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Abstract

This thesis presents FlexGP 2.0, a distributed cloud-backed machine learning sys-
tem. FlexGP 2.0 features multiple levels of parallelism which provide a significant
improvement in accuracy v.s. elapsed time. The amount of computational resources
in FlexGP 2.0 can be scaled along several dimensions to support large, complex data.
FlexGP 2.0's core genetic programming (GP) learner includes multithreaded C++
model evaluation and a multi-objective optimization algorithm which is extensible
to pursue any number of objectives simultaneously in parallel. FlexGP 2.0 parallelizes
the entire learner to obtain a large distributed population size and leverages commu-
nication between learners to increase performance via transferral of search progress
between learners. FlexGP 2.0 factors training data to boost performance and enable
support for increased data size and complexity.

Several experiments are performed which verify the efficacy of FlexGP 2.0's multi-
level parallelism. Experiments run on a large dataset from a real-world regression
problem. The results demonstrate both less time to achieve the same accuracy and
overall increased accuracy, and illustrate the value of FlexGP 2.0 as a platform for
machine learning.
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Chapter 1

Introduction

Recent years have seen much growth and change in the size and availability of data.

Technological proliferation has allowed data to be more easily collected, organized

and stored. The diversity of data size, structure and topic has seen similar growth.

Data has become available in a variety of domains which previously were sparsely

populated, including the documentation of social interaction, semantic content, med-

ical instrumentation and measurements, and educational information. At present it

appears the growth in data size, availability and diversity will continue indefinitely.

The increased availability of data in each domain represents a greater opportunity

to learn about the world, given the ability to leverage the data effectively.

However, many existing learning algorithms cannot provide high accuracy in a

short amount of time, relative to the size and complexity of data under consideration.

A larger data size translates to increased runtime which can easily be super-linear

in relation to the data size and complexity. Datasets which represent an expression

of more complex relationships require increasingly more complex models to provide

desirable results, which further contributes to the computational slow-down. From

the perspective of search, a greater size and complexity of data increases the likelihood

the search will eventually find itself stuck in undesirable local minima or maxima.

The FlexGP Distributed Machine Learning System (FlexGP) provides swift and

accurate machine learning on large and complex data sets. FlexGP seeks to be able

to scale with data size and complexity in a graceful and tractable manner. Modern
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cloud frameworks provide a vast wealth of computational resources; FlexGP was

designed to run in a cloud environment where the system is able to scale the amount

of computational resources to fit the difficulty of the problem at hand.

FlexGP uses genetic programming (GP) as its underlying learning algorithm. A

form of evolutionary algorithm (EA), GP is a sophisticated technique for search and

optimization which is easily adapted to solve traditional machine learning problems

of regression, classification and clustering[12]. For addressing these challenges it is

particularly effective for GP to use Genetic Programming for Symbolic Regression

(GPSR), where solutions are modeled as evaluable trees of operators and terminals

representing variables from the training data [22]. Several commercial systems have

demonstrated similar applications of GP to machine learning and data mining, no-

tably Eureqa[13] and DataModeler'.

1.1 FlexGP 1.0

Version one of FlexGP (FlexGP 1.0) represented a giant leap forward from an original

prototype for cloud-backed machine learning via GP [14]. FlexGP 1.0 introduced the

concept of factorization, whereby data and other select parameters may be randomly

subsampled or permuted to provide an unique configuration for a set of parallelized

learners. FlexGP 1.0 demonstrated a marked improvement of performance with the

addition of the factorization of training data. FlexGP 1.0 was focused on addressing

regression challenges; it incorporated a means of fusing regression models to form

ensembles which provided a noticeable performance boost [20] [6].

As a framework FlexGP 1.0 was designed to support the usage of any learning

algorithm. As mentioned earlier, the learner used in this thesis and in previous work

on FlexGP is a GP learner implemented with our custom Java library for GP called

evogpj. At the time of its inclusion in FlexGP 1.0 the evogpj library performed model

evaluation in Java via a simple recursive evaluation procedure. The core algorithm

used Silva's operator equalization for controlling the bloating of models[16]. A de-

lhttp: //evolved-analyt ics . com/?q=datamodeler
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tailed, rigorous description of the design and performance of FlexGP 1.0 can be found

in a previous publication[6].

1.2 FlexGP 2.0

This thesis presents FlexGP 2.0, which introduces several key improvements over

FlexGP 1.0. FlexGP 2.0 includes four levels of parallelism which each provide distinct

benefits:

Search-Level Parallelism: allows GP to pursue multiple user-specified objectives.

This improves the flexibility of evogpj's GP learner and enhances the clarity of

expression of machine learning problems.

Evaluation-Level Parallelism: translates model evaluation to batch-processing in

C++ and distributes model evaluations across multiple CPUs, resulting in a

dramatically faster runtime.

Population-Level Parallelism: distributes the population across multiple GP learn-

ers on separate machines. This results in potentially super-linear gain in accu-

racy and further reducing the runtime required to obtain an accurate solution.

Factor-Level Parallelism: boosts accuracy through factorization of the data and

problem parameters. Factor-level parallelism also reduces the overall runtime

by providing each GP learner with a smaller training dataset. Factor-level-

parallelism is included from FlexGP 1.0; a detailed description and analysis of

factorization can be found in a previous publication on FlexGP 1.0 [6].

Figure ?? shows the hierarchy of the four levels of parallelism. More in-depth discus-

sions of each level of parallelism is provided in that level's corresponding chapter.

1.3 Evaluating FlexGP 2.0

To provide a thorough evaluation of the performance of FlexGP 2.0 we introduce two

general classes of assessment and comparison of the experiments in this thesis:

17



Elapsed Time: a comparison of experiments by elapsed wall-clock time since FlexGP

was initiated.

Elapsed Model Evaluations: a comparison of experiments by the elapsed number

of fitness evaluations since FlexGP was initiated.

These two classes of comparison provide different insight into the performance of

FlexGP. Elapsed Time clearly shows any improvement in accuracy v.s. elapsed time.

Elapsed Model Evaluations is useful to compare the obtained accuracy by the amount

of work done in different experiments.

1.4 Preview of Results

Figure 1-1 provides a preview comparison of the performance of FlexGP 2.0 v.s.

FlexGP 1.0 on the MSD dataset described in appendix A. With all four levels of

parallelism, FlexGP 2.0 outperforms FlexGP 1.0 by a wide margin. The body of this

thesis details how this performance gain was achieved.

1.5 Index

Chapter 2 covers search-level parallelism, Chapter 3 describes evaluation-level paral-

lelism and Chapter 4 details population-level parallelism. A comprehensive discussion

of the combination of the four levels of parallelism is provided in Chapter 5, as well as

an experimental comparison of FlexGP 2.0 with FlexGP 1.0 and with another promi-

nent machine learning system called vowpal wabbit. Chapter 6 presents thoughts on

future work and Chapter 7 summarizes the findings of this thesis.

Appendix A presents the details of the problem addressed in this thesis' exper-

iments and explains how the data was partitioned. Appendix B describes in detail

the parameters of each experiment and how the results were gathered and analyzed.

Appendix C describes the fusion process used in some experiments to boost perfor-

mance by combining predictions from multiple regression models. Appendix D pro-

vides the specific parameters and design notes regarding the configuration of evogpj's

18



Comparison of the MSEtest of FIexGP 1.0 and 2.0 (with migration) at t=3hrs
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Figure 1-1: A comparison of the performance of FlexGP 2.0 v.s. FlexGP 1.0 after
three hours of training. The boxplot represents the distribution of MSEtest values
obtained after the fusion process. The specifics of the two experiments can be found
in section 5.2.1.

GP learner in the experiments. Finally, Appendix E includes information about the

cloud platform on which the experiments were conducted.
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Chapter 2

Search-Level Parallelism

Search-level parallelism allows the simultaneous pursuit of multiple user-specified

search objectives. This form of parallelism represents an improvement in the flexibil-

ity of FlexGP, and allows a more clear expression for many optimization challenges,

including classification and regression.

2.1 Motivation and Goals

Most practical search and optimization problems require a balance between multiple

objectives. This is particularly true for problems in the domain of machine learning.

Regression problems seek solutions with both low predictive error and low model com-

plexity. Classification problems seek solutions with low rates of both false positives

and false negatives in addition to low model complexity.

Traditional optimization techniques which address these problems develop a means

of converting multiple objectives to a single objective. One example is the inclusion

of model complexity in the fitness score of a candidate solution. The efficacy of

such objective-dimensionality reduction metrics varies with the type of problem being

solved. More dangerously, objective-dimensionality reduction methods which are a

priori custom-tailored for a particular problem or domain could introduce bias [21].

However, it is possible to design an algorithm which can reduce the potential for

bias while pursuing a variety of objectives simultaneously. This form of optimization
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process is known as multi-objective optimization. A multi-objective optimization

algorithm directly considers multiple objectives and thus eliminates the need for an

objective-dimensionality reduction metric.

Unlike single-objective optimization challenges, multi-objective optimization prob-

lems may have a range of solutions which are considered optimal. The multi-objective

optimization search algorithm maintains and updates a set of optimal solutions rather

than focusing on obtaining one best solution. The set of optimal solutions is known

as the pareto-optimal front, or pareto front. An example of a pareto front is shown

in figure 2-1. This can prove advantageous when contrasted with single-objective op-

timization techniques which typically produce one candidate solution after a search

is complete. For example, multi-objective optimization applied to a regression prob-

lem would return a set of models ranging from higher error and lower complexity to

lower error and higher complexity. This provides a method to produce models which

yield desirable accuracy but are simpler than those obtained from a single-objective

optimization [5].

The inclusion of model complexity as an objective raises the possibility of using

multi-objective optimization to gauge variable importance. If a variable appears in

less complex solutions which still yield high accuracy, the variable is likely more

important than others. Similarly, this approach could be used to perform feature

selection. If a subtree appears frequently in trees which obtain high accuracy, that

subtree is a good candidate for feature extraction[18].

Multi-objective optimization allows the search process to pursue multiple optima

at once. Each member of the pareto front represents a unique optimal solution to the

multi-objective optimization problem. Each member can only be replaced if another

model dominates it in fitness-space. Section 2.2.2 provides a discussion of dominance

and the non-dominated sorting algorithm.
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Figure 2-1: An example of a pareto front. The red dots represent models which
are members of the pareto front, and the black dots represent other models under
consideration. The two objectives under minimization are shown on the two axes.

2.1.1 Multi-Objective Optimization v.s. Operator Equaliza-

tion

FlexGP 1.0 used Silva's operator equalization technique to minimize the bloating of

models [15] [6]. FlexGP 2.0 uses multi-objective optimization to achieve a similar

goal by including minimization of model complexity as an additional objective.

Multi-objective optimization provides several features which operator equalization

does not. Using multi-objective optimization reduces the risk of bias by avoiding

the need for GP to rely on a method of objective-dimensionality reduction. Multi-

objective optimization maintains a set of optimal solutions rather than a single model.

Multi-objective optimization provides another advantage over operator equaliza-

tion: a fixed number of model evaluations made per generation. The NSGA-II multi-

objective optimization algorithm, discussed in section 2.2.2, requires n model eval-

uations per generation. Operator equalization will always make at least n model

evaluations per generation but may require many multiples more to satisfy the equal-

izer. As shown in section 2.3.2 we found this to be particularly prevalent in the first
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generation. A fixed number of model evaluations per generation means the progress

and time consumption of the algorithm are more predictable.

FlexGP 1.0's operator equalization algorithm placed a constraint on the indepen-

dence of model evaluation. An equalizer was used to maintain a distribution over

model complexity. The equalizer would either accept a model into the new popula-

tion or discard the model and move on to the next. The equalizer could only consider

a single model at once, which meant new offspring must be generated, evaluated and

considered by the equalizer one at a time. This constraint presented a complication

in the parallelization of model evaluation. 1

With the introduction of multi-objective optimization as discussed in section 2,

no equalizer is required to maintain a distribution over model complexity, removing

the sequential evaluation constraint imposed by operator equalization's equalizer.

Further, the number of offspring to be bred per generation is fixed, which simplifies

parallelization and enables the use of techniques which rely on batch processing.

2.1.2 Advantages of Multi-Objective Optimization

In summary, the important advantages of multi-objective optimization are as follows:

Multiple objective functions: multi-objective optimization allows the inclusion of

any number of search objectives, which lends itself to increased flexibility.

Multiple optima: multi-objective optimization maintains a pareto front consisting

of multiple solutions which are deemed as optimal.

Diversity of Complexity: if model complexity is included as an objective, the

pareto front will represent models with a range of complexities. This demon-

strates a potential for multi-objective optimization to be an effective vehicle for

gauging variable performance and for performing feature selection.

Batch Model Evaluation: multi-objective optimization removes the sequential con-

straint imposed in FlexGP by operator equalization's equalizer, enabling the

'It is certainly possible to design an equalizer which parallelizes more naturally; that is not the
focus of this thesis.
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optimization of model evaluation through techniques like the C++ model eval-

uation discussed in chapter 3.

2.1.3 Goals of Search-Level Parallelism

The goals of search-level parallelism are to accomplish the following:

1. Enable the simultaneous pursuit of multiple objectives.

2. Yield a spectrum of optimal solutions rather than a single solution.

3. Improve the predictability of FlexGP by fixing the number of model evaluations

made per generation.

4. Show that multi-objective optimization provides performance comparable to

that of operator equalization.

2.2 Integration of Multi-Objective Optimization

Multi-objective optimization and operator equalization require different implemen-

tations of each component of the evolutionary loop. This section will describe the

implementation of multi-objective optimization used in FlexGP's core library, evogpj.

2.2.1 Objective Functions and Evaluation

The evogpj library features a simple model fitness function class hierarchy. Any class

which seeks to become an objective function by inheriting from f itness .FitnessFunction

must implement an evalPop method which assigns a fitness score to each model in

the input population. In principle any type of model evaluation can be included.

The following steps must be taken to define a custom objective function in evogpj:

1. Add an entry to the algorithm.Parameters class' Operators static class with

the new objective function's name.
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2. Define a new class which subclasses the abstract class f itness . FitnessFunct ion,

and which is defined in the f itness package.

3. Define the FITNESSKEY field to point to the new objective function's name in

algorithm.Parameters.Operators.

4. Implement the isMaximizingFunction method inside the new class, which re-

turns true if this objective should be maximized and f alse if it should be

minimized.

5. Implement the evalPop(pop) method inside the new class, which takes a pop-

ulation as input and assigns a fitness score to each individual.

6. Add support for the new objective function to the algorithm. AlgorithmBase

class' create-operators method by calling the new objective function's con-

structor and adding it to the linked hash map of fitness functions called f itnessFunction.

The create-operators method initializes the fitness functions and operators

used in evolution.

7. Add the new objective function's name to the comma-separated list of objective

function names under the parameter f itness-op in an evogpj properties file

which defines the problem at hand. Multi-objective optimization will be used if

more than one name is specified; otherwise operator equalization will be used.

This thesis focused on addressing regression challenges and therefore utilized two

fitness functions: a symbolic regression fitness function which seeks to minimize error

on a dataset, and a complexity minimizer.

The symbolic regression fitness function assigns higher fitness to models with

lower predictive error on the specified data. The mean squared error is calculated

using the 12 norm after scaling the output variable to be between 0 and 1. The scaling

allows GP to focus on replicating the correct form of equation rather than the specific

coefficients [22].

The complexity minimizer uses a subtree counting function to assess the complex-

ity of a model. Keijzer & Foster introduce this as "visitation length", remarking the
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Algorithm 1 SUBTREECOMPLEXITY(tree)

tree: a tree with unfixed arity
complexity <- 1
for subtree in CHILDREN(tree) do

complexity +- complexity + SUBTREECOMPLEXITY(subtree)
return complexity

method directly measures the degree of balance or skew in a tree [11] [22]. We refer

to this method as "subtree complexity." The calculation of the subtree complexity of

a tree as described in algorithm 1 is a simple recursive sum of the number of nodes

in every subtree of a tree.

Example Objective Function Definition: Subtree Complexity

Consider the definition of subtree complexity.

Step 1: Add the following line to the Operators static class in algorithm. Parameters:

public static final String SUBTREECOMPLEXITYFITNESS = "fitness.SubtreeComplexity";

Steps 2 - 5: The f itness. SubtreeComplexityFitness class appears in its entirety

as follows:

package fitness;

import algorithm.Parameters;

import genotype.Tree;

import gp.Individual;

import gp.Population;

* Evaluates an individual's subtree complexity

* @author Dylan Sherry

public class SubtreeComplexityFitness extends FitnessFunction {

public static final String FITNESSKEY =
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Parameters.Operators.SUBTREECOMPLEXITYFITNESS;

public Boolean isMaximizingFunction() {

return false;

}

@Override

public void eval(Individual ind) {

Tree t = (Tree) ind.getGenotypeo;

Integer complexity = t.getSubtreeComplexityo;

ind.setFitness(SubtreeComplexityFitness.FITNESSKEY,

(double) complexity);

}

@Override

public void evalPop(Population pop) {

for (Individual individual pop) {

this.eval(individual);

}

}

}

This example includes the definition of an eval method which operates on sole mod-

els. This is an optional; only the evalPop method is invoked elsewhere in evogpj.

The getSubtreeComplexity method is defined elsewhere in evogpj, and provides an

implementation of algorithm 1.

Step 6: Import the new f itness. SubtreeComplexity class in the algorithm. AlgorithmBase

class. Include a section in the algorithm.AlgorithmBase class' create-operators

method similar to:

if (f itnessOperatorName . equals (Parameters .Operators. SUBTREECOMPLEXITYFITNESS)) {
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f itnessFunct ions. put (f itnessOperatorName, new SubtreeComplexityFitness ();

Refer to the algorithm.AlgorithmBase class' create-operators method for the full

context and to see other examples.

Step 7: The fitness functions specified for this problem were: f itness-op = f itness. SRFitness .Ext

where f itness .SRFitness .ExternalData references the C++ model evaluation ob-

jective discussed further in chapter 3.

2.2.2 Learning Algorithm Modifications

We implemented NSGA-II, an elitist multi-objective optimization algorithm which

includes the previous generation's population when selecting the next generation.

NSGA-II uses the non-dominated sorting algorithm to select the next generation's

population, and uses a crowded tournament selection operator to choose which models

to breed during the generation of children [5].

Algorithm 2 provides a formal description of our implementation. The key pa-

rameters of the algorithm are the population size N, the list of fitness functions f, a

method B by which to select the best model and a stopping criterion STOP.

The specification of objective functions is detailed in section 2.2.1. The options for

the method B for selecting the best model are described in this section. The stopping

criterion may be a desired number of generations to run, a desired maximum elapsed

runtime or a desired fitness threshold at which to stop if a model is found which

exceeds the threshold.

Initialization

" First an initial population of size N is generated using Koza's ramped-half-and-

half [12].

* Each model in the initial population is then evaluated by all fitness functions

in f and assigned a non-domination rank and crowding distance.
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* The initial population is sorted so that the best models are at the beginning of

the population.

* A single best model is chosen to be reported as the primary model obtained

from the initial population using selection method B. The model is scaled to

fit the output variable via linear regression and is exported to the user.

Each Generation

While the stopping criterion is not met, the algorithm is allowed to advance another

generation. During each generation:

" A set of N children are generated from the current population, using crowded

tournament selection to pick which parents are allowed to reproduce.

" The children are evaluated by each fitness function and combined with the

previous generation's population to form a population of size 2N. The mixing

of parents and children is a form of archiving.

" The models in the 2N population are each given a non-domination rank and a

crowding distance, and the population is sorted.

" The next generation's population is then obtained by keeping the top N of the

2N models.

" A single best model is chosen to be reported as the primary model obtained

from the current generation using selection method B. The model is scaled to

fit the output variable via linear regression and is exported to the user.

FlexGP scales the output variable to span the range [0, 1] so GP can focus on

learning the shape of the relation described in the data [21], as discussed in appendix

D. Models are represented internally in their unscaled form for learning. To obtain

an external representation of a model FlexGP performs simple linear regression to

find a best fit between the models' scaled predictions and the original unscaled output
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Algorithm 2 NSGA-II MULTI-OBJECTIVE OPTIMIZATION (N, f, B, STOP)
N: size of population, f: list of M fitness functions
B: a method by which to select the best model, STOP: a stopping criterion
pop s- INITIALIZE(n)

for function in f do
EVAL(pop,function)

CALCULATENONDOMINATIONCOUNT(pop)

CALCULATECROWDINGDISTANCES(pop)

SORT(pop)

best +- SELECTBEST(pop,B)

scaledBest +- SCALEMODEL(best)

while not STOP do
children +- BREEDCHILDREN(pop)

for function in f do
EVAL(children,f unction)

total <- pop + children
CALCULATENONDOMINATIONCOUNT(total)

CALCULATECROWDINGDISTANCES(total)

SORT(total)

pop +-total [0, N - 11
best +- SELECTBEST(pop,B)

scaledBest <- SCALEMODEL(best)

variable. FlexGP provides fast model scaling which is compatible with both the Java

and C++ model evaluation schemes.

The user can elect to save all models from the pareto front for each generation.

In this case all models are scaled before they are exported from FlexGP.

Non-Dominated Sort

Single-objective optimization algorithms rank models by their performance on the

sole objective under consideration. A multi-objective optimization algorithm must

consider all objectives when determining a ranking of models. Further, as there is

no implicit absolute ordering of models in a multi-objective optimization problem,

multiple models may be determined to represent optimal solutions. Multi-objective

optimization requires a substantially more complex method of sorting to identify the

set of optimal models.

The non-dominated sorting algorithm is the heart of multi-objective optimiza-

tion. Non-dominated sorting identifies the set of optimal models (which is referred

to as the pareto front) and subsequent fronts by calculating the domination count
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Algorithm 3 CALCULATENONDOMINATIONCOUNT(pop, f)
pop: a population of size N
f: a list of M fitness functions
for a in 1 to N do

modelA <- pop[a]
for b in 1 to N s.t. a $ b do

IB (- pop[b]
if DOMINATION(modelA,modelB,f) then

INCREMENTDOMINATIONCOUNT(modelB)
else if DOMINATION(modelB,modelA,f) then

INCREMENTDOMINATIONCOUNT(modelA)
else if IDENTICAL(modelA,modelB) then

if a < b then
INCREMENTDOMINATIONCOUNT(modelB)

else
INCREMENTDOMINATIONCOUNT(modelA)

Algorithm 4 DOMINATION(modelA, modelB, f)
modelA and modelB: models to compare, f: a list of M fitness functions
for function in f do

fitnessA <- GETFITNESS(modelA,f unction)
fitnessA - GETFITNESS(modelA,f unction)
if fitnessA > fitneSSB then

return false;

of each model, as shown in algorithm 3. The non-dominated sorting algorithm spec-

ified here is not, strictly speaking, a sorting algorithm, but rather calculates the

non-domination count of each model to be used in the model sorting and selection

described later in this section. Our non-dominated sorting algorithm is an adapta-

tion of Deb's O(MN2 ) algorithm [5]. Our algorithm removes the additional step of

calculating each model's front number, as the non-domination count represents the

minimum information needed for ranking a population.

The calculation relies on a dominance relation between two models. As shown

in algorithm 4, the dominance relation stipulates model modelA dominates modelB

if and only if modelA performs equivalent to or better than modelB for all objec-

tives, and strictly better than modelB for at least one objective. The references to

GETFITNESS(model,function) access the memoized fitness computed prior to the

non-dominated sorting.
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Crowded Tournament Selection

Tournament selection methods are those used to select a parent or parents from a

population in order to breed children to be considered for inclusion in the next gen-

eration's population [7]. A simple implementation of a binary tournament selection

procedure is as follows, parameterized by the tournament size:

1. Randomly select a model from the population to be the initial winner of the

tournament.

2. Randomly select a challenger from the remaining population. If the challenger's

fitness is better than the current tournament winner's fitness, the challenger is

now the winner of the tournament.

3. Repeat step 2 until the number of challengers which have been considered is

equal to the tournament size parameter, after which return the winning model.

Traditional tournament selection compare fitness values obtained from a single

objective. We must adopt an adaptation of tournament selection which can handle

multiple objectives.

A simple tournament selection method which can function in multi-objective op-

timization can be designed by using the non-domination count previously calculated

by non-dominated sorting. In step 2 of the above single-objective tournament se-

lection process we compared fitnesses to determine the winner. We introduce the

following modification to step 2: first compare the models' non-domination rank. If

the non-domination ranks are different, select the model with the more favorable

rank. Otherwise if the non-domination ranks are equivalent, the non-dominated sort

has deemed the two models as equivalently optimal, so we select the best model at

random.

There is an important nuance to consider. Selection naturally reduces diversity of

models being considered, relying on variation, the subsequent step in an evolutionary

algorithm, to increase the diversity. In multi-objective optimization, when the models

which compose the pareto front are densely packed in one region of the fitness space,
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it is likely the models are also closely situated in the search space. However, to

fully benefit from search-level parallelism the search process should consider a set

of areas of the search space which are as diverse as possible. For this reason it is

desirable to maintain a pareto front whose models are as evenly spaced as possible,

thus maximizing the diversity of activity in the search space.

Crowded tournament selection provides a method to favor models in a population

which are the most distant or isolated and therefore represent the most diverse and

desirable search points to pursue. To use the crowded tournament selection operator

during the selection step of GP, each model is first assigned a crowding distance

which indicates the density of population of the region surrounding that member.

The crowded tournament selection then favors models with a better non-domination

count and a better crowding distance [5].

Algorithm 5 describes the calculation of crowding distances. The underlying prin-

ciple of the crowding distance calculation is that a model's crowding distance is equal

to the product of the distances between its neighbors along each of the M objectives

under consideration. This describes the volume of the largest possible M-dimensional

hypercube in fitness-space which touches at least one neighbor per face, where M in-

dicates the number of objectives under consideration. A larger crowding distance

indicates a greater distance between the model in question and its neighbors, and is

therefore more desirable.

The subroutine SORTBYFITNESsFUNCTION(pop,function) takes as input a pop-

ulation of models and an objective function, and returns the indices of the population

sorted from best to worst along the objective indicated by the objective function. No

model evaluations are made in the crowding distance algorithm; the memoized fitness

values are accessed by the procedure GETFITNESS(model,function).

Once the crowding distances have been calculated for each model in the popula-

tion, the crowded tournament selection method is as follows:

1. Randomly select a model from the population to be the initial winner of the

tournament.
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Algorithm 5 CALCULATECROWDINGDISTANCE(pop, f)
pop: the population of size N on which to operate, f: a list of M fitness functions
for i in [0,1,..., (N - 1)] do

model.crowdingDistance <- 0
for function in f do

sortedIndices +- SoRTBYFITNESsFUNCTION(pop,function)
for i in [0,1,..., (N - 1)] do

index +- sortedIndices[i]
model +- pop[index]
if (index = 0) 11 (index = N - 1) then

distance function +- MAX-DIST
else

prevModel +- pop[index - 1]
nextModel <- pop[index + 1]
distancefunction <- ||G ETFITNEsS(nextModel,f unction)-G ETFITNESs(prevModel,f unction) |

model.crowdingDistance +- model.crowding Distance + distance function

2. Randomly select a challenger from the remaining population. If the challenger's

non-domination rank is better (smaller) than the current tournament winner's

non-domination rank, the challenger is now the winner of the tournament. Else

if the non-domination ranks are equivalent, the model with the better (larger)

crowding distance is the new tournament winner.

3. Repeat step 2 until the number of challengers which have been considered is

equal to the tournament size parameter, after which return the winning model.

Model Selection Criterion and Population Sorting

After each model has been assigned a non-domination rank and a crowding distance,

the combined population of size 2N is sorted in order to choose the best N models

to become the next generation's population. The best model is found at the top of

the population after sorting. Sorting the population also makes it easy to identify

the best b models to send for migration, which will occupy the top b positions in the

population after sorting.

Once the previous sort has been performed FlexGP must choose a model to record

as the best of that generation. In the single-objective case the best model is simply

the model with the best fitness; multi-objective optimization yields multiple optimal

solutions which means a new strategy is needed. Multiple migrants must be selected
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if FlexGP has been asked to perform migration, so FlexGP must also provide a means

of selecting a variable number of best models from the population.

FlexGP includes the option of recording the entire pareto front if running multi-

objective optimization, but a best model must still be identified.

FlexGP handles this by sorting the population according to a user-specified strat-

egy. The three strategies are defined below.

A. Original Sort

The simplest solution is the original sort method, which preserves the sort originally

made as described above, where models are sorted by non-domination count and,

within each front, by crowding distance.

Preserving an ordering by non-domination rank is desirable for this selection,

since multi-objective optimization deems the pareto front and subsequent fronts to

contain the most optimal models. However, secondary sort by crowding distance

may not provide the best outcome. Crowding distance favors models who are the

most distant and therefore in conjunction represent the most diverse solutions. An

alternative selection metric would address the tradeoff between objectives naturally

made in multi-objective optimization.

B. Best Fitness

The bestfitness selection method sorts models within each front by fitness rather

than crowding distance. This selection method ignores any objectives other than

the one which was listed first and therefore identified as the primary objective for

bestfitness selection. To select the best model the bestfitness method picks the

model from the pareto front which has the highest fitness. The best model from the

pareto front must be the best in the population along the first objective because it

represents one extreme of the pareto front. In the case of the two-objective regression

problem discussed in this thesis, this corresponds to selecting the model with the

lowest MSEtain in the population.
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Figure 2-2: An example of using the euclidean distance to find the knee of a pareto
front. The red dots represent models which are members of the pareto front, and
the black dots represent other models under consideration. The two objectives under
minimization are shown on the two axes. The euclidean distance of several models
is shown by the diagonal dotted lines, where the blue dot shows the model with the
lowest euclidean distance (the "knee").

C. Euclidean Distance

FlexGP provides a third option for a selection criterion called euclidean distance.

The euclidean distance selection metric sorts models primarily by non-domination

rank, as in the original sort method, and uses the model's distance from the origin in

fitness-space as the secondary sort. Euclidean distance favors models which are near

the "knee" of the front, as depicted in figure 2-2 [3].

Algorithm 6 describes the calculation of the euclidean distance of each model

within a population. The first step is to identify the minimum and maximum values

of the population's models for each objective. Then a model's euclidean distance is

given by the sum of the squares of the models' distances from the origin for each

objective, after normalization to place each distance between 0 and 1 according to

the objective's minimum and maximum values within the population.
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Algorithm 6 CALCULATEEUCLIDEANDISTANCE(pop, f)
pop: the population of size N on which to operate, f: a list of M fitness functions
for i in [0, 1,..., (N - 1)] do

model.euclideanDistance <- 0
for function in f do

(minfunction, maxfunction) +- FINDMINANDMAX(pop,f)

rangefunction - maxfunction - minf unction
for i in [0, 1,...,(N - 1)] do

model <- pop[index]
fitnessScorefunction <-GETFITNESS(modelf unction)

s+ ( fitnessScoreP.n tor -minfun\tion 2
distance function rangef. T)on
model. euclideanDistance +- model. euclideanDistance + distancefunction

2.3 Demonstration

This section presents experiments conducted to determine if FlexGP 2.0's search-level

parallelism has met the goals outlined in section 2.1.3.

2.3.1 Experimental Setup

Four experiments were conducted with FlexGP operating with the following configu-

rations:

Experiment 1: Operator equalization with a simple function set

Experiment 2: Multi-objective optimization with a simple function set

Experiment 3: Operator equalization with a complex function set

Experiment 4: Multi-objective optimization with a complex function set

Table 2.1 shows the two function sets used in these experiments.

Table 2.1:

Simple + - * /
Complex + - * / exp log sqrt square sin cos

The two function sets used in the four experiments described in this
section. The log function was defined to return 0 if the input would otherwise produce

an undefined output.

To provide a fair comparison between the four experiments, all were conducted

with Java-based model evaluation. C++ model evaluation was not used because
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evogpj's implementation of operator equalization was not modified to support it.

The focus of this thesis at an algorithmic level was on increasing the speed of multi-

objective optimization; further, operator equalization imposes constraints on model

evaluation which make batch processing unfavorable, as discussed at the end of section

2.1.1. To compensate for the slow speed of Java-based model evaluation FlexGP was

allowed to train for 48 hours in each experiment.

For multi-objective optimization the bestfitness metric discussed in section 2.2.2

was used to determine the best model. The bestfitness metric when applied to

multi-objective optimization ignores the second objective, subtree complexity, and

selects the model with the best fitness along the primary objective. This means both

multi-objective optimization and operator equalization identified their best model per

generation as that with the highest fitness and therefore the lowest MSEtain.

In each repetition of each experiment the learner given access to a different 70%

training data split. No population-level or factorization-level parallelism was used.

Experiments 1 and 2 both used a simple function set, and experiments 3 and 4

both used a complex function set. This was done to investigate what effect the func-

tion set might have on the comparison of multi-objective optimization and operator

equalization.

All experiments were conducted on the Million Song Dataset year prediction chal-

lenge, which is described in appendix A. Each experiment was repeated 10 times to

demonstrate statistical validity. The salient information collected from each genera-

tion of each trial includes the elapsed time, the number of model evaluations made

and the MSEtest and MAEtest of the best model.

2.3.2 Results

Table 2.2 shows the mean and standard deviation of the number of model evaluations

made in the first generation of each experiment.

Table 2.3 shows the mean number of evaluations and the mean and standard

deviation of the number of generations per model evaluation. The table also shows the

mean and standard deviation of the number of model evaluations made per generation.

39



Therefore a lower mean("") indicates more evaluations were made per generation.

Figure 2-3 shows the mean MSEtest and MAEtest v.s. time for experiments 1 and

2. Figures 2-4 show the mean MSEtest and MAEtest v.s. time for experiments 3 and

4. Table 2.4 shows the same results in tabular form. This represents an Elapsed Time

comparison as defined in section 1.3.

Fitevals: figure 2-5 shows the mean MSEtest and MAEtest v.s. the elapsed number

of model evaluations for experiments 1 and 2. Figures 2-6 show the mean MSEtest

and MAEtest v.s. time for experiments 3 and 4. Table 2.5 shows the same results in

tabular form. This represents an Elapsed Model Evaluations comparison as defined

in section 1.3.

Experiment mean(model evaluations) stddev(model evaluations)
1 3223.3 246
2 1000 0.0
3 73175.6 36665.9
4 1000 0.0

Table 2.2: The average and the standard deviation of the number of model evalua-
tions made during the first generation for 10 trials of the four experiments described
in section 2.3.1.

Expt mean(evals) mean(gens) stddev(gens) mean(""') stddev(e )
1 133491 36.6000 7.6768 3725.2 526.8
2 145900 145.9000 30.1347 1000 0
3 155306 29.1429 8.9336 5937.3 2517.3
4 138440 138.4444 32.9777 1000 0

Table 2.3: Generation statistics are shown for the four experiments from section
2.3.1. The 2nd column shows the mean number of model evaluations made over the
course of each repetition of the experiments. The 3rd and 4th columns show the
mean and standard deviation of the number of generations elapsed during the model
evaluations indicated in the second column. The 5th and 6th column show the mean
and standard deviation of the number of generations per model evaluation.

2.3.3 Analysis

The results show multi-objective optimization gives a slight benefit in performance

relative to operator equalization when the simple function set is used, as shown in
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mean(MSEtest) 117.456 116.420 115.249 114.753 114.506 113.876
stddev(MSEtest) 3.216 3.120 3.610 3.748 3.811 4.025

Expt. 1 mean(MAEtest) 8.095 8.050 7.992 7.969 7.959 7.931
stddev(MAEtest) 0.092 0.103 0.156 0.166 0.172 0.173
mean(MSEtest) 117.046 115.113 114.487 113.835 113.515 113.375

2 stddev(MSEtest) 3.615 4.145 4.556 4.762 4.901 4.984
Expt. mean(MAEtest) 8.087 7.989 7.961 7.940 7.927 7.922

stddev(MAEtest) 0.129 0.217 0.221 0.230 0.238 0.239
mean(MSEtest) 118.107 117.186 116.079 113.600 112.316 110.740

3 stddev(MSEtest) 2.232 3.427 4.936 5.128 5.530 5.497
Expt. mean(MAEtest) 8.168 8.100 8.036 7.896 7.814 7.733

stddev(MAEtet) 0.104 0.175 0.265 0.248 0.291 0.309
mean(MSEtest) 117.237 114.592 113.609 112.782 112.045 111.561
stddev(MSEtest) 3.690 6.168 6.840 7.357 7.614 7.851

Expt. 4 mean(MAEtest) 8.101 7.968 7.901 7.864 7.824 7.806
stddev(MAEtet) 0.130 0.266 0.304 0.337 0.352 0.359

Table 2.4: The average and the standard deviation of the MSEtest and MAEtest v.s.
the elapsed time (in hours) for 10 trials of the four experiments described in section
2.3.1.

Figure 2-3. For experiments 3 and 4 which were conducted with the complex function

set Multi-objective optimization outperforms operator equalization for most of the

time, but operator equalization eventually begins to yield higher accuracy than multi-

objective optimization, as shown in Figure 2-4.

The fitness evaluation plots from figure 2-5 and figure 2-6 show no dramatic differ-

ence to the time-series plots, which suggests operator equalization and multi-objective

optimization were roughly matched in terms of the overall number of fitness evalua-

tions made in 48 hours. This is corroborated by Table 2.3.

The final MSEtest was lower for both operator equalization and multi-objective

optimization when operating with the complex function set. This indicates a more

complex function set provides a better fit on the MSD year recognition challenge.

These results indicate multi-objective optimization will generally yield better per-

formance than operator equalization in the same time. No further statement can be

made about the performance of the two algorithms' accuracy with respect to time,

as the reported performance likely has a high dependence on the specific characteris-

tics of the data. Yet the fact that multi-objective optimization was able to compare
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mean(MSEtest) 117.362 116.164 115.004 114.501 113.876 113.876
stddev(MSEtest) 3.309 3.163 3.741 3.842 4.025 4.025

Expt. 1 mean(MAEtest) 8.091 8.036 7.978 7.958 7.931 7.931
stddev(MAEtest) 0.095 0.107 0.162 0.173 0.173 0.173
mean(MSEtest) 116.404 114.986 114.278 113.673 113.387 113.375
stddev(MSEtest) 3.656 4.126 4.730 4.861 4.991 4.984

Expt. 2 mean(MAEtest) 8.054 7.977 7.953 7.933 7.922 7.922
stddev(MAEtest) 0.162 0.215 0.232 0.239 0.239 0.239
mean(MSEtest) 118.301 117.011 116.054 113.473 112.144 110.911

stddev(MSEtet) 2.031 4.104 4.988 6.102 6.235 5.718
Expt. 3 mean(MAEtest) 8.189 8.083 8.036 7.902 7.807 7.741

stddev(MAEtest) 0.100 0.224 0.265 0.331 0.321 0.321
mean(MSEtest) 116.600 114.148 113.096 112.403 111.806 111.561

stddev(MSEtest) 3.831 5.964 6.800 7.180 7.649 7.851
mean(MAEtest) 8.066 7.935 7.877 7.847 7.815 7.806
stddev(MAEtest) 0.173 0.253 0.310 0.333 0.349 0.359

Table 2.5: The average and the standard deviation of the MSEtest and MAEtest
v.s. the elapsed number of model evaluations for 10 trials of the four experiments
described in section 2.3.1.

with operator equalization on an experiment of this size and complexity suggests the

other advantages of multi-objective optimization over operator equalization indicate

multi-objective optimization is generally a better option when time is valued.

Table 2.2 shows an important characteristic. For the simple function set operator

equalization consumed on average over three times as many fitness evaluations in the

first generation as did multi-objective optimization. For the complex function set

operator equalization consumed on average over 73 times as many fitness evaluations

in the first generation as did multi-objective optimization. Further, the standard

deviation was quite high. This can also be seen in the time and model evaluation

plots. The natural conclusion is that operator equalization will always take a long

time to set up a distribution over model size, which is undesirable. Multi-objective

optimization, on the other hand, will always make 1000 evaluations per generation.

Therefore multi-objective optimization is a better choice when results are desired

quickly.

These results suggest a strategy for benefiting from both algorithms: run the first

few generations with multi-objective optimization, then switch to operator equaliza-
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tion once the population reflects a distribution over model complexity. That way

MOO sets up a complexity distribution so operator equalization won't consume tens

of thousands of model evaluations in the first generation. Once multi-objective op-

timization has set up a desirable complexity distribution, operator equalization can

take over.

To summarize, the results in this section in combination with the description of

the design in the previous section demonstrate multi-objective optimization has met

all the goals originally stipulated in section 2.1.3:

1. Enable the simultaneous pursuit of multiple objectives.

2. Yield a spectrum of optimal solutions rather than a single solution.

3. Improve the predictability of FlexGP by fixing the number of model evaluations

made per generation.

4. Show that multi-objective optimization provides performance comparable to

that of operator equalization.
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Average MSEtest v.s. elapsed time for ten repetitions of two experiments

0 Operator Equalization, simple func
A Multi-Objective Optimization, simple func

0 5 10 15 20 25
Time (hours)
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elapsed time for search-parallel experiments 1 and

Average MAEtest v.s. elapsed time for ten repetitions of two experiments

0 Operator Equalization, simple func
A Multi-Objective Optimization, simple func

5 10 15 20 25
Time (hours)
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(b) mean(MSEtest) v.s. elapsed time for search-parallel experiments 1 and
2

Figure 2-3: A comparison of the mean(MSEtest) v.s. elapsed model evaluations
for search-parallel experiments 1 and 2 described in section 2.3.1, which ran with a
simple function set.
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Average MSEtest v.s. elapsed time for ten repetitions of two experiments
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Figure 2-4: A comparison of the mean(MSEtest) v.s. elapsed time for search-parallel
experiments 3 and 4 described in section 2.3.1, which ran with a complex function
set.
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Figure 2-5: A comparison of the mean(MSEtest) v.s. elapsed model evaluations
for search-parallel experiments 1 and 2 described in section 2.3.1, which ran with a
simple function set.
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Figure 2-6: A comparison of the mean(MSEtest) v.s. elapsed model evaluations
for search-parallel experiments 3 and 4 described in section 2.3.1, which ran with a
complex function set.
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Chapter 3

Evaluation-Level Parallelism

Evaluation-level parallelism distributes the computation of models' fitnesses to mul-

tiple CPUs. This distribution dramatically reduces the runtime of FlexGP's core

GP learner, allowing learning to occur with data of a size and complexity which was

previously intractable.

Chapter 2 saw FlexGP 1.0's Java-based model evaluation perform under 180k

model evaluations on average in 48 hours. The results from this section show the

same number of model evaluations made in the first 15 minutes of computation when

evaluation-level parallelism is activated, with an ultimate average of almost 16 million

model evaluations made over a 3-hour period.

3.1 Motivation and Goals

Model evaluation is typically the fundamental bottleneck in GP, and in EAs in general

[8]. Figure 3-1 shows a standard evolutionary loop which was used in FlexGP 1.0.

Model evaluation represents the most computationally expensive component of the

loop.

There are four primary reasons why model evaluation is the most time-consuming

step of GP. They are enumerated as follows:

Data Length: A model must be evaluated against all training cases in order to
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Initialization Evaluation
(Java)

Selection

Variation'

Figure 3-1: This figure visualizes the standard evolutionary loop used by FlexGP
1.0. Each labeled box represents a step in the loop. FlexGP 1.0 performs model
evaluation in Java. The blue path shows the flow of each population of models
through the algorithm during each generation. In FlexGP the beginning of each
generation occurs before the variation step.

assign the model a fitness score. As a result the number of points in the training

data contributes linearly to the time spent on model evaluation.

Data Width: If we can assume a sizeable majority of the features in the data set

are uncorrelated and possess a similar level of information content, it is highly

likely the trees produced by GP will reference most features. The trees will

become exponentially more complex as the number of features in the training

dataset increases. Therefore the resulting trees will require an exponentially

greater amount of time to evaluate.

Data Complexity and Operator Set: Any dataset which possesses a complex re-

lationship between input and output variables will require models of still greater

complexity to find accurate solutions. More nonlinear operators like the log-

arithm, trigonometric functions and exponentials can be included to address

more complex datasets, at the expense of more time spent on evaluation.

Population Size: Each new model generated must be evaluated in order to be con-

sidered for addition to the population. The number of model evaluations per

generation must be on the order of the population size.
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The four dimensions of scale listed above represent important gateways which will

boost GP's search capabilities. External to time, the performance of GP generally

benefits from access to richer data of greater length, width and complexity. GP's

performance also improves with larger population size, as we demonstrate in chapter

4. Careful attention to model evaluation can enable GP to tackle problems which

have increased in scale along any of these four dimensions. Therefore it is important

to increase the speed of model evaluation as much as possible when constructing a

system to perform GP.

FlexGP 2.0 addresses model evaluation in two parts:

C++ Model Evaluation : FlexGP 2.0 converts a batch of models to be evaluated

into a C++ program with a series of function declarations. The C++ program

is compiled and run to obtain models' fitness values. We demonstrate the export

of model evaluation to C++ provides a significant increase in the rate of model

evaluation relative to the rate of model evaluation in Java.

C++ Shared Memory Multithreading: The previous C++ program is modified

to divide the evaluations amongst multiple threads. To benefit from multi-

threading, execution occurs on a machine with multiple CPUs. Parallelization

is a natural means of speeding up model evaluation. GP is more easily par-

allelizable than many search and optimization techniques due to the strong

abstractions provided by the evolutionary loop. In particular, a GP algorithm's

population is composed of a large set of models which each represent a point

of current pursuit in the search space. The models are fully independent from

one another and thus can be evaluated independently. Figure 3-2 depicts the

evolutionary loop with the inclusion of evaluation-level parallelism.

In summary, FlexGP's evaluation-level parallelism provides parallelization of model

evaluation via simple multithreading. The goal of model evaluation parallelization is

to increase the speed of the algorithm.
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Figure 3-2: This figure visualizes FlexGP 2.0's new evolutionary loop after the intro-
duction of evaluation-level parallelism. Each labeled box represents a step in the loop.
The four "Eval" boxes represent FlexGP 2.0's parallelized C++ model evaluation .
The blue path shows the flow of each population of models through the algorithm
during each generation. In FlexGP the beginning of each generation occurs before
the variation step.

3.2 Integration of Evaluation-Level Parallelism

FlexGP's parallelization of model evaluation consists of two components. The first

is the transferral of evaluation from FlexGP's native language of Java to C++. The

second component is the addition of multithreading to the C++ model evaluation .

The changes made to support evaluation-level parallelism are encapsulated in the

evogpj library.

3.2.1 C++ Model Evaluation

FlexGP's C++ model evaluation introduces a new evaluation workflow. C++ model

evaluation processes models in batches rather than in sequence. In FlexGP 2.0 the

batch under evaluation is the set of children generated from the previous generation's

population.

To support C++ model evaluation FlexGP must load training data into a shared

memory region. This makes the data accessible by the C++ evaluation program and

preserves the data in memory between evaluations to avoid repeatedly incurring the
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overhead associated with loading the data.

The fitnesses of a new batch of children are calculated every generation. The

procedure for performing the calculation is as follows:

1. Translate each model into a series of sequential operations.

2. Compose a single C++ program which

A. Defines each model as a separate function consisting of sequential oper-

ations determined in step 1.

B. Invokes each model's function to evaluate the model on all training data

points, storing the obtained fitness in a global array.

C. Writes the fitness of each model to file.

3. Write the C++ code to file.

4. Compile the C++ code.

5. Run the resulting C++ binary.

6. Read the results from disk back into Java. 1

Of the steps described above, the only two which require a non-negligable quantity

of time to complete are the compilation of the C++ source and running the C++

binary, of which the latter is discussed in section 3.3. Under C++ model evaluation

FlexGP must compile the evaluation code each generation. The compilation time

depends primarily on the number of models. Each FlexGP 2.0 learner is typically

operated with a fixed population size of 1,000 models, which means compilation time

can be viewed as a constant rather than variable cost in time. The average duration of

the compilation time across the 10 repetitions of experiment 2 from section 3.3, which

was run with a population of 1,000 and non-multithreaded C++ model evaluation

was 5.9 seconds.

'This could have been done via shared memory instead of on disk. But the time spent reading
and writing results was measured to be insignificant compared to the time consumed by evaluation.
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To reduce the amount of memory and time consumed by model evaluation, data is

stored in shared memory using the float type rather than the double type. Repre-

senting the data with float results in a slight decrease in the precision of the fitness

calculation. This is acceptable since the purpose of model evaluation is to provide

a method of comparison between models. A minute decrease in precision can only

affect the comparison of models who are already closely situated in fitness-space. A

mistake in comparison of such models will not have an explicitly positive or negative

effect on the search.

3.2.2 Adding Shared Memory Multithreading

The procedure described in the previous section requires little modification to sup-

port multithreaded model evaluation. Below follows a modified version of the steps

described in section 3.2.1:

1. Translate each model into a series of sequential operations.

2. Compose a single C++ program which

A. Defines c pthreads, and assign as equal a number of models as possible

to each pthread.

B. Passes each pthread a pointer to a global array in which to save the

resulting fitness scores.

C. Passes each pthread a pointer to the training data, located in shared

memory.

D. Within each pthread, defines each of the pthread's models as a separate

function consisting of sequential operations determined in step 1.

E. Defines the main method of each pthread to invoke each of that pthread's

models' function, saving the resulting fitness scores to the global array.

F. Start each pthread.

G. Once all pthreads have been joined with the main thread, writes the

global array containing each models' computed fitness to file.
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3. Write the C++ code to file.

4. Compile the C++ code.

5. Run the resulting C++ binary.

6. Read the results from disk back into Java. 2

Each pthread contains the definitions of at least ["j models, where n indicates

the population size and c denotes the number of pthreads. The definitions of the

remaining n mod c models, if any, are each assigned to different pthreads. In effect

each pthread gets an equal number of models.

It is safe to assume each pthread receives models which have on average the same

complexity, since the population sort method from section ?? sorts the population

first by fitness and then by crowding distance. Balancing the load of each pthread

ensures all pthreads will complete their designated evaluations at about the same

time.

Multithreading will only result in a noticeable performance benefit if the compu-

tation is performed on a machine with multiple cores. Otherwise the multithreaded

computation will evaluate the entire population in sequence rather than in parallel.

Apart from the runtime of the compiled C++ binary, none of the above steps

consume significantly more time when multithreading is enabled. The compile time

was averages across the 10 repetitions of experiment 3 in section 3.3, which was run

with a population of 1,000 and multithreaded C++ model evaluation . The average

compile time with multithreading was found to be only several tenths of a second

greater than the average compile time observed without multithreading in section

3.2.1.

2This could have been done via shared memory instead of on disk. But the time spent reading
and writing results was measured to be insignificant compared to the time consumed by evaluation.
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3.3 Demonstration

In this section we experimentally establish the value of evaluation-level parallelism by

demonstrating the speedup offered by C++ model evaluation and by the addition of

multithreading.

3.3.1 Experimental Setup

We compare the performance of FlexGP operating under the following conditions:

Experiment 1: Java-based model evaluation running on a single-core machine.

Experiment 2: C++ model evaluation running on a single-core machine.

Experiment 3: Multithreaded C++ model evaluation running on a four-core ma-

chine with four pthreads.

All experiments were conducted on the Million Song Dataset year prediction chal-

lenge, which is described in appendix A. Each experiment was repeated 10 times

to demonstrate statistical validity. During each repitition FlexGP was allowed to

train for three hours. The information collected from each generation of each trial

includes the elapsed time, the number of fitness evaluations made and the MSEtest

and MA~test of the best model. The euclidean distance metric discussed in section

2.2.2 was used to determine the best model.

3.3.2 Results

Results are presented in two sections:

Time Decrease: results which demonstrate the speedup achieved by C++ model

evaluation .

Performance Increase: results which demonstrate the improvement in accuracy

afforded by an increase in evaluation speed.
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To best illustrate the contrast between the experiments' results, the y axis of

our plots show the gain in MSEtest and gain in MAEtet rather than the actual

MSEtest and MAEtest. This allows all curves to originate for the origin, which makes

the change in MSEtest and in MAEtest readily apparent. We define the gain in

MSEtest or MAEtest to be the result of subtracting the curve from the MSEtest or

MAEtest indicated by the curve's first plotted point in time. The starting MSEtest

and MAEtest of all three experiments was determined to be equivalent on average,

which legitimizes this comparison.

Time Decrease

Figure 3-3 shows the average number of model evaluations made over time. Each

point was calculated by finding the number of elapsed model evaluations made before

a given time for each node, and calculating the average of the 10 resulting values.

The standard deviation values included in table 3.1 were obtained by calculating the

standard deviation of the 10 resulting values.
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Expt. I mean(#fitevals) 0.0010 0.0060 0.0150 0.0252 0.0337 0.0452
stddev(#fitevals) 0.0000 0.0000 0.0000 0.0036 0.0056 0.0063

Expt. 2 mean(#fitevals) 0.0415 0.6676 1.8756 3.5414 5.2962 7.3216
stddev(#fitevals) 0.0130 0.2097 0.5555 1.0980 1.7062 2.6255

Expt. 3 mean(#fitevals) 0.1951 1.8364 4.0261 6.8575 9.8419 13.3160
stddev(#fitevals) 0.0669 0.6918 1.7077 3.0842 4.5847 6.2919

Table 3.1: The average and the standard deviation of the number of fitness evals
v.s. time for 10 trials of experiments 1, 2 and 3. All values are given in units of
millions of fitness evaluations.

Performance Increase

Figure 3-4 shows the average MSEtest and MAEtest of the best model from each trial.

Each point was calculated by finding a model which scored the highest MSEtest

or MAEtest on the test data for each node, and calculating the average of the 10

resulting values. The standard deviation values included in table 3.2 were obtained

by calculating the standard deviation

Table 3.2:

of the 10 resulting values.

The average and the standard deviation of MSEtest and MAEt,,t v.s.
time for 10 trials of experiments 1, 2 and 3.

3.3.3 Analysis

Figure 3-3 confirms that C++ model evaluation runs significantly faster than Java-

based evaluation, and that multithreaded C++ model evaluation runs about twice as
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mean(MSEtest) 0.0000 0.0370 0.2820 0.2890 0.3030 0.3490

Expt. I stddev(MSEtest) 0.0000 0.1067 0.4384 0.4339 0.4328 0.4214
mean(MAEtest) 0.0000 0.0145 0.0494 0.0557 0.0568 0.0699
stddev(MAEtest) 0.0000 0.0454 0.0668 0.0646 0.0652 0.0658
mean(MSEtest) 0.1310 1.1710 2.2100 2.6730 3.0020 3.5540

Expt. 2 stddev(MSEtet) 0.4073 2.0266 2.6097 3.3430 3.3986 3.5623
mean(MAEtest) 0.0095 0.0444 0.0890 0.1147 0.1272 0.1598
stddev(MAEtest) 0.0299 0.0921 0.1285 0.1709 0.1716 0.1776
mean(MSEtest) 1.0330 5.0410 6.4930 7.6570 8.0340 8.8470

Expt. 3 stddev(MSEtest) 1.6018 2.3680 2.6770 2.6156 2.6821 2.7008
mean(MAEtest) 0.0473 0.2167 0.2881 0.3535 0.3781 0.4246

stddev(MAEtest) 0.0818 0.1366 0.1666 0.1697 0.1813 0.1877

Metric 30min 60min 90min 120min 150min 180minI

Metric 30min 60min 90min 120min 150min 180min
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Figure 3-4: A comparison of the gain in MSEtet and of the gain in MAEtet of the
three evaluation-parallel experiments.
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fast as C++ model evaluation with no multithreading.

Figure 3-4 confirms that the boost in speed from C++ model evaluation ultimately

results in more accurate results, and that multithreaeded C++ model evaluation

performs noticeably better than C++ model evaluation with no multithreading.

These facts in conjunction mean that multithreaded C++ model evaluation has

has satisfied the sole goal of evaluation-level parallelism outlined in section 3.1, and

that multithreaded C++ model evaluation represents a significant augmentation of

FlexGP's capabilities.
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Chapter 4

Population-Level Parallelism

Population-level parallelism adds a second tier of computational resources to FlexGP

by replacing each factor-parallelized GP learner with a sub-network of learners given

the same factorized data and parameters. Under the factor-parallel layer, each

learner is given a different factorization of the data and other parameters to train on;

FlexGP's population-level parallelism replaces that sole learner with a sub-network

of learners each running on an independent machine. This arrangement is shown in

figure 4-1. These population-parallelized learners periodically communicate their best

models to other learners in the same sub-network. The transmission of best models

is referred to as migration.

By allocating more computational power to each factorization, population-parallelization

results in a swifter and more powerful search and grants FlexGP a second tier of scal-

ability with respect to data size.

4.1 Motivation and Goals

Increased population sizes are beneficial to GP. Each model in the search algorithm's

population represents a candidate solution to the problem at hand. An increased

population size allows the algorithm to simultaneously explore more points in the

search space.

For performing machine learning with GP, this benefit is particularly important
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Figure 4-1: This figure depicts the combination of factor-level parallelism from
FlexGP 1.0 with the population-level parallelism described in this chapter. Each blue
box represents a unique factorization group with its own training and validation data
split. Each white circle shows an independent population-parallelized node which
sustains its own GP process. The lines between the population-parallelized nodes
indicate a randomized topology for the communication of best models within each
factorization group.

as the number of variables in a dataset increases and the search space expands in size

and complexity.

However, the time consumed by GP scales linearly with population size, as the

fitness of each model must be evaluated in each generation. This means a ten-fold

increase in population size results in an algorithm which is ten times slower. An

alternative strategy is needed to increase population size while maintaining a fast

runtime.

A natural first solution to parallelize the computation is to split a large population

into smaller chunks which are each supported by different machines. This essentially

amounts to an emulation of what would happen on one machine with several new

difficulties. The distributed GP algorithm must be able to access all models across

the entire population in a centralized manner in order to perform tournament selec-

tion and possibly other steps in the evolutionary loop. To support this emulation

it is necessary to provide a means of passing information about the models over the
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network. Further, there must be one machine which, at some point in the emulation,

must make a centralized decision to complete a step like tournament selection. This

means a machine or machines could represent a central point in the distributed net-

work of machines, which is undesirable from the perspective of fault tolerance. More

importantly, it is unlikely this scheme would increase the rate of computation by a

large amount, since the need for centralization implies all machines must wait for a

centralized step to complete before proceeding. Finally, this rate is further limited

by network latency and the possibility of network bottlenecking due to heavy traffic

required to support the emulation.

Fortunately a better solution exists. It is not necessary to preserve the continuity

of the population across the different machines. Splitting a large population into

smaller chunks which are each sustained by independent GP learners running on a

different machines is an effective means of preserving speed while increasing overall

population size. Doing so preserves the benefit of supporting more points in the

search space while simultaneously guaranteeing the aggregate population will have

the same runtime as any of the constituent learners.

This configuration may provide further benefits; it is an example of a commonly

used technique in evolutionary computation known as the island model. Under the

island model each island exists as an independent learner which supports a small

population. As the algorithm proceeds the islands' populations will grow relatively

more diverse as they naturally come to focus on different regions of the search space

due to the inherent stochasticity of evolution.

Each island periodically copies a portion of its population, typically that island's

best models, to another island. This transfer is known as migration, and enables

a mixing of genetic information throughout the network, thus allowing the search

progress of each island to be communicated to the others. The inclusion of migration

will even further reduce the time to an accurate solution. In addition to allowing

the most fit models' genes to permeate the network, migration also regulates the

diversity between islands' populations, preventing extreme divergence in population

which could lead to overfitting.
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Not only does migration decrease the time to a good solution, but the diversity

between populations enables the discovery of solutions which outperform those which

can be found without migration in a reasonable amount of time. This means migration

can produce a better than linear speedup of model performance.

Much work has been conducted regarding the characteristics of migration topolo-

gies and parameters for optimal flow of genetic material through the network. With

careful attention to these aspects, migration can have significantly beneficial effects

on the search process[14] [1] [4] [17].

However, FlexGP stands out from most work on the island model by granting each

island a different machine on which to run. Most implementations of the island model

have sustained all islands on the same machine. The focus of other implementations

has been on investigating the effects of controlling diversity, rather than on increasing

the wall-clock speed or on handling large and complex datasets.

We demonstrate in this chapter the island model is particularly advantageous from

this perspective when each island is supported by an independent GP learner running

on its own machine with periodic migration. This means the rate of the overall

algorithm is governed only by the average speed of each of the small-population

learners, while preserving the potentially super-linear performance gain associated

with migration.

To summarize, the goals of FlexGP's population-level parallelism are to achieve

the following:

1. Allow solutions to reach the same degree of accuracy as can be attained without

population-level parallelism, but in significantly less time.

2. Discover solutions which are more accurate than any which could be obtained

without population-level parallelism.

3. Provide FlexGP with another, highly effective dimension of scalability.

To achieve those goals, our contributions in this chapter are two-fold:

1. Design a system which can perform population-level parallelism with migration.
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2. Demonstrate the efficacy of population-level parallelism with migration in both

time and accuracy.

These techniques are not trivial to implement. Population-level parallelism with

migration requires support at several levels. At the resource level, support is needed

for obtaining the required computational resources for parallelization. At the network

level support is required for discovering and recording the existence of other nodes in

the network and for sending and receiving migrants and other intra-node messages.

Finally, support is required at the algorithmic level for selecting emigrants and in-

gesting immigrants. The next section will discuss the design FlexGP uses to meet

these challenges.

4.2 Integration of Population-Level Parallelism

Under population-level parallelism each factor-tier' node is replaced with a sub-

network (sub-network) of population-tier 2 nodes. Each sub-network consists of mul-

tiple constituent nodes which are configured with the same parameters and data as

the factor-tier node would have been. Each node periodically communicates its best

models to another randomly chosen node in the sub-network.

Population-level parallelism preserves FlexGP's learner-agnosticism. While the

concept of migration may not be portable to other learning algorithms, FlexGP can

sustain parallel computation of any learning algorithm in each sub-network through

population-level parallelism.

4.2.1 Initial Resource Acquisition

The first step in starting FlexGP is to acquire resources from the cloud infrastruc-

ture. FlexGP uses a recursive "distributed startup" procedure for easy scalability in

1Factor-tier nodes are nodes which have received a distinct factorization of the data and problem
parameters.

2 Population-tier nodes are nodes which maintain independent GP learners and may periodically

exchange best models as part of a sub-network. Population-tier nodes are given the same factoriza-
tion as others in a sub-network.
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network size. Here we augment the recursive startup procedure to enable the creation

of population-level sub-networks as follows:

1. The user specifies a desired number of factorizations F, nodes per sub-network

S and max number of children k during startup.

2. The gateway node is started, which acts as a connection between the client and

the FlexGP system running on the cloud. The gateway node also serves as a

factor-tier node.

3. The gateway starts k children, passing forward to them the number of nodes

which still need to be started. The children each define a new sub-network.

4. Subsequent nodes start more factor-tier children as needed to fulfill the desired

network size F. All children define a new sub-network. The resulting F subnets

named subnetf are numbered 1 through F.

5. Step 4 is repeated in a recursive manner until nF nodes have been started. Each

node is referred to as nodefi, where "f" indicates the

6. After node is started in steps 2 through 5, nodef starts (S - 1) children in

the population-tier. node is also a population-tier node.

In the end the full network will be of size F - S.

4.2.2 Establishing a Sub-Network

To support population-level parallelism at the network level, each node holds a sub-

network identifier si which indicates the node belongs to sub-network i. The sub-

network identifiers are generated during the initial distributed startup procedure.

Each node also maintains a list of other nodes which have identified themselves as

belonging to s,.

When a FlexGP node desires to send a network-level message like a ping, that

node obtains information about its destination by querying its neighbor list, which
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contains the IP and the TCP port of all other nodes discovered via the gossip protocol.

When the evolutionary process desires to send a packet of migrants, the FlexGP node

randomly selects a destination from its list of sub-network-neighbors and then queries

the neighbor list to obtain the IP and port of that destination.

4.2.3 Modifications to the GP Learner

To support migration the algorithm must be able to send and receive models. Sending

models to another node is known as emigration, and receiving models from another

node is known as immigration.

Emigration

There are five parameters which govern emigration:

1. Enable or disable migration.

2. m, the number of migrants to be sent in each migration message

3. gstart, the number of the first generation when migration should occur

4. gmodulo, the number of generations to wait before migration happens again

5. The criterion used to select the best m models from the population

In the architecture of FlexGP the Evolve thread is responsible for running the GP

learner. Further details are available in previous work on FlexGP [6].

At the completion of each generation the Evolve thread checks the emigration

parameters to decide whether to send emigrants. When the Evolve thread does elect

to send migrants, it chooses the best m models from the population according to the

specified selection criterion, and sends those models to a randomly selected destination

node which belongs to the same sub-network.

The criterion used for selecting the best model may also be used to choose the

best m models for emigration. The criterion supported in FlexGP are discussed in

section 2.2.2.
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Immigration

Support for immigration is provided by the FlexGP mailbox, which maintains a queue

of received messages which contain immigrant models. The Evolve thread checks the

immigrant queue at the beginning of each generation, adds any new immigrants to

the population and removes the corresponding message from the mailbox queue.

4.3 Demonstration

In this section we experimentally establish the value of population-level parallelism

by addressing the following questions:

1. Is larger population size beneficial to the performance of GPSR?

2. Will a larger distributed population with migration yield the same accuracy as

a smaller centralized population, but in significantly less time?

3. Will a distributed population with migration yield better accuracy as a central-

ized population of the same overall size, and in significantly less time?

4.3.1 Experimental Setup

To address the above questions, three experiments were conducted.

Experiment 1: Non-parallelized GP Learner. A single GP learner with a pop-

ulation of 1,000 models and 3 hours of training

Experiment 2: Large non-parallelized GP Learner. A single GP learner with

a population of 10,000 models and with 24 hours of training

Experiment 3: Population-parallelized GP Learner. A sub-network of 10 GP

learners with a population of 1,000 models per node and with 3 hours of training

The GP learners in experiments 1 and 2 were each given an unique 70% segment

of the MSD dataset for training as described in section A. For each iteration of
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experiment 3 the 10 GP learners which composed the sub-network all trained on the

same unique 70% segment of the MSD dataset. The training segment was changed

for each iteration. Therefore all GP learners in all experiments had access to the same

amount of data.

Experiment 3 was additionally configured with a migrant size of 50 best models

sent to one random neighbor per generation. To allow an even comparison across the

different population sizes the large non-parallelized experiment was allowed to train

for 24 hours which is nearly 10 times as long as the non-parallelized and population-

parallelized experiments. Each experiment was replicated 10 times to obtain a high

degree of statistical validity.

The euclidean distance metric described in section 2.2.2 was used to determine

the best model for each generation. The same metric was used to select the best 50

models as migrants in the population-parallelization experiment.

4.3.2 Results

Each iteration of each experiment was processed by performing fusion on the 50 best

models obtained over time. Each learner produces one model per generation which

is judged to be the best. The best 50 models since t = 0 were identified for 20 points

in time between 0 and the expected durations of each experiment. For each point,

an ARM meta-model was trained on 80% of the MSD data, and was evaluated on

the remaining 20% to calculate the MSEtest. The 80% training data used for fusion

consisted of the original 35% used as training data on each node plus the remaining

45% not reserved for testing data.

The results are shown in figure 4-2. Each of the 10 iterations for the three exper-

iments is shown as a separate line in the plot. The results are presented in tabular

form in table 5.2.

Table 4.1 shows information about the number of generations made normalized by

the duration of each experiment. This can be used to gauge the average complexity of

the models under evaluation. Experiment 2 shows a lower mean number of generations

per unit time than the other experiments.
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Expt. mean(gens) stddev(gens) mean(time) std(time) mean(4gens) stddev(g f)
1 339.9 117.6 5.7 0.15 61.9 19.2
2 105.9 16.5 23.0 0.47 4.6 0.69
3 140.3 27.2 2.8 0.07 50.0 9.7

Table 4.1: The average and the standard deviation of the number of generations,
total time in hours, and generations per hour for 10 trials of experiments 1, 2 and 3.

Table 4.2: The average and the standard deviation
time for 10 trials of experiments 1, 2 and 3.

of MSEteSt and MAEtest v.s.

4.3.3 Analysis

From 4.1, the mean number of generations per unit time is lower for experiment 2

than for experiments 1 and 3. This provides verification a GP learner with a larger

non-parallelized population (10k) will run approximately 10 times slower than the

learner from experiment 1 with a proportionally smaller population (1k).

Interestingly, the mean number of generations per unit time is slightly lower for

experiment 3 than for experiment 1. This indicates the models under evaluation by

the GP learners in experiment 3 were on average of greater complexity than those

on the learners from experiment 1. This provides corroborating evidence for the

increased performance of experiment 3 relative to experiment 1.

We will now use the results shown in figure 4-2 to answer the questions posed in

section 4.3 and to show that population-level parallelism satisfies the goals outlined

in section .
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mean(MSEtest) 119.416 117.370 116.768 115.733 - -
stddev(MSEtest) 4.843 5.672 5.850 5.807 - -

Expt. 1 mean(MAEtest) 8.738 8.640 8.611 8.553 - -
stddev(MAEtest) 0.222 0.278 0.296 0.286 - -
mean(MSEtest) 123.270 121.117 120.092 119.379 113.930 111.535
stddev(MSEtest) 3.742 2.728 3.073 3.631 3.954 2.924

Expt. 2 mean(MAEtest) 8.939 8.842 8.798 8.757 8.441 8.319
stddev(MAEtest) 0.148 0.144 0.159 0.194 0.227 0.154
mean(MSEtest) 113.507 110.989 - - - -
stddev(MSEtest) 5.337 3.913 - - - -

Expt. 3 mean(MAEtet) 8.442 8.278 - - - -
stddev(MAEtest) 0.278 0.222 - - - -

Metric 1.5hrs 3hrs 4.5hrs 6hrs 12hrs 24hrs



1. Is large population size beneficial to GPSR?

To answer this question we will compare experiment 1 and experiment 2, which have

a population size of 1k and 10k respectively. The final performance of experiment 2

greatly exceeds that obtained by experiment 1. Therefore the answer to this question

is that large population size is in fact beneficial to GPSR.

2. Will a larger distributed population with migration yield the same

accuracy as a smaller centralized population, but in significantly less time?

To answer this question we will compare experiment 1 and experiment 3. The per-

formance of experiment 3 greatly exceeds that of experiment 1, and does so in half

the time available to experiment 1. Therefore the answer to question 2 is yes.

3. Will a distributed population with migration yield better accuracy as

a centralized population of the same overall size, and in significantly less

time?

To answer this question we will compare experiment 2 and experiment 3. The final

performance of experiment 3 is close to but exceeds the final performance of experi-

ment 2. Therefore the answer to this question is yes.

To summarize, the results presented in this section have provided answers to the

questions asked in 4.3, and therefore have provided evidence FlexGP 2.0 has satisfied

the three goals outlined in the introduction of this chapter:

1. Allow solutions to reach the same degree of accuracy as can be attained without

population-level parallelism, but in significantly less time.

2. Discover solutions which are more accurate than any which could be obtained

without population-level parallelism.

3. Provide FlexGP with another, highly effective dimension of scalability.

71



125

120

5 10 15 20
Time (hours)

(a) MSEtest of population-parallel experiments

Average MAest v.s. elapsed time for ten repetitions of three experiments

0 1K population

5 10
Time (hours)

15

A 10K population
0 10 1K islands

20

(b) MAEtest of population-parallel experiments

Figure 4-2: A comparison of the time-series results of the three population-parallel
experiments described in this chapter. Each point on a curve represents the MSEtest
or MAEtest of the fusion meta-model generated with the best 50 models available up
to that point in time. The fusion process is described in appendix C. The starting
time is different for experiment 2 because the evaluation of the initial generation took
more than one hour on average. 72
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Chapter 5

FlexGP 2.0: Multi-Level

Parallelism

This section describes the goals of FlexGP 2.0, the design required to achieve those

goals and experimental evidence which demonstrates FlexGP 2.0 meets those goals.

FlexGP 2.0 integrates all levels of parallelism discussed in this thesis:

Evaluation-Level Parallelism (Chapter 3) increases the speed of FlexGP via mul-

tithreaded C++ model evaluation .

Search-Level Parallelism (Chapter 2) introduces a multi-objective optimization

algorithm which improves the search characteristics and flexibility of FlexGP.

Population-Level Parallelism (Chapter 4) increases the size of FlexGP's popula-

tion of candidate models by distributing the population among multiple inde-

pendent learners, and introduces migration as a means for distributed learners

to share search progress.

Factor-Level Parallelism (Chapter ??) increases accuracy by giving each learner

a subset of the data or function set and by providing a method for fusing

models from the different environments to create a highly accurate meta-model.

Originally included in FlexGP 1.0.
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We seek here to demonstrate the full power of FlexGP 2.0 by combining the three

levels of parallelism discussed in this thesis with FlexGP's remaining layer, factor-

level parallelism. This combination represents a leverage of all the advantages and

optimizations offered by FlexGP 2.0.

The goals of FlexGP 2.0 are to accomplish the following:

1. Improve the ability of FlexGP to learn swiftly and effectively when operating

on large data sets.

2. Produce solutions with the same accuracy as were obtained from FlexGP 1.0,

but in significantly less time.

3. Produce solutions with better accuracy than those obtained from FlexGP 1.0.

4. Yield a system which produced performance comparable to other machine learn-

ing methods.

5.1 Integration of Multi-Level Parallelism

This section discusses the design which integrates FlexGP 2.0's four levels of paral-

lelism. Detailed descriptions of the designs for each layer are outlined in each layer's

chapter in this thesis.

Each layer may be activated or deactivated when the user starts FlexGP. The

parameters which govern each layer are discussed in the subsequent sections.

To launch FlexGP a user will initiate the distributed startup procedure described

in section 4.2.1. Several items are required to initiate distributed startup.

Distributed Startup Parameters: To initiate distributed startup the user must

specify a set of FlexGP parameters which will be used to configure the entire

network of FlexGP nodes. Some of these parameters inform the distributed

startup procedure on how to interface with the cloud infrastructure.

FlexGP Node Parameters: Some of the parameters specified before distributed

startup control the behavior of each FlexGP node and are passed to the FlexGP
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Java executable when it is initiated by the distributed startup procedure.

evogpj Parameters: The user must provide an evogpj parameters file containing

the parameters which will configure each GP learner.

Note that this section only discusses the details of parameters which were modified

from FlexGP 1.0 and are important to the design of FlexGP 2.0. FlexGP includes

many parameters which govern the behavior of evogpj, FlexGP's underlying GP li-

brary, as well as several parameters which control the networking and other parts

of FlexGP and are not directly related to the learning process. More detailed de-

scriptions of FlexGP's parameters can be found in Appendix B, Appendix D and in

previous publications documenting FlexGP 1.0 [6].

5.1.1 Integration of Evaluation-Level Parallelism

Evaluation-level parallelism is governed by the following parameters:

Objective function: C++ model evaluation will be enabled if the user specifies

the ExternalFitness objective function as one of the functions used in the multi-

objective optimization algorithm.

Number of threads: Multithreaded C++ model evaluation will be enabled if this

parameter is set to a value greater than 1.

Evaluation-level parallelism is a feature of FlexGP's underlying evogpj library.

Therefore the above parameters must be set in the evogpj properties file which the

user passes to FlexGP at runtime.

5.1.2 Integration of Search-Level Parallelism

The key parameters for controlling multi-objective optimization are:

Objective functions: any number of objective functions. Multi-objective optimiza-

tion is activated if more than one is listed.
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Tournament Selection Operator: crowded tournament selection.

Best Model Selection Method: euclidean or hands-off. Section 2.2.2.

Like C++ model evaluation , multi-objective optimization is part of the evogpj

library and is configured via the evogpj properties file passed to FlexGP at runtime.

5.1.3 Integration of Population-Level Parallelism

The parameters which affect population-level parallelism are:

Sub-network size: the number of learners started in each sub-network.

Migration activation: enables or disables migration within sub-networks.

Migration size: the number of models to be included in each group of emigrants.

Migration start generation: the generation in which to begin sending emigrants.

Migration rate: the number of generations to wait before sending emigrants again.

The sub-network size parameter is specified as an optional command-line argu-

ment of the program used to initiate the distributed startup procedure described

in section 4.2.1. The remaining four parameters governing migration are passed to

the FlexGP Java executable as optional command-line arguments by the distributed

startup procedure.

5.1.4 Integration of Factor-Level Parallelism

The factorization parameters are:

Data row factorization percentage: specifies what percentage of the training data

to subsample for factorization.

Data column factorization: specifies which columns of the data GP will be al-

lowed to train on.
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GP operator set factorization: specifies a series of lists of function sets to be

selected randomly by each factored learner or sub-network.

Each of these parameters is specified as an optional command-line argument of

the program used to initiate the distributed startup procedure.

5.2 Demonstration

5.2.1 FlexGP 2.0 v.s. FlexGP 1.0

Experimental Setup

To demonstrate FlexGP's fulfillment of the goals presented at the beginning of this

chapter we conducted the following experiments:

Experiment 1: 8 nodes with data-factorized FlexGP 1.0 and Java-based fitness eval-

uation.

Experiment 2: 8 nodes with data-factorized, multi-objective FlexGP 2.0 and mul-

tithreaded C++ model evaluation but without population-level parallelism.

Experiment 3: 8 sub-networks with data-factorized, multi-objective FlexGP 2.0

and multithreaded C++ model evaluation , with 10 nodes per sub-network.

Experiment 1 demonstrates the performance of FlexGP with factorization but

before the addition of the evaluation, search and population parallelization layers.

Experiment 2 demonstrates FlexGP's performance with all but population paralleliza-

tion. Experiment 3 demonstrates the operation of FlexGP with all four parallelization

techniques. A visual summary of this information is shown in table 5.1.

The data in these experiments was factored so that each node in experiments 1

and 2 and was given a different 35% factored training split. Correspondingly, each

sub-network of nodes in experiment 3 was given a different 35% split of the training

data, where each node in the sub-network received the same 35% split as the others.
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Evaluation Search Population Factorization
Expt. 1 /
Expt. 2 /
Expt. 3 / / /

Table 5.1: The configuration for each of the three FlexGP 2.0 experiments in this
chapter. Each column corresponds to one of the four levels of parallelism in FlexGP
2.0. Each row corresponds to one of the three experiments. A check mark indicates
an experiment includes the level of parallelism which belongs to the column.

All experiments were conducted on the Million Song Dataset year prediction chal-

lenge, which is described in appendix A. Each of the three experiments was repeated

10 times for statistical validity.

The comparison of experiments 1 and 3 shows the difference in performance be-

tween FlexGP 1.0 and FlexGP 2.0. The comparison of experiments 1 and 2 shows

the difference in performance between FlexGP 1.0 and FlexGP 2.0 stemming solely

from the addition of the evaluation and search parallelization layers, but not from

population parallelization. Finally, the comparison of experiments 2 and 3 shows the

difference in performance of FlexGP 2.0 from only the addition of population par-

allelization. Experiment 2 was included to highlight the performance gain derived

solely from population-level parallelization with migration.

Results

Figures 5-1a and 5-1b respectively show the MSEtest v.s. time and the MAEtest

v.s. time for each of the ten iterations of experiments 1, 2 and 3. Each experiment

consists of 8 factorization groups, where each group contains a node or nodes which

were trained with the same factorization of the training data.

The performance of a fused meta-model trained on the current 50 best models

was calculated for 20 points in time evenly spaced over the 3 hour interval of the

experiment. The details of fusion and the calculation of the MSEtest and MAEtest

for fusion are discussed in appendix C.

Table 5.2 shows the MSEtest, vMSEtest and MAEtest after fusion for various

points in time. The VMSEtest was included to provide further meaning to the results,
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as the units of VMSEtest for this problem are in years whereas the units of the

MSEtest are in years2

Table 5.2 contains values calculated for VMSEtest. However, a plot for NMSEtest

is not shown because both the shape and the numerical values can be inferred from

the plot for MSEtest.

150m 18m

Table 5.2: The average and
MAEtest v.s. time for 10 trials

the standard deviation of MSEtest, MSEtest and
of experiments 1, 2 and 3.

Analysis

This section provides a discussion of the results obtained from the experiments com-

paring the performance of FlexGP 1.0 and FlexGP 2.0.

The results shown in figure 5-1 clearly show FlexGP 2.0 with all factorizations

enabled outperforms FlexGP 1.0. This satisfies goal 1 from the beginning of this

chapter.

It takes four times longer for experiment 1 to reach an MSEtest of under 101 that

it does for experiment 3 to do so. This satisfies goal 2 from the beginning of this

chapter.
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120min
mean(MSEtet) 111.974 111.657 111.517 111.336 111.143 110.952

Expt. 1 stddev(MSEtest) 0.331 0.287 0.346 0.376 0.471 0.528
mean( MSEtest) 10.582 10.567 10.560 10.552 10.542 10.533
stddev(VMSEtest) 0.016 0.014 0.016 0.018 0.022 0.025

mean(MAEtest) 7.937 7.926 7.920 7.917 7.906 7.897
stddev(MAEtet) 0.014 0.013 0.015 0.015 0.025 0.025
mean(MSEtest) 106.439 104.091 102.714 100.975 100.171 99.396

Expt. 2 stddev(MSEtest) 1.733 1.741 1.524 1.179 0.673 1.039
mean(VMSEtest) 10.317 10.202 10.135 10.048 10.008 9.970
stddev(VMSEtest) 0.084 0.085 0.075 0.059 0.034 0.052

mean(MAEtest) 7.483 7.357 7.300 7.196 7.159 7.117
stddev(MAEtest) 0.144 0.125 0.117 0.094 0.059 0.063
mean(MSEtest) 100.867 97.822 96.969 96.052 95.760 95.355

Expt. 3 stddev(MSEtest) 0.948 1.184 0.971 1.235 1.290 1.148
mean(VMSEtet) 10.043 9.890 9.847 9.800 9.785 9.765
stddev(vMSEtest) 0.047 0.060 0.049 0.063 0.066 0.059

mean(MAEtest) 7.132 7.018 6.978 6.916 6.909 6.879
stddev(MAEtest) 0.085 0.068 0.058 0.087 0.092 0.088

Metric 30min 60min 90min 150min 180min



MSEtest v.s. elapsed time for ten repetitions of three experiments

0 FlexGP 1.0
A FlexGP 2.0 without migration

115- 0 FlexGP 2.0 with migration
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(a) MSEtest of total experiments

MAEtest v.s. elapsed time for ten repetitions of three experiments

8.4-
3 FlexGP 1.0
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Figure 5-1: A comparison of the time-series results of all ten iterations of experi-

ments 1, 2 and 3.
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Both experiment 2 and experiment 3 outperform experiment 1 on average. This

satisfies goal 3 from the beginning of this chapter.

5.2.2 Comparison of FlexGP 2.0 with vowpal wabbit

Experimental Setup

The vowpal wabbit project is a machine learning system which uses gradient descent

to perform linear regression. Previous work has used vowpal wabbit to address the

Million Song Dataset year prediction challenge [2].

We trained and evaluated vowpal wabbit with the same training and test data

as were given to FlexGP in the experiments from section 5.2.1. We used the same

parameters' to run vw as were used in prevous work which includes the evaluation of

vowpal wabbit on the Million Song Dataset [2].

Results

Table 5.3 contains the MSEtest, VMSEtest and MAEtest obtained by running vowpal

wabbit on each of the 8 training factorizations. Table 5.4 contains the MSEtest,

VMSEtest and MAEtest averaged across the 8 factorizations.

Factorization 0 1 2 3 4 5 6 7
MSEtest 88.168 88.302 88.614 87.923 88.537 87.929 88.107 88.379
MSEtest 9.390 9.397 9.414 9.378 9.409 9.377 9.387 9.401

MAEtest 6.794 6.800 6.812 6.785 6.807 6.786 6.796 6.799

Table 5.3: The MSEtest, VMSEtest and MAEtest of vowpal wabbit on the MSD
year prediction problem, when trained on each of 8 different data factorizations.

Each training factorization consisted of 35% of the valid data. 20% of the remaining

data was used for testing.

Analysis

Experiment 3 from section 5.2.1 (FlexGP 2.0 with migration) yields a VMSEtest and

MAEtest of 9.765 and 6.879 respectively, which is comparable to the values of 9.3939

'The parameters used are -- passes 100 -- loss function squared -1 100 -- initial-t
100000 -- decay learning-rate 0.707106781187
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mean(MSEtest) 88.2450
mean( MSEtest) 9.3939
mean(MAEtest) 6.7974

Table 5.4: The MSEtest, VMSEtet and MAEtest of vowpal wabbit on the MSD
year prediction problem, averaged across all 8 training data factorizations shown in
table 5.3. Each training factorization consisted of 35% of the valid data. 20% of the
remaining data was used for testing.

and 6.7974 given by vowpal wabbit as shown in table 5.4.

The performance of vowpal wabbit as measured here is not as good as the perfor-

mance obtained in prior work[2] with the same vowpal wabbit parameters. The reason

for this is the amount of data used to train vowpal wabbit in this experiment is lower

than the amount used in prior work. For a fair comparison with the experiments from

section sec:flexonevstwo we gave vowpal wabbit the same amount of data which was

given to FlexGP 1.0 and FlexGP 2.0. Prior work on applying vowpal wabbit to the

MSD[2] used a published train-test split of the MSD which allocates 90% to training.2

The fact that linear regression via vowpal wabbit gave slightly more accurate results

than FlexGP may indicate the input variables have a fairly linear relationship to the

output in the MSD year prediction problem.

The primary advantage FlexGP provides over vowpal wabbit is a more complex

model. GP will outperform linear regression on problems which are highly nonlinear.

Feature extraction can be performed prior to linear regression to handle nonlinearity,

but to do so efficiently requires a priori knowledge; GP discovers the most meaningful

subtrees automatically.

2http://abrosa.ee.columbia.edu/millionsong/pages/tasks-demos is the location of the published
train-test split.
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Chapter 6

Future Work

This section discusses potential future extensions to FlexGP and to related topics

covered in this thesis.

6.1 Further Optimization of FlexGP

The following points are potential augmentations to FlexGP which would likely prove

beneficial:

Factor-level and Population-level Generalization: the factor-level and population-

level parallelization layers of FlexGP are generalizable beyond GP. An investiga-

tion of how to recombine these techniques with other machine learning methods

would be valuable.

Model Evaluation with Subsampled Data: the fitness of each model is designed

to be a relative measure, not an absolute one. As such it may be worth sacrific-

ing some accuracy in the fitness calculation in exchange for speed. One could

achieve such a tradeoff by evaluating each model not on the entire training data

but on a subsample of that data.

Automatic Model Evaluation Thresholding: C++ model evaluation is not al-

ways faster than Java-based model evaluation, which will outperform C++

model evaluation on datasets of sufficiently small width. If this tradeoff were
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better understood FlexGP could automatically infer which evaluation method

is best.

Model Evaluation on the GPU: GPU-based model evaluation is an area of active

research and could provide FlexGP with a significant evaluation speedup [19].

Static interval analysis: GP often generates trees which can produce invalid out-

put. A fast static interval analysis could be used to determine if a model will

produce undefined or otherwise invalid input. The model could then be deleted

or dealt with accordingly [9].

Feature Selection: GP has been used to search for features which represent a mean-

ingful description of the training data[24]. Feature selection is an important

step of machine learning; adding feature selection to FlexGP would increase the

range of supportedd use-cases.

Subtree Caching: Much work has been conducted regarding the caching of com-

mon subtrees has been used to speed up model evaluation [23] [10] [18]. Adding

subtree caching to FlexGP would result in faster model evaluation and may aid

in feature selection.

Improved/Non-Randomized Migration Topologies: Much work has been con-

ducted on optimizing topologies for the island model [14] [1] [4]. If adapted to

FlexGP's distributed model of computation a non-random island topology could

. Further, there may be a better way to perform randomized migration by in-

vestigating the use of diversity statistics as influencing the decision of where to

send migrants to or receive migrants from.
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Chapter 7

Conclusion

This thesis has demonstrated FlexGP 2.0 provides a significant improvement over

FlexGP 1.0 through the conjunction of multiple levels of parallelism. It addressed all

of the goals first outlined in the introduction as well as a set of goals included with

each level of parallelism.

" Chapter 2 presented a comparison of multi-objective optimization and operator

equalization as two GP algorithms which aim to prevent overfitting by the

bloating of models. Experimental evidence was provided to demonstrate the

benefits associated with multi-objective optimization.

" Chapter 3 showed a significant increase in model evaluations v.s. time of C++

model evaluation over Java-based model evaluation. The chapter then demon-

strated a greater speedup obtained with multithreaded C++ model evaluation

" Chapter 4 presented evidence that population-level parallelism with migration

provides both faster arrival at solutions and yields better solutions than other-

wise.

" Chapter 5 provided a comprehensive demonstration of all four of FlexGP 2.0's

levels of parallelism and highlighed the dramatic improvements made by FlexGP
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2.0. The chapter also presented evidence to establish FlexGP 2.0 as a compet-

itive system for performing machine learning.

All four chapters have demonstrated the ability of FlexGP 2.0 to produce results

of competitive accuracy on a dataset of significant size and complexity by current

standards, and to do so in a reasonably short amount of time. This evidence show-

cases FlexGP's commitment to scaling elegantly and effectively with data size and

complexity.

It is our hope FlexGP will come to play a valuable role in the application of ma-

chine learning to problems of diverse domains. We hope the contributions established

in this thesis will prove useful to future research in GP, machine learning and other

fields. We also hope the contributions of this thesis will spur researchers of GP to

make further contributions on swift performance relative to elapsed training time,

and on algorithm scalability with respect to data size and complexity. Finally, we

envision the application of machine learning and data mining via FlexGP towards

problems of societal relevance will make the world a better place.
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Appendix A

Dataset Organization and

Partitioning

This appendix describes the details of the regression problem used in the experiments

for chapters 3 through 5. It also describes the manner in which data was partitioned

for training and testing. It builds on Derby's description of data partitioning[6] to

include modifications made for FlexGP 2.0.

A.1 Background and Problem Definition

All experiments in this thesis make use of the Million Song Dataset (MSD) [2] from

the music information retrieval (MIR) community. The MSD contains information

about one million songs, ranging from meta-data to harmonic content. In particular,

experiments in this thesis are aimed at the year recognition challenge ', where the

year a song was released must be predicted from a set of 90 features extracted from

the song's audio [6].

We model the year recognition challenge as a regression problem. Because the

output of the models produced from GP is continuous rather than discrete, models'

predictions are rounded to the nearest integer before calculation of a fitness score or

a MSE[6].

lhttp://labrosa.ee.columbia.edu/millionsong/pages/tasks-demos#yearrecognition
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A.2 Dataset Partitioning

There are 566,564 entries in the million song database which contain the 90 features

required to be used for the year prediction challenge. The usable data is partitioned

into three sections: 20% is designated as test data, 10% as training data for fusion

and 70% as general training data.

Figure A-I shows the scheme used to partition the MSD. The factor-parallel layer,

which includes data factorization, is included from FlexGP 1.0. Experiments which

use data factorization define a number of factorization groups, where each group

can consist of one or more FlexGP nodes. When multiple nodes are included in a

factorization group, they all recieve the same 35% factorized training data.

All data partitions were generated in advance of computation. This was done

for simplicity, to carefully avoid the author problem described in the next section

and to avoid including dataset-specific code in FlexGP. 10 sets of 70%-10%-20% data

splits were generated for the experiments discussed in this thesis. Each 70%-10%-

20% training split was numbered 0 through 9. From these, 10 35% factorized splits

were generated for use in experiments which require data-factorization. Each 35%

factorized training split was numbered 0 through 9. Validation data was not used for

validation in any of the experiments.

In experiments which used 70% of the MSD as training data, each FlexGP node

was given a distinct 70% training split. Similarly, in data-factorized experiments

which used 35% of the MSD as training data, each FlexGP node was given a distinct

35% factorized training split.

Appendix C provides a discussion of how the fusion training data was used in

conjunction with the rest of the data. To obtain the MSEtest and MAEtest used in

this thesis, all models were evaluated on the 20% test split which complements the

training data the model was given.
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Figure A-1: A colorful depiction of the data partitioning hierarchy used in FlexGP.
The original MSD is shown at left. The center column shows the training, fusion
training and test datasets. The red and yellow boxes represent the factored training
and validation data. If the user specifies a data factorization percentage, FlexGP
will train on the factored training data in red. Otherwise, FlexGP will train on the
magenta training data. The light blue box on the right indicates factorization occurs
for each factorization group in FlexGP. The percentages shown are particular to the
MSD problem, but the scheme is generalizable to other applications of FlexGP

A.3 Avoiding the Producer Effect in the MSD

The MSD has a complication: when splitting the data, all songs by one artist must be

entirely included in one of the splits. Otherwise trained models may learn the hidden

artist variable rather than the actual year prediction problem. This is known as the

"producer effect" [2]. The data partitioning used here circumvent this by grouping

artists' songs and randomly selecting groups until the correct percentage of the split

has been approximately satisfied [6].
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Appendix B

Collection and Organization of

Results

This appendix details the organization of data collection for this thesis and provides a

discussion of the methods used to calculate the statistics and figures in this document.

B.1 Experimental Organization

The highest level of organization in this thesis are the experiments, each of which in-

volve a distinct mixture of computational elements and configurations. For example,

chapter 4 contained a comparison of three experiments: running FlexGP on 10 nodes

in isolation, running FlexGP on 10 nodes with an increased population size, and run-

ning FlexGP on 100 nodes partitioned into 10 sub-networks, each with 10 constituent

islands. The list below provides a comprehensive summary of experiments:

Operator Equalization simple (Ch. 2 exp. 1): Operator equalization running

with a simple function set and 70% training data for 48 hours.

Multi-Objective Optimization simple (Ch. 2 exp. 2): Multi-objective optimiza-

tion running with a simple function set and 70% training data for 48 hours.

Operator Equalization complex (Ch. 2 exp. 3): Operator equalization running

with a complex function set and 70% training data for 48 hours.
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Multi-Objective Optimization complex (Ch. 2 exp. 4): Multi-objective opti-

mization running with a complex function set and 70% training data for 48

hours.

Java eval (Ch. 3 exp. 1): Java model evaluation on 70% training data for 3 hours.

C++ eval (Ch. 3 exp. 2): 1-thread C++ model evaluation on 70% training data

for 3 hours.

C++ multithreaded (Ch. 3 exp 3): C++ 4-thread model evaluation on 70% train-

ing data for 3 hours.

Pop 1x1k (Ch. 4 exp 1): 1 node running with 70% training data for 6hrs.

Pop 1x10k (Ch. 4 exp 2): 1 node running with a 10k population and 70% training

data for 24hrs.

Pop 10x1k (Ch. 4 exp. 3): a sub-network of 10 nodes with migration, running

with 70% training data for 3hrs.

FlexGP 1.0 (Ch. 5 exp. 1): 8 independent nodes running operator equalization

with Java model evaluation, each given a different 35% factorization of the

training data, for 24 hours.

FlexGP 2.0 non-migratory (Ch. 5 exp. 2): 8 independent nodes running multi-

objective optimization with C++ 4-thread model evaluation, each given a dif-

ferent 35% factorization of the training data, for 6 hours.

FlexGP 2.0 migratory (Ch. 5 exp. 3): 8 sub-networks with 10 nodes per sub-

network, where each sub-network of 10 nodes is given a different 35% factoriza-

tion of the training data, running multi-objective optimization for 3 hours.

For all experiments, the default configuration is assumed for any values which

were not stated above. The defaults are:

Evaluation: C++ 4-thread
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Algorithm: multi-objective optimization

Function set: simple

Population: 1k models

Duration: 3 hours

Sub-network: disabled, no migration

Data: 70% training data.

The 3rd experiment for chapter 3 and the 1st experiment for chapter 4 are both

subsets of the 2nd experiment for chapter 2. This reduces the amount of data which

needed to be collected by a small amount.

Each experiment is repeated 10 times for statistical validity. Each repetition is

referred to here as an "iteration."

B.2 Organization of Results

Each node saves results locally in two files. The first file, named "models.txt," simply

contains the best model for each generation, with each model occupying one line of

the file. The second file, "evogpj-log.json," contains one JSON structure per line for

each generation. The information contained in the JSON structures is detailed in

table B.1.

When an experiment is complete, evogpj-log.json and models.txt files are retrieved

from each node and stored together in one folder. The naming convention for both

files is "ifilenameZ-inodeID .iextension ". For example, the folder containing results

from a single 10-island experiment would contain 10 JSON and 10 text files, labeled

"evogpj-log-O.json" through "evogpj-log-9.json" and "models-0.txt" through "models-

9.txt", where the numbers appended to the name are used to distinguish between

nodes.

The distinct parameters of each experiment are described by the folder name. The

parameters of each experiment are described here.
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Key Desriptio

timestamp
generation

stats

fitnessEvaluations

bestModel
paretoFront

paretoFrontSize

numImmigrants
numEmigrants
equalizer

The elapsed time since FlexGP started.
Generation number, starting at 0.
The min/max/mean/stddev of fitness in the population.
The number of model evaluations made.
The model chosen as best. Includes which method was used.
The entire pareto front if running multi-objective optimization.
The number of models in the pareto front.
The number of models incorporated into the population.
The number of models emigrated to other nodes.
If running operator equalization, current equalizer parameters.

Table B.1: The contents of each JSON log.

Number of nodes or islands (numNodes): the character "n" or "i" followed by

three digits which indicate the number of nodes or islands in the experiment.

Algorithm used (aig): three characters indicating the algorithm used, with "moo"

indicating multi-objective optimization and "deq" indicating operator equaliza-

tion.

Model evaluation method (eval): the character "j" for Java or "c" for C++, fol-

lowed by a digit indicating the number of threads used (always 1 for Java).

Training split (train:) the character "d" followed by two digits indicating which of

the 10 splits was used. The first character is an "A" if this experiment is part

of 10 experiments which covered all training splits.

Factorization (factor): the character "f" followed by three digits. The first indi-

cates the function set used. The last two indicate which training factorization

was used. If no factorization was used the last two digits will appear as "XX",

but the first will still indicate the function set used.

Migration size (m): the character "m" followed by four digits indicating the mi-

gration size. If no migration was used this will appear as "mXXXX".

Population size (n): the character "p" followed by five digits indicating the popu-

lation size.
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Duration (t): the character "t" followed by two digits indicating the duration of the

experiment in hours.

Repetition (rep): the character "r" followed by four digits which serve as a unique

identifier used to distinguish amongst repetitions of an experiment.

Combining the parameters in the order they are listed, the full format of the folder

names is as follows:

numNodes alg eval- train- f actor m- n- t rep

Consider the following example:

nOO1_deqj _dA3fOX X _mXXXXp01000_t06_r0003

This indicates the contained results are from a 1-node run with operator equalization

and Java model evaluation, operating on a distinct 70% training split (#3), using

function set 0 with no data factorization and no migration, a population of 1000 and

a duration of 6 hours (fourth iteration).

B.3 Analysis of Results

Each JSON log has alongside a file named "performance-train-X.csv", where the X

indicates the node ID for uniqueness. This file contains six columns: elapsed time,

elapsed model evaluations, MSEtrain, MAE-train, MSEitest and MAE-test.

Directories beginning with "c" instead of "n" or "i" contain results from perform-

ing fusion. Each such directory contains a file mse-test-fusionvs-thresholdMetric-N. csv,

where thresholdMetric can either be "time" or "fiteval" and N is the number of mod-

els considered for fusion during each frame. The file contains three columns: thresh-

olding metric, MSE-test and MAE-test. See appendix C for more information on

model fusion and thresholding metrics.
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Appendix C

Calculation of Fused Performance

This section defines the fusion process used by FlexGP. This fusion process is used

to generate each point in the figures presented in Chapters 4 and 5.

C.1 Motivation

A fully parallelized FlexGP with all levels of parallelism enabled can churn out thou-

sands of models in a matter of minutes. FlexGP reduces this massive influx of informa-

tion to a fused regression ensemble or "meta-model" which combines the predictions

of the models deemed the most useful and boosts accuracy beyond that which is

possible from sole models.

C.2 Background

A regression ensemble is a grouping of regression models such as those returned from

FlexGP. Regression Ensemble Fusion (referred to here as simply "fusion") is the act

of learning a method of combining the predictions of multiple regression models in

the ensemble. The result of fusion is a meta-model which uses its constituent models

to make predictions of greater accuracy than would be possible by a single model.

FlexGP uses a regression ensemble fusion technique known as Adaptive Regression

Mixing (ARM) [25]. Previous work comparing a variety of regression ensemble fusion
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has found ARM to be a particularly effective fusion method[20].

C.3 Fusion Process

The fusion process used in the experiments for Chapters 4 and 5 has three primary

steps:

1. Best N Selection: the best N models are identified from a larger group. The

experiments in this thesis used an N of 50.

2. Regression Ensemble Fusion: the best N models are fused via ARM to form

the meta-model which is used to make predictions.

3. Ensemble Evaluation:

In this thesis the training data used to perform fusion was all non-test data.

This means the data each GP learner was trained on was included in the data used

for fusion training. We argue the MSD is large enough to make this permissible

without fear of overfitting. To be explicit: for learners which were trained with 70%

of the MSD, the ultimate fusion training set consisted of the 70% training segment

plus the 10% set aside for fusion training. For learners which were trained with

a 35% factorization of the MSD, the ultimate fusion training set consisted of the

35% factorized training segment, the additional 35% set aside as validation data and

unused in this thesis, and the final 10% set aside for fusion training.

C.4 Thresholding Metrics

Two metrics were used for determining the thresholds by which to filter models before

best N selection:

Time: Any models which appeared before time t are considered.

Model Evaluations: Any models which have a number of elapsed fitness evalua-

tions less than N are considered.
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Plots whose x-axis is labeled "time" used time thresholding. Similarly, plots whose

x-axis is labeled "model evaluations" used model evaluation thresholding.
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Appendix D

GP Parameters

This appendix describes the parameters and implementation used to configure GP in

FlexGP 2.0. Slight modifications are applied to Derby's specification of the parame-

ters used in FlexGP 1.0 [6].

All experiments discussed in this thesis were configured with the same parameters

as described by Koza [12], with the following differences. The population size is

set to 1000 models. Initialization was performed using Koza's ramped-half-and-half

algorithm. The mutation rate is 0.5 and the crossover rate is 0.5. Nodes were selected

uniformly at random for crossover. The max depth is set to 5 for initialization,

afterwards tree depth is limited to 32. For both operator equalization and multi-

objective optimization, tournament selection was configured with a tournament size

of 10. For operator equalization experiments the equalizer[16] was configured with a

bin width of 5. During model evaluation, models' predictions are transformed with

Vladislavleva's approximate linear scaling [22], where the output variable is scaled to

span the range [0, 1] so GP can focus on learning the shape of the relation described

by the data [6].
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Appendix E

Cloud Infrastructure

FlexGP is designed to be a cloud-backed system. All experiments discussed in this

thesis were conducted on a private cloud maintained by MIT CSAIL. The cloud uses

the Openstack cloud management framework 1, a free and open source software for

maintenance of public and private clouds. The Openstack interface is highly similar

to the API used by Amazon's Elastic Compute Cloud (EC2)2 service [6].

All experiments ran on 64-bit virtual machines with 4 virtualized CPUs, 4GB

of RAM and 20GB of disk storage. The same virtual machine configuration was

used for all experiments to eliminate the parameters of the virtual machine used for

each experiment as a consideration when analyzing results. Each virtual machine

was configured with Ubuntu 12.04. The JVM included on each virtual machine was

OpenJDK 6.
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