Re = 0.1 (b) W2000-L1000-C333 Q = 100 gL/hr, Re = 0.1

Figure 6.4.5: Comparison of the experimentally measured velocity profiles (blue) and
the expected profile (green) based on the Hele-Shaw approximation of Eq. (6.4.4). Note
that in these plots, the x-values from Eq. (6.4.4) have been shifted by x' = x - 1, so that
the coordinate systems of both profiles coincide.

wide contractions are shown. The velocity profiles are compared against the predictions

of the for 1D, 2D and 3D flow, respectively u ) 2D(x) and (x). Clearly there is

good overlap between the measured and predicted 3D profiles in the contraction region,

but the velocity profile deviates at the inlet and outlet of the contraction. Furthermore,

there does not appear to be a significant difference between the velocity profile in the

contraction with the rounded expansion section and the contraction without them. In

order to assess quantitatively if the inclusion of the rounded extensions produces a veloc-

ity profile that is closer to the 3D lubrication approximation, a dimensionless quantity

is defined

1 121 iizx -63D XError = - uexp(xd d (6.4.6)
21c 0 iD

This error parameter is a measure of the average fractional difference between the mea-

sured profile and that of the 3D lubrication approximation given in Eq. (6.3.11). The

values of this error parameter are calculated numerically and are listed in Table 6.4.2.

The values of the error parameter for the W2000-L1000 and W2000-L1000-C333 contrac-

tions at equivalent flow rates differ by no more than 15%, suggesting that the inclusion

of the rounded extensions has a minimal effect on the kinematics along the centerline of
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Table 6.4.2: Error parameter for each chip and flow rate.
Contraction Type Q Error
Designation [pL/hr] [

Original I 600 0.7776
Original I 3000 0.7944

W2000-L1000 I 100 0.1520
W2000-L1000 I 316 0.1462
W2000-L1000 I 1000 0.1622

W2000-L1000-C333 II 100 0.1585
W2000-L1000-C333 II 316 0.1684
W2000-L1000-C333 II 1000 0.1889
W2000-L1000-C333 II 3160 0.1911

W3000-L1000 I 100 0.2144
W3000-L1000 I 316 0.2408
W3000-L1000 I 1000 0.2251

W3000-L1000-C500 II 3000 0.2846
W3000-L2000 I 100 0.1236

the contraction.

Example velocity profiles measured in the 3 mm wide contractions are shown in Fig-

ures 6.4.6 (c) and (d). The velocity profiles for the W3000-L1000 and W3000-L1000-C500

contractions also follow the predictions of the 3D lubrication approximation closely. As

with the 2 mm wide contractions, however, the error parameter for these two contrac-

tions is similar indicating that the rounded corner extensions do not play a significant

role in the fluid kinematics along the centerline of the contraction-expansion. The lowest

value of the error parameter is for the W3000-L2000 contraction which has the longest

contraction length. This result is not surprising since a longer contraction gives kine-

matics that are more inline with the lubrication approximation. On the other hand, a

major potential drawback of the elongated contraction is that for viscoelastic liquids,

the viscous contribution to the overall pressure drop across the contraction will be larger

(note that AP ~l based on Eq. (6.3.5) and (6.3.8)). Therefore despite the improved

agreement between the measured velocity field and lubrication approximation as l is in-

creased, careful consideration would be required when designing a geometry that would

not cause the viscous component of the pressure drop to dominate the overall pressure

drop across the contraction.

As shown previously in Figure 6.3.2 (b), the true extension rate et in the contraction
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Figure 6.4.6: Experimentally measured Uexp and anticipated velocity profiles along the
centerline of the contraction Uc (x) = u(x, 0, 0) in a Newtonian fluid at low Reynolds
number. The profiles are compared against the anticipated profiles from the lubrication
approximation given by Eq. (6.3.9) (6.3.10) (6.3.11). The dashed solid line is the linear
best-fit to the measured velocity profile in the converging section of the contraction
(0 < x < lc) whose slope it equals the experimentally realized extension rate in the
contraction.
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Figure 6.4.7: True extension rate tt determined from the slope of the best linear fit
Ux = (xO + X) t line to the measured centerline velocity near the contraction plane as a
function of apparent extension rate da given by Eq. (6.2.1). The solid black line indicates
the ideal result of it = ia, whereas the black dashed line is a fit to the true extension
rate t = 1.9a. Note that the same data are displayed on (a) linear and (b) log scales.

can be calculated from the slope of the linear regression to the measured velocity profile in

the contraction region. These results are shown in Figure 6.4.7. The true extension rate

is roughly 90% greater than the nominal value ia based on Eq. (6.2.1). This difference

between the nominal and true extension rates occurs due to the three dimensionality

of the flow described by the full 3D lubrication approximation. The predicted local

extension rate can be obtained by differentiating Eq. (6.3.11) with respect to x, which

gives

d6,3D d
3D _ CL _ -=- x)- K(x)d (K (6.4.7)

dx dx

This value varies along the contraction centerline, but a characteristic value can be as-

certained from the average slope of 3CD in Figure 6.4.6 which is it ~ 2 a. Accordingly,

the measured flow kinematics in the converging-diverging regions of the redesigned con-

traction geometries are closely described by the 3D lubrication approximation as desired.
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6.4.2 Pressure Measurements

A set of pressure measurements were also completed in order to asses how reliably each of

the modified contraction designs could be used as a microfluidic extensional viscosity in-

dexer. Since the epoxy devices were not manufactured using the same silicon fabrication

methods as those used with the original chip design, the epoxy devices did not contain

any MEMS pressure transducers along the length of the channel. Therefore, it was not

possible to measure the pressure profile along the length of the channel, but instead

the gauge pressure upstream of the channel inlet was measured with a 150 psi UNIK

5000 pressure sensor (GE Druck) using an experimental setup schematically depicted in

Figure 6.4.8.

In order to determine the pressure drop across the contraction-expansion section

APc, it was necessary to account for all other contributions to the overall measured

pressure drop AP. The value of this pressure drop was assumed to be the summation

of smaller pressure drops acting in series:

AP = APT + APTy + APin/out + APrec + APc (6.4.8)

where each component is described below.

The first pressure drop APT is the pressure drop across the needle section of the

T-junction, which is connected to the pressure sensor. This pressure drop corresponds

the flow through a needle of length LT = 12.9 mm and radius RT = 0.35 mm as well

as entrance effects in the T-junction that can be accounted for by a Bagley correction

(Macosko, 1994) that is determined empirically. The pressure drop across the needle

was thus measured with three Newtonian fluids of different dynamic viscosities (N1000

p = 2.0 Pa.s, S60 p = 0.102 Pa.s, 40:60 wt% water:glycerol y = 0.010 Pa.s) in calibration

experiments shown in Figure 6.4.9 (a). The expected pressure drop for Hagen-Poiseuille

flow is AP = 8pVLT/4, where U = Q/7r4 is the mean velocity and Q is the volumet-

ric flow rate. Therefore the viscous friction factor is defined f, = AP/(p) = 8& orR RT

equivalently ReT - = 8-ReT, where ReT - 2UR/v and v is the kinematic viscosity.
RT

The empirically determined pressure drop across the needle, however, was f, = 24L or

equivalently ReT - = 24wReT, as shown in Figure 6.4.9 (a). Hence the Bagley correc-
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Figure 6.4.8: Schematic diagram of the experimental setup for measuring the pressure
drop across the contraction in the epoxy chips.

tion accounts for approximately 66% of the pressure drop across the needle. Substitution

of Eq. (6.2.1) into the result for APT gives

APT = 24 LT WcWU lchpIa (6.4.9)
7r4 wu - wc

The pressure drop APTy occurred over the short sections of Tygon tubing (Saint-

Gobain) with inner radius RTv = 0.26 mm at the inlet and outlet of the device. The

combined length of the tubing was approximately LTy = 25 mm. The pressure drop

across the tubing is given by

APTy = 8 LTy WeW" lchPIa (6.4.10)
irRY w, - We

A third contribution to the overall pressure drop arises from the dissipation in the

two rectilinear sections of the channel upstream and downstream of the contraction-

expansion, each with length Lrec = (6.5 mm-lc), width wu and height h. The combined

pressure drop across both of these sections is

APrec = 2 WclcLrec ( 192 h 00 tanh(j7rwu/2h) . (6.4.11)
h2(W" - wc) 71  

L U [Wa
j odd/

Another contribution to the pressure drop is due to entrance and exit effects at

the inlet and outlet of the microfluidic device AP,,. It is not obvious how to ac-

count for this pressure drop, since the fabrication method is likely to introduce a degree
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Figure 6.4.9: Pressure calibration tests. (a) Pressure drop across the needle tip con-
nected to the T-junction. The solid line corresponds to the theoretical result of
ReT-fA = 8-jReT, while the dashed line is a fit to the measured data which include

entrance effects on the pressure drop given by ReT = 24%ReT. (b) & (c) Fractional
contribution to the overall pressure drop predicted using Eqs. (6.3.8), (6.4.9), (6.4.11)
and (6.4.10).

of variability between the precise features of the inlet and outlet regions in each mi-

crochannel that would make it difficult to measure a Bagley-like correction for this

channel. For simplicity, APT/st is assumed to be negligible (although this assump-

tion is not realistic) and thus the pressure drop across the contraction-expansion is

APc ~ AP - APT - APy - APrec. The relative contributions of each component of

the pressure drop to the overall pressure drop predicted based on Eqs. (6.3.8), (6.4.9),

(6.4.11) and (6.4.10) are shown for two of the contraction geometries in Figures 6.4.9 (b)

and (c). It is clear that the magnitude of APc is not the major contribution to the

overall pressure drop, which poses a challenge for determining its value accurately from

experimental measurements.

The pressure drops measured using the 3 mm wide contraction geometries with the

40:60 wt% water:glycerol mixture are shown in Figure 6.4.10 (a). All pressure drops scale

linearly with apparent extension rate, indicating that all measurements were completed

in the regime of steady laminar flow. The total predicted pressure drops are shown by
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Figure 6.4.10: Pressure measurements with the 40:60 wt% water:glycerol mixture. (a)
Total pressure drop measured across three w, = 3 mm wide contraction geometries. (b)
Pressure drop across the contraction-expansion region of the geometry. The solid black
lines correspond to the predicted value of (a) AP and (b) AP, for the W3000-L1000
and W3000-L1000-C500 geometries and the dashed line corresponds to these predicted
values for the W3000-L2000 geometry.

the solid and dashed lines in the plot. For W3000-L1000 the actual pressure drop is

about 25% larger than the predicted value, for W3000-L1000-C500 it is about 150%

larger, and for W3000-L2000 it is about 100% larger. These differences strongly suggest

that the pressure losses due to entrance and exit effects APn/,t at the inlet and outlet of

the channel are significant although they cannot be easily accounted for. It is therefore

unclear if the difference in the measured pressure drop between the W3000-L1000 and

W3000-L1000-C500 chips is due to the rounded expansion sections or to differences in

the precise features of the inlets and outlets of each channel which lead to appreciably

different values of APi,/,t at the same flow rate.

The pressure drop across the contraction-expansion section AP, determined after ap-

plying the corrections from Eqs. (6.4.9), (6.4.11) and (6.4.10) is shown in Figure 6.4.10 (b).

For W3000-L1000 the measured pressure drop AP, is about 150% larger than the pre-

dicted value using Eq. (6.3.8), for W3000-L1000-C500 it is about 1000% larger, and for

W3000-L2000 it is about 500% larger. Even if the uncertainty in the channel thickness,

which is of the order of 10 pm, is considered, the predicted value of AP, and APrec

increase only by about 10%, which is clearly not substantial enough to account for the
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discrepancy between the predicted and measured values of AP.

The primary value of these pressure measurements is that they scale linearly with flow

rate, which confirms that the flow is laminar and that the epoxy channel does not deform

with increasing flow rates. To obtain more accurate measurements of APc, however, it

would be necessary measure the pressure profile within the microfluidic device itself. On

the other hand, the flow kinematics are qualitatively and quantitatively in much closer

agreement with the predictions of the lubrication approximation in the redesigned chip

than in the original design (refer to the error parameter in Table 6.4.2). This agreement

suggests that the measured pressure profile along the channel centerline would likewise

be more closely predicted by the lubrication approximation provided a microfluidic chip

with multiple pressure sensors along the length of the contraction, as is the case in the

original microfluidic EVROC device with MEMS transducers, were constructed.

6.5 Summary

In this Chapter, the extensional flows of a range of Newtonian and a non-Newtonian

fluids through a microfluidic hyperbolic contraction have been studied using local pres-

sure field measurements, kinematic measurements (using p-PIV and streakline imaging)

and full-field FIB measurements. This device can be used for indexing and comparing

the behavior of a wide range of complex fluids in an extension-dominated flow; however,

careful measurements of both the pressure field and flow kinematics are important for

accurate interpretation of the results.

For the flows of Newtonian liquids at low Reynolds number, Reo < 0(10), the

measured pressure drop across the contraction, AP23 , increases linearly with apparent

extension rate ia. Furthermore, provided one accounts for the position of the MEMS

transducers, one can estimate the pressure drop across the contraction alone, AP, which

can be predicted using a 2D lubrication approximation for viscous Newtonian flow to

within a constant numerical factor of around three. This residual discrepancy can be

attributed to the inadequacy of a 2D approximation in capturing a truly 3D flow within

this shallow microfludic device, as well as additional complicating effects arising from
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the geometric abruptness of the contraction and the non-rectangular cross-section of the

contraction region (caused by the wet etching fabrication process).

Flow velocimetry measurements confirm that the hyperbolic contraction imposes an

extension rate along the centerline that is approximately uniform spatially, but roughly

66% larger than the nominal value, i.e. t ~ 1 .6 6 a, based on a least squares linear fit

to the measured extension rates. These measurements also reveal the onset of initial

extensional effects as much as three contraction lengths upstream of the contraction

entrance as a result of the abruptness of the hyperbolic contraction. These non-idealities

in the extensional flow kinematics are the cause of the larger than anticipated pressure

drop based on the lubrication approximation.

Two model viscoelastic liquids and three commercially available complex fluid for-

mulations have been tested in the EVROC. For viscoelastic materials it is assumed that

the pressure drop in the contraction AP, is a superposition of a pressure drop due to

viscous shear stresses AP, and an extra pressure drop due to elastic stresses AP, hence

AP, = AP, + APe. The value of AP, is estimated using a 2D lubrication analysis for

a power-law fluid and the remaining elastic contribution to the pressure drop AP is

used to calculate an apparent extensional viscosity T/E,a. Typical Trouton ratios when

referenced to the zero-shear-rate viscosity are 0(10), but the values of this ratio should

not be interpreted as a true Trouton ratio measured in homogeneous extensional flow,

since the flow through this contraction has mixed shear and extensional components.

Flow velocimetry measurements and streakline images demonstrate that typically

for Dea < 0(1) the flow field remains largely unchanged from the low Reynolds num-

ber flow field expected for a Newtonian fluid in a planar hyperbolic contraction, with

the experimentally-realized extension rate along the contraction centerline proportional

to the flow rate. For Dea > 0(1), an elastically-driven secondary flow emerges which

results in upstream vortex growth and undermines any assumption of a self-similar,

Newtonian-like flow. However the experimentally-measured kinematics along the con-

traction centerline show that the extension rate is still spatially homogeneous for a given

flow rate and that useful measurements can still be made in this regime. Above a higher

critical Deborah number, De, > 0(10), the flow becomes time-varying and reliably ex-
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tracting r/E,a(i) from the measured pressure drop is difficult. Full-field measurements of

flow-induced birefringence generally confirm the qualitative features seen in the streak-

line images, whilst also showing that the local state of tensile stress in the fluid is still

evolving as it flows towards the contraction throat.

In order to improve the spatial homogeneity in the flow kinematics of the extension-

dominated flow through the contraction section, the contraction length was increased in

a set of redesigned contraction geometries to make the velocity profile more in line with

the predictions of the lubrication approximation. Additionally, in certain chips a rounded

protrusion was included upstream of the hyperbolic contraction aimed at further improv-

ing the spatial homogeneity in the extension rate along the contraction centerline. The

devices were made from a rigid epoxy and constructed using soft photolithograpy-based

fabrication methods. The velocimetry measurements indicate that a longer contraction

leads to a velocity profile more in line with the predictions of the lubrication approxima-

tion, but that the rounded protrusions do not have an appreciable affect on the centerline

velocity profile. Complementary measurements of pressure drop across the entire mi-

crofluidic device were completed using a single gauge pressure sensor. The pressure drop

increased linearly with flow rate as expected for a laminar flow of a Newtonian fluid,

but the exact value of the pressure drop across the contraction-expansion section could

not be reliably determined due to uncertainties in the pressure losses in the inlet and

outlet regions of the microchannel. These results strongly suggest that an increase in the

length of the contraction section would enable the more accurate determination of the

viscous contribution to the overall pressure drop with the lubrication approximation and

thereby improve the reliability of the EVROC for extracting the extensional viscosity in

this extension-dominated flow.

In summary, the microfluidic hyperbolic contraction device described in this Chapter

can be used to investigate the extensional viscosity of a complex fluid such as an ink or

liquid foodstuff or consumer product up to extension rates ta ' 0(103) s- using the

following steps:

(i) A series of steady pressure drop measurements through the device are made as a

function of imposed flow rate (cf. Figure 6.3.1 and 6.3.4).
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(ii) The pressure coefficient P AP2 3 /AP 1 4 can be calculated as a measure of the

relative importance of viscoelastic effects to the total pressure drop. This value should

approach unity P -- 1, as viscoelastic effects become increasingly dominant (cf. Fig-

ure 6.3.5 (a)).

(iii) The pressure drop AP, across the contraction is calculated from Eq. (6.2.3) and

the apparent extensional rate for each flow rate is calculated from Eq. (6.2.1) (cf. Fig-

ure 6.3.5 (b)).

(iv) The viscoelastic contribution to the pressure drop APe can be calculated using

the equation AP = AP, - APo, where AP, can be estimated from Eq. (6.3.17). The

apparent extensional viscosity '7E,a can then be determined using Eq. (6.3.21).

(v) If desired, a second transparent microfluidic chip can be used to measure the local

kinematics and optical retardance with full-field p-PIV and birefringence measurements

as illustrated in Figure 6.3.7. Such measurements can be valuable in ascertaining that

the planar elongational flow is stable and the kinematics are homogeneous.

This hyperbolic planar contraction can serve as a complement to the shear viscosity

microfluidic viscometer described in Pipe et al. (2008) for measuring a nominal exten-

sional viscosity. The combination of measurements obtained with these two devices will

be valuable to an applied rheologist for quality control monitoring (i.e. indexing varia-

tions in the extensional rheology of a specific fluid formulation) as well as for providing a

simple and quick evaluation of the performance of a particular viscoelastic fluid in filling

and dispensing applications featuring converging nozzles that are characterized by high

shear and extension rates.
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Chapter 7

Flow-Induced Particle Migration:

Inertial Focusing in Diluted and

Whole Blood

7.1 Introduction

In the previous Chapters, inertial effects have generally been taken as negligible, since

the flows under consideration were highly viscous due to the low speeds and small length

scales of the flow geometry. On the other hand, in this Chapter and subsequently in

Chapter 8, the fluid velocities are sufficiently large that the role of inertia in the flow

cannot be neglected. In this regime the channel Reynolds number Re, = UD/v is much

larger than unity, where U is the mean velocity in the channel, D is the hydraulic

diameter and v is the kinematic viscosity of the fluid. As discussed previously in the

literature review in Section 2.4, when particles of diameter a are seeded in the fluid

and are advected in a microchannel, inertial non-linearities can give rise to cross-stream

migration and ordering of the particles. The ordering phenomenon in a microfluidic

device is commonly called inertial focusing, because the particles are driven or focused

to very specific locations in the channel cross-section. This focusing occurs at moderate

to large particle Reynolds numbers Rep = Rec(a/D)2 , which is a measure of the relative

importance of fluid inertia in the immediate vicinity of the particle and is defined in
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terms of a characteristic fluid velocity near the particle based on the product of the

characteristic shear rate in the channel :y ~ U/D and the particle diameter a. Inertial

microfluidics has demonstrated the potential to provide a rich range of capabilities to

manipulate biological fluids and particles to address various challenges in biomedical

science and clinical medicine.

One aspect of inertial focusing that has not been studied is how particles suspended

in whole or minimally diluted blood respond to inertial forces in microchannels. The

utility of imaging techniques (i.e. high-speed bright-field imaging and long exposure fluo-

rescence (streak) imaging) primarily used to observe particle focusing in microchannels is

limited in complex fluids such as whole blood due to interference from the large numbers

of red blood cells (RBCs). In this Chapter, particle trajectory analysis (PTA) is used

to observe the inertial focusing behavior of polystyrene beads, white blood cells, and

PC-3 prostate cancer cells in physiological saline and blood. Identification of optically

in-focus (fluorescently labeled) particles were achieved at mean particle velocities of up

to U = 1.85 m.s- 1. Quantitative measurements of optically in-focus particles were used

to construct intensity maps of particle frequency in the channel cross-section and scatter

plots of particle centroid coordinates against particle diameter. PC-3 cells spiked into

whole blood (i.e. hematocrit count HCT = 45%) demonstrated a novel focusing mode

not observed in physiological saline or diluted blood. PTA can be used as an experi-

mental frame of reference for understanding the physical basis of inertial lift forces in

whole blood and discover inertial focusing modes that can be used to enable particle

separation in whole blood.

7.2 Materials and Methods

7.2.1 Device Fabrication

A straight rectangular channel (H = 93 pm, W = 45 im, D = 60 pm, L = 3.5 cm) was

formed in polydimethylsiloxane (PDMS) using a master mold fabricated via photolithog-

raphy (Duffy et al., 1998). A 4-inch silicon wafer was spin-coated with a 93 pm thick

layer of negative photoresist (SU-8 100, Microchem, Newton, MA), exposed to UV-light
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through a Mylar photomask (Fineline Imaging Colorado Springs, CO), and developed

(BTS-220, J.T. Baker, Phillipsburg, NJ). A 10:1 mix of PDMS elastomer and curing

agent (Sylgard 184, Dow Corning, Midland, MI) was poured onto the master mold and

degassed for 60 minutes to remove all trapped bubbles. The master mold was placed

in an 80 'C oven for 72 hours to thoroughly cure the PDMS. The cured PDMS replica

was peeled away from the master mold before inlet, outlet, and height calibration holes

were punched using a coring tool (Harris Uni-Core, Redding, CA) with a hole diameter

of 1.5 mm. The hole-punched PDMS replica was irreversibly bonded to a glass coverslip

by exposing both PDMS and glass surfaces to oxygen plasma for 30 seconds (Harrick

Plasma, Ithaca, NY).

7.2.2 Particle Suspensions

Fluorescently labeled polystyrene beads (FluoSpheres, Invitrogen, Carlsbad, CA) were

supplied as stock suspensions in 0.15 M NaCl with 0.05 wt% Tween 20 and 0.02 wt%

thimerosal. PC-3 human prostate cancer cells (CRL-1435, ATCC) were grown in F-12

K medium (30-2004, ATCC, Manassas, VA) containing 10% fetal bovine serum (In-

vitrogen, Carlsbad, CA) and 1% penicillin streptomycin (Invitrogen, Carlsbad, CA) at

37 'C under 5% C02 conditions. PC-3 cells were fluorescently labeled in physiological

saline (Invitrogen, Carlsbad, CA) containing 5 AM calcein red-orange AM (Invitrogen,

Carlsbad, CA). Whole blood samples from healthy donors were obtained (Research

Blood Components, Boston, MA) in venous blood collection tubes containing EDTA

(Vacutainer, BD Biosciences, San Jose, CA). The RBC volume fraction in each sample

was determined using a blood analyzer (KX-21, Sysmex, Mundelein, IL). WBCs were

recovered from whole blood via RBC lysis buffer (Miltenyi Biotec, Auburn, CA) and

fluorescently labeled in physiological saline containing 5 AM calcein red-orange AM.

Samples with a specific RBC volume fraction were generated by suspending particles in

appropriate amounts of physiological saline and whole blood. The particle concentration

was set at 3.0 x 106 particles/mL.
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7.2.3 Imaging & Analysis of Fluorescently Labeled Particles

The starting sample containing fluorescently labeled particles was injected into the mi-

crochannel using an automated syringe pump (PhD 2000, Harvard Apparatus, Holliston,

MA) at flow rates of Q = 50, 150, and 450 ml.min- 1 . These rates correspond to particle

velocities of U = Q/HW = 0.21, 0.62, and 1.85 m.s-1 . The sample loading system con-

sisted of 5-mL syringe (BD Biosciences, San Jose, CA), 22-gauge blunt needle (Small

Parts, Seattle, WA), 0.02-inch inner diameter tubing (Tygon, Small Parts, Seattle, WA),

and cyanoacrylate adhesive (Loctite, Henkel, Rocky Hill, CT). Images of particles flowing

through the channel were captured using the same epifluorescent inverted microscope,

charge-coupled device camera and Nd:YAG laser described in Section 5.4.2. The laser

generated 6t ~ 10 ns pulses of light with an excitation wavelength of 532 nm, and the

camera detected light from fluorescent particles with an emission wavelength exceed-

ing 565 nm. At a stationary observation distance Lob = 3.5 cm downstream from the

channel entrance, images were captured at eight different height positions spaced 6 pm

apart. Prior to image capture, polystyrene beads with diameter a = 2 pm (FluoSpheres,

Invitrogen, Carlsbad, CA) were placed in open wells formed when one side of the height

calibration holes in the PDMS replica was bonded to a glass coverslip. Optically in-focus

polystyrene beads found at the bottom of the well were used to establish the zero height

position (i.e. floor) of the channel. For each height position, shown schematically in

Figure 7.2.1, a set of 400 images was collected at a rate of F = 5 frames per second.

The polystyrene beads (mean particle diameter a = 9.9 pm) used in this study were

monodisperse, while white blood cells (a = 9.0 pm, size range of 7-11 pm) and PC-3 cells

(a = 17.8 pm, size range of 10-35 pm) were polydisperse in nature. Given a 20x 0.4 NA

objective, the depth of field was calculated (Meinhart et al., 2000) to be 6y = 5.8 pm. In

order to reliably differentiate between optically in-focus particles found at neighboring

vertical positions, the spacing between all vertical positions was set to Ay = 6 pm, as

indicated by the tick marks in Figure 7.2.1. The imaging locations were confined to the

bottom half of the channel since particle focusing was expected to be symmetric across

the x-z plane at y = 48 pm.

ImageJ software (NIH, Bethesda, MD) was used to process raw images and identify

226



Z*-t~~r.

Optically
in-Focus

eX
to-

Focal
Plane

Objective -

Figure 7.2.1: Imaging of particles in the channel. Particles in the focal plane appear
bright with well-defined edges. Particles above and below the imaging plane appear dim
and blurry.

optically in-focus particles at each height position. For an optically in-focus particle

at a given height location, images were taken at multiple height positions in order to

observe corresponding changes in fluorescence signal intensity indicative of an out-of-

focus particle. An optically in-focus particle was predominantly found to exhibit both a

higher mean 8-bit grayscale value and a steeper edge signal intensity gradient relative to

an optically out-of-focus particle. For each set of 400 images at a given height location,

an image threshold was automatically set using an iterative procedure based on the

isodata algorithm (Ridler & Calvard, 1978). Using a specific cutoff for particle size based

on size distribution measurements from a cell analyzer, the image filtering technique

automatically generated a table of potential optically in-focus particles. All particles

were marked in the set of images and referenced numerically in the table, and each

particle was characterized based on a user-defined set of parameters (e.g. 2D particle

area, mean signal intensity, x-y coordinates, and circularity). The collection of potential

optically in-focus particles were examined manually to ensure that optically in-focus

particles were identified and measured properly. For a given flow rate and RBC volume

fraction, quantitative measurements from the collection of optically in-focus particles

were used to construct surface and scatter plots characterizing various aspects of particle

focusing behavior using MATLAB.
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Image Capture of Optically in-Focus Particles in Diluted Blood

Particle trajectory analysis (PTA) was used to identify polystyrene beads, white blood

cells, and PC-3 cells over a range of flow rates Q and RBC volume fractions fRBC,

where fRBC is the ratio of RBC volume to the starting sample volume. For example,

HCT = 45% (i.e. whole blood in this study) corresponds to fRBC = 1, while HCT = 15%

corresponds to fRBC = 0.33 (diluted using physiological saline). A straight rectangular

channel with a 2:1 (H/W) aspect ratio was used to focus randomly distributed particles

to two lateral equilibrium positions centered on the long face of the channel shown in

Figure 7.2.3 (a). These equilibrium positions resulted from a balance of a wall effect lift

that acts to lift particles away from the wall towards the channel centerline and a particle

shear lift that acts away from the channel centerline towards the wall Figure 7.2.3 (b).

In diluted blood samples where the utility of high-speed bright-field imaging and

long-exposure fluorescence is limited, PTA demonstrated the ability to capture images

of individual optically in-focus particles moving at ultra-fast velocities as shown in Fig-

ure 7.2.3 (d). Image capture of individual optically in-focus particles was achieved at

flow rates up to Q = 450 pL.min-' in physiological saline initially, which corresponds to

a mean flow velocity of U = 1.85 m.s-1 and a channel Reynolds number of Re, = 158.

The images of the particles showed no sign of blurring at these velocities since the

pulse duration of the laser was very short. For the microscope objective and camera

used in this work, a single pixel corresponds to (eM)2 = 0.323 x 0.323 pm2 , thus the

flow velocity necessary for a particle to traverse one pixel (and thus show blurring) is

Ublur ' (eM)6t-' = 32 m.s- 1 , which is substantially larger than the velocities considered

in this Chapter. On the other hand, the flow rates studied in this Chapter are limited

to Q < 450 pL.min- for fABC = 1 since the pressure at the device inlet above this flow

rate exceeded the critical delamination pressure of the PDMS-glass interface. At a given

vertical position (e.g. y = 48 pm), optically in-focus particles exhibited peak and uni-

form fluorescence signal intensity, while out-of-focus particles exhibited suboptimal and

radially diffuse fluorescence signal intensity shown in Figure 7.2.3 (c). Using the appro-

priate image threshold, it was possible to differentiate optically in-focus particles at a

given vertical position from optically in-focus particles at neighboring vertical positions.
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Figure 7.2.2: Using particle trajectory analysis (PTA) to observe particle focusing be-
havior in diluted blood. (a) Randomly distributed particles predominantly focus to two
lateral positions centered on the long face of a straight microchannel with 2:1 aspect
ratio. (b) The equilibrium positions result from a balance of a wall effect lift that acts
away from the wall towards the channel centerline and a particle shear lift that acts
away from the channel centerline towards the wall. (c) Particle focusing behavior is
observed in the x-z plane from eight different vertical positions spanning the bottom
half of the channel. Focused particles are shown to be in focus at y8 = 48 Am (scale bar
20 pm). (d) For high-speed bright-field (HSB) microscopy with an exposure time of 2 ps,
individual white blood cells can be identified in physiological saline (fRBc = 0) but not
in diluted blood (fRBc = 0.07). For long-exposure fluorescence (LEF) microscopy with
an exposure time of 1 s, a bulk white blood cell distribution profile can be identified,
but the profile cannot be deconstructed based on height position or particle diameter.
For particle trajectory analysis (PTA) with an exposure time of 5t = 10 ns, individual
white blood cells resuspended in physiological saline or diluted blood can be identified
at multiple vertical positions in the channel (scale bar 20 mm). (e) At a flow rate
Q = 450 pL.min- 1, PTA images of polystyrene beads (Rep = 2.91 for fABC = 0), white
blood cells (Rep = 2.41 for fABC = 0), and PC-3 prostate cancer cells (Rep = 9.11 for
fABC = 0) suspended in physiological saline and diluted blood demonstrate that indi-
vidual optically in-focus particles can be identified in starting samples with higher RBC
volume fractions (fABc) without significant degradation in fluorescence signal quality.
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As a result, optically in-focus particles found at all vertical positions were used

to make quantitative measurements of particle focusing behavior. Once PTA-based

identification of optically in-focus particles was demonstrated in physiological saline,

these experiments were repeated for polystyrene beads, white blood cells, and PC-3

prostate cancer cells suspended in diluted blood, as shown in Figure 7.2.3 (d). As fRBC

increased, optically in-focus particles exhibited a fluorescence signal intensity that was

weaker and less uniform. However, it was still possible to distinguish likely optically

in-focus particles from undoubtedly out-of-focus particles.

Quantitative Measurements of Particle Focusing Behavior in Diluted Blood

For a given Q and fRBC, optically in-focus particles from all vertical positions were used

to make quantitative measurements of particle focusing behavior. The distribution of

particles in the channel cross-section (y-z plane) was visualized using an intensity map

in which each individual rectangle represented a possible location for the centroid (yc, zc)

of an optically in-focus particle. The color scale used to represent the particle frequency

nf at a given point in the y-z plane consisted of full color (for n 1 > 10), grayscale (for

1 < nf < 10), and white (for nf = 0). Given the polydisperse nature of white blood cells

and PC-3 cells, a scatter plot of lateral centroid coordinate (zc) versus particle diameter

a was constructed. For a straight rectangular channel with a 2:1 (H/W) aspect ratio,

particle focusing is predominantly reduced to two lateral equilibrium positions centered

on the long face. Particle focusing to lateral equilibrium positions has been shown to

occur both at a single vertical position (Di Carlo et al., 2007) and over a wide range

of vertical positions (Choi et al., 2011). Applications in flow cytometry would require

the former, while applications in rare cell isolation can utilize the latter provided that

particle focusing achieves the desired particle separation benchmarks (e.g. yield of target

cell capture, purity of total cell capture).

Given that particle focusing was observed across multiple vertical locations in these

experiments, the inertial focusing quality of particles was evaluated at vertical positions

i=5 yi (i.e. near the center of the long channel face). Since no accepted metric exists

to define inertial focusing quality, a non-dimensional term bandwidth efficiency /3 is
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established that is dependent on mean particle diameter a, the mean lateral distance

Zm of an optically in-focus particle (as an absolute value) from the channel centerline,

and the standard deviation a-. of optically in-focus particles in the z-direction listed in

Table 7.3.1. Bandwidth efficiency was defined as

Wb 4az -+ a
3= - -(7.2.1)a a

where Wb is the edge-to-edge bandwidth in the z-direction over which 95% of all optically

in-focus particles can be found. Note that f3# is normalized by a, which varies depending

on the class of particles used. As a result, 3 > 1 in all cases, with 3z - 1 when particle

focusing is nearly perfect (o-z 0). Based on the current imaging and device setup,

scanning resolution in the z-direction was comprehensive and continuous, while scanning

resolution in the y-direction was incomplete and segmented. Nonetheless, a second non-

dimensional term focusing utility J Y is established to serve as a crude measure of particle

frequency at vertical positions where predicted particle focusing was unlikely to occur.

The focusing utility was defined as

ff=- (7.2.2)
N

where nf is the number of optically in-focus particles at vertical positions Ei yi and

N is the number of optically in-focus particles at vertical positions Ei=o yi. As a result,

by < 1 in all cases, with 4y ~ 1 when the particle focusing is nearly perfect (nf ~ N).

7.3 Results

7.3.1 Inertial Focusing of Polystyrene Beads in Blood

Polystyrene beads have been used extensively to study particle focusing behavior in

microchannels (Di Carlo et al., 2007, 2009b). As ready-to-use monodisperse particles

exhibiting strong and uniform fluorescence intensity, polystyrene beads were an ideal

choice for this study. Given the mean particle diameter and channel dimensions, the

particle Reynolds numbers of polystyrene beads in physiological saline for flow rates

Q = 50, 150, and 450 [L.min- 1 were Rep = 0.32, 0.97, and 2.91. Using flow rates that
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Q fRBC Rep Zm az 13z (y
[pL.min- 1 ] [] H [pm] [pm] [] []

Polystyrene Beads 50 0 0.32 12.7 0.7 1.27 0.91
0.07 0.28 13.5 0.9 1.35 0.73
0.33 0.18 12.5 4.5 2.86 0.81

150 0 0.97 12.9 0.5 1.08 1
0.07 0.84 14.1 1.4 1.56 0.96
0.33 0.26 13.9 2.1 1.82 0.87

450 0 2.91 13.6 1.1 1.45 0.86
0.07 2.53 14.2 1.4 1.54 0.91
0.33 1.68 14.4 2.0 1.79 0.86

White Blood Cells 50 0 0.27 14.4 0.9 1.43 0.79
0.07 0.23 15.6 2.0 1.56 0.55
0.33 0.16 11.2 5.3 3.13 0.40

150 0 0.80 15.5 0.6 1.28 0.72
0.07 0.70 16.5 1.9 1.82 0.61
0.33 0.46 15.3 3.3 2.44 0.54

450 0 2.41 16.1 1.0 1.43 0.75
0.07 2.10 16.5 1.9 1.82 0.61
0.33 1.39 16.2 2.9 2.33 0.57

PC-3 Cells 50 0 1.01 8.6 2.1 1.47 1
0.07 0.88 8.6 2.5 1.56 1
0.33 0.58 9.9 2.0 1.45 0.92

1 0.25 1.0 0.9 1.22 0.17
150 0 3.04 10.1 1.1 1.25 1

0.07 2.64 10.3 1.4 1.32 1
0.33 1.76 10.2 1.8 1.41 1

1 0.76 1.1 1.0 1.22 0
450 0 9.11 9.9 1.2 1.28 1

0.07 7.92 11.0 1.3 1.28 1
0.33 5.27 10.8 1.5 1.35 1

1 2.28 1.7 1.4 1.32 0

Table 7.3.1: Quantitative measurements of particle focusing behavior as a function of
flow rate Q and RBC volume fraction fRBC. For a given Q and fRBC, the particle
Reynolds number Rep, the mean optically in-focus lateral distance zm from the channel
centerline, the bandwidth efficiency Oz, and the focusing utility <bY were calculated for
polystyrene beads, white blood cells, and PC-3 prostate cancer cells.
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correspond to Re, < 1, Re, ~ 1, and Rep > 1, polystyrene beads served as a reference

standard for white blood cells and PC-3 cells.

For Q = 50 pL.min 1 in physiological saline (fRBc = 0), bead focusing in both the

z-direction (3z = 1.27) and the y-direction (Iy = 0.91) approached optimal levels as

shown in Figure 7.3.1. When fRBC = 0.07, bead focusing decreased moderately in the

y-direction (I y = 0.73) with minimal decrease in the z-direction (i3z = 1.35). When

fRBC = 0.33, bead focusing was poorly organized in both the z-direction (/3z = 2.86)

and y-direction (4D = 0.81).

For Q = 150 pL.min 1 in physiological saline (fRBc = 0), bead focusing in both

the z-direction (i3z = 1.08) and the y-direction ((Dy = 1) reached optimal levels. When

fRBC = 0.07, bead focusing decreased moderately in the z-direction (,3z = 1.56) with

minimal decrease in the y-direction (DY = 0.96). For fRBC = 0.33, bead focusing de-

creased further in a similar manner (Oz = 1.82, 4JD = 0.87) but remained largely intact.

For Q = 450 pL.min- 1 in physiological saline (fRBc = 0), bead focusing became

suboptimal in both the z-direction (Oz = 1.45) and the y-direction (4 y = 0.86), as

multiple beads occupied a previously unstable equilibrium position despite a non-unity

channel aspect ratio. When fRBC = 0.07, bead focusing decreased minimally in the z-

direction (Oz = 1.54) but improved minimally in the y-direction (4y = 0.91). When

fRBC = 0.33, bead focusing remained largely intact despite a moderate decrease in the

z-direction (i3z = 1.79) and a minimal decrease in the y-direction (Ix, = 0.86).

7.3.2 Inertial Focusing of White Blood Cells in Blood

Inertial focusing may also be a valuable tool for more portable and cost-effective flow

cytometry technologies (Hur et al., 2010; Oakey et al., 2010), but the focusing behavior

(and separation efficiency) of white blood cells (WBCs) in whole or minimally diluted

blood has not been studied. Given the mean particle diameter and channel dimensions,

the particle Reynolds numbers of WBCs in physiological saline for flow rates Q = 50,

150, and 450 pL.min- 1 were Rep = 0.27, 0.80, and 2.41. Since WBCs have a size range

of 7-11 pm, the lower bound of Rep = 0.16, 0.48, and 1.46, while the upper bound of

Rep = 0.40, 1.20, and 3.60.

233



fRBC 0

48

42
36 =
30
24
18
12.
6 R,= 0.32 N 455

48 J

42

36?
30
241

18'
12
6 R,= 0.97 N =462

48

361
301
244

12
6' Rp,=2.91 N4=636

-20 -10 0 10 20

Zf [Im]

fRBc 0.07

R,=0.26 675'.

R,= 0.80 N = 610

R,= 2.40 N =652

-20 -10 0 10 20

Zf [Am]

fRBc 0.33
12(

401

20

iy o.16 N=605 10
60

40

R'= 0.49I N =5 0
40120

R,=0.46 N =595 10
-20 -10 0 10 20

Zf [pim]

Figure 7.3.1: Polystyrene bead focusing behavior as a function of flow rate Q and RBC
volume fraction fRBC. For fRBC = 0, values of Q correspond to Rep = 0.32, 0.97, and
2.91. For fRBC = 0.07, values of Q correspond to Rep = 0.26, 0.80, and 2.40. For
fRBC = 0.3, values of Q correspond to Rep = 0.16, 0.49, and 1.46. The optically in-
focus vertical position yf and in-focus lateral distance zf from the channel centerline
for polystyrene beads were used to construct a cross-sectional particle histogram, and
calculate the measures /3 _ and 4D, given in Table 7.3.1.
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For Q = 50 pL.min-' in physiological saline (fRBc = 0), WBC focusing in both

the z-direction (i3, = 1.43) and the y-direction (4b, = 0.79) was weaker relative to

polystyrene beads as shown in Figure 7.3.2 (a). In particular, multiple WBCs were found

unfocused at vertical positions near the channel floor (i.e. EI yi). When fRBC = 0.07,

WBC focusing decreased moderately in both the z-direction (/, = 1.85) and y-direction

((D = 0.55). When fRBC = 0.33, WBC focusing was poorly organized in both the

z-direction (i3_ = 3.13) and y-direction (4D, = 0.40).

For Q = 150 pL.min- 1 in physiological saline (fRBc = 0), WBC focusing improved in

the z-direction (03, = 1.28) but deteriorated in the y-direction (IxY = 0.72) as more WBCs

were found unfocused at vertical positions near the channel floor. When fRBC = 0.07,

particle focusing deteriorated moderately in both the z-direction (,3, = 1.82) and the y-

direction (Dy = 0.61). However, most WBCs were found near a channel wall to the extent

that a loose annulus of WBCs appeared to form. When fRBC = 0.33, WBC focusing

decreased further in both the z-direction (,3, = 2.44) and the y-direction (4)y = 0.54) as

the annulus of WBCs became more radially diffuse.

For Q = 450 pL.min- 1 in physiological saline (fRBc = 0), WBC focusing decreased

moderately in the z-direction (/3# = 1.43) with minimal improvement in the y-direction

(4y = 0.75) as WBCs occupying vertical positions near the channel floor became orga-

nized around a previously unstable equilibrium position despite a non-unity aspect ratio.

When fRBC = 0.07, WBC focusing decreased moderately in the z-direction (Oz = 1.82)

and reversed in the y-direction (ID = 0.61) as an annulus of WBCs appeared to form.

When fRBC = 0.33, WBC focusing decreased moderately in the z-direction (,3z = 2.33)

and minimally in the y-direction (DY = 0.57) as the annulus of WBCs became more radi-

ally diffuse. Since the WBCs used were polydisperse in nature, the relationship between

particle diameter a and lateral distance zf of an optically in-focus WBC (as an absolute

value) from the channel centerline was investigated and is shown in Figure 7.3.2 (b).

Despite the narrow size range observed, larger WBCs were found to be slightly closer to

the channel centerline (i.e. smaller zf).
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7.3.3 Inertial Focusing of PC-3 Cells in Blood

There is significant interest to incorporate inertial focusing into cell-friendly and high-

throughput rare cell isolation technologies (Hur et al., 2011a; Bhagat et al., 2011), but

the focusing behavior (and separation efficiency) of rare cells such as circulating tumor

cells (CTCs) in whole or minimally diluted blood has not been studied. A model prostate

cancer cell line (PC-3) was used to assess CTC focusing behavior in blood. Given the

mean particle diameter and channel dimensions, the particle Reynolds number of PC-3

cells in physiological saline for the given set of flow rates were Rep = 1.01, 3.04, and

9.11. Since the diameter of the PC-3 cells ranged from 10-35 Am, the lower bound of

Rep = 0.33, 0.99, and 2.97, while the upper bound of Rep = 3.91, 11.76, and 35.26.

For Q = 50 pL.min- 1 in physiological saline (fRBc = 0), PC-3 cell focusing in both

the z-direction (,3, = 1.47) and the y-direction (DY = 1) approached optimal levels as

shown in Figure 7.3.3 (a). When fRBC = 0.07, PC-3 cell focusing was largely unaffected

in both the z-direction (Oz = 1.56) and y-direction (4 Y = 1). When fBC = 0.33, PC-3

cell focusing decreased moderately in the y-direction (4y = 0.92) but improved mini-

mally in the z-direction (,3, = 1.45). Since PC-3 cell focusing remained strong, particu-

larly in the z-direction, this experiment was repeated using whole blood (HCT = 45%).

For fABC = 1, PC-3 cell focusing shifted radically (i3z = 1.22, 4DY = 0.17) as PC-3 cells

were predominantly found along the channel centerline (z = 0) around a previously un-

stable equilibrium position (due to the non-unity channel aspect ratio). No PC-3 cells

occupied the previously stable equilibrium positions observed at lower fABC-

For Q = 150 pL.min- 1 in physiological saline (fABc = 0), PC-3 cell focusing in both

the z-direction (Oz = 1.25) and the y-direction (4DY = 1) reached optimal levels. When

fABC = 0.07, PC-3 cell focusing was largely unaffected in both the z-direction (13z = 1.32)

and y-direction (4by = 1). When fABC = 0.33, PC-3 cell focusing decreased moderately

in both the z-direction (3, = 1.41) and the y-direction (4PY = 1). For fRBC = 1, PC-3

cell focusing again shifted radically (,3z = 1.22, 4DY = 0) as PC-3 cells predominantly

occupied an equilibrium position (centered on the short face of the channel) not observed

at lower fABC-

For Q = 450 pL.min-' in (fABc = 0), PC-3 cell focusing in both the z-direction
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(3z = 1.28) and the y-direction (4DY = 1) remained at optimal levels due to the lack of PC-

3 cells found at vertical positions near the channel floor (in contrast to the observations

for polystyrene beads and white blood cells). When fABC = 0.07, PC-3 cell focusing

was largely unaffected in both the z-direction (i3z = 1.28) and y-direction ((, = 1).

When fRBC = 0.33, PC-3 cell focusing decreased moderately in both the z-direction

(i3z = 1.35) and the y-direction (IY = 1). When fABC = 1, PC-3 cell focusing again

shifted radically (Oz = 1.32, I Y = 0) as described previously for Q = 150 pL.min-1, but

PC-3 cell focusing decreased moderately in the z-direction. Since the PC-3 cells used

were polydisperse in nature, the relationship between particle diameter a and lateral

distance zf of an optically in-focus PC-3 cell (as an absolute value) from the channel

centerline was studied as shown in Figure 7.3.3 (b). When fRABC = 0, 0.07, or 0.33,

a linear correlation between the two parameters was observed, such that large PC-3

cells were situated closer to the channel centerline (z = 0), while small PC-3 cells were

situated closer to the channel wall (z = ±22.5 pm). When fABC = 1, large PC-3 cells

formed a tighter distribution around the channel centerline relative to small PC-3 cells.

7.3.4 Rheological Properties of Test Fluids

In an attempt to gain insight into the radical shift in PC-3 cell focusing behavior

when fABC increased from 0.33 to 1, the torsional AR-G2 rheometer was used with

a Taylor-Couette cylindrical geometry to measure the effective viscosity of the test fluid

at fABC = 0, 0.33, and 1 as a function of shear rate shown in Figure 7.3.4 (a). The

governing equations of motion for a non-Newtonian fluid (such as blood) in a rectangu-

lar geometry cannot be reduced to simple equations and solved analytically. However,

the power-law model is used to describe the test fluid in the x-z plane for the ideal

case of y = 48 pm (i.e. the center of the long channel face) where fluid flow in the x-

direction can be approximated using a simple one-dimensional equation. The viscosity

r; of a power-law fluid (Bird et al., 1987) is defined as q = mjI- 1 where ' is an im-

posed shear rate, m is a positive constant called the consistency index (with dimensions

Pa.s?), and n is a dimensionless positive constant. For a Newtonian fluid n = 1, and

for a shear-thinning fluid n < 1. Using a log-log plot of viscosity against shear rate to
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Figure 7.3.2: White blood cell focusing behavior as a function of flow rate Q and RBC
volume fraction fRBC. For fR = 0, values of Q correspond to Re = 0.27, 0.80, and
2.41. For fRBC = 0.07, values of Q correspond to Re, = 0.22, 0.66, and 1.99. For
fRBC = 0.3, values of Q correspond to Re = 0.14, 0.40, and 1.21. (a) The optically
in-focus vertical position yf and in-focus lateral distance Zf from the channel centerline

for white blood cells were used to construct a cross-sectional particle histogram. (b) The
dependence of particle diameter a on in-focus lateral distance zf can be illustrated using
a particle scatter plot. The dotted line represents the location of the sidewall given a
non-deformable microchannel.
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Figure 7.3.3: PC-3 prostate cancer cell focusing behavior as a function of flow rate Q
and RBC volume fraction fRBC. For fABC = 0, values of Q correspond to Rep = 0.27,
0.80, and 2.41. For fRBC = 0.07, values of Q correspond to Rep = 0.22, 0.66, and
1.99. For fRBC = 0.3, values of Q correspond to Rep = 0.14, 0.40, and 1.21. (a) The
optically in-focus vertical position yf and in-focus lateral distance zf from the channel
centerline for PC-3 cells were used to construct a cross-sectional particle histogram. (b)
The dependence of particle diameter a on in-focus lateral distance z1 for PC-3 cells was
illustrated using a particle scatter plot. The dotted line represents the location of the
sidewall given a non-deformable microchannel.
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Figure 7.3.4: Rheometer measurements of diluted and whole blood. (a) The effective
viscosity r for physiological saline, diluted blood, and whole blood was measured as a
function of shear rate - using a rheometer with a concentric cylinder geometry. (b)
Modeling diluted and whole blood as a power-law fluid, the flow velocity v, down the
microchannel for diluted and whole blood at height y = 48 pm was calculated as a
function of in-focus lateral distance zf from the channel centerline. (c) Modeling diluted
and whole blood as a power-law fluid, the shear rate ' for diluted and whole blood at
height y = 48 pm was calculated as a function of in-focus lateral distance zf from the
channel centerline.

calculate n, the test fluid was found to be Newtonian (n = 1) for fRBC = 0, very close

to Newtonian (n = 0.98) for fRBC = 0.3, and shear-thinning (n = 0.60) for fRBC = 1.

Assuming well-developed flow at y = 48 pm, the equation of motion in the x-direction

can be approximated by

(7.3.1)

where U is the mean flow velocity. The shear rate -y(z) = dvx(z)/dz can also be calculated

from this equation. A plot of vx(z) against z (Figure 7.3.4 (b)) and A(z) against z

(Figure 7.3.4 (c)) was constructed for fRBC = 0.33 and fRBC = 1. The velocity profile

of the test fluid at fRBC = 0.33 is expected to be parabolic, while the velocity profile of

the test fluid at fRBC = 1 is more blunted. This results in a sigmoidal shear rate profile
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for the test fluid at fRBC = 1 as opposed to a linear shear rate profile for the test fluid

at fRBC = 0.33. In particular, there exists a region near the channel centerline (z = 0)

where the predicted shear rate of the test fluid at fRBC = 1 is lower than the shear rate

of the test fluid at fRBC = 0.33.

7.4 Discussion

In this Chapter, particle trajectory analysis (PTA) has been used to identify and charac-

terize individual optically in-focus particles in diluted and whole blood. Direct measure-

ments of these particles were used to generate a two-dimensional (y-z plane) profile of

particle focusing behavior and its dependence on particle diameter. These results repre-

sents a significant improvement over what has been previously achieved using high-speed

bright-field imaging and long-exposure fluorescence imaging. In high-speed bright-field

imaging, quantitative measurements of individual cell properties can only be made in

very dilute (fRBC < 0.07) blood, as the sheer number of RBCs occludes observation of

other cell-sized particles in the channel. In long-exposure fluorescence imaging, a quan-

tifiable intensity curve requires an aggregate fluorescence from a population of particles,

which means that an ensemble of particles that are polydisperse in nature cannot be

differentiated individually according to size or vertical position.

PTA was first used to observe the inertial focusing behavior of polystyrene beads

in diluted blood. Polystyrene beads were chosen as an ideal test case (and reference

benchmark) given their monodisperse nature and strong, uniform fluorescence intensity.

For particle Reynolds numbers Rep < 1, Rep = 1, and Rep > 1 in physiological saline,

bead focusing behavior using PTA was largely consistent with previous work in which

two microchannels with inverted aspect ratios were used separately to determine the

two-dimensional (y-z plane) profile of bead focusing behavior (Hur et al., 2010). PTA

has a significant advantage in providing three-dimensional scanning resolution of par-

ticle focusing behavior in a single device over a wide range of fRBC, and recent work

(Klein & Posner, 2010) suggests that PTA image acquisition using a high-speed spinning

(Nipkow) disk confocal p-PIV system can provide even more comprehensive and accu-
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rate three-dimensional scanning resolution. Assuming that particle focusing behavior is

well-developed, images of particles in the x-z plane can be taken at kHz frequencies in

an automated and continuous manner in the y-direction with exquisite scanning reso-

lution. PTA image analysis can also be optimized by inputting collected images into

a supervised machine learning system such as CellProfiler Analyst (Jones et al., 2009)

for automated recognition of complicated and subtle phenotypes found in millions of

particles.

PTA was then used to observe the inertial focusing behavior of white blood cells

(WBCs) in diluted blood. Despite the relative similarity in particle diameter between

WBCs (a = 9.0 pm) and beads (a = 9.9 pm), WBC focusing in both the z-direction

and the y-direction was visibly weaker at fRBC = 0. PTA demonstrated the ability to

deconstruct WBC focusing behavior based on particle diameter and centroid position of

individual particles in the channel cross-section (y-z plane). As a result, the decrease

in WBC focusing behavior (relative to beads) could be partially attributed to smaller

WBCs found unfocused at vertical positions near the channel floor. These results are

consistent with the notion that small WBCs experience weaker inertial lift forces relative

to large WBCs since Rep ~ a2 and are thus more likely to remain unfocused at a given

Rep. PTA also captured the formation of a WBC annulus in the channel cross-section

(y-z plane) at fRBC = 0.07 and 0.33. Leukocyte margination in a straight rectangular

channel has been observed at much lower Reynolds numbers but not at the flow rates

used in this study (Jain & Munn, 2009; Hou et al., 2010). In vitro experiments charac-

terizing the radial distribution of WBCs have shown that leukocyte margination from

the center of a blood vessel depends on rheological factors such as hematocrit, blood

suspension medium and shear stress (Schmid-Sch6nbein et al., 1980; Goldsmith & Spain,

1984). Further investigation into leukocyte margination in inertia-dominated flow will

be necessary.

Finally, PTA was used to observe the inertial focusing behavior of PC-3 cells in

diluted blood and whole blood. A model prostate cancer (PC-3) cell line was used as a

surrogate for circulating tumor cells (CTCs). CTC isolation poses an immense technical

challenge, as CTCs are present in as few as one cell per 101 haematologic cells in the
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blood of patients with metastatic cancer (Krivacic et al., 2004; Racila et al., 1998). At

fRBC = 0, PC-3 cell focusing was strong in both the z-direction and the y-direction,

and it remained relatively intact at fRBC = 0.07 and fRBC = 0.33. Since PC-3 cells

are widely polydisperse in nature (a = 10 - 35 ,um) and can be much larger than the

polystyrene beads used here, the inertial lift force on a PC-3 cell is expected to be

up to an order of magnitude larger. However, it was unexpected not only to identify

in-focus PC-3 cells at fRBC = 1, but to observe a radical shift in PC-3 cell focusing

behavior as opposed to further decreases in both the z-direction and the y-direction from

previously observed equilibrium positions. Despite the increased RBC concentration in

the channel at fRBC = 1, the preferred equilibrium position found along the channel

centerline near the channel floor made it possible to sufficiently resolve in-focus PC-3

cells. Long-exposure fluorescence (streak) imaging of PC-3 cells in straight rectangular

channels with inverted aspect ratios (H/W = 0.5 and 2) was used to demonstrate

that PC-3 cell focusing behavior in whole blood is symmetric across the center of the

channel long face in Figure 7.4.1 and is not the result of particle settling or imaging

artifacts. However, attempts to sufficiently resolve PC-3 cells in the upper half of the

channel were unsuccessful due to light absorption and scattering of RBCs shown in

Figure 7.4.1. The concentration of PC-3 cells spiked into the suspending fluid was

orders of magnitude higher than previously observed concentrations of CTCs found in

cancer patient blood samples. A higher spiking concentration was required to identify

and analyze a statistically significant number of PC-3 cells in a manner that was not

experimentally or computationally prohibitive. The spiking concentration of PC-3 cells

should be varied in future studies to ensure that PC-3 cells can indeed serve as CTC

analogs when it comes to particle focusing behavior. However, self-interactions between

neighboring PC-3 cells in the channel at the spiking level used here will be negligible

in whole blood, as the volume fraction of PC-3 cells (0.89%) is almost two orders of

magnitude less than that of RBCs (45%).

In an attempt to provide a physical basis for the radical shift in PC-3 cell fo-

cusing behavior at fRBC = 1, rheological measurements of the test fluids were made

at fRBC = 0.33 and 1. The test fluid was found to be very close to Newtonian at
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Q=0 Q>0

Figure 7.4.1: Identifying PC-3 cells re-suspended in whole blood (fRBc = 1,
HCT = 45%). (a) A straight rectangular channel with 2:1 aspect ratio was function-
alized with anti-EpCAM antibody, which binds to EpCAM surface markers found on
PC-3 cells. After PC-3 cells were captured in the channel, images were taken near the
channel floor (y = 9 pum) to visualize PC-3 cells attached to the channel floor (red arrow)
and the channel ceiling (green arrow). Images were also taken near the channel ceiling
(y = 81 Mm) to visualize PC-3 cells attached to the channel floor (red arrow) and the
channel ceiling (green arrow). (b) In an unfunctionalized channel, images were taken
at y = 18 tm to visualize PC-3 cells flowing near the channel floor (red arrow) and the
channel ceiling (green arrow). Images were also taken at y = 72 pm to visualize PC-3
cells flowing near the channel floor (red arrow) and the channel ceiling (green arrow).
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fRBC = 0.33 and strongly shear-thinning at fRBC = 1. As a result, the flow velocity and

shear rate profiles indicated regions of higher viscosity near the channel centerline for

the test fluid at fRBC = 1 relative to fRBC = 0.33. However, the shear-thinning results

of dilute and whole blood do not fully explain why PC-3 cell margination differs from

that of WBC margination. Particle deformability has also been shown to impact particle

position relative to the channel wall, particularly if the cells are either soft or of com-

parable size to the channel dimensions (Hur et al., 2011a). Given the capacity of PTA

to resolve and identify individual particles at the typical flow rates required for inertial

focusing, it would be of great interest to characterize the effect of both inertial lift forces

and viscoelasticity induced forces of fluorescently labeled particles (e.g. CTCs, PDMS

elastic particles, and viscous oil droplets) with varying degrees of deformability in dilute

and whole blood. Furthermore, blood analogs with shear-thinning behavior similar to

that of whole blood, but with substantially different relaxation times have been shown

to generate considerably different extensional flow patterns (Sousa et al., 2011). This

difference suggests that the elastic properties of the fluid can have a dominant effect on

the flow characteristics, which has significant relevance to whole blood given the elastic

and deformable RBCs found at high (38-52%) volume fractions.

The flow behavior of RBCs in whole blood under inertial focusing conditions for PC-3

cells (or other target cells) has not yet been previously studied. However, RBCs in highly

dilute (0.5% HCT) blood have been shown to focus to two streamlines centered on the

long face of a 2:1(H/W) straight rectangular channel (Hur et al., 2010; Mach & Di Carlo,

2010). If RBC-induced margination of PC-3 cells in whole blood is biased due to inertial

focusing of RBCs, the larger PC-3 cells may not be able to able to squeeze into near-wall

positions along the channel long face that the smaller WBCs can occupy. As a result,

the PC-3 cells could be vertically marginated to near-wall positions along the channel

short face. Furthermore, channel flows of suspensions are well-known to exhibit weak

secondary flows arising from finite normal stress differences (Ramachandran & Leighton,

2008; Zrehen & Ramachandran, 2013). Such secondary flows are also known to occur

in flows of polymeric solutions through non-circular ducts and can have a significant

impact on the migration behavior of particles seeded in the fluid (Villone et al., 2011a,
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2013).

7.5 Summary

Particle tracking analysis (PTA) was used to identify and characterize the inertial focus-

ing behavior of polystyrene beads, white blood cells, and PC-3 cells in diluted and whole

blood. Individual optically in-focus particles could be identified (without any visual ev-

idence of fluorescence streak formation) at mean flow velocities up to U = 1.85 m.s- 1

(Q = 450 pL.min- 1), in test fluids up to HCT = 45% (fABC = 1), and at multiple ver-

tical positions across the microchannel. Direct measurements of these particles were

used to generate a two-dimensional (y-z plane) profile of particle focusing behavior and

its dependence on particle diameter. Of particular interest is the ability of PTA to not

only identify in-focus PC-3 cells at fABC = 1, but to observe a radical shift in PC-3

cell focusing behavior as opposed to further decreases in both the z-direction and the

y-direction from previously observed equilibrium positions. PTA can be used to provide

an experimental frame of reference for understanding the physical basis of inertial lift

forces in whole blood via numerical simulations of particle flow in non-Newtonian fluids

at high Reynolds number. PTA can also be used to discover inertial focusing modes

that enable particle enrichment (and ultimately isolation) directly from whole blood at

high throughput for use in global health diagnostics.

In the next Chapter 8, the experimental techniques developed in this Chapter are

utilized to study the flow of non-Newtonian liquids at channel Reynolds numbers up

to and above the value at the transition to inertially-dominated turbulence. These

experiments offer a more complete view on the role of viscoelasticity on particle migration

seen in the migration of PC-3 cells in high hematocrit concentrations. The use of model

non-Newtonian polymeric solutions instead of physiological fluids such as blood, offers

the distinct advantage that they are simpler to prepare and characterize and are generally

more amenable to future modeling and theoretical analysis.
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Chapter 8

Flow-Induced Particle Migration:

Inertia, Elasticity and Transition to

Turbulence

8.1 Introduction

As discussed in the literature review in Section 2.4, many important biomedical pro-

cesses require the isolation of micron-sized particles or cells from a background fluid.

Flow induced particle migration in microfluidic devices, often called inertial focusing

(Di Carlo, 2009a) has been shown to offer great promise for impactful biomedical ap-

plications, including disease diagnostics and treatment. In particular, this technology

has been proposed as a compact and inexpensive alternative to current high-speed flow

cytometers. It has also been identified as a breakthrough technique for high-throughput

cell manipulation and the sorting of diseased cells from the bloodstream.

Despite the robustness of particle focusing in Newtonian fluids, its practical imple-

mentation for real-world applications has been limited, in part, due to a rudimentary

fundamental understanding of the phenomenon and due to the lack of available engi-

neering design guidelines. It has also proven challenging to fabricate microfluidic devices

that can withstand the pressures associated with flow rates substantially higher than

Q - 1 mL.min- 1 in a single microchannel using conventional fabrication methods with
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Figure 8.1.1: Schematic diagram of typical particle equilibrium positions in the y-z
plane of a straight channel for different ranges of channel Reynolds number Rec and
Weissenberg number Wic. The lower figures are contours of the velocity and shear rate
in a channel with a square cross-section for a Newtonian fluid. (a)-(c) Equilibrium
positions of the particles in different flow regimes in the y-z plane and the corresponding
streakline images taken in the x-z plane.

polydimethylsiloxane (PDMS) elastomers. Having more mechanically robust devices

would allow larger Reynolds number regimes to be studied and would simplify future

implementations of this technology for a real application. Furthermore, in most studies

with whole blood and other clinically relevant biofluids, it has been necessary to dilute

the samples, as discussed previously in Chapter 7, partly because the undiluted fluids are

complex, non-Newtonian suspensions displaying non-linear rheological properties whose

role in particle focusing at high-flow rates has not yet been addressed. This dilution step

also increases the complexity of any such particle-focusing procedure, thereby mitigating

the viability of this otherwise inexpensive biomedical technology. A systematic and fun-

damental study of flow-induced particle localization in complex fluids is therefore crucial

if this technology is ever to be successfully exploited for real-world particle sorting and

separation processes.

In addition to fluid rheology, particle size and channel dimensions are also known

to affect the particle distribution at steady state (Di Carlo, 2009a). For reasons that
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are explained in Section 8.3.1, a channel with a square cross-section has been studied

in the work in this Chapter. In order to illustrate the typical particle distributions

in a microchannel, the flow of particles in a square channel is shown schematically in

Figure 8.1.1. Contour plots of the velocity and shear rate profiles for the flow of a

Newtonian fluid in a square duct are shown in the lower left of Figure 8.1.1. Evidently,

the shear rates are largest near the mid-faces of the channel edges and smallest in the

channel corners and at the centerline.

In the flow of a Newtonian liquid, particles are driven toward regions of high shear

rate and take on a diamond-like distribution in the channel with particles located near

the middle of each wall of the channel, as shown in Figure 8.1.1 (a). This distribution is

analogous to the annular ring of enhanced concentration that forms in the flow through

a cylindrical pipe (Segr6 & Silberberg, 1961). At channel Reynolds number well above

Re, > 0(100), however, other equilibrium positions have been predicted numerically

(Chun & Ladd, 2006) including close to the channel corners and centerline. In highly

elastic flows of viscoelastic liquids, the equilibrium positions of the particles include the

channel corners and centerline forming a quincunx pattern as shown in Figure 8.1.1 (b),

which correspond to regions of low shear rates and thus low normal stress differences.

When inertial and elastic effects are simultaneously important, new particle distributions

are also possible such as those shown in Figure 8.1.1 (c). The tendency of particles to

be driven toward a single region in the channel (e.g. centerline) in this flow regime is ex-

tremely attractive for applications in flow cytometry and cell separation and constitutes

a prime motivator for the study described in this Chapter.

8.2 Dimensional Analysis

Many of the dimensionless groups that are relevant to the study of particle migration in

complex fluids have previously been defined throughout this Thesis, but for the sake of

completeness, they are restated here.

For a channel of height H and width W, the characteristic channel dimension is

given by the hydraulic diameter defined as D = 2HW/(H + W). Furthermore, for a
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given volumetric flow rate Q, the mean velocity in the channel is U = Q/HW. The

relative importance of inertial effects to viscous effects is characterized by the channel

Reynolds number

Re, - pUD (8.2.1)

where p is the density of the fluid and q(-c) is the dynamic viscosity of the fluid defined

in terms of a characteristic shear rate 'c. For a Newtonian liquid the viscosity is constant

7(:y) = p, and hence the channel Reynolds number is also given by Rec = UD/Iv, where v

is the kinematic viscosity of the fluid. For the experiments considered in this Chapter,

the channel Reynolds number is in the range 10 < Rec 104.

The measure of fluid inertia in the immediate vicinity of a particle of diameter a

advecting in the fluid is given by the particle Reynolds number

Rep = Rec (-) (8.2.2)
D

The characteristic length in this parameter is the particle diameter and the characteristic

velocity is defined relative to the particle based on the product of a characteristic shear

rate in the channel -c - U/D and the particle diameter a. This scaling has also been

explained in Section 2.4 with reference to Figure 2.4.2. A key feature in inertial microflu-

idics is that the particle aspect ratio is typically a/D ~ 0(0.1) and hence Rep can easily

be greater than unity, opening up the regime in which particles tend to be precisely

focused to well-defined positions in the channel cross-section. In these experiments, the

particle Reynolds number is in the range 0.1 < Rep 100.

An additional dimensionless parameter is the Fanning friction factor f, which is a

dimensionless measure of the pressure drop across a channel AP of length L, given by

AP
f = (/ (8.2.3){ pU2( LID)

When the flow is laminar, the friction factor scales inversely with Rec for a Newtonian

liquid. Once transition to turbulence occurs, however, the scaling of the friction fac-

tor with Re, changes, providing the experimentalist a simple means of identifying the

transition to turbulence.
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For the flow of viscoelastic liquids, there are a number of additional relevant dimen-

sionless groups. Firstly a measure of the strength of elasticity in the flow is given by the

channel Weissenberg number

Wi = (8.2.4)

where A is the relaxation time of the liquid. This number is equal to the product of

the relaxation time and a characteristic shear rate in the flow -c - U/D. For a Maxwell

fluid, this number is also proportional to the ratio of the first normal stress difference N1

to the shear stress Tx, and hence the Weissenberg number can often be interpreted as a

ratio of elastic to viscous stresses.

The second parameter is the particle Weissenberg number, defined in terms of the par-

ticle diameter and the same characteristic relative velocity used in the particle Reynolds

number (i.e. ue ~ ayc).

= A(a'c) _ AU(a/D) _ AU (8.2.5)
a a D

Evidently, the channel and particle Weissenberg numbers are equivalent. For this study,

both Weissenberg numbers are in the range 0.01 < Wie < 103.

The ratio of the Weissenberg and Reynolds numbers is also a dimensionless group

called the elasticity number. In principle, this number is independent of the dynamics

of the flow since the velocity U does not explicitly enter in its definition. The value of

this number can be taken as a ratio of the timescale over which elastic stresses relax to

the timescale over which momentum diffuses. The channel elasticity number is

E1e = - - (8.2.6)
Rec pD 2

whereas the particle elasticity number is given by

=Wi goA
E 0 = - " - qoA(8.2.7)Rep pa2

where qo is the zero-shear-rate viscosity. Hence for the particles used in this study, the

particle elasticity number is always larger than the channel elasticity number. Again,

for a Maxwell fluid, these numbers are also proportional to the ratio of the first normal
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stress difference N1 to the inertial stress in the flow pU 2 , and hence the elasticity number

can often be interpreted as a ratio of elastic to inertial stresses. For this reason, when the

elasticity number is less than unity, an inertially-dominated particle migration behavior

as that shown schematically in Figure 8.1.1 (a) can be expected. Whereas, when it is

greater than unity, an elastically-dominated particle migration behavior such as that

shown schematically in Figure 8.1.1 (c) can be expected.

Another dimensionless group that is relevant to channel flows of viscoelastic liquids

is the Deborah number. This number is defined as the ratio of the relaxation time of

the fluid to the mean residence time in the channel tre = L/U.

A AU D
De= A _ AU Wic- (8.2.8)

tres L L

This number is generally less than unity for the flow rates considered in this study,

indicating that the flow has had sufficient time for the viscoelastic stresses to become

fully-developed.

8.3 Experimental Methods

In order to attain high Reynolds numbers in a microfluidic device it is necessary to

fabricate a microchannel that can not only withstand large pressures, but also one whose

precise dimensions have been carefully selected in light of operating range of the pumping

apparatus. Furthermore, the channel must be transparent to allow for flow visualization.

The rheology of the test fluids must also be characterized in order to better understand

the role of viscoelasticity on the migration behavior of the seeded particles. In this

Section, the fabrication methods, imaging techniques and rheological characterization of

the test fluids are described.

8.3.1 High Pressure Microfluidics

The small length scales in microfluidic devices give rise to large pressure drops, which can

be challenging for channels made with conventional soft photolithographic fabrication

techniques using polydimethylsiloxane (PDMS) to withstand. Furthermore, the require-
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Chip APmax [psi] Failure Mode
PDMS on glass 36-67 Delamination

TPE 150 Sensor limit
PUMA 105-120 Delamination/connection leakage
NOA 74-79 Delamination

EpoxAcast 2500-4500 Delamination

Table 8.3.1: Maximum pressure APmax before failure of a microfluidic device made using
polydimethylsiloxane (PDMS), thermoset polyester (TPE), polyurethane methacrylate
(PUMA), Norland Adhesive 81 (NOA), and EpoxAcast 650. Table adapted from Sollier
et al. (2011).

ment that the material be transparent to enable flow visualization places additional

constraints on the type of available materials that can be used to construct channels for

high pressure experiments. Three major failure mechanisms of a microfluidic device are

bulging, delamination and leakage between the tubing and the channel at the connection

point (Sollier et al., 2011). Some materials that have been used to achieve high pressure

drops include Pyrex (Pipe et al., 2008), metal oxide semiconductors (Ciftlik et al., 2013),

as well as thermoset polymers and adhesives (Sollier et al., 2011). A list of some of these

materials and their failure mechanisms is given in Table 8.3.1.

In this Chapter, EpoxAcast 690 (Smooth-On, Easton, PA), which is a two-part epoxy,

has been used to fabricate all of the test channels. This material was selected because of

its high rigidity (tensile modulus 3.9 GPa) and its adhesive strength enabling delamina-

tion pressures as large as 31 MPa (4500 psi). In order to withstand such high pressures,

polyetheretherketone (PEEK) tubing (Supelco, ID 0.75 mm, OD 1.55 mm) was used

and directly bonded to the channel according to the fabrication methods described in

Section 8.3.1. Although only straight channels have been studied in this Chapter, this

material and the manufacturing protocol is amenable to fabrication of more complex

geometries including the contractions described in Section 6.4.

Careful consideration has been given to the precise channel dimensions in order to

ensure that the experimental setup could be used to accomplish one of the primary ob-

jectives of the research in this Chapter, namely channel Reynolds numbers that are large

enough to observe the transition to inertial turbulence in the flow of water. Since the

experiments were completed with a volumetric flow rate controlled pump, the height H
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and width W of the channel cross-section were chosen to maximize the Reynolds number

for a given volumetric flow rate Q and hydraulic diameter D of the channel. The channel

Reynolds number is equal to

QD _4Q a
Re, = D = (8.3.1)

HWy Dv (1 + a)2

where v is the kinematic viscosity of the fluid and the aspect ratio of the channel is

defined as a = W/H with the constraint that 0 < a < 1. A plot of Re, against a is

shown in Figure 8.3.1 (a). Evidently, for a constant ratio of Q/D, the value of Re, is

maximized when a = 1, and hence the preferred channel height and width of the channel

are equal.

The dimensionless pressure drop across the channel length is given by

AP 48 192 tanh(j7r/2a)1
D (L/D) (1 + a)2 7 a j=odd

The dimensionless pressure drop normalized by the channel Reynolds number is also

plotted in Figure 8.3.1 (a). Clearly, AP is also minimized for a = 1 given a constant value

of Re,. Although the pressure drop is not a design parameter, per se, it is important

to minimize the pressures in the channel if possible to ensure the durability of the

channel. For these two reasons, a channel with a square cross-section was selected for

the experiments in this Chapter.

The channel length L must also be selected to ensure that the flow is hydrodynami-

cally fully-developed within the channel for all channel Reynolds numbers for which the

flow is laminar. For the flow of a Newtonian fluid in a rectilinear duct, the hydrodynamic

entrance length Le is given by a correlation determined by Durst et al. (2005):

-= 0.6191.6 + (0.0567Rec) 1. (8.3.3)
DI

This correlation is plotted in Figure 8.3.1 (b). Since the transition to inertially-dominated

turbulence is expected to occur at Re, , 2000, the channel length must be at least as

long as the expected value of Le at this Reynolds number. As shown clearly in the plot,

the entrance length at this Reynolds number is Le = 113D, and therefore the selected

hydraulic diameter of the channel must be small enough that the total length of the
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Figure 8.3.1: Design parameters for the microchannel. (a) Plot of the channel Reynolds
number for a constant ratio of Q/D, and of the friction factor for a constant value of
Re, against channel aspect ratio a = W/H. (b) Hydrodynamic entrance length as a
function of channel Reynolds number.

channel can be both larger than L > 113D and short enough to fit on the 75 mm glass

slides used as the base of the microfluidic device.

Furthermore, both the channel aspect ratio and the ratio of the particle diameter

to the hydrodynamic diameter of the channel play a role in the equilibrium focusing

behavior of particles (Di Carlo, 2009a). Since the channel aspect ratio has been fixed

for reasons described above, the hydraulic diameter of the square channel used in this

Chapter was chosen to be D = W = H = 80 Mm. This size was chosen because the par-

ticle diameters were typically in the range 8 < a < 10 pam, and hence the particle aspect

ratio was around a/D ~ 0.1 ensuring particle Reynolds numbers of at least Re, > 0(1).

This value of D was also easy to achieve with the photolithographic fabrication process

and ensured that the typical channel length L = 35 mm was sufficiently larger than the

minimum length required for hydrodynamically fully-developed flow 113D ~ 16 mm. Fi-

nally, for this combination of D and L, the typical pressures in the microchannel seldom

exceeded P - 2 x 107 Pa (2900 psi), which was safely within the operating capacity of

the device.

In order to attain the high pressures and flow rates required in this study, a 100DX

pump (Teledyne ISCO, Lincoln, NE) was used for all experiments. This maximum

capacity of the pump is 103 mL, and it can provide volumetric flow rates in the range
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0.01 < Q < 50 mL.min 1 and pressures up to 690 bar (10,000 psi). The pump was

always used in the controlled flow rate mode, and the in-cylinder pressure was recorded

at each flow rate for all experiments. Stainless steel piping (Swagelok, Solon, OH) was

used to connect the pump outlet to the PEEK tubing, which was rigidly connected to

the piping using a stainless steel ferrule adapter (Swagelok).

Fabrication Methods

In order to manufacture rigid microfluidic chips using the EpoxAcast 650, a more elab-

orate fabrication protocol than is typically followed in the manufacture of PDMS mi-

crofluidic devices (see Section 7.2.1) was necessary. The fabrication protocol used in

making the chips used in this Chapter is shown schematically in Figure 8.3.2.

The initial procedure is similar to that used in the manufacture of PDMS chips. The

first step is to spin-coat a 4-inch silicon wafer with an 80 Pm thick layer of negative

photoresist (SU-8 100, Microchem, Newton, MA), which is then exposed to UV-light

through a Mylar photomask (Fineline Imaging, Colorado Springs, CO), and developed

with an edge bead remover (BTS-220, J.T. Baker, Phillipsburg, NJ). Next, a 10:1 mix-

ture of PDMS elastomer and curing agent (Sylgard 184, Dow Corning, Midland, MI)

are poured onto the master mold and degassed for 60 minutes to remove all trapped

bubbles. The master mold is then placed in an oven at 90 'C for 24 hours to cure the

PDMS. Afterward, the cured PDMS is peeled away from the SU-8 male master mold.

This PDMS replicate then becomes the first female master mold, which is coated with

a silane derivative (Gelest, Inc. Morrisville, PA). A second batch of PDMS is then pre-

pared and poured over the female master mold and cured for 24 hours at 90 'C to obtain

the s-PDMS replicate, which is then peeled away from the first mold. This s-PDMS

replicate then becomes the second male master mold from which the final chip will be

molded.

In order to withstand the large pressures in the channel, it is necessary to bond the

PEEK tubing directly into the epoxy replicate. Two major challenges in accomplishing

this task, however, are the exact placement of the tubing and the prevention of epoxy

from seeping into the tubing during the curing process and thereby clogging the channel
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Mylar Mask SU-8 Master

/V /V 4
PDMS Replicate

Silicon wafer

SU-8 Master

(a) Step 1: UV exposure (b) Step 2: Female PDMS master mold

Teflon PEEK
PDMS Master 1 insert' tubing

Ut Epoxy
Replicate

s-PDMS Replicate

PDMS Master 1 Punc out
Silane coating PDMS Master 2 Teflon inserts

(c) Step 3: Male PDMS master mold (d) Step 4: Epoxy replicate

Epoxy Replicate Epoxy Replicate

Teflon inserts

Epoxy Replicate e-Glass slide

(e) Step 5: Teflon insert removal (f) Step 6: Bonding to glass slide

Figure 8.3.2: Fabrication protocol for the high pressure epoxy microfluidic devices used
in this study.

inlet or outlet. Both of these potential difficulties are overcome by punching small

holes (0.75 mm diameter) into the second male PDMS master mold at the inlet and

outlet sections of the channel using a coring tool (Harris Uni-Core, Redding, CA). Small

cylindrical Teflon inserts are then inserted into the punch outs, functioning as dowel

pins by connecting the PEEK tubing to the PDMS male mold. These inserts not only

serve to locate the tubing at well-defined positions in the inlet and outlet sections of the

channel, but they fill the entire inner cross-section of the tubing thereby preventing any

epoxy from seeping into the tubing during the curing process. The outer walls of the

PEEK tubing are first sanded to increase adhesion with the epoxy.
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After all the tubing has been connected to the mold in this manner, the EpoxAcast

is poured onto the mold. A thin layer (200 t 50 am) of the EpoxAcast is also coated

onto a 75 x 25 x 1 mm glass slide. The epoxy replicate and c-glass slide are concurrently

allowed to cure for 32 hours at 20 'C. After this time, the PDMS male mold is peeled

away from the epoxy replicate and the Telfon inserts (McMaster-Carr) are carefully

removed with a pair of tweezers. The epoxy replicate is then bonded to the c-glass

slide for 5 minutes at 60 'C and subsequently allowed to cure at room temperature

overnight. The channels are then inspected under an optical microscope prior to their

use in experiments.

8.3.2 Imaging Techniques

Long exposure fluorescence (LEF) imaging was used to acquire streakline images with

a 20 x 0.45 NA objective on a Nikon TiE inverted microscope and a Retiga 2000R

monochromatic camera. Both bright field and fluorescence images (Cy3 filter) were ac-

quired at 5 mm intervals along the channel length using Nikon NIS-Elements AR 3.10

software and a motorized translation stage. Exposure times were adjusted for the pre-

vailing image intensity ranging from 100 ms to 1 second. The bright field images were

used to identify the location of the channel walls, whereas the fluorescence images were

used to observe the particle distribution in the channel. In the streakline images shown

in Section 8.4.2, the bright field and LEF images have been superposed for visual clarity.

As in the experiments discussed in Chapter 7, the images of individual particles

flowing through the channel were captured using a 20x 0.5 NA objective and the same

epifluorescent Nikon TE-2000 inverted microscope, camera and Nd:YAG laser described

in Section 5.4.2. These short exposure images were acquired at a stationary observation

distance Lbb = 3.5 cm downstream from the channel entrance near the exit of the chan-

nel allowing for the most time for the flow to attain steady state. The laser generated

532 nm light pulses with a duration of 6t ~ 10 ns, however given the large fluid veloci-

ties in the channel some amount of blurring can be expected despite the extremely short

exposure time. For the microscope objective and camera used in this work, a single

pixel corresponds to (eM)2 = 0.323 x 0.323 pm2 , hence the flow velocity necessary for a
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particle to traverse one pixel (and thus show blurring) is -'blu, ~ (eM)6t-1 = 32 m.s 1

which corresponds to Q ~ 12 mL.min-1. A typical 10 pm particle used in this study has

a diameter of around 31 pixels in an image, hence even at the highest velocities consid-

ered in this Chapter around U = 52 m.s- 1 (Q = 20 mL.min-1 ), the expected blurring

will be less than 2 pixels or approximately only 5% of the particle size.

8.3.3 Test Fluid Rheology

Two different polymers were used in this study. The first was polyethylene oxide (PEO),

which is a covalently-bonded linear polymer that is commonly used as a model rheological

fluid (Rodd et al., 2005, 2007; Tirtaatmadja et al., 2006) and also as a turbulent drag

reducing agent (Graham, 2004). The second polymer was hyaluronic acid (HA) which

is a linear polysaccharide that is found in many physiologcal fluids and tissues (Kogan

et al., 2007; Haward et al., 2012d). The molecular mass of HA can be as large as 107 Da

giving HA solutions a marked viscoelasticity, and its compatibility with other biological

media make it a very attractive viscoelastic material for various biomedical applications,

such as drag reducing agents for the prevention of hemorrhagic shock (Kameneva et al.,

2004; Kameneva, 2012), or for cell separation processes as considered in this Chapter.

The PEO (Sigma Aldrich) used in this study had a mean molecular weight of

A, = 3 x 10' Da, and was dissolved in either deionized water when studied with flu-

orescent polystyrene beads. The polymer concentrations were varied between 10 ppm

to 104 ppm, spanning the dilute and semi-dilute concentration regimes. The critical

overlap concentration c* is the concentration marking the transition from the dilute to

the semi-dilute regime. It is approximately the concentration at which the polymer coils

overlap or impinge on each other and the point at which the viscoelastic properties of a

solution are no longer governed by the behavior of a single polymer molecule (Larson,

1998). The overlap concentration can be calculated from the relationship proposed by

Graessley (1982)

0.77
C= 077 (8.3.4)

where [q] is the intrinsic viscosity of the solutions, which is given by the Mark-Houwink-
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Sakurada equation for PEO

[7] = 0.072MW0 5  (8.3.5)

where [71] is in units of cm 3.g'. For the molecular weight used in this study, the overlap

concentration is c* = 2.9 x 10-3 g.cm 3 (2900 ppm).

The Zimm time is the appropriate timescale over which a polymer molecule relaxes in

the limit of an infinitely dilute solution. The Zimm model treats the pervaded volume of

a polymer as an impermeable sphere that moves through the surrounding medium. The

Zimm relaxation time Az is therefore proportional to the time required for the polymer

chain to diffuse a distance equal to its own size (Rubinstein & Colby, 2003). For PEO,

the Zimm relaxation time is given by

Az = 0.463 [7]M-7 8  (8.3.6)
RT

where q, is the solvent viscosity, R is the ideal gas constant and T is the absolute

temperature. Therefore, the Zimm relaxation time of the 300 kDa PEO solutions used

in this study is Az = 14.5 ps.

For finite polymer concentrations, however, the effect of hydrodynamic interactions

between the polymer coils becomes significant and the Zimm time is no longer the

characteristic relaxation timescale of the solution. Instead, the effective relaxation time

is determined from an empirical correlation developed by Tirtaatmadja et al. (2006):

Aeff = 18.1(C)0.65 for 0.01 < c/c* < 1 (8.3.7)
Az C*-~ -

This correlation is only valid in the dilute regime (i.e. c < c*), and hence the relaxation

times of the solutions in the semi-dilute regime must be determined experimentally using

jet break up experiments described below. The effective relaxation times of the PEO

solutions are listed in Table 8.3.2.

It has been documented in the literature that the purification process of HA in-

troduces a polydispersity in the molecular weight of the sample (Laurent et al., 1960;

Swann et al., 1974; Shimada & Matsumura, 1975), making the calculation of the lin-

OR = 8.314 J/mol.K
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Fluid c MW A 7o0 770 n b c/c*
[ppm] [kDa] [ms] [mPa.s] [mPa.s] [s- 1 ]

Water - - - 9 - - - - -

PEO 10 300 TO015 9 1.1 6.7 x 104 0.5 1.0 3 x 10-3
PEO 100 300 to.027  9 1.2 3.7 x 104 0.2 1.0 0.03
PEO 1000 300 t0 .12  9 1.5 8.3 x 103 0.75 1.0 0.3
PEO 10000 300 t1.19 9 7.2 4.0 x 103  0.75 1.0 3

HA (unused) 1000 *1650 0.87 9 230 4.0 0.45 1.0 10
HA (used) 1000 *1650 - 9 230 33 0.45 1.0 10

Table 8.3.2: Rheological properties of the test solutions measured at 22 *C. *Molecular
weight ranges between 1500 < M. < 1800 kDa. tValues based on the correlation in
Eq. (8.3.7). lValue determined from capillary thinning measurements using Eq. (8.3.8).

ear viscoelastic properties of HA solutions based on the intrinsic viscosity from the

Mark-Houwink-Sakurada equation less straightforward than it is for the PEO solutions.

Indeed, the molecular weight of the HA (Sigma Aldrich) sample used in this study

ranged between 1.5 x 106 < M < 1.8 x 106 Da. Therefore the rheological properties of

the 1000 ppm HA solution were determined directly from experimental measurements.

Based on light scattering experiments (Meyer et al., 2009), the overlap concentration for

HA solution is c* ~ 100 ppm in PBS solution, indicating that the 1000 ppm solution

used in this Chapter was in the concentrated regime.

Since the 10000 ppm PEO and 1000 ppm HA solutions were both above the over-

lap concentration, their relaxation times could not be estimated based on the Zimm

relaxation time. Their relaxation times were also too short to be determined using

oscillatory measurements, so instead they were determined from measurements of the

thinning dynamics of the solution in jetting experiments (Ardekani et al., 2010) as shown

in Figure 8.3.3 (a). As a viscoelastic liquid bridge thins, the diameter of the filament D

will decay according to the relation (McKinley & Tripathi, 2000):

D (
~ exp (8.3.8)Do 3A

where Do is the initial diameter of the filament. When plotted on a semilogarithmic axes,

the slope of the evolution of the diameter is therefore equal to -1/3A. The thinning

profiles of both solutions are shown in Figure 8.3.3 (b) and (c), and the relaxation times

are listed in Table 8.3.2.
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Figure 8.3.3: (a) Image of the jet break up. Jet break up profile of the (b) HA solution,
and (c) PEO solution. The dashed line in each figure indicates the fit of Eq. (8.3.8) to
the profile to extract the effective relaxation time of each fluid. The solid line indicates
the visco-capillary break up profile (see Papageorgiou (1995)). (Analysis courtesy of
Bavand Keshavarz.)

The viscosity of each solution was measured using a double gap Taylor-Couette ge-

ometry on the DHR3 torque-controlled rheometer (TA Instruments) for shear rates less

than < 3000 s-1 and with the microfluidic Viscometer/Rheometer-on-a-Chip (VROC,

RheoSense Inc.) for shear rates between 5000 < ' K 3.3 x 106 s-1. The flow curves of

the PEO solutions are shown in Figure 8.3.4 (a) and (b) and for the HA solution in Fig-

ure 8.3.4 (c) and (d). All measured flow curves were fit with the Carreau-Yasuda model

(Bird et al., 1987), which is a generalized fluid model that can predict a zero-shear-rate

viscosity 7o and an infinite-shear-rate viscosity q,, as well as a rate dependent regime.

The Carreau-Yasuda model is given by the equation

= ( + (/A*) b (8.3.9)

where q is the viscosity, 7* is the characteristic shear rate for the onset of shear-thinning,

n is a "power-law exponent" and b is a dimensionless fitting parameter that influences

the sharpness of the transition from constant shear viscosity to the power-law region.

Since all of the fluids exhibited shear-thinning, the Carreau-Yasuda model was used to

estimate the characteristic viscosity in the Reynolds number given by Eq. (8.2.1), based
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Figure 8.3.4: Flow curves of the non-Newtonian test liquids at 22 *C with respective
Carreau-Yasuda model fits shown by the black solid lines. The dashed blue line indicates
the viscosity of water. (a) & (b) Polyethylene oxide (PEO) solutions of molecular weight
M, = 300 kDa. (c) & (d) Solution of 1650 kDa 1000 ppm hyaluronic acid in water. The
data labeled 'unused' correspond to measurements of the fluid prior to being pumped
through the microchannel, whereas the data labeled 'used' indicate measurements of
the solution after having been pumped through the microchannel at shear rates up to

' ~ O(107) S-1.

on the characteristic wall shear rate Yw,3D determined from Eq. (8.4.3).

Measurements of the flow curves were taken of all fluids before and after the solutions

had been pumped through the channel in order to determine the role of flow-induced

polymer degradation. The measurements of the PEO solutions indicated that polymer

degradation was not significant for these fluids and thus only the flow curves of the

unused material are shown in Figures 8.3.4 (a) and (b). Conversely, the HA solution

exhibited a marked degradation in the viscosity at shear rates below y < 0(103) s-', as

shown clearly in Figures 8.3.4 (c) and (d). Typical wall shear rates in the microchannel
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were at higher shear rates in the range of 10 4 < -w,3D < 10 7 s-1, however, where the

viscosity was nearly the same for the used and unused samples suggesting that polymer

degradation did not play a major role in the particle migration behavior. Therefore, the

fit of the Carreau-Yasuda model to the viscosity of the unused HA sample has been used

for calculating the characteristic viscosity in the Reynolds number.

8.4 Results and Discussion

8.4.1 Pressure Measurements

Measurements of the pressure drop across the channel were obtained using the readings

from the pressure sensor in the pump cylinder. Although this reading strictly corre-

sponded to the combined pressure drop across the channel as well as the pump fittings

and tubing, separate calibration measurements demonstrated that the hydrodynamic re-

sistance of the piping constituted approximately only 1-2% of the overall pressure drop.

Accordingly, the vast majority of the measured pressure was attributable to the hydro-

dynamic resistance of the microchannel, and thus the pressure in the cylinder was taken

as essentially equal to the pressure drop across the microfluidic device. The measured

pressure drop is plotted AP against volumetric flow rate Q for the PEO solutions in

Figure 8.4.1 (a) and for the HA solutions in Figure 8.4.2 (a).

The Fanning friction factor for the laminar flow of a Newtonian fluid through a duct

with a square cross-section (oe = 1) is

AP 96 19 2  tanh(jr/2a) 1 56.9
f =!u(LD 1(- +a j5 (8.4.1){ pU2 (LID) 1+ 2 7 E Re, Re,

2 1 jr=oddI

where, as defined previously in Section 8.3.1, U is the mean velocity in the channel, L

and D are the length and hydraulic diameter of the channel respectively and a is the

aspect ratio of the channel. In this regime, the pressure drop increases linearly with flow

rate, however, the friction factor scales inversely with Reynolds number. At channel

Reynolds numbers above Re, > 2000, channel flow is expected to become turbulent and

the friction factor for turbulent flow in a channel is given by White (2003)
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Figure 8.4.1: Pressure measurements with PEO solutions in the 80 pm x 80 /am x 37 mm channel. (a) Pressure drop AP against
volumetric flow rate Q. Fanning friction factor against channel Reynolds number based on (b) a constant and (c) a rate dependent
viscosity. The gray line indicates the theoretical friction factor for a Newtonian fluid given by Eq. (8.4.1) and (8.4.2).
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(Re, 3.7 _

where c = k/D is the ratio of the average size of the asperities on the channel wall k

to the hydraulic diameter of the channel. The typical roughness scale of the channel

inherent to the fabrication processes is a few microns, hence C ~ 0.01 is assumed in the

plots of the friction factor shown in Figures 8.4.1 (b) and 8.4.2 (b).

The Carreau-Yasuda model was used to calculate the characteristic viscosity in the

channel as a function wall shear rate for the flow of a Newtonian liquid in the square

microchannel. This wall shear rate ',w,3D was calculated from the well-known analytical

solution for flow in a duct of finite aspect ratio (White, 2003), and it is given by

10 1 00 /)-A1

= U 96 cosh(jwr/2a)I 192 a E tanh(j7r/2a) 9U
D r2 (l +&)L Odd [ 75aj=odd D

(8.4.3)

The friction factors of the PEO solutions collapse onto the expected curve for a Newto-

nian fluid when this rate-dependent viscosity is used to calculate the Reynolds number

as shown in Figure 8.4.1 (c). This collapse also occurs for the HA solutions shown in

Figure 8.4.2 (c).

It is noteworthy that the pressure measurements with water at high flow rates ex-

hibited a jump that is suggestive of a transition to turbulent flow at a critical channel

Reynolds number of approximately Re* ~ 3500, instead of the generally expected value

of Re* ~ 2000. This discrepancy is not unprecedented for flows in microchannels, how-

ever, although generally it has been observed that transition to turbulence occurs at

Reynolds numbers less than Re* < 2000 (Li et al., 2005; Li & Olsen, 2006). Possible

explanations for the discrepancy that have been proposed include relative surface rough-

ness in microchannels that are larger than typical roughnesses in macroscale pipes as

well as viscous heating effects (Zeighami et al., 2000; Ghajar et al., 2010; Natrajan &

Christensen, 1992). The rate of energy dissipation in the channel is the pumping power

W ~ QAP, from which an upper bound of the temperature change of the fluid can

be estimated if it is assumed that all energy dissipated goes to heat the fluid so that

- pQCpAT, where p is the fluid density (p ~ 1000 kg.m- 3), C, is the heat capacity
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of the liquid (assumed for water C, = 4186 J.kg 1K') and AT is the change in temper-

ature. For typical pressure drops in the range 104 < AP < 10 7 Pa, the expected change

in temperature of the fluid is in the range 2.3 x 10-' < AT < 2.4 'C. A rise in the tem-

perature of the fluid would reduce the dynamic viscosity which would led to a transition

to turbulence that occurred at a lower apparent channel Reynolds number, which is not

the case in these measurements. An alternative explanation for the higher than expected

transitional Reynolds number is that the channel may bulge slightly at the high pres-

sures, thereby increasing the true hydraulic diameter of the channel which simultaneously

reduces the true channel Reynolds number (since for a given volumetric flow rate Q, the

Reynolds number scales with D-'), leading to a higher than expected critical Reynolds

number. Additionally, for the Reynolds numbers in the range 2000 < Re, < 3500 the

laminar hydrodynamic entrance length predicted from Eq. (8.3.3) and shown in Fig-

ure 8.3.1 (b) is of the order of the channel length (Le ~ L). It is therefore possible

that the channel is insufficiently long for a turbulent flow to become fully developed, in

which case the marked increase in the pressure drop would be shifted to higher Reynolds

number than would ordinarily be expected for a channel flow (i.e. Re* ?::0 2000).

From a practical standpoint, it is also noteworthy that for both the PEO and HA

solutions the pressure drop for a given flow rate above Q > 10 mL.min- is lower than

that for the water as shown in Figures 8.4.1 (a) and 8.4.2 (a). This fact is also reflected

by friction factors for the polymer solutions that are lower than that of the water, when

the Reynolds number is defined with the rate-dependent viscosity as shown in Fig-

ure 8.4.1 (c) and 8.4.2 (c). Evidently, the Reynolds number of the HA solutions reached

Rec ~ 104 without any accompanying non-linear increase in the pressure drop with flow

rate suggesting that the presence of the polymer increased the value of the transitional

Reynolds number Re*. The role of polymers on the value of the transitional Reynolds

number Re*, however, is an area of some controversy. In one of the earliest studies by

Dodge & Metzner (1959), it was found that more strongly shear thinning liquids (i.e.

those with lower values of the power-law index n when viscosity is fit with a power-law

model r = mi"-') had larger critical transitional Reynolds numbers. Previous experi-

ments have also shown polymers such as xanthan gum (Rochefort & Middleman, 1986;
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Bewersdorff & Singh, 1988) or sodium carboxymethyl cellulose (Pinho & Whitelaw,

1990) delay the transition to turbulence (Graham, 2004), with the extent of the delay

having been attributed to the increase in the extensional viscosity of the liquid (Escudier

et al., 1999). Conversely, it has also been found that the transitional Reynolds number

was lower than the typical value for Newtonian liquids in experiments with PEO and

polyacrylamide solutions (Forame et al., 1972; Li & McCarthy, 1995). In careful exper-

iments by Draad et al. (1998) with a pipe that was isolated from external disturbances,

the transition to turbulence in water occurred at Reynolds numbers Re* ~~ 6 x 104, but

when a minute amount of partially hydrolyzed polyacrylamide was added to the water

the transition occurred far sooner at Reynolds numbers as low as Rec* ~ 8000. The au-

thors suggested that viscoelasticity destabilized the flow by altering the development of

the boundary layer in the entrance region of the channel. Unfortunately, however, it

was not possible to reach flow rates in the experiments discussed in this Chapter that

were high enough to observe a transition to turbulence in the polymer solutions without

rupturing the channel due to the large pressure drop.

8.4.2 Streakline Measurements

Long exposure fluorescence images were acquired at evenly spaced positions along the

length of the channel using a 20 x 0.45 NA objective for each fluid seeded with a = 9.9 Pm

highly monodisperse fluorescent polystyrene particles (FluoSpheres, Invitrogen), hence

Rep ~ 0.01Rec. The exposure time was adjusted to ensure adequate brightness without

over saturating the camera sensor. These images serve as a two-dimensional projection

of the evolution of the particle distributions along the channel length, with the local

intensity peaks corresponding to equilibrium focusing positions.

The streakline images for water over a range of flow rates (rows) and positions along

the channel length (columns) are shown in Figure 8.4.3. There are roughly four regimes

of migration behavior evident once the flow is fully developed near the end of the channel

(i.e. rightmost column). At low channel Reynolds number (Re, < 10), the particle fo-

cusing is weak and the fluorescence intensity is correspondingly diffuse across the width

of the channel. Within the range of channel Reynolds numbers 10 < Re, < 200 a clear
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three-streak pattern emerges across the channel width indicative of a diamond-like par-

ticle distribution in the channel cross-section as shown schematically in Figure 8.1.1 (a).

The central streakline is more intense than the two outer streaks adjacent to the wall

because of the combined projections of the particles equilibrated on the upper and lower

face of the channel. This distribution is in agreement with the diamond-like distribu-

tions observed previously in Newtonian liquids (Di Carlo, 2009a,a) at particle Reynolds

numbers Rep, 0(1).

As the flow rate is further increased, a new intensity pattern becomes clear. In

the range of channel Reynolds numbers 200 < Re, < 1000, a three-streak pattern still

persists, but the intensity of the outer streaklines is now greater than that of the inner

streak. This shift in the intensity profiles suggests that the particles are distributed

in a quincunx pattern similar to that shown in Figure 8.1.1 (b). A similar pattern

was observed in numerical simulations performed by Chun & Ladd (2006) of particle

migration in a Newtonian fluid at channel and particle Reynolds numbers in the same

range as those in these experiments. The only other study of particle migration in a

microchannel in this range of channel Reynolds numbers was performed by Ciftlik et al.

(2013) in a channel with a rectangular cross-section, for which there was no evidence

of particle migration to the corners of the channel. Accordingly, the precise particle

migration behavior in Newtonian fluids may be sensitively dependent on the aspect ratio

of the channel. In this regime, channel flow lengths that are typically on the order of 100

channel diameters (1 cm) are necessary for a clear particle distribution pattern to emerge.

However, the particles continue to be driven even more tightly toward the equilibrium

positions as they travel down the channel, as is evident in the growth in the peaks and

valleys of the intensity profile along the entire channel as shown in Figure 8.4.4 (a) for

Q = 2 mL.min-.

For higher flow rates below those at which turbulences sets in (1000 < Re, < 3000),

a fourth characteristic particle migration distribution becomes prevalent. In this regime,

the particles are driven towards the channel centerline, but they are never fully driven

into a single streamline, suggesting the formation of an inner annulus similar to that

observed by Matas et al. (2004b) in macroscale pipe flows. Based on their subsequent
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Figure 8.4.3: Streakline images of 8 tum particles in water at different positions along the microchannel. Flow is left to right.
Observation positions from left to right are Lob = 5, 15, 25, 35 mm downstream from the channel entrance. The bright green
lines indicate the approximate position of the channel walls. Here Rep ~ 0.01Rec.
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Figure 8.4.4: (a) Evolution of the intensity profile along the channel length in water
at Q = 2 mL.min- 1, spaced at 5 mm intervals from X1 = 0 mm to X8 = 35 mm. (b)
Particle equilibrium positions based on the locations of the local maxima in the intensity
profiles from the streakline images of water.

analysis, the authors strongly believed that this inner annulus was not a transient effect

caused by a channel that was too short for the particle distribution to fully develop,

but instead that the inner annulus was indeed the preferred equilibrium configuration of

the particles in that range of channel Reynolds numbers. Likewise, in the microchannel

experiments discussed in this Chapter, a narrow annulus around the channel centerline

seems to correspond to the fully developed state. Yet, given the continued evolution

of the streakline pattern downstream of the channel entrance seen in Figure 8.4.3, the

channel length may not have been sufficient to attain the steady state result in these

measurements.

The equilibrium positions determined from the local peaks in the intensity profiles

are plotted against the channel Reynolds number in Figure 8.4.4 (b). Over the range

10 < Re, <- 1000 the equilibrium position is driven closer to the wall with increasing

flow rate. The center streakline does not move since it is the projection of the particles

which only move perpendicular to the imaging plane as they are driven closer to the

upper or lower wall of the channel. This trend is consistent with experimental studies

of particle migration in macroscale pipes (Matas et al., 2004b) as well as analytical

modeling (Hogg, 1994; Asmolov, 1999) and numerical simulations (Chun & Ladd, 2006).

For higher channel Reynolds numbers the particles are instead driven toward the channel
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center, forming a tightly packed inner annulus as shown numerically by Chun & Ladd

(2006). At a critical Reynolds number Rec* ~ 3500 the flow becomes turbulent and the

entire channel becomes uniformly illuminated since no clear equilibrium position can

exist due to the breakdown in particle focusing.

The streakline images acquired with the different PEO solutions are shown in Fig-

ure 8.4.5. Each column corresponds to a particular concentration of PEO and each row

corresponds to a constant flow rate. For all four solutions, the channel elasticity numbers

Elc defined by the zero-shear-rate viscosity in Eq. (8.2.6) are much smaller than unity

and are listed in the subcaptions of Figure 8.4.6. They would be even smaller if this

number were to be defined by a rate-dependent viscosity similar to the way in which

the channel Reynolds number was defined in the results shown in Figures 8.4.1 (c) and

8.4.2 (c). These low value of Elc would suggest that the observed particle migration

behavior in these flows should be highly similar to the behavior in purely Newtonian

liquids. On the other hand, the particle elasticity number defined in Eq. (8.2.7) is on

the order of one or larger for these measurements and therefore elastic contributions to

the force balance on a particle can nevertheless play a dominant role in the migration

behavior of the particles.

For the 10 ppm solution, at channel Weissenberg numbers below Wie ,< 0.1 a triple

streakline pattern similar to that observed in water is evident. As the Weissenberg

number approaches unity, the particles are driven toward the center of the channel as

seen in the movements of the intensity peaks shown in Figure 8.4.6 (a), until at Wic > 3

the channel Reynolds number exceeds Re, > 2500, the fluorescence intensity pattern

becomes more diffuse indicating the onset of turbulence.

For the 100 ppm solution, the observed streakline pattern transitions from three

streaks associated with inertially-driven focusing to two streaks near the channel cen-

terline at a channel Weissenberg number Wie ~~ 1 as shown in Figure 8.4.6 (b). The

two streaks suggest the formation of a square distribution around the channel centerline

as shown in Figure 8.1.1 (c). Evidently, this behavior is driven by elasticity and not

inertia since particles are driven to the channel center in this PEO solution at much

lower channel Reynolds number (i.e. Re, ~ 100) than they are in a Newtonian liquid
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Rec = 4525, Wic = 9.8 Re, = 4604, Wic = 18 Rec = 4105, Wic = 78 Rec = 2186, Wic = 163

Figure 8.4.5: Streakline images of 8 pm particles in PEO solutions of different polymer concentrations (columns) at different flow
rates (rows) near the end of the microchannel Lob, = 35 pm. Flow is left to right. From top to bottom, each row corresponds to
Q = 0.06, 0.2, 0.6, 6, 13, 20 mL.min-'. The bright green lines indicate the approximate position of the channel walls. Note that
the channel Reynolds number is defined in terms of the rate dependent viscosity r7( W,3D)-
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Figure 8.4.6: Particle equilibrium positions based on the locations of the local maxima
in the intensity profiles from the streakline images of PEO near the end of the channel
Lob, = 35 mm.

(i.e. Rec > 1000).

The migration behavior in both the 1000 ppm and the 10000 ppm solutions is sim-

ilar as seen by the proximity of the intensity peaks to the channel centerline in Fig-

ures 8.4.6 (c) and (d). Over the entire range of channel Weissenberg numbers observed,

there are two peaks in the intensity profiles that are driven more tightly toward the

channel centerline with increasing values of Wic. An example of the evolution of the flu-

orescence intensity along the length of the channel for the 10000 ppm solution is shown

in Figure 8.4.7. Evidently, two distinct peaks persist to the exit of the channel.

The streakline images of the flow of the HA solutions are shown in Figure 8.4.8. In

this figure, each row corresponds to a constant flow rate and each column to a given

observation position along the length of the channel. The over arching trend for the HA
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Figure 8.4.7: Evolution of the intensity profile along the channel length in 10000 ppm
PEO solution at Q = 6 mL.min-1 (Re, = 553, Wie = 49), spaced at 5 mm intervals
from X1 = 0 mm to X8 = 35 mm.

is quite obvious. With increasing flow rates and farther downstream from the channel

entrance the average particle position becomes more tightly localized near the channel

centerline. This migration of the particles to the channel center is also clearly seen from

the central position of the single peak in the streakline across all channel Weissenberg

number as shown in Figure 8.4.9 (a). It is also noteworthy that this migration toward

the channel centerline persists to flow rates up to at least Q > 50 mL.min-1, which is

the maximum flow rate achievable with the pump.

The relative similarity in the streak widths at the two most downstream observation

positions (L,,., = 25 and 35 mm) for each flow rate shown in Figure 8.4.8, also suggests

that the particles reach their equilibrium positions within the channel length even for

Deborah numbers larger than one. This rapid evolution toward the steady fully devel-

oped particle distribution is also evident from the evolution of the fluorescence intensity

along the channel length is shown in Figure 8.4.9 (b).

The observed particle migration behavior in both the PEO and HA solutions clearly

demonstrates the importance of viscoelasticity even at large channel Reynolds numbers,

but the difference between the behavior in the two polymer systems is equally remark-

able. The tendency of particles to be driven to the channel center in flows of viscoelastic

liquids in microchannels has been well-documented experimentally when the Reynolds

number is vanishingly small (Leshansky et al., 2007; Yang et al., 2011) and has been at-
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Figure 8.4.8: Streakline images of 8 pm particles in HA at different positions along the microchannel. Flow is left to right.
Observation positions from left to right are Lob, = 5, 15, 25, 35 pm downstream from the channel entrance. The bright green
lines indicate the approximate position of the channel walls.
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Figure 8.4.9: (a) Particle equilibrium positions based on the locations of the local max-
ima in the intensity profiles from the streakline images of 1000 ppm HA near the end
of the channel Lob, = 35 mm. (b) Evolution of the intensity profile along the channel
length in 1000 ppm HA at Q = 6 mL.min-1, spaced at 5 mm intervals from X1 = 0 mm
to X8 = 35 mm.

tributed analytically to gradients in the normal stress differences that drive the particles

to regions where the stress differences are lowest (Ho & Leal, 1976). Generally, the shear

rates are lowest near the channel center and four corners, which explains the quincunx

distribution pattern commonly seen in particle migration in viscoelastic liquids. It has

also been shown that shear-thinning in inertialess flows can drive particles toward the

wall as well (Villone et al., 2011a; D'Avino et al., 2012). Much of the simulation work

for this regime of particle migration has focused on long-term trajectories of individual

particles depending on their initial position at the channel inlet, with particles starting

near the wall tending to be driven toward it and particles near the centerline being

driven toward the channel center.

The experimental results in this Chapter, however, constitute some of the first obser-

vations of migration at simultaneously large channel Reynolds number (Re, > 1) and

channel Weissenberg number (Wi >> 1). In this regime, many physical phenomena,

such as inertia, viscoelasticity, shear-thinning and secondary flows (which all scale non-

linearly with flow rate), can all synergistcally play a role in the observed particle migra-

tion behavior. In order to better understand the physical mechanism and the robustness

behind the migration behavior in this regime, it is valuable to incorporate measurements
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of the flow kinematics in the channel as well as individual particle statistics, which are

addressed in the subsequent Sections of this Chapter.

Furthermore, in comparison to the migration behavior observed in water and the

PEO solutions, the migration behavior in the HA solutions is remarkably robust and

similar across all the flow rates tested. The tendency of the HA solution to consistently

drive particles to the channel centerline makes it a more viable system compared to the

PEO solutions studied thus far for practical engineering applications that are commonly

proposed for inertial focusing technologies. For this reason, in the remaining portion

of the Chapter, particle migration will be studied in only water and the 1000 ppm HA

solution.

8.4.3 Particle Distributions

In order to determine the overall particle distribution in the channel from individual

particle statistics, it is necessary to acquire still images of the particles in the channel by

exploiting the short exposure times of the laser imaging system discussed in Section 8.3.2.

Through careful selection of the objective magnification, it is possible to determine the

spatial distribution of the particles across both the width and height of the channel.

One-Dimensional Distributions

The one-dimensional distributions of highly monodisperse a = 9.9 Pm particles across

the channel width (i.e. z-axis) were determined from 500 images that were acquired near

the exit of the channel at each flow rate. Within this set of images there were typically

between 250 to 750 particles in total, whose position across the width of the channel

was identified using an image analysis script written in MATLAB. These data were then

used to determine the particle probability density functions (PDF) for each flow rate.

The total particle count and the PDF for water are shown in Figure 8.4.10 (a) and

(b) respectively. For all flow rates for which the flow is laminar, there were multiple

equilibrium positions within the channel cross-section, confirming results obtained from

the long exposure fluorescence images. Additionally, at Q = 15 mL.min' (Re, = 3130)

the particles were driven to a region approximately 20 pm from the channel centerline in

278



agreement with the streakline images for Q = 12 and 14 mL.min 1 in Figure 8.4.3. At

higher flow rates, the flow was turbulent and any semblance of particle focusing broke

down and hence the particles were distributed uniformly across the channel width.

The measured particle distributions in the HA solutions are shown in Figure 8.4.10 (c)

and (d). Evidently, the particles were driven to the center of the channel with the center

of nearly every particle lying within one particle diameter from the channel centerline

(i.e. more than 95% within z = ±10 pm) over the entire range of flow rates measured.

Example plots of the one-dimensional histogram and the intensity profile obtained

from the long exposure fluorescence images are shown in Figure 8.4.11. The agreement

between the histogram and streakline images confirms the consistency between the two

measurement techniques as well as the repeatability of the migration behavior in these

liquids, since each type of measurement was taken in separate experiments with different

imaging systems.

Two-Dimensional Distributions

Two-dimensional particle distributions across the height and width of the channel (i.e.

in the y-z plane) are shown in Figure 8.4.12 using the particle tracking analysis (PTA)

technique described in Section 7.2.3. Sets of 300 images were acquired with a 20 x 0.5 NA

objective at vertical spacing 6 pm apart from the bottom of the channel to the mid-plane.

These images were acquired only in the lower half of the channel to reduce the total

amount of necessary data processing on the assumption that the particle distributions

are symmetrical about the mid-plane of the channel. For these measurements, the epoxy

channel was bonded to a 300 Am thick glass coverslip (instead of the 1 mm coverslip) to

reduce the effects of light absorption and limitations of focal depth in the glass on the

intensity of the particles.

All particles in each image were examined using image analysis tools in MATLAB

in order to determine those that were optically in-focus based on cutoff criteria on the

maximum intensity of each particle and the spatial gradients in intensity to determine

the optical sharpness of the particle. The position of each optically in-focus particle was

then tabulated in order to construct the particle distributions in Figure 8.4.12. Note
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that while the location of the center of a particle can be precisely located along the

width of the channel (i.e. z-axis) to within one pixel (i.e. 0.323 pm), the location of

the particle along the channel height (i.e. y-axis) is subject to errors on the order of

the depth of field of the imaging system (i.e. 3.94 pm). Thus while the z-positions of

each particle in the distribution maps are highly precise, the y-position of each particle

is correct to within one row.

At Q = 0.6 mL.min- 1 (Re, = 125) in water, the particles were clearly distributed in a

diamond pattern with equilibrium positions located at the middle of each wall as shown

in Figure 8.4.12 (a). This distribution for the channel Reynolds number (Re, = 125)

was in agreement with the triple streak pattern seen in Figure 8.4.3 as well as the

distribution illustrated schematically in Figure 8.1.1 (a). For the HA solution shown in

Figure 8.4.12 (b), the particles were located near the centerline of the channel in a region

whose diameter was approximately four times that of the particle (i.e. 4a ~ 40 pm).

At Q = 6.0 mL.min 1 (Re, = 1250 for water), a large fraction of the particles were

located within 20 pm of the channel centerline, but additional equilibrium positions

emerged in the corners of the channel at this flow rate in Figure 8.4.12 (c). These

equilibrium positions have not been previously observed experimentally for the flow of a

Newtonian fluid in a square microchannel, however they have been predicted in numerical

simulations of Chun & Ladd (2006) for channel Reynolds numbers at Re, ~ 1000 and

for a similar ratio of particle diameter to channel size (a/D - 0.1) as in this study.

The migration of particles toward the corners of the channel was also in agreement

with the quincunx pattern of the form shown in Figure 8.1.1 (b) and suggested by

the intensification of the streaks near the channel edges shown in the streakline images

presented in Figure 8.4.3 for this flow rate. For the HA solution, the particles migrated

toward the channel centerline as shown in Figure 8.4.12 (d) confirming the centralized

streakline in the long exposure fluorescence image at this flow rate in Figure 8.4.8.

At Q = 15.0 mL.min- 1, the channel Reynolds number for water is Re, = 3130, which

was very near the transition to inertially-driven turbulence. In this regime, the streakline

images in Figure 8.4.3 indicated that the particles were driven toward the center which

is confirmed in Figure 8.4.12 (e). Evidently, the qualitative features of the particle
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distribution in water were very sensitive to the channel Reynolds number, which would

pose great challenges for any applications of inertial focusing in water for high throughput

technologies. On the other hand, in the HA solution at the higher flow rate shown in

Figure 8.4.12 (f), the particles were most tightly driven to the a region within around

15 pm from the channel centerline. Thus the streakline images, and the one and two-

dimensional particle distributions based on the snapshot images of individual particles

revealed quite clearly the robustness of the elastically-driven particle migration toward

the channel center in the HA solutions, which was robust over nearly three orders of

magnitude of flow rates (0(1) Wie O(103)).

8.4.4 Velocimetry Measurements

Velocimetry measurements constitute a valuable complement to the long exposure im-

ages and particle snapshots by providing quantitative details about the kinematics of

the flow. These measurements can be used to determine the relative velocities of the

particles with respect to the local fluid velocity and also give insight into possible effects

of wall slip and shear-thinning in the flow.

The velocity of each of the large particles was determined using particle tracking

velocimetry (PTV). A set of image pairs was acquired using a 20x 0.45 NA objective

and the velocity of each particle was analyzed using MATLAB, based on the displacement

of a single particle measured on the same streamline (i.e. line of constant x) between the

two images. An example PTV measurement is shown in Figure 8.4.13. Note that these

particles were large enough that even the fluorescent intensity of those lying outside the

depth of measurement was sufficiently intense to be identified by the PTV algorithm.

Therefore, unlike the PTA measurements in Figure 8.4.12, the precise y-position of each

particle indicated by the black circles in Figure 8.4.14 was not determined.

The fluid velocity was measured using particle imaging velocimetry (PIV) with 1 pm

particles. These smaller particles were suited to velocimetry measurements because

they were not subject to the migration effects seen in the larger particles as shown in

Section 8.4.5, and therefore they more faithfully followed the local fluid velocity field,

which was necessary for accurate velocimetry measurements. These velocity measure-
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Image A Superposed Image B

Figure 8.4.13: Example particle tracking velocimetry image pair for determining the
velocity of individual 8 pm particles in the channel.

ments were completed without any of the larger 8 pm particles in the fluid, because the

presence of the larger particles in the images would otherwise have reduced the spatial

resolution of the auto and cross-correlations on the image pairs. Images were acquired

near the end of the channel (Lob, = 35 mm) using a 20x 0.45 NA objective (depth of

measurement 14 pm) that was focused at approximately the mid-plane of the channel

(i.e. y = 0 pm).

The fluid velocity profiles are shown in Figure 8.4.14 for both the water and the HA

solution. For comparison, the expected velocity profile for the flow of a Newtonian fluid

at the mid-plane of the channel is shown by the green curve in each plot. The anticipated

velocity profile across the channel width at the mid-plane of the channel (i.e. y = 0 pm)

for a Newtonian fluid is given by (White, 2003)

U_(z) 48 1 _ 1 cos(jirz/W) 192 tanh(j7r/2a)~
U 3 cosh(j7r/2a) j3 7r o d j

(8.4.4)

The precise dimensions of the channel cross-section at the downstream position where the

velocity profile was observed were measured using a laser confocal displacement meter

(LT Series, Keyence), for which the channel height was measured to be H = 85 t 5 pm

as expected. The channel width was determined from a brightfield image focused at the

bottom of channel and was W = 90 pm. This measured width is 10 pm larger than the

design value, but it is within the manufacturing tolerances of a soft photolithography-
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based fabrication technique.

The measured profiles were determined using a correlative algorithm to track the

displacement of a group of neighboring particles over a short period of time. For the

imaging acquisition system used in this thesis and described in Section 8.3.2, the shortest

time step between laser pulses that would allow each pulse to be captured on separate

images, and therefore be amenable to cross-correlative analysis with the Insight6 software

(TSI), was Jt = 2.4 Ms. For larger fluid velocities, shorter time steps (down to the lower

limit of the pulsed laser synchronizer 6 tmin = 0.2 ps) were necessary to ensure the tracer

particles translated only approximately four pixels between laser pulses. These shorter

time steps would result in a single double-exposed image, which had to be analyzed

using an auto-correlative algorithm (LaVision, courtesy Douglas Neal).

At Q = 0.09 mL.min-', the particle velocities were sufficiently small that the stan-

dard cross-correlative algorithm could be used. These velocity profiles are shown in

Figure 8.4.14 (a) and (c). The measured velocity profiles extend fully to the wall where

the velocity approaches zero indicating that wall slip does not play a significant role

in the flow kinematics. On the other hand, the measured profiles do not overlap with

the anticipated profile, and instead the maximum velocity of each measured profile is

approximately 10% lower than the maximum velocity profile predicted from Eq. (8.4.4).

This deviation may be a result of the uncertainty in the precise channel dimensions or

some error in locating the channel mid-plane to within the depth of measurement of

the objective and camera. Nevertheless, the imaging plane was the same for both the

velocimetry measurements in the water and HA solution and therefore these results can

be directly compared in Figure 8.4.14 (e). Evidently, the velocity of the water near the

channel center (i.e. z = 0 jum) is about 5% larger than the respective profile for the HA

solution. At this flow rate, the typical wall shear rates are 0 ~ O(10') s-, which is in

the range of shear rates for which shear thinning in the HA solutions is prevalent as

shown in Figure 8.3.4 (d). Therefore, the difference is likely attributable to shear thin-

ning which blunts the velocity profile resulting in a lower centerline velocity than would

be found for a Newtonian fluid. This observation is noteworthy, since it is known that,

in general, shear thinning effects tend to drive particles toward the wall (D'Avino et al.,
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2012), however essentially all particles were located near the channel centerline indicat-

ing that for the HA solution, shear thinning in the viscosity did not play a dominant

role in the particle migration behavior.

The velocities of the larger 8 pm particles, shown by the black circles in the plot

for water, were all approximately u = 0.30 m.s-1, which is approximately equal to the

fluid velocity at z/W = +0.25. This uniformity in the particle velocity occurred because

essentially all of the particles were distributed in a diamond-like distribution thus posi-

tioned in the same relative location in the underlying parabolic velocity profile. For the

HA solution, the particles were located near the channel centerline and translated at a

speed that was approximately 10% faster than maximum measured velocity of the fluid.

The fluid velocities at Q = 6.0 mL.min- 1 were sufficiently large that it was necessary

to use a short time step between subsequent laser pulses and therefore the velocity

profile had to be determined using an auto-correlation. The velocity near the walls

could not be readily determined with the auto-correlation due to the small particle

displacements there. The velocity profiles for each fluid at this flow rate are compared

in Figure 8.4.14 (f). At this larger flow rate, the two profiles were nearly identical

indicating that shear thinning was not important and therefore did not play a role in

the particle migration behavior. It is also noteworthy that the larger particles lagged

behind the local fluid velocity in the Newtonian fluid, but led the fluid in the HA solution.

This difference suggests that the larger particles in the HA solution were pulled through

the fluid or equivalently that the drag force on the particle was lower in the HA solution

than it was in the water. It is well-known that inertia and elasticity can have competing

effects on the net drag on a particle (Joseph & Liao, 1994), and hence the tendency of

the particles to lead the flow may result from a net reduction in the fluid drag on the

particle. For particle migration in Newtonian liquids, it has also been experimentally

observed that particles leading the local velocity tend to be driven toward the channel

walls (Hogg, 1994), however the opposite was true for the migration of particles in the

HA solution, indicating clearly that inertia did not provide the dominant force acting

on the particles.
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Figure 8.4.15: Snapshots of particles in the channel with flow from bottom to top all
at Q = 6 mL.min-1, Re, = 1273 and Wi, = 170. Average particle diameters are (a)
a = 1 pm, (b) a = 3 pm, (c) a = 6 pm, (d) a = 10 pm and (e) a = 13 pm.

8.4.5 Effect of Particle Size and Shape and Channel Shape

The role of particle size in confined flows of Newtonian liquids has been previously

studied both experimentally and numerically by Di Carlo et al. (2009b), who gave scaling

relationships for the dependence of the inertial lift forces on fluid velocity, particle size

and channel dimensions. Generally, the larger particle Reynolds numbers associated

with larger particles result in equilibrium positions that are closer to the channel walls.

Measurements of particle distributions in the HA solution over a range of flow

rates were taken using batches of fluid seeded with a = 1, 3, 6, 10 or 13 pm fluores-

cent polystyrene particles (Fluoro-Max, Thermo Scientific). These particle diameters

were within the size range of typical cellular material that can be found circulating in

blood such as bacteria (a ~ 1 - 2 pm), red blood cells (a ~ 6 - 8 pm), white blood cells

(a ~ 8 - 10 pm) and small cancer cells, (a > 13 pm). Snapshots of the particles across

the channel width are shown in Figure 8.4.15. It is quite clear that the larger the par-

ticle, the more reliably it could be driven to the channel center. Furthermore, for this

channel, there was a clear difference between the migration behavior of the 1 and 3 pm

and the 6, 10 and 13 pm particles, as the smaller particles did not migrate to any single

dominant position.

To illustrate this point further, particle histograms for the 3 and 6 pm particles are
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Figure 8.4.16: Histograms of (a) a = 3 pm and (b) a 6 pm particles across the channel
width over a range of flow rates with the 1000 ppm HA solution.

shown in Figure 8.4.16. For the 3 /im particles, the standard deviations of a normal

distribution fit were approximately 20 Mm at all flow rates, indicating that the particles

were fairly uniformly distributed across the channel width. The slightly larger local con-

centration of particles near the channel walls at larger flow rates seen in Figure 8.4.16 (a)

may have been caused by shear-thinning effects which are known to drive particles to-

ward the wall. For the 6 pm particles shown in Figure 8.4.16 (b), the particles were

driven to the channel center (with standard deviations of approximately 8 pm) and

the distributions were far more consistent with those of larger particles shown in Fig-

ure 8.4.17. In general, higher flow rates and larger particle sizes increased the tendency

of particles to be driven to the channel center.

It is also a peculiar fact that while the channel and particle Weissenberg numbers

are independent of particle diameter, the particle elasticity number increases as the

particle size decreases and yet the apparent effect of viscoelasticity on the migration

behavior diminishes as the particle size decreases. For example at Q = 0.6 mL.min-1

in Figure 8.4.17 (b), while the channel elasticity number was small El, = 0.11, the

particle elasticity numbers, based on the rate dependent viscosity, for the 1 pm beads

was Elp = 725, for the 3 pm beads was .El, = 81, for the 6 pm beads was El, = 20,

for the 8 pm beads was El, = 11, for the 10 pm beads was El, = 7.3, and for the

13 pm beads was El, = 4.2. This seemingly counterintuitive result can be rationalized

by considering the asymptotic analysis of Ho & Leal (1976) for the flow of a second

order fluid in the limit of zero Reynolds and Weissenberg numbers. The lateral lift force
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Figure 8.4.17: Particle distributions across the channel width for a range of particle
sizes in the 1000 ppm HA solution at (a) Q = 0.06 mL.min-1, (b) Q = 0.6 mL.min-1,
(c) Q = 6.0 mL.min-1 and (d) Q = 20.0 mL.min- 1 .
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on the particle arising from gradients in normal stress differences was found to scale

cubically with particle diameter. On the other hand a resistive Stokes drag force on the

particle as it travels across streamlines scales only linearly with particle size. Hence,

according to this rudimentary analysis (whose validity in the regime of Re, > 1 and

Wi > 1 is questionable), a smaller particle would require significantly more time to

migrate to its equilibrium position, explaining the lack of particle migration observed

for the smaller 1 and 3 pm particles. While the magnitude of the particle elasticity

number may indicate the relative dominance of elastic or inertial forces acting on the

particle, it evidently cannot be used to anticipate the net particle migration behavior

observed compared to particles of other sizes. An additional factor to consider is the

role of secondary flows on the particle migration, which though caused by normal stress

differences, do not necessarily manifest themselves in such a straightforward manner as

a unidirectional lateral force balance.

It is known that the presence of viscoelasticity in the flow gives rise to second nor-

mal stress differences that drive secondary flows in pressure-driven flow through non-

axisymmetric rectilinear channels. Such secondary flows occur in polymer solutions

(Xue et al., 1995) as well as suspensions (Ramachandran & Leighton, 2008; Zrehen &

Ramachandran, 2013), and their role on particle migration has been recently considered

numerically by Villone et al. (2013) (see Figure 2.4.4 (a)). In this latter study, it was

found that sufficiently small particles could be driven to off-center equilibrium positions

generally near the channel corners within the vortex structures of the secondary flow.

Typically the secondary flow speeds U2nd are two to three orders of magnitude smaller

than the primary flow speeds, hence a crude estimate of the relevance of secondary flows

on particle migration can be ascertained by determining the number of times a material

element in a vortex cycles through the channel size within the residence time in the

channel. This number is given by N = LU2,d/DU. Taking the ratio U2nd/U ~ 0.01,

the value of N > 1, suggesting that secondary flow are not a priori negligible for the

experiments here.

To investigate the relevance of secondary flows in the particle migration behavior

of the HA solution, the particle distributions of 8 pm beads were measured in glass
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Figure 8.4.18: Bright field images of a (a) 50 x 50 Am square cross-section glass capillary
and (b) 50 pm diameter circular cross-section glass capillary tube. Particle distribu-
tions in the HA solution across the channel width over a range of flow rates in a (c)
50 x 50 pm square glass capillary and a (d) 50 pm diameter cylindrical glass capillary
tube. (15 < Re, < 1615 and 9 < Wie < 557.)
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capillaries (Vitrocom) with a 50 x 50 pm square and a 50 pm circular cross-section.

The cross sections of each channel are shown in Figure 8.4.18 (a) and (b). Due to the

axisymmetry of the cross-section, secondary flows cannot arise in the cylindrical tube

but may occur in the square channel (Bird et al., 1987). In the case that the secondary

flows dominate the particle migration behavior, the particle distributions in the square

channel should be more broadly distributed around the channel centerline.

The particle distributions in both channels over a range of flow rates were acquired

at approximately Lob, = 35 mm (Loob/D - 440) downstream from the channel inlet and

are shown in Figure 8.4.18 (c) and (d). It is clear that the distributions over the range

of flow rates in both channels were qualitatively similar, with nearly all particles lying

within one particle diameter Az ± 8 pm from the channel centerline. The histograms

for each flow rate were also fit with normal distributions, whose standard deviations

did not show a systematic difference in the spread of the particles in the square and

circular cross-section channels. This result strongly suggests that in the HA solutions

studied here, secondary flows did not affect the ultimate equilibrium positions of the

8 pm particles.

The effect of particle shape on the migration in Newtonian fluids has been previously

investigated by Hur et al. (2011b), who found that for most particles the rotational

diameter of a particle was the key parameter that determined its equilibrium position.

In Newtonian liquids, for which equilibrium positions are typically near the walls where

the shear rates are largest, this finding is sensible for particles of all shapes since the

rotation of the particle can play a role in the resultant inertial focusing behavior. For

the viscoelastic liquids considered in this Chapter, however, the tendency of particles

to be driven toward the channel centerline where the shear rate vanishes suggests that

particle rotation may be irrelevant to the final equilibrium migration behavior.

To explore this possibility further, cylindrical cross-linked polyethylene glycol (PEG)

particles (d = 6 pm, 1 = 18 pm) made with stop-flow lithography (Dendukuri et al.,

2007) were seeded in the HA solution. Snapshots of the particles at the end of the

channel (Lob, = 35 mm) over a range of flow rates are shown in Figure 8.4.19. In all

cases, the axes of the particles are oriented along the streamlines and near the middle
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Figure 8.4.19: Snapshots of cross-linked cylindrical polyethylene glycol (PEG) parti-
cles (d = 8 pum, 1 = 30 pm) flowing in the HA solution at (a) Q = 0.2 (Rec, Wic) =

(29, 5.7), (b) Q = 0.6 (105,17), (c) Q = 2.0 (397, 56), (d) Q = 13.0 (2840, 368) and (e)
Q = 20.0 mL.min-1 (4422, 566). The orientation of the particles coincident with the
channel centerline is robust across all flow rate and indicates that the particles do not
rotate is they travel downstream. (PEG particles courtesy of Ki Wan Bong.)

of the channel, strongly suggesting that they do not rotate as they advect downstream.

This alignment of particles with the flow is in agreement with previous observations

of the sedimentation of long bodies in viscoelastic liquids (Joseph et al., 1992; Joseph

& Liu, 1993). It has been found that when elasticity is the dominant contribution to

the stresses on oblong particles they are oriented parallel to the streamlines, whereas in

an inertially-dominated flow the axes of the particles are oriented perpendicular to the

streamlines. When both effects are important simultaneously, particles can be oriented

obliquely with the streamlines. Since the PEG particles shown in Figure 8.4.19 are

consistently oriented along the streamlines, it is clear that elasticity plays the dominant

role in particle orientation and migration for these oblong particles.

8.5 Summary

In this Chapter, particle migration in water and dilute and semi-dilute solutions of

polyethylene oxide and a concentrated solution of hyaluronic acid was studied at simul-

taneously large Reynolds and Weissenberg numbers. Both rigid spherical polystyrene
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Figure 8.5.1: Schematic illustration of the dependency of particle migration behavior on
the channel Reynolds number Rec, channel Weissenberg number Wic and the ratio of
the particle diameter to channel hydraulic diameter = a/D.

beads with diameter between 1 < a < 13 pm and oblong polyethylene glycol particles

were used. These experiments were performed in a rigid microchannel with a square

cross-section made with an epoxy-based fabrication technique enabling pressure drops

large enough to observe the onset of turbulent flow in water. The particle migration

behavior in the channel was observed with long exposure streakline images, and one

and two-dimensional particle distributions were determined from short exposure images

captured using a pulsed laser imaging system.

For 8 pm beads in an 80 pm x 80 pm cross-section channel, four distinct types of

particle distributions were observed with increasing channel Reynolds number in wa-

ter. At low channel Reynolds number (Re, < 10), no distinct particle migration was

observed. For 10 < Re, < 200, the particles were distributed in a diamond-like pattern,

while for 200 < Re, 3 1000 the particles were distributed in a quincunx pattern, and

for higher channel Reynolds number up until the transition to turbulence the particles

were driven toward the channel center. The velocities of the particles were always equal

to or less than the local fluid velocity.

The addition of polymer introduced fluid viscoelasticity, shear thinning and sec-
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ondary flows to the overall dynamics of particle migration. In both the polyethylene

oxide and hyaluronic acid solution, at channel Weissenberg numbers Wie > 1, the parti-

cles were driven toward the channel centerline regardless of the value of the corresponding

channel Reynolds number. These trends are illustrated schematically in Figure 8.5.1.

Velocimetry measurements of both the water and the HA solution suggested that nei-

ther shear thinning nor wall slip played an important role in the migration behavior.

Furthermore, elastically-driven secondary flows which depend on the shape of the chan-

nel cross-section did not have a significant effect on the equilibrium distribution of the

particles. Accordingly, the tendency of the particles to be driven toward the channel

centerline was dominated by the viscoelasticity of the liquid. Theoretical analysis shows

that this viscoelasticity gives rise to gradients in the normal stress differences and a

streamwise tension that acts on rigid particles.

This investigation of flow-induced particle migration in microfluidic devices is the first

to comprehensively study the simultaneous roles of fluid inertia and elasticity at large

channel Reynolds and Weissenberg numbers using high speed imaging techniques. Thus

the combination of streakline images, one and two-dimensional particle distributions

as well as velocimetry measurements enables the thorough characterization of particle

migration in optically transparent fluids and can be readily adopted for future studies.
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Chapter 9

Conclusion

The central aim of this thesis has been on studying the role of viscoelasticity on the

flow of complex fluids at large deformation rates. In particular, this work has focused

on three topics: firstly, 1) shear banding and other flow inhomogeneities in flows of

worm-like micellar fluids, secondly, 2) flow instabilities and extension-dominated flows

in microfluidic devices, and finally, 3) inertially and elastically-driven particle migration

in microchannels. The utilization of microfluidic devices for rheometry is also a central

feature of this study, enabling viscometric measurements at deformation rates as large

as 1 ~ 0(105) S-1. With the completion of this study, one can draw the following

conclusions:

Firstly, in Chapters 3 and 4, the influence of shear banding on the rheological

characterization of worm-like micellar liquids in shear was studied using conventional

macroscale rheometric techniques as well as velocimetry measurements. The onset of

shear banding occurs for Weissenberg number Wi ~ 1. The velocimetry measurements

revealed the existence of three shear bands in the cone-and-plate geometry, in contrast

to the two-band scenario conventionally assumed, and thus it may have arisen due to

the nearly uniform stress field in the gap coupled with the curvature of the flow. The

onset of a secondary flow driven by elasticity at Wi > 0(10) caused an edge instabil-

ity and the ejection of the fluid sample from the gap, limiting the range of shear rates

over which the cone-and-plate configuration could be used for rheometry. In order to

understand the role of shear banding on the onset of the flow instability, an analytical
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solution for the velocity and stress field was derived for planar Couette flow using the

diffusive Johnson-Segalman model. The inclusion of a non-local diffusive term in the

governing equation for the polymeric stress guaranteed the selection of a unique value for

the stress plateau and thereby enabled the prediction of a shear banded velocity profile.

This analytical result was then utilized to develop a dimensionless stability criterion

to anticipate the onset of secondary flows in the base shear-banding flow of worm-like

micelles.

Future work on this topic area should study more closely the interplay between

normal stress differences and shear banding in a cone-and-plate geometry. The edge

instability in steady shear that prevents the rheological characterization at high shear

rates is linked to normal stresses in the sample (Skorski & Olmsted, 2011). Furthermore,

the break-down in the Lodge-Meissner rule in step strain stress relaxation tests at large

strains is likely coupled to the onset of shear banding. A greater understanding of growth

of normal stresses in shear-banding liquids would not only improve constitutive models,

but it would be valuable for investigating the validity of the proposed linear stability

criterion more generally in complex flows. The criterion has been developed assuming

a two-banded scenario like that typically seen in the Taylor-Couette geometry, where

its validity has been investigated by Fardin & Lerouge (2012). On the other hand, the

three-banded scenario in the cone-and-plate configuration may necessitate a reevaluation

of this criterion, building on the analysis of Kumar & Larson (2000) for example. The

stability criterion has also been developed to predict the onset of a linear instability which

requires finite curvature of the streamlines in the underlying base flow. However, it is also

expected that viscoelastic liquids in rectilinear base flows are susceptible to subcritical,

or non-linear instabilities (Meulenbroek et al., 2004; Morozov & van Saarloos, 2007),

which require perturbations of finite amplitude to trigger the secondary flow. For shear-

banding worm-like micellar liquids it has been shown experimentally and numerically

that the jump in normal stress differences across shear bands in the channel flow drives an

interfacial instability that leads to a secondary flow (Nghe et al., 2010). Therefore, more

thorough measurements of N1 and N 2 in shear-banding fluids would greatly improve the

accuracy with which the onset of elastically-driven secondary flows can be predicted.
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Secondly, in Chapters 5 and 6 the small length scales accessible in microchannels

were exploited to achieve high deformation rate flows at low Reynolds number, which

is crucial for accurate measurement of viscometric material functions. The behavior

of worm-like micellar fluids and other complex fluids was studied in both shear and

extension-dominated flows at deformation rates up to - ~ O(105) s-1, which is well

above those which could be attained using conventional macroscale rheometric tech-

niques. Pressure measurements and kinematics measurements of the flow in microfluidic

devices were enhanced with spatially-resolved measurements of flow-induced birefrin-

gence enabling the observation of the evolution of stresses in the channels as well as

evidence of non-local effects in steady shear. Furthermore, a framework for the extrac-

tion of the effective extensional viscosity from the extension-dominated flow through a

microfluidic hyperbolic planar contraction was developed, which can serve as a comple-

ment to the shear viscosity microfluidic viscometer described in Pipe et al. (2008) for

measuring a nominal extensional viscosity.

Microfluidic rheometry now constitutes one of the most effective techniques for ex-

tending the range of deformation rates at which the rheological behavior of complex

fluids can be characterized to at least y ~ 0(105) S-1 or beyond. Much of the hardware

and fabrication techniques are well established and therefore future development work

for this technology should be aimed at the optimization of channel designs to achieve a

desired flow type through the incorporation numerical simulations. For example, recent

work by Haward et al. (2012b) has shown that the extensional kinematics of a cross-slot

geometry can be optimized with numerical simulations to achieve a practically homo-

geneous extensional flow field. The experimental validation of numerical optimization

routines using microfluidic devices would also provide constructive feedback for the im-

provement of viscoelastic constitutive models especially at high Weissenberg numbers.

Finally, in Chapters 7 and 8, the effects of fluid inertia and elasticity on the flow-

induced migration of particles in a microchannel was experimentally investigated. The

particle tracking analysis (PTA) technique was developed to determine the two-dimensional

(y-z plane) distribution of polystyrene beads, white blood cells, and PC-3 cells in diluted

and whole blood across both the height and width of the channel. The initial experi-
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ments with whole blood at channel Reynolds number up to Re, ~ 200 in a 93 x 45 pm2

channel cross-section demonstrated a dramatic shift in the particle migration behavior

compared to the typical behavior in a Newtonian fluid. This radical shift in particle mi-

gration behavior arising from the non-Newtonian rheology of whole blood was then more

systematically investigated with model non-Newtonian liquids in a square 80 x 80 Am 2

channel at channel Reynolds numbers up to, and above, the value at the transition to

inertially-dominated turbulence. Streakline measurements, ultra-short exposure images,

PTA and velocimetry measurements were combined to characterize the migration behav-

ior of a range of particle sizes in viscoelastic liquids at large channel Reynolds number

Re, < 0(104) and Weissenberg number Wi, < 500. At these flow rates, the particle mi-

gration was clearly dominated by the elasticity of the fluid, driving the particles toward

a single region in the center of the channel.

One of the major aims of research on particle migration in microfluidic devices is

the application of this phenomenon for biomedical devices for isolation of rare cells from

the blood stream. Yet, there are many crucial developments that must be made for this

technology to become viable. In particular, much of the knowledge of particle migration

is empirical, which poses a limitation on the long-term development of this technology

that would otherwise benefit from a stronger theoretical understanding. Given the im-

portance of non-linear effects in the migration phenomenon, however, it is unlikely that

analytical methods will make much headway particularly for finite channel dimensions

and finite particle Reynolds and Weissenberg numbers. Instead, numerical simulations

offer the most viable way forward, and while many numerical studies have considered

inertial or elastic effects in isolation, no major study of the simultaneous relevance of

both effects has yet been undertaken especially with the aim of optimizing a channel

shape for a particular separation application. Additional challenges that must be over-

come include the design and optimization of separation sections of the microchannel as

well as a thorough assessment of the long-term viability of living cells after sustaining

the large deformation rates that are endemic to high throughput flows in microfluidic

devices. The imaging and velocimetry measurement techniques developed in this thesis,

however, constitute a versatile toolset that can be used to study new particle migra-
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tion modes in complex physiological fluids, which could enable the isolation of rare cells

directly from whole blood at high throughput for use in global health diagnostics.

In short, the overarching focus of this thesis is in the characterization of complex

fluids at large deformation rates. One of the major accomplishments of the work is

the incorporation of pressure, birefringence and flow kinematics measurements with mi-

crofluidic technologies for the rheologcial characterization of complex liquids over a wide

range of deformation rates. Microfluidic fabrication methods are now firmly established

and can be utilized to create virtually any complex flow geometry desired. This tech-

nology enables one to extend the range of deformation rates at which relevant viscomet-

ric material functions can be measured well beyond those accessible with conventional

macroscale rheometric devices. In time, improved understanding of flows of complex

fluids in microfluidic devices stands to make great impact on many fields including ma-

terials processing, biomedical devices and separation processes.
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Appendix A

Maxwell Model

A.1 Governing Linear Equation

While contemplating the possibility that gases could exhibit viscoelastic behavior, James

Clerk Maxwell proposed a constitutive equation for the shear stress, r, in a linear vis-

coelastic material having relaxation time, A and viscosity q (Maxwell, 1867)

+ - =(A.1.1)
dt

where t is time and 1 is an applied shear strain rate.

A.2 Solving the Linear Maxwell Model

A commonly utilized test in the determination of important rheological properties of

a material is small amplitude oscillatory shear (SAOS). In this test, a material sample

experiences a sinusoidally varying shear strain in time. The applied shear strain, y(t),

obeys the relation -y(t) = Yo sin wt, where -yo is the shear strain amplitude, w is the

oscillation frequency of the applied strain and t is time. Evidently, the shear strain rate,

A, follows the relation 1 = 'yow cos wt. If such a deformation is imposed on a material

governed by the Maxwell equation, Eq. (A.1.1) becomes

T + A d- = Wyow cos wt (A.2.1)
dt

303



1.5 10

0
10

0101
0.5-

S10 -G'lGo
-- G" Go

0 '-10-- - - -
0 5 10 10 10 100 101 102

t/A 0 1
(a) (b)

Figure A.2.1: (a) Stress decay for a Maxwell fluid. (b) Normalized moduli for a Maxwell
fluid undergoing an oscillatory shear deformation.

The solution to Eq. (A.2.1) consists of a homogenous solution, rh, and a particular

solution, Tp, such that T = rh -+T.

First, we solve for the homogenous solution:

Th + A = 0 (A.2.2)
dt

Clearly the solution Th is given by the relation rh = TO,he--t, , where TO,h is the stress ap-

plied to the material at t = 0, which is then completely removed for all t > 0. Eq. (A.2.2)

describes the scenario in which a material experiences a constant shear stress of magni-

tude TO,h for all t < 0, when at t = 0 at the imposed shear deformation is instantly and

entirely removed. In this case, for all t > 0, the stress in the material decays exponen-

tially with time constant A as shown in Figure A.2.1 (a).

For the case of small amplitude oscillatory shear, the homogeneous solution is not

important since the effect of any non-zero TO,h on the material stress, r, decays exponen-

tially in time, such that in the limit of long times (t/A > 1) only the particular solution,

Tp will be observed. Consequently T = Tr, and we must solve Eq. (A.2.1).

Since the imposed shear strain rate is sinusoidally varying in time, it is logical to seek

a solution for the resultant material stress which takes the form T = A sin wt + B cos wt,

where A and B are coefficients yet to be determined. Since the applied strain obeys

-y = ^yo sin wt, the magnitude of A distinguishes the elastic or stored response of the
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material, and since the applied shear strain rate obeys y = yow cos wt, the magnitude

of B distinguishes the viscous or lost response of the material. In this case, Eq. (A.2.1)

becomes

A sin wt + B cos wt + A (Aw cos wt - Bw sin wt) = rTyow cos wt (A.2.3)

When the sine and cosine terms in Eq. (A.2.3) are segregated, we obtain the following

two equations which may be used to determine A and B.

A - AwB = 0
(A.2.4)

B + AwA = 77yow

After some algebra we obtain (A) 2

A=Goyo ((A.2.5)
( 1+(Aw)2

B = Go-yo (A)) (A.2.6)
(1 + (Aw)2

where Go is called the plateau modulus and is defined Go = /A. Linearity dictates

that A/-yo and B/-yo are the actual material coefficients of interest in characterizing the

linear viscoelastic response of a material to an oscillatory deformation. In this manner

the elastic modulus or storage modulus, G' is defined as

((Aw) 2

G'(w) = Go (Aw)2 (A.2.7)
(1 + (ko) 2)

and the viscous modulus or loss modulus, G" is defined as

G"(w) = Go Aw (A.2.8)
1 + (Aw)2

These moduli are plotted in Figure A.2.1 (b).

Evidently, the resultant response of a Maxwell fluid to time-dependent, oscillatory

deformations obeys the relation

T = G'(w)yo sin wt + G"(w)-yo cos wt (A.2.9)

or alternatively,

T = G*yo sin(wt + q) (A.2.10)
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where G* is called the complex modulus, such that G* = vG'2 + G"2, and # is the phase

angle difference between imposed shear strain and the stress, such that q = tan- (G"/G') = 1/Aw.

In the limit of Aw --+ 0, the storage modulus scales quadratically with w, but the loss

modulus varies linearly with increasing w. In this regime, the characteristic timescale of

the imposed shear strain (i.e. w-) is very large compared to the relaxation time of the

material, and as a consequence the material has ample time to adjust to the imposed

strain and as such the work associated with imparting that deformation on the fluid is

mostly lost through viscous dissipation. Hence in the limit of Aw -+ 0, G" > G' and

--+ 7r/2.

In the opposite limit of Aw -+ oc, the storage modulus is invariant to w, while the

loss modulus decreases linearly with increasing w. In this regime, the characteristic

timescale of the imposed shear strain is very small compared to the relaxation time of

the material, and accordingly the material is unable to adjust to the imposed strain and

thus the work associated with imparting that deformation on the fluid is mostly stored

as elastic energy. Hence in the limit of Aw -- oo, G' > G" and # -- 0.

The magnitudes of G' and G" are equal when Aw = 1. At this cross-over frequency,

W- = A and 0 = 7r/4 and accordingly the characteristic timescale of the imposed defor-

mation is equal to the relaxation time of the material.

A.2.1 Effects of Inertia

At high frequencies, the inertia of the fixture or the fluid can dominate the imposed

torque in stress-controlled rheometers. In this analysis, the inertial contribution of only

the fixture is accounted for in order to correctly determine the storage and loss moduli

of the test sample. For a cone-and-plate fixture with radius R and moment of inertia I,

the imposed torque T is (Macosko, 1994)

T(t) = Id 2 + 7rR 3 (G'(w)-y(t) + G"(w)y(t)/w)
dt2 +3

= -I-YOW 2 sin(wt) + 7rR 3 (G'(w)yo sin(wt) + G"(w)yo cos(wt)) (A.2.11)

= [7RR3G'(w) - lOw 2 ] _yO sin(wt) + 27rR 3G"(w)yo cos(wt)

where a is the angular displacement of the fixture relative to its initial angular position
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when the test sample is unstrained (i.e. a = 0 when -y = 0). Here the angular position

of the fixture is a(t) = 'Yo 9 sin(wt), where 0 is the cone angle of a cone-and-plate fixture.

Therefore the torque is given by

2
T(t) =-7RC sin(wt + #) (A.2.12)

3

where

II 2

C 3G(w) - w2  + G"(w) 2  (A.2.13)
2rR3

and

= tan-1 ( l( W) (A.2.14)
G' (w) - Wo2

If storage and loss moduli are given by Eq. (A.2.7) and Eq. (A.2.8) then, the apparent

storage modulus is

G' (w) (Aw) 2

G ( 2 -I(Aw) 2  (A.2.15)
Go I1+ (Aw)2

and the phase angle is

( ~ 1
= tan-1 (A.2.16)

(Aw [1 - I(1 + (Aw)2)]

where i O3 A . Plots of the apparent storage modulus and the phase angle are

shown in Figure A.2.2.

A.3 A Frame Invariant Viscoelastic Constitutive Model

Despite the versatility of the scalar Maxwell model, it is not frame invariant (Bird

et al., 1987). The scalar equation is restricted to 1) small shear rates for which the

material viscosity is independent of shear rate, and 2) it cannot predict a normal stress

difference, and 3) it cannot predict flows which are themselves moving in some other

frame of reference. Some of these deficiencies of the scalar equation can be overcome if

one considers the upper convected Maxwell model, given by
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T + Ark = 2r/D (A.3. 1)

where T is the stress tensor, Tk denotes the upper convected derivative of T and 2D is

the strain rate tensor. The upper convected derivative of T is defined

SDT
Tk = Dt - (V,6)1 - T + T - (VV)) (A.3.2)

where t is time, V is the gradient vector, V is the velocity vector, and the superscript t
denotes the transpose of that vector. The strain rate tensor is defined D = 1(Vi+ (V)t).

Eq. (A.3.1) is capable of rectifying deficiencies 2) and 3) of the scalar Maxwell model.

A.3.1 First Normal Stress Coefficient

The first normal stress coefficient for a steady shear flow will now be derived from

Eq. (A.3.1).

For an imposed shear strain rate, du. = =
dy

0 0 0

V*= 1 0 0 (A.3.3)

0 0 0

and accordingly

0 1 0

D 1 0 0 (A.3.4)

0 0 0

For a steady deformation, the material derivative of the stress tensor vanishes, and

the relevant governing equation is

T - A((Vi) - T + T - (Vi)) = 7D (A.3.5)

When the proper substitutions are made in Eq. (A.3.5), one obtains

XX TXY -I. 1[ 1 0 7x .V -. 1 0 0 0 ][ y rxz ] 0 1 0
r 1X yy Tyz - 0 0 0 y Try y TyJz -] 1 0 0 y Tyy Ty z J ? 1y [1 0

Tz X Tzy Tzz 0 0 0 .rzx Tzy Tzz 0 0 0 TzX TZ z. 0 0 0

(A.3.6)
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This result reduces to

Txx TxY Txz Txy +TYX TYY 7yz 0 1 0

TYX 7-YY 7yz -A TYY 0 0 = 75 1 0 0 (A.3.7)

TzX TZY Tzz TzY 0 0 0 0 0

When corresponding stresses are equated, one finds

TXX - A*Xy + TYX) = 0

Tzx - AzyT, =0

TXY -A Tyy - 1i-T = 0

= 0 (A.3.8)
T= 0

Txz - A y 0

Tyz= 0

Tz= 0

7YY - 2AyTyx = 0

or alternatively,

T = WY

T- TYY = 2Aq 2 2 (A.3.9)

Tyy = =Tyz = Tyz = Txz = TzX= 0

Hence, for a Maxwell fluid, the shear stress scales linearly with shear rate and the first

normal stress difference scales quadratically with shear rate. The first normal stress

coefficient, 'F = N1/i2 = 2AI.
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Appendix B

Rheological Measurements with the

Offset Cone-and-Plate

B.1 Cone-and-Plate and Plate-Plate

It can be shown (Bird et al., 1987), that the torque TCP acting on the cone-and-plate

(CP) geometry shown in Figure B.1.1 (a) is

3Tcp

27rR 3 rN(N)'Y (B.1.1)

where R is the radius of the geometry, rq is the shear viscosity and YR is the shear

rate at the rim which is uniform throughout the sample in the CP geometry. Similarly,

the relationship between torque Epp acting on the plate-plate (PP) geometry shown in

Figure B.1.1 (b) and viscosity is (Bird et al., 1987)

27R 3 I3
+ d ln(Tp p/27rR 3)

+ d ln( R) (ii (B.1.2)

The axial force acting Fcp on the CP geometry is

7rR2 ( R) (B.1.3)

where I, is the first normal stress coefficient of the test material. The axial force Fpp

acting on the PP geometry is
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Figure B.1.1: Schematic diagram of the cone-and-plate (CP) and parallel plate (PP) ge-
ometries. In the CP geometry the shear rate is spatially uniform and is y(r) = R - Q/0.
In the PP geometry the shear rate varies with radial position and is Y(r) = rQ/h so that
for the PP -(r = R) = 'R = RQ/h.

2 + d I (.Fpp/rR2 ) () - 2() (B.1.4)
r R _ d In ( R)

where 'kF2 is the second normal stress coefficient of the test material.

B.2 Axial Force for Cone-and-Plate and Plate-Plate

Here we show that for a simple viscoelastic fluid, the axial force measured on a CP

geometry will be higher than the axial force measured on a PP geometry of the same

radius R and at the same rim shear rate R. Recall that in the CP geometry yR = Q/0,

where Q is the angular rotation speed of the fixture, and 0 is the cone angle, whereas in

the PP geometry IR = RQ/h, where h is the gap height.

In the CP geometry the axial force is given by

1 1
FCP = -N 1 7R 2 = -i rR(B.2.1)

2 2

where N1 is the first normal stress difference of the specific test fluid.

In the PP geometry, the axial force on the fixture is

R R

Ypp = 7r r(N - N2)dr = r] r(j 1 - X2) 2dr (B.2.2)
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where N 2 is the second normal stress difference.

If we assume for a simple viscoelastic fluid, I1 and XI'2 are constant, and we assume

that T2 = -ax 1 where for most fluids (Larson, 1998) 0 < a < 1 (but more generally

-1 < a < 1), the axial force on the PP geometry is

Fpp = ir(1 + a)AI 1 j r- 2dr (B.2.3)

For the PP geometry, the shear rate is = 'yR, hence

FPP = 7r(l + a)Aj r dr = (1 + a)TiR27r 2 j 3dl? (B.2.4)

where R = r/R. So we have

FYp = (1 + a)I'iiRrR2  (B.2.5)

Therefore the ratio of the force measured on the CP and PP geometries for the same

values of R and YR is

FCP _ XF 1 i7R 2  2
S2 irR2  1+ a (B.2.6)

FYP -4(l+ a)qifl R2=+

So for all physically realistic values of a, be they positive or negative, we find that

the axial force measured by the CP geometry should be larger than the the axial force

measured on the PP geometry.

B.3 Offset Cone-and-Plate

In this derivation, we calculate the torque and axial force acting on an offset cone-and-

plate (OCP) geometry, first studied by Jackson & Kaye (1966), shown in Figure B.3.1.

For a given OCP geometry with radius R, angle 0 (where 0 < 0 < 1), height h (h > 0)

and angular rotation rate Q, the shear rate in the absence of secondary flows is given by

r) =(B.3.1)
h + rO

Hence the shear rate at the rim for the OCP is

RQ
YR = (B.3.2)
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Figure B.3.1: Schematic diagram of the offset cone-and-plate geometry.

We can invert the relationship between r and ' to obtain

h-
Q - 0

Therefore

dr hQ
d- = (qo )2

If we define the following dimensionless quantities R = r/R, and = R9/h (0 < K o),

then we also have the relationships

0 K

9 YR(1+I)

h R

(B.3.5)

(B.3.6)
Q YR(1+K)

and

(B.3.7)

B.3.1 Torque

We can derive the expected torque on the offset cone-and-plate (OCP) geometry using

the following equation
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Tocp = 27jfl(A)Ar2dr

If we substitute for r in terms of ' and other parameters, we have

TOCp = 27
JO'fR

y r (A)2d dy = 2w
O R

h3 Q
3_ 04

Further substitution yields

TOCP = 27rR 3 JR M 1
(1 + K)3 d = 2rR

3
J YR

(i+ K (I _-j_ )4(

(B.-3. 10)

This result is also equivalent to

CP( (+) 3+ J R) d7( y)
(B.3. 11)

And if we replace i, using Eq. (B.3.5), we have

TOCP 
R27rR33 IO YR (B.3.12)4 3 d7

To determine the relationship between torque and viscosity for an arbitrary 77(y), we

can proceed in two ways.

Holding Q/6 Constant

If we perform a set of experiments for which we hold the parameter Q/0 constant for dif-

ferent gap heights h (i.e. varying K), then we can use the Leibniz theorem on Eq. (B.3.12)

to obtain

d

ndR en/

And hence

ToCP ARk
27R 3 (i _-yR) 3

R 
4 3

0 a R 1 _(Py
+ (i OR )

(B.3.13)

= TOCP3 1 d In (TOCP/2rR3)
27R33 In (AR) / ln(i
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One can show via the chain rule that this is equivalent to

(TR)oR F dln (Tocp/2w7R33 ) (B.3.15)2irR 3 [3 In (din (,0)
This result clearly reduces to the CP and PP results in the appropriate limits for r,. In

the case of the CP, K - oo and we have Eq. (B.1.1), and the condition of holding the

ratio Q/0 constant is not required, since the derivative term is eliminated. In the case

of the PP, K = 0 and we have Eq. (B.1.2), and the condition of holding the ratio Q/6

constant is automatically satisfied since 0 = 0 in the case of PP.

Varying Q/0

If we wish to evaluate the differential term for a single experiment at a given gap value of

h (i.e. constant r,), then we must consider the derivative in which we allow the ratio Q/0

to vary. In this case we have

d- Tocp3 }--YR ' {IM +) 43dr +r(R))}1+ ) (B.3.16)
d R 2-xR3 fo +i K 4

This gives

d T3 = - [R 4r (1 + ) ' 4d + r(R)(1 + ,) (B.3.17)
dR 27rR3  0 2 1 + (-

Without a priori knowledge of the functional form of r7 (y) it is difficult to proceed using

this latter route.

B.3.2 Axial Force

We can derive the expected axial force on the offset cone-and-plate (OCP) geometry

using the following equation

Focp = 7r-R r(N-N 2 )dr+r R rN 2 hr6) dr = 7r R r('F--F 2 ) 2 drrP 2 2 h r 9 dr

(B.3.18)

This result is equivalent to
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OCP =7r R 1-2)+2 2 rdr = R { ~

Again, if we substitute for r in terms of y and other parameters, we have

IR Mdr d
7d

[

X F 2 ) + X F 2 }
(Q - 0 ) 3 1d

(B.3.20)

Further substitution yields

= 7rR 2 ] j - 2) +

= irR 2 1 1 - X2) +i

.3
1F2 0 2 3 21 1

.3

These results are also equivalent to

(1 + K)2
fYR{

= f1YR{

- T2) + P2 } :3

- X2) + T2 I_ 3

7R
(B.3.22)

Again, if we replace r using Eq. (B.3.5), we have

2
f R 2OCP

7rR2
(B.3.23)

As before, to determine the relationship between axial force and normal stress coef-

ficients for arbitrary 1() and 'I'2( ), we can proceed in two ways.

Holding Q/0 Constant

If we perform a set of experiments for which we hold the parameter Q/0 constant for

different gap heights h (i.e. varying ,), then we can use the Leibniz theorem on the

upper equation in Eq. (B.3.22) to obtain
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rQ.3. d( rO)f'r
(B.3. 19)

FOCP

(B.3.21)



d -

dAYR Q~/0 wFR 2 (1 :Y OR) 21
= [RD ('Ii- ~(I -_() 3 7d)

1- ' 2) +Q~2~ R} (i R O (B3 .2R

(B.3.24)

And hence

(B.3.25)

Again, one can show via the chain rule that this is equivalent to

.1 2 '17CP d In (Focp/7rR2)1ij_ c -F- d2l o = c/2+ d R) 1(B.3.26)
1 + K R rR2 [dln () J

Once again, this result reduces to the CP and PP results in the appropriate limits for

K. In the case of the CP, K -* o and we have Eq. (B.1.3), and the condition of holding

the ratio Q/0 constant is not required, since the derivative term is eliminated. In the

case of the PP, K = 0 and we have Eq. (B.1.4), and the condition of holding the ratio

Q/0 constant is automatically satisfied since 0 = 0 in the case of PP.

Varying Q/6

If we wish to evaluate the differential term for a single experiment of a given gap value

of K, then we must consider the derivative in which we allow the ratio Q/6 to vary. In

this case we have

d _ FoCp

dyR wrR 2

YRO {{1 -q- 2) + 41 2 1}+(
1 )3 }

+ +1 + { r)4'1 - - B- 32

(B.3.27)

This gives
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d FocpYR _ fYR 3(1+ K)

dYR 7rR 2  f +- :
-- F 2 = - ((1 - X2) 4

d±R'rR ( 3 1 + ( 1 - - ) }':YR 'YR

(B.3.28)

Likewise, without a priori knowledge of the functional form of I1(' ) and XF2() it is

difficult to proceed using this latter route.

B.4 Torque and Axial Force for Criminale-Ericksen-

Filbey (CEF) Fluid

Following the derivation in Bird et al. (1987), we can show that for simple shear, the

stress tensor depends only on three kinematics tensors 7(1), 77(2) and {y(j) '(i)}. Accord-

ingly we can describe the stresses in simple shear by

rXY = r7Y):

N1 = - = 1() (B.4.1)

N 2 = Tyy - =zz =2

where q is the viscosity, N1 is the first normal stress difference (N1 > 0 and xp1(') > 0)

and N 2 is the second normal stress difference (N 2 < 0 and Q 2 (y) < 0 generally).

B.4.1 Torque for a Second Order Fluid

To calculate the torque acting on the upper fixture we have Eq. (B.4.1). If we assume

that the viscosity is constant, then the integral expression for the OCP becomes

70CP21rj rlyr2 dR

=oc 27 ri qrdr

= o h j h O 1 R3 (B.4.2)
= 27rIRR 3 (1 + K) o 1+ 0z dR

2 1 +3 3 -(1+)
= 3 + 2 K2 + - 3 (1 4Kn(l+)
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Recall that for the CP geometry, the expression for torque is given by

(B.4.3)

A plot of Eq. (B.4.2) normalized by TP for a constant value of /R is shown in Fig-

ure B.4.1 (a) and (b). In the CP limit r, --+ oc, the normalized torque is equal to unity,

as expected. In the limit , - 0, the normalized torque approaches the value expected

for a constant viscosity fluid in a PP geometry which is given by

(B.4.4)

The ratio between these two values is Tpp/Tcp = 0.75, which is the asymptotic limit

shown in Figure B.4.1 (a) and (b).

In order to apply the results of Eq. (B.3.14), however, the ratio of Q/6 must be held

constant to evaluate the derivative term. Substituting Eq. (B.3.5) into Eq. (B.4.2) to

eliminate YR, the new result is

TOCP = -7rr/ QR3 K

3 0 (+ )

1
2K

3 3
+ + -3

2,x2 K3
(1 + )

K4
+ K)) (B.4.5)

Plots of Eq. (B.4.5) normalized by 27rr/1R 3 for a constant value of Q/0 are shown in

Figure B.4.1 (c) and (d).

B.4.2 Axial Force for Simple Fluid

We also assume, as before, that IF, = -aXI 2.

Eq. (B.3.19), we have

-FOCP

Substituting these expressions into

(- + rO2

= 1JfiRyvrR2(1 + ) 2
L1

I- (1-a)

(1+ a) 2

2
-- +

V13 '/ 4

- as -R4

(+ r)
9 6 (1 + K) 2

-2 + K 3 K 4

dR

In (1 + K))

(B.4.6)

Plots of this result are shown in Figure B.4.2 (a) and (b).
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Figure B.4.1: Normalized torque for a second order fluid with constant shear viscosity
measured with an offset cone-and-plate geometry. (a) & (b) Torque dependence on
r = 1 holding R constant. (c) & (d) Torque dependence on r, = R holding Q/0h h
constant.
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Figure B.4.2: Normalized axial force at different values of a for a second order fluid with
constant normal stress coefficients measured with an offset cone-and-plate geometry. (a)
& (b) Force dependence on r. = holding YR constant. (c) & (d) Force dependence on
r,= 2 holding Q/0 constant.h

322

0.8

0.6.

0.2

1

-a
-a=

a

0.8-

0.6-

0.2-

R = Const.
- . ----

15

= -0.4
= -0.2
=0



As before, in order to apply the results of Eq. (B.3.25), the ratio Q/6 must be held

constant. Substituting Eq. (B.3.5) into Eq. (B.4.6) to eliminate 'R, the new result is

I [2 2 2 2 9 6 (1 + )2
TOCP= -1~2 7rR2 2+ I- (1-a) -- +--6 - In (1 + r) (B.4.7)

2 '1+)2 K K3 K4

Plots of this result are shown in Figure B.4.2 (c) and (d).

To recover the expression given in Eq. (B.1.3) for the CP geometry, we must take

the limit r -+ oo. All terms, except the rightmost term obviously approach zero as

K -* 00, and we can determine the limiting expression for the rightmost term by applying

L'Hopital's Rule

(1 + x)2 2 6(1 + I) n (I + K)
lim 6 4Iln (1+ K) = d ( 2  + = = 0 (B.4.8)

rV_+OO K4 d3 K4 2(1 + K)

So, clearly we recover the expression given in Eq. (B.1.3) for the CP geometry. To

recover the expression given in Eq. (B.1.4) for the PP geometry in the limit , - 0, we

expand the rightmost term around r = 0

(1 + K)2 2 9 6 1 K K 2

lim 6 In (1(+ 1) - + - + +1 + ) (B.4.9)
K--O 4 K , 2 K K 2 5 10

Evidently all the r, terms in Eq. (B.4.6) cancel or go to zero as r, - 0, and we recover

the expression given in Eq. (B.1.4) for the PP geometry.

We can also calculate the sensitivity of the measurement of Focp on the value of r

by taking the derivative of Eq. (B.4.6) with respect to ,.

d.Focp 1 I,2R221a)1 12 12 _ (1 3 2
dc 2cR2 2 - + + - + 4+ ln (1+)) (B.4.10)

22
The limiting value of this equation as K - 0 is (I - a)TiiR2rR2.

B.4.3 Axial Force for Rate-Dependent Normal Stress Coeffi-

cients

To generalize our results in Eq. (B.4.6) even further, let us consider including rate-

dependent normal stress coefficients. Here we consider a CEF fluid in which we let the

normal stress coefficients be given by
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= 1+ (A1-y)2
&2,0

& ~ 1 + (A2 )2

where T1,0 and 12,o are constants and in general T1,0> I'2,O > 0 and T 2,0 < 0 and A1

and A2 are constants. As before, we set 11,0 = -a2,0. The axial force is now given by

the equation

=7 R {
09

--- T2)+T2 r9) }2rdr '2 ( h )

tQ1io 1 2,0

1+ (A2

= 2rR2 I1,o

T1+(AAg 22 
(1+21+

= 'i,-xR 2 ( (

)2 h+r)}rdr

_T'2,O

1+(A2 YR) 2 ((1

1 +

}((1+)R) RdR

a
(1+K1Z)

3 ±(AV4R )
2 (1±I.)

2 (1±KIZ)IZ2

(B.4.12)

For succinctness, we define b = (AAYR) 2 and c = (A 2 IR) 2 . The solution to this integral

equation is
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rOCP R 1

= r 1
IR1+

2 rdr

}3dR



FOCP 1,=72 1+K [ 2n (3b(1 2 a
(b(1+)2+r2)

+(1 + K) ((K2 + b(1 ±)2 - 4n) (K + b(1+ )2

- (b(+ ) 2 - 3r (ln(1+ b) + 21n(1+ K)))

/- (B.4.13)
+a 1 '41 4(+ )tan /

((+K+2) C

+ K2 (r (c(1+) 2 + - c(1 + ) 2 +3 ln(1 + K))

-(C(+ K) 2 - r2) in(I+c)

For the sake of example, we assume that A, = A2 and we set b = c = Wi 2, and

we plot below the normalized axial force for different values of a and r = R. Notice

that for vanishingly small values of Wi, we recover the result in Eq. (B.4.6), as seen by

the similarity between Figure B.4.2 and Figure B.4.4 (a). Note that in Figure B.4.4,

we have normalized FOcp by Fcp, where Fcp is in the limit of Wi -+ 0. This scaling

comes naturally from the result in Eq. (B.4.13), but it results in very low values of the

normalized axial force at large Wi because of shear thinning.

To rescale this equation with the true force one would measure in the CP geometry,

we have

2= ( + (bA)2 ((12+2)3 2(3b(1 + )2 _ r2) tan )

+( + ) r +b(1 +r )2-4r rb(1 + x)

(b(+ ) 2 - 3K (ln(1 + b) + 21n(1 + )))

+a [ 2 4K(1 + K) tan-' (V)

+ +2(1K)2 (K (c(1 + K) 2 + - (c(1 + ) 2 +3r ln(1+K)

-(C* (1+K) 2 - r2 )n()+c)

(B.4.14)

which is plotted at different Weissenberg numbers in Figure B.4.5.
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Appendix C

Pedagogical Notes on the

Johnson-Segalman Model

C.1 Governing Equation

The model proposed by Johnson & Segalman (1977) is a modification to the upper

convected Maxwell model introduced in Appendix A in order to allow the model to

predict rate-dependent material properties in steady simple shear. This model supposes

that network strands in the material can slip with respect to a purely linear deformation.

This slipping yields an effective velocity gradient field which is given by

L = VV'- 2(D (C. 1.1)

where ( is a scalar slip coefficient in the range 0 < < 1, VY is the velocity gradient

tensor, and D = 1((V 1 )t + Vi) is the strain rate tensor. The new convected derivative

operator is

( D)- Lt( L (C.1.2)
Dt

where D = + V( ) is the material derivative. The resulting constitutive equation

for the polymeric stress tensor T, is written

T + AT = 27,D (C.1.3)
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where A is the polymer relaxation time and 77, is the polymer viscosity.

Although the form of the governing equation for T given by Eq. (C.1.3) is correct, we

wish to rewrite it in the form that is given in Sato et al. (2010) which is more conducive

to our subsequent analysis. First we expand the operator in Eq. (C.1.2) to obtain

D (W)( + 2(D ( V- *+ 2(( D (C.1.4)
Dt

or equivalently since D = D

( )+ ) + 2( (D + () (C.1.5)
Dt

We modify the operator in Eq. (C.1.5) by adding to and subtracting from it the

quantity }[(V,)6 - ( ) + V-- ( ) + ( ) (V,6)1 + ( ) -Vj, and simplify to obtain

D =D_ ( )-( - (1 -2()(D() + ()D) (C.1.6)

where Q = ((Vi)t - V') is the vorticity tensor.

Hence the Johnson-Segalman model, in the absence of diffusion is now written

T+A { +v- VT- (Q-T-T4-) -a(D.T+T.D)} = 29,D (C.1.7)

where we define a -1 - 2(, where -1 < a < 1. For the case of a = 1, we obtain the

upper convected Maxwell model, if a = -1 we have the lower convected Maxwell model,

and if a = 0 we have the corotational Maxwell model (Bird et al., 1987).

C.2 Model Predictions in Steady Shear

In a steady simple shearing flow, we have iT = [u, 0, 0], and gradients in the flow properties

exist only in the y-direction. Therefore we have

0 0 0

V =i 1 0 0 (C.2. 1)

0 0 0

where i ,and also we have
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0 1 0[00
D = i1 0 0 (C.2.2)

2
0 0 0

and

0 1 0

-1 0 0 (C.2.3)
2

0 0 0

It can be shown that in a simple shearing flow only five components of the deviatoric

stress tensor can be non-zero (Bird et al., 1987). So the polymeric stress tensor is given

by

T = x ryT I (C.2.4)

- 0 0 -r,.,

Furthermore, this stress tensor is necessarily symmetric, and so it should be noted that

rYX = TXY. To obtain the resulting set of governing differential equations, we substitute

Eq. (C.2.2), (C.2.3) and (C.2.4) into Eq. (C.1.7), and the resultant equations are

a
T2x + ATrxx - (1 + a)XAiv'Ty = 0 (C.2.5)

ry + r + (1 - a)XAyTx, = 0 (C.2.6)

Tzz + A a zz= 0 (C.2.7)

Txy + A aTY + IA (1 - a)Txx - (1 + a)yy = yq (C.2.8)

We now consider the case of steady simple shear, whereby -2- = 0. In this case weat

substitute the expressions for Trx and ry given in Eq. (C.2.5) and (C.2.6) into the

governing equation for Txy given by Eq. (C.2.8), solve for rxy and we obtain

np = (C.2.9)
= 1 + (A) 2 (1 - a 2 )
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and solving for the normal stresses

Sqp(A )(1 + a) Go(A') 2(1 + a)
1 + (A') 2 (1 - a2) 1 + (A )2 (1 - a2 )

7 (A ) (I - a) Go((A) 2 (1 - a)
"" 1 + (A) 2 (1 - a2 ) 1 + (AX) 2(1 - a2)

Tzz = 0 (C.2.12)

where the polymeric modulus is given by Go = qp/A. Note that this scaling of the

normal stresses with shear rate is analogous to the scaling used for the normal stress

coefficients in Eq. (B.4.11) for the analysis in the offset cone-and-plate geometry, when

A = A2. On inspection of Eq. (C.2.9), we notice that the underlying flow curve for the

polymeric shear stress is non-monotonic since for AV < 1, rxy - "Y, but as A -- oo,

rxy ~ -'. In truth, however, the total stress E is the sum of the polymeric stress and

the solvent stress, hence

E = T + 27,D (C.2.13)

where 7, is the Newtonian dynamic viscosity of the solvent. Now, for convenience, we

define the Weissenberg number Wi = A. The total normalized shear stress acting on

the fluid as it deforms in steady simple shear is

_ _XY Wi
G - W (= + 7Wi (C.2.14)Go 1 + Wj2(1 - a2)

where y a is the solvent viscosity ratio. The normalized normal stresses are

E__ Wi 2 (1+a)EXX W2 (I+ a)(C.2.15)
Go 1 + Wi 2 (1 - a2 )

____ __ Wi 2 (1 - a)=~y - W2 -a - (C.2.16)Go 1 + Wi 2 (1 - a2 )

ZZ = 0 (C.2.17)
Go

The first normal stress difference is therefore
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N1 E__ Ei _ 2Wi2
N,- = -- - -"Y =W (C.2.18)
Go Go Go 1 +Wi 2 (1- a2 )

Plots of total shear stress and first normal stress difference for different values of rq are

shown in Figure C.2.1.

Even if solvent stresses are included, it is still possible to obtain an underlying flow

curve of the shear stress that is non-monotonic. To determine the critical value of the

solvent viscosity ratio q, above which the total shear stress is monotonically increasing

for all values of Wi, we must determine the value of q for which the total shear stress

curve has a local extremum that coincides with an inflection point. That is to say, we

require

1 aEXY 1 a2EX1 OZi - 1 Z- 0 (C.2.19)
Gj OWi 7c Go OWi 2

77c TIC

We have

I EO - 1- Wi 2 (1 - a2 )
Go aWi [1+ Wi 2 (1- a 2)]2

and

1 o2z 2Wi(1 - a2 ) (1 + Wi 2 (1 - a2)) (3 - Wi 2 (1 - a2))
- - (C.2.21)

Go aWi2 [1 + Wi2(1 - a2)]4

For finite values of Wi, and 0 < a < 1, the inflection point occurs only when

Wi2- = 2 (C.2.22)1 - a2

Substituting this value of Wie into Eq. (C.2.20) and solving for the critical viscosity

ratio, we have q, = 1

Alternatively, this result can be derived by calculating the values of the Weissenberg

number at which the flow curve is a local extremum, Wi±. Setting Eq. (C.2.20) equal

to zero, we have

Wi4 (1 - a2)q + Wi2(1 - a 2 )(2q - 1) + (1+,q) = 0 (C.2.23)

This result is a quadratic equation for Wi 2, whose roots are given by the quadratic

formula
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Figure C.2.1: (a)-(d) Normalized homogeneous flow curves for the Johnson-Segalman
model for a range of a and q-values. (e) Normalized first normal stress difference.
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Wi2 = (1 - 2q) ± 1 -8 (C.2.24)
2(1 - a2)q

Here we see again that for e = 7, since for this value of the viscosity ratio, Wi+ = Wi_

and the flow curve contains only one extremum. Furthermore, only for q < 1, are the

values of Wi± real, and hence only for such values is the underlying flow curve non-

monotonic. The value of the shear stress at the inflection point is the value of Ey/Go

at Wic and 77, which is

_ _3 3
-"I =V - (C.2.25)
Go 8 1 - a2

C.3 Diffusive Johnson-Segalman Model

The underlying flow curve is non-monotonic for values of q < %c, and the model predicts

a hysteretic behavior in the flow (Radulescu et al., 1999). Hence for the range of Weis-

senberg numbers (Wi_ < Wi < Wi+) for which the flow curve is negatively sloped the

flow curve is unstable and the flow is inhomogeneous. However, the Johnson-Segalman

model, given by Eq. (C.1.7), cannot be used to predict a unique value of the shear stress

in this range (Spenley et al., 1996). Experimentally, it has often been observed that

the selection of the stress plateau is independent of the flow history (Porte et al., 1997;

Olmsted, 2008), and consequently the value of the stress plateau, T is unique for a

particular system. This observation and the predictions of the Johnson-Segalman can

be reconciled by the inclusion of a diffusive term in the governing equation (Radulescu

et al., 1999), which can capture the importance of diffusion in the polymeric system on

the selection of the stress plateau. The diffusive Johnson-Segalman model is given by

T+A +v-VT-y(-T-T-Q)-a(D-T+T-D) =2iD-2DoAV2D (C.3.1)

Evidently, the units of the diffusion coefficient Do in SI are [Pa.m 2] or equivalently

[kg.m/s 2 ]. The components of V 2D are E1 2Djk/x for i, j, k = x, y, z. The governing

equations for the normal stresses are unchanged by the inclusion of the diffusion term

and they are given by Eq. (C.2.5), (C.2.6) and (C.2.7) as before. The governing equation

for the shear stress, however, is now written
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ro7 + Aa ry +- A [ (1 - ,,, - (1 + a)-rY =77p - DoA a2Y (C.3.2)

The additional governing equations for the flow of an isothermal, incompressible

polymeric system the are the continuity equation:

V -V'= 0 (C.3.3)

and the Cauchy momentum equation:

Pa + -V V = V - T + 2,D - pI) (C.3.4)

Using the notation of Sato et al. (2010), (although similar scalings were introduced

earlier by Radulescu et al. (2000)) we also define the following quantities'

au
K -1 - a2 A- = 1 - a2 XA (C.3.5a)

Oy

S l 1- a2 TY (C.3.5b)
Go

N (1 - a) - (1 + a)2 "j (C.3.5c)
2Go 2Go

Furthermore, we introduce the quantity

Z - (1 - a) xx + (I + a) TYY (C3.5d)
2Go 2Go

which can be used to determine the dimensional first normal stress difference N for the

inhomogeneous flow case.

Noting that the shear rate, - varies with position in the case of inhomogeneous

flow, we abstain from writing Ay as Wi in the definition of K. In what follows we

seek to determine the governing differential equations for the quantities K, S and N

from Eq. (C.3.1), (C.3.3) and (C.3.4). First, we define the dimensionless quantities,

t* at/A, y* = y/L, where L is the gap height of the flow device, p* = pL 2 /A 2Go, and

D* Do/GoL 2

'Note for clarity: the quantities S, N and Z are defined in terms of only the polymeric stresses, rjj,
not in terms of the total stress Eij.
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To obtain the first of three governing evolution equations, we take the x-component

of the momentum equation,

On or D2u
P- = + TS 2d rt Y a

differentiate it with respect to y, to obtain

Dy
ay

a2U

+ 77 a 2
0 y2

multiply this result by the quantity V1 - a2A, and we have

v"If - )a2A
9y )

02

Dy 2 (1 - a2ATxy) +
(7

Substitution of the dimensionless quantities and rearrangement gives

aI - a2A- 
at* ay )

A2Go 02

pL 2 ay *2{ Ga2 o
Go

+ vr1- a2A Dy
ay) } (C.3.9)

Hence the governing equation for K is

1 a2
K = - S + KI

Ot* p* ay *2
(C.3.10)

To derive the second governing equation, we multiply Eq. (C.3.2) by /I - a2/Go

and obtain

+ v1 - a2A# (1 - a) 2 - (1+a)- j]
(C.3.11)

1 - a2AY)

Again, substitution of the dimensionless quantities and rearrangement gives

1a2 ) - 1 a2A (1

D a2 (-2
GoL2 ay *2 1-

-a) -(+ a) +!I- -v/1
2(o 2GoC.

(C.3. 12)

Hence the governing equation for S is
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a au
at ay

a2

jy2 7XY

(C.3.6)

(C.3.7)}
Du

VI - a2A- a
ay)} (C.3.8)

a2 a2
Go

1 - a2
Go)

Do 02

G o Dy 2 (

-v1 - a2 TXY

9 au
---

9y at

+ A

= Vl - a2A -



S=-KN+K-S-D* aK&* ay K (C.3.13)

The third evolution equation is obtained by multiplying Eq. (C.2.5) by (1 - a)/2Go

and subtracting from it Eq. (C.2.6) multiplied by (1 + a)/2Go. So we have

(i-a) - (1+a) T
2Go

+A (I- a) -(1+a) G0 (1-a)A! = 0

Substitution of the dimensionless quantities and rearrangement once more gives

-(+ a)YY J -a2A)

-(1+ a) TY } o

(1 - a2Go)

(C.3.15)
{(1 -a)

- (1 -a)
at 2

Finally, we have the governing equation for N

a* N=KS-N (C.3.16)

The fourth and last evolution equation is obtained by multiplying Eq. (C.2.5) by

(1- a)/2Go and adding to it Eq. (C.2.6) multiplied by (1+a)/2Go. This operation gives

(i - a)2 + (1+ a) T'Y
2Go

a) + (1
2Go

+ a) = 0 (C.3.17)

which is equivalently

at (C.3.18)

The utility of Eq. (C.3.10), (C.3.13), (C.3.16) and (C.3.18) is their independence from

the value of the anisotropy parameter a. The boundary conditions for plane Couette

flow are (1) u = 0 at y = 0 and (2) u = U at y = L. In terms of the dimensionless

variables, these conditions become

K= K(y*, t*)dy* = 1- a2 UaL7 (C.3.19)

Furthermore, there can be no polymer diffusion through walls, and with polymer flux

proportional to DOV, we have = 0 at (3) y = 0 and (4) at y = L. These conditions

are equivalent to

338

(C.3.14)

+ A a(1 -



100

10~

10-2

10 -3

1 2 10
101 102 10 2 10-1 100

K

(b)

10 102

Figure C.3.1:
tion C.3.1.

Homogeneous flow curves based on the rescaled variables defined in Sec-
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ay*

0K(y* 7*)

0y*
=0 (C.3.20)

C.3.1 Homogeneous Flow Solution

In the case of steady homogeneous flow, the dimensionless shear rate K is everywhere

uniform and equal to the value K = K, and the governing equations are

192
=S + 77k 0 (C.3.21a)

-RN + R - S =0 (C.3.21b)

kS - N = 0 (C.3.21c)

Z = 0 (C.3.21d)

Combining Eq. (C.3.21b) and (C.3.21c) to eliminate N and solving for S, we have

S = -2, which is consistent with our result for 'r,1y in Eq. (C.2.9). The total normalized

shear stress is -=- 2-+ k. Solving for N, we have N = T , which is also consistent

with our results for normal stresses in Eq. (C.2.10) and (C.2.11) and the definition of N.

The homogenous flow curves are plotted in Figure C.3.1.
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The dimensionless shear rates corresponding to the local minimum and maximum in

the flow curve for the total shear stress a are given by

1 V1 - 877
K± = - - 1 + (C.3.22)

2,q 2,q

Evidently for values of 0 < : < ic, the values of K± are always real and finite. Finally,

we have the critical point given by (Kc, c, a-,) = (v , 1/8, 3V//8).

C.3.2 Inhomogeneous Flow Solution

In order to solve for the case of steady, inhomogeneous shearing flow, we must include the

diffusive term in the governing equation for S. Furthermore, we recognize that at values

of R corresponding to the stress plateau, the shear stress is given by os, = S + 77K,2

where the subscript sp denotes stress plateau. Combining this definition of as, and

Eq. (C.3.13) and (C.3.16) we obtain the single governing equation

K (1 - K(asp - 71K)) - (o-, - qK) - D* = 0 (C.3.23)a9y*2
-0

This equation can be rearranged to obtain

D* = rK 3 - a-pK 2 + (1 + q)K - ap (C.3.24)'9y*2

This result is a second-order, nonlinear, ordinary differential equation, for which the

value of -s is unknown. We may solve it more readily by converting it to a first order

equation, recognizing that Eq. (C.3.24) is equivalent to the governing equation for a

particle undergoing undamped oscillations in a quartic potential, V(K). Therefore the

equation is of the form

D* dy2 dV (C.3.25)

By partial fractions, this result is equivalently,

* d2 K (dK\
D* dy2 dy* dy* = -dV (C.3.26)

\dy*2 ) kdy*/

2 Although the value of o-,, is a constant throughout the gap, the values of S and K may vary with
position y* in the shear banding regime.
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Integrating this equation, we obtain .

-D* dK = -V(K) + E (C.3.27)
2 dy*

where V(K) = -r7K 4 + -spK 3 _1 (1 + 77)K 2 + asK is analogous to a potential energy

function, and E is a constant of integration, analogous to the total system energy in

the case of a harmonic oscillator. This equation is a first order, non-linear ordinary

differential equation, with two unknown constants, namely asp and E, which may be

determined from the boundary conditions.

First, we note the boundary conditions given by Eq. (C.3.20). These conditions give

+ V(K(y* =0)) = D*2 X*=1+ V(K(y* = 1)) = E

V(K(y* = 0)) = V(K(y* = 1)) = E (C.3.29)

Furthermore, the kinetic energy term is positive definite, and accordingly the values of

the potential V are maximized at the values of K for which dK/dy* = 0. We can express

this fact mathematically by differentiating Eq. (C.3.27) with respect to K to obtain

Evaluating this result at

and

D2dK\ d (dK dV

y ady* dK y*a dK

y*= 0 and y* = 1, we have

0
D*d d (dK\

D* 7 =ddKkdy*
(Z) Yy*=0

0

/Jd d (dK\
Y Y*=1 dK y *=1

dV
dK Y*=o

dV
dK

and accordingly

dV dV
dK dK

K(y*=O) K(y*=1)

1D*
0

0 d 
2

Therefore

(C.3.28)

(C.3.30)

(C.3.31)

(C.3.32)
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Evidently, we see that the potential energy function is a potential barrier, as opposed

to a potential well, since the maximum values of V(K) are finite. By Eq. (C.3.25) this

result also requires

d2K d2K
dy* 2  

- dy *2  =1  0 (C.3.34)
y*=O *=

Taking the derivative of V(K) with respect to K, we have from Eq. (C.3.24)

dV = -K 3 + aSK 2 - (1 + rI)K + asp (C.3.35)
dK

This is a cubic equation with three unique roots that satisfy VKV = 0- Since V(K) is

a continuous function with two maxima at K±, we anticipate that the third extremum

is a local minimum that lies at a value of KO (i.e. the third root of dV/dK) such that

K- < Ko < K+,3 where K_ and K+ are the values of K at y* = 0 and y* = 1,

respectively. We seek now to determine these roots as well as the value of the stress

plateau, U-3,

It is plain to see by setting Eq. (C.3.35) equal to zero, that all three roots must

satisfy the following result

r7K + (1 ++)K _ qK+ (1+ yR)Ko r qKi + (1 + 7)K+ (C-3-36)
sp =+ K_ 1+KO 1+ K+

But as of yet, the values of -,, and the three roots are unknown.

Now as a matter of convenience, we define a new variable X = K - K. We substitute

the result of K = x + K_ into our equation for V(K), rearrange and simplify to obtain

V(x) = -P1Ix 4 + - K_ X3 + rqK 2 + u-pK4 -(1 + 7)) x2

+aUsp - rK3 + Kasp - K_(1 +1q) x - + -K - (1 + {7)KK + USPK_

(C.3.37)

Furthermore, we define a new function analogous to the kinetic energy in the system

by q = E - V(X). We also note that the term in brackets [ ] in the above equation

is equal to zero by Eq. (C.3.36) and that the term in braces { } in the above equation

3The values of K± in the inhomogeneous case are not to be confused with the values of K± given in
Eq. (C.3.22) for the homogeneous case.
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is the potential energy at K(y* = 0), which is equal to E by Eq. (C.3.28). Hence, the

equation for # is given

(X = 7X4 + K_ - ) X3 + (7K2 - .crK- + (1+ 7) X2 (C.3.38)

We have deliberately defined # such that at X = 0 (i.e. K = K_), # = 0 and this

value lies at a local extremum, which is now a minimum (since d#/dX = -dV/dK). We

note also that # = 0 at a second value of X = X+ by Eq. (C.3.28), which is also a local

minimum by Eq. (C.3.33). Accordingly, we have the two equations

1 4 7KL -- 3 37K aK_ + 1(1+ (C .3.39)#(X+) = 0 = #)X + K - X++ ( K - -K + (1 +q) X (

and

d 0 = X3 + 37K -, X2 + 3,K2 - 2asK- + (1 + 7) X+ (C3.40)

First we solve for the roots of Eq. (C.3.39), which we factor to obtain

0 = X + (K- - X+ ( 3qK - a K- + I(1 + 7) X (C.3.41)

The non-zero roots of this equation are therefore given by

0
1-P 7 ±K +.q - I2 - 121

X+ = 1 2 27K (C.3.42)

This result indicates that there are two values of X+, however we anticipate that since

there are only two values of X for which # = 0, namely X_ = 0 and X+, the radical term

in the above expression must be zero. We will confirm this assumption below.

Solving for the non-zero roots of Eq. (C.3.40), we obtain two values, the smaller of

which coincides with Xo, which corresponds to KO. Hence we solve for the larger root to

obtain an expression for X+. We have

arp - 3 7K_ + VU+ 227Ko p - 32
2K2 - 4,q2 - 4,

X+ = PS 7 (C.3.43)
227

Equating these two expressions for X+, with the assumption that the radical term in the

first equation is zero, we have
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3 - K _ sp - 377K _ + a-sp+2 + 2 K as - 32KB - 42 4,
3 1 =(C.3.44)

2g7 271

Canceling terms we have

- 77K_ = -U2 + 2rKas - 3rq2K2 - 4r2 - (C.3.45)

Squaring both sides, and rearranging gives

'2 1 1 1
S+ crK-s -Y 2 K 2 17 n = 0 (C.3.46)9 3 2 2p 2~ ~7

as expected. Accordingly, Eq. (C.3.42) gives X+ = 2" - 2K_ or equivalently K+ =
2 - K_.
3 17

The equations given by Eq. (C.3.36), which is repeated for convenience below, and

(C.3.46) constitute two linearly independent equations to solve for two unknowns, o-s

and K.

rK 3 + (1 + r7)K_ (C.3.36)
o-Sp = 1C.3.K6

These two equations, respectively, result from the boundary conditions given by Eq. (C.3.28)

and (C.3.33). We eliminate K_ from these equations and obtain

7a-2, [40r4 + (72rq2 - 36q)o-2 + 324rq4 - 324rn3 + 81,q2] = 0 (C.3.47)

Within the brackets is a quadratic equation for the quantity o-,2, hence the roots of this

expression are

asp = ± Or2n2 or (C.3.48)

The negative and positive values correspond to that fact that the sign of the stress is

arbitrary, whereas as, = 0 comes from the singular case corresponding to r7 = 0. We keep

the positive value of -s, by convention. Interestingly, the presence of diffusion requires

that there be a unique value for the stress plateau, but this value is independent of the

magnitude of the diffusion coefficient.

We solve for K± by substituting the positive value of -sp into Eq. (C.3.46) and solving

for the two roots.
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12+ 18
-2 -8

(C.3.49)

Finally, X0 which yields KO is determined from the smaller root of Eq. (C.3.40) given by

-sp - 37K -V-2 + 27Ko-usp - 377
2K 2 - 4,2 - 4q

and so we have

1
Ko = -(K- + K+) =

2
21 -2

S2

(C.3.50)

(C.3.51)

The potential energy V(K) is therefore given by

V(K) =- 1rK 4+
4

77 - - -(1 + 1 )K 2 +
2

(C.3.52)

or equivalently by Eq. (C.3.38)

1 7 4 - 8 1
#X =7X- X3 + -(1 - 877)X 2 (C.3.53)

Although these forms are correct, it is most expedient to define another variable =

X- Xo=K-Ko, andreplaceXwith(+ -in the equation for #. Accordingly we

have

1 (2
4()=gr 2

1 8 2

_ 77 2 (C.3.54)

and so we see that the potential energy V(K) is in fact symmetric about the value Ko.

These various forms of the potential function are plotted in Figure C.3.2.

By dK = d and by Eq. (C.3.27), the new governing equation is

I D* d 2

'D*(dy* )
4 (

=00

This gives

18

_ 2 )
<y 2
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(C.3.56)
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This gives an integrable result 4

I2 (1i)

whose general solution is (for r <

(C.3.57)
27* j dy*

2
.1 -8tanh-

V7 ( 2
77 )= y* **+C

where C is a constant to be determined from the boundary condition for K in Eq. (C.3.19).

We have

1 - 8.77 tanh
2

1 -Y
4D*

+ D) (C.3.59)

4The left hand integral is of the form f where c is real. The integral is . tanh~1(z/c).

346

77 = 0.001
77 = 0.0039
77 = 0.014
77 = 0.053 -

-r7 = 0.2

-3

77 =0.001
77 = 0.0038

.77 = 0.014
.77 =0.053
~77 = 0.2

(C.3.58)

0

0



where D =
s8

2Cis a constant. Equally, by =K - KO, we have

K = K+ + Kt K+ - K tanh -
2 2 t

+ D)

where we define = /4*/ (1 - 87) as the dimensionless interfacial width

two shear bands. To solve for the constant D, we have

between the

Kdy* = 1K+ + K_ K+ - K tanh
+ 2

which gives

K+ - K_ +L
2 I

2K++ K_
2

-K+ + K_
K2

K+ - K_
+ 2

ln (

K++K_
2 )

tanh (Y)edY

cosh(Y)) D

cosh( .+D)

cosh(D)

By a hyperbolic trigonometry identity, we have5

exp k

Thus we obtain

2K+ + K = cosh + sinh tanh(D)

D = tanh-1
exp ( -\ K++K ) - cosh(,

sinh ,0)

Expressing the inverse hyperbolic tangent function in logarithmic form6 , we have

1 [sinh (
D = - In 0

2 .sinh ,Eh)

Equally, this result is

+ exp ( (R

- exp ( (k

K++K)

K++K)

- cosh

+ cosh

5Here we use the identity cosh(A + B) = cosh(A) cosh(B) + sinh(A) sinh(B).

'Here we use the identity tanh- 1 (z) = In ( -+ for IzI < 1.
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K =j

(C.3.60)

yf + D) dy*

and

(C.3.61)

This gives

exp K

(C.3.62)

(C.3.63)

(C.3.64)

(C.3.65)

I (C.3.66)

(C.3.67)



11 - exP + exp ( ( - K++K))

D = - In
2 _xep V~ K++K) K

In the limit of very large gap size, f - 0, this constant becomes

- K++K_)

exp (,) -I1( F,7, (k~

Comparing the results of Eq. (C.3.60) and (C.3.68) to the result of Sato et al. (2010)

who have

K++ K
K = 2

K+- K_
+ tanh

2

SK+-K
Y K+-K)

we note that their solution is only valid for f -+ 0 in the limit of large gap size compared

to the shear banding interface width. The velocity profile given by the result of Sato

et al. (2010) in Eq. (C.3.70) is

_K+ + K_
2

K+ - K In+2 cosh
K+-K

Y K+ -K)
K+-K "

cosh K+-K_

whereas the velocity profile based on the analysis here is

K+ + K_ K+ - K_

2 2 [cosh y*
f

+ D) cosh (D) (C.3.72)

For succinctness, we define the following quantities.

A = K+ - K_ &
D

YO (C.3.73)

where A is difference between the upper and lower shear rates of the plateau and yo is

the position in the gap of the shear banding interface. The reader is reminded KO =

(K+ + K_)/2. So the shear rate is

K = Ko + tanh (C.3.74)

and the velocity profile is
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1
D ~1 In exp

(C.3.68)

1'\ 1 R - K+
K+ - K_

(C.3.69)

(C.3.70)

(C.3. 71)

-K+ + K-
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A =* KyY o sh YOU=Koy*±2 feln cGosh cosh) cos (C.3.75)

Plots of the velocity profile for different values of q and D are shown in Figure C.3.3.

C.3.3 Normal Stress Differences

The normal stress differences are given by the equations

and

2G__ 2G0N1  -T= 2 (N + aZ) = a2N
1- ( 1-a

N 2 = TyY - 7zz = (Z - N) -Tzz= - N
1+ a 1+ a

Combining Eq. (C.3.16) with the definition of a-, we have

N = KS = K(u-,p - 7K)

(C.3.76)

(C.3.77)

(C.3.78)

N = (-,p - ( YKo) Ko + )tanh tanh Ko + tanh

(C.3.79)

Plots of the dimensionless normal stress N-profile for different values of q and D are

shown in Figure C.3.4.

The gradient in normal stress difference is

dN ([sp

dy* = (-, - Ko) -q KO
2

tanh (* Yo
A /(yyo'
-sech2
2£ ( t

Hence there is an extremum in the magnitude of the normal stress difference provided

dN = 0yN,, - YO

dy* = (as, - 7Ko) - n Ko + -tanh " " o)

Substitution and rearrangement gives

0 = - 2 - 2 - 8tanh (Y""a YO

so
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Figure C.3.3: Velocity profiles as given by Eq. (C.3.72). Each plot contains velocity
profiles corresponding to five evenly spaced values of K spanning the domain K_ <
k < K+.
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Figure C.3.4: Normal stress profiles as given by Eq. (C.3.79). Each plot contains velocity
profiles corresponding to five evenly spaced values of K spanning the domain K_ < K <
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1-2 y* -O- - = tanh YNax (C.383)
2 \ .- 8

77

y4ma=yo + f tanh-1 - 1 (C.3.84)

If the argument of the inverse hyperbolic tangent function is greater than unity, then

there can be no overshoot in normal stress difference. So the critical value of the viscosity

ratio 7c,N for which the value of N varies monotonically across the gap is

1 -2
S77C,N > 1 (C.3.85)
S 1 -87

7c, N

'qc,N - (C.3-86)10

This criterion is not a hard limit, however, since it may be possible to have no normal

stress difference overshoots in the gap (0 < y* < 1) depending on the values of yo and f.

C.3.4 Plane Poiseuille Flow

For the case of pressure-driven, rectilinear Poiseuille flow, the governing momentum

equation must include a constant pressure gradient term, whereby it becomes

9U Or9 &2U dP
P = Y + qs u (C.3.87)at 09y (y2 dx

We can differentiate this equation with respect to y and manipulate it to obtain the

same governing equation for S given by Eq. (C.3.10). The other governing equations are

as before, and so in fact the four dimensionless governing equations for K, S, N and Z

are unchanged by the addition of a constant pressure gradient.

In the case of steady flow, Eq. (C.3.87) can be integrated in y to obtain

du dP
Exy = Txy +s- = - y (C.3.88)

dy dx

where y = 0 coincides with the centerline of the channel, with the boundary condition

Exy = 0 at y = 0.

We convert this result into dimensionless form, by multiplying it by v/1 - a 2/Go,
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and we have

2Txy du dP L y
/1 - a2-+7 v1 - a 2 A-_ /1 -a 2 -(..9Go dy dx Go L

which is equivalently

S+K = -Py* (C.3.90)

where P = -v'1 - a2l1 is the dimensionless pressure gradient. We have defined P,dx Go

such that it is positive if pressure decreases in the positive x-direction. Let us recast this

result as S = -Py* - rK and, as before, combining it with and Eq. (C.3.16), replace

these quantities into Eq. (C.3.10) to obtain

K(1 - K(-Py* - rK)) - (-Py* - 77K) - D* =0 2 K 0 (C.3.91)

which becomes

D* = rKK3 + (1 + K 2 )py* + (1 + r)K (C.3.92)

The boundary conditions for this flow are obtained by recognizing that, as in the case

of plane Couette flow, there can be no net polymer diffusion at the wall, which is

equivalently dS/dy* = 0 at y* = t 1. This condition also gives dK/dy* = -P/ri at

y* = t-j by Eq. (C.3.90). We also note that at y* = 0, K = 0 by symmetry, but dK/dy*

may be non-zero.

Equivalently, we have

* 92 K *dK 3 dy* = (rK 3 + (1 + K 2)Py* + (1 + rI)K)dK (C.3.93)0y2(dy* J
which, upon integration, gives

)21 { D * dKI7K4+ 1 + 1 K2K Py* + (1 + )K 2±+f (y*) (C 3.94)
2 (dy*) 4 32

where f(y*) is yet to be determined. The governing equation for f(y*) is obtained by

differentiating Eq. (C.3.94) with respect to y*. We have
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a 2 K dK ( )dK 1 df
D* - = 77K3+ (1+K 2)py* + (1+q) K + 1+-K 2 KP +

ay*2 (dy* T dy* 3 dy*

(C.3.95)

This result is equivalent to Eq. (C.3.92) if and only if the portion in braces is identically

zero. Hence

0= (1+ 1K2 KP + df(C.396)
3dy* (..6

It follows that governing equations for the diffusive Johnson-Segalman model in plane

Poiseuille are analogous the governing equations for the motion of a particle in a time-

varying potential well since there is an explicit dependence on y* (the variable analogous

to time) on the right hand side of Eq. (C.3.95).
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Appendix D

Flow in a Hyperbolic Contraction

The hyperbolic contraction is a unique geometry because it can be used, in principle,

to impose a constant, nominal extension rate, owing to the fact that its cross-sectional

area varies inversely with axial position. For the hyperbolic contraction depicted in Fig-

ure D.1.1 (a) having length, l, height, he, upstream width, w,, width at the contraction

exit, wC, the width, w, at any x takes the form

_K

W(x) = (D.0. 1)
X + x0

where K = lcwnwc/(wu - wc), xo = lcwc/(wu - wC) and 0 < x < 1,.

Given a constant volumetric flow rate, Q, through the contraction, the apparent

extension rate, ia, neglecting any shearing flow induced by the bounding walls is

Q(1 1
Ea = (D.0.2)

leh kwC WU

and the extensional viscosity is

E = APe (D.0.3)
EH Ea

where EH = ln(wu/wc). The normal stress difference is

1
N1 = EEa = APe (D.0.4)

EH
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D.1 Viscous Shear Stress Contribution

To account for the viscous contribution to the total pressure drop in the contraction,

we apply the lubrication approximation for a Newtonian fluid which is valid provided

Re-u < 1. Since the thickness of the contraction is always less than its width,

h < w, < WU, we suppose that the dominant velocity gradient will be in z, and

that in the 2D approximation, velocity gradients in y are negligible. The pressure gra-

dient is given by

V 12p 121 W pW (D. 1.1)
dx h 3w(x) h2wx) kWU - We]

Integrating along x from x = 0 to x = 2l, we obtain the viscous contribution to APc:

AP2D = 1()(2 Wu WC) a (D.1.2)
h WU - we

For P = 0 at x = l, the pressure profile between 0 < x < 1c is given by

p 2 Dv -D _ - ((X)2 -2 )ka (D.1.3)

The pressure gradient in the lubrication approximation for a power-law fluid is

)n n+1 n n n+1 n
dPL 2n + _2 2n + 1 2 cwcw ma

dx n h hw n h wu- W) Wn

(D.1.4)

Integrating this result, one obtains

)n n+1 n+1 
n+1

APL - n+2 2n + I ic WU WC Mn. 1 5AP(\W= - ) mea (D.1.5)n+1 n h WU- WU-W)

For P = 0 at x = l, the pressure profile between 0 < x < l is given by

n n+1 n+1

P PL W -212n+I c C I -1 Mn (D.1.6)
nL+ n h W( -(W w(x)n+1 wn+1 a

To correct for the finite aspect ratio of the contraction (i.e. variations in the velocity

field along y), we apply the lubrication approximation for a Newtonian fluid using the

3D expression for the relationship between the pressure gradient and the volumetric flow

rate (White, 2003), appropriate for h < w(x) as written
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Figure D.1.1: (a) Qualitative pressure profiles in the contraction geometry. RED: Hy-
pothetical linear pressure profile, if the chip had no contraction (VROC). GREEN:
Measured pressure profile, accounting for the fact that the MEMS pressure transducers
are located some distance upstream and downstream of the contraction section. BLUE:
Anticipated true pressure profile in the channel. Schematic diagram of the hyperbolic
planar contraction and representative pressure profile, showing the coordinate system
and variables used throughout the text. The contraction dimensions are h = 200 /im,
1C = 400 pm, wc = 400 pm and w, = 2920 pm. The solid squares indicate the approxi-
mate size and location of the flush-mounted MEMS pressure transducers. The schematic
depiction is approximately to scale. (b) Pressure profiles across the contraction accord-
ing to lubrication approximation, as calculated by the 2D Newtonian approximation
given by Eq. (D.1.2), 3D Newtonian approximation given by Eq. (D.1.11) and the 2D
Power-Law approximation given by Eq. (D.1.5).
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= 1-6 (

12M
__ 12[pQ

h3 W(x)

12lc

h2W(x)

) tanh(jw(x)/2h)j odd

1 -6 (2 5

Er

1-6 (2 5

d pD
dx

h tanh(j7rw(x)/2h)

w(xj odd

h _tanh(j7rw(x)/2h)

w(xj odd

-1

wuw
wu - WC

(D.1.7)

Since h < w(x), the argument of the hyperbolic tangent, j7rw(x)/2h > 1 for all

values of j and x, hence the summation is approximately 1 + 1/35 + 1/55 + ... e 1, s0

we have

I
-1

12lC
h2 W(X)

E1-6 (2)5
h

w(x) ]
-1

wuw( .

(D. 1.8)

this result gives

-dP 3 D _12p tQ +xo
S h 3 K 

1-6 (2 )5h~ +x0 dx
7rF K

AP3D _

Or equivalently,

ir 5 wCw

16 h(wu - we)

7r10 wcwU 2n

3072 h(wu - wc) )
( 192h 2 L~

192h2

(D.1.10)

WCWU 1
h(wu+we) 6 h(wu- w,)

1 p 2 D

(D.1. 11)

For P = 0 at x = l1, the pressure profile between 0 < x < lc in the 3D case is given by

2 2

h2(w2 _W2)j 6
5

2J

1-6 (1))5

1-6 (1)" 5 w(x))
} p 2D

v

(D.1. 12)

In reality, the measured pressure drop between the MEMS transducers 2 and 3,

AP 2 3 , is different from the pressure drop across the contraction, AP. This difference

results from the fact that the MEMS transducers are placed some distance upstream

and downstream of the contraction entrance and exit, so we have to account for the
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viscous contribution to the measured pressure drop in the upstream and downstream

regions from the contraction. This idea is illustrated in Figure D.1.1, and follows from

the pressure correction procedure used elsewhere (Wang et al., 2010).

The throat of the contraction is located at the center of the entire microchannel,

whereas the origin of the capital x-coordinate system is at the inlet of the entire channel

as indicated in Figure D.1.1. We use the average of the pressure gradients for x 1 < X < x 2

and x3 < X < x4 to extrapolate the pressure profile to the point immediately upstream

and downstream of the contraction entrance and exit. The assumption underlying this

correction is that the flow is a fully-developed steady shear flow between the second

transducer and the contraction inlet as well as between the contraction outlet and the

third transducer. This simplifying approximation can be justified since the flow is in

the low-Re Stokesian regime, but it should be noted that it necessarily results in an

underestimate of the overall pressure drop since it neglects any inertial contribution to

the pressure drop as well as any viscous dissipation due to the extensional component

of the flow.

APc = AP 23 1 - - 1) 121} (D.1.13)
2 AP23 L

The positions of the MEMS transducers are x, = 2.025 mm, x2 = 4.525 mm, x3 =

8.325 mm, X4 = 10.825 mm. L= X2 - X1 = X4 - X3= 2.5 mm.

D.2 Operating Bounds of EVROC

The extensional-viscometer-rheometer-on-a-chip (EVROC, Rheosense, Inc.) is a mi-

crofluidic hyperbolically-shaped contraction-expansion geometry for characterizing the

importance of viscoelastic effects in an extensionally-dominated flow at large extension

rates (5a > 1 s- 1). On account of the mixed shear and extensional flow kinematics in the

device, the extraction of a homogeneous extensional viscosity is difficult and restricted to

a specific range of viscosities and extension rates that, like any rheometer, is set by the

operating limits of the EVROC. Unlike the operating limits of a rotational or capillary

rheometer, however, the operating limits of the EVROC cannot be derived from first
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principles, and they are therefore approximate. In the following analysis, the approxi-

mate operating limits will be formulated for Newtonian fluids and then for viscoelastic

fluids by making only a handful of assumptions.

Four inline, 800x800 pm 2 MEMS-based pressure transducers are embedded along

the centerline of the microchannel. The maximum measurable pressure of the device is

Pmax = 44 kPa, corresponding to the maximum allowable deflection of the membrane of

the specific MEMS transducer. The minimum reliably measurable pressure drop across

the contraction is AP23,min = 0.5 kPa, where AP 2 3 is the pressure drop between the

second and third MEMS transducers. Using a 2.5 mL Hamilton Gastight glass syringe

(Reno, NV) the minimum volumetric flow rate is Qmin = 1.0 pL.min 1 and the maximum

flow rate is Qmax = 5.2 mL.min- 1 . Therefore the attainable range of extension rates

from Eq. (D.0.2) is 0.45 < a < 2.3 x 103 s-1.

D.2.1 Operating Bounds for Newtonian Fluids

Prior to establishing the operating limits of the EVROC, two quantities must be deter-

mined experimentally for a given contraction geometry using a viscous Newtonian fluid

flowing through the contraction at low Reynolds number, defined as

Re = pdhleta (D.2.1)

where p is the fluid density and y is the shear viscosity of the test fluid. The hydraulic

diameter defined at the throat of the contraction is dh = 2hwc/(h + w,) = 267 Pm. For

the flow in the hyperbolic contraction, a low Reynolds number requires Re < Re* = 10.

At higher Reynolds numbers, the flow kinematics are no longer symmetrical about the

contraction-expansion as shown in Figure D.2.1 and the pressure drop begins to be

dominated by inertial effects.

The first quantity to be measured is a viscous friction factor

1AP23
f23 = (D.2.2)

At low Reynolds number the value of f23 is independent of the viscosity and only depends

on the contraction geometry. For the geometry shown in Figure D.1.1, experimental
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(a) Re= 5 (b) Re = 48

Figure D.2.1: Streaklines of Newtonian flow through the contraction. Flow is left to
right.

measurements at low Reynolds number yield a value of f23 ~ 250.

The second quantity is the pressure coefficient P = AP 23/AP 1 4 , where AP14 is the

pressure drop between the first and fourth MEMS transducers. At low Reynolds number

the value of P also only depends on the contraction geometry. For the geometry shown in

Figure D.1.1, P = 0.71. Therefore, the maximum pressure drop that can hypothetically

be measured between the second and third MEMS transducers for a Newtonian fluid is

AP 2 ,max = PPmax = 31.24 kPa.

The final boundary on the measurable pressure drops is set by the onset of iner-

tially driven secondary flows, which is determined by combining Eq. (D.2.1) and D.2.2

to obtain AP 23 = -Lpdh 2. Note that this inertial limit scales quadratically with

nominal extension rate. The operating limits in terms of pressure drop are shown in

Figure D.2.2 (a).

The operating limits can also be constructed in terms of the shear viscosity of the

fluid and extension rates imposed by the syringe pump. The line of minimum measurable

shear viscosity is pmin = AP23,min/f23a, and the maximum measurable viscosity is

Pmax = AP23,max/f23ta. The boundary marking the onset of inertially-driven secondary

flows is IL* = pd hcia/Re*. The operating limits in terms of measurable shear viscosity are

shown in Figure D.2.2 (b). It is noteworthy that this inertial upper limit for measurable

viscosity scales only linearly with extension rate. To illustrate this point, if the viscosity

of test fluid A is twice that of fluid B, fluid A will exhibit secondary flows at twice

the extension rate as fluid B, but the corresponding pressure drop at this transitional
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Figure D.2.2: Operating limits for the EVROC device with a Newtonian fluid. Region
of reliable measurements lie within the shaded region. (a) Pressure, (b) shear viscosity,
the dashed horizontal blue line indicates the viscosity of water.

extension rate for fluid A will be four times that of fluid B.

Furthermore, it should be emphasized that for this contraction geometry, the vis-

cosity of water (indicated by the dashed horizontal blue line in Figure D.2.2 (b)) is too

low to be measured in the low Reynolds number regime at any extension rate. It is of

course possible to perform experiments with low viscosity, water-based liquids at flow

rates that yield a measurable pressure drop, but it is evidently most likely that these

flow rates will be far too high to ensure low Reynolds number flow. Accordingly, it is

especially important to calculate the Reynolds number for low viscosity liquids in order

to correctly interpret the measured data from EVROC.

In principle, the EVROC device could be redesigned to realize a range of extension

rates at which the viscosity of water could be measured at low Reynolds number, by ei-

ther reducing the minimum measurable pressure drop AP23,min or reducing the Reynolds

number for a given extension rate by reducing the value of l or dh. Such a redesign,

however, would not be entirely straight forward since geometric features of the MEMS

transducers may set a practical lower limit to the minimum value of AP23,min, and the

value of f23, which also affects the inertial operating limit, is intimately dependent on

the contraction dimensions.
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D.2.2 Operating Bounds for Viscoelastic Fluids

In order to calculate the range of measurable apparent extensional viscosities qE,a and

first normal stress differences N,a, one must consider the following corrections to the

measured pressure profiles in the channel.

Firstly, the pressure drop that is of interest for extensional rheology measurements

is the pressure drop associated with the contraction alone, APc, which is somewhat

different from AP 23 , because the MEMS transducers 2 and 3 are located some distance

upstream and downstream of the contraction entrance and exit. To calculate the value

of APc, one can use the average of the pressure gradients for X, < X < X 2 and X 3 <

X < X 4 to extrapolate the fully-developed shear flow pressure profile in the upstream

and downstream channels to the inlet and outlet of the contraction. Accordingly, the

true pressure drop across the contraction, APc, is related to the measured pressured

drop, AP 23 , by the relation

APc = AP 23 1- 1 - )L 2 3 2c (D.2.3)
2 P L

where L 23 = 3.8 mm, L = L12 = L34= 2.5 mm. For a viscoelastic fluid, the pressure

coefficient P AP 23/AP 14 is not necessarily constant with flow rate, but is generally in

the range 0 < P < 1.

The value of the total pressure drop across the contraction AP can be used to de-

termine the extensional viscosity by assuming that it can be decomposed as AR, =

APe + APo, whereby the total pressure drop is the superposition of a viscoelastic com-

ponent APe and a viscous component AP, due to shearing at the walls. The extensional

viscosity is calculated based on the viscoelastic contribution to the pressure drop and is

given by

97E = 1APe (D.2.4)
EH Ea

where EH = ln(wu/wc). The first normal stress difference is therefore equal to

1
N1 = 77E~a ~A Pe (D.2.5)

eH

It is therefore necessary to determine the value of AP, in order to calculate the exten-
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Figure D.2.3: Operating limits for the EVROC device with a viscoelastic fluid. Largest
region of measurable data lie within the shaded region. (a) Apparent first normal stress
difference, (b) apparent extensional viscosity.

sional viscosity. The evaluation of AP, is commonly achieved by invoking a lubrication

approximation for either a Newtonian fluid or a power-law fluid.

In the interest of determining the largest hypothetical operating range for the EVROC

device, we will assume that AP, < APe, and therefore APc ~ APe. Admittedly, this ap-

proximation is unrealistic since it requires a highly viscoelastic fluid with a very low shear

viscosity, but it will enable us to determine the most extreme operating limits. Further-

more, for the sake of simplicity, we will assume that P < 1 and therefore AP, ~ AP 23 -

Under these assumptions, the maximum pressure drop is APPma, = 44 kPa

and the minimum is APe,min = APmin = 0.5 kPa. The operating limits under these

assumptions are shown in Figure D.2.3. Unfortunately, it is no longer obvious how to

determine when the onset of inertially-driven secondary flows will occur under these as-

sumptions, since it is not clear what the appropriate value of the shear viscosity should

be for calculating the Reynolds number. However, to provide an approximate boundary,

the limits appropriate to a fluid with a constant viscosity (e.g. a second order fluid) have

been added to the diagrams.
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