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Abstract

Breakdown Anodization (BDA) of titanium dioxide is a very promising, fast
fabrication method to construct micro-scale and nano-scale structures on titanium
surfaces. This method uses environmentally friendly electrolytes, such as nitric
acid, and can be fabricated within 30 minutes regardless of substrate size. Because
the titanium dioxide is hydrophilic, the micro structured BDA surface exhibits
super-hydrophilic properties. BDA surfaces can be applicable to water transport,
chromatography, electrospray, and fabrication of hierarchically structured
surfaces. In this study we investigate the wicking properties of BDA surfaces and
quantify their performance in terms of capillary pressure and capillary spreading
speed constant. Further, we investigate the application of BDA surfaces to
electrospray for the separation and identification of chemical agents.

Thesis Supervisor: Cullen R. Buie
Title: Assistant Professor

3



4



Acknowledgements

I would like to thank my advisor, Professor Cullen Buie, for his guidance and

support throughout my master's program. I have learned a great deal from him,

especially in developing my career path as an engineer.

I would also like to thank my colleagues, Youngsoo Joung, Zhife Ge,

Qianru Wang, William Braff, Bruno Figliuzzi, Alisha Schor, Naga Neehar

Dingari, Andrew Jones, and Pei Zhang, at Laboratory for Energy and

Microsystems Innovations. They have provided me with invaluable advice and

encouragement. I want to send my special appreciation to Youngsoo Joung who

has given me great insight into my research with his experiences and wisdom.

I also want to send thanks to Professor Sang-gook Kim and Rohit Karnik

for giving me opportunity to work in such a great environment, and Dr. Jim Bales

in Edgerton Center who provided me the high speed camera for my research. I am

also indebted to Byung Gu Cho, Kyoo-Chul Park and friends for their support and

kind words.

Lastly, I want to send my appreciation to Chong-Hwan Lee, the founder of

Kwanjeong Foundation, for supporting me and believing in my possibilities. He

has been my mentor, cheering me through the ups and downs.

And above all, my warmest regard and deepest love goes to my family in

Korea.

5



6



Contents

1 Introduction

1.1 M otivation of the Research .................................

1.2 G oal of the Research ..... ................................

2 Research Background

2.1 Capillary Flow .........................................

2.2 A nodization Process ....................................

2.2.1 Breakdown Potential ...............................

2.2.2 Breakdown Anodization (BDA) Process ................

2.2.3 Temperature of BDA Process ........................

2.2.4 Etching Process ..................................

2.3 Soil M atric Potential ....................................

2.4 Electrospray ...........................................

3 Fabrication Method

3.1 Breakdown Anodization (BDA) .............................

3.2 Capillary Rise Experiment .................................

3.3 Electrospray ...........................................

7

13

13

14

15

15

17

19

20

21

22

22

25

28

28

30

31



3.4 Safe Etching Process ..................................... 34

4 Experiments, and Results 36

4.1 W etting Properties ..................... .. ................ 36

4.2 Soil Experiment ........................................ 43

5 Applications 44

5.1 Electrospray ............................................ 44

5.1.1 Chrom atography ... .............................. 45

5.1.2 Droplet Formation ................................ 49

5.2 Hierarchical Structure by Etching Process ..................... 52

6 Conclusions, and Future Work 55

8



List of Figures

2-1 Anodization, breakdown anodization (BDA), and etching according to

electrolyte condition ....................................... 17

2-2 Graph for Water content and Matric suction ...................... 24

2-3 Apparatus for traditional capillary tip electrospray ................. 26

3-1 Circulation bath for control temperature, and BDA apparatus with

thermal couple to measure the electrolyte temperature .............. 29

3-2 Capillary rise experim ent .................................... 31

3-3 Experimental materials and equipment for electrospray ............. 32

3-4 Electrospray connected to power supply ......................... 33

3-5 Etching Process, and capillary rise experiment of etched BDA surface . 35

4-1 Capillary Rise Experiment at constant temperature 20'C ............ 37

4-2 Initial height to find spreading speed constant at 30V, 60V, 90V, 120V

at constant temperature (20'C) ................................ 38

4-3 Constant Voltage 90V, and maximum capillary height ............. 39

4-4 Initial height to find spreading speed constant of commercial TLC

Plate, optimized condition (90V, 10 C) BDA surface ............. 41

4-5 After 30 minute of capillary rise experiment for TLC, Optimized BDA

surface, and scratched BDA surface ............................ 42

9



4-6 Soil experiment result after 30 minutes .......................... 43

5-1 Electrospray performance comparison with respect to tip sharpness ... 45

5-2 Chromatography performance comparison using permanent marker on

TLC plate and BDA surface .................................. 47

5-3 Chromatography performance comparison using Rodamine B, Methyle

Blue, and Fluorescein 1.5 wt% Methanol solution on TLC plate and

B D A surface .............................................. 48

5-4 Image taken before establishing the Taylor cone .................. 49

5-5 Droplet formation ......................................... 50

5-6 Droplet moving at the initial locations .......................... 51

5-7 SEM image of hierarchical structure at micro scale ................ 53

5-8 Nano Structures of Hierarchical Structure at High magnitude ........ 54

10



List of Tables

2-1 Soil data is from Shada H. Krishnapillai ......................... 24

4-1 Values of maximum capillary height (Hmax), capillary pressure (Pcap),

and spreading speed constant (Ccap) at constant electrolyte temperature

(20 0 C ) .. . . ..... ...... .... .. ... .. . .... .. .. .. . . .. .. . . .. ... . 38

4-2 Values of maximum capillary height (Hmax), capillary pressure (Pcap),

and spreading speed constant (Ccap) at constant applied voltage ....... 40

4-3 Values of maximum capillary height (Hmax), capillary pressure (Pcap),

and spreading speed constant (Ccap) for commercial TLC Plate ....... .41

11



12



Chapter 1

Introduction

1.1 Motivation of the Research

Titanium dioxide is a promising material, which can be applied to various

applications with various fabrication methods. Applications include photocatalysis

[1], catalysis [2], solar cells [3], and biomedical devices [4]. When the titanium is

anodized, its surface can be modified to various structures with special properties

according to electrolyte condition and applied voltage.

Breakdown anodization is an anodization method using titanium substrate

[6], which is able to rapidly fabricate microstructures using an environmentally

friendly electrolyte, nitric acid.
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1.2 Goal of the Research

Tianium dioxide is high surface energy and BDA surface is conductive material

having various applications. First, it is important to determine how experimental

conditions including electrolyte temperature and applied voltage affect the surface

properties. This would enable the fabrication of BDA surfaces with specific,

deterministic properties by adjusting the experimental conditions.

Through this study, BDA surfaces are applied to electrospray and this work

also explores fabrication of hierarchical titanium surfaces by coupling BDA with

other etching processes.
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Chapter 2

Research Background

2.1 Capillary Flow

BDA surfaces are hydrophilic, the wetting line rises to certain height when it

contact the water reservoir. The hydrophilic BDA surface can be modeled as

columns of capillaries and the wetting behavior can be approximated by

Washburn's equation [5].

d h rz2 2y cos 0
-=- -yPo 9 (2.1)

dt 8 h r

Where h is the vertical height of the liquid; t is the elapsed time after liquid contact;

r is the assumed pore radius; y is the liquid surface tension; p is the liquid density;

rq, 0, and g are the liquid viscosity, surface native contact angle, and gravitational
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constant, respectively. At the initial stage, the gravity term is negligible and

equation (2.1) becomes [6],

2 ry'cos0 1
i= t = Ccapt (2.2)

Where Ccapis called the spreading speed constant. From the initial elapsed time of

capillary rise experiment, the curve for liquid height according to time can be

obtained to find the spreading speed constant by curve fitting.

Capillary pressure can be calculated when the liquid reachs the maximum

rise height. At this location the gravitational force balances the capillary force,

assuming negligible liquid evaporation. Then the time term of equation (2.1) is

neglected and balances the rest terms and becomes [6],

Pcap HmaxgP (2.3)
r

Where Hmax indicates the maximum capillary height.
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2.2 Anodization Process

The anodization process forms a thin oxide layers on the positive electrode [7].

Traditional titanium anodization forms thin and compact titanium dioxide layers.

One of example conditions for this thin compact layers is anodization in pH.1.0

H3PO4 electrolyte with 100V/cm applied voltage [8].

Compact T10

Typical
Electrolytes

Mildly Acidic 2 ce
Electrolyte
(pH. 3 H NO3)

Etched T102
Nanotubes

Electrolyte
Containing
Halogen ions _

T102 BDA + Etching Surface
Figure 2- 1: Anodization, breakdown anodization (BDA), and etching according to
electrolyte conditions.

Also instead of using titanium, other materials such as Zr [9], Ta [10], and W [11]

can be used to form oxide films. The anodic film formation on the titanium surface

is governed by following reaction [6],
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<Anode>

Electrolysis:

2H 20 ->0 2 (g) + 4H' + 4e-

Corrosion:

Ti - Ti+ + e-

Oxidation:

Ti + 2H 20 () -TiO 2 + 4H + 4e-

Ti +0 2 - TiO 2

Dissolution:

TiO 2-x + H20 () -> TiO 2 -H 20 (s)

TiO 2 + H 20+ H+ -> Ti(OH)3

<Cathode>

Electrolysis:

4H 20 + 4e -> 2H 2 (g) + 40H

Electrodeposition:

Ti 3++ 3e- - Ti
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Electrolysis (2.10) and dissolution (2.8), (2.9) are continuous processes during

anodization. Corrosion and electrodeposition terminate at the initial state because

the formed oxide layer prevents the both reactions. At steady state, therefore,

electrolysis, oxidation, and dissolution mainly occur yielding the overall reaction,

0.5 Ti + 2H 20 (1) 4 0.5 TiO2 + 2H 2 (g) + 0.5 02 (g) (2.12)

2.2.1 Breakdown Potential

The breakdown of the oxide layer was theoretically well explained by the paper of

Sato in 1971 [12]. The surface pressure during the anodization process can be

explained by main two forces, an electrostriction effect and the interfacial tension

effect as follows;

E E- 1)E 2 ye
P= PO + - (2.13)

8zc L

with the vertically acting pressure P; the atmospheric pressure PO; electric field E;

dielectric constant of the film E; e surface tension of the oxide film; and oxide

film thickness L.

When the surface tension has a major effect on the surface, the

electrochemical property of electrolyte and electrodes must be considered to
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predict the breakdown conditions because ion adsorption of the film surface

affects the surface tension. The break down electric field, EC on the oxide layer can

be expressed as follows [6];

E = (2.14)
'L

where electrode potential 0; and equilibrium potential between the oxide layer and

the electrolyte of ; and thickness L. After breakdown occurs, the electrode

potential /*, can be expressed by [12]

df/* 8 IkBTPd*= _-8k~ a (2.15)
dna 899r0o - e(E + 1)Ec

where the activity of anion in the electrolyte is a; and absorption density of anions

is pa At higher temperature conditions, critical potential will be lowered.

2.2.2 Breakdown Anodization (BDA) Process

Breakdown occurs when the electric potential exceeding the breakdown potential

and forms the micro structures on the electrode. This phenomenon is typically
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observed over 60 V when pH 3 nitric acid was used for the process. The process

forms micro sized structures on the surface, increasing it's roughness. Because the

static contact angle of titanium dioxide with water is below 900, BDA surfaces are

hydrophilic. This surface, therefore, is ideal for highly absorbent applications such

as extracting fluids from soil in which high absorbency is necessary.

2.2.3 Temperature of BDA process

The oxide layer thickness of the BDA process is mainly governed by the

electrolyte temperature and applied electric potential for a given electrolyte. The

dissolution rate is the hydration process of titanium dioxide layer, which governs

the oxide film thickness. Electrolyte temperature largely affects the hydration rate;

therefore, temperature of the electrolyte controls the oxide film thickness [56].

The oxide layer thickness can be measured using the surface capacitance

because the oxide layer thickness is inversely proportional to the capacitance of

the oxide layer, 1/C [13]. A relation suggested by Bockris et al. [14] is as follows,

dln(C 1 - AH (2.16)
dt _ 1 RT

with time, t; universal gas constant, R; and activation energy, AH.
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2.3.4 Etching Process

Etching process is mostly governed by chemical dissolution of the oxide layer by

the presence of halogen ions in the electrolyte. The most common chemical

material used for this process is hydrogen fluoride. The reaction converting the

oxide layer to the soluble fluoride complex is as follows [7],

MeO 2 + 6F- -> [MeF6] (2.17)

Me4 + 6F- -> [MeF6]2- (2.18)

This process transforms the oxide layer, MeO 2 , to water soluble MeF6 complexes.

The small radius vacancy made by dissolved oxide initiates the process. The

complex formation continuously dissolves MeO 2 and prevents Me(OH)xOy

precipitation by transforming the arriving Me" ions at the oxide/solution interface

to soluble MeF6 complexes.

2.3 Soil Matric Potential

Unsaturated soil is a porous media which readily absorbs liquids. Soil science

characterizes the medium by the matric potential or matric suction with respect to
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the soil water content. The required energy to remove water held between the soil

pores is matric potential. Matric suction is the same absolute value but the

opposite sign as the matric potential. Normalized water content or effective

saturation of the soil can be related by following expression [15],

S = = 0 r = l (2.19)
OS - O,. 11 + (ay)

where,

S, 0 are effective saturation, and normalized water content;

yf is matric potential;

O 'S, and 0 r are volumetric water content, saturated water content, and residual

water content, respectively;

a, n, and m are parameters relate to soil properties.
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1.OE+06 -

1.OE+05 -

1.OE+04 -
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Figure 2-2:

---- Madrid Clay Sand

Madrid Gray Clay

Maryland Clay

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Nomalized water content

Graph for Water content and Matric suction based on the van

Genuchten Model from equation 2.19, data is from Shada H. Krishnapillai, [16].

Table 2-1: Soil data is from Shada H. Krishnapillai [16]. Parameters a, n, and m is

properties of soil for equation 2.19.

Soil Type Porosity Uquid Umit a n m
Madrid clay sand 0.275 28% 0.028 2.55 0.125
Madrid gray clay 0.507 71% 0.0015 0.75 0.425

Maryland clay 0.448 64% 0.0004 1.65 0.245

As shown above, the matric suction decreases as the water content

increases. Also when the water content is the same, the small pore size soil or clay
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has larger matric suction values than that of larger sized soil (e.g. sand). It means

that the retained water between the small pores requires more energy to extract

than larger pore size soil when it has identical water content.

2.4 Electrospray

Traditional electrospray uses stainless capillary tips (diameter about 1mm) to form

gas phase ions. Depending upon whether it is connected to the positive electrode

or negative electrode, the spray is denoted positive mode or negative mode. Most

electrospray applications use the positive mode, which makes positive ions. The

electric field at the tip is calculated by following equation (Loeb et al., 1941, [17]).

2V
E = R (/ (2.20)

R In (4d1 R)

with the electric field, Ec; the applied potential, V; distance from the tip and the

counter electrode, d; and the capillary outer diameter, R. It means that the electric

field is proportional to the applied voltage and inversely proportional to the

distance from the tip and the counter electrode, and the capillary outer diameter.
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As the applied voltage increases, the electric field also increases and the

solution at the tip eventually becomes the Taylor cone shape when it starts

electrospray. The positive ions mostly located at the surface of Taylor cone spray

positive ion-rich droplets to the counter electrode. As soon as the positive ion rich

droplet leaves the tip to the counter electrode, the solvent of the solution (usually

methanol) evaporates until ions become gas phase due to the repulsive force

between the ions.

liquid capillary

1MM

Figure 2-3: Apparatus for traditional capillary tip electrospray (left), and spray

formation (right). Spray occurs and a Taylor cone is formed at 4.0 kV. The

solution surface is positively charged due to the electric field.
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Instead of using tubular capillaries, stainless steel needles [18, 25], tungsten oxide

nanowire[19], wooden toothpicks [20], or even paper [21-24] have been used as

electrospray tips. Although these tip are not conductive, electrospray occurs

because the applied solution was conductive. These tips are able to make small

diameter electrosprays compared to traditional capillaries. The advantage is that

these systems can utilize smaller sample volumes than traditional capillaries.
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Chapter 3

Fabrication Method

3.1 Breakdown Anodization (BDA)

The cathode and anode for the BDA process were prepared from the titanium

plates (Ultra Corrosion-Resistant Titanium grade 2, 0.02" thick). Their dimensions

were 10 mm x 170 mm. To eliminate contaminants on the titanium electrodes,

each sample was cleaned with acetone, methanol, isopropanol, and DI water. The

cathode and anode were assembled maintaining a 10 mm distance by inserting

non-conducting material between the electrodes.
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Four electrodes were immersed into acetic acid at pH 3 and a constant

voltage (range 30V-120V) was applied for 30 minutes. Using a circulation bath

(polystat, Cole-Parmer), the temperature during the process was held constant

(range 10'C - 25*C). Stirrer with 800rpm was used to circulate the electrolyte to

eliminate the by-products on electrodes. After the entire process the BDA surfaces

were cleaned with DI water.

Figure 3-1: Circulation bath for control temperature (left), and BDA apparatus

with thermal couple to measure the electrolyte temperature (right).
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The temperature of the circulating liquid was maintained five degrees below the

target temperature to account for heat generation during BDA. The circulating

liquid maintains the electrolyte temperature by removing the heat produced due to

BDA.

A more direct way to control the electrolyte temperature is to use the

electrolyte as the circulating fluid. In this case the electrolyte temperature is set

directly by the water bath, eliminating the need for stirring or a thermocouple.

3.2 Capillary Rise Experiments

Capillary rise experiments are utilized to measure the capillary pressure and

spreading speed constant of the BDA surface. The microstructure of the BDA

surface depends on the fabrication conditions- including electrolyte temperature,

electrolyte pH, and applied voltage. As a result, the spreading speed and rise

height on the BDA surface change under different fabrication conditions.

The capillary rise experiment consists of the following steps. First, the

BDA surface is placed in the water reservoir. Then, the stage is adjusted such that

the liquid comes into contact with the BDA surface. Spreading speed constant is

calculated within the first five minutes. After 30 minutes, a photo is taken to

determine the maximum capillary rise height.
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camera

Figure 3-2: Capillary rise experiment (left), and image of the experiment before

and after 0.5 seconds the sample is emerged water (right).

3.3 Electrospray

As discussed in section 2.4, the electrospray performance depends on the electric

field at the edge of the capillary or tip. Therefore, it is important to sharpen the

BDA tip to maximize the electric field and lower the required applied voltage. In

general, the sharp edge showed better performance compared to the planar edge.
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Figure 3-3: Experimental materials and equipment for electrospray.

Methanol was used as solvent due to its high evaporation rates. Chemicals

were also added in solution to enhance the conductivity and for detection by mass

spectrometry. The methanol solution was 1.5 wt% methanol with Methyl Blue,

Fluorescein, and Rhodamine B fluorescent dyes. Due to its distinct color and

different mobility on the BDA surface, it is straightforward to identify the

chemicals with the naked eye during the experiment.
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Figure 3-4: Electrospray was connected to a power supply and ready to spray.

As mentioned earlier, the distance between the counter electrode and the BDA

surface was 10 mm. Also to focus electric field to the upper-side of the BDA

surface which contained the liquid analyte, the bottom side of the BDA surface

was electrically insulated from the electrode. After the solution placed onto the

BDA surface, a 4.5 kV of electric potential was applied using a power supply.

Immediately after the solution reached the BDA tip, it emitted small droplets to

counter electrode.
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3.4 Safe Etching Process

This section explores fabrication of hierarchical titanium surfaces by coupling

BDA with safe etching process using HCl solution instead of using conventional

HF solution. The BDA surface prepared were used as the positive electrode for

additional etching process fabricating nano-structures on BDA micro-structures.

Electrodes were assembled using a copper anode [26] as a counter electrode. This

assembly was immersed into the 3M HC while applying a constant potential of 10

V for 10 minutes. A stirrer was not used during this process and the surfaces were

cleaned using DI water.
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Figure 3-5: Etching Process (left), and capillary rise experiment of etched BDA

surface. First sample from the right is etched BDA surface (right).
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Chapter 4

Experiments, and Results

4.1 Wetting Properties

The capillary rise experiment measures two values; 1) Pap: capillary pressure, and

2) Cap: spreading speed constant. The result of the capillary rise experiment can

be used to compare the wicking ability of the BDA surfaces to commercial

materials such as thin layer chromatography (TLC) plates (Sigma-Aldrich,

aluminum support, silica gel matrix, layer thickness 200 y m, particle size 25 'U

m). The experiments reveal that the BDA surfaces have higher capillary pressure

and spreading speed constant than the commercial TLC plates.
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The spreading speed constant and capillary pressure can be obtained using

equations (2.2), and (2.3). From the equation (2.3), Pcap = Hmaxgp, capillary

pressure is proportional to the maximum rise height.

In section 2.2.3, we verify that the applied voltage can affect the

microstructure at the surface. To find the optimized voltage, we applied voltages

of 30 V, 60 V, 90 V, and 120 V.

Figure 4-1: Constant temperature 20'C, left after 15 minutes, right after 30

minutes. Almost reached maximum capillary height after 15 minutes.
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Figure 4-2: Initial height to find spreading speed constant at 30V, 60V, 90V, 120V

at constant temperature (20*C). The slope of the lines indicates the spreading

speed constant.

Table 4-1: Values of maximum capillary height (Hmax), capillary pressure (Pap),

and spreading speed constant (Cap) at constant electrolyte temperature (20*C) with

respect to applied voltage.

H. (mm) PW (kPa) Cm (mm 2/s)
30V BDA 35 0.35 12
60V BDA 80 0.81 30
90V BDA 80 0.81 33
120V BDA 55 0.56 17
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The best performance of capillary pressure and capillary spreading constant was

found at 90 V with values of 0.81 kPa, and 33 mm2 /s for capillary pressure and

capillary spreading constant, respectively.

Figure 4-3: Constant Voltage 90V, and maximum capillary height. 30 minutes

after immersed into the water.
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Table 4-2: Values of maximum capillary height (Hmax), capillary pressure (Pcap),

and spreading speed constant (Ccap) at constant applied voltage (90V) with respect

to electrolyte temperature.

Hmx (mm) Pp (kPa) C M (mm2/s)
10 0C, 90V BDA 100 1.1 55
150C, 90V BDA 90 9.9 50
200C, 90V BDA 75 0.83 41

We also find that the temperature affects the microstructure of the BDA

surface. Surfaces were fabricated at temperatures of 10 0C, 15'C, and 20'C. The

best performance was obtained at 90 V, and 20'C electrolyte temperature. At this

condition, capillary pressure was 1.lkPa, and the capillary spreading constant was

55 mm2/s.
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Figure 4-4: Initial height to find spreading speed constant of commercial TLC

Plate, optimized condition (90V, 10 'C) BDA surface, and vertically scratched

BDA surface. The slope of the lines indicates the spreading speed constant.

Table 4-3: Values of maximum capillary height (H.,), capillary pressure (Pcap),

and spreading speed constant (Ccap) for commercial TLC Plate, optimized

condition (90V, 10 'C) BDA surface, and vertically scratched BDA surface.

HMU (MM) P. (kPa) C, (rm2/s)
TLC 40 0.40 3
BDA90V 80 0.81 25
BDA 90V Scratch 85 0.86 41
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Moreover, the BDA surface is more resistive than the commercial TLC

plate because the BDA surface is directly fabricated on the titanium metal

substrate instead of being deposited on the substrate. Also from the capillary rise

experiment with DI water, its capillary pressure was 0.8 kPa, compared to the

capillary pressure of the commercial TLC of 0.4 kPa. The surface also showed

faster spreading speed with a value of 25 mM2/s, eight times faster than the TLC

plate. Also, it was found that vertical scratches on the surface enhanced the

capillary pressure and capillary speed. The capillary pressure increased by 125%

for the 90 V BDA surface.

Figure 4-5: After 30 minute of capillary rise experiment for TLC, Optimized BDA

surface, and scratched BDA surface.
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4.2 Soil Experiment

Soil experimentation is required for the application of remote sensing as

introduced in part 1. Titanium BDA surfaces are made from robust metal, making

it ideal for use in soil wicking. In this experiment, the maximum volumetric liquid

limit of soil was 31.9%.

When its water content increases the matric suction of the soil decreases as

investigated at section 2.3 and finally can be ignored when it is saturated. Even

when the water content was below (5 ml/35 ml) the BDA surface wicked the water

8 mm.
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Figure 4-6: Soil capillary rise experiment result after 30 minutes. From left to right

5ml, 10ml, 11.5ml water was added into 35ml soil.

Chapter 5

Applications

5.1 Electrospray

Traditional electrospray uses stainless steel syringe tips, composite materials and

even paper. According to each tips characteristics, the electrospray resulted in

various droplet sizes. Using the BDA surface, we could expect that the

electrospray would separate the solutes due to its chromatographic effect. The

BDA surface also results in smaller droplets at the tip because BDA has smaller
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pore size than the conventional electrospray. For electrospray using the BDA

surface, we first determined the chromatographic effect, which can be used to

separate the chemicals in solution according to their mobility. Electrospray

properties were analyzed afterwards.

Figure 5-1: Electrospray performance comparison with respect to tip sharpness

(angle of edge, left: 900, right: 300). Two pictures are taken after 10 seconds after

power was applied.

5.1.1 Chromatography

We used a permanent marker (Sharpie) and an ethanol solution of fluorescein,

rhodamine b, and methyl blue. The BDA surface was compared with the

commercial TLC plate for their capability of chromatography. For the black
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permanent marker, it separated yellow and green color by 70 mm from black ink

while the commercial TLC plate only seperated the purple color 33mm. TLC plate

failed to separate the yellow and green colors from the purple solute and stayed as

a mixture at the maximum rise height 33 of mm.

Also when separating the rodamine b, methyl blue, and fluorescein 1.5 wt%

methanol solution, TLC plates only separated red (Rodamine B), yellow

(Fluorescein), and blue color (Methyl Blue) by 35mm, 37mm, and 40mm,

respectively. The BDA surface moved the blue, yellow, and red color 5mm, 45mm,

and 55mm, respectively. This verifies that the BDA surface showed better

performance in terms of solute separation.
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Figure 5-2: Chromatography performance comparison using black permanent ink

on the TLC plate and the BDA surface.
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Figure 5-3: Chromatography performance comparison using Rodamine B,

Methyle Blue, and Fluorescein 1.5 wt% Methanol solution on the TLC plate and

the BDA surface.
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5.1.2 Droplet Formation

A high speed camera (Ektapro model 1012, Redlake MASD Inc) was used to

observe the formation of droplets at the tip of BDA surface.

<Taylor Cone Formation>

Figure 5-4: Left image was taken before establishing the Taylor cone. The right

image was captured after 4 milliseconds.

Taylor cone formed at the tip of the BDA surface. The electric field pulls the

solution to the left, overcoming the surface tension of the solution.
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<Droplet Formation>

Figure 5-5: Droplet formation. After 4.3 ms of reference time and right is after 4.8

ms from reference time.

Droplets formed as the force from the electric field overcomes the surface tension

of the liquid. When the electric field reaches the critical value, the liquid is

stretched by the opposing electrical force and surface tension. Eventually the

droplet totally separates from the liquid, yielding a spherical droplet.
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<Droplet Average Speed>

Figure 5-6: Droplet moving at the initial locations. Left is after 5.2 ms from the

reference time, and 6.4 ms from the reference time.

In figure 5-6, droplet moved 1.7mm for 1.2 ms and the average droplet speed was

1.4m/s.
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5.2 Hierarchical Structure by Etching Process

The BDA surface consists of irregular micro structures. These irregular micro

structures contribute to its hydrophilicity. Adding nanoscale structures to the

microstructures resulting from BDA would increase the surface area. The use of

acid halide electrolyte such as HCl, and HF instead of using mild acid results in

surface etching of titanium substrate.

As a result, homogeneous nano halls, which diameters are approximately

20nm, are successfully produced on the micro-porous structures of BDA surfaces.

The hierarchical structures composed of micro and nano structures produced by

BDA and etching provides much higher surface area than nanostructures of planar

titanium surface. Moreover, using HCl as the electrolyte, instead of using the

traditional electrolyte, HF, it could be fabricated in a safe environment.
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Figure 5-7: SEM image of hierarchical structure at micro scale. HCl was used as

an electrolyte for etching process. Nano-structures are observed on micro-

structures.
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Figure 5-8: Nano Structures of Hierarchical Structure at High magnitude and can

verify the nanostructures (approximate diameter: 20nm) on the micro-structures.
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Chapter 6

Conclusions, and Future Work

We confirmed that BDA surfaces have better performance in terms of capillary

pressure and spreading speed constant than that of commercial TLC plates. Also

we found that we can adjust the BDA surface properties according to the

fabrication conditions.

For the future work, mass spectrometry analysis is necessary to verify if the

electrospray made by BDA surface successfully separates solutes from solution.

Experiments were performed to maximize the droplet size and to verify that

electrospray with the naked eye. Future work focuses more on minimize the

droplet size for better analysis of solute by mass spectrometry.

Finally, more investigation in the hierarchical BDA surface is needed to

obtain the enhanced surface areas to apply specific applications.
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