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Abstract

Computer aided design has become affordable and ubiquitous, in part as a result of the development
of open source design software and web-based 3D modeling tools. Consequently, a broad spectrum
of individuals are expressing demand for access to digital fabrication tools that are capable of
automatically rendering their computer-based designs into physical objects. In response,
manufacturers have begun to produce low-cost versions of a limited set of automated, personal-use
fabrication tools, including 3D printers and desktop milling machines. Simultaneously, groups of
individuals and organizations are establishing community workshops where resources can be pooled
to acquire industrial-grade machinery. Both of these approaches have been successful at increasing
the penetration of digital fabrication capabilities into the general population. However, there are
many industrial tools which currently have no consumer-centric equivalent, and for which demand
is insufficient to warrant acquisition by a community workshop. Additionally, as digital design
continues to find new applications among a larger and more diverse audience, new needs will likely
arise for yet non-existent automated fabrication tools.

Gestalt is an accessible and flexible control framework which aims to augment the ability of
individuals to create new automated tools, and to thus self-extend their abilities to create objects
which would be too tedious or impossible to create by hand. This work will enable individuals to
rapidly construct controllers and rich user interfaces for automated personal fabrication tools.

The approach taken is that of a software-based virtual machine controlling a physical machine. This
allows for increased modularity in controller implementation, and tighter integration of the tool
with user applications than is possible with traditional controller architectures. The foundation of
the proposed system provides a means for building APIs to communicate with modular hardware
components, and a method of combining the functionality of these components at the virtual
machine level (rather than in hardware) to yield higher-level functionality. The Python library
developed in this work enables the rapid construction of cross-platform virtual machines that are
capable of representing and controlling a wide variety of tools over commonly available interfaces
such as USB. Additionally, a matching C library assists in developing microcontroller firmware for
building custom modular hardware elements that can communicate with the virtual machine. A
spectrum of unique fabrication tools controlled using the Gestalt framework are presented as case
studies which elucidate both the successes and limitations of our approach.

Thesis Supervisor: Professor David R. Wallace
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Introduction

Computation and fabrication have become inextricably intertwined. Products
are designed and tested in a computational environment before being sent to
computer-controlled tools where their digital descriptions are converted into
physical objects. The parallels between software development workflows and
modern hardware development have not escaped the Open Source Hardware
Association (OSHWA, 2013), whose name reflects the notion that physical
objects, too, start out as source code. One important difference between
software and hardware still remains: there is as of yet no Universal Turing
Machine1 for fabrication that is capable of expressing every form in every
material. Instead, a wide variety of fabrication processes, and the automated
tools that carry them out, dictate the patchwork language of forms and
materials utilized by Designers, those who the author views as the
Programmers of Things.

Anybody with access to a computer and the Internet can become a
programmer. Superficially this is because of the ease with which code can be
encapsulated and reused, and with which algorithms and programming
techniques can be shared. However at the foundation of this ability is
universal access to a common set of tools for writing, compiling, and
executing code. Indeed, this was the focus of the GNU project - started in
1984 by Richard Stallman - that paved the road for the free and open source
software movements.

One of the exciting implications of the strengthening bond between
fabrication and computation is the democratization of the tools and
techniques for designing and building objects. The term object is used here in
the most general sense possible, and includes anything which is designed and
brought into physical existence - including mechanical artifacts, circuitry,
chemical and biological compounds, etc. Ubiquitous access to computation
promises ubiquitous access to design tools. However, still missing is a
framework for ubiquitous access to the computer-controlled tools necessary
to manifest digitally designed objects in the physical world. One solution to
meet this need is communal workshops that make a variety of fabrication
tools available to the community. This approach is embodied by the
international FabLab network (Gershenfeld, 2012) whose associated
workshops provide a standardized set of equipment and materials, and also

1 In 1936, Alan Turing published "On Computable Numbers" which developed a
conceptual model for a computing machine able to follow any algorithm to its
natural conclusion (Turing, 1937). The term Turing-complete is used to describe a
computer language which is completely expressive in the same way as Turing's
machine.
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by TechShop (Techshop, 2013), a for-profit organization which functions
like a gym filled with machine tools rather than exercise equipment. This
type of solution is found lacking for a number of reasons. One is pragmatic -
while communal environments can facilitate knowledge sharing and provide
inspiration, in the experience of the author they are not often conducive to
the thought and reflection afforded by an individual working in their own
studio. More importantly, the equipment available in a community shop is
chosen according to the lowest common denominator. Common tools
include laser cutters, 3D printers, and CNC mills. While these tools are
expressive, they by no means cover the gamut of what is available. And what
is available does not fully express what is possible.

The solution proposed by this thesis is a framework that enables individuals
to build their own digital fabrication tools. While the author recognizes that
no single tool can serve as a universal fabricator, it is hoped that a tool for
making tools will enable the development of an infinite ecosystem of tools,
thus having a similar effect. In a sense, tools define the language with which
we can express designs physically. Being able to extend this language
ourselves is a liberating part of being able to design new things.

The overarching philosophy behind the framework developed here is
modularity, with the goal of providing the right granularity so that the
greatest spectrum of fabrication machines can be realized with a minimum of
repeated effort. There are many challenges associated with building an
automated tool, broken down roughly into the mechanics, control system,
and user interface. This work focuses the control system and user interface
aspects of automated tools. The approach taken is that of a virtual machine
controlling a real machine over a network. While not a new concept 2, its
application to personal fabrication (rather than industrial fabrication) shows
promise for simplifying the implementation, use, and dissemination of novel
automated tools. In this approach, machine configuration and state is stored
in the virtual machine rather than in physical control hardware. This enables
greater modularity in machine construction, and opens up new opportunities
for interfacing fabrication tools more intimately with both user-written
applications and web-based services. The framework has been successfully
applied to the rapid development of control systems for several tools,
including a machine for continuous printing of non-repeating patterns on
masking tape, a personal Jacquard loom for weaving friendship bracelets, a
DIY coil winder, a portable CNC multi-tool, and a desktop fabrication
machine driven by distributed network of motor controllers.

2 The framework presented here bears many similarities to a system developed at the
University of British Columbia (Oldknow & Yellowley, 2001) that is based on the
concept of virtual and physical control modules interacting over a network.
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A background section provides context for the present work. Following that
is a description of the framework architecture, a review of related work, and a
discussion of challenges faced and solutions adopted. A series of case-studies
demonstrate the utility of the framework across a number of use cases and
highlight its strengths and weaknesses. Finally, a discussion of the
framework's ability to reduce the effort needed to build and control
fabrication tools is presented, followed by conclusions.
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Background

Design as Programming

When we design physical things, we are in a sense programming matter,
encoding in the form and material of designed objects instructions on how

they should interact with the world around them. Sometimes these programs
are procedural, like the series of cams, gears, and shafts inside a car, each
element sequentially transforming energy in an intentional manner along the
path from the engine to the wheels. In other cases, the program executes in

parallel, like the way that every strut of a bridge works in concert to support
the weight of cars as they traverse a river. The precise patterning of transistors

on a silicon wafer is a highly parallel program written by an electrical
engineer to orchestrate the flow of electrons within a microprocessor.
Sometimes the programs which designers write are intended to affect the
world aesthetically rather than functionally: the shape, color, and texture of a

vase are chosen to elicit an emotional response in someone who sees it.

If the act of design is an act of programming, then form and material

comprise the language in which designers write their code. Twisting steel rod

into a helix yields a spring, a basic mechanical function that takes force as an

input and yields deflection as an output. The helical form of the spring,

coupled with the intrinsic properties of the material from which it is made,
are the instructions that its designer uses to give the spring a specific and

intentional behavior.

Tools as Impedance Matching Devices

Humans are soft and bluntly shaped creatures. On their own, our hands can
only impart a limited set of forms onto an even more limited set of materials.

Pottery and finger-painting are creative activities well matched to the

qualities of our body. And yet humanity has built cities, spacecraft, and
microchips. In order to adapt ourselves to the world around us, we employ

what engineers call impedance matching devices. Below is an excerpt from an

essay written by this author that describes the concept of matched

impedance:

"If you have ever ridden a bicycle - especially a single speed bike - the concept of

matched impedance is familiar to your legs if not also to your brain. In order to

climb a particularly onerous hill you might pedal extremely slowly, wondering at

3 This excerpt is from an essay "Gestural Design" written by the author and self-
published in a limited quantity in July 2013.
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times if you are capable of exerting the force necessary to keep moving. Suddenly
the bicycle becomes the focus of your attention: you notice every degree of
rotation that you manage to coerce out of the crank arm. On your way back
down, the situation reverses. With your legs spinning fast-as-they-can, the bicycle
settles at a top speed seemingly irrespective of your contributions. Now it is your
legs that are opaque. If only they were a bit lighter and able to whip around even
faster, you could apply some force to the pedals and accelerate.

The joy of cycling exists at neither of these extremes. There exists a feeling, which
we occasionally achieve, when the bicycle and our legs meld into one and we feel
the road. Power is effortlessly transmitted from our muscles to the wheels and
converted into motion. Not only do we feel acceleration; we feel control. The
results of our intent are immediately transmitted back to us as action. In this
moment we experience the magic of matched impedance.

The term matched impedance has its origins in engineering. It can be shown that a
motor will accelerate a load (such as a vehicle) the fastest when the effective
impedance of both are equal. In the field of electronics, impedance mismatches
cause signals to bounce back to the sender rather than transmit in their entirety.
This effect can be seen when playing pool - a direct hit brings the cue ball to an
immediate stop while the struck ball speeds off with hardly any energy lost in the
exchange. This would not be the case if the cue ball was replaced with a whiffle
ball, or a bowling ball. Matched impedance explains why a metal surface feels
cooler (or hotter) to the touch than a plastic one, and why propeller blades are
shaped differently for airplanes than they are for boats.

It is frequently the case that two objects with mismatched impedances are forced
to work together. A bike rider and the hills of San Francisco, for example. Seeing
as neither will readily change to suit the other, we employ what engineers call an
impedance matching device. In the case of the cyclist, this comes in the form of
gears. For electrical signals the analog is called a transformer.

For many of our daily tasks, and particularly when we create, we require
something extra to adapt ourselves to our work. Tools pick up where our hands,
and brain, leave off. Some tools are like the low gear on a bike... one push and
you're flying. A calculator accepts a simple input and spares your mind the
tedious computations necessary to yield an answer. Other tools, like a hammer,
act more like high gear. A slow swing of the hammer over a long distance results
in incredible force over a short distance. From an engineering perspective, a
hammer is quite similar to a gear box. Even the design of the hammer is
indicative of its impedance-matching role: a relatively soft wood or rubber handle
couples the tool to our hands, while a hard and tough steel head is well suited to
interact with a nail. Tools are by their nature impedance matching devices."

Tools as impedance matching devices serve two purposes. The first is to give
us access to a broader range of forms and materials. This is analogous to a
bike rider who switched from a single-speed to a geared touring bike and can
now climb hills previously too steep. The effect is to expand the language of
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form and material with which we can program objects. The second purpose
of tools is not to make something possible, but to make it enjoyable. Like
having precisely the right gear to go flying down a lightly sloped hill. Tools
help us to achieve this by enabling us to operate in our region of maximum
mechanical and intellectual power output. To summarize, we might say that

tools both extend our language for programming objects, and make the act of

programming more efficient and fun.

Hand tools, like the hammer, are passive objects that derive all of the energy
required for their operation from the user. Thus their role is both as a

transformer of mechanical power and also of intellectual flow. Often,
however, these roles are at odds with each other. The weight of the hammer

is a key property that allows the hammer to match physical impedances
between us and the nail. If the hammer is too light, we might expend more
energy propelling our arm than we are able to impart to the hammer.
Conversely, too heavy of a hammer and we can barely lift it. Simultaneously
the weight of the hammer also acts as a limiting factor in the rate at which it

can be operated, thereby limiting the rate at which one's intentions (fastening
two pieces of wood together, for example) can flow from the brain into

reality.

Powered hand tools strive to decouple their mechanical and intellectual
impedance-matching roles. The pneumatic nail gun uses energy stored in

compressed air to apply the driving force, permitting the user to focus on the

more cerebral activity of locating the nail. Manual machine tools (which I
will loosely consider a powered 'hand' tool) provide greater rigidity for

working with metals, and a means of precisely positioning a tool relative to
the work. In both examples it is soon discovered that eyes move faster than
hands. Even when isolated from much of the mechanical loading of a task,

now our bodies, rather than the tools in our hands, become the dominant

impediment between our brain and its desires.

Virtual Objects

Hand tools and powered hand tools embody what might be called the direct

approach to the programming of objects. For a certain range of tasks, directly

manipulating matter using a tool in our hands is best. Driving a nail in the

wall to hang a picture, drilling a hole in a piece of wood, and maybe even

machining a simple rectangular shape on a milling machine are all activities

easily done in this way. However, the direct approach has many limitations

that often coincide with persisting impedance mismatches between our brains

and/or bodies and the task at hand. Forms that involve high precision like the

exact placement of locating pins, repetition like a square array of 10,000
holes, or complexity like the surface of a jet engine turbine blade, lie far away
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from our corporeal sweet spot. It is much easier for us to specify these
features than to create them with our hands. 'A square 1 00x100 array of "
holes on 1" centers drilled to a depth of 0.5"' is written in 20 seconds but
would take a human orders of magnitude more time to execute. The
common solution to the problem of us becoming mentally bogged down in
the manifestation of our designs is to separate design from fabrication. This
indirect approach allows us to work with a completely new set of tools which
are far better matched to our intellect; tools which permit faster creation of
form (irrespective of material properties), do not penalize heavily for
correcting mistakes, and which allow us to speak our intent in a more native
language than that of form and material.

The idea of imparting form on conceptual material is not new. Perhaps the
designers of the pyramids drew out these great structures on parchment
before setting their slaves to work. In engineering, the blueprint was for a
long time the medium for the designer to manipulate the concept of matter
rather than the matter itself. More recent innovations have given us new tools
for manipulating virtual material as a stand-in for the real thing.

Computer Aided Design (CAD) is an umbrella term that describes a host of
tools for programming physical objects, virtually. In its most basic form,
CAD provides a toolset for directly shaping virtual material analogous in
ways to the physical tools we use to shape real matter. For example, many
mechanical CAD programs provide virtual tools for extruding and cutting
3D geometry based on 2D drawings. Additional tools will round edges
(much as a file or corner-rounding end mill might do in real life), revolve 2D
profiles to create axisymmetric objects, sweep profiles along arbitrary paths,
and many more. The material within CAD is completely malleable in a way
that most real materials are not. We can push and pull on it, twist it, bend it,
even create geometry which cannot be fashioned using real tools. We can
specify the size and position of features with near-infinite precision. The
power of CAD is derived from a much closer impedance match between our
brain and the computer than between our brain and the physical world. We
wield virtual tools with a computer mouser or stylus (and perhaps one day
our brainwaves). Airplanes and submarines are built virtually by hands
moving within a work area of only a few square feet.

Perhaps the greatest advantage to designing virtually using a computer is the
computer's ability to speak with us on a higher level than raw geometry. To
understand this, consider the basic calculator. A calculator is an impedance-
matching device in the sense that we can communicate to it some long
multiplication task, and it performs the tedium of deriving an answer. The
same information is present both before and after the calculation, yet it is in a
more meaningful form beforehand. For example, the price of 134 eggs at 43t

18



per egg is $57.62. However it is not only easier for us to think in terms of
quantity and cost, but the logic of the calculation is still available to us should
we decide that really we want 136 eggs. Similarly, computer aided design
becomes more powerful when used as a geometric calculator rather than as a
souped-up drafting table. Another way to understand this is in terms of the
analogy between physical programs (i.e. objects) and computer programs. In
computer programming, 'assembly language' is the most basic human-
readable set of instructions available for controlling the behavior of a
computer. The physical language of form and material is like assembly
language for the real world, providing the commands that dictate how
physics will cause an object to behave. In both cases, programming requires a
deep understanding of the mechanics of the machine. While it is possible to
program in assembly language directly, there are many advantages to using a
higher-level language because it removes complexity and tedium while
enabling modularity and the capture of design logic. Using CAD as a
geometric calculator permits us to program objects in a higher level language
that is better matched to how we like to think of problems.

Computer aided design tools can act as calculators is several ways. The first
method - constraint-based modeling - harks back to the very origins of
CAD. In 1963 Ivan Sutherland published his work on the world's first
computer aided design tool, called SketchPad (Sutherland, 1964). One of the
primary contributions of Sutherland's work was what he called "constraint
capability", which gave the designer the ability to convey their intent to the
computer rather than just its geometric result. Sutherland provides an
example of SketchPad's constraint capability in the introduction to his PhD
thesis, in which the user creates a regular hexagon by first drawing an
irregular hexagon and then constraining all sides to be equal and each vertex
to lie on the perimeter of a circle.

Constraint-based modeling helps designers find geometric solutions to
geometric problems, like answering which joint positions and link geometries
will cause a linkage to pass thru a series of points. For a limited set of
behaviors, particularly for making parts fit together, constraint-based
modeling is very useful. But this technique is material independent, which
eliminates its utility at programming material-dependent behavior into
objects.

In order for computers to provide the designer with a truly high-level
language for programming physical objects, a way is needed to predict the
behavior of materials. One method of achieving this is with analytic
formulas. For example, the designer might input an equation describing a
spring, along with its size, material properties, and desired stiffness. Based on
this equation, the proper wire diameter is automatically determined and a
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virtual spring is generated. This approach only works for a small subset of
geometries and functions for which there are analytical formulas. In order to
predict the real-life behavior of arbitrary shapes, a finite element analysis
(FEA) method is used. FEA simulates the overall behavior of an object by
converting it into a mesh of points and evaluating constitutive equations at
each point. For example, the overall deflection of a spring under load could
be calculated by determining the minute deflections at each point along its
helix and then summing them (this is somewhat of a simplification). Because
this technique is totally general, it applies to springs of any shape and size.
The results generated by FEA can then be used to influence the solid model,
allowing the designer to find the ideal form and material to achieve a desired
behavior.

One of the benefits of capturing the designer's intent rather than just
geometry is that virtual objects become easily shared and modifiable by
others. For example, a solid model of a teacup might be embedded with logic
that constrains its proportions to the golden ratio. Its wall thickness might be
derived from an FEA calculation that ensures that the walls can withstand the
hydrostatic pressure of its contents and the gripping force of its user. If
somebody other than the designer wanted to modify the cup to hold twice as
much liquid, they could change a single number and otherwise preserve the
'programming' of its designer which ensures that the cup will function as
intended. This type of encapsulation is called 'parameterization', and enables
libraries of objects similar to how computer programmers create and reuse
libraries of code functions.

It should be noted that analogous CAD tools with simulation capabilities
exist for many fields of design, not just the mechanical arts on which the
examples of this thesis focus. Electrical engineering, architecture, chemistry,
and biology all have computer-based tools for giving form to material, and
for simulating virtually the effects which various forms and materials will
have on the behavior of the thing being designed.

Numerical Control

Manipulating virtual materials using virtual tools to fashion virtual objects is
an incredibly powerful paradigm for design. Yet the whole practice is
impotent unless these virtual objects can be fabricated in the physical world.
The original approach adopted by designers was to have another human act
as the impedance-matching device between their blueprint and the set of
manual tools necessary to build the object. This is how the aircraft of World
War II were built, and Ford's Model T before that. Part drawings were
handed to rooms of machinists, who would toil away attempting to mirror
concept in matter. This process is fraught with inefficiencies, both in terms of

20



communication and also execution. For example, the dimensions favored by
designers are different than those needed by machinists. The way that
features are dimensioned carries with it implications for what matters to the

designer. Dimensioning two holes, both from the corner of a rectangular
block, is very different from dimensioning them relative to each other and to

the corner. The former implies that the absolute position of the holes relative

to the corner is what matters, while the latter implies the distance between

them is more important. However, when a machinist builds the object, they

need to know the position of the holes relative to where they zeroed their

tool. This discrepancy requires that somebody - either the designer or the

machinist - must translate between these languages. Equally problematic as

communication is execution. The issues with manually controlled tools - the

difficulty of achieving precision, repetition, and complexity - slows down
and in some cases restricts the ability of the machinist to bring the designer's

plans to life.

One partial solution to these difficulties with fabrication is a tool that can be
driven directly and automatically from a virtual design. The first widely

adopted automated tool was Joseph-Marie Jacquard's loom for weaving
decorated fabrics, which he patented in 1804 (Essinger, 2004, p. 37). Textiles

are woven by repeatedly passing a transverse thread called the weft over or

under a series of longitudinal threads called the warp. In order to weave

patterns into fabric it is necessary to control which warp threads are up and

which are down when the weft thread is passed between them. The first loom

to provide individual control of each thread, known as a drawloom, was

invented in China around 200BC (Essinger, 2004, p. 10). The drawloom

required a 'drawboy' to sit atop the loom and selectively lift the warp threads,

while the weaver would shuttle the weft thread back-and-forth. The Jacquard

loom automated the task of the drawboy by selecting warp threads under the

mechanical control of a series of punched paper cards. The result was that

fabric could be woven 24 times faster with half the manpower (Essinger,

2004, p. 38).

Most importantly to this thesis, the Jacquard loom as the first automated tool

represents the birth of the now-ubiquitous process of design -> compile ->

execute. The pattern to be woven is first designed by the artist. The next step

is compilation: expressing the design in terms of the motion of the machine,

and encoding these motions in punched paper cards. This was accomplished

by converting the image into, in essence, a pixel graphic using a method
called 'mise en carte,' which was then easily transferable to punch cards
(Essinger, 2004, p. 282). The resulting program was then executed on the
loom to create bolts of beautiful fabric.
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It was Charles Babbage who first identified the value of the workflow of
design -> compile -> execute to the field in which we now most commonly
recognize its presence: computation. Charles Babbage's Analytical Engine,
arguably the world's first computer, was debuted to the world in a paper
published by Federico Manabrea in 1842 (Essinger, 2004, p. 122). Like the
Jacquard loom, it accepted instructions as punched cards that commanded its
machinery to perform a sequence of mathematical operations including
storing and accessing results. Indeed, the connection between the Analytical
Engine and the Jacqurd loom is central to James Essinger's book 'Jacquard's
Web'. Babbage describes his Analytical Engine as a completely general tool
for calculating mathematical formula according to the instructions conveyed
to it by its program (Essinger, 2004, p. 89). In essence, Babbage is describing
the same process of design, compile, and execute which we observed with the
Jacquard loom. Algorithms for evaluating mathematical formulae (the
'design') must be compiled into a series of instructions that the Analytical
Engine is able to execute within its electro-mechanical hardware. While
Babbage's Analytical Engine was never completed, it undoubtedly laid the
intellectual foundation for the modern computer.

Not until 1952 does the history of the computer once again cross paths with
fabrication machinery. It is in this year that John Parsons, Bell Aircraft, and
the MIT Servomechanisms Lab built the first numerically controlled (N.C.)
milling machine (Noble, 1978, p. 326). On a traditional milling machine, a
block of material is clamped to a moving table and introduced to a spinning
blade under the guidance and mechanical force of a trained machinist.
Material in the path of the blade is removed until the desired shape is
achieved. Numerical control did for machining what the Jacquard loom did
for weaving: it made practical far greater complexity of fabrication by
wresting direct control of the tool from the operator and placing it under the
command of a program encoded on magnetic tape. The workflow of
numerical control, like the Analytical Engine and the Jacquard loom before
it, follows the paradigm of design->compile->execute. An object is designed
virtually, tool motions to create the object's form are generated, and finally
these motions are run on the machine to create the physical object.

In the intervening years between then and now, numerical control has
become ubiquitous in manufacturing, operating at the terminus of an all-
digital workflow that interfaces designers and their virtual objects to physical
manifestations of their designs. NC has since been applied to many more
tools and processes beyond the vertical milling machine on which the
technology was first developed. Examples include but are by no means
limited to: lathes, boring machines, grinders, turret punches, water-jet
cutters, laser cutters, 3D printers, welding robots, knitting machines,
laboratory robots, DNA sequencers, etc.
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Personal Fabrication

"Capitalist production is the activity of a Divided Humanity, of two separate

and antagonistic classes of human beings" wrote the technology historian
David Noble in his paper Social Choice in Machine Design: The Case of
Automatically Controlled Machine Tools, and a Challenge for Labor (Noble,
1978). His essay argued that machine tools, and N.C. specifically, evolved

under the selective pressures of corporate management to usurp control of the

factory floor from the working class. Importantly, Noble asks the question:
"... is it really necessary to divide the programming and machine operating

functions within the shop? Could programming, like other tooling, be done
closer to the floor or by people on the floor?" (Noble, 1978, p. 323).

Within the field of manufacturing - the original benefactor of numerical
control - there still exists a sharp divide between the designer of objects and

the machinist who operates the now-automated tools of production. Noble
was commenting on the fact that industrial NC tools are designed for a

system where the tool's operator sits in a different room, and maybe a on

different continent, than the person who generated the instructions which

the tool follows. Yet the ubiquity of computation and the low cost of

electronics have recently made the tools for design and fabrication available

to an entirely different demographic with completely different needs.

Access to computers is now ubiquitous within most developed countries. The

relatively recent availability of freely accessible CAD software puts the tools

to create virtual objects within the hands of the masses. These free CAD tools

can take many forms. One example, called SketchUp (Sketchup, 2013), is

essentially a 3D drawing program. Virtual tools are provided to add and

remove material, but there is no way of imposing constraints or conducting

analysis as is available in professional CAD packages. Nearly the polar

opposite to SketchUp is a Python library called OpenSCAD (OpenSCAD,
2013). Objects are literally programmed by specifying shapes algorithmically.
For users comfortable with programming in Python this provides the ability

to create geometry that would be otherwise incredibly tedious and difficult to

draw by hand. Designing objects using code also encourages parameterization

and reuse of objects, like the teacup discussed earlier. Despite the availability

of free CAD programs like SketchUp and OpenSCAD, a steep learning curve

still presents a barrier to their widespread accessibility. Recent attempts to

circumnavigate this issue are based around the concept of the 'customizer'.
Embodied by services like MakerBot's Customizer (2013) and Shapeways'

Creator (Shapeways, 2013), this approach provides a parameterized model

that the user can tweak to design a unique and custom-tailored object. For
example, a basic design for a ring can be adjusted digitally to fit an
individual's finger and preferences for width. With all of these means at the
disposal of the individual designer to create virtual objects, it is important
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that the tools to convert between virtual and physical become equally
accessible.

Numerical control, which revolutionized mass manufacturing, has significant
utility to the recently empowered individual designer. Numerically controlled
tools, being almost entirely automatic, obviate much of the specialized skill
previously necessary for the operation of similar manually controlled
machines. In the case of milling, precise coordination of multiple
simultaneous axes - a task difficult for even highly skilled machinists - is
performed by the computer. Feed rates are tightly controlled, and the
positioning of features like drilled holes is done with unwavering precision.
The benefit of abstracting away manual skill is two-fold. First, tools that
previously required years of training to operate skillfully are now accessible to
individuals with only minutes of exposure. Second, the output of these tools
is consistent both in time and space. A single tool will not only reliably
produce the same output for a given design input, but the same design will
yield the same result on different tools of the same type. This latter point has
profound implications for the ability to share and reproduce designs globally.

Design has become easier and more accessible because widely available tools
allow us to interact with virtual matter at a logical rather than just a
geometric level. Techniques such as parametric design permit sharing of
geometry and the reuse of design logic. Simultaneously, the tools for
interacting with physical matter have become nearly automatic. These
technological forces have enabled a number of social movements around the
design and construction of things.

'Personal Fabrication' is the term used by Prof. Neil Gershenfeld of the MIT
Center for Bits and Atoms to capture the fact that individuals are often
motivated to design products solely for themselves without any regard for a
larger market demand or the potential to make profit from their work.
Gershenfeld states "As it turns out, the 'killer app' in digital fabrication, as in
computing, is personalization, producing products for a market of one
person" (Gershenfeld, 2012). The digital fabrication workflow is indeed well-
suited to support the activity of personal fabrication, where an individual is
designing and producing entire products themselves. This demands design
skills in the domains of mechanics, electronics, and software. The ability to
learn from and build off of other people's work is thus essential. Additionally,
the budget of the individual is frequently meager, which necessitates low cost
tools with shallow learning curves for prototyping and fabricating.

The 'Maker Movement' is a (conveniently named) label created by Make
Magazine to describe a growing social trend centered upon personal
fabrication. This is supported by a series of 'Maker Faires' held each year
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around the globe that gives 'makers' a forum for sharing their work. In ways
the Maker Movement builds on 'Do It Yourself (DIY), fuelled by wide
access to computer-based tools and information for designing and building.
Over 110,000 people attended the 2012 Maker Faire in San Mateo, SF
(Make Magazine, 2013), indicating the cultural importance of the
movement.

The Open Source Hardware Movement adopts an approach to developing
physical objects which is philosophically similar to open source software in
that it exhorts modularity and the sharing of design logic, so that it becomes
possible to build on others work. A key component to the Open Source
Hardware Movement is the license under which designs are released. A
variety of licenses have been developed, many by Creative Commons, which
protect certain rights of the original author of a design while permitting
others to build on their work. For example, the 'Creative Commons
Attribution' license "lets others distribute, remix, tweak, and build upon your
work, even commercially, as long as they credit you for the original creation"
(Creative Commons, 2013). Open source hardware, like open source
software, fundamentally depends on a common framework for designing and
building. Because only digital files are shared, digital fabrication tools are an
implied necessity in order to ensure that the same file results in the same
output regardless of who is building the object described by the file.

Automated Tools for Personal Fabrication

Much of the recent cultural activity in the realm of personal fabrication is
predicated on access to tools for digital design and computer-controlled
fabrication. This new generation of 'makers' has a perspective on fabrication
machinery which is entirely different than that held by industry. For the
maker, the computer is the tool. The fabrication machine is simply an
extension of the computer. An apt analogy is that of the computer and the
desktop printer. We don't think of a printer as a tool, as we spend the vast
majority of our time creating a document, and only seconds clicking 'print'.
Yet the commercial press-person most certainly does view their offset press as
a tool. The role of tools is to match impedances, and computer-aided design
matches intellectual impedances between our brains and the virtual objects
which we design; digital fabrication tools adapt between the computer and
physical matter, and are thus ideally completely decoupled from us as
designers. In our non-ideal reality, these tools can only get in our way - when
they malfunction. The disparity in perspectives between industry and the
individual designer/maker means that the majority of digitally controlled
tools - which do a fine job of impedance matching within an industrial
setting - are wholly mismatched to the approach and needs of the individual.
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One area of dissonance between makers and modern digital fabrication tools
is cost. Industrial machines prioritize speed, reliability, and precision. Speed
is important because it is directly correlated with greater productivity and
thus higher profits. Reliability is essential because machine downtime is
expensive in terms of profits not made. Machine precision is important for
statistical reasons: in a mass-production setting where the standardization of
parts is fundamental, higher machine precision increases the yield of parts
that fall within tolerance. These attributes are irrelevant to the individual if
their optimization makes the tool unaffordable.

Affordability is a major factor that places most automated industrial tools
outside of the reach of the individual. This fact has driven the development
of lower cost alternatives. The difference in design approaches for industrial
tools versus hobbyist tools might be described in terms of maximizing versus
satisficing. This is evidenced by many of the fabrication tools found in
community shops - often called 'hackerspaces' - around the world. Popular
tools and brands include 3D printers by MakerBot, laser cutters by Epilog,
and gantry routers by ShopBot. These tools sacrifice capability, speed,
reliability, precision, and sometimes a degree of automation, at the benefit of
far lower cost. The present-day MakerBot is a less capable version of a
$30,000 machine produced by Stratasys, but costs an order-of-magnitude
less, thus making it accessible to a far wider audience.

Besides the needs and constraints of the individual, there is the entirely
separate issue of how the individual approaches digital fabrication tools.
Their goal is to reproduce verbatim an object that they have designed on
their screen; a very similar situation to the writer who has spent months
writing a manuscript and is now ready to send it to their printer. In this way
the role of the tool is perfunctory. This is a very different approach than that
taken by industry, where the tool has its own operator, and part programs are
not generated by the operator. Unfortunately, many of the low-cost digital
fabrication tools intended for makers adopt the same philosophical approach
as their industrial kin. Tool motions must still be 'compiled' separately from
the design file, and transmitted using an archaic and overly restrictive
language called G-Code to the tool. Then, a unique user interface is present
at each tool to control its operation.

To reiterate what we claimed earlier, the role of tools as impedance-matching
devices is twofold: tools broaden the language of forms and materials that are
accessible to us, and they make the manipulation of materials easy and
enjoyable. Personal fabrication tools presently fail on these criteria. There are
only a few types of tools currently available, and the cost of these tools still

' See Herbert Simon's Rational Choice and the Structure of the Environment (Simon,
1956).
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places them outside the budget of many individuals. At the same time, their
adoption of industrial approaches to user interface makes them less accessible
to those who do own them. When we take the view that tools are an
extension of the computer, the way in which they should be designed
completely changes. Just as we write code to extend for ourselves the abilities
of the computer, and in fact the capability to do so is increasingly seen as
something of a basic literacy, so too should we as users be able to extend the
computer's reach into the physical world. Tools should be accessible by web
browsers, as are many of the computer's other resources such as mouse,
keyboard, monitor, speakers, microphone, and camera. This would both
enable more familiar tool interfaces to the modern user, and also enable
interfaces which are common to applications rather than to brands of tools.
Browser-accessible tools could also enable more streamlined workflows
between browser-based design tools, online repositories (of parts and
techniques), and digital fabrication machines. Another implication of the tool
as an extension of the computer is that user-written software programs should
be better able to interface directly with tools. This is particularly important
for when a design is expressed algorithmically in terms of tool movement. An
example of such algorithmic design is the dragon curve of Figure 1 (Gardner,
1967), which was generated by a recursive algorithm around 40 lines of code
long (although ignoring implementation details the algorithm is much
shorter).

Figure 1: The Dragon Curve

The plotter which drew this dragon curve was controlled by the framework
presented in this thesis; the dragon curve algorithm made function calls
directly onto the plotter's virtual machine. Another area where algorithmic
control of tools may find use is in biology research. Often times the protocols
which biologists follow, frequently requiring both copious and tedious
pipetting, are indeed simple algorithms that might be expressed easily as a
short Python script.
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The Gestalt Framework

Introduction

This thesis develops a framework, called Gestalt, for rapidly building
controllers for automated machinery. Examples of devices that could be
controlled by Gestalt range from traditional hobbyist machine tools like 3D
printers and CNC mills to less conventional machines like Jacquard looms,
laboratory equipment, robotic arms, etc. The name Gestalt was chosen for
the framework because its meaning - "an organized whole that is perceived as
more than the sum of its parts" (Oxford Dictionaries, 2013) - suits Gestalt's
modular yet cohesive approach towards structuring the architecture of
machine controllers. The overarching decision guiding the design of Gestalt,
and distinguishing it from many existing controls frameworks, is that it
should be accessible to individuals for personal use. This has shaped every
aspect of Gestalt's development, from the language it is written in to the
hardware that it will run on and the ways in which it communicates with
external components. Gestalt is currently written in Python because of
Python's extensive documentation, huge collection of user-created libraries,
and cross-platform portability. External communication and synchronization
is supported over commonly available interfaces like USB virtual serial ports,
which allows Gestalt to interface with a wide variety of existing hobbyist and
commercial hardware while making it easy for individuals to develop new
compatible electronics. Python's cross-platform nature, coupled with
Gestalt's ability to communicate over USB, makes it possible to run machine
controllers on the recently released $25 Raspberry Pi (Raspberry Pi
Foundation, 2013).

The Gestalt framework is comprised of an extensible collection of software
modules that can be combined in many ways to quickly realize machine
controllers. An example configuration is shown in Figure 2, which contains
many of the common elements found in a typical machine controller. A
physical machine is comprised in part by a number of electronic and electro-
mechanical hardware components. A series of physical control nodes provide
low-level control of the machine components, and connect to the Gestalt
virtual machine via either a direct connection or a network bus. Each physical
control node is matched by a virtual node that exposes to the virtual machine
the functions needed to control its specific hardware. The virtual machine
additionally might contain kinematic definitions, memory of state (i.e.
position), machine-level functions (e.g. to move the machine) and external
interfaces through which user applications can control the machine.
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Figure 2: Components of the Gestalt Framework

Gestalt views automated tools as a series of nested layers as shown in Figure
3. The component layer is the most fundamental, and encompasses the
electro-mechanical elements of the tool, such as actuators and sensors, along
with their corresponding low-level control elements. For example, in a 3-axis
milling machine, the component layer might consist of three stepper motors
and their controller/driver boards, along with the spindle motor and its
controller/driver. The machine layer is the point at which component-level
functionality combines to create machine-level functionality. In the example
of the milling machine, the machine layer is where lead-screws or belts
convert the rotation of stepper motors into stage motion. The application
layer is where the functionality of the machine is applied by its user to
perform a particular task, such as milling a circuit board.
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The approach adopted by Gestalt is that of a virtual machine controlling a
real machine. The virtual machine is a computer-based representation of the
physical machine that often times will run on the user's computer. Machine
configuration and state is stored in the virtual machine, rather than in the
physical hardware which controls actuators and reads sensors. The virtual
machine approach has advantages over traditional machine controllers in
every step of the chain of building and using automated tools, benefitting
four primary types of users corresponding to the layers of Figure 3: the
component controls builder, the machine builder, the application designer,
and the end user. Sometimes these will all be the same person!

The Component Controls Builder: Components form the physical
language from which an automated tool is built. Common electro-
mechanical components include stepper motors, DC motors, limit switches,
relays, and a variety of task-specific actuators and sensors. In order for these
components to interface with the greater control system, they often require a
control board that abstracts away the details of their operation. For example,
a stepper controller might accept a logical command like "spin 100 steps at a
rate of 10 steps/sec" and converts that command into the low-level pulses of
current that cause the motor to move accordingly. Typical controllers accept
these high-level commands over a physical interface like a serial port,
requiring that all of the command processing occurs on the hardware of the
controller (Figure 4).

Serial

ispn10te" Interface Stepper"spin 100 steps" CPtreController

Figure 4: A traditional approach to component control.

The virtual machine approach assists the component control builder by
allowing them to own both sides of the physical interface. The control
builder writes both device-based firmware and a matching computer-based
device driver as shown in Figure 5.

Serial

"spin 100 steps" Cont roper
Controller

Driver

Figure 5: The Gestalt approach to component control.

This makes the task of writing firmware easier, and permits the firmware to
run more efficiently, by allowing complex calculations to be written in a
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language like Python and performed on the computer, while time-sensitive
calculations, like when to take a step, are performed in firmware. In the
language of Gestalt, the physical controller is known as a node, and the
computer-based driver is a virtual node. A set of Gestalt libraries written in C
and Python handle communication between nodes and virtual nodes
respectively. Device drivers can also be written for pre-existing hardware that
uses the traditional approach shown in Figure 4, without utilizing the Gestalt
communications libraries or protocol.

The Machine Builder: The machine builder uses Gestalt to create
controllers for automated tools. The task of these controllers is to unify the
components of the machine into a cohesive whole, and to present a high-level
interface to external applications.

Machine Controller

Application
FunctionsInterface

Kinematics

Figure 6: A Three-Axis Machine Controller

For example, an individual might be building a three-axis positioning stage
using three stepper motors as shown in Figure 6. A machine controller is
needed which can synchronously control these motors to cause the stage to
move, and also exposes an API to task-specific applications that wish to
control the machine. This controller is referred to as the virtual machine
because it is a software representation of the physical machine. The virtual
machine approach of Gestalt makes it easy for a machine controller to talk to
machine components such as stepper motors simply by importing and then
making function calls on their device drivers. Control nodes for various
discrete components like stepper motors can be plugged into a common bus,
and Gestalt has built-in provisions for synchronizing the activity of these
nodes. For example, each of the three stepper motors of Figure 6 can be
controlled by a separate physical controller, yet Gestalt makes them appear to
the virtual machine as a single logical 3-axis controller rather than three 1-
axis controllers. The ability to plug individual components into a network
and have them be treated as a cohesive unit promotes modularity and reuse
because control boards can be built with finer granularity to support single

32



components that later get combined by the virtual machine to control entire

tools. In order to convert between motor coordinates and machine

coordinates, a mechanics library has been created which includes common

machine kinematics like the differential-drive h-bot, and transmission

elements such as lead-screws and pulleys. Pre-built machine-level functions

like "move" allow the machine control builder to rapidly test out their

creation, and also include more advanced functionality such as accel/decel

path planning with look-ahead.

The modular approach of Gestalt means that virtual nodes, kinematics, and

functions can all be shared and reused. In many cases this can significantly

reduce the amount of work necessary to implement a new machine

controller.

The Application Designer: Applications provide a task-specific context in

which a user interacts with a tool. For example, the web-browser-based
application shown in Figure 7 generates toolpaths for milling circuit boards

and provides related machine-control functionality like jogging and zeroing

the tool.

Machine Control
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Figure 7: A Browser-Based PCB Milling Application

Gestalt's approach to machine control makes it easy for applications to
interface with the virtual machine (and thus the real machine) either by
importing the virtual machine as a Python module, or by connecting to the

virtual machine thru a remote procedure call interface. The former modality

is well-suited for experimentation or algorithmic machine control because the
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application can call functions on the machine just as you would on any other
Python method. This approach does away entirely with industry-standard G-
code because function calls are made directly. The remote procedure call
interface provides a way of converting an HTTP request into a machine
function call which returns a response encoded in JSON. This enables the
development of browser-based interfaces to machine tools, as in Figure 7,
which in turn could open the door to a wide variety of new applications that
are partially browser-based and partially server-based. An example of this use
case might be an online repository for storing PCB designs, which is also able
to directly control a user's machine. Web-based UIs have the advantage of
being operating-system independent and written in a language set
(HTML/CSS/Javascript) that has a shallow learning curve, has prolific online
support, and has enormous momentum driving its further development.

An additional benefit of the virtual machine approach, not explored by this
thesis, is the fact that the capabilities of the real machine are exposed via the
virtual machine to the application. This could enable a new generation of
toolpath generation software that looks at not only the geometry but also the
capabilities of the machine when coming up with a strategy for how to
produce the part. For example, an application might be capable of generating
toolpaths for a CNC mill and a 3D printer, and would choose between the
two methods based on the virtual machine provided to it. A less ambitious
use case is a 3D printer slicing engine that identifies that the work volume of
the machine is smaller than the size of the part, and thus automatically splits
the part up into several pieces.

The Tool User: The primary benefit of the virtual machine approach to the
tool user is that the inner workings of the machine, down to the component
level, are made open to them. This enables machines to be repurposed for
new applications by the end user, or allows the end user to learn from the
construction of existing machines in support of their own machine
development efforts. In essence, Gestalt allows the tool user to readily assume
the three other roles mentioned previously. For example, the user becomes an
application developer simply by importing the virtual machine into a Python
script. This use case is particularly relevant in cases where the design of an
object is expressed by its designer in terms of how it is fabricated. A biologist
might specify a wide range of titrations or a combinatorial matrix of
solutions. These 'objects' are already conceptualized by the biologist as the
protocol necessary to create them. Thus the easiest way to communicate the
protocol to a robotic pipette may indeed be via a short script.
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The Virtual Machine Model

Nodes

Gestalt as a framework is built around the notion of virtual nodes controlling

physical nodes over an interface (Figure 8). Conceptually, this allows real

hardware to be treated as software objects, conferring all of the benefits of

object-oriented programming including modularity, reusability, and re-
configurability.

Virtual ItraePhysical
Node Node

Figure 8: Virtual and Physical Nodes

From the perspective of the hardware designer, the virtual machine approach

has an additional benefit. Because the virtual node and the physical node

occupy both ends of the communication channel, the hardware designer has

complete control over what information is sent over the wire. This enables
them to perform computationally-intensive calculations in the virtual node,

preserving compute power on the physical node for time-critical operations.

Four classes of nodes are defined in Gestalt, corresponding to a variety of
scenarios and connection topologies.

Solo/Independent Nodes

Solo/Indep. Interface Non-Gestalt
Virtual Node e.g. USB, Physical Node

Ethernet,
Radio

Figure 9: Solo/Independent Node

The most basic type of virtual node is the solo/independent node (Figure 9),
and is used when it is necessary to interface pre-existing non-Gestalt
hardware. The role of the virtual node in this case is to provide an API
wrapper for whatever API is already provided by the hardware. For example,

the author has written solo/independent nodes for an industrial inkjet head
that communicates over a serial interface using an ASCII-based command
set, and for a KUKA robotic arm that communicates over Ethernet using
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XML. Solo/Independent nodes cannot be synchronized by Gestalt and thus
must rely on some other means of synchronizing with external hardware.

Solo/Gestalt Nodes

Solo/Gestalt Interface Gestalt
Virtual Node e.g. USB, Physical Node

Ethernet,
Radio

Figure 10: Solo/Gestalt Node

Solo/Gestalt nodes (Figure 10) communicate using a standardized packet
format and respond to a common set of basic commands. These common
commands include functionality for resetting the node, loading new
firmware, and automatically loading a virtual node from a vendor's website.
This functionality is provided by a base class on the virtual machine side, and
by a C library on the physical node side. Because the hardware designer
creates the virtual node alongside the physical node, they are free to send
whatever information they want over the communication channel.

Solo/Gestalt nodes typically communicate over a USB (virtual serial port)
connection although other mediums such as Ethernet or radio are possible.
Solo/Gestalt nodes cannot be synchronized with each other using the Gestalt
framework, at least given the presently implemented synchronization
techniques.

Networked/Gestalt Nodes

Net./Gestalt Gestalt
Virtual Node Physical Node

Net./GstaltGestalt
Virtua NodePhysical Node

Net./Gestalt 1 Gestalt

Virtual Node Phsia N4d;

Figuretal Gestawrkd/eslt Nd
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Networked/Gestalt nodes (Figure 11) are very similar to Solo/Gestalt nodes,
except that they communicate on a common bus that enables them to
conduct synchronized activities. Physically, the nodes are interconnected
using the FABNET standard that is discussed in more detail in Appendix C.
Gestalt allows packets to be addressed to individual nodes or to all nodes on
the network. Synchronization is accomplished by preparing each node for a
coordinated activity by sending a unique setup packet to each node. A
'multicast' synchronization packet is then addressed to all nodes, signaling
them to begin at precisely the same time. This method might be called 'soft'
synchronization, and has drawbacks which are discussed later in this section
and are demonstrated in the 'Distributed Control of a Fabrication Machine'
case study.

Addressing individual nodes requires a means of associating virtual nodes
with their physical counterparts. The Gestalt Interface class manages the
routing table that connects virtual and physical nodes, as well as additional
tasks like queuing commands and generating synchronization packets.

Managed/Gestalt Nodes (tentative)

Network
Manager

Mng./Gestalt Gestalt
Virtual Node Physical Node

Mng/Gestalt Gestalt
Virtual Node Physical Node

Mng./Gestalt Gestalt
Virtual Node tPhysical Node

Figure 12: Managed/Gestalt Node

There are several anticipated problems with the Networked/Gestalt approach,
stemming from round-trip latency. In order to ensure that all command

packets have been received by the physical nodes before beginning a
synchronized activity, it is necessary for them send a confirmation response.
FABNET communicates using the differential RS-485 standard which is not
collision-tolerant. Therefore the virtual node must wait for a response to its
outgoing packet before releasing the interface to the next virtual node waiting
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to communicate. On the computer systems tested by the author (Mac OS X,
Linux, and Windows) there is significant latency (- 10-20ms best-case)
between when a response is sent over the wire and when it is received by the
virtual node. The bandwidth of the network is significantly reduced by this
latency. For this and other reasons, a different approach is proposed
(although not yet implemented) in which a network manager communicates
over a high-speed bi-directional link with the virtual machine, and uses
additional open-collector network wires shared with the physical nodes to
identify errors without requiring the call-and-response method. This
approach also enables hardware synchronization rather than issuing a
synchronization packet.

It is expected that the Managed/Gestalt method of synchronization will
enable significantly higher network bandwidth as well as superior
synchronization. Further details of this proposed approach are given in
Appendix C.

Compound Nodes

Compound Node

Gestalt Stepper
Virtual Node Driver Node

Gestalt Stepper
Virtual Node Driver Node

Gestalt Stepper
: Virtual Node Driver Node

Figure 13: Synchronized Stepper Motor Control via a Compound Node.

Compound nodes are containers which assist in managing and synchronizing
sets of related nodes. In the simplest use case, a compound node will pass
function calls directly on to its child nodes. This is useful for tasks that must

be performed by all of the nodes, such as loading identical firmware onto

every stepper driver in a three-axis robot. Compound nodes can also perform
more complex routing of function calls by splitting parameters to each node.
The example of Figure 13 shows a set of three stepper driver nodes whose
virtual nodes have been wrapped in a compound node. Making a function
call to the compound node:
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spin((100,200,300),accelSteps=50, decelSteps=50, accelRate=500)

will result in three separate function calls being issued to the child nodes:

spin(100, accelSteps=50, decelSteps=50, accelRate=500)
spin(200, accelSteps=50, decelSteps=50, accelRate=500)
spin(300, accelSteps=50, decelSteps=50, accelRate=500)

Thus the compound node behaves externally like its constituent nodes, and

in the example above could be a drop-in replacement for a single three-axis

control node. Refer to the synchronization subsection for more information

on how synchronization is handled internally.

Machine Functions

Compound Node

Configuration Gestalt
Virtual Node

Machine Machine Node
Command Function Command Gestalt

Virtual Node
e.g. move()

Gestalt

Machine * Virtual Node:

State .... ..

Stepper
Driver Node

Stepper
Driver Node

Stepper
Driver Node

Figure 14: Machine-Level Functions

Virtual nodes are concerned only with providing functionality within the
scope of their physical node. A stepper control node, for example, provides
methods for spinning a motor rather than moving a machine. This is a
fundamental difference between the virtual machine approach and that taken
by the traditional CNC controller where machine configuration is embedded
in the firmware running within the hardware of the controller. In order to
begin building virtual machines from modular node elements, functions that
operate on the entire machine must be provided. These machine-level
functions need to be imbued with knowledge of the machine configuration,
need a way of storing machine state (e.g. machine position) and must be
connected to the nodes which they will control.
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Virtual Machines

Virtual Machine
-----------------------------------

Compound Node

Gestalt
Virtual Node '

* Machine
Function: Interface
move()

Gestalt
Virtual Node

Machine
Function:
disableo Gestalt

GestaltInterface

Virtual Node

Machine
Function:Gestalt

setSpindl:[I Virtual Node p
S e~inl(

.. . . . . . . . . . . . . . . . . . . . . . .

Stepper
Driver Node

Stepper
Driver Node

Stepper
Driver Node

Spindle
Driver Node

Figure 15: A Virtual Machine for a Generic 3-Axis Mill

Virtual Machine objects are simply wrappers for the functions, nodes, and
sometimes interfaces from which virtual machines are built. Additionally they
contain the state and configuration of the machine (i.e. the machine is
currently at position (1, 2, 3)). Figure 15 shows a hypothetical virtual
machine for a generic three-axis milling machine. Each of the three stepper
motor driver nodes has a corresponding virtual node, which are wrapped in a
compound node so that machine-level functions can treat the disparate nodes
as a single virtual node. The spindle driver node also has a virtual node.
Three functions are exposed to the user of the virtual machine: move()
instructs the machine to move, disable() turns off power to the stepper
motors which can be useful in certain machines to permit hand-jogging, and
setSpindle( controls the speed of the spindle. In a non-hypothetical virtual
machine, more functions would likely be made available by the machine
designer. Note that the Gestalt Interface is shown as only partially inside the
virtual machine. This is because there are cases when several machines might
share a common bus. In such a situation, a single interface object would be
passed to multiple virtual machines upon their instantiation.
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There are several ways of interacting with virtual machines. The first is by
importing them as modules into a user program. For example, a user could
write a short program:

import threeAxisMill
myMill = threeAxisMill.virtualMachine()
myMill.move( [20, 20, 201, velocity = 100)

that would import the machine as a Python module, create an instance of the
virtual machine, and then instruct the virtual machine - and thru it the real

machine - to move to a position of (x=20mm, y=20mm, z=20mm) at a
velocity of 100mm/sec.

Another method of interacting with the virtual machine is via a remote

procedure call (RPC) interface, which allows a restricted set of function calls

to be made on the virtual machine by external sources. Two applications of

the RPC interface have been explored: RPC-over-HTTP (Figure 16), and
RPC-as-a-file.

http://127.0.0.1/move?position=[1 ,2,3]

RPC

myMachine.move(position=[1,2,3])

Figure 16: RPC-over-HTTP

RPC over HTTP converts standard HTTP requests into function calls,

which are then executed on the virtual machine. If values are returned by the

virtual machine, they are encoded as JSON and sent as a response to the

initial request. The RPC interface provides a safe way of exposing an API to

browser-based user interfaces without allowing arbitrary code to be run on

the user's computer. When using an RPC-over-HTTP interface, the virtual

machine could be run as a standalone Python program rather than imported

as a module. It may become common practice for every virtual machine to

detect if it is running in standalone mode and, if so, to begin an RPC

interface.

While RPC-over-HTTP is well-suited for user interface tasks like jogging a

machine or turning on and off a spindle, the protocol has been found to be

ill-suited for high-speed transmission of commands as might be encountered

when 3D surface milling a part. One solution to this problem is to compile a

long sequence of function calls into a single file, and then to pass them to the

RPC-as-a-file interface for execution on the machine. Conceptually this
approach is similar to that taken by G-Code, but function calls serialized as
text can provide a more open and unrestricted language for controlling
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machines. The downside of using function calls instead of G-code is that
standardization is not enforced by the language, meaning that it is up to the
virtual machine builders to arrive at a standard set of commands for their
given domain. For example, G-code defines G1 XO Y1 Z2 to mean "move to
position (1,2,3)", whereas each machine builder could hypothetically define a
different function to perform this same task. The question of how to enforce
standards to enable interoperability of applications and machines is still open.
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Node Architecture

Nodes constitute the component level of an automated machine, and provide
via their corresponding virtual nodes an API by which the virtual machine
can control the hardware of the physical machine. The overarching concept is
that when a high-level function call is made on a virtual node, a
corresponding action occurs on the real node. This action might be some
form of actuation, like spinning a motor, or may trigger the reading of a
sensor. As was discussed previously, two broad classes of nodes have been
defined: independent nodes, and Gestalt nodes. Independent nodes are
hardware devices that have their own proprietary communications protocol.
To create a virtual node for an independent node is a matter of writing
wrapper functions for the proprietary protocol. Gestalt nodes are hardware
controllers which take advantage of the structure and libraries provided by
the Gestalt framework. It is this structure and these libraries that are the
subject of this section.

Service Routines

Figure 17 illustrates the logical flow of a function call made on a virtual node.
In this example, the user wants to cause a motor to spin. When a spin() call
is made on the virtual stepper node, a packet is generated and sent over an
interface to the physical node. The physical node receives this packet and
begins stepping the motor. Often the physical node will send a response
packet to confirm receipt of the command.

Stepper Node Stepper Motor

Virtual

Spin(prStepper Sp
PacketPulses

Node PceSpinL 4 PP

Figure 17: A function call on a virtual node.

In general, the pattern used to communicate between virtual nodes and
physical nodes is one of service routines. Service routines connect functions in
the virtual node to functions in the firmware of the physical node. This
relationship is shown in Figure 18: when a function call is made to a virtual
node's service routine, a packet is generated, labeled with a port number
specific to that service routine, and sent across the communications channel
to the physical node. It is this port number which causes the receiving Gestalt
communications machinery to route incoming messages to the corresponding
service routine on the physical node.
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Virtual Node Physical Node

Service Routine Service Routine

port m
virtual node routine n firmware routine n

def spin(J void spin()

def enableMotor() I . void enableMotor)

def disableMotor() void disableMotorf)

Figure 18: Service Routines

Service routines are typically decoupled from each other, which lends a
measure of modularity to the programming of nodes. Functionality can be
added to a node simply by dropping in additional pre-written service
routines.

Message Packets

A standard message packet format has been defined, shown in Table 1, which
facilitates delivering arbitrary data between service routines on virtual and
physical nodes, both when the nodes are solo or when multiple nodes are
connected on the same physical network.

Table 1: The Gestalt Base Packet

Gestalt Packet
0 Start Byte

1 Address 0

2 Address 1
3 Port

4 Length
Payload

N Checksumn

The first byte of every Gestalt packet is a start byte. This is used both to
indicate to the receiving nodes that a new packet is starting, as well as to
identify whether the packet is directed to a specific node or whether it should
be received by all nodes. The following two address bytes indicate the
node to which the packet is intended. The port byte, just discussed, directs
the packet to the attention of a particular service routine within the addressed
node. A length byte indicates to the receiver machinery how many bytes it
should expect to receive. Following the length byte is an arbitrary number of
(but less than 249) payload bytes. The payload is the core of the packet,
and is used by the service routines to pass messages like how many steps to
take or the current value of a sensor. The final byte is the checksum byte.
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This is generated using a cyclic redundancy check (CRC) algorithm which

aids in detecting whether the packet has become corrupt during transmission.

Physical Node Packet Handling

When a start byte is received by a physical node, its receiver begins listening
for the rest of the packet. Simultaneously, a watchdog timer is started that
will reset the state of the receiver should the next byte never arrive. Once a

complete packet with a correct checksum has been received, the receiver looks
at the packet's start byte. If the start byte indicates that the packet is unicast,
the receiver checks the address bytes to determine if the packet is intended for

the node. Should these bytes match, the destination port of the packet is

examined and the appropriate service routine is called. The service routine
then pulls the packet's payload from the receive buffer and acts upon it. If the

start byte indicates that the packet is multicast, the node calls the appropriate

service routine irrespective of whether the address bytes in the packet match

the address of the node. Being able to send packets to multiple nodes

simultaneously is an important aspect of one of the synchronization

techniques used by Gestalt to coordinate actions like stepping motors across

disparate controllers.

When a service routine wants to transmit a response to an incoming packet,
it fills the node's transmit buffer with data and then calls the t ransmit ()
function. This causes a packet to be automatically addressed to the virtual
node and sent over the interface.

A firmware library has been written in C and provides all of the functionality

shown in Figure 19 for receiving, transmitting, and routing packets. A
number of base service routines are also provided for performing
fundamental functions like loading new firmware and discovering nodes.

However it is up to the node's builder to write their own service routines to

extend the functionality of the base node for their particular task.
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Figure 19: Physical Node Packet Handling

Virtual Node Packet Handling

The way in which packets are handled by the virtual machine is slightly more
complex than the physical nodes because of the one-to-many relationship
between the virtual machine interface and the physical nodes. One interface
may host many nodes, as in the case of the networked bus, but each node
only has one interface. This means that the virtual machine interface is
responsible for routing packets to the correct virtual node, where they are
then routed to a service routine. When a packet is received by a virtual
machine interface, it is first checked for errors. If the packet's checksum is
valid, the packet is sent to a separate thread which routes it to the correct
virtual node based on its address bytes. The address-binding table which
associates addresses with nodes is a part of the interface because of the one-to-
many relationship discussed earlier. The packet is then sent to the port router
in the destination virtual node where a port table is consulted to determine
the proper service routine. Each port is associated with two service routines:
one outgoing routine, and one incoming routine. When a packet is received
on a particular port, the associated incoming routine is called. Additionally a
flag is set which notifies the outgoing routine that a packet has been received.
This feature is important because often outgoing routines like spino require
that the node respond to confirm receipt. The outgoing routine will block
until the incoming packet flag has been set. Figure 20 illustrates this process.
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Figure 20:- Virtual Node Packet Handling

Transmission of a packet is more involved, and is thus the subject of its own

section beginning on the following page.
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Action Objects

When a function call is made to a virtual node's service routine, a packet is
generated and sent to the matching service routine on a physical node. The
path between the function call and the packet's transmission is not
straightforward, however.

Channel Channel
Priority Access
Queue Queue
- - - - - - - - - I - - - - - - - I

Action Action
Object Object

Action Action
Object* Object

Virtual
Node
Service Action Action Action channelAccess()
Routine Object* commit() Object release() Object

Interface ...---
Channel Action

Object

Figure 21: Action Objects -from Instantiation to Transmission

Whenever a call is made to a service routine, an action object is instantiated.
This behavior is a bit surprising, as you might expect a packet to be generated
and transmitted. Action objects do contain a packet, but also contain the
logic that generated the packet. It is important that the logic and the
resulting packet get bundled together because occasionally the packet needs
to be updated after having been generated. For example, when controlling
the motion of a milling machine, algorithms are often used to adjust the
speed of the machine as it moves into sharp corners to limit sudden
accelerations or decelerations. These algorithms rely on looking ahead a
certain number of moves to predict when a sharp corner is on the horizon,
and taking action in advance. In this case, there is a significant lag between
when a motion packet is first generated and when its final form has been
decided based on the accel/decal algorithm. Bundling packets with their
generating logic in an action object allows these updates to be made easily.
Action objects also permit packets to be synchronized with each other by
allowing the packets to be updated with synchronization information after
they have been created.

Action objects have three methods which control their behavior as it relates
to transmitting a packet: commito, releaseo, and channelAccesso. Commito
causes the action object to place itself in the interface's channelpriority queue.
This queue acts as something of a holding pen. Action objects will always
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leave the queue in the same order in which they arrive (first in first out).
However, an action object can only leave the channel priority queue when its
releaseo method is called. This allows other processes to finish any
calculations which may update the action object's packet before releasing it
and thus giving it permission to transmit its packet. When the releaseo
method is called, the action object enters the channel access queue. It is here
that the action object is waiting for a turn to transmit its packet. When this
moment arrives, the interface will call the action object's channelAccess()
method. This gives the action object access to the communication channel
for as long as it might need, including an opportunity to transmit several
times if it does not receive an expected response. When the channelAccess()
method returns, the next action object waiting in the channel access queue is
triggered to transmit. This entire process is depicted in Figure 21.

In addition to action objects themselves, there are two containers for action
objects called action sequences and action sets. These are shown in Figure 22.

Action
Sequence Action Set
------- .......................

Action Action Action Action
Object Object* Object* Object*

Action
Object

Action
'Object

Figure 22: Action Object Containers

Action sequences contain a set of action objects that should be executed
serially. The need for this structure arises when a call to a service routine
generates more than one action object. For example, a call to spinO requests
that a motor take 1000 steps. However the packet format between the virtual
motor controller and the physical motor controller only supports a maximum
of 255 steps. Thus a single call to spino requires four packets, and therefore
four action objects, to transmit the request for 1000 steps to be taken. Action
sets contain a set of action objects which should be executed simultaneously.
This occurs when multiple nodes are to be synchronized together. Action sets
can be composed of action sequences instead of action objects. Both action
sets and action sequences can be committed to the channel priority queue.
However, when a releaseo method is called on these containers, a
compilation step is performed to serialize their action objects and place these
in the channel access queue.
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Figure 23: Serializing Action Sets and Action Sequences

The serialization of an action sequence is straightforward, as the action

objects contained within are already in a serial sequence. The process of

serializing an action set, shown in Figure 23, is a bit trickier. Action sets

containing action sequences are first sliced across the sequences. In the
example of Figure 23, the slices would be [Al, B1, C1], [A2, B2, C2], and
[A3, B3, C3]. Each of the action objects within the set is then synchronized

with each other. An additional synchronization action object is generated for

reasons discussed in the following subsection, and the complete set is released

to the channel access queue.

Synchronization

The ability to synchronize the behavior of multiple nodes over a network is

crucial to realizing a number of the benefits of hardware modularity. There

are two steps to synchronization. The first is the decomposition of multi-

node actions into individual instructions for each node. This step is discussed

in the sections preceding this one. The next step is to make these actions

occur simultaneously on separate controllers. Successfully accomplishing this

involves having a shared notion of time across all nodes, and a simultaneous

moment on which all of the actions begin. Appendix A discusses how motion

commands (and more generally any command) can be decomposed into

separate node commands that share a common virtual major axis. The virtual

major axis is simply a common time base on which all actions are timed. The

final step, synchronizing the start time of each move, is accomplished by
transmitting individual instructions to each node followed by a multicast
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'start now!' packet that is received by all nodes simultaneously. Because each
node shares a time base and a start time, their actions will be synchronized
within the tolerance of the microcontroller's crystal clock. The overall process
of synchronizing distributed actions is shown in Figure 24.

SETUP + COMMON TIME BASE

DECOMPOSITION

spin(50) 

Node

spin(50, 100, 150) spn(100) Cnf] Node

spin( 150) ] o-fi Node

(Sync )
SYNCHRONIZATION

Figure 24: Synchronized and Distributed Actions

As with typical packets, each configuration packet requires a response packet

to ensure receipt. The synchronization packet does not elicit a response,

which leaves open the possibility that it gets missed by one node but not

others. Because a response is required of the configuration packets,

communications latency becomes a problem. It is possible to buffer

synchronized moves in the physical nodes, but at the risk of clock drift. A
further explanation of this phenomenon, and a proposed solution to latency

issues during synchronized moves, is presented in Appendix C as the

Managed/Gestalt node type. The need for this conceptual work is

corroborated in the 'Distributed Control of a Fabrication Machine' case

study, where evidence was found that even for moves with moderate detail,
latency became a dominating factor in limiting tool speed.

Virtual Node Shell

Much effort has already been expended describing the inner workings of the

virtual node object, particularly in the context of communication with its

physical counterpart. Here we discuss the virtual node in the context of the

virtual machine. When a virtual node is defined inside a virtual machine, a

bit of a trick is played. Rather than a virtual node, a virtual node shell is

created. This shell passes along function calls made on it to a virtual node

contained inside. When the virtual machine is first started up, the shell is

filled with a generic virtual node that contains just enough functionality to

ask its matching physical node for a pointer to the file containing the physical

node's specific virtual node. This specific virtual node is then instantiated and
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swapped with the generic virtual node, thus allowing the virtual machine to
access all of the unique functions of the physical node. The virtual node shell
technique is used because all of the machine-level functions need to be
provided on startup with a reference to a virtual node that does not change
(else all of the references would need to be changed when the specific virtual
node is acquired). This approach permits a static shell whose 'meat', the
virtual node, can be swapped at will. Because the shell passes along any
function calls onto the contained virtual node, the shell is essentially
transparent. Figure 25 shows the virtual node shell schematically.

Virtual Node Shell

Interface Shell

Virtual Node

Virtual Node Object Virtual Node
(from HTTP, local file, or module) Loader

Method Calls Method Ca- _
fl ForwarderI

Figure 25: Virtual Node Import Internals
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Related Work

Gestalt sits at the intersection of several established domains, in which there
exists a large collection of relevant work. This section pulls from academic
literature, the commercial market, and the DIY community to place Gestalt
within the greater context of what has been done before.

Control Frameworks

Significant work has already been done to enable the rapid creation of control
systems, both for the industrial manufacturing market and also as a tool for
academic research. Gestalt touches on both areas because it aims to enable the
rapid development of automated fabrication tools (as in industrial
manufacturing), but for an audience and purpose more closely related to
academia - the intended user is primarily an individual who, like the
researcher, is seeking to widen the boundaries of their capabilities.

There is quite a bit of interest within the industrial manufacturing arena for
frameworks that enable rapid creation of control systems for new tools. This
is driven by demands for specialized and highly automated machinery for
production, and also by the high cost of developing unique special-purpose
software to control these machines (Pritschow et al., 2001). The general
solution converged upon by industry is one of vendor-neutral modularity,
achieved through a standardization of interfaces at a software level, and is
commonly referred to as Open Architecture Control (OAC). Several
frameworks to implement this general concept have been developed, and
include the Open Systems Environment Consortium (OSEC), the Open
Modular Architecture Controllers (OMAC) users group, and the Open
System Architecture for Controls within Automation Systems (OSACA)
project (Pritschow et al., 2001).

Some of the most relevant work to Gestalt is in this field of industrial tool
construction, and was conducted by Kevin Oldknow and Ian Yellowley at
the University of British Columbia'. They describe an approach which
enables the 'dynamic reconfiguration' of machine tool controllers using a
virtual machine controlling a physical machine (Oldknow & Yellowley,
2001). Their system is very similar to Gestalt in many ways. Each hardware
component, such as a physical motion axis, is represented to higher-level

5 The author regrets to have only discovered this work after the development of
Gestalt, as many of the concepts presented by Oldknow and Yellowley are important
aspects of Gestalt and took significant effort to arrive at independently. It is
interesting, however, that pursuing the same problem has led to such similar
solutions.
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applications as a virtual component. A set of standard object classes ensure
that these virtual components are interchangeable. This is a feature still
lacking in Gestalt - while base classes and standard libraries are used to
ensure that all nodes contain the basic functionality needed to communicate
with their physical and virtual counterparts, there is currently no
enforcement of a standard API that is presented by specific types of virtual
nodes such as stepper motor control nodes, etc.

Just as Gestalt nodes define their own virtual machine drivers and thus can
send arbitrary data over the network, in the system created by Oldknow and
Yellowley, hardware components store within their firmware the drivers
needed by the virtual machine to talk with them. On start-up, these drivers
are pushed over the communications bus to the virtual machine where they
are subsequently used to talk to the hardware from which they were
downloaded. Gestalt's approach to node driver acquisition is fundamentally
the same, although a URL that points to the driver is provided rather than
the driver itself. One primary difference between the two systems is in the
implementation of the virtual components. In Gestalt, the virtual nodes
interface between higher level code (like the virtual machine) and the physical
hardware. In Oldknow and Yellowley's system, the virtual component and its
software-based hardware driver are separated from each other and linked by a
binding-table. This overall system was later developed into a commercial
product by Cameleon Controls (Ramin Ardekani, Oldknow, & Yellowley,
2011).

Several frameworks have been developed for research use that facilitate the
rapid prototyping of control systems. One such system is produced by
National Instruments and is called LabView (National Instruments, 2013).
LabView is a generic framework for building and testing control systems. A
graphical interface allows users to instantiate a wide variety of modular blocks
and then connect them to achieve specific functionality. This visual code is
then compiled and executed in conjuncture with specialized LabView
interface hardware. For example, the control system for a robotic arm could
be created by creating individual PID controllers for each motor, and then
connecting them through a pre-defined kinematics matrix to an input stream
of XYZ coordinates. Motor amplifiers and sensors would be attached to the
LabView interface hardware. While LabView is extremely flexible, and in
terms of functionality is capable of the same things as Gestalt and more, its
cost and complexity make it ill-suited for our intended audience.

Within the more specific realm of robotics (in which automated tools might
be viewed as a subset), a number of frameworks exist that help developers
interface with, and control, systems built from a heterogeneous mix of
hardware devices. The Robot Operating System (ROS), largely developed by
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Willow Garage, is an example of an open-source framework for robotics
research. It provides services such as "hardware abstraction, device drivers,
libraries, visualizers, message-passing, package management, and more."
(Willow Garage, 2013). Like Gestalt, components are modularized as nodes.
Nodes communicate using a publisher/subscriber paradigm where any node
can publish information to a 'topic'; this information is subsequently received
by any nodes that subscribe to that topic (ROS, 2013). It is quite likely that
ROS could be adopted to the more specific tasks of controlling automated
tools, and the fact that it is open-source puts this prospect in the hands of the
community. It certainly seems to have many of the desired properties, such as
the ability to control disparate hardware in real time from a programming
interface.

Rapid Prototyping of Personal Fabrication Machines

Since 2009, an ongoing project at the MIT Center for Bits and Atoms (CBA)
called 'Machines That Make' (MTM) has been developing a complete
workflow for personal fabrication, from CAD through toolpath generation
and machine control. Nadya Peek, a current graduate student in the CBA, is
currently also working on virtual machine control of physical machines over
distributed networks of nodes (Peek, 2012). In addition, a large number of
low-cost machines have been built in conjuncture with the MTM project
including a DIY EDM machine by Ben Peters, a 5-axis desktop milling
machine by James Coleman, a multi-process lathe capable of 3D printing in
polar coordinates, by Yoav Sterman, a cast-cement CNC gantry by Kenny
Cheung, and others (MIT-CBA, 2013). Some of the early work which led to
Gestalt occurred as part of the MTM project, including some of the first
versions of the virtual machine controlling a set of networked nodes.

Prior to the MTM project, the first seeds of Gestalt took root as the author
worked on their senior thesis under the supervision of Professor Gershenfeld.
This work developed a distributed controller for a small PCB mill that was
controlled by a virtual machine (Moyer, 2008).

The RepRap project is another example of the rapid construction of personal
fabrication tools by individuals (Reprap, 2013). The goal of the RepRap
project is to create a 3D printer design that can self-replicate: the majority of
the parts needed for the machine can be printed on the machine. The result
has been a Cambrian explosion of home-made 3D printer varieties (Gilloz,
2012).

55



Browser-Based Control

The idea of web-browser based machine tool control was first suggested to
the author in conversations with Ed Baafi, who is one of the creators of
Modkit - an online integrated development environment for programming
microcontrollers (Modkit, 2013). Indeed, the browser-based applications
shown throughout this thesis are inspired by Modkit's approach. The Modkit
user interface is a browser-based application that loads programs onto a
microcontroller through a small Python application running on the user's
computer.

Web Browser Tool
Server Web Page Function

- Calls

Figure 26: Browser-Based Control

Figure 26 illustrates the concept of browser-based control. A web page
residing on any server (including the local file system) is visited by a web
browser. That web page uses the browser to communicate to the tool as
needed. In the case of Gestalt, this interaction occurs through
communications between the web browser and the remote procedure call
interface of the tool's virtual machine. The virtual machine may be local to
the web browser, or may even reside on a separate computer like a Raspberry
Pi (Raspberry Pi Foundation, 2013).

Browser - Web To
Web Page Server Function

- Calls

Figure 27: Web-Based Control

There has additionally been quite a bit of work recently in Internet-
controlled tools. In this scheme, the tool is not local to the browser.
Frequently, the tool is connected to the same server which provides the user
with the webpage needed to control the tool (Figure 27). One example of
this is OctoPrint (Haussge, 2013). Octoprint is a machine interface for 3D
printers which acts as a web server, publishing its controls in the form of a
webpage. Users are thus able to control their 3D printer remotely from a web
browser. The difference in approach between Octoprint and Gestalt is that
Octoprint publishes the webpage needed to interface with Octoprint. With
Gestalt, a 3 rd party publishes the webpage which controls Gestalt.

It is logical to extend browser-based control into an entire workflow
including part design, toolpath generation, and machine control. A research
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group at the University of Berkeley has made large strides in this direction
with their 'CyberCut' system (Smith & Wright, 1996). They present a
system which includes internet-based CAD, process planning, and toolpath
generation. Additionally they show how knowledge of the manufacturing
process can be fed back into the CAD program to prevent the designer from
creating un-manufacturable geometry. This concept is particularly relevant to
Gestalt, where rich information on the capabilities of the tool could be made
available to upstream workflows by the virtual machine.

Hardware APIs

One of the primary aspects of Gestalt is that it enables software APIs for
physical hardware. A number of projects have conducted related work.
Firmata is an Arduino library that allows host computers to control an
arduino using high-level function calls (Firmata, 2013). Moti is a "smart
motor" which can be networked and which exposes an API that can be
interfaced with from a web browser (Motiph, 2013). Phidgets is very similar

to the node layer of Gestalt; a wide variety of commercially available USB-
connected hardware modules can control actuators and read sensors. Each
module comes with a matching host API that can be called from applications
written in a wide variety of programming languages including Java, C++,
LabView, Python, Ruby, and more (Phidgets, 2013).
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Development: Challenges and Solutions

Gestalt has been in development, in one form or another, for nearly four
years. Over this period, around eight iterative versions have been created. The
task of architecting a framework is challenging because above all else the
framework must be self-consistent. When a new requirement is added, or a
more elegant way of accomplishing a task is found, the framework may need
to be redesigned from the ground up to maintain consistency. Just as Gestalt
is intended to promote a more open design philosophy towards machine
design, much care has been taken so that Gestalt itself is easily modified. This
section presents several of the challenges encountered over the course of
Gestalt's development, and discusses the solutions that have been adopted.

Conception

The idea for a virtual machine controlling a physical machine over a network
was first suggested to me as the topic for my B.S. thesis by Prof. Neil
Gershenfeld of the MIT Center for Bits and Atoms. The exploration that
ensued did not focus on making a framework - at the time the author was
more interested in understanding how to represent a machine in software.
Perhaps the first seed of Gestalt came a year later when, as part of the MIT
class 'How to Make Something that Makes Almost Anything' taught by Prof.
Gershenfeld, the author met Steve Leibman. It was during a discussion with
him that we realized that rather than machine tools executing G-code, which
has no extensibility, they would be better off executing Python. We thought
that this could enable the rapid development of more complex machines by
allowing their control systems to tap into the functionality of the many
available Python libraries. The core idea of the user being able to call Python
functions on the virtual machine has dictated the overall architecture of
Gestalt.

Synchronous, Not Real-Time

The key tension in the design of Gestalt is caused by the fact that the virtual
machine is connected to the physical machine over an interface with
significant intrinsic latency. This requires that heavy buffering is utilized on
the hardware side in order to smooth out periods of high traffic and thus
increase overall throughput. Yet the use of buffering causes lags in state
between the virtual machine and the physical machine. Issues further arise
because of the need for the virtual machine to synchronize the physical nodes
in spite of this phase lag. One solution might be to make the system real-
time: in such a configuration, the virtual machine would regularly and
frequently push state to the physical nodes. However this would require both
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a low-latency interface and also potentially a real-time operating system to
ensure that the virtual machine was always able to meet its commitments for
updating the physical nodes. This approach was avoided from the outset
because of these practical concerns. No good solution to this problem has yet
been found, but the author wishes to make the reader aware of this tension
because it explains many of the design choices taken in the internal
architecture of Gestalt. One example of such a choice is the decision that
each service routine call generates not only a packet for transmission, but also
an associated action object. These action objects help mitigate issues of state
lag between the virtual and physical nodes because they allow commands that
are currently waiting for execution in the buffers of the physical nodes to
persist inside the virtual machine until their execution can be confirmed.
This is useful in the event that state needs to be recovered. For instance, if a
toolpath is paused by the user, the commands in the physical node buffers
still have virtual representatives that can be used to determine the machine's
actual position. These action objects can also be pushed back onto the
channel access queue so that the toolpath can be resumed where it was left
off.

Virtual Node Acquisition

One of the early decisions in the development of Gestalt was that the person
who designs the physical node should also write a matching virtual node.
This allows the node designer to arbitrarily divide computation between the
virtual and physical nodes, permitting complex calculations to be written in
Python and executed on a fast processor while timing-critical operations like
stepping a motor can be done on the physical node. Arbitrary packet
payloads can be sent across the network because the node designer owns both
ends. Additionally, the virtual node provides the machine builder with a
modular and easy interface for communicating with physical nodes. The
virtual node / physical node approach raised a few questions, however. One
question is how does the virtual machine get the Python file containing the
virtual node that corresponds to the physical node it wishes to control?
Ideally, the user can plug a physical node into the network and the node
automatically sends over its virtual node file when it is instantiated by the
virtual machine. This is the implementation developed by Oldknow and
Yellowley (Oldknow & Yellowley, 2001). The problem with this approach is
that current low-cost microcontrollers have a limited amount of memory,
some of which is already needed to store firmware. The solution that was
adopted is for the physical node to send, on instantiation, a URL pointing to
its virtual node file, presumably residing on the node manufacturer's website.
The virtual machine then downloads and imports the virtual node file, which
it subsequently uses to control the physical node.
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The second challenge associated with acquiring the virtual node relates to the
chicken-and-egg situation of needing to talk to the physical node before
having the virtual node needed to talk to it. When the virtual machine
instantiates a virtual node object, it actually creates a container for a virtual
node. That container is automatically filled with a base virtual node that
contains just enough functionality to associate with and get a URL from the
physical node. As long as the physical node's firmware was compiled with the
Gestalt C library, the service routines required by the base virtual node to get
a URL will be on the physical node. Once the URL is received by the virtual
machine, the container contents are swapped with the manufacturer-supplied
virtual node object.

One final challenge with the container approach is that from the perspective
of the virtual machine, the container is the virtual node. Thus there needs to
be a way for the container to act as if it is the virtual node, meaning that any
function calls made on the container should be forwarded onto the virtual
node. Fortunately, Python provides the functions _getattro and getattro
which do precisely this.

Node Pairing

One of the first steps which must occur before a virtual node can talk to a
physical node is that the two need to be associated together. Imagine a new
three-axis machine which is being tested for the first time. Each stepper
motor is its own node on a network. The virtual machine correspondingly
has three matching virtual stepper nodes. But which virtual node controls
which physical node? This problem is two-headed. First, each physical node
needs a unique address to be used in the pairing. Second, each virtual node
needs to know the address of the physical node which it controls.

The original method for picking unique network addresses was borrowed
from the Internet Zero project (Gershenfeld & Cohen, 2006), where
hundreds of nodes requiring unique addresses might exist on the same
network. His solution was that when each node powered on, it began an
endless counter loop. The user would press a button on the node to break out
of the loop, and the value of the counter was stored as the node's address.
Because the counter was very large, and because the time at which the button
press occurred was random, there was a very small likelihood of two nodes
being assigned the same address. Early versions of Gestalt then performed
node association as follows: when a virtual node is instantiated, it sends out a
multicast request on the network asking which node is its pair. Each physical
node on the network would begin flashing an LED, and the user would press
a button on the physical node that should get paired with the virtual node
currently being instantiated (a message indicating the name of the node
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would be provided to the user.) The physical node would then reply with a
message containing both its network address and URL. For example, a
message would appear in the terminal saying "please identify the X Axis
virtual node...". All of the physical nodes would begin blinking, and the user
would press the button on the X Axis physical node. The X Axis physical
node would then send a reply containing its randomly-generated address and
a URL like "http://www.mymanufacturer.com/stepperNode.py".

The user-provided-randomness approach to generating random numbers
proved to be tedious as it required an extra button press per node, and still
left room for address conflicts. The solution that was adopted in this work
was that on the instantiation of a virtual node, a random address is generated
by the virtual machine (rather than the physical node) using a random
number library. This address is checked against a table of previously
generated addresses within the virtual machine to ensure that there are no
conflicts. A multicast message is then sent over the network with the
randomly generated address saying "assign yourself the provided address".
Like before, all of the nodes begin to blink, and the user presses a button on
the correct node to assign it the address. The node then responds with its
URL. This new approach is particularly important for Solo/Gestalt nodes
such as an Arduino running Gestalt firmware. The original method of getting
a network address required a button press, which required that every
Solo/Gestalt physical node be built with a button. In the case of a more
productized machine, like the portable CNC platform discussed in the case
studies, forcing the user to press a button when the first turn on their
machine would be annoying. In the current approach, the network address is
pushed to the node. And because the node knows that it is running solo, it
responds to the multicast request automatically without fear of causing a
packet collision (as this behavior would cause on a multi-node network).

Persistence of Node Association

One issue that became readily apparent while developing control systems
with multiple nodes was the tediousness of needing to re-associate virtual and
physical nodes every time that the virtual machine was instantiated. Besides
being annoying during prototyping, the need to manually associate nodes
meant that it would be difficult to hand off machines to users who were
unfamiliar with the machine's configuration, and would also require access to
the association pushbuttons on the physical nodes. The solution that has
been adopted is a persistence file that stores the mapping between virtual
nodes and the network addresses of their corresponding physical nodes. The
user assigns names to each node of a virtual machine in the node's
initialization arguments. Additionally, a unique name is provided for each
instance of the virtual machine that shares a common interface. Whenever a
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node is associated for the first time, its IP address and its user-provided name
are stored in the persistence file. The node's name is stored in the format of
virtualMachineName.virtualNodeName, which allows multiple instances of
the same virtual machines to share a common network interface without
resulting in naming conflicts. The next time the virtual machine starts up, it
first looks for a valid persistence file before beginning a node pairing routine.

63





A Continuous Masking Tape Printer

Introduction

This case study explores using Gestalt to rapidly build proof-of-concept
machines. We also demonstrate the integration of off-the-shelf devices and
custom-built electronics within a single Gestalt virtual machine. Additionally,
a direct function-call interface to the virtual machine is shown. The vehicle
for these explorations is a printer for decorating masking tape with a non-
repeating pattern. Custom-printed tape is available commercially, but is
almost always restricted to patterns that repeat regularly. Typical tape
printing employs the flexographic method, where the tape is continuously fed
between two rollers. One of these rollers has a flexible stamp affixed to it,
causing the artwork on the stamp to be transferred to the tape. By the nature
of the process, the pattern repeats with a frequency equal to the
circumference of the stamp roller. Thermal label printers can print
continuous non-repeating patterns, but require expensive tape.

The machine developed in this case study is able to print continuous and
non-repeating artwork onto adhesive-backed tape such as masking tape.
Applications include the novelty market where masking tape could be printed
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with as many digits of Pi will fit, or a sequence of non-repeating jokes.
Distance measurements could also be printed onto the tape to create a
disposable and adhesive-backed 'tape measure'. In this study a series of non-
repeating barcodes were printed on masking tape.

The construction of the tape printer is indicative of the speed with which it
was built: plywood and 3D printed parts form the bulk of its embodiment.
The application of Gestalt within this context of rapid development is the
primary topic explored by this case study. Gestalt is used with Arduino, a
popular electronics prototyping platform, to quickly assemble a hardware
controller for precisely feeding the tape. This custom node is then controlled
in combination with a commercially available industrial inkjet head within a
virtual machine. Because the printer is intended for printing non-repeating
patterns, it is expected that an algorithm rather than a static file will serve as
the basis for generating commands to the machine. A direct function-call
interface to the printer is demonstrated which enables more seamless
integration with an algorithmic design generator.

66



Hardware
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Figure 28: Tape Printer Hardware

The hardware of the tape printer, shown in Figure 28, consists of two
primary systems: the tape drive system and the inkjet head. The purpose of
the tape drive system is to continuously feed tape at a known rate under the
inkjet head. The inkjet head, manufactured by Imtech, uses standard HP45
inkjet cartridges to deposit columns of ink on the tape as the tape passes
below the inkjet nozzles. The tape begins its journey on an out-feed spool,
then passes thru a guide roller, under the inkjet nozzle, thru another guide
roller with an encoder, and finally onto a stepper-motor-driven in-feed spool.
Most of the mechanical structure of the machine was built using plywood
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and 3D printed components because these materials and methods are
conducive to rapid design and construction.

Figure 29 shows in schematic form the interconnection of the various control
elements of the tape printer. The primary task of the microcontroller is to
feed the tape at a constant rate. In order to accomplish this, a feedback loop
is used. Tape speed is measured by an encoder resting in contact with the
tape just after the inkjet head. This speed is fed into the microcontroller,
which determines the error between the desired and actual tape speeds and
adjusts accordingly the rate at which step pulses are sent to the stepper driver.
Simultaneously, a series of dot column pulses are sent to the inkjet head to
synchronize the position of the tape with the deposition of ink. These pulses
are generated directly from the encoder inputs, meaning that printing is tied
to actual tape speed rather than stepper motor speed.

Dot Column Pulses

Micro Step Pulses Stepper
Controller Driver -0

FeedC
Motor

Encoder TicksEndr

Figure 29: Tape Printer Hardware Schematic

Because the drive system is stepper based, the question arises: "why use a
separate encoder?" The linear velocity of the tape is directly proportional to

the spool diameter. However, as tape is spooled up, this diameter changes.
Rather than needing to estimate the diameter of the spool based on estimates
of how much tape has been spooled, the tape speed is measured directly with
the encoder.

A pushbutton is provided to the user so that they can start and stop the
device. While a software interface could have been provided via the
controlling virtual machine, the operation of the device is so simple that it
seemed appropriate to have a single hardware switch.

Virtual Nodes

A virtual node was created for each of the physical control elements. The
Imtech inkjet head speaks over USB using its own proprietary protocol and
command set. For this reason, a Solo/Independent node was written to
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interface the inkjet head to the virtual machine. Python functions were
created to configure the head, clean the nozzles, load print data, and initialize
printing. In all, around 40 functions were written to wrap the functionality
of the inkjet head. The biggest challenge encountered in this process was in
communication. The proprietary protocol encodes all commands as an
ASCII string, which is tedious to encode on a function-by-function basis.
Thus a set of helper functions for encoding and decoding the ASCII protocol
were written as a back-end to all of the command function wrappers.

The firmware for the Arduino-based control node was written using the
Gestalt C library, which takes care of communications between virtual and
physical nodes. A number of service routines were created both in the
firmware of the control board, as well as in the virtual node:

- enableDrivers() switches on power to the stepper motor.

* disableDrivers() switches off power to the stepper motor.
- getSpeed() returns the current speed of the tape based on encoder

readings.
- startFeed() sets the target speed of the tape as provided by the virtual

node, thus causing the feedback loop to spin up the tape.

- enableSynthesis() enables the output of dot column pulses to the
inkjet head. When called, this service routine causes printing to
commence.

- disableSynthesis() turns off printing by halting the transmission of
dot column pulses to the inkjet head.

Virtual Machine

The virtual machine (Figure 30) simply wraps the controller and printer
virtual nodes, and a few machine-level functions such as wait Fo rTapeSpeed ()

provide higher-level functionality.

Tape Drive

.--- -- - --- - --- -- -- -- -- -- -- -- - ---- - -- --- Stpper
Virtual Machine Virtual U1 Motor

setTapeSpeed() Control Node C d
* Solo/Gestalt : Control NodeSolo/GstaltTape Drive

waitForTapeSpeed Stepper

stopTape() Virtual USB Industrial
lnkjet Node Inkjet

initializePrinthead() Solo/Indep. Head

Figure 30: The Tape Printer Control System
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The particular function waitForTapeSpeedO polls the getSpeedo service
routine - requesting the current tape speed - until a target speed is reached.
The notion of tape speed would nominally only exist at the virtual machine
level. This is because the control node only knows about the rotational speed
of the encoder in units of pulses, which are converted by the mechanics of the
machine into linear velocity. This transformation was not implemented at
the virtual machine level for this particular case study, but examples of this
approach are shown in subsequent case studies.

Application

The interface to the tape printer was written as a short Python script:

tapePrinter = virtualMachine()
tapePrinter.initializePrinthead()
myswath = swath(filename = 'teststrip.bmp')
tapePrinter.printhead. loadFont( 'T02', myswath), 'dotpattern')
tapeP rinte r. print head. sendText (headNumbe r=1, buffer=0, text="%T02H")
tapePrinter. setTapeSpeed(400) #set tape speed to 200mm/s
tapePrinter.waitForTapeSpeed(380) #wait for tape speed to reach 180mm/s
tapePrinter.machineControl.enableSynthesisRequest(6400, 600, 1)

First, an instance of the tapePrinter virtual machine is created. Then the
printhead is initialized and an image is loaded. The tape speed is set to '400',

which is in units of encoder pulses but works out to 200mm/s. (This type of

calculation would ordinarily occur at the virtual machine level, as is

demonstrated in subsequent case studies.) It is at this point that the tape

begins to accelerate to the commanded speed. Once the tape has reached

close to the command speed, synthesis of dot column pulses is enabled and

the inkjet head begins to output the image previously loaded into its buffer.

The inkjet head contains a ring buffer into which images are loaded. In

order to print continuous non-repeating patterns, the ring buffer must be

supplied with new images at a rate faster than they are being output onto the

tape. At the time of writing, this remains untested due to ink drying issues

which precluded prolonged printing tests. However, because the necessary

rate of image transfer is directly dependent on tape speed, the open question

is howfast non-repeating patterns can be printed rather than ifthey can be

printed.

The ability to instantiate the virtual machine and then call functions on it is

essential to feeding it with a continuous stream of non-repeating patterns.
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Results

Figure 31: Printing Bar Codes on Tape

The development of the tape printer control system proved to be quite rapid.
The Imtech printhead virtual node had already been written for a previous
project, and it was a trivial matter to thus talk to the inkjet head in this new
application. Writing custom control firmware for the Arduino and creating
the virtual machine required only around 4 hours of work. Much of this
speed was owing to the ability to write modular service routines and to reuse
a few service routines from prior projects. For example, the stepper control
routine was borrowed from an existing stepper controller node and modified
slightly. Surprisingly, wiring and mounting all of the electronic components
including the Arduino and stepper driver took nearly as long as firmware
development. The algorithmic generation of patterns was not explored
beyond ensuring that functions could be called directly on the virtual
machine instance.

While the tape printer was able to successfully print patterns on masking tape
under the control of a virtual machine, an unexpected technical difficulty was
encountered. Masking tape, and in fact all adhesive tapes provided without a
backing, require a coating to prevent the tape from adhering to itself while in
a spool. This same coating also prevents ink from being absorbed and rapidly
drying on the back of the tape. As can be seen in Figure 31, ink quickly
collects on the encoder guide wheel and smudges the image as it passes under
the wheel. Some possible solutions include increasing the distance between
the print head nozzles and the encoder wheel, applying warm air to the tape
to decrease drying time, and/or to use a solvent-based ink that dries much
faster than standard inkjet ink.
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Discussion and Conclusions

One of the first observations when developing the control system for the tape
printer was how easy it was to get the inkjet head to work immediately,
owing to the fact that a virtual node had already been written. This
experience highlighted the utility of Gestalt as a framework for writing and
sharing modular device drivers, even for pre-existing devices that
communicate using a proprietary protocol. To the knowledge of the author, a
unified device driver framework is currently lacking in the DIY community.

The use of the Arduino prototyping platform expedited the construction of
the tape feed control electronics because it obviated the need for creating a
custom circuit board on which to house a microcontroller. The Gestalt C
firmware library allowed the Arduino to be immediately integrated into the
virtual machine as a virtual node. One useful practice discovered during this
case study was being able to cut and paste service routines. This was
particularly helpful for controlling the stepper motor that drives the tape. Just
as nodes are modular units of functionality within the context of a virtual
machine, so too are service routines modular units of functionality within the
context of a node. Therefore it would make sense at some point to develop a
framework for rapidly building node firmware, perhaps by selecting relevant
service routines a-la-cart from a menu. An alternate approach, equally
consistent with Gestalt's philosophy of modularity, is that each component is
networked and then their aggregate behavior is coded within the virtual
machine. In this particular case, where a tight feedback loop exists between
the stepper motor and the encoder, the need to pass the feedback loop
through the virtual machine might cause destabilizing loop delays. This
suggests that future versions of Gestalt should look at ways in which the
nodes can communicate directly with each other.

While interfacing with the tape printer by importing its virtual machine was
not fully explored, enough was tested to ensure that function calls could be
made directly on the machine. This type of interaction is particularly useful
for classes of machines whose output must be generated algorithmically. Next
steps include writing code to generate a non-repeating output. The author
has recently read an article describing a project in which fabric patterns were
knit using a Twitter feed as the source of the designs (Ciuffo, 2013). This is a
perfect application for Gestalt because of its ability to be scripted by other
Python programs.
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A Personal Jacquard Loom

Introduction

The Jacquard loom was the world's first automated tool. It therefor felt
appropriate that one of the first machines controlled by Gestalt should be the
same. This case study shows how Gestalt can be used to control a fabrication
machine quite different from the traditional 3-axis automated gantry +
toolhead paradigm which dominates hobbyist machine-building pursuits,
and whose motion cannot be described nor controlled by G-code. The rapid
development of an interactive browser-based user interface is explored, and
Gestalt's current shortcomings in supporting interactive control are
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elucidated. Additionally we demonstrate how the Gestalt C library can be
used to build firmware running on a custom-designed circuit board.

In ways this project is something of a throwback to the early Jacquard looms.
Modern looms are fully automated, allowing them to weave many 'picks', or
rows of thread, per second. This loom has been designed for making
friendship bracelets. In order to preserve the personal touch typically
associated with these gifts, and also to avoid the technical challenges of
automating the motion of the weft (transverse) thread, this is a semi-
automated tool. The computer has control over which warp threads are
lifted, and thus has control over the pattern to be woven. However it is up to
the weaver to perform the actual task of lifting the warp threads and passing
the weft. This approach hopes to best match impedances with the user -
performing the tedious task of selecting threads automatically while giving
the user control over more craft-like decisions such as thread tension and
packing of the pattern.
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Hardware

Woven textiles are created by passing a transverse weft thread over or under a
series of warp threads. Which warp threads are up or down as the weft thread
passes between them determines one row of the overall weave pattern. The
Jacquard loom developed here automates the process of selecting which
threads are to be lifted.

Figure 32: Control Thread Path Figure 33: Warp Thread/ Control Figure 34: Weight Bo:
Thread Attachment

Figure 35: Thread Selection Figure 36 Knife Lifting Threads Figure 37: The Shed

Each warp thread is lifted or lowered by a yellow Kevlar control thread. The
control thread originates at the bottom of a brass flexure, passes thru two

brass guides, and then passes thru a base plate in the bottom of the machine.
This path is shown in Figure 32. The warp threads attach to the control
threads by passing thru small bra hooks connected to the control threads, as
in Figure 33. The control threads terminate at a weight box (Figure 34)
underneath the machine, where each thread is attached individually to a
moveable weight. The purpose of the weight box is to keep the control
threads taut and thus straight at all times.
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Thread selection is accomplished magnetically. A series of 24 moveable
electromagnets, some of which are shown in Figure 35, are used to deflect the
brass flexures out of the path of a lift knife. Once the electromagnets are
energized and brought into contact with steel screws at the end of each
flexure, the sled on which they are mounted is retracted, thus carrying with it
any flexures whose electromagnets are active. Figure 36 demonstrates how the
lift knife captures and lifts any flexures that have not been bent out of its
path. Each lifted flexure causes its corresponding control thread to raise a
warp thread, to create a shed. The shed, shown in Figure 37, is the area
between raised and lowered warp threads. It is through the shed that the weft
thread is passed to create a row of the overall weave pattern.

micro
controller

shift register

Figure 38: Control of 8 Electromagnets

Each electromagnet is energized with around 200mA at -3V to deflect its
flexure. This power is supplied thru a Darlington transistor which is in turn
controlled by a shift register. The microcontroller controls which transistors
are on, and thus which flexures are deflected, by shifting out an entire row
pattern to a series of three shift registers, each of which controls eight
electromagnets. Figure 38 illustrates this control topology. Shift registers are
used because the microcontroller, an Atmel ATMega328, does not have
enough available output pins to directly interface with all of the Darlington
transistors.
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Figure 39: Jacquard Loom Control Board

A custom circuit board, shown in Figure 39, was developed to embody the
control functionality described above. This control board has provisions to
control and energize 24 coils, using four 7-transistor Darlington arrays

(ULN2003) and three 8-bit shift registers (74LS 164). A microcontroller runs

custom node firmware built with the Gestalt C library, and an RS-485

transceiver is provided so that the node can communicate using FABNET.

Although it is unlikely that additional modules might be used in concert with

this board, at least for this specific application, the RS-485 interface was

easier to implement than a USB interface. Also it should be noted that an

earlier version of FABNET is used, hence the 8-pin connector. After the

photograph of Figure 39 was taken, small heat sinks were added to the

Darlington transistor arrays to permit higher coil currents to be used safely.

Additionally, two lever switches are used to sense the positions of the

electromagnet sled and the lift knife. This information is used by the

browser-based weaving application to determine when to send new row

patterns to the loom. The switches are mounted so that they are closed only

when the electromagnet sled is in the fully retracted position and when the

lift knife is fully raised.

The custom firmware written for the loom control circuit board takes

advantage of the Gestalt C library's provisions for assigning arbitrary pins to

the network interface. This allows custom PCBs to be designed and used as

physical nodes.
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Virtual Nodes

The loom virtual node is extremely simple. It has only two service routines:
- shiftOutRequest() sends three bytes of data to the node where

they are shifted out on the shift registers, thus causing coils
corresponding to high bits to energize.

* readSwitchesRequest() queries the status of the lift knife and
electromagnet sled lever switches.

Figure 40 illustrates schematically the virtual and physical nodes for the
Jacquard loom. It should be noted that because the control node is connected
over FABNET, its virtual node is of the 'Networked/Gestalt' type.

Electro-
Magnets

Virtual cFABNET
Control Node - Conto Node
Net./Gestalt

Lever
Switches

Figure 40: Jacquard Loom Virtual/Physical Nodes

Virtual Machine

Virtual Machine
,.........-....-....... ......................- Electro-

RPuctions Virtual FABNET LoomMagnete
HTTP Control Node CnrlNd

Interface clt e Net./Gestalt
uLd be cnto yante i bLever

..-- .-.- ..................-- .---- ........... Sw tches

Figure 41: The Jacquard Loom Virtual Machine

The Jacquard loom virtual machine is mostly a wrapper for the virtual node.
One important role taken by the virtual machine is in exposing the two key
functions of the machine, sendPattern() and getLoomStatus(), over a remote
procedure call interface. An HTTP interface was chosen so that the loom
could be controlled by an interactive browser-based application.
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Application

24-BIT FRIENDSHIP LOOM
Pattern Design Loom Control

Restart

Warp: m0ii Weft:*llf

more rows

Figure 42: Browser-Based Loom Interface [pattern design by Lauren Wright]

Shown in Figure 42 is the browser-based interface that was built for
controlling the loom. On the left side is the design tool. The user can click
and drag their mouse to draw a pattern on a 24-thread-wide swath of fabric.
Clicking 'more rows' increases the available length. For the sake of
previewing, the warp and weft thread colors can be changed. In this version
only one weft color is supported, although in future versions it would be nice
to support multiple colors (and provide prompts to the user as to when to
switch threads).

The right column of the interface is the loom control panel. Clicking start
(which was done prior to taking the photo) causes the first row of the pattern
to be sent to the loom. A black border appears on the design indicating
which is the current row. The user can manually change the active row by
clicking the up and down arrows. At this point, weaving can commence! The
browser interface is regularly querying the virtual node to determine the
current state of the electro-magnet sled and the lift knife. There are five steps
to weaving with the Jacquard loom, which are repeated for each row:

1) Touch the flexures with the magnets. When the magnet sled leaves
the retracted position, the current row is sent to the loom.

2) Retract the magnets. This causes any flexures with active magnets to
be deflected out of the plane of the lift knife.

3) Lift the knife. Any un-deflected flexures will be caught by the knife,
causing their corresponding warp threads to lift.
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4) Pass the warp thread thru the resulting shed.
5) Lower the knife. This closes the shed and completes one cycle of

weaving.

The browser-based interface is built using a combination of HTML, CSS,
Javascript, and jQuery. Function calls are made on the virtual machine using
AJAX requests, and return values (like the status of the switches) are encoded
in a JSON response.

Results

Figure 43: A Pattern Woven Using the Jacquard Loom

The Gestalt C library was successfully used to interface with a
microcontroller residing on a custom PCB. The computational operations
needed to control the loom are extremely simple - just shifting out a few
bytes - and the loom control firmware development benefitted from the
structure imposed by the service routine approach. This was a case where
writing custom communications code would have taken longer than writing
the application itself.

The design application took around a week to write, but largely because the
author was learning JavaScript and jQuery in parallel with writing the
application. Progress was significantly assisted by the many online forums on
these topics. Interfacing with the loom's remote procedure call interface from
the application was not difficult because jQuery has good support for
generating AJAX requests. The loom application has been tested successfully
on Mac OS X and Linux using multiple web browsers. The only issue with
the interactive application is the rate at which the loom's state updates. There
is a noticeable delay between when user changes the state of the loom and
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when a new instruction appears in the application. This has on occasion also
resulted in the user transiting between states faster than the browser could
respond, thus causing the application's state machine to become confused.

The Jacquard loom was successfully used in conjuncture with the browser-
based application to produce the swath of fabric shown in Figure 43.

Discussion and Conclusions

This case study confirmed that Gestalt can be easily used to rapidly build a
control system for a somewhat unusual tool. The utility of Gestalt to this
project was mostly one of communication. The Gestalt C library and virtual
node base class provided an easy way of quickly talking to firmware running
on the physical node. Additionally, the drop-in remote procedure call

interface allowed immediate prototyping of the browser based application. A
harder to quantify benefit of Gestalt was that it provided a language for
thinking about how to control the machine. Having a set of templates to fill
out avoided the feeling of staring at a blank screen, even if the task of coding
the loom control from scratch using an Arduino and a Python script (sans

Gestalt) would not have been too daunting.

Perhaps the biggest lesson came from the development of the user interface
and weaving application. Unlike most automated equipment, this loom is
interactive, essentially melding human effort with automation. One of the

nice things about the browser interface was that instructions for the use of the
machine could be easily displayed in context as the loom was being used.
One could imagine a way of likewise capturing user techniques at various
steps and tagging them to particular actions of the machine. For example,
techniques for packing the rows of thread or maintaining tension could be
shown only when relevant. Because the interface is browser-based, and indeed

served from a 3 rd party website (in the example, the website
www.friendshiploom.com), such crowd-driven features becomes possible.

The issue of latency in the browser-based application reflecting the state of
the loom is easily fixable by updating the rate at which the loom is polled,
but brings to light one of the shortcomings of the current Gestalt
communications scheme. Because the model between virtual and physical
nodes is one of master-slave, call-and-response, the application must
constantly be polling the loom. It would be much more efficient for the loom

to push its state to the browser. There is functionality for this built into

Gestalt, but issues of bus contention for networked nodes would need to be
resolved.
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An Automated Coil Winder

Introduction

One of the major challenges involved in building a personal Jacquard loom
was creating electromagnets with consistent resistances. The author's first
attempt at winding the coils for the electromagnets tediously involved a hand
drill and yielded results which were inconsistent and ugly. The ugliness was
not a big issue, but inconsistent coils meant that the maximum coil current
was limited by the coil with the lowest resistance. These low-resistance coils
would draw a disproportionate amount of current and overheat at a voltage
well below what was ideal for the higher-resistance coils. To solve this
problem, a coil winder was built, and controlled using the Gestalt framework.

This case study addresses the use of Gestalt to automate a specific task facing a
user - needing to wind 24 coils precisely - by building a quick-and-dirty
machine, and discusses more generally the crossover point at which it makes
sense to automate rather than perform by hand. The use of an Arduino and a
generic stepper driver 'shield' further builds on the utility of pre-existing
nodes to save time in development. Additionally, the Gestalt kinematics
library demonstrates the control of a machine using radial rather than
Cartesian coordinates.

In a way, this project is the ideal case-study for the utility of Gestalt. A hard-
to-come-by tool was needed to automate an otherwise tedious manual task,
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and a working prototype was developed within a couple of days. This is
precisely the use-case that Gestalt was created for - to enable individuals to
rapidly build their own tools to satisfy a fabrication need. A good analogy
might be a person tasked with removing the spaces from the filenames of
multiple files sitting in a directory. They could manually remove the spaces
themselves, or they could write a quick script to do the work for them. There
is a cross-over point at which writing a program takes less time than
performing the work by hand. The goal of Gestalt is to pull closer the cross-
over point of when it makes sense to build a tool rather than do something
the hard way.

The coil winder was originally controlled by older hardware and a prior
version of Gestalt that didn't support the RPC-HTTP interface. Since then,
better hardware and a browser-based application for the coil winder have
been developed. This presentation of the coil winder will demonstrate it in
conjuncture with the new hardware and control application.

Hardware

Magnet Wire Spool

Carriage

Carriage CChuck SpindleMotor Motor

Figure 44: Coil Winder Mechanical Schematic

Mechanically, the coil winder is built as shown in Figure 44. The core of the
electromagnet to be wound is held in a chuck and is spun by the spindle
stepper motor. A carriage, through which passes magnet wire from a spool, is
moved back and forth in synchrony with the rotation of the spindle. This
causes wire to be neatly wrapped in a helical coil onto the electromagnet core.
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wre 45: Coil Winder Real Hardware

Figure 45 shows the actual hardware represented by the schematic of Figure

44.

Figure 46: A Stepper Driver Arduino Shield

After discovering the ease of creating nodes using an Arduino and the Gestalt

C library while building the tape printer, a generic stepper driver shield was

built to further explore the use of the Arduino platform coupled with Gestalt

in prototyping new machines. Shields are add-on modules that plug on top

of the Arduino, thus expanding its capabilities. Stepper motors are a common

element in many tools, and indeed many tools, like the coil winder, require

three or fewer stepper motors. To satisfy the needs of the widest range of

machines, the shield also has an H-bridge for driving a stepper motor, and a

servo output for controlling hobby RC servos. The combination of three

stepper drivers, an H-bridge, and a servo port make the shield suitable for

many projects including CNC mills. In ways, the concept of a shield goes

against the modular principles of Gestalt, where each electromechanical
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component has its own networked control node. However, the shield has
proven itself useful for rapid prototyping several machines including a large-
format drawing machine currently in development. One additional feature
that makes the stepper shield well-suited to a rapid prototyping role is that
the current limits on each stepper driver can be set in software. Current
limiting is important to achieve maximum performance from a stepper
motor, and the value of the current limit is highly dependent on the motor
being used. Typically the process of setting the motor current involves
calculations to determine the proper reference voltage for a given current, and
then turning potentiometers while looking at a multi-meter to set the right
reference voltage. Current limits are set by calling a function on the virtual
node and providing as arguments the desired current, in amperes, for each
motor.

Virtual Nodes

Spindle
Stepper

Virtual USB Arduino with
Control Node Stepper
Solo/Gestalt Shield Crig

Stepper

Figure 47: Coil Winder Virtual / Physical Node

The coil winder is controlled by an Arduino with a triple-stepper driver
shield which connects to its matching virtual node over the USB interface
provided by the Arduino. The node supports a number of relevant service
routines, listed below:

* setReferenceVoltageo sets the voltage reference for the current
limiting circuitry on each of the shield's stepper drivers. A wrapper
function setMotorCurrentso accepts desired motor currents as
arguments and handles the conversion between desired current and
reference voltage.

* spin() causes the stepper motors to take the requested number of
steps. If a step command is currently being executed when this
function is called, the move is queued by the physical node. If the
queue is full, the service routine waits for a vacancy before returning.
This service routine is discussed in much greater detail within the
context of the following case study on the development of a portable
multi-purpose fabrication machine.

* spinStatuso queries the current status of the stepping algorithm,
including the current step position and the number of vacant slots in
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the buffer. If the buffer is full, spinStatuso is used by the spino
service routine to wait for a vacancy.
disableMotors() de-energizes all stepper motors. This may be
called so that the machine can be jogged by hand, and also to prevent
the motors and/or drivers from getting hot while idle. Of course,
once the motor drivers have been disabled, the position of the
machine is no longer known. It should be noted that there is no
enableMotorso service routine. This is because the motors are
automatically enabled whenever a spin command is received and
before motion commences.

Virtual Machine

Virtual Machine

RPC- mov[ position
HTTP

kinmaticsInterface jog(]knmtc Spindle
Stepper

getPositian[] Virtual USB Arduino with
Control Node Stepper

setPosition(] Solo/Gestalt Shield
Carriage

qtepper

Figure 48: Coil Winder Virtual Machine
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Figure 49: Coil Winder Kinematics

The virtual node sees the world in terms of steps. It has no conception of the
mechanisms to which its motors are attached. One of the roles of the virtual
machine is to assist in translating between machine coordinates and motor
coordinates. To this end, the coil winder virtual machine (shown in Figure
48) incorporates a few elements which have not yet been demonstrated in the
prior case studies. A position object keeps track of machine's position in units
of revolutions for the spindle and millimeters for the carriage. Figure 49
shows the way in which these units are converted into steps. Each axis is
assigned a chain of mechanical elements which transform motion from one
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set of units to another. For example, the carriage translates linear position (in
mm) thru a pulley into revolutions, and then thru a stepper motor into steps.
A similar transformation is done to the spindle rotation to convert between
revolutions and steps.

An additional block at the end of each chain converts steps into microsteps.
Many stepper motor drivers perform microstepping, meaning that they are
able to control the relative currents in each phase of the stepper motor in an
attempt to interpolate the position of the motor's rotor. Microstepping has
two advantages: it allows for higher positioning resolution, and it smooths
the motion of the stepper motor at slow speeds. The stepper drivers used by
the triple stepper shield perform 1/16 stepping. However, the physical node
accepts step commands in units of steps, and multiplies the commands by
a factor of 4 once they are received to convert to units of 1/16 steps. This is
done to achieve smooth motion at slow speeds, while admitting that the
positional interpolation is likely not accurate beyond steps.

The final task in calculating the number of steps to take on each motor is to
pass the results of the mechanical chains thru a transformation matrix. In the
case of the coil winder the matrix is an identity matrix and has no effect.
However, the upcoming case study will demonstrate an occasion when this
transformation matrix is useful.

The moveo function within the virtual machine accepts movement
commands in machine units (mm and rev), and, using the kinematics just
described, calculates the number of steps required to perform that move. The
move function then passes these step values to the virtual node's spino
function to cause the motion to occur on the real machine. There is
additionally a jogO function which accepts relative positions rather than
absolute machine positions. This is can be useful to an application which
provides the user with jog buttons.
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Application

Figure 50: Browser-Based Coil Winding Application

A browser-based application was made to control the coil winder. The user

enters a few parameters describing the coil they want to wind, like the wire

diameter, length of the coil, and number of wraps. From these parameters,

the application can calculate the pitch of the wire helix and thus can generate

move commands that it calls on the coil winder's virtual machine via a

remote procedure call interface. Buttons are provided for jogging the

machine, as well as beginning the coil winding operation in either direction.

An 'off button will cut power to the motors so that the machine can be

manipulated manually. Finally, a digital readout and corresponding 'zero'

buttons allow the user to both know the position of the machine and set its

origin.
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Results

Figure 51: An array of electromagnets for a personal Jacquard loom, wound by hand.

Figure 52: An array of electromagnets wound using the coil winder.

The coil winder was indeed able to produce electromagnets that were far
more consistent (and slightly better looking) than those wound by hand.
Figure 51 shows an array of electromagnets that were wound by hand using a
power drill. Notice that the diameters of the hand-wound coils are not only
inconsistent, but the shape is asymmetrical. The same coils were re-wound
using the coil winder with far better results as shown in Figure 52. The
overall variation in resistance of the hand-wound coils was around 10%,
whereas the variation of the machine-wound coils was only a few percent.

Winding coils by hand took on average about 10 minutes per coil because
frequently the coil would need to be restarted to correct gross errors. The
coil-winding machine was able to wind a coil in 3 minutes (including loading
and unloading). Over the course of 24 coils, the total time savings of using
the machine was therefore just under 3 hours. It took roughly two full days
to design and build the coil winder; this included predominantly
constructing the mechanical hardware, and also the time needed to build a
virtual machine using Gestalt. Indeed, building the virtual machine controller
for the coil winder was nearly trivial. Pre-existing stepper controllers and their
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virtual nodes were utilized, meaning that all that needed to be written was the
kinematics describing the spindle and carriage mechanical chains.

The cross-over point where it would have made sense to build the coil winder
- strictly from a time-savings perspective and ignoring quality differences -
would be at around 140 coils. This assumes that the coil winder saves 7
minutes per coil, but does not take into account any improvements in
manual technique and the resulting increase in efficiency which would almost
certainly develop over the course of winding 140 coils.

Figure 53: An electromagnet for a personalJacquard loom wound using the coil winder.

Figure 54: A more typical output from the coil winder.

Figure 53 shows one of the best coils wound by the coil winder. Producing
coils this consistent was atypical, however. A more usual result is shown in
Figure 54. While the windings of this latter coil are not perfectly placed, the
coil is still symmetric (which cannot be said for the hand-wound coils). There
appears to be a cumulative effect to any errors in wire placement; a small
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mistake made early on can make the difference between a perfect coil like in
Figure 53 and an OK coil like in Figure 54. Potential sources of error include
the motion of the machine being slightly different than the ideal pitch of the
coil, incorrect tension in the wire (which is presently uncontrolled), and an
incorrect estimation of the coil length.

Discussion and Conclusions

The value proposition of the coil winder is both its ability to produce coils
that are more consistent than what could be produced by hand, and also to
increase the speed of the process. It is tough to evaluate whether it made
sense or not to build the coil winder for the specific situation outlined here
because the time needed to hand-wind coils of equal quality is unknown.
However it has become clear that with the use of a controls framework like
Gestalt, the time needed to build even simple tools such as this coil winder is
disproportionately biased towards the mechanical hardware. This suggests
that in order to fully achieve the initial goal of Gestalt, which is to enable
individuals to rapidly built their own automated tools, perhaps a mechanical
framework for rapid development is now needed.

The use of a pre-built Arduino shield - essentially a daughterboard for the
Arduino - made control of the coil winder strictly a programming exercise.
This is in contrast with the tape printer case study where as much time was
spent wiring as developing the control system. In that example, there was no
shield available that contained all of the functionality needed for the tape
printer. While pre-built shields clearly save time, they can also be restrictive.
It is for this reason that Gestalt is designed to support control of multiple
modular nodes across a network, which is explored in the case study
'Distributed Control of a Fabrication Machine'.
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A Portable Multi-Purpose CNC Machine

Introduction

This case study examines Gestalt from the (simulated) perspective of a
company developing a fabrication tool as a commercial product. The benefits
of the framework to both the developer and to the tool's end user are
explored, including questions like 'how does the framework support a
complete user experience?' Additionally, Gestalt's ability to promote 3 rd party
extensibility of a platform product like the multi-purpose tool shown here is
tested. Through this study we show the application of Gestalt to a workflow
including both toolpath generation and machine control.



In order to explore these topics we have developed a portable automated XYZ
motion platform that accepts interchangeable toolheads to perform a wide
variety of tasks. Philosophically, this machine is much closer to being a
product than those presented in the prior case studies. Its design is based
around a novel machine configuration which makes efficient use of materials
and is easily producible. A custom circuit board was designed that is
specifically tailored to the machine's form factor, and includes all of the
functionality needed to control the various electro-mechanical elements of
the machine such as stepper motors and external toolheads. Within the
context of the development of Gestalt, this machine serves two purposes. The
first is that it has been a perfect platform on which to develop much of
Gestalt's Cartesian motion functionality, including a look-ahead path
planning algorithm. Additionally, this machine helps answer the question of
whether a flexible framework like Gestalt - originally intended for the rapid
prototyping of machines - is also suitable for use in a commercial product.
This question is important because it would be beneficial if the same
framework used to prototype new machines could provide continuity thru
their transition into production. To explore both this and questions
regarding user experience, a complete browser-based application was
developed for producing circuit boards using the machine.

94



Figure 56: MTM Mutifab (2010)

figure 58: 1Popfab Vinyl Cutter figure 59: Popfab Milling pindle

The machine presented here is the latest point along a trajectory which
started with the author's senior thesis in 2008, where they built the small mill
shown in Figure 55 for routing circuit boards. The realization soon came that
many fabrication tools, such as milling machines, 3D printers, and laser
cutters, all have similar XYZ kinematics. This lead to the development of the
MTM Multifab (Figure 56) with Maxim Lobovsky in 2010 as part of the
MIT Center for Bits and Atoms (CBA) Machines That Make project. The
Multifab is a multi-purpose XYZ positioner that accepts a variety of different
toolheads including a vinyl cutting knife attachment, a spindle for milling,
and a 3D print head. Subsequent work was conducted with Nadya Peek of
the MIT CBA to apply the multi-tool philosophy of the Multifab to a
portable machine. The result, shown in Figure 57, is a briefcase multi-
purpose personal fabricator called PopFab. A variety of the Multifab
toolheads were rebuilt for the PopFab. These are shown in Figure 58, Figure
59, and Figure 60.

In the tradition of naming machines, the portable automated multi-tool
described by this case study is called the Magic Mill. The name is a bit
misleading, since the tool is capable of more than just milling.
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Hardware

Figure 61: Overview of the Magic Mill Mechanical Structure

The Magic Mill is a small and portable XYZ positioning stage with a working
volume of roughly 100x150x60mm (4x6x2.5in) and a nominal positioning
resolution of around 0.05mm (0.002"). This makes it appropriate for a wide
variety of detailed work on small parts, including drawing, milling circuit
boards, making wax molds, cutting vinyl with a drag knife, and small 3D
printing jobs. An interchangeable toolhead system delivers power and
communications to the toolhead mount, permitting the future development
of active toolheads (like what would be needed to support 3D printing).
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Figure 62: Magic Mill Kinematics

The Magic Mill has somewhat unconventional kinematics that are shown
schematically in Figure 62. The X and Z are serially stacked in the sense that
the X axis rides on the Z axis. The Y axis is a removable pallet.

KIzZLDM

Figure 63: H-Bot Kinematics

The X and the Z axis are controlled by two stationary motors mounted in the

XZ plane. A timing belt wraps around a series of 8 pulleys in a configuration

known as an H-bot (Sollmann, Jouaneh, & Lavender, 2010).The rotation of
motors A and B in Figure 63 are coupled together through the belt to result

in X and Y motion. This type of drive might be termed a differential drive.

The sum of the motor rotations results in X axis motion, and the difference
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results in Y axis motion. The kinematic equations for the stage thus are given
by equations 1, 2, 3, and 4:

AX = (AA + AB) (1)
2

AY = (AA - AB) (2)
2

AA= AX+AY (3)

AB = AX - AY (4)

Despite the slight control complexity of the h-bot, there are several
advantages to configuring the stage in this way.
Both motors are stationary, resulting in a far lower stage inertia than in a
typical serial configuration where one motor must move the mass of the
other.

Figure 64: Belt Tensioning Figure 65: Nested Fabrication

Because the motors are both mounted in the same plane as the belt, the
timing belt can be tensioned simply by sliding the stepper motors within a
series of mounting slots (Figure 64). Setting belt tension typically requires
adding complexity to the design, with some sort of moving idler pulley or
additional tensioning mechanisms. The Magic Mill design removes the need
for this extra detail. One additional benefit of the h-bot configuration is that
it affords a very simple planar structural design. As can be seen in Figure 65,
the five primary structural components of the Magic Mill have been designed
so that they nest together during manufacture to conserve material. All of the
components are waterjet-cut from 3/16" thick aluminum, and when nested
occupy a footprint of around 9 " square. The X and Z axes use a system of
precision ground shafts and brass bushings to guide and constrain their
motion. These components are very cheap, but their use is fraught with risk.
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Binding of the sliding carriage will occur if the distance between the bushings
is not exactly the same as the distance between the shafts. A similar outcome
results if the guide shafts are slightly misaligned relative to each other,
because the distance between the shafts thus changes with the position of the
carriage. One solution is for some of the bushings to be given compliance so
that they can adapt to the distance between the shafts. This approach solves
the manufacturing problem of mounting the bushings with exactly the same
separation as the shafts, and also accommodates misalignment of the shafts.
However, adding compliance to the bushings poses challenges of its own and
adds complexity to the design of the axis. The solution to the problem of
alignment adopted by the Magic Mill is simple. The two guide shafts of each
axis are held parallel to each other by laser-cut yokes - one at each end -
which also fix the shafts to the aluminum frame of the machine (Figure 66).

alignment and
z hold-down yoke

Figure 66: Schematic ofX and ZAxis Guide System

Figure 67: A set ofyokes keeps the guide
shafts parallel.

Figure 68: Bushings are epoxied to the
sliding plates.

It turns out that the laser cutter (or at least the two tested, both produced by
Universal Laser Systems) produces repeatable enough yokes (Figure 67) that
the shafts are held within the necessary tolerances of the strategy. In order to
set the distances of the brass bushings to be exactly the same as the shafts, an
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approach is borrowed from David Carr's MTM Mantis (Carr, 2010): the axis
is assembled, and the bushings are epoxied to the carriage. This has the effect
of copying the separation of the shafts to the bushings, rather than trying to
set both independently and hope that they are nearly identical. Time will tell
whether the epoxy used, Loctite E-120HP, has both the strength and
durability desired for this application. Several stages have been built using
this technique and have logged many hours of use each without a single
failure. Figure 68 shows an epoxy joint on one of the Z axis bushings.
In typical desktop-sized tools, the user needs to fixture their material within
the confined quarters of the machine's frame. Perhaps more problematic is
that when material needs to be removed post-fabrication, it is not
uncommon for damage to occur. The author has observed on several
occasions end-mills being broken because the user lifted up too forcefully on
a milled circuit board that is taped down to the table of a machine, causing
the tape to suddenly release and send the finished board flying into the
delicate tool. The Y axis of the Magic Mill is removable, which facilitates the
fixturing and defixturing of material outside the machine and also makes the
machine more compact when in storage or during transportation.

Figure 69: Removable Pallet Figure 70: Pallet Preload Mechanism

The pallet, shown in Figure 69, is currently constructed of acrylic with a
laser-cut grid pattern on its undersurface. The pallet is guided by four V-
rollers, two on each side. Corresponding V-grooves are machined into the
sides of the pallet. The rollers on one side are mounted on flexures (Figure
70) which preloads the pallet against the fixed rollers on the opposite side.
Controlled motion of the pallet in the Y axis is provided by a rack potted into
the pallet and a pinion gear mounted to a stepper motor on the machine.
There are a few remaining issues with the Y axis drive system. There is a
slight amount of backlash in the rack and pinion interface. Additionally, the
contact force of the gears counteracts some of the preloading of the stage.
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The compliance built into two of the rollers and the asymmetric location of
the rack and pinion raise concerns for 3D printing, where large inertial forces
may cause the Y axis to skew. Another concern is that acrylic is not a good
material choice for the pallet because of the high contact pressures at the V
rollers. If this machine is ever mass-produced, it would make sense to use a
harder and tougher material such as aluminum.
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Figure 71: The Magic Mill Control PCB

A custom circuit board was developed for the Magic Mill than incorporates
circuitry for the control of three stepper motors, an RC servo, and an
arbitrary switchable load such as a DC motor. The machine interfaces with
the computer, and thus its virtual machine, over a USB port. Power is
supplied through a 2.5mm barrel jack. Currently a 24V power supply is
being used. Additionally, a FABNET port enables additional nodes to extend
the control system. The FABNET header on the PCB is brought up to a
connector on the front of the machine where it can be connected to by active
toolheads. A set of digital potentiometers allows the current limits to be set in
software for each of the stepper motors. Generally this is useful for quickly
supporting a wide variety of motors as might be encountered in a machine
prototyping situation (as demonstrated on the control board described in the
coil winder case study). The intended use for the Magic Mill, however, is for
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homing. Rather than using limit switches to home the machine, the motor
currents can be reduced and the X and Z axes can be brought against the
limits of their travel. This homing approach has yet to be tested.

Pigure 72: Magic Mill ECB Mounted to
the YAxis Guide Mount Plate

Figure 73: The XZ Stage

I

Figure 74: Wiring Up the Motors Figure 75: Electronics Housing

The control board for the machine is mounted upside-down on the

undersurface of the Y axis guide mount plate as in Figure 72. This assembly

is then mounted to the XZ stage (Figure 73), and the motors are connected

to the control board (Figure 74). The 3D printed enclosure of Figure 75 then

enshrouds the electronics. One of the nice features of the machine's

mechanical architecture is that not only are all of the motors stationary, but

they all reside at the bottom of the machine. This makes it very easy to route

their wiring. Because the PCB is mounted upside down, a fan is provided to

increase convective heat transfer off of the stepper driver ICs' heatsinks.
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Figure 76 Power and USB Connections

Power and USB connections are made on the back of the machine, as shown

in Figure 76.

Figure 77: Drawing Tool Head Figure 78: Milling Spindle Figure 79: Spindle Attachment to
the FABNE T Port

To date, two tool heads have been developed for the Magic Mill. The pen
attachment in Figure 77 is useful for drawing pictures, besides being handy
for debugging control code. A high speed spindle has also been built (Figure
78), based on an earlier design by the author. Figure 79 shows how the
spindle attaches to the accessory FABNET port on the side of the machine.
Power to the FABNET port is currently wired thru the PWM output on the
Magic Mill PCB, and a MOSFET on this board currently controls the
spindle. Eventually the spindle could have its own dedicated PCB controlled
as an additional Gestalt node over the FABNET interface. Unfortunately,
despite weeks of concentrated debugging, the spindle is still not functional.
There is an electrical issue which causes the microcontroller to freeze, reset,
and occasionally have its memory wiped when the spindle turns on. The
problem has been isolated to electrical noise, and a rerouted PCB is currently
in the works which does a better job of isolating the spindle ground from the
microcontroller ground. Perhaps putting the spindle intelligence and control
on the tool head would fix this problem.
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Figure 80: And It Travels...

Finally, some effort has been put into exploring how easily the machine
travels. Figure 80 shows that the Magic Mill stores comfortably with its
power supply and USB cable inside an HPRC 2400F hard case.

Virtual Nodes

Because all of the functionality of the Magic Mill's control system is co-
located on one PCB, it is represented by a single virtual node.

X Axis
Stepper

Y Axis

Virtual USB Magic Mill Stepper
Control Node Control
Solo/Gestalt Board Z Axis

Stepper

FABNET/

'o PWM

Figure 81: Magic Mill Virtual Node

The service routines of the Magic Mill virtual node are almost identical to
those of the coil winder described in the previous case study. The
descriptions of the Magic Mill virtual node's service routines are listed here:

* setReferenceVoltageo sets the voltage reference for the current
limiting circuitry on each of the control board's stepper drivers. A
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wrapper function setMotorCurrents() accepts desired motor
currents as arguments and handles the conversion between desired
current and reference voltage.

* spin() causes the stepper motors to take the requested number of
steps. If a step command is currently being executed when this
function is called, the move is queued by the physical node. If the
queue is full, the service routine waits for a vacancy before returning.

- spinStatuso queries the current status of the stepping algorithm,
including the current step position and the number of vacant slots in
the buffer. If the buffer is full, spinStatuso is used by the spin()
service routine to wait for a vacancy.

- disableMotors() de-energizes all stepper motors. This may be
called so that the machine can be jogged by hand, and also to prevent
the motors and/or drivers from getting hot while idle. Of course,
once the motor drivers have been disabled, the position of the
machine is no longer known. It should be noted that there is no
enableMotorso service routine. This is because the motors are
automatically enabled whenever a spin command is received and
before motion commences.

" pwmRequest( accepts a value ranging from 0 to 1, and sets the
physical node's PWM output to this value scaled by a factor of 255.
This service routine is used by the virtual machine to turn on and off
the spindle.

The spin() service routine is perhaps the most complex of the service
routines yet written. It is used to command the physical machine to take
steps, and also controls the velocity of the resulting moves. Table 2 shows the
packet format that spino uses to communicate between the virtual and
physical nodes.

Table 2: Spin() Packet Format

Spin Request Packet
0 Major Steps
1 Directions

2 Motor 'A' Steps
3 Motor 'B' Steps
4 Motor'C'Steps

5 Acceleration Rate

2 Acceleration Steps
3 Deceleration Steps

Spino uses a variant of the Bresenham line drawing algorithm, discussed in
detail in Appendix A, to synchronize the three stepper motors. It should be
noted that only one byte is allocated to represent the number of steps to take
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in each axis. This helps to reduce the size of the packet at the cost of needing
to send multiple packets to represent longer moves. However, because
network bandwidth is only an issue for brief moves consisting of few steps, it
makes sense to reduce the packet size so that packet transmission is optimized
for the bandwidth-limiting case of short moves. The last three bytes of the
packet are dedicated to setting the profile of the stepping speed. The stepping
speed is not set directly. Rather, it is set by providing an acceleration rate and
a number of steps over which to accelerate or decelerate.

Decel.

Cn

U

Major Steps

Figure 82: Spin() Velocity Profile

Figure 82 illustrates how the acceleration rate is integrated over the course of
a given number of steps to control the stepping speed. It is important for
high-speed motion that the step generator is able to accelerate and decelerate
the machine rather than starting full-tilt. A path planner is built into the
virtual machine's move function, which decomposes velocity profiles into the
format described above. This representation of velocity was chosen because it
both minimizes the difficulty of, and hence compute time to perform, the
acceleration calculations on the physical node. Additionally it minimizes the
packet size. This approach has drawbacks, however. One is that not all
requested velocities can be achieved, because the velocity is parameterized
non-linearly in terms of number of steps (which is a discrete quantity). There
is also the risk of velocity drift because of rounding errors either in the
physical node or in the path planner. Finally, there is a lock-up condition
which can happen upon deceleration. If the velocity hits zero before the last
step is taken, the node becomes unable to complete the current move and
becomes frozen. Several solutions to this last problem are possible, including:

* Never operating at a zero stepping velocity. Acceleration can begin
from and end at a greater-than-zero minimum speed, which is
feasible so long as the stepper motor can accelerate to the minimum
speed over the course of a single step.

- Detect the lock-up condition in the physical node and continue
stepping at a pre-set minimum speed before dropping the velocity to
zero after the move is over.
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The acceleration algorithm is still being optimized and debugged as of this
writing but is functional. Unfortunately, round-trip latency between the
physical and virtual nodes prevents the machine from operating at a speed
commensurate to the utility of using an acceleration profile.

Virtual Machine

Virtual Machine
.... ... ...... ... .... ... ... ... . -X Axis

RP- move() psition Stepper

ace jog( kinematics Y Axis

RPC- getPosition() Virtual : USB Magic Mill
FileControl Node Control

lnterfacel setPosition() Solo/Gestalt Board

setSpindleSpSed()

.... .... .... .... .. ABNET/

Figure 83: Magic Mill Virtual Machine

The Magic Mill virtual machine, shown schematically in Figure 83, contains
the control board's virtual node, a position state object, kinematics for
transforming between motor units of microsteps (as used by the spin object)
to millimeters and back, remote procedure call interfaces for receiving
commands both over HTTP and as a file, and several machine-level
functions. The position state object is used for storing the current position of
the machine, and is modified by the move() function. However it should be
noted that because motion commands are queued at both the virtual machine
and the physical node, the position object's value typically leads the actual
position of the machine. For this reason, the position object has two
parameters: 'future' and 'current'. 'Future' stores the pending position of the
machine once all of the queued moves have been processed, and 'current' is
intended to store the estimated position of the machine. However this feature
has not yet been fully implemented.
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Figure 84: Magic Mill Kinematics

The kinematics of the Magic Mill are depicted in Figure 84. Each motor has

a mechanical chain which starts as microsteps at the virtual node, are

converted to steps at the motor driver, then revolutions by the motor, and

finally millimeters by either the pulley or rack and pinion. It should be noted

that the first mechanical element chain in Figure 84 drives the Y axis, but a
'pulley' element is used rather than a gear. Pulleys are mathematically

identical to the rack and pinion drive in that they transform from rotation to

translation, whereas the gear element in the Gestalt mechanics library only

scales rotations. A kinematics matrix is then used to transform linear

displacement at the motors into motion of the machine, according to the

equations given for the h-bot kinematics in the introduction to this case

study. This final kinematics matrix for the machine is a compound matrix
formed by placing a 1x1 identity matrix on a diagonal with the 2x2 h-bot

matrix. Finally, a 'routing' element is used to handle the sticky situation that
the B and C motors drive the non-adjacent (in matrix space) X and Z axes.

One 3x3 matrix could have been substituted for the two kinematics matrices

and the routing element, but then modularity would have been lost because

each 3-axis machine which uses an h-bot would need to write their own

transformation matrices.

A number of machine-level functions are included, which provide the user
application with the necessary interface to control the machine. Functions
like getPositiono and setPositiono are used by the application to display the
current machine position and to zero the tool. setSpindleSpeedo is used to
turn on and off the motor, but due to the noise issues previously discussed,
this function has gotten little use as of late. The most complex of the
functions is moveo. Moveo takes parameters including the requested
absolute machine position and a desired velocity. A move object is

consequently generated, which is fed into a look-ahead path planner to
calculate a suitable acceleration and deceleration profile for the machine. The
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path planner queues up to 50 moves in a first in-first-out buffer; each time a
new move is received, the planner looks at all of the pending moves and
attempts to accelerate the machine to the desired speed under maximum
acceleration constraints. For example, if a series of short, nearly collinear
moves terminate in a sharp change of direction followed by additional moves,
the path planner might begin decelerating many moves before the corner is
hit, so that the sudden change in direction does not overload the motors. The
jogO function simply wraps the move function to provide relative
positioning, which is useful for applications which have jog buttons.

The final element of the virtual machine is the remote procedure call (RPC)
interface. Both an HTTP interface is provided for interactive control of the
machine via a browser based app, and a file-based interface is provided for
processing long motion paths. To restate other parts of this document, the
RPC-over-HTTP converts an HTTP request into a function call, and issues a
response containing the return values of those function calls in the form of a
JSON dictionary. The RPC-as-a-file interface accepts a text file containing a
long list of function calls, and sequentially makes those function calls on the
virtual machine. This method is superior to the RPC-over-HTTP interface
for generating long chains of commands, as is common when executing a
toolpath on the machine. Both interfaces are used by the PCB milling
application, which was developed for this case study, to provide interactive
and scripted control of the machine.
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Figure 85: Screenshot of Browser-Based PCB Milling Application

Magic Mill is intended to simulate a commercial product. One use case that
was explored is the idea that someone might control their tool from a website
developed by a 3 rd party. This makes particular sense for a multi-purpose tool
that can assume many different uses depending on which toolhead is
attached. Within the context of PCB milling, the 3 rd party source of the
application might be the toolhead developer, or perhaps someone who sells
PCB making materials, or maybe a board house that wants to convert tool
users into customers when it comes time to place production orders. The idea
of controlling a tool from within a web browser originated in conversations
that the author had had with Ed Baafi, the founder of ModKit (Modkit,
2013). ModKit is a browser-based programming application for the Arduino
platform. A small 'widget' runs on the user's computer and allows the

110

O FF



browser-based application to talk to and program the Arduino. Ed and the
author discussed the idea of applying the same concept to tools.

A PCB milling application has been developed for the Magic Mill that
handles the entire process of converting board artwork into toolpaths and
then running these toolpaths on the machine. Additionally, the application
features a control panel for the machine that enables tasks like jogging and
zeroing the tool. A screenshot of the PCB milling application is shown in
Figure 85. Like the Jacquard weaving application shown in a prior case study,
the screen is divided into two sections: toolpath generation is on the left, and
interactive machine control is on the right.
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Figure 86 Uploading BoardArtwork Figure 87: Generating a Toolpath

Toolpath generation begins when the user drags an image of their board

artwork (only the PNG format is currently supported) into the toolpathing

pane, shown in Figure 86. Cutting parameters are then set, including tool
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diameter, how deep to cut, how far to retract, and a variety of speed
parameters. A drop-down menu allows the user to select whether they want
to download a G-code file, or to run the toolpath directly from the browser.
When the 'generate' button is pressed, the image, along with all of the user-
provided parameters, are sent to a server. The server then runs Prof. Neil
Gershenfeld's Fab Modules (Gershenfeld & MIT-CBA, 2013) to convert the
PNG into a vectorized RML file. RML is a format very closely related to the
plotter language HPGL that is used by the Roland line of desktop milling
machines. This process is performed twice; the first time is done with no tool
offset, and the second time with the user-supplied tool offset. If a different
number of contours is rendered by both iterations, the user is notified that
some paths have been lost in the tool offsetting process. Software written by
this author then reorders the contours around PCB traces to minimize
traverse lengths. This is done because as of the time of this writing, the fab
modules output contours in a highly non-optimal order. Finally, the
reordered paths are written as a file. If G-code has been selected, the paths are
encoded in the standard G-code format. If 'Run' has been selected, the
toolpaths are compiled into a list of function calls to be made on the virtual
machine. A number of statistics including path envelope and estimated
cutting time are provided. A link is also provided at the bottom to allow the
user to download the generated file.

0. 0 0 zero
zero

zero
Z 00

run!]
Figure 88: Running a Toolpath

Once the toolpath generation process is complete, and if the user selected
'run' in the drop-down menu, a 'toolpath execution' button appears as in
Figure 88. The user then jogs the machine until the tool is at the desired
origin (typically the lower left corner of the artwork) and then zeros the tool
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by clicking on the 'zero' buttons next to each axis. Finally, the user clicks the
'run!' button to begin milling the PCB. Pressing this button sends a
command to the virtual machine that instructs it to request the just-
generated toolpath RPC file from the server. From here on out the RPC-as-a-
file interface kicks in, and sequentially reads and executes function calls from
the RPC file.

Results

Figure 89: Using the Magic Mill

Pigure YO: Uutput using PCB Milling Application
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The complete workflow of a browser-based PCB milling application
controlling the Magic Mill using a virtual machine was successfully tested in
the setup shown in Figure 89, albeit with a pen attachment instead of a
machining spindle. Figure 90 shows the output generated by this tool chain
from PCB artwork provided as an input.

The development of the Magic Mill was conducted in a manner similar to
that of a commercial product. The mechanical design was defined entirely
using CAD and then manufactured using computer controlled tools. A
custom PCB was designed in tandem with the mechanical system, ensuring
that they fit together properly and that cable routing would be efficient and
unobtrusive. Gestalt's role in the development of the machine came into play
once the PCB had been designed and firmware development commenced. As
in the other case studies, the ability to write firmware within a
communications framework made it possible to begin testing almost
immediately. Also, the modular, layered structure of Gestalt enabled
application development to be conducted concurrently with firmware and
virtual machine development. This is because each layer of abstraction is
independent from the other layers, and possesses known interfaces.

From the perspective of the user (played by the author), the ability to control
the machine from the developed browser-based application is currently on
par with other machines that use native applications. Just as with these
alternatives, the browser interface requires that software is installed on the
user s computer; in this case, the user must install the Python-based virtual
machine with which the browser communicates. However because Python is
platform-independent, the virtual machine does not need to be modified to
support different operating systems.

Discussion and Conclusions

Much of the benefit of using Gestalt within a commercial context is derived
from its modular nature. Gestalt's enforced modularity shows promise of
benefitting the development of a commercial product because it enables
individual components to be built and tested independently. This property is
anticipated to be useful for the development of tools built not by individuals
but by teams. Additionally, the abstraction afforded by Gestalt makes it
possible to embed all process knowledge within the application, rather than
the tool. This means that the virtual machine has no concept of what the tool
is being used for, only of what capabilities in terms of sensing and actuation
that the tool affords. The result is that 3rd parties can easily develop new
applications for the tool. For example, one could easily see the Magic Mill
being outfitted with a USB microscope and used to take large stitched
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pictures, or being used as an optical comparator to take distance
measurements.

The browser-based interface plays a significant role in enabling the
extensibility of the tool. A toolhead developer can simply publish their
application on their own server as a webpage, which the tool user can visit to
take advantage of the functionality. This approach is nice because the user
doesn't need to install new software to control their tool. By providing a
virtual machine interface to their tool, manufacturers can foster the growth of
an ecosystem of new and unexpected applications.

An additional benefit of the browser-based interface for the tool user is the
possibility of database-driven applications. An example might be a website
that offers a repository of PCB designs accompanied side-by-side with
machine control. This promises a complete user experience currently lacking
in automated tools. Standard practice today is that the generation and storage
of design files is completely isolated from the tools used to bring them into
reality.

There are as-of-yet unexplored security issues involved in giving web sites
control of a local tool. While the remote procedure call interface only permits
explicitly allowed functions to be called on the machine, there is inherent risk
in permitting a website to execute functions on a user's machines - both their
computers and their fabrication tools.

One final observation is on how the end user relates to the tool. Unlike
automated tools that embed most of their logic within firmware, the virtual
machine approach gives users the opportunity to dissect the control system of
their machine just as they might take apart its hardware. This makes the
machine accessible to them for purposes of modification, education, and also
perhaps just becoming more intimately aware of how it works. Additionally,
if the same accessible framework is used to build both commercial and
hobbyist machines, consumers may begin to feel empowered to build their
own tools.
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Distributed Control of a Fabrication Machine

Figure 91: 3-Axis Generic Desktop Fabrication Tool

A fundamental idea driving the development of Gestalt is that the
construction of fabrication tools should be modular. One of the important
features of the framework towards this end is that physically separate
components such as stepper motors can be attached together over a network
and treated logically as a cohesive set. This circumvents the need for custom
circuitry and firmware that typically accompanies the development of new
machines. The present case study develops and tests the use of Gestalt to
orchestrate a distributed network of control nodes in performing
synchronous tasks, and explores the benefits, drawbacks, and challenges of
the approach.

We have developed a 3-axis Cartesian motion stage controlled by a
distributed system, in which each axis's stepper motor is controlled by its
own physical node. These independent controllers reside on a common
network bus over which they communicate with their virtual nodes. To test
the ability of this machine's control system, which is comprised of multiple
nodes, to be treated logically as a single cohesive machine, the web-based
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PCB milling application developed in the-'Portable Multi-Purpose CNC
Machine' case study is applied without modification to this machine.

Hardware

The mechanical hardware used for this exploration of networked motion
control is based on a machine designed by the author and Maxim Lobovsky
as part of the 'Machine's That Make' project at the MIT Center for Bits and
Atoms. Much of the mechanical hardware shown in this case study was built
and in part designed by CADLab UROP student Benjamin Niewood.

Figure 92: Parallel Kinematic Gantry Figure 93: Z Axis and Networked Nodes

The XY kinematics, shown in Figure 92, are comprised of two perpendicular
shafts, each of which can be translated independently by a stepper motor.
The carriage rides on both shafts and thus moves with their intersection
point. This mechanism was inspired by a design created by Greg Schroll for a
class project in MIT's robotics course 2.12. The advantage of this gantry
design is that both motors are stationary, thus reducing the inertia of the
carriage over the typical serially stacked approach taken by many Cartesian
platforms. Figure 93 shows both the leadscrew-driven Z-axis of the machine,
as well as the three stepper control nodes that are connected together, and to
the computer running the virtual machine, by a colorful ribbon cable.
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Figure 94: A Networked Single Stepper Controller

Each stepper control node, shown in Figure 94, contains a stepper driver IC,
a network port (FABNET), a microcontroller running firmware built with
the Gestalt C library, and a button used to pair the physical node with its
virtual counterpart. There is no digital potentiometer to set the motor
current limit, but a trimmer potentiometer is provided for this purpose
whose output can be read by the microcontroller to assist the user in setting
the desired motor current.
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Figure 95: Networked Nodes and Their Virtual Nodes

Each networked physical node is represented within the virtual machine by
its own virtual node, as depicted in Figure 95. The pairing between the
virtual nodes and the physical nodes is handled by the Gestalt interface,
which, as described in the Framework section, manages routing packets from
virtual to physical nodes (and vice versa) and also performs synchronization
of multi-node commands over the network. The stepper controller virtual
node contains a number of service routines, listed below:

* enable() turns on power to the stepper motor, causing it to hold its
current position. This also happens automatically whenever a move is
initialized.
disable() turns off power to the stepper motor. This is useful for
jogging the machine around by hand, ortp t p rtuthe motors from
overheating.

* getReferenceVoltage() returns the value of the motor current
limit reference voltage as set by a trimmer potentiometer. This is used
to help the user set a desired motor current.

* spin() causes the driver to take a certain number of steps, using the
same acceleration/deceleration profile that is described in detail in the

'portable multi-purpose CNC machine' case study. An additional flag
is sent to the physical node indicating whether the move is

synchronous. If synchronous, the node waits to receive a multicast
synchronization packet before commencing the move. This allows
multiple nodes to be configured with unique step commands, and
then started simultaneously upon the receipt of the sync multicast
packet. The algorithm used to execute multi-axis moves across
multiple nodes is described in detail in Appendix A.

SspinStatus( queries the current step position and move buffer
availability of the node. This is used to determine when an open
buffer slot becomes available.
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* sync() sends out a multicast synchronization packet. This is called
by the Gestalt interface after it has serialized an action set into a
sequence of action objects to be synchronized and placed them in the
channel access queue.
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Figure 96- Distributed Machine Control Virtual Machine

The virtual machine that controls the tool is nearly identical to the virtual

machine of the 'Portable Multi-Purpose CNC Machine' case study. The

virtual 3-axis stepper control node of that example is substituted for here by

three virtual 1-axis stepper nodes wrapped in a compound node. The

compound node allows machine-level functions to interact with a distributed

control system in exactly the same way that they do a monolithic one.

Application

The same browser-based PCB milling application that was used in the

'Portable Multi-Purpose CNC Machine' case study is used here to test the

virtual machine control of a distributed physical control system. Being able to

use the same application to control both machines is a good test of whether

Gestalt provides sufficient abstraction such that the modularity of the

physical control system is transparent at the application level.
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Results

V

Figure 97: Drawing a PCB Using Distributed Control

Construction of the machine's control system was indeed made easy by the
modular approach. Only one multi-conductor wire was needed to connect
together the electronics for the entire machine! However there are currently
still a few kinks in Gestalt that have come to light while testing virtual
machine control of networked single-axis physical nodes. The path planner
originally used was causing the physical nodes to lock up (see the discussion
in the 'Virtual Nodes' sub-section of the 'Portable Multi-Purpose CNC
Machine' case study), so a less sophisticated path planner was used which
maintains a constant motor velocity without acceleration/deceleration
planning. Figure 97 shows a drawing created by a browser-based PCB milling
application, where a pen was used in lieu of a spindle. About one third of the
way through the toolpath, a phase-lag appeared between the axes, causing a
distortion of the individual traces, However, macroscopically all of the traces
are in the correct locations . The same toolpath was run multiple times and
always resulted in exactly the same distortions, indicating that the error is
repeatable and thus likely a correctable programming error.

On occasion there were noticeable pauses in motion, presented as 'stuttering'
of the motors, that were very likely caused by bandwidth issues leading to
starvation of the nodes' motion buffers. At the moment, bandwidth problems
caused by latency appears to be the largest technical issue of using Gestalt to
control a distributed set of nodes over the FABNET network.
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Discussion and Conclusions

The goals of this case study were to develop the capabilities of Gestalt for
controlling multiple physical nodes as a logical whole, and to test the
effectiveness of this approach in improving the process of machine
construction. From an algorithmic perspective, Gestalt has been shown to
successfully synchronize multiple nodes to achieve desired machine motion.
However there are still a number of implementation bugs that need to be
worked out.

The philosophical advantage of this approach is that machine controllers can
be assembled faster at the virtual machine level than at the hardware level.
This is particularly true in cases where single control boards are not
economically available with all of the desired features for controlling a
complex machine like a robotic arm. Modularity also allows the control of
each component to be abstracted from the machine builder, permitting them
to focus on building a machine rather than interfacing with components.
Additionally, there are aesthetic and wire-routing advantages to using a single
network cable rather than multiple wires running from each component to a
centralized control board.

There are several drawbacks to the distributed control approach. The primary
disadvantage is cost. Each node requires its own microcontroller and the
associated support circuitry, along with its own PCB, whereas integrated
controllers frequently share a single microcontroller and PCB among many
components. One example of this is the RAMBo board available from
UltiMachine (Ultimachine, 2013), which is capable of controlling 5 stepper
motors simultaneously. However, if a single board with all of the required
features is not available, the increased cost associated with modularity is likely
far less than that of developing a custom monolithic control board. As was
shown in this case study, the virtual machine layer of Gestalt is agnostic to
whether physical control is centralized or distributed. Therefore there is no
disadvantage to picking whichever approach best suits the particular project.

The greatest challenge facing distributed control, as currently implemented
by Gestalt, is scaling. Each additional node requires its own dedicated packet
per synchronized event, which means that the maximum machine bandwidth
(in synchronized moves per second) is inversely proportional to the number
of nodes. This is particularly exacerbated by round-trip latency that has been
largely attributed to Python's interface to the Virtual COM Port over which
it communicates with the FABNET network. Currently, about 50 packets
can be sent and received per second, which is significantly less than the 800
round-trip-packets/sec which the serial port is in theory capable of. It is for
this reason that the managed/Gestalt network protocol, discussed in the
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'Framework' section, has been conceived to maximize utilization of the
network bandwidth. At this estimated maximum data rate, a 6-axis robotic
arm could be controlled at a rate of roughly 100 instructions per second. The
speed at which this packet rate can move the arm is proportional to the
length of motion encoded by each packet. Therefore, more accurate motion
results in slower maximum speeds. Because the target audience of Gestalt is
the individual user rather than industry, the primary concern is making new
tools accessible to this audience rather than optimizing the operation of the
tools. However, improving the performance of the networked node approach
described by this case study is certainly an area deserving of future work.
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Discussion

Gestalt is a framework that facilitates the rapid development of control
systems for automated tools. Over the course of the case studies presented
here, Gestalt has demonstrated its ability not only to expedite the
construction of machine controllers, but also to potentially enable new ways
of interacting with automated tools. Additionally, much has been learned
about what is important in a framework for building tools, and who its
potential audience might be.

The key to Gestalt's utility on nearly all fronts has proven to be its modular
approach. Three types of modularity have been identified as being
particularly useful: the ability to assemble cohesive controllers from disparate
hardware modules, a layered control system architecture, and intra-layer
software modularity.

One area in which modularity is important to a framework for building tools
is in hardware. The distributed control system case study shows how discrete
hardware nodes joined over a network can allow controllers to be integrated
in software rather than needing to build custom hardware. This modular
approach to connecting hardware is particularly useful for machines for

which there are no standard controllers available, such as the tape printer
developed in the first case study. An off-the-shelf industrial inkjet head was
controlled in tandem with custom tape-feeding hardware by logically
combining their functionality inside a virtual machine. The pattern of
connecting arbitrary units of functionality on a network and coordinating
their behavior in software might lend itself to the creation of a basic language
for machine control. Even if a specific control board is available, having a
finite set of components on hand that can be combined to replicate the
functionality of any controller would save time in acquiring specific hardware
from a vendor.

Another important form of modularity within Gestalt is provided through
layers of abstraction. The three layers of the control system - nodes, machine,
and application - operate within restricted, non-overlapping scopes. For
example, the stepper controller of the coil winder case study supports
multiple motors, yet does not make assumptions about what mechanisms are
driven by the motors. This is in contrast with many standard off-the-shelf
stepper control boards like the Synthetos TinyG (Synthetos, 2013) that
accepts XYZ commands assuming a Cartesian motion stage, and is

advantageous because it allows kinematics to be defined within the virtual
machine without compromising the generality of the hardware controller.
For the coil winder, this made it easy to define a polar coordinate system.
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Another example of abstraction is the separation between the application and
virtual machine layers, as evidenced by the control system built for the Magic
Mill (shown in the 'Portable Multi-Purpose CNC Machine' case study).
Despite its name, the Magic Mill is intended as a multi-purpose tool for
many different applications. Because the virtual machine makes no
assumptions as to the use of the tool, all knowledge of process is kept within
the application. This allows multiple applications to control the same
machine for specific purposes, or one application to control different
machines for the same purpose. Throughout the case studies, the modularity
of layers also proved important in assisting the development process, by
permitted the rapid development of one layer using pre-existing layers from
other projects. For example, the PCB milling application, which had already
been validated on the Magic Mill, was instrumental in the development of
the distributed control machine by allowing the control system to be tested
during development. This leap-frog approach avoids a chicken-and-egg
situation where the virtual machine can't be tested until the application
works, and the application can't be tested without a working virtual machine.

The final type of modularity that we identify is modularity within each
software layer. This is particularly important within the virtual machine layer.
Wherever possible, every object type used in the virtual machine layer -
including kinematic matrices, virtual nodes, and interfaces - is self-sufficient.
For example, Gestalt provides pre-built functions like moveo and jogO, that
were shown in the case studies to be able to control both a single 3-axis node
and three single-axis nodes (within a compound node) without any
modification. The kinematics and mechanics objects are equally
interchangeable. This not only makes development of the virtual machine
easier because the programmer does not need to worry about inadvertent
conflicts, but it allows software modules to be shared and reused. By way of
example, there is currently no kinematic matrix for a 6-axis robotic arm.
However, as soon as this has been implemented once, it can be utilized to
control any kinematically similar machine, irrespective of other differences
between the hardware setups such as types of motors or motor controllers
being used. There is also some degree of modularity within the node layer.
We showed in the case studies how the same node service routines could be
reused to speed development of custom nodes, and suggest that enabling the
rapid and simultaneous construction of virtual and physical nodes using drag-
and-drop service routines should one day become a formalized aspect of
Gestalt.

When development first began on Gestalt, the intended audience was
individuals who want to build their own automated machines to expand their
abilities to shape matter through their computer. The case studies have given
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a more refined perspective on who exactly might want to use the framework
and for what purposes.

One type of user is the individual with a specific task in mind, like needing to
wind 24 electromagnets with greater precision than can easily be done by
hand, as was shown in the coil winder case study. This person is essentially
building a physical script (to borrow programming parlance), and for them
the benefits of machine construction must outweigh the costs (in terms of
time and/or money). A crossover point exists where it is less work to build a
machine to automate a task instead of doing that task by hand, and vice
versa. Both construction time and how quickly the machine operates are
therefore important to the user with a specific task in mind. Because their
intention is to use the machine for a one-off operation, their willingness to
invest in creating a user interface is minimal, and the ability to control the
machine using a python script may very well be their preferred means of
interfacing with the tool. It was determined upon reflection of the coil
winder that mechanical construction dominated the overall building process;
unfortunately Gestalt has little influence over this aspect of the project.

Another type of user is the individual who is interested in constructing a
fabrication machine simply to expand the repertoire of tools and processes
available to them. The Jacquard loom is an example of such a machine. It
wasn't built to weave heart bracelets; rather, it was constructed so that the
user could weave any bracelet whenever they felt the urge. This user's needs
are very different from the person who builds a machine for a specific
purpose. They do not care as much about speed of operation, because the
purpose of their machine is to make a fabrication process possible and/or
more enjoyable (in this example, designing with their computer and
interfacing directly to a loom). It is possible that the user is building an
entirely new type of tool, or simply replicating a design that is not
commercially accessible. The joy of using the tool is important to this type of
builder, and the user interface has a large influence in this regard. Gestalt has
been shown to be supportive towards empowering the rapid construction of
user interfaces for tools. Anyone with experience making a website can build
a rudimentary interface with pushbuttons, and a slightly more sophisticated
use of JavaScript allows them to design complex interactions. Additionally,
because of the separation of layers previously discussed, one loom builder
might be able to use another's already-made browser-based application if it is
published online.

Both individual users have a strong motivation to use pre-existing hardware
nodes wherever possible. They likely do not care about tightly integrating the
hardware of their machine because it is not intended to be mass-produced.
Rather, they would like to focus on the development of the overall machine
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without becoming bogged down in the details of interfacing with discrete
components. The modularity of Gestalt was tested in this regard only in a
hypothetical manner because even nodes that conceivably could be off-the-
shelf eventually, had to be designed and built by the author because they did
not yet exist.

Gestalt also has utility for companies looking to build a new personal
fabrication machine intended for sale. Their needs and development process
are quite different than that of the individual. They care about unit cost and
footprint of the electronics, so they will likely build their own monolithic
control board rather than combine multiple pre-built nodes on a network. It
is worth noting that the extensibility of a machine-area network still holds
benefits for the tool producer. Several of the case studies explored how
Gestalt's C library helps in the development of custom hardware intended for
use with the Gestalt framework. Within a commercial setting, the task of
machine construction is distributed among individuals rather than
concentrated in a single individual. Gestalt's hierarchical approach to
machine control is expected to be beneficial here because it draws natural
borders between various aspects of machine control construction.
Additionally, the ability to seamlessly transition machine control from a
rapidly prototyped collection of networked nodes to a highly integrated
custom node could be beneficial in parallelizing the development of a
product.

Gestalt allows great flexibility, but sometimes at the cost of performance, as
was seen with the fabrication machine using distributed control. Latency
issues in this case study prevented the machine from performing as desired.
This makes the current implementation of Gestalt more suitable for enabling
the creation of machines that satisfice rather than maximize, as was discussed
in the introduction, and thus is likely better suited for building machines
intended for use in a personal capacity rather than industrial production.

In addition to assisting in the construction of machine controllers, Gestalt
has shown promise for enabling individuals to interface with tools in new
ways. One example of this is epitomized by the tape printer. The purpose of
that tool was to print continuous non-repeating patterns onto masking tape,
which necessitates a continuous non-repeating digital pattern. Being able to
interface with the tape printer directly from the algorithm responsible for
generating this patterns is therefore very useful. This was only tested to a
limited degree in the tape printer - while the machine was controlled using a
script, the designs fed to it were static images. However its utility was made
apparent by the case study.
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Perhaps one of the biggest discoveries over the course of this research was the

breadth of possibilities afforded by browser-based applications for fabrication
tools. We discussed how Gestalt's layered architecture provides the necessary
abstraction for one machine to be controlled by a variety of applications. Not
only does the accessibility of the technologies for developing browser-based
applications - the same technologies used to build web pages - make it easier

for them to be created, but the web provides a prolific arena for their
publication. Browser-based applications also do not need to be installed and

are platform independent. Already, 3D design is being conducted within the

browser, as evidenced by Tinkercad (Autodesk, 2013). Browser-based control

offers to place the entire digital fabrication workflow - CAD, toolpath

generation, and machine control - all in the same place. But the most
exciting prospects for browser-based machine control apps occur when they
are connected to a database-driven backend. The digital fabrication workflow
might one day be attached to repositories of designs, enabling sharing not
only of models but also of manufacturing techniques. The virtual machine
approach has an additional benefit here - because the configuration of the
machine is represented by the virtual machine, it is possible for information
about the user's available tools to make its way upstream, influencing the
toolpath generation process, informing the design process with respect to

manufacturable geometries, and even filtering repository searches to show

only objects which the user has the ability to reproduce.

This last point regarding the accessibility of the virtual machine touches on

one of the additional aspects of Gestalt that has come to light during this

work. Because the dominant portion of the controller resides on the user's

computer as a virtual machine, and because it is built using an open-source
framework (Gestalt is intended to become open-source), Gestalt changes the

user's relationship with their tools. Even if the tool was purchased rather than

built by the end user, the ability to peer into the inner workings of the

control system empowers the user to learn from and modify their tools in

ways that are impossible with current consumer-grade fabrication tools like

the Roland Modela desktop mill (Roland DG, 2013) or the Shopbot gantry

router (Shopbot Tools, 2013).

There are a number of fundamental issues with Gestalt that still require

resolution before it can achieve its full potential. The framework is
awkwardly located on the spectrum of offline and real-time control. Most

machine tools, from the perspective of the user, are offline. A static file

containing motion instructions, typically encoded in G-code, is prepared and
then fed to the machine. By way of contrast, an example of a real-time
computer-controlled tool is a KUKA robotic arm (KUKA
Aktiengesellschraft, 2013), which, when in real-time mode, receives
continuous motion commands from an application that are immediately
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executed by the arm's controller. Gestalt wants to be real-time. Commands
are issued by making function calls on the virtual machine, and then are
ideally executed immediately on the machine. Nominally, the state of the
virtual machine and the physical machine are always perfectly in phase.
However, to support look-ahead path planning, and to circumvent the effects
of network bandwidth and latency limitations, moves are stored in buffers
both in the virtual machine and in the physical nodes. This currently makes
it difficult to perform important tasks like stopping a toolpath mid-stream,
because phase lags in state between the virtual and physical machines need to
be recovered. Additionally, it is difficult to intersperse non-buffered
commands with buffered commands. For example, a user program might
issue a spindle start command, then 100 move commands, and finally a
spindle stop command. Move commands get automatically buffered in the
physical node, but spindle commands do not. The effect is that perhaps only
a few moves would be executed on the physical node before the spindle stops.
Finally, there are no provisions yet for making real-time adjustments to
machine commands based on incoming sensor data, which is an area of much
interest to the manufacturing sector (R. Ardekani & Yellowley, 1996).

A related issue with Gestalt currently is that network latency problems still
prevent high-speed motion of a tool despite the use of buffering. This
becomes painfully evident in light of the speeds at which 3D printers
typically move. The hobbyist 3D printer Ultimaker is able to print with high
resolution at 150mm/sec (Ultimaker, 2011). If in particularly detailed areas
its motion profile consist of line segments 0.1mm long (and this is a
conservative estimate), a packet rate of 1500 packets/sec would be required
between the virtual and physical machine.

These inter-related issues of low communications bandwidth and non-real-
time control, both stemming from communications latency, currently
prevent certain types of machines built with Gestalt from competing with
currently available hobbyist equivalents. Even before these issues are resolved,
however, there is still an opportunity for Gestalt to find utility in these
domains that require higher performance. Virtual 'solo/independent' nodes
can be built for streaming G-code to high-speed all-in-one controller boards
like the aforementioned Synthetos TinyG, thereby connecting the still-
relevant application layer to machines that, for performance reasons, cannot
take advantage yet of the more basic machine control functions of Gestalt.
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Conclusions

This research developed a framework, named Gestalt, for enabling
individuals to rapidly construct controllers for new and potentially non-
traditional automated fabrication machines. The approach taken is to split

control between a virtual machine running on a personal computer, and a
collection of modular physical nodes responsible for interfacing at a low level

with sensors and actuators. A Python library was written to expedite the
construction of virtual machines, and a matching C library aids in the
creation of custom hardware control nodes. These halves of the control

system were joined over a USB interface, and in some cases a novel device-

level network was additionally used to enable synchronization between
hardware elements.

Several advantages over traditional controller architectures are realized with
our approach. Modular hardware controllers enable the usually tedious task

of integrating hardware to be done more easily in software at the virtual
machine level. Layers of abstraction between the application, virtual machine,

and physical node levels enable incremental changes to be made to one layer

without affecting other layers, and also allow testing of changes to occur

rapidly within a pre-existing framework. For example, the same physical
motor controllers can be used both by machines with Cartesian and polar

kinematics, meaning that new kinematics can be tested immediately without
needed to co-develop compatible hardware. Additionally, clean interfaces
between levels of machine control mean that a variety of applications can be
made to work with a single multi-purpose tool, and likewise similar tools can

be controlled by a single application. Modularity within each layer promotes
reuse of components - both physical and virtual - between machines, which
greatly increases the speed of development.

Multiple types of users were shown to benefit from the framework developed
in this research. Individuals seeking to automate a specific task are able to

rapidly construct a quick-and-dirty 'physical algorithm' to achieve higher
quality results and in some cases to decrease the overall time needed to
conduct their task. Users who wish to generally extend the range of their
personal fabrication capabilities are empowered to build controllers for
unusual tools such as a personal Jacquard loom. Companies who are seeking
to develop personal fabrication machines for sale benefit from the ability to
cleanly split control development among multiple people, and also benefit
from a smooth transition between modular development hardware and
monolithic custom control boards.

Gestalt's virtual machine approach demonstrated enhanced possibilities for
interfacing applications more intimately with machines. Automated tools can
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be controlled directly by software programs simply by importing the virtual
machine as a module and then calling its methods. This promises to enable
control of tools by the same algorithms used to generate tool instructions,
thus entirely bypassing intermediate tool control languages like G-code.
Algorithmic control of tools both reduces the number of steps needed to
operate a tool, and permits on-the-fly generation of infinitely long sequences
of machine commands as might be used, for example, to print non-repeating
patterns like the digits of Pi on rolls of tape. The virtual machine approach
also simplifies the control of tools by browser-based interfaces, which opens a
new world of rich web-connected and database-driven applications for
machine control. This particularly makes sense for personal fabrication
machinery because the Internet plays an increasingly important role in
empowering individuals to create, from providing free web-based design tools
to acting as a forum for sharing design and fabrication techniques.

Because the virtual machine framework is written in a platform-independent
language, and because communication between the virtual and physical
machines occurs over ubiquitously available interfaces including USB, Gestalt
is accessible to a wide range of individuals for personal use. The design
choices that have enabled these properties have also been discovered to
present limitations on Gestalt's current abilities. The high latency inherent in
the USB interface, along with latencies associated with non-real-time
operating systems such as Windows, Mac OS X, and most popular versions
of Linux, prevent Gestalt from operating in real-time. This introduces lags in
state between the virtual and physical machines, which have made
implementing features like pausing and state-estimation difficult. These
latencies, when coupled with the need to ensure reliable transmission of
information between the virtual and physical machines, act to significantly
limit the overall communications bandwidth. The effect is that Gestalt
currently has difficulty issuing rapid sequences of commands as are typically
needed for high-speed machining and 3D printing operations.

Gestalt originated as a virtual machine based system controlling a circuit
board mill for the author's senior thesis in 2008. Since then, it has slowly
evolved to become what it is today: a general framework for assisting in the
creation of new automated tools. We spoke in the introduction about how
programming has become a general literacy. Fueled by the Maker Movement
and the Open Source Hardware Movement, the ability to create physical
objects is again being viewed in a similar light. We see Gestalt as resting at
the intersection of these two literacies, and suggest that the ability to make
machines that make6 should be universally accessible. If tools are the gears

6 The phrase 'machines that make' is borrowed from the MIT Center for Bits and
Atoms project of the same name.

132



that enable us to climb the hills of creation, it is our hope that Gestalt may
serve as the continuously variable transmission.
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Future Work

There are many areas of future investigation that have been uncovered over
the course of this thesis. They can be divided roughly into two areas:
framework improvements and future explorations.

Framework Improvements

One of the areas still lacking in Gestalt is the ability to control high speed
motion along detailed paths. This is because latency issues in the
communications system are limiting the round-trip time of request and
response packets and thus overall system bandwidth. Solving this problem
might assume two approaches: figuring out how to decrease latency, or
adopting an alternative method of ensuring that packets have been received
and thus bypassing the need for response packets from the physical nodes
back to the virtual nodes. It is the latter approach which has been
conceptually explored in the form of the 'managed/Gestalt' type node. This
hypothetical communications system is described in more detail in the
Framework section and in Appendix C, and the hardware support necessary
for its implementation is already a part of the FABNET standard. The results
of the distributed control case study, in which bandwidth between virtual
and physical nodes was indeed an issue, indicate that the 'managed/Gestalt'
approach is a natural next step in the development of Gestalt.

Another area of work is implementing a means of resynchronizing state
between the virtual and physical machines. Because buffering occurs on the
physical nodes, the virtual machine has a tough time knowing the exact state
of the physical machine at any given time. This makes implementing features
like pausing or stopping mid-path difficult without losing position.

There are also a number of bugs that currently reside in the framework and
need to be fixed before Gestalt is ready for general use. One is in the path
planning algorithm of the move function. As was described in the Magic Mill
and distributed control case studies, the current path planner is causing lock-
up issues that can render a machine frozen. Several approaches to the solution
were discussed in the case studies. Another bug was discovered while working
on the distributed control case study. Synchronization between nodes appears
to be lost in a way that is repeatable: at always the same point in the toolpath,
a phase lag is introduced between the nodes. This is likely caused by a bug in
the interface module that decomposes action sets into synchronized action
objects.
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Future Explorations

One emerging area that the author finds exciting is that of 'personal
factories'. Several projects are currently developing desktop-scale
manufacturing lines for automating the production of relatively small
quantities of products. One such product is a pencil called 'Sprout': the
concept is that in lieu of an eraser, a small gelatin capsule contains a herb seed
(Democratech, 2012). When the pencil is expended, it can be planted in the
ground. In order to maintain control over manufacture of these pencils, the
team behind Sprout has built an small-scale factory that serially performs
multiple operations on the pencil including preparing the bare pencil, filling
the seed capsule, and gluing the capsule onto the back of the pencil. Another
project that is developing its own small factory is called 'The Solar Pocket
Factory', which is self-described as 'the world's first automated tabletop
micro-solar production machine' (Solar Pocket Factory, 2013). Both
examples demonstrate small groups of individuals who are not only building
their own tools, but are building their own manufacturing lines.

Figure 98: The Desktop Factory

The area of personal manufacturing seems like a fertile ground for the use of
Gestalt. Machinery for this purpose is frequently custom-built, and also
frequently constructed in a modular fashion. This use case is similar to the
specific purpose case discussed in the conclusions. Already, work has begun
to explore this arena. Figure 98 shows the 'Desktop Factory', whose hardware
was built primarily by Benjamin Niewood as a summer project at the MIT
CADLab (in which the author is a student.) The concept is to extend the
notion of networked nodes beyond the control system and into the realm of
matter. Several automated 3-axis gantries like the one used in the distributed
control case study are placed on a table. A black tape line is laid down
between the machines, connecting them like a suburban street connects
houses in a quiet neighborhood. Each machine is outfitted with a different
toolhead to conduct a particular fabrication operation. For example, one
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machine might have a spindle to machine a circuit board, another might be
equipped with a syringe to apply solder paste, and a final machine might be
configured as a pick-and-place that can populate the board with components.
A small line-following robot, seen in the middle of the photo in Figure 98,
travels along the black tape shuttling pallets between the machines, thus
forming a physical network. Each machine is equipped with a kinematic
coupling that ensures each pallet mounts to the machines in a repeatable
manner, and also provides a large enough error tolerance for the robot to be
able to successfully transfer the pallets to the machines. This project is
currently a work-in-progress, but represents a broader direction in which
Gestalt could grow.

Another exciting area of exploration is browser-based control of machine
tools. This thesis has discussed many of the benefits of this approach to
interfacing users with tools. Beyond the ease with which websites and thus
machine applications can be developed and published lie several possibilities
for integrating web control with 'Web 2.0'. One specific example might be
combining a part repository with machine control for PCB milling within
the same website. This has obvious advantages for sharing designs, but more
importantly fills in a gap in current design sharing practices: there is no good
way of sharing techniques for fabrication, even as simple as successful
machine settings. By combining design sharing with fabrication, a low-
impedance path exists for generating rich documentation nearly

automatically. For example, consider a website that stores user-designed
circuit boards. An individual logs into that site, selects a design they wish to

make (or upload their own), and then click 'make'. A new page appears
similar to the PCB milling application control panel in Figure 85. The user

selects their tool diameter, and recommended settings for feed rate and

spindle speed appear based on an interrogation of the users virtual machine
(i.e. if the machine has a slow spindle, a lower feed rate may be selected).

Should the bit break during use, this information can be readily fed back to
the application, causing it to suggest a different feed rate to subsequent users
with similar setups.

Throughout the case studies, the virtual machine has always run on the same

computer as the user application (be it a script or a browser-based
application). Lauren Wright, a CADLab UROP student this summer, has
installed the virtual machine on a $25 Raspberry Pi computer (Raspberry Pi
Foundation, 2013), and has successfully controlled the personal Jacquard
loom from an iPad over the Internet. Further understanding the many ways
in which machines, virtual machines, and user apps can be connected and
speak to each other is an additional large area of future work.
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Appendix A: An Algorithm for Synchronized
Motion Across Networked Nodes.

Introduction

One of the key features of the virtual machine control framework developed
in this thesis is that it is capable of controlling multiple motors in synchrony
across a network bus. While the thesis itself discusses various means of
synchronizing the nodes' time bases over the network, this appendix
addresses the algorithm by which single (or multiple) axis motor controller
nodes can synthesize step signals in a coordinated manner from incremental
position commands. The same algorithm could be used for synchronously
generating reference signals for servo motors, or for establishing a common
time base for any other synchronized activity.

The Bresenham Line Drawing Algorithm

The motion of CNC machines is restricted to a grid, the coarseness of which
is determined by the positioning resolution of the machine. In the case of
stepper motor driven machines, this resolution is set by the step angle and
mechanical reduction of the actuators. Servo-driven machines are limited by
the resolution of the encoders that provide positional feedback to the
controller. One of the fundamental challenges in moving a CNC machine
along an arbitrary straight line is that the grid points to which the machine
can locate do not always fall exactly on the desired path. Thus it is up to the
controller to coordinate the motion of the various axes so that the machine
best approximates the line. This challenge is made more difficult when the
control software is running on relatively slow microcontrollers such as the
Atmel ATMega series that currently dominates the hobbyist-level CNC
controller market.

In 1965 J.E. Bresenham published a seminal paper 'Algorithm for Computer
Control of a Digital Plotter,' in which he outlined a technique for efficiently
determining the discrete motions of the individual axes of a machine which
would approximate a desired line (Bresenham, 1965). Bresenham's algorithm
manages to accomplish this task using only integer math, making it a very
attractive candidate for running on a microcontroller.
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Figure 99: 2D Bresenham Line Drawing Algorithm

Consider the case shown in Figure 99. The target line (depicted as dashed)

has a run of six steps and a rise of 5 steps. The Bresenham algorithm starts by
identifying which axis is the major axis, that is, the axis in which the largest

number of steps will be taken. The key to the algorithm is the assumption

that a step will always be taken in the major axis. The role of the algorithm is

to determine whether a step should also be taken in the minor axis. A step

solely along the major axis results in a minor axis error equal to the

normalized slope, because by definition the normalized slope is the rise of the

target line over a run of one step. This error is accumulated for each step

taken along the major axis, until the total error is greater than a half step.

Then a step is taken in the minor axis, and a full step is subtracted from the

running error tally. In order to avoid non-integer math, Bresenham keeps the

slope in the form (minor steps / major steps). Every step along the major axis

accumulates the total desired minor axis steps to the error tally. When this

tally exceeds major steps/2, the error tally is reduced by the total desired

major steps. To prevent the value (major steps/2) from being fractional,

everything can be pre-multiplied by 2. The example of Figure 99 is worked

out below:

Starting Major Net Error Error > Minor Net Error Ending

Position Step? Before Major Step? After Position

Minor Step Steps/2? Minor

Step
(0,0) yes 5 5>3, yes yes 5 - 6 = -I a: (1,1)
(1,1) yes -1 + 5 = 4 4 >3, yes yes 4 - 6 = -2 b: (2,2)
(2,2) yes -2 + 5 = 3 4 =3, no no 3-0= 3 c: (3,2)
(3,2) yes 3 + 5 = 8 8>3, yes yes 8 - 6 = 2 d: (4,3)
(4,3) yes 2 + 5 = 7 7>3, yes yes 7 - 6 = 1 e: (5, 4 )
(5,4) yes 1 + 5 = 6 6>3, yes yes 6 - 6 = 0 f: (6,5)
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An important result, demonstrated in the above example, is that the
Bresenham algorithm always concludes at the endpoint of the target line (i.e.
zero accumulated error.) The solid line in Figure 99 shows the algorithm's
approximation of the dashed target line.

Extending the Bresenham Algorithm to Many Axes

(0,0)

(6,5)

(6.11)

Figure 100: Multi-Axis Bresenham Algorithm

It is a trivial matter to extend the Bresenham algorithm to an arbitrary

number of axes. Figure 100 shows three simultaneous axes stepping to a final

position of (6, 5, 1). Because a step is always taken in the major axis, it is the

major axis that synchronizes the motion of the other axes. In other words, the

motion of the non-major axes are parameterized by the major axis.

Coordinated Motion Across a Network, and the Virtual Major Axis

(0,0)

Figure 101: The Virtual Major Axis
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The realization that the major axis of the Bresenham Algorithm provides a
means of synchronization is the key to the algorithm developed by the author
to coordinate motion across networked motion control nodes. Every node is
provided with a common major axis, called the virtual major axis, and a
unique minor axis that represents the axis along which the node will actually
generate steps.

For example, consider a 5-axis machine in which each motor is controlled by
a distinct node on a network. A position command is received requesting that
the machine should move incrementally to (5, 6, 7, 8, 9). This means that
the X axis should move five steps, the Y axis six steps, the Z axis seven steps,
etc... in a coordinated manner. The largest number of steps to be taken
during the move is nine steps. Therefore the virtual major axis has a length of
nine steps. Each node is sent a move command containing both the virtual
major axis and the real minor axis assigned to that node (shown in bold and
underlined): X Axis Node: (5, 9), Y Axis Node: (6, 9), Z Axis Node: (Z, 9),
A Axis Node: (8, 9), B Axis Node(9 9). Each node then pretends that it is
performing a two-axis move exactly as in the Bresenham Line Drawing
Algorithm, always internally stepping along the provided virtual major axis.
Whenever a step is taken in the minor axis, the controller will generate a step
pulse to the motor driver.

So long as the algorithm begins simultaneously on all nodes, they will remain
synchronized within the tolerance of their crystal clocks. The topic of
synchronizing the time bases of the networked nodes is treated within the
body of the thesis in the Framework section. It should be noted that
acceleration and deceleration algorithms can still be implemented on the
virtual major axis without affecting inter-node synchrony, so long as they are
applied uniformly across all of the concerned nodes.

Additionally, the virtual major axis can be used as a common time base for
synchronizing other activities like the pulsing of a laser in coordination with
the motion of a gantry to laser-raster an object.
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Appendix B: An Inertial Comparison of Drive
Mechanisms

Introduction

Drive motors have a limited amount of torque that they can provide. This
output torque is typically inversely proportional to the motor speed, in
accordance to its torque-speed curve. Not exceeding the maximum output
torque is particularly important when using stepper motors: the lack of
feedback in stepper drive systems means that errors due to skipped steps
become cumulative. One of the primary sources of loading that motors
experience is inertial, which they feel when starting or stopping. Thus,
acceleration limiting is often used to permit higher maximum velocities by
gradually easing up to or down from a top speed rather than trying to
accelerate fully over the course of a single step.

.c i ....Z........ZI... .......i....

...... A a ....

Figure 102: H-Bot Mechanism (same as Figure 63)

Understanding the source of the inertial load on the motor is important for

several reasons. The first is that it helps the machine designer decide when

and where it is important to start considering the mass of the stage. It also

plays a role in determining the acceleration values to use in the controller.

Finally, understanding the source of the inertial load becomes important in

systems such as an H-Bot (Figure 102) where the drive system is differential

and thus the inertias of both axes are coupled. In a situation like this,
simplistic acceleration/deceleration algorithms (such as that implemented by
the author in this thesis) must decide whether to limit the acceleration of the

motors or to limit the acceleration of the stage.
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A potentially dominant source of inertia, although easy to overlook, comes
from the motor itself. This appendix compares the inertia of typical stepper
motors used by many hobbyist-grade stages with their effective inertias
reflected through various drive mechanisms. The method, and tabulated
results, are useful for understanding whether motor inertia or stage inertia is
dominant for a variety of common scenarios.

Method

Stepper Motor Mechanism Stage

Inertia J Ratio N Mass M

Figure 103: Energy Flow in a Motion Stage

The goal of this exercise is to compare the inertia of a typical drive motor
with that of the stage that it is driving. This is not completely straightforward
because the motor is spinning and the stage is translating. Therefore we must
convert the inertia of the motor into units of mass, or vice versa. The energy

stored in a linearly translating stage is expressed as mv2 , where m is the
2

mass of the stage and v is the stage's velocity. The energy stored in a spinning

motor is expressed as 1fo2, wherej is the inertia of the motor and o is the

motor's rotational velocity. The stage and the motor are coupled to each
other thru the drive mechanism, as shown in Figure 103. Our approach is to
set the motor in motion, and to determine what mass the stage needs to store
an equivalent amount of kinetic energy to that stored in the motor. Setting

(to 2
both energies equal and solving for m yields m = j v . Both linear and

inertial velocities are parameterized by time, thus the equation reduces to

m = ( where 6 is the angle of rotation of the motor and d is the

distance traveled by the stage. In fact, the ratio 0 Id is the reduction ratio of a
mechanism that converts rotation into translation.

Results

Table 3 below applies the formula m = j to a few popular stepper

motors (LIN Engineering, 2013) and drive mechanisms to determine what
stage mass is needed for the effective inertias of the motor and the stage to be
equal.
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Table 3: Comparison of Mechanism Equivalent Inertias

Mechanism Motor Effective
Specifics Stage Mass
BELT DRIVE NEMA17, 1.34"L. (45oz-in) 0.10 kg

Inertia: 0.18 oz-in2 . 0.22 lbs
18 Tooth MXL
timing belt NEMA17, 1.58"L. (63oz-in) 0.15 kg

pulley. Inertia: 0.28 oz-in 2 . 0.33 lbs

NEMA17, 1.89"L. (83oz-in) 0.20 kg
With a 1.80 Inertia: 0.37 oz-in 2. 0.44 lbs
stepper motor,
the basic linear NEMA23, 2.2"L. (173oz-in) 0.82 kg
step size is Inertia: 1.5 oz-in2. 1.80 lbs
0.007".

/d = 172.6
rad/m

LEADSCREW NEMA17, 1.34"L. (45oz-in) 20.2 kg
Inertia: 0.18 oz-in 2. 44.5 lbs

1OTPI Acme.
NEMA17, 1.58"L. (63oz-in) 31.5 kg

With a 1.80 Inertia: 0.28 oz-in 2. 69.1 lbs

stepper motor, NEMA17, 1.89"L. (83oz-in) 41.5 kg
the basic linear Inertia: 0.37 oz-in 2 - 91.4 lbs
step size is

0.0005". NEMA23, 2.2"L. (173oz-in) 168 kg
Inertia: 1.5 oz-in2- 370 lbs

Old = 2473 radlm _ _ _1

Conclusions

For lightweight stages driven by a belt, such as what is used in the Ultimaker
(Ultimaker, 2013), a popular hobbyist 3D printer, it can be concluded that
the inertia of the motor is roughly equivalent to the that of the stage.
However, for leadscrew-driven desktop-sized CNC machines, the inertia of
the motor far exceeds that of the stage. For example, even a modest stepper
motor such as a mid-length NEMA 17, has an effective mass of around 70
lbs when driving a load thru a 1 OTPI leadscrew. This is roughly what many
desktop-sized milling machines weigh.
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Appendix C: Managed/Gestalt

Introduction

One of the important features of Gestalt is its ability to treat disparate
networked nodes as a cohesive whole. For operations like the coordinated
motion of multiple stepper motors, a means is necessary for synchronizing
the time bases of all involved nodes so that they act in phase with each other.
The method currently employed is what might be called 'soft
synchronization': a setup packet is sent to each node, configuring it with
specific parameters related to its role in the distributed action. Once each
involved node has been prepared, a synchronization packet is sent as
'multicast' to all nodes on the network. Upon receipt, all of the nodes begin
to execute the command for which they were set up. The synchronization
packet is presumably heard by all nodes at the same time, thus causing them
to be in sync with each other. In order to permit buffering (and to enable the
associated throughput benefits), a relaxation is made on the synchronization
process in which configuration and synchronization packets can be sent to
the nodes while they are in the middle of a prior operation. The
configuration packets get buffered, and the synchronization packets
increment a counter that is decremented whenever a new move is pulled from
the buffer and executed. So long as the counter is non-zero, new moves
continue to be pulled from the buffer. This strategy helps to mitigate
communications throughput problems, but synchronization will eventually
be lost as time elapses from when the first synchronization packet was
received, because sync packets that are received while a move is in progress
have no ability to synchronize the nodes - they only serve to give permission
to the nodes to continue pulling from their move buffers. Even with a
buffering strategy, the distributed control case study showed that the soft
synchronization method is inadequate for paths with even moderate speed
and complexity. This appendix presents a hypothetical solution to these
problems.

A Managed Network Approach

The proposed approach involves having a hardware module act as a gateway
that adapts the virtual interface to the physical network. This is shown in
Figure 104 below. Since it is operating at a hardware level, the network
manager is able to communicate latency-free with all of the nodes on the
network. Additionally, the virtual machine is able to talk much faster to the
network manager because the communications link is bi-directional and thus
packets can be streaming to the network manager and it will still be able to

151



indicate to the virtual interface if a transmission error has occurred. Many of
the packets used to control the machines of the case studies only require a
response to guarantee receipt, particularly the packets involved in high-speed
motion.

Network
Manager

Mng./Gestaltf
Virtual Node

Mng./Gestalt
Virtual Node

C

to

0

U)

0

co,

_Gestalt
Physical Node

Gestalt
Physical Node

Mng./Gestalt [J Gestalt
Virtual Node Physical Node

Figure 104: Managed Gestalt (same as Figure 12)

An extended bus interface has been defined (Figure 105), and is in fact

already integrated into the latest version of the FABNET interface and is

built into several Gestalt-compatible hardware nodes.

+24V
GND
RS485-A
RS485-B
SYNC/BUSY
STOP
ERROR

Figure 105: The FABNET Bus

The FABNET bus consists of two power lines, the two differential signaling

lines used by the RS-485 standard, and three open-collector flag lines which

are weakly pulled high by external resistors. The basic idea is as follows: the

virtual nodes stream as many packets as they desire to the network manager,

which queues the packets in a large memory buffer. Concurrently, the
network manager begins loading setup packets into the buffers of the physical

nodes, just as in the soft synchronization method discussed earlier. However,
instead of sending a synchronization packet to trigger simultaneous action,
the network manager pulses the sync line low. Each node then begins its
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move and latches the sync line low until its move is finished. As soon as all
nodes are finished, the sync line returns high, indicating to the network
manager that they are ready for another synchronization pulse. So long as
there are an outstanding number of unexecuted moves in the physical node
buffers, the network manager continues to pulse sync low and then listens for
it to go high before repeating.

This strategy allows a constant stream of packets to be sent to the nodes with
no latency, and with resynchronization after each packet. The 'stop' signal
line is used to indicate that a buffer is full in a physical node and that the
network manager should hold off on sending subsequent packets until the
line is released. The 'error' line indicates a transmission error, which the
network manager would then sort out to determine what went wrong and
how to respond.

It is possible that little modification will be required to the Gestalt framework
to implement this managed network approach, as the current generation of a
sync packet would be replaced with a hardware strobe. However, there is a
question of how virtual nodes, which current require a response to any
request, will elegantly be able to handle both modalities of synchronization.
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