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Abstract

Mouse tracking is integral to any attempt to automate mouse behavioral analysis in
neuroscience. Systems that rely on vision have successfully tracked a single mouse in
one cage[10], but when attempting to track multiple mice, video-based systems often
struggle when the mice interact physically.

In this thesis, I develop a novel vision-based tracking system that addresses the
challenge of tracking multiple deformable mice with identical appearance, especially
during complex occlusions. The system integrates both image and depth modalities
to identify the boundary of two occluding mice, and then performs pose estimation
to locate nose and tail locations of each mouse.

Detailed performance evaluation shows that the system is robust and reliable,
with low rate of identity swap after each occlusion event and accurate pose estimation
during occlusion. To evaluate the tracking system, I introduce a dataset containing
two 30-minute videos recorded with Microsoft’s Kinect from the top view. Each video
records the social reciprocal experiment of a pair of mice.

I also explore applying the new tracking system to automated social behavior
analysis, by detecting social interactions defined with position- and orientation-based
features from tracking data. The preliminary results enable us to characterize lowered
social activity of the Shank3 knockout mouse, and demonstrate the potential of this
system for quantitaive study of mice social behavior.

Thesis Supervisor: Tomaso Poggio
Title: Eugene McDermott Professor
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Chapter 1

Introduction

1.1 Social Behavior Analysis

into social disorders such as autism [5]. For such purpose, mouse behavioral analy-
sis becomes a widely used tool to investigate the connection between a gene and the
symptoms. By observing behaviors of a line of mutants, researchers study the cause of
certain diseases, which facilitates the development of new medications that mitigate
the disease by changing the activity of the gene. For instance, Shank3-mutant mice
are found to display autism-like behaviors, such as excessive grooming and deficits in

social behaviors [15].

Recently, automated behavioral analysis has received much attention. Tradition-
ally, behavioral analysis involves human monitoring mouse behaviors over long periods
of time. However, manual behavioral assessment consumes a considerable amount of
human hours, and the time scales of data are limited to minutes instead of days due
to the tedious nature of human monitoring. This becomes the bottleneck of research
in this field [17], and automated behavioral analysis is recognized as a more time- and
cost-effective alternative for study. An accurate system targeting mice social behavior

analysis is therefore desirable.
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1.2 Multiple Mice Tracking

Multiple mice tracking is an integral part of social behavior analysis. The tracking
system computes relative positions and poses of the tracked mice, which are used
as features to discriminate among social behaviors. For example, a small distance
between the noses of two mice might imply a nose-to-nose sniffing behavior. Since
the quality of behavior analysis depends on the tracking output, developing a reliable
tracking system is the first step to automating behavior analysis.

Accurate mouse tracking during occlusions is especially important for action recog-
nition and behavioral analysis. Many types of social interactions between two mice
occur when they are in contact with or even occluding each other, from nose-to-nose
and nose-to-anogenital encounters to social grooming. If the body of each interact-
ing mouse cannot be located precisely, it would be difficult to capture these actions.
For instance, precise head location is necesarry to distinguish between nose-to-nose
sniffing and nose-to-head sniffing.

In the meantime, tracking through occlusions is the most challening part of mul-
tiple mice tracking. As the mice are nearly identical in appearance and their bodies
are almost textureless, the tracking system can easily swap mouse identities during
complex social interactions. In such events, existing social behavior analysis systems
still have high rate of identity swaps or inaccurate poses during occlusions. Human
interventions are thus required to fix these errors, defeating the purpose of minimal

human labor.

1.3 Contributions

Owing to the motivations above, I devote most of this thesis to solving challenges that
arise from tracking multiple mice in one cage. I present a computer vision system
that tracks the contours and head/tail locations of two mice identical in appearance
given the intensity and depth image sequences from the Kinect. For each frame, the

system first computes the foreground, and then segments the foreground into two
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mouse regions by utilizing the Kinect’s depth information.

The system can track reliably during both occlusion and non-occlusion frames,
with minimal human assistance. I provide detailed performance comparison of my
approach with human-labeled ground-truth and other existing systems. Figure 1-1
shows two examples of the tracking results.

The following summarizes the main contributions of this thesis.

1. Tracker for multiple mice with identical appearance.
e Developed a tracking system that tracks through complex occlusions by
integrating intensity and depth modality.
e Developed a pose estimator based on a trainable statistical shape model.
e Evaluated the performance of the system by comparing the tracking results
with other existing methods and ground-truth.
2. Multiple Mice tracking dataset.
e Recorded two 30-minute videos that include image frames and depth frames
using Microsoft’s Kinect.
e Collected human labels of the head/tail locations and the mouse contours
of 1000 sampled frames in the dataset.
3. Preliminary automated behavior analysis.
e Proposed 15 behavior rules based on 13 position- and orientation-based
features.

e Demonstrated behavior analysis on my dataset based on the results of the

multiple mice tracker.

1.4 Outline

The thesis is organized as follows: In Chapter 2 I briefly introduce related work

and existing methods on mouse tracking, and explain the challenges of multiple mice
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tracking. In Chapter 3 I present and elaborate on my tracking system. In Chapter
4 1 show performance assessment on the system as well as comparison with other
methods. In Chapter 5 I demonstrate using my tracking system to detect social

interactions. Finally, in Chapter 6 I provide discussions on future research directions.
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Figure 1-1: This figure illustrates the results of my tracking system during occlusion
frames. The contour of each mouse is traced in red or green, and the noses and tails
are marked by yellow stars and circles.
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Chapter 2

Background and Related Work

In this chapter, I begin by introducing previous work related to mouse tracking. Then
I explain the challenges of mouse tracking, the conditions for a good tracker, and how

the additional depth information addresses these challenges.

2.1 Work Related to Mouse Tracking

Vision-based systems have been developed to track a single mouse in various settings.
Jhuang et al. [10] locate and track the mouse using simple static background sub-
traction, operating under fixed lighting and with black or brown mice. Farah et al.
achieve more robustness to variations in illumination, cage setup and mouse color by
using a number of computer vision features, including edglets for contour refinement
8].

For tracking multiple mice, a number of vision-based methods have been proposed.
Goncalves et al. [9] and Pistori et al. [16] combine k-means and particle filters to track
bounding ellipses; Edelman similarly relies on fitting an ellipse model [7]. Braun’s
method matches the foreground shape to pre-labeled templates, to locate body parts
like nose-tip and tail-base [2]. These methods work well when the degree of occlusion
of one mouse by another is small, but they are highly unreliable whenever there is
significant physical interaction.

Branson and Belongie use a particle filter to track mouse “blob” locations and

19



contours, for multiple mice. Their method relies on training data and is computa-
tionally more expensive than those described above [1]. A system proposed by de
Chaumont et al. uses a physics-based model to track the skeleton of each mouse with
physical constraints imposed by the skeleton’s joints [6]. Their system, however, is not
robust under prolonged interactions between the mice and requires human assistance
to correct the tracking.

Commercial systems from CleverSys and Noldus also address this problem. How-
ever, Noldus’ EthoVision only tracks non-occlusion frames, and requires color mark-
ing visible to the camera on each mouse to maintain correct mouse identities. Other
details of their methods are not available.

There exist previous attempts to evaluate the use of depth cameras for detecting
mice behavioral patterns. Monteiro et al. show preliminary results of depth-based
segmentation [12], and OuYang et al. develop a system that reconstructs continuous
high-resolution 3D location and measurements of a mouse using Kinect [13]. However,
these works only address tracking a single mouse. This thesis, on the other hand,
addresses tracking through complex occlusions among multiple mice by integrating

depth modality.

2.2 Challenges of Tracking Multiple Mice

Compared with tracking single mouse in one cage, tracking multiple mice through a
sequence of intensity images is much more challenging for a number of reasons, as I

describe in the following. Figure 2-1 shows some frames that are difficult for tracking.

The mice are textureless. The body of a mouse is almost textureless, so approaches
that rely solely on local appearances models are unreliable in our problem. The
upper row in Figure 2-2 demonstrates such challenge. In each example, the
occlusion edge between the two mice is faint in the intensity image, and most
computer vision segmentation techniques cannot identify the contour of the

occluding mouse.
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The mice are often nearly identical in appearance. When performing social in-
teraction tests, scientists usually use genetically similar strains, and thus they

have little difference in appearance and color.

The mice can have complex occlusions. As mice may roll around or crawl over /under

each other, segregating their body contours from a top view is very challenging.

The mice are highly deformable. The apparent shape, size, orientation of each
mouse can change significantly over time. In addition, the often sudden shifts

in direction and velocity of motion further complicate the task.

Figure 2-1: Some challenging frames for tracking. (Figure obtained from [7].)

2.3 Design Considerations

As the tracking system is designed specifically to automate social behavior analysis,

there are several requirements to consider, which I elaborate as follows.

Assumes no modification to the animals. As we want to observe animal behav-

iors in their most nature state, the tracking system assumes no paint or mark
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is applied to the mice. Also, the markers can be hidden from the camera when
animals are in contact, making them unreliable for resolving mouse identities,

especially during complex physical interactions.

Preserves mouse identity. The system has to maintain a track for each mouse,
and furthermore, each track should correctly corresponds to the same mouse

identity throughout the video.

Provides precise head and tail tracking. Head and tail locations serve as im-
portant features to recognize social behaviors, and precise estimates of these
body parts can help distinguish many social behaviors. For instance, we would

expect the nose tips of two mice to be close during a nose-to-nose encounter.

Requires minimal human intervention. The system should operate using as lit-
tle human labor as possible; this means tracking needs to be robust against

events that require human intervention, such as identity swaps.

Tracks from the top-view. Compared with side-views, the top-view provides most
information about positions, orientations, relative distances, and speeds of the
mice. Since the social behaviors we wish to characterize rely on these features,
top-view is the most ideal view-angle. In addition, occlusions are more frequent
and complicated from side-views, thus making tracking more susceptible to

failures like identity swaps.

2.4 Depth Modality

Although the intensity image alone is not sufficient for mice tracking, if we are pro-
vided with the depth map of the frame, it is possible to resolve segmentation during
occlusion. When one mouse lies partly on top of another mouse, there is usually
an observable height difference between the two mice. The lower row in Figure 2-2
shows the depth maps corresponding to the intensity images in the upper row. As
the occlusion edges are much easier to identify with the depth images, mice tracking

becomes feasible even using simple segmentation algorithms.
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Figure 2-2: This figure illustrates the fact that intensity images alone is not sufficient
to resolve occlusions, and the depth maps can often help locate occlusion edges in
such cases. Shown here are the intensity images of 3 representative occlusion frames
(upper row), their gradient magnitudes (middle row), and the depth images (lower
row).

Microsoft’s Kinect acquires both video and depth data at a resolution of 640x480
pixels and frame rate of 30 fps. It provides both an intensity image sequence and a
depth image sequence, which are synchronized at the frame level and registered at the
pixel level. Alternatives to the Kinect are available at similar cost: the Asus Xtion
PRO is one example.

The Kinect’s depth image typically contains regions where no depth information
could be acquired — this is a source of noise. In our setting, this loss occurs most
consistently due to reflections off of the glass on the sides of the cage, but often also in-
cludes regions of the mouse’s body. This is one motivation for integrating both depth

and image intensity signals for accurate foreground extraction and segmentation.
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Chapter 3

Tracking System

In this chapter, I describe my method for tracking the contours and the head/tail
locations of multiple mice, which utilizes both image and depth modalities of videos

taken from the top-view.

3.1 System Overview

As illustrated Figure 3-1, my tracking system comprises three major stages. First, the
system extracts foreground regions, using a static background model that combines
the depth- and image intensity-based foregrounds for robustness. Secondly, for frames
in which an occlusion is detected, the system further divides the foreground into
mouse regions; this procedure starts with oversegmenting the foreground into many
subregions, then the system applys a graphical model to join subregions into a full
mouse contour, and then recovers occluded regions using tracking results from the
previous frame. Finally, using the segmented mouse regions from the previous step,

the system tracks the pose and significant body parts with a statistical shape model.

I tested the system using two mice in a single cage, but the algorithm can poten-

tailly be extended to three or more mice.
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Figure 3-1: The flow diagram of the tracking system.
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3.2 Foreground Extraction

I assume a static background model — videos are acquired in a controlled setting,
with camera angle, cage position and lighting fixed throughout recording. The back-
ground is modeled for each pixel by its median value over a uniform sample of video
frames (Figure 3-2 (a)). Background images are computed independently for both
the intensity and depth sequences.

By combining the depth and intensity modalities, we eliminate the artifacts en-
tailed by each individually. Background subtraction produces an initial estimate of
the binary foreground image for each frame, computed independently for the intensity
and depth images. In the depth-based foreground, significant artifacts occurs due to
loss of signal. We eliminate some noise in the intensity image — arising from reflections
off of the cage glass and from moving cage bedding, for example — by restricting to
pixels of the same (dark) color as the mouse’s body, but significant artifacts remain,
as parts of the mouse’s body (such as the ears) are of similar color to the background.
By combining (via pixel-wise OR) the two foreground images ~ depth and intensity
— however, we obtain a robust foreground image that eliminates the artifacts present
in each individually.

The resulting foreground regions accurately capture the contours of the mice (Fig-
ure 3-2 (b-c)). Absent occlusions, then, we can choose the joint assignment of mouse
identities that maximizes the summed overlaps of the mouse regions with their coun-

terparts in the previous frame.

3.3 Segmenting Mouse During Occlusions

When one mouse occludes another, their foreground regions are connected and accu-
rate contour tracking requires a method to find the boundary between them.

To detect occlusions, we compare the sizes of the two largest connected foreground
components. If their sizes are sufficiently different, then we assume there is an occlu-

sion. Given an occlusion, the system proceeds in 3 steps.
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(b) One frame’s intensity image (left) and depth image (right).

(c) Final extracted foreground.

Figure 3-2: Foreground extraction.

1. Over-segment the foreground into many subregions, each belonging to exactly

one mouse.
2. Identify and join the subregions corresponding to each mouse.

3. Recover the covered portion of any occluded mouse.

3.3.1 Over-segmentation

We apply the Watershed algorithm for initial segmentation, both for computational

efficiency and to preserve sharp corners often lost by contour-based algorithms [18].
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The results are shown in Figure 3-3 (a-c).

Applying Watershed to the depth image alone is not sufficient: when one mouse
crawls on top of the other, their combined 3D surface frequently forms a single catch-
ment, and the algorithm fails to separate the mice. Instead the Watershed is applied
to a linear combination of intensity gradient magnitudes and depth gradient magni-
tudes. Although the intensity gradients between the mice are typically weak, when
combined with the differences in depth, the two are sufficient to resolve the boundary
between the mice.

Note that, in computing depth gradients, we subtract out false gradients generated

by pixels lacking valid depth measurements.

3.3.2 Region joining

The Watershed algorithm yields a (potentially large) set of foreground subregions,
as shown in Figure 3-3 (c). Each should be contained within exactly one mouse and
we can obtain the final segmentation by identifying each subregion with the mouse
within which it’s contained.

We use a probabilistic graphical model to infer the identity for each subregion.
We construct a region adjacency graph, defined as an undirected graph G = (V, E)
in which each node v € V represents a subregion and an edge (i, ) € E exists if the
subregions ¢ and j are adjacent in the image.

We associate each node v with a random variable z, taking on values [ € L,
representing the mouse to which the subregion belongs. We construct node potentials
¢, and edge potentials 1);; so that the probability of a subregion v being assigned an
identity [ € L is

Pr(z, =1) x
Z exp Z@(%) + Z Yij (@i, z5) 5
X\{zo} eV (if)eE

Ty=l

where X is the set of all node random variables.
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The node and edge potentials are defined heuristically and they are the key to
accurate identity assignments. We encode in the unary node potentials the tendency
of a region of the image to possess the same identity in this frame as in the previous
one:

g =ws- > D((zykS),
(zy)eRM
where RZ@ is the set of pixels in subregion ¢ in frame ¢, Sl(t_l) is the tracked shape
from the previous shape that belongs to the mouse with identity I, D is the Euclidean
distance transform function, and wy is a universal weight for unary node potentials.

We encode in the edge potentials the tendency of two adjacent subregions to have
different identities if the difference of the average depth values near their common
border is high. Define B;; to be the set of pixels lying around the common border

between regions ¢ and j. The edge potential for edge (¢, ) is

0 if 1; = I

Pij(lis 1) = 1 1 _
e |Bi; N Ry Bijzn& "= |B;;j N R, BHZORJ» Hy L7l

where H is the depth image and wy, is a universal weight for pairwise edge potentials.

Given this graph structure, we use loopy belief propagation to compute the marginal
probability distribution for each subregion’s identity variable x;, and assign it the most
probable identity: [ = argmax;c; Pr(z; = 1). Figure 3-3 (d) shows the result.

Having assembled the subregions into two regions representing the interacting
mice, we choose the joint assignment of mouse identities that maximizes the summed

overlaps of the mouse regions with their counterparts in the previous frame.

3.3.3 Occluded Shape Recovery

After each pixel seen by camera is assigned to a mouse identity, the system then
recovers the total mouse shape for the occluded mouse, including parts that are

hiding underneath the top mouse, so that we have a complete shape estimate for each
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(b) Depth image.

(c) Over-segmented. (d) Final result. (e) Shape recovered.

Figure 3-3: Segmentation during occlusion.

mouse.

First, the system has to determine which mouse is being occluded. A potential
occlusion event between two mice A and B can be divided into 3 major cases: 1) A
occludes B, 2) B occludes A, and 3) they are close, but neither of them is occluding
the other. These cases can be roughly differentiated by comparing the mean height
difference between the two mice. More precisely, if A’s body near the occlusion
boundary between the two mice is higher than B’s, then the frame is categorized as
case 1, and vice versa. The frame is considered as case 3 if the height difference does

not exceed a certain threshold.

Once the system identifies a mouse as occluded, the system complements the
occluded portion with the tracked shape from the previous frame, as shown in Figure

3-3 (e).
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3.4 Pose Estimation

To analyze social interactions between multiple mice, it is not sufficient to know
merely which pixels each mouse occupy in every frame; we need to further deter-
mine the pose and extract the locations of important body parts. To perform pose
estimation, we first train a statistical shape model capable of approximating most
mouse shape variations with just a few parameters, which I describe in Section 3.4.1.
For each frame, we then determine the parameters in the model such that the cor-
responding shape is consistent with the observed shape, which 1 describe in Section

3.4.2.

3.4.1 Statistical Shape Model

This section describes the fundamental approach of the Active Shape Model devel-
oped by Tim Cootes [4], in which a statistical model is trained by analyzing the
principal components of a set of labelled examples. This model provides a compact
representation of allowable variations, but is specific enough not to allow arbitrary

shapes different from the training examples.

Vector Representation of Shape

In this model, a planar shape is described by a fixed number n of landmarks along

its contour, {(z1,v1), (2,¥2), .-+, (Tn, Yn) }, represented as a 2n-dimensional vector

X = (T1, T, Y1, - Yn)" - (3.1)

Suitable landmarks are essential for an effective shape representation, and land-
marks are usually assigned to points of high curvature or biologically meaningful
locations. For our application, the landmarks consist of 4 major points corresponding
to the nose tip, the tail base, and the two ears of a mouse, and between 2 consecu-
tive major points are a fixed number of equally spaced intermediate points along the

boundary (Figure 3-4).
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Prior to the statistical analysis, the labeled shapes are transformed them into a
common reference frame. The approach is to translate and rotate each shape such
that the mean point and orientation between its head and tail landmarks are centered

at the origin and aligned to a fixed orientation.

Figure 3-4: An example annotated mouse shape. The 4 major landmarks are marked
with green squares, while the remaining points are marked with red circles.

Statistical Analysis of Shapes

Among different instances of mouse shapes, the movement of landmarks are observed
to be highly correlated provided that the landmarks are well-chosen. Therefore,
we can exploit this inter-point correlation and approximate each shape with fewer
parameters while ensuring most variations are still captured.

Principal Component Analysis (PCA) is a common and effective method for di-
mension reduction. After applying PCA to the training shape data, we can then

approximate any mouse shape in vector representation x as
x =~ X + Pb, {3:2)

where X is the mean shape, P = (p1|pz|...|pm) contains the first m eigenvectors of

the covariance matrix, and b is an m-dimensional vector given by

b= PT(x - X). (3.3)
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We chose m such that these eigenvectors account for most (98%) of the total varia-
tions.

The vector b now defines a deformable shape model with only m parameters. By
constraining each parameter b; within certain range with respect to its variance across
the training set )\;, we ensure that any shape generated by this model is similar to
those in the original training set.

The shape model training set consists of 211 manually annotated mouse shapes.

00 D¢

Figure 3-5: From left to right: the mean shape and the first 3 PCA components. The
head and tail locations are marked with blue stars and circles.

3.4.2 Shape Tracking

Given an input shape S;, a target shape S;, and a dissimiliarity measure, the goal
of shape registration is to find a proper transformation such that the dissimilarity
between the transformed input shape S; and S; is minimized. Once the two shapes
are correctly aligned, we can locate head and tail locations from the transformation
determined.

The approach to be presented here is based on non-rigid registration using distance

functions developed by Paragios et al. [14].

Input Shape

The input shape S; is generated from the statistical shape model developed in Section

3.4.1 with the parameters b:

Si(b) = Polygon(x + Pb). (3.4)
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The transformations allowed in our problem are translation and rotation.. We
denote a linear transformation A with rotation by angle 8 and translation by a vector

T = (T, T,) as follows

T cosf sinf x T,
A((z,y), T,0) = = + (3.5)

~

] —sinf cosf Yy T,.

Note that scale transformation is not considered in our application. I assume that
the mouse shape being registered is roughly of the same size as those in the training

set.

Implicit Representation

If both shapes are represented with landmarks, we can easily register the input shape
by minimizing the sum of squared distances between matched points, but this ap-
proach fails if some landmarks from the two shapes are not sampled at corresponding
locations. As target shapes in our problem are in image domain, their vector repre-

sentations are not readily available to us.

We can avoid such issue by using the implicit representation, which is essentially
the Euclidean distance map of the shape contour. Implicit representation can be easily
combined with gradient descent to perform image registration. For a given shape S
inside the image domain (2, its implicit representation is a 2D function ® : @ - R
defined by

(

0 (z,y) €S

P((z,9);5) = { +D((z,y); S) >0 (z,y) € R (3.6)

k—D((x, y);S) <0 (z,y) € 2— Rg,

where Rg is the region enclosed by the shape, and D({(z,y); S) refers to the minimum
Euclidean distance between the grid location (x,y) and the shape S. Figure 3-6

illustrates the implicity representation of a shape.
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Figure 3-6: The implicit representation of the shape traced in blue.

Energy Minimization

There are 3 main considerations when we register the two shapes: 1) the input shape
needs to align up with the target shape, 2) the input shape should confine to the
foreground region, and 3) the input shape should look similar to the shapes in the

training set. These criteria can be translated into an energy minimization setup.

Given the input shape S;(b) under transformation A and the target shape S;,
denote their implicit representations as ®; = ®(A((z,y); T,0); Si(b)) and &, =
®((z,y); St), respectively. Also, denote Ry, = 2 — Ry, as the background region,

which is area not enclosed by the foreground.

Our goal is to determine the parameters T}, T, 6, and b such that the following

energy function is minimized:

E= (ZC(@ - @i)) +or-| Y @] +oay-bTb, (3.7)
0 \ FogNR:
where C(-) is the cost function, and «; and a, are constant weights. To reduce
the impact due to outliers, I chose the cost function as an Ll-norm approximation
C(2?) = V2% + 2.
The second term of the right-hand side assigns cost to pixels that spill out of the
foreground boundary, and the third term penalizes shapes far away from the original

training set, and thus implicitly enforcing the shape constraint.

This minimization problem can be solved using the gradient descent method.

Denote A® = &, — ®,. Since A is a linear transformation, the partial derivatives with
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respect to T, T, and @ can be derived straightforwardly as the following

gf - gf ' %i (3.8)
=5 5 (39)
%—g = g(f)i ‘ [(—a: sin 6 + ycos@)% + (—zcosf — ysinﬁ)%;{;] : (3.10)

where
% =_;%+2a1 .Rbgznm o, (3.11)

On the other hand, it is easier to approximate the partial derivative with respect

to b; by computing the finite difference.

(3.12)

~\ oo, 5

% - (BE P(A(p; T, 0); Si(b + dby)) — q)“') + 2ab;,

where b is the unit vector along the i-th dimension, and ¢ is a small constant spacing.

Figure 3-7 shows several shape registration results. Observe that as all input
shapes are based on the statisitcal model, the aligned results still look similar to

mouse shapes from the training set even when the target shapes are highly unsmooth.

As the input shape is inherently in vector representation, the head and tail of
each mouse can be located by simply extracting the corresponding landmarks from

the vector.

Figure 3-7: Shape registration examples. The target shapes are in red, while the
fitted input shapes are in green. Even if the target shapes are nosiy, such as the two
examples on the right, the algorithm still gives good results.
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Kalman Filtering

For smoother pose estimations over time, the parameters T and 6 from the linear
transformation is tracked using the Kalman filter [11]. I use the constant velocity
model, in which the state space also maintains the first-order derivative of each pa-
rameter. Although mice hardly move with constant velocity, this model provides good
shape estimates for shape recovery. Furthermore, as the shape registration is initial-
ized with the predicted state from the Kalman filter, the optimization can converge

to a local minimum within fewer steps.
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Chapter 4

Performance Evaluation

In this chapter, 1 provide detailed performance evalution of the tracking system on
the dataset I collected. I show that my system can reliably track through occlusions,
with significantly low number of identity swaps and accurate pose estimation. I also

discuss the primary causes of error [ observed from my system.

4.1 Mouse Tracking Data Set

For evaluation, I collected two 30-minute top-view videos of two-mice in one cage. I
need to collect my own dataset because my system requires depth maps on top of
the image frames, but there exists no such dataset. I tuned the parameters of my
system using this dataset prior to the performance assessment. Figure 4-1 shows a
frame from the videos.

In both videos, the occlusion frames account for approximately 50% to 60% during

the first 15 minutes.

4.1.1 Recording Setup

To collect the videos, the Kinect device was placed approximately 75 cm above the
top of a 30cm-by-30cm cage, facing downward.

IMumination is a particularly crucial component in the recording setup. On one
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Figure 4-1: An example frame from the mouse tracking data set.

hand, the cage needs to be bright enough for video recording, and on the other hand,
it should remain dark to prevent the mice from being anxious. To ensure uniform
lighting and minimize impact from shadows, I placed 4 white light bulbs over the
4 corners of the cage, each of which softened by a sheet of diffuser. The bulbs are
dimmed such that the white bulbs contributed light intensity below 10 lux. As mouse
visual system cannot perceive red, I used red LEDs to bring up the illumination for

recording.

The Kinect records with 640x480 resolution at 30 fps. I captured RGB and depth
frames from the Kinect device with OpenNI APIs, and used FFmpeg library to write
these frames as video files. For each recording, the RGB channel and depth channel

are synchronized to frame level.

4.1.2 Animals

For accessing the performance of tracking as well as behavior analysis, I recorded 2
videos, each of which involves two mice in the cage: a wild type mouse and a Shank3
knockout mouse in the first video (referred to as the wild-shank3 video), and the
two wild type mice in the second video (referred to as the wild-wild video). In each

experiment, I recorded the first 30 minutes of interaction for pairs of mice.
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4.1.3 Training the Shape Model

To train the statistical shape model introduced in Section 3.4.1, I randomly sampled
211 non-occlusion frames from the wild-shank3 video as the training set. For each
frame, I first manually annotated the 4 major landmarks (head, tail, and two ears)
on the contour of an arbitrary mouse, and then programmatically added 18 equally
spaced intermediate points along the contour between each two consecutive major
landmarks. Thus, each shape consists of 76 points in total, as shown in Figure 4-2.

The first m = 14 PCA components of the trained model covers 98% of variance
within the training set. However, to save computation, I only used the first 5 PCA
components for tracking.

The mean mouse shape spans approximately 60 pixels in length and 30 pixels in

width.

Figure 4-2: An example annotated mouse shape. The 4 major landmarks are marked
with green squares, while the remaining points are marked with red circles.

4.2 Evaluating the Tracking System

This section details the evaluation on my tracking system. The evaluation process

consists of two parts:

e Measuring how well the system tracks mouse identity
e Measuring how well the system tracks pose
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4.2.1 Methods to Compare

To thoroughly assess the performance of my system, I ran 3 versions of algorithm:

e In the first version, I supervised the tracking process of the first 15 minutes
(27000 frames) from both videos using my system. Evey time I observed an
identity swap or head-tail swap, I corrected the track before resuming the track-

ing, and logged the correction. The outcome of this tracking is referred to as

MY-S.

e The setting for the second version was the same as the previous one, except that
this time I did not make any correction throughout the tracking. This version

is referred to as MY-NS.

e I ran the third version without the depth maps, in order to determine how much
depth information assists tracking. I modified the system such that during
over-segmentation stage it used only intensity gradient magnitudes, and during
region joining stage it treated all foreground subregions as if they are at the
same depth level. Similar to MY-NS, this version received no supervision, and

is referred to as MY-NSND.

Here I compare the performance with other mice tracking systems: MiceProfiler
by de Chaumont [6], Braun’s work [2], and the ellipse tracking system by Edelman
[7]. There was no human intervention throughout the tracking for each of them.

I also attempted to compare with the commercial software EthoVision XT by
Noldus and SocialScan by CleverSys, but I'm not able to quantify their performance.
When tracking multiple mice in one cage, EthoVision is designed to use color markings
to distinguish the mouse identities; the system does not maintain a track for every
mouse during occlusions. I also observed identity swaps even during non-occlusion
frames. CleverSys kindly offered to run their system on my videos, but I did not

receive the results in time to include them in this thesis.
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4.2.2 Parameter Tuning

To establish fair comparison among different methods, I need to ensure each program
operates under its best condition by tuning the parameters as best as I can.

The primary parameters of my system include: foreground segmentation thresh-
old, Watershed algorithm threshold, various weights in region joining, and the step
sizes of gradient descent. As these paramters belong to different stages of the system,
they were tuned stage-by-stage; I examined the results from each stage to determine
the most appropriate parameters of that stage, before moving on to the next one. For
example, I would set the Watershed algorithm threshold such that different mice’s
body do not share the same subregion.

On the other hand, there are relatively fewer parameters in other systems, and
they are more straightforward to tune. Two of the most common parameters are the

foreground segmentation threshold and the size of mouse.

4.2.3 Accuracy of Identity Tracking

Maintaining correct identity is critical in multiple mice tracking. In this part, I
evaluate the rate of identity swaps for each system, using the tracking outcome of MY-
S as the ground-truth of identity assignment. Figure 4-3 illustrates the progression
of an identity swap.

Identity swaps are quantified by their rate per occlusion event. For each occlusion
segment, defined as a consecutive occlusion frame sequence, I compare the identity
assignments at the beginning and the end of the segment with the ground-truth. If
the assignments are not consistent, then I regard such event as one identity swap.

Table 4.1 summarizes the number of identity swaps from different methods. There
are 235 occlusion segments during the first 27000 frames in the wild-wild video, 146
of them in the wild-shank3 video.

Note that identity swaps may occur several times within one occlusion segment
and thus cancel out each other, so the numbers presented here are slightly lower than

their actual swap rate. This explains why the number of swaps in MY-S is higher
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Wild-wild video Wild-shank3 video Avg. swap rate

(235 occlusions) (146 occlusions)  per occlusion event
MY-S 5 2 1.8%
MY-NS 4 2 1.6%
MY-NSND 2 2 1.0%
Edelman 35 14 12.9%
Braun 19 6 6.6%
de Chaumont 15 9 6.3%

Table 4.1: Number of identity swaps over the first 15 minutes (27000 frames) of each
video. The results from my system under supervision (MY-S) represent the number
of corrections for each video.

than that in MY-NS.

Figure 4-3: This figure illustrates the progression of an identity swap. Note that at
the second column, the green mouse shape does not include its actual nose. Due to
missing depth values at the nose area, the segmentation module assigns that region
to the red mouse, causing the identity swap.

4.2.4 Accuracy of Pose Estimation

In this part, I measure the accuracy of pose estimation from two aspects: the rate of

head-tail swaps, and the accuracy of various pose parameters.

e Head-tail swap is a common problem for mouse trackers, and low occurences
of such event requires reliable tracking through occlusion. Because a mouse
shape is nearly symmetrical, the shape model can still fit well to the observed

mouse contour even when the orientation is off by 180 degrees. Figure shows
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an instance of a head-tail swap process.

e Aside from maintainng correct identity and orientation, a tracker needs to ac-
curacty locate the head/tail locations, and the accuracy of pose parameters
directly reflect the quality of pose estimation. Here I approach with 4 repre-
sentative indicators: nose locations, tail base locations, mouse orientations, and
mouse shape. The mouse orientation is defined as direction from the tail base

to the nose.

Head-tail Swaps

I define the flip state of a mouse as true if its orientation is off by more than 90
degrees from the ground-truth, and vice versa. A head-tail swap occurs when the flip
state of a mouse changes. Figure 4-4 shows an example of a head-tail swap.

I quantify head-tail swaps with two ways: rate per occlusion event, and rate per
non-occlusion frame.

An occlusion event triggers a head-tail swap if the flip state before and after the
occlusion segment is different, and rate per occlusion event tallies such occurances.
Since head-tail swaps often occur as the result of occlusions, rate per occlusion event
can reflect the quality of tracking through occlusions.

The rate per non-occlusion frame is the rate of swaps between consecutive non-
occlusion frames. This number shows the stability of tracking during non-occlusion
frames.

Table 4.2 summarizes the head-tail swap rates for each system. In this assessment,
the outcome of MY-S also serves as the ground-truth, and all identity swaps are

removed.

Pose Parameters

In order to assess the performance of my tracking system, I need ground-truth for each
indicator. Evaluating frame-by-frame performance would be impratctical, so instead,

I randomly sampled 1000 frames among the 2 videos. These frames comprises 250
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Figure 4-4: This figure shows how mouse rearing can induce a head-tail flip.

Wild-wild video | Wild-shank3 video | Avg. swap rate
per mouse

Non-occ | Occ | Non-occ Occ Non-occ | Occ

MY-S 2 4 2 5 0.1%o 1.2%
MY-NS 2 5 6 11 0.2%0 2.1%
MY-NSND 2 18 4 19 0.1% | 4.9%
Edelman 298 89 309 60 12.4%0 | 19.6%
Braun 517 16 728 18 25.4%0 | 4.5%
de Chaumont 89 82 83 48 3.5% | 17.1%

Table 4.2: Number of head-tail swaps over the first 15 minutes (27000 frames) of each
video. The results from my system under supervision (MY-S) represent the number
of corrections for each video. All identity swaps are already removed.

occlusion frames and 250 non-occlusion frames from each of the two videos. These
human labels are regarded as ground-truth for evaluating accuracy.

With the help of Amazon’s Mechanical Turk, I collected human annotations of
these frames from online workers. The set of frames are divided into many small
labeling tasks, each of which comnsists of 5 or 10 frames. The online workers are
instructed to label the nose locations, the tail base locations, and trace the contours
of the presented mice. They had to label based on the true locations and shapes even
when some parts are hidden.

To ensure the quality of the labels, the annotation process took several rounds.
At the end of each round, I selected frames with defective labels and posted a new
task to re-label them.

As validation of the quality of these human annotations, I randomly selected and
labeled 40 occlusion and 40 non-occlusion frames from the original sampled set, and

compare my labels with labels from online workers. This comparison is established
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Non-occlusion:

Nose Tail  Orientation  Contour
(pixel) (pixel)  (degree)
Baseline | 1.22 3.17 2.89 0.91 £0.02
MY-S| 3.76 7.97 8.39 0.85 + 0.04
MY-NS | 5.06 6.86 8.13 0.84 £0.05
MY-NSND | 5.85 6.36 9.11 0.82 + 0.05
Braun | 4.35 6.03 7.38 0.86 = 0.04
Edelman | 10.37 11.03 11.17 0.85 +£0.10
de Chaumont | 20.76  12.88 23.29 N/A*
Occlusion:
Nose Tail  Orientation  Contour
(pixel) (pixel)  (degree)
Baseline | 3.95 4.95 4.22 0.89 £0.05
MY-S| 7.53 8.07 9.81 0.79 £ 0.09
MY-NS | 7.93 7.71 10.41 0.78 £ 0.10
MY-NSND | 11.72 9.12 15.93 0.74+£0.12
Braun | 15.57 9.91 18.80 0.75£0.15
Edelman | 20.00 16.19 25.73 0.61 £0.18
de Chaumont | 26.99  17.16 41.15 N/A*

Table 4.3: Accuracy of the tracking system. These numbers are computed with all
head-tail swaps and identity swaps removed. On average the mouse in the videos is
60 pixels long and 30 pixels wide. (* The tracking outputs of de Chaumont’s system
do not include shapes.)

as the baseline, reflecting how difficult these frames are for human.

Table 4.3 summarizes the evaluation outcomes. As the performance measure, I
compute the root mean square error with respect to the ground-truth for nose/tail
locations and orientations, and I compute the Jaccard coefficient (intersection-over-
union) for the mouse shape. Appendix A contains the cumulative distribution of

deviation from the ground-truth for each indicator.

Here I assume the main failure modes are identity swaps and head-tail swaps, and
in order to exclude their impact on performance, for each frame I choose the identity
and orientation assignment that gives the best result. Therefore, the numbers here

reflects how well the tracking is in the absense of these failures.
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4.3 Discussion

My tracking system outperforms all other methods in every aspect of performance
assessment, especially during occlusion frames. In this section I summarizes the
evaluation results, then discuss in-depth about cases that make the system fail, and

finally explain any modification required to track more than 2 mice.

4.3.1 Summary of Evaluation

My system has low rate of identity swaps. Without any marking on the mouse,
the tracking system presented in this thesis can maintain mouse identites very
well. The identity swap rate is 1.6% per occlusion event (MY-NS), while the
rates of other systems are at least 4 times higher. This allows minimal human

intervention for correcting identity errors.

My system achieves accurate pose estimation. The head-tail swap rate of the
system is 2.1% per mouse per occlusion event (MY-NS). After removing identity
and head-tail swaps, it can locate the nose and the tail base of a mouse within
8 pixels from their ground-truth for 80% of the occlusion frames, while the
human agreement is around 3 pixels. On the other hand, Braun’s approach,
which yields the best post estimation results among other methods I compare
against, can only locate the head within 17 pixels at the same percentage of

occlusion frames.

Depth modality improves tracking through occlusions. The performance of MY-
NS is higher than MY-NSND in terms of pose estimation during occlusion
frames. This proves that depth modality can indeed improve tracking through
occlusions. Although MY-NSND reports fewer identity swaps than MY-NS,

this comparison is less statistically meaningful due to the low swap rate.

4.3.2 Failure Cases
Here I discuss some reasons that result in unreliable tracking.
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The depth map from Kinect is noisy and does not perfectly align to the color
image, as illustrated in Figure 4-5. The system can fail to segment the two mice
when the depth values around their boundary are missing. The identity swap in
Figure 4-3 happens partly because of the missing depth values.

The system is more prone to identity or head-tail swaps when a mouse is rearing
during an occlusion frame. Because the body of a rearing mouse spans across a large
depth range, sometimes during region joining the system assigns part of its body to
another mouse. In addition, when rearing is in action, the mouse shape resembles a
circle, and thus the mouse can easily rotates to the opposite orientation. Figure 4-4
shows an instance of such head-tail swap.

In addition, as Kinect is designed to operate at a longer range: from 80 cm to
several meters, the image and depth resolutions are not high, making it more difficult
to identify the boundary between the mice when they are roughly at the same height.
With a better depth-sensing device, the tracking system can potentially perform
better.

Figure 4-5: This figure shows that the grayscaled image and depth map do not align
perfectly despite they correspond to the same frame. The contour of the mouse is
traced in blue.

4.3.3 Extension to More Than Two Mice

Although the performance evaluation here is based on two mice in one cage, it is
possible to extend the system to m > 2 mice. With m mice, the region joining
module should maintain m identities instead. Also, during occluded shape recovery,
the overlapping cases among all mice have to be enumerated. Although this number

grows exponentially, if we assume most occlusion frames involves only 2 or 3 mice,
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we may still obtain reasonable recovered shapes.
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Chapter 5

Social Behavior Analysis

In this chapter, I explore automating social behavior analysis using tracking data
produced from my tracking system. I first generate simple position- and orientation-
based features, and then define behavior rules based on them. Finally, I compare the

statistics of these behaviors from the two videos in my dataset.

q
the tracking results. Note that the results presented in this chapter are preliminary,

and more careful validations are required.

5.1 Feature Representation

First of all, I convert the tracking data into a set of frame-by-frame features that I
will use to define behaviors.

Table 5.1 details the feature set. In the table, I denote Nj; as the position of
mouse M’s nose, Ty, as the position of its tail base, C; as the position of its body
center, and Sy, as its shape. These features mainly consists of distances and relative
orientations of body parts, and can be directly computed with the results from the
tracking system. In this thesis, the features are based on two mice in one cage,
referred to as mouse A and mouse B. However, the list can easily be extended to
represent more than 2 mice.

As the features should evolve smoothly in time, I apply a temporal Gaussian filter
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Feature Expression Feature Description

fi = |{NaN Bl distance between noses
fa= TATBI distance between tail-bases
Pe— . , .
fs = |NaTg distance between A’s nose and B’s tail base
—
fa=1|T4Npg distance between A’s tail base and B’s nose
fs =1CaCB distance between the body centers
— ——
fo = Z(NaCg, TyN, A) direction of B’s body relative to A’s orientation
—
fr=4{NgCy,TgN. B) direction of A’s body relative to B’s orientation
fs = min (S4, Sp) minimum distance between the bodies of A and B
= |54 N Sp| area of the overlapping region between the bodies of A and B
fio=1C AC,(4- change in A’s body center between adjacent frames
fi1= C’BC’}(;S change in B’s body center between adjacent frames

fize=|C AC’BI - ’Cf()cﬁ; change of A and B’s distance between adjacent frames

fis € {A, B,0} the mouse at bottom during occlusion

Table 5.1: The position- and orientation-based features in my behavior analysis.

on them to eliminate any abrupt change due to tracking artifacts.

5.2 Social Interactions

Based on the features introduced in the last section, I further define a set of rules for
detecting behaviors. Table 5.2 lists the repertoire of social interactions that I use in
my analysis, which are inspired by de Chaumont’s work [6]. The system can detect
social interactions commonly used in behavioral study, such as nose-to-nose sniffing

or follow behaviors.

Unfortunately, due to time constraint, I'm not able to carefully validate the def-
inition of these rules. The validation should involve comparing the detected social

behaviors to annotations labeled by experts.
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(a) Nose-to-nose sniffing. (b) Nose-to-anogenital sniffing.

(c) Follow.

Figure 5-1: Sample images of 3 behaviors: nose-to-nose sniffing, nose-to-anogenital
sniffing, and follow.

5.3 Results of Social Behavior Analysis

In this section, I demonstrate using the set of behavior rules to quantify the interac-
tions between two mice on my dataset introduced in Chapter 4 the wild-wild video
and the wild-shank3 video. Each video records the social reciprocal experiment of a
pair of unfamiliar mice. The wild-wild video involves a pair of wild-type mice, while
the wild-shank3 video involves a wild type mouse and a Shank3-knockout mouse. I
analyzed on the first 5 minutes (9000 frames) of each video.

The steps of the analysis are as follows. I first ran my tracker to obtain the tracking
data, which include the head/tail locations and the shape of each tracked mouse for
every frame. Then I generated the corresponding positional and orientational features,
and detected social interactions based on the defined rules. Finally I computed the
statistics of the behaviors, such as number of frames the animals engage in a particular
interaction.

The Shank3 mouse was reported to have abnormal social patterns. More specifi-
cally, during a social reciprocal test, a wild-type-Shank3 pair displays lower frequency
of nose-to-nose interaction and anogenital sniffing than a wild-type-wild-type pair [15].

For a stronger outcome, multiple videos are required for each pair of strains, and
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Event | Description
Contact s <3
Small distance fs <10
Nose-to-nose contact 1 <5
Nose (A)-to-anogenital (B) contact | f3 < 5
Nose (B)-to-anogenital (A) contact | f4 <5

Side-by-side (same way)
Side-by-side (opposite way)
A mounts on B

B mounts on A

Ji<20A f, €20
fa<20A f, <20
fo=> 120N fi3 =B
foz 120N fiz = A

A is behind B fr > 120
B is behind A fe > 120
A approaches B (fro = 1) A(fio > f11) A (fiz < 0) A (fs < 45)
B approaches A (fir = 1) A (f11 > fio) A (fi2 < 0) A (fr < 45)
B follows A (fio 2 D) A (fi1 > 1) A (fs > 120) A (f7 < 45)
Table 5.2: Repertoire of social interaction.
Behavior wild-shank3 video | wild-wild video
Nose-to-nose sniffing (# frames) 113 354
Nose-to-anogenital sniffing (# frames) | 19 13
Follow behavior (times) 6 15

Table 5.3: Number of frames spent in different behaviors for each pair of animals.

as I have only two videos, the results presented here are preliminary.

Table 5.3 lists the quantified results of nose-to-nose sniffing, anogenital sniffing,

and follow behavior by the target animal (wildtype or Shank3) towards a stimulus

animal (wildtype). Notice that the duration of nose-to-nose sniffing between the

wild-shank3 pair is only one-third of that between the wild-wild pair. In addition,

the Shank3 mouse follows the other mouse fewer times than its wild-type counterpart.

However, the distinction in the anogenital sniffing behavior is little.

The outcome above is still inconclusive, but it suggests a way forward for analyzing

social behaviors.
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Chapter 6

Conclusion and Future Work

In this chapter, I summarize the contributions of this thesis, and then propose future

research directions to improve the system performance.

6.1 Conclusions
This thesis consists of 3 main contributions:

Reliable tracker for multiple mice with identical appearance. The proposed
system combines intensity and depth information from a depth sensing camera
to identity the boundary between two occluding mice, and it can accurately
track the head and tail locations of mice. The proposed tracking system out-
performs other existing systems in terms of identity swap rates and pose esti-
mation accuracies, especially through occlusion frames. Detailed performance
evaluation shows that the average identity swap rate is 1.6% (per occlusion
event), and the average head-tail swap rate is 2.1% (per mouse per occlusion).
Excluding identity and head-tail swaps, the system can locate the nose and the
tail base of a mouse within 8 pixels for 80% of the occlusion frames, while the
human agreement is around 3 pixels. (Here a typical mouse shape is 60 pixels

in length and 30 pixels in width.)

Multiple mice tracking dataset and annotations. The dataset consists of two
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30-minute videos recorded with Microsoft Kinect device, each of which contains
synchronized color frames and depth frames. The two videos record the social
reciprocal experiments of 2 mouse pairs: wild-type-wild-type pair, and wild-
type-Shank3-knockout pair. I also collected 1000 randomly sampled frames

from the two videos are labeled with mouse nose/tail locations and contours.

Preliminary social behavior analysis results. Idefine 13 position- and orientation-
based features computable from tracking results, and then detect 15 different
interactions by thresholding these features. The set of interacations include
common behaviors, such as nose-to-nose sniffing, nose-to-anogenital sniffing. I
demonstrated that the wild-type-Shank3 pair of mice spent only one third num-
ber of frames in nose-to-nose sniffing compared with the wild-type-wild-type

pair.

6.2 Future Work

Tracking multiple mice in one cage is a challenging task, and continuous effort is
required to achieve the ultimate goal of automatically phenotying mouse social be-
havior. I hope this thesis can drive work on automated behavior analysis in the
research community. There is still much work to do towards a more reliable mice

tracking system, and here I propose some directions for expanding the current work.

Training a 3D pose model. Currently the depth map is only used for segmenta-
tion, but if we take advantage of depth modality in pose estimation, we can
build a 3D pose model that potentially better reflects behaviors like rearing.
Combining the top-view and multiple side-views might also help us acheive

more accurate pose estimation.

Detecting ear or tail for more reliable pose estimation. The current tracking
system relies heavily on previous frames to initialize shape registration. Without
any feature point to anchor the shape, errors can accumulate from previous

frames and the next. In the top view, the color of mouse ears is distinct, and by
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locating the ears we may reduce the head-tail swap rate. Detecting mouse tails
is also a potential approach. Since ears and tails are not always visible from
the view, we need a method that integrates the noisy ear/tail observations to

shape registration.

Extending the behavior analysis automation. In this thesis, I prioritized the

tracking system over the behavior analysis system. With a

Identifying fine behaviors. Grooming is a fine-grained yet important behavior in
mouse behavior analysis. To recognize the subtle movements of grooming, we
need more than the position-based features in my current system. A potential
approach is to combine Jhuang’s motion-based features inspired by visual cortex

model [10], or the spatial-temporal features in Burgos-Artizzu’s work [3].
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Appendix A

Detailed Results of Accuracy

Evaluation

This appendix contains the detailed results of evaluation on pose estimation accuracy
from Chapter 4. There are 8 plots in total; the first 4 of them are the results for
non-occlusion frames, and the other 4 for occlusion frames. These plots show the
cumulative distribution of each pose parameter in the following: deviation of nose

location, deviation of tail location, deviation of mouse orientation, and the Jaccard

index of mouse shape.
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Figure A-1: The results for non-occlusion frames.
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Figure A-1: The results for non-occlusion frames.
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Figure A-2: The results for occlusion frames.
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Figure A-2: The results for occlusion frames.
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