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Abstract

Recent work in human and machine vision has increasingly focused on the problem
of scene recognition. Scene types are largely defined by the actions one might typi-
cally do there: an office is a place someone would typically “work”. I introduce the
SUN Action database (short for “Scene UNderstanding — Action”): the first effort
to collect and analyze free-response data from human subjects about the typical ac-
tions associated with different scene types. Responses were gathered on Mechanical
Turk for twenty images per catgory, each depicting a characteristic view of one of
397 different scene types. The distribution of phrases is shown to be heavy-tailed
and Zipf-like, whereas the distribution of semantic roots is not Zipf-like. Categories
strongly associated with particular tasks or actions are shown to have lower overall
diversity of responses. A hierarchical clustering analysis reveals a heterogeneous clus-
tering structure, with some categories readily grouping together, and other categories
remaining apart even at coarse clustering levels. Finally, two simple classifiers are
introduced for predicting scene types from associated actions: a nearest centroid clas-
sifier, and an empirical maximum likelihood classifier. Both classifiers demonstrate
greater than 50% classification performance in a 397-way classification task.
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Chapter 1

Introduction

Recent work in human and machine vision has increasingly focused on the problem
of scene recognition - that is, answering the question “where are you?” The answer,
of course, is not “in a medium-sized room containing a desk, a chair, some carpet,
and a computer,” but rather, “in an office.” A scene is defined not just by its objects,
materials, and spatial layout. Rather, a scene type is defined by the actions one might
typically do there: an office like the one in Figure 1-1 is more than just a collection
of supplies and furniture — it is a place where one would typically “work”. In order
to take computer vision to the next level, we must move beyond simply identifying
scenes, objects, and materials, and begin endowing computers with an understanding
of how people interact with the world around them — not just what things and places
are, but what they are for.

Recent developments in computer vision have enabled computers to identify scene
types from a variety of visual cues (Lazebnik et al., 2006) (Torralba et al., 2008) and
to use scene context to improve recognition of the objects present and the actions
being performed (Torralba et al., 2003) (Torralba et al., 2006) (Hoiem et al., 2006)
(Oliva & Torralba, 2007) (Marszalek et al., 2009) (Li & Fei-Fei, 2007). However, while
previous work has dealt with correlations between scenes and actions for restricted sets
of scene categories and action types, no work to date has characterized the full space
of actions one might typically do in different places over a broad range of scene types

and actions. To that end, this work presents the SUN Action database (short for
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Figure 1-1: In an office, a person might typically work, type, or answer the phone

“Scene UNderstanding — Action”): the first effort to collect and analyze free-response
data from human subjects about the typical actions associated with different scene
types. We used Mechanical Turk to gather responses for twenty images per catgory,

each depicting a characteristic view of one of 397 different scene types.

1.1 Previous work

This project consists of collecting and analyzing a crowdsourced dataset of typical
actions, based on prototypical images drawn from large set of fine-grained scene cat-
egories. As such, it builds on previous work in a variety of domains across scene
understanding, action recognition, and crowdsourced image annotation. In this sec-

tion I briefly summarize relevant existing work the following areas:

e The general trend in vision research towards studying scene understanding at

a holistic level

e Systems that learn and understand relationships between actions and scene

contexts, which generally operate over small sets of scene types and action
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categories

e The SUN database, a project to identify and catalog a vast breadth of visual

scene types
e The scope and nature of existing datasets of actions

o Ongoing projects which, like this project, aim to annotate images in the SUN

database with additional semantic information.

I then explain the contributions of this work in the context of previous efforts.

1.1.1 Perceiving and understanding visual scenes

Human and machine vision both have a long history of studying object recognition
(Mundy, 2006) (Biederman, 1987), and have shown recent advances in the perception
of materials (Adelson, 2001). Lately, the study of scene perception has been on the
rise (Oliva & Torralba, 2001) (Oliva & Torralba, 2006). In human cognition, scenes
and places are of enormous importance: there are brain areas that show selective
activation for the processing of places (as opposed to objects, faces, and so on)(Epstein
& Kanwisher, 1998), and natural scenes can be recognized and classified extremely
quickly from very brief glances (Fabre-Thorpe et al., 2001). On the machine side,
image features have been identified that contribute to overall scene recognition (Oliva
& Torralba, 2006) (Torralba et al., 2008), and scene context has been shown to
improve object recognition and efficiency of search. (Torralba et al., 2006) (Hoiem
et al., 2006).

As vision research is broadening its focus and becoming increasingly concerned
with the holistic recognition of scenes, and with the role of contextual cues and
dependencies, work on the semantic meaning and associated utility of scenes will be
increasingly important. One especially important property of a scene is the set of

actions that one would typically perform there.
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1.1.2 Associating scenes with actions

Existing projects in computer vision have succeeded at learning and modeling the
associations between actions and scene types, both in still images (Li & Fei-Fei,
2007) (Farhadi et al., 2010) and in videos (Marszalek et al., 2009). These projects
have demonstrated that sensitivity to contextual relations between object labels, scene
labels and segmentation improve the performance of each. However, these projects

differ from this work in two important ways:

1. Existing work operates over highly restricted sets of scene types and actions —
eight to twelve actions, and as few as ten scenes. By contrast, this work aims

to shed light on a much more exhaustive space of scene-action associations.

2. Existing work focuses on recognizing actions that people depicted are currently

doing. By contrast, this work aims to identify typical or possible actions.

Interestingly, research on typical and possible actions is prevalent in object recog-
nition literature, where it is known as the study of “affordance” (Stark et al., 2008)
(Kjellstrm et al., 2011), even though the idea of typical action associations has not

been explored in the realm of visual scene recognition.

1.1.3 Defining fine-grained scene categories

Where prior work has focused on a limited set of scenes, this work aims to explore
the full range of scene types that people might find themselves in. To that end, we
base our work on the Scene UNderstanding Database (“SUN Database”) (Xiao et al.,
2010). The SUN database is a large-scale effort to represent as fully as possible the
set of scene types in human experience (that is, to identify and catalog the set of
general place types that could be used to fill in sentences such as “I am in a place” or
“Let’s go to the place” and to gather images representing these scene types). Where
prior work on scenes (such as (Lazebnik et al., 2006)) had dealt only with limited
sets of categories, the SUN database comprises hundreds of thousands of images of

visual scenes, drawn from an exhaustive set of 899 scene types. A 397-member subset
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of these scene types has been identified as having at least 100 unique photographs in
the database and are designated as the “well-sampled” categories.

Since its creation, the SUN Database has been used by researchers in computer
science to implement systems for tasks such as automatic description generation (Or-
donez et al., 2011), and by cognitive scientists to study cognitive phenomena such as
visual memory (Isola et al., 2011).

As with any category structure, category membership is graded (Tversky & Hemen-
way, 1983) (Rosch & Lloyd, 1978). The images comprising the SUN database vary
in how typical they are of their category: some images are very representative of the
scene type they depict, whereas some images show unusual or anomalous views. The
present work aims to characterize the most typical actions for each category, and so
I focus on gathering data for the most typical images in each category. Typicality

ratings are based on human judgments previously gathered in (Ehinger et al., 2011).

1.1.4 Datasets of actions: people in videos

In addition to exploring a wide range of scenes, this work aims to gather a broad range
of words and phrases people might use to describe typical actions. Although databases
of human actions do exist (Liu et al., 2009) (Marszalek et al., 2009) (Schuldt et al.,
2004) (Blank et al., 2005), they are of an entirely different nature: these datasets are
collections of video data of humans performing a small set of actions against a simple

background, rather than the broad range of responses we are looking for.

1.1.5 Crowdsourcing attribute information for scenes with

Mechanical Turk

The best way to explore the distribution of responses to the question “What might a
person typically do in this place?” is simply to ask many subjects, and the easiest way
to gather a vast number of short responses is by crowdsourcing, using a platform such
as Amazon Mechanical Turk. This work builds on several previous projects which

similarly gather attribute information for scenes in the SUN database by crowdsourc-

19



ing. The most similar crowdsourced attribute-gathering project is the SUN attribute
project(Patterson & Hays, 2012), which sought to label SUN images with dozens of
attributes, including a handful of action-related actions such as “sailing” and “camp-
ing.”
Another crowdsourcing project, which deals with objects rather than actions but
can be considered a kindred spirit to the SUN Action project, is the LabelMe ob-
ject project (Russell et al., 2008). Through the LabelMe project, much of the SUN
Database has been annotated with labeled polygons outlining objects. Just as the La-
belMe project gathers image-object pairings, the SUN Action project gathers image-
action pairings. The contextual cues provided by LabelMe have been used to improve
algorithms that exploit context for object recognition (Choi et al., 2010) (Oliva & Tor-
ralba, 2007); similarly, I hope that the contextual cues derived from the SUN Action
database can be used to improve algorithms that exploit context for action recogni-
tion (such as Marszalek et al. (Marszalek et al., 2009)). Additionally, the descriptive
analyses that have been performed by Greene on the object statistics in the LabelMe
dataset (Greene, 2013) have inspired the descriptive analyses described in this work.
However, unlike LabelMe which gathers polygons, and also unlike the SUN at-
tribute database which gathers attribute labels from a discrete set, the SUN Action
database contains exclusively free-form text. In that respect, this project has per-
haps more in common with the methods of Fei-Fei et al. in gathering free-form text
responses for rapid visual understanding (Fei-Fei et al., 2007), although the responses
in that dataset were scored by independent coders, whereas no such scoring has been

conducted on this data.

1.2 Questions

Once a dataset of human responses about typical actions for visual scenes had been
gathered, there were many questions that I could have chosen to investigate based on

that a dataset. This work focuses on the following questions:

o What is the distribution of responses? When asked to describe the “most

20



typical” actions for a given scene, do people use only a small collection of

phrases, or do they generate a large diversity of responses?

e How do different categories’ response distributions differ? Do some

categories give more sterotyped responses, and others more diverse responses?

e How do scene types cluster by similar actions? Which scene types tend
to cluster together, and which scene types are distinct from others and tend to

remain apart?

e How well can we predict a category label from a list of typical actions?
Which scene types are unambiguously determined by their associated actions,
and which scene types are easily confusable for others? Do simple methods

yield good classification performance?

The data gathered so far was generated in response to typical images in each
category, and therefore lends itself better to between-category comparisons, rather
than comparisons between individual images within categories. However, future work
should investigate how similarities and differences in the underlying images are re-
flected in the properties of their responses. For this purpose, more data may need
to be gathered showing a broader diversity of responses within a category, including

unusual and atypical examples.

1.3 Structure and contributions of this work

In this project I gathered and analyzed information on typical actions for the 397
visual scene types in the SUN database. In contrast with prior approaches to studying
scene-action associations, this work focuses not on visible actions depicted in a scene,
but rather on the set of typical actions for a given place. Furthermore, this data set
is not constrained to a narrow set of scene and action classes, but instead explores
the breadth of unconstrained natural-language responses for a comprehensive set of

scene types.
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In Chapter 2, I explain my methodology for building the SUN Action dataset.
Over 100,000 annotations for 397 visual scene types, gathered using Mechanical Turk,
comprise a dataset of typical actions for scene types.

In Chapter 3, I analyze the distribution and diversity of responses, overall and
by category. I show the distribution of phrases is to be heavy-tailed and Zipf-like,
whereas the distribution of semantic roots is not Zipf-like. I identify and explain
between-category differences in response distribution and diversity.

In Chapter 4, I examine action similarity relationships using hierarchical clus-
tering. Scene types show a heterogeneous pattern of clustering: some scene types
cluster readily together even in fine-grained clusterings, whereas other scene types
resist clustering even at the coarsest level of grouping.

In Chapter 5, I describe two classifiers for predicting scene types from associated
actions: a nearest centroid classifier, and an empirical maximum likelihood classifier.
Both classifiers demonstrate greater than 50% classification performance in a 397-way
classification task.

In Chapter 6, I explain directions for future work, including a potential follow-up
study on the effect of category name on subjects’ responses, and possible next steps

for correlating objects, materials, and spatial properties with typical actions.

22



Chapter 2

Building a Dataset of Typical

Actions for Scene Types

The first step in characterizing human judgments of typical actions is to gather a
dataset of such judgments. Data was gathered using Amazon Mechanical Turk, an on-
line crowdsourcing platform through which “Requesters” can post small tasks (known
as Human Intelligence Tasks, or HITs) for anonymous “Workers” to complete. We
chose to use Mechanical Turk because it provides a simple way to gather data quickly
and conveniently at low cost. The task of labeling images with descriptive words is

familiar to workers and well-suited to the format of multiple small tasks.

Although the use of Mechanical Turk for gathering experimental data has a short
history, Mechanical Turk workers have been shown to produce comparable results to
laboratory subjects on a variety of measures (Paolacci et al., 2010) (Horton et al.,
2011). Many studies similar to this one have used Mechanical Turk with great success
(see (Ordonez et al., 2011), (Isola et al., 2011), (Ehinger et al., 2011), (Farhadi et al.,
2010), and (Choi et al., 2010)). Working with Mechanical Turk has advantages over
working with in-person laboratory subjects, including cost and convenience. For more

information on the use of Mechanical Turk for data collection, see Appendix B.
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2.1 Stimuli: 397 scene types

Data was gathered for all 397 “well-sampled” scene types in the SUN database. The
full list of 397 scene types is enumerated in Appendix A.

In order to gather data most reflective of typical actions for each category, we
chose to use images that were prototypical for their category rather than diverse and
unusual views. For each scene type, we used the twenty (20) “most typical” images in
each category, based on typicality ratings gathered from Mechanical Turk users in a
previous study (Ehinger et al., 2011). In that study, workers had repeatedly selected
three images out of a set of twenty that best or worst illustrated the scene category.
For each image, a typicality score was calculated from the number of times it was
selected as the best exemplar of its category, minus the a fraction of the number of
times it was selected as the worst exemplar, normalized by the total number of times
that image had appeared. We chose the twenty images in each category with the

highest typicality score my this measure.

2.2 Interface: Mechanical Turk

In Experiment 1, users were shown 7 or 8 images per HIT (initial batches accidentally
contained only 7 images per HIT due to a bug), and asked to list one to three (1-3)
words or short phrases describing typical actions or activities a person might do in
that place. An example screenshot of the interface is shown in Figure 2-1.

Subjects were not told the name of the scene type they were looking at, because we
wanted to examine the actions that were associated with the place itself, unaffected
by the language used in the SUN dataset to name its category. However, in future
studies such as those described in Chapter 6, we intend to to investigate the effect of
telling subjects the name of each scene.

In a given batch, each of the 397 x 20 = 7940 images was split up pseudorandomly
into HIT groups of eight images (with four images appearing twice to round out a

full batch of (7940 + 4)/8 = 993 HITs per batch). No two images of the same scene
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Figure 2-1: The user interface as seen by Mechanical Turk workers. Workers saw a
block of instruction text, followed by eight images per page, the majority of which
cannot be seen in this screenshot because they are scrolled off the page.

type appeared in the same HIT. Sixteen (16) batches were run. To minimize showing
a given worker the same image twice, workers were asked not to complete HITs from
multiple batches.

Despite the aforementioned bug that caused 1/8 of the images to be accidentally
excluded from early batches, every image appeared at least 8 times over the course

of the study. The most frequent image appeared 18 times, with images appearing on

average 14.4 times.
The specific instructions shown to workers were as follows:
Describe Actions / Activities for 8 images

For each of the eight following images, please list at least one word or

very short phrase describing a typical action or activity that someone

would usually do if they were at the place shown. We are not looking for
one specific "right” answer; just try your best to list a very typical action
you think a person might do. For example, if the image shows a darkroom,

you might write "expose film” in the box marked (required), and "hang
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film to dry” in one of the boxes marked optional; for a promenade, you
might write "walk”; for the inside of a perfume shop, you might write
"smell perfume” and ”"buy perfume”; and for a sun deck, you might list

"relax”.

Only one response per image is required, but you may provide up to three
responses if you want. There is no bonus for listing more answers - some-
times it can be easier to write two options rather than spending time to
choose which one to write. If only one thing comes to mind you can just

list one thing.

This is Batch 16. You may only work on HITs from one batch number.
If you have done any of our other batches in the past few days, please do
not work on this batch. If you do this batch now, please do not do any of
our other batches in the next few days. Within this batch you may do as

many HITs as you want.

In a single word or a very short phrase: what is a typical action / activity

that people would usually do if they were in the place shown below?

2.3 Participants

Participants were US-based Mechanical Turk workers, with at least 100 HITs ap-
proved and at least 95% HIT acceptance rate. 621 unique workers participated in the

experiment, each completing on average 25.6 HITs per worker (993 HITs per batch

* 16 batches / 621 workers). Workers were paid $0.10 per HIT.

No data was excluded from the final dataset, nor was any data cleaning or spell-

checking performed. Visual inspection suggests that spelling errors were present but

rare, and that virtually all answers provided by workers ere serious attempts to re-

spond to the prompt.

Users were allowed to provide one to three responses per image, and often chose to

provide more than one response, resulting in an average of 17.3 responses per image.
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Table 2.1: A canonical 33-category subset, as described in Section 2.4, for use in later
analyses when viewing data for all 397 categories would be impractical

abbey bathroom forest river
airport_terminal beach garage staircase

alley bedroom greenhouse street
art_studio bowling_alley highway subway_interior
attic casino kitchen waterfall
auditorium stle lake wine_cellar
bakery church living_room

bar corridor mountain_snowy

basement dining_room office

Overall, the study yielded 137,558 responses (words and short phrases describing

actions).

2.4 A 33-category subset is easier to visualize

Visualizing results across 397 individual classes can be difficult; many of the analyses
in the following sections are better viewed for a smaller selection of scene types.
Therefore, a 33-category subset of the data was selected with the goal of capturing a
selection of well-recognized and semantically important categories, using the following
method.

For each of the 397 categories, the number of images with LabelMe annotations
was tabulated. The 80 scene categories with the most annotated images were deter-
mined. Four of the author’s collaborators were each asked to nominate the 20-40 most
important scene types out of these 80. Out of the 80 scene types, 35 of them received
at least two nominations and were slated for inclusion. “Cathedral” was removed for
not being different enough from “church” and “abbey”, and “coast” was removed for

containing only aerial shots, leaving a final slate of 33 image, as listed in Table 2.1.
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Chapter 3

Describing the Distribution of

Responses

The following descriptive statistics attempt to characterize the distribution of sub-
jects’ responses, both global trends and category-to-category variation. These analy-

ses aim to shed light on the following questions:

s What is the distribution of responses? When asked to describe the “most
typical” actions for a given scene, do people use only a small collection of

phrases, or do they generate a large diversity of responses?

e How do different categories’ response distributions differ? Do some

categories give more sterotyped responses, and others more diverse responses?

Visualizing data from several hundred categories can be difficult, so many of the
following analyses are shown not only for the full 397 categories, but also for the
33-category subset described in Section 2.4.

This analysis examines how responses vary between one category and another,
grouping together responses over all subjects and all images within each category.
We did not tell subjects which scene type they were looking at, so by grouping at the
category level, we can investigate the differences that naturally distinguish different

scene types from one another. By showing subjects the most typical images for each
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category, we hoped to elicit these category-level effects as clearly as possible. However,
future work will likely investigate image-by-image differences within this dataset, and
may gather additional data for more diverse and unusual views of the different scene
types to better shed light on image-by-image differences as opposed to category-wide

commonalities.

3.1 Phrase statistics

All told, 137,558 total responses (words and short phrases) were collected. This

number represents 30,056 distinct responses (22% of the total count).

3.1.1 Phrase occurrence distribution is Zipf-like and heavy-

tailed

The first question I sought to answer was what the overall distribution of responses
was: do subjects provide the same answers over and over again? Is there a heavy tail?
Both properties seem to be true. The most frequent responses accounted for a large
proportion of the total responses. Seven responses each accounted for greater than
1% of the total responses: namely, “walk”, “relax”, “work”, “swim”, “eat”, “sleep”,
and “shop” (listed in 3.1). Furthermore, the 350 most common phrases (1.16% of the
total number of distinct phrases) account for 50% of the total responses. At the same
time, the majority of responses were quite rare: among the least frequent responses,
71.0% of the responses occurred only once in the dataset, and 91.60% of the responses
occurred five or fewer times.

The relationship between rank and frequency (that is, how common the most
common words are, and how rare the rarest words are) can be examined by plotting
rank and frequency on a log-log graph. If phrase frequency is inversely proportional
to phrase rank, then the relationship will appear linear on a log-log graph, and phrase
frequency can be said to obey “Zipf’s Law” (Zipf, 1935). Indeed, phrase frequency is
roughly Zipf-like, as shown in Figure 3-1.
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Table 3.1: The seven most common phrases, each of which accounts for more than
1% of the total phrases collected.

Seven most common phrases overall
Common phrase | Percent of all phrases
walk 1.86%
relax 1.74%
work 1.44%
swim 1.32%
eat 1.25%
sleep 1.23%
shop 1.08%

One corrollary of phrase frequency having a Zipf-like distribution is that it is more
heavy-tailed than one might expect. That is to say, even though we asked subjects to
provide the most common/typical actions, many of the responses subjects provided
are rare. For example, consider the response distribution shown in Figure 3-2, in
which the “beach” category has been selected as a representative example of the
overall diversity. The responses include very common responses lie “swim”, “walk”,
and “tan”, but also a long tail of very uncommon responses like “paddle outrigger
canoe” and ‘ride boogie board.” The long tail of this distribution implies that the
space of typical actions for a scene cannot be adequately characterized by a small
collection of phrases — the full distribution will only be accurately reflected if a large

number of responses is gathered.

3.1.2 Response diversity varies by category

The distribution of responses varies greatly by category. In terms of response diversity,
some categories yield the same responses over and over again, while some categories
yield a vast diversity of responses. To visualize this discrepancy in response diversity,
the ratio of distinct responses to total responses is plotted for each category. A ratio is
plotted, rather than a total number, to minimize any effect of respondents choosing to
provide more total phrases for some categories, since respondents were free to provide
up to three phrases per image. The phrase diversity ratio described here is also easier

to compare with the stem diversity ratio described in Section 4.1.
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Figure 3-3a plots the phrase diversity ratio over all 397 categories, with only a
subset of the category labels shown. Figure 3-4 illustrates the phrase diversity ratio
for the 33-category subset described in Section 2.4 to illustrate how a few well-known

categories behave.

Response diversity varies greatly from category to category. The least diverse
category in the entire dataset is shower, with 51 distinct phrases out of 337 total
phrases (15%). The most diverse category is veterinarian’s office, with 253 distinct
phrases out of 335 total phrases (76%). The full set of phrases for shower and
veterinarian’s office is listed in Appendix A. The phrases for shower traverse only
a limited set of concepts around cleaning onesself (with a few additions like singing,
cleaning the shower, and so on), whereas the phrases for “veterinarian’s office” explore
a vast array of different pet-related and medical procedures, including actions a pet

owner could do as well as actions a vet could do.

What drives the differences in diversity between categories? Among the categories
with lowest diversity, one key factor seems to be that they generally have just one
main associated action — bedrooms are for sleeping, bowling alleys are for bowling,
and so on. Indeed, for many of the least diverse scenes (bedroom, bowling alley,
casino, and art studio), over 45% of the total responses are dominated by the single
most common response (“sleep”, “bowl”, “gamble”, and “paint”). And for three of
the most diverse scenes (attic, corridor, and wine cellar), less than 10% of the total
responses are made up of the most common response. However, dominance of the
primary response is not the only driving factor in the overall diversity: scenes like
bathroom have a very small diversity of responses despite not having one dominant
response, and scenes like alley have a large overall diversity of responses despite being
dominated by the primary response “walk”. Table 3.6 shows the single most common
phrase for each of the five least phrase-diverse categories, and Table 3.7 shows the

most common phrase for the five most phrase-diverse categories.

One property which seems to covary with response diversity is familiarity. In
general, low-diversity categories tend to be places that people are familiar with and

have a lot of experience with, such as a shower or a bedroom, and high-diversity
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categories tend to be places that most people would be unfamiliar with, like a server
room or mansion. However, this pattern does not hold in every case: some low-
diversity categories are places that people might not usually find themselves in, such as
a wave, that nonetheless have specific strongly-associated actions (such as “surfing”);
and some high-diversity categories are places that people would often go to but do
not have a single strongly-associated action, such as a basement which is defined by

its location rather than its intended purpose.

Table 3.2: For the five least phrase-diverse categories, the most common associated
phrase is shown. Categories with low phrase diversity tend to have a single highly-
associated action word. While low phrase-diversity categories do tend to include
categories that people probably have a lot of experience with, such as a shower, they
also include categories that have a specific known purpose but that people might not
usually find themselves in, such as a wave.

Least diverse categories: phrases
Category Most common phrase
shower “shower”
wave “surf”
swimming_pool/indoor | “swim”
gymnasium/indoor “exercise”
parking_garage/indoor | “park”

Table 3.3: For the five most phrase-diverse categories, the most common associated
phrase is shown. Categories with high phrase diversity tend not to have any one
strongly-associated action phrase. High phrase-diversity categories also tend to be
places that most people would be unfamiliar with.

Most diverse categories: phrases
Category Most common phrase
veterinarians_office | “examine”
booth/indoor “get information”
lock_chamber “work”
server_-room “work”
ice_shelf “take pictures”

3.2 Morphological stem statistics

Although the distribution of phrases is Zipf-like, the question remains whether the

inverse relationship between rank and frequency also holds true of the semantic prop-
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Figure 3-1: Phrase frequency is roughly inversely proportional to phrase rank, follow-
ing a Zipf-like distribution.

erties of subjects’ responses. A Zipf-like distribution of phrases is theoretically com-
patible with a set of responses that actually refer to only a small set of conceptual
actions, but which use a vast spread of phrase structures to describe them.

A cursory glance at the data reveals that responses are in fact somewhat se-
mantically redundant. Even ignoring synonym relationships, the same phrases are
expressed in multiple grammatical configurations, and the same words appear in mul-
tiple phrases. Consider the class greenhouse for an illustration of these phenomena.
Table 3.4 shows the top ten responses for greenhouse, which use the same root words
(such as “garden”, “plant”, and “grow”) over and over again in different configura-
tions and grammatical forms. The following sections explain the use of “stemming”
to reduce words to their grammatical roots, as a way to reduce surface variation and

better elucidate the underlying concepts in users’ responses.

3.2.1 Semantic content can be extracted by reducing con-

stituent words to morphological stems

One approach for unifying information across phrases that differ in structure but not

in semantic content is to break each phrase down into tokens (e.g. words), and strip
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Table 3.4: The ten most common phrases for 'greenhouse indoor’. The phrases are
highly redundant, with the same words appearing in different grammatical construc-
tions (e.g. “garden” and “gardening”), and the same concepts being expressed in
multiple different actions (e.g. “plants” in “water plants”, “grow plants”, and “buy
plants”.)

Ten most common phrases for ’greenhouse indoor’
Phrase Occurrence (out of 356) | Percent of phrases
'water plants’ 40 11.2%
'grow plants’ 20 5.6%
’smell flowers’ 14 3.9%
‘grow’ 12 3.4%
‘gardening’ 12 3.4%
buy plants’ 12 3.4%
‘plant’ 11 3.1%
'water the plants’ | 10 2.8%
‘garden’ 10 2.8%
'smell the flowers’ | 9 2.5%

any grammatical affixes away from each token to bring it down into its morphological
stem (e.g. root). These processes, known as “tokenizing” and “stemming”, can be
performed using standard natural language processing tools. I used the tokenization
functionality in the python module nltk.word_tokenize, and the Porter Stemmer
(Porter, 1980) as implemented in nltk.stem.porter (Loper & Bird, 2002). It is
worth noting that the stem of a word represents its grammatical base form, stripped
of all tense, inflections, and derivational morphology, and is not necessarily a valid
English word - for example, the shared stem of “gamble”, “gambling”, and “gambler”
is the non-word “gambl”. It is also worth noting that by tokenizing and stemming the
entirety of each response (such as “grow plants”), more semantic content is preserved
and captured than if we were to stem only the initial verb (“grow”). Additional con-
text is carried in the direct and indirect objects, adjectives, adverbs, and prepositions,
that make up action phrases alongside the primary verbs.

As a result of the transformation to stems, responses in each category are con-
densed down to a bag-of-words representation — or more accurately, a bag-of-stems
representation. In this representation, the information about the order and co-
occurrence of stems within phrases is discarded. Nonetheless, bag-of-words models

have proven useful in domains ranging from natural language processing (Blei et al.,
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2003) to computer vision (Lazebnik et al., 2006).

3.2.2 Responses were short

The first thing we can verify from the tokenized responses is that subjects followed
directions. Specifically, we asked subjects for single words or short phrases, not long
responses. Subjects did in fact follow directions: the average response length was 1.98

tokens per response, indicating that participants generally provided short answers.

3.2.3 Morphological stem distribution is not Zipf-like

Returning to the original question about response distribution, we can now investigate
whether the inverse rank-frequency relationship still holds after the transformation to
stems. In this space, we are getting closer to examining the distribution of what people
talk about, not just how they say it. However, in order to examine the underlying
semantic meaning further than the stem level, one would need to examine synonym
and relatedness relationships, which is beyond the scope of this work.

Responses were tokenized, uninformative words were removed (“stop words”, see
Appendix A for a list), and the resulting tokens were reduced to their morphological
stems. As a result of this process, a total of 223,062 total stems were extracted. This
total is composed of only 5,547 distinct stems (2% of the total count). Among the
most frequent responses, fifteen responses each accounted for greater than 1% of the
total responses: namely, “play”, “walk”, “take”, “go”, “watch”, “ride”, “buy”, “eat”,
“work”, “relax”, “shop”, “swim”, “pictur”, and “look” (as listed in 3.5). Among the
least frequent stems, 40.80% of the stems occurred only once in the dataset, a much
smaller percentage than the percent of phrases that occurred only once. Additionally,
67.44% of the responses occurred five or fewer times, which is also much smaller than
the corresponding percent of phrases. That said, the 67 most common stems (1.21%
of all distinct stems) account for 50% of the responses, which is a similar percentage

to the observed proportion of phrases accounting for 50% of occurrences.

As with phrases, the relationship between stem rank and frequency can be visual-
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Table 3.5: The fifteen most common stems, each of which accounts for more than 1%
of the total stems collected.

Fifteen most common stems overall
Common stem | Percent of all stems
play 2.84%
walk 2.56%
take 2.50%
go 1.85%
watch 1.77%
ride 1.61%
buy 1.60%
eat 1.59 %
work 1.52%
relax 1.42%
shop 1.13%
swim 1.09%
sit 1.09%
pictur 1.08 %
look 1.02 %

ized by plotting it on a log-log graph. Unlike phrases, stem frequency is not inversely
proportional to stem rank - that is to say, the distribution of stems does not follow
Zipf’s law. On the contrary, there are many more “mid-frequency” stems than such
a law would predict, as demonstrated here by the fact that the graph in Figure 3-5 is
distorted upwards from a straight line. This distortion indicates that the frequency

of later-rank stems is elevated, as compared to a Zipf-like distribution.

Although the distribution of morphological stem frequencies is not Zipf-like, the
distribution is nonetheless somewhat heavy-tailed, containing a substantial number
of rare or unique stems. The response distribution for beach is shown in Figure 3-6.
The responses which had been very common in the phrase chart (such as “swim” and
“relax”) are still at the top of the order; words such as “walk” have increased strongly
in frequency compared to their position in the phrase chart due to the contribution of
forms such as “walk along the shore”; and there are many more mid-frequency stems,
including nouns such as “beach” and “sun”. That said, the heavy tail remains, with

stems like “barbequ” and “explor” remaining relatively rare.
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3.2.4 Morphological diversity varies by category

The distribution of stems varies by category, although the variation is not as dramatic
as the variation in phrases. Some categories contain references to only a small set
of root concepts, whereas other categories’ responses draw on a variety of different
semantic roots. The category-to-category variation in stem frequency can be seen in
Figure A-1 in the Appendix, which shows a histogram of the top 10 stems for every
category in the 33-category subset.

As in Section 3.1, the ratio of distinct stems to total stems is plotted for each
category. Figure 3-7a plots the stem diversity ratio over all 397 categories, with only
a subset of the category labels shown, and Figure 3-8 illustrates the stem diversity
ratio for the 33-category subset described in 2.4.

The least diverse category in the entire dataset is shoe shop, with 41 distinct
phrases out of 658 total stems (6.3%). The most diverse category is slum, with 181
distinct stems out of 524 total stems (34.5%). The full set of stems for shoe shop and
slum is listed in Appendix A.

The distribution of stems for shoe shop is dominated almost exclusively by “shoe”
and “buy,” along with a few synonyms for each (like “loafer” and “purchas”). Ad-
ditional stems refer to other things the customer might do as part of the purchasing
process, like browsing and selecting; as well as actions the staff could do, like selling,
measuring, and organizing. By contrast, the stems for “slum” traverse a vast array
of concepts. The most common stem is “live”, and some of the other stems describe
dwellings, but most of the further words describe poverty, filth, disease, and sub-
sistence, along with more positive concepts like helping, fixing, and cleaning. Some
of the rarer concepts describe streets and roads, villages and neighborhoods, and
children and games.

In general, the least stem-diverse categories are those which are designated for a
specific purpose (such as a greenhouse for growing plants or an auditorium for hearing
talks and lectures) whereas the most stem-diverse categories are those which have no

designated purpose (such as a castle or an alley).
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Table 3.6: For the five least stem-diverse categories, the most common associated stem
is shown. Categories with low diversity tend to be highly associated with particular
actions or particular object types.

Least diverse categories: stems

Category Most common stem
shoe_shop “shoe”
parking_garage/indoor “park”

shower “shower”
laundromat “cloth”
baggage_claim “luggage”

Table 3.7: For the five most stem-diverse categories, the most common associated
stem is shown. Categories with high stem diversity tend not to have any one clear
purpose, or associated action or object.

Most diverse categories: stems

oil refinery /outdoor

Category Most common stem
slum “live”

control_room “work”

power_plant foutdoor “work”
anechoic_chamber “record”

“take pictures”
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Phrase distribution for "beach”
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Figure 3-2: The distribution of responses is heavy-tailed, with many of the responses
occurring very infrequently. For example, the responses to the beach category include
very common responses lie “swim”, “walk”, and “tan”, but also very uncommon
responses like “paddle outrigger canoe” and “ride boogie board.”
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Figure 3-3: Ratio of number of distinct responses to number of total responses, for all
397 categories. The same information is presented in two different formats: the top
plot shows a line plot of phrase diversity ratio for all 397 categories, with a subset of
category labels is shown, while the bottom plot presents the same information in a
histogram format to better illustrate the distribution in a more familiar “bell-curve”
format. Response diversity varies greatly, from the least diverse (shower) with the
number of distinct responses amounting to only 15% of the total responses, to the
most diverse (veterinarian’s office) with the number of distinct responses amounting
to fully 76% of the total responses.
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Figure 3-4: Ratio of number of distinct responses to number of total responses, for
a well-known subset of categories. In general, categories that are evocative of one
specific associated action word (such as “sleep” in a bedroom and “pray” in a church)
produce low response diversity, whereas categories that have no single most-associated
word (such has attic and basement) produce high response diversity.
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Figure 3-5: Stem frequency is not inversely proportional to stem rank. On the con-
trary, there are many more “mid-frequency” stems than such a law would predict, as

demonstrated here by the fact that this graph is distorted upwards from a straight
line.
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Stem distribution for "beach”
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Figure 3-6: Unlike the distribution of phrases, the distribution of stems generally
contains more mid-frequency items - that is to say, the drop-off is not sharp enough
for the distribution to be properly Zipf-like. The responses that were most common
in the phrase plot (such as “swim” and “relax”) remain common; some verbs, such
as “walk”, have increased in frequency because phrases like “walk along the shore”
have been incorporated; and words such as “beach” and “sun” appear among the
mid-frequency stems.
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Figure 3-7: Ratio of number of distinct stems to number of total stems, for all 397
categories. The top plot shows a line plot of phrase diversity ratio for all 397 cate-
gories, with a subset of category labels is shown, while the bottom plot presents the
same information in a histogram format. Response diversity varies moderately, from
the least diverse (“shoe shop”) with the number of distinct stems amounting to 7% of
the total number of stems, to the most diverse (“slum”) with the number of distinct
responses amounting to 35% of the total responses.
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Figure 3-8: Ratio of number of distinct responses to number of total responses, for
a well-known subset of categories. In general, categories that are designated for a
specific purpose (such as a greenhouse for growing plants, an auditorium for hearing
talks and lectures, etc.) produce low morphological diversity, whereas categories that
have no specific purpose (such as a “castle” or “alley”) produce high morphological
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Chapter 4

Visualizing the Action-Similarity

Space of Scenes

One goal of this work is to understand the similarity relationships between different
scene types according to their associated actions: How do scene types cluster by
similar actions? Which scene types tend to cluster together, and which

scene types are distinct from others and tend to remain apart?

In order to understand similarity relationships, a similarity measure must be cho-
sen. I use normalized histogram similarity, as explained in Section 4.1. This similarity
measure defines a similarity space over scene types, which in future work could be
compared to similarity spaces defined by other measures. This similarity space is pre-
sented in two views: as heatmaps (Figure 4.2), and as a hierarchical clustering tree
(Figure 4-2). The heatmap enables visual detection of bright spots corresponding to
pairs of scene types of strong similarity, and dark lines corresponding to scene types
which are especially distant from other scene types. Hierarchical clustering reveals a
heterogeneous clustering structure, with some scene types clustering together read-
ily into large groups even at fine levels of clustering, and other scene types resisting

clustering even at the coarsest scale.
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4.1 Normalized histogram similarity is a symmet-

ric distance measure for frequency counts

Having transformed the responses per category into a bag-of-stems representation as
described in Section , we now need a distance measure that operates on stem frequency
counts. One standard distance measure for comparing probability distributions is

Kullback-Liebler divergence, also known as relative entropy (Cover & Thomas, 1991):

KL(p|lq) —zz:p( )1 8 @)

Note that frequency-count histograms can be transformed into empirical proba-

bility distributions simply by dividing each entry by the total number of elements:

alkey|

sum(a.values()) = Pr(key|a)

However, K-L divergence is not symmetric, and we need a symmetric similarity
measure to derive a single similarity value between any two categories. Therefore, we
chose the following simple histogram similarity measure, which sums the overlap of

the two distributions at each point.

. o . ali] b[¢]
histogramSimilarity(a,b) = E min( -, -
i=1...keys Zj=1-..keys ab] Zj:l...keys b[?]

= Z min(Pr(key|a), Pr(key|b))

keys

)

This normalized histogram similarity measure is 0 when the two frequency counts

are completely disjoint, and 1 when they are perfectly identical.
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4.2 Similarity heatmaps

A simple way to visualize similarity is as a heatmap: class labels go along the z— and
y— axes, and each (z, y) pixel shows the similarity between category z and category v,
with bright pixels indicating more similarity, and dark pixels indicating less similarity.
Figure 4-1 shows similarity heatmaps, alphabetical by scene type.

A few bright spots are visible, indicating similar pairs, such as attic and basement;
highway and street; and the trio lake, river, and waterfall. Dark lines can also be seen,
indicating scene types that are not similar to any other scene types, such as casino
and kitchen. However, because the z— and y— axes of these plots are organized alpha-
betically rather than by any particular logical grouping, it is difficult to see any more
sophisticated structure in the data. Section 4-2 will describe a clustering method; as
a preview, the heatmaps when grouped according to that clustering scheme show a

more visible block structure with a wide variety block sizes, as shown in 4-2.

4.3 Hierarchical clustering shows heterogeneous group-

ing structure

One transformation that can be performed on a similarity space to better understand
its structure is hterarchical clustering. Hierarchical clustering groups data at multiple
scales, so that the absolute most similar scene types cluster together at the finest
scales, with more distantly-related scene types clustering together at broader scales
of clustering. The results of clustering can be viewed as a dendrogram in which
branchings closer to the leaves of the tree represent fine-grained clusterings, and
branchings closer to the trunk of the tree encompass broader clusterings. The height
of each linkage in the dendrogram indicates the distance between the subclusters it
connects. To compute hierarchical clusters and dendrograms in the following analyses,
I used the linkage, dendrogram, and cluster functions available in the MATLAB
Statistics Toolbox (The MathWorks, Inc, 2013).

The aim of this hierarchical clustering analysis is to understand the grouping
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structure of the similarity space of actions. Do some scene types group with others

more readily, and with which others? Do other scene types remain apart and distinct?

Figure 4-3 shows a dendrogram representation of the hierarchical clustering for the
33-category subset. Overall, this clustering structure is highly heterogeneous, with
some scene types (generally shown at the bottom of the chart) clustering together
readily into large agglomerations, and some scene types (generally at the top of the

chart) being truly distinct from others and resisting clustering.

Starting from the bottom of Figure 4-3, the large cluster at the bottom combines
two subclusters: outdoor scenes and scenes specifically for movement and travel
The fact that all the outdoor scenes group together before the indoor scenes begin
to converge indicates that outdoor scenes are generally more similar to one another
than indoor scenes are to one another. Within the outdoor scenes, The two most
action-similar scene types — river and lake/natural — cluster together most readily.
The historical attractions — castle and abbey — group together next. The group
that unifies street and highway, along with staircase, corridor, and alley, seems to
encapsulate places designed for walking, driving, or other forms of locomotion. Among
the indoor scenes, more sedentary locations cluster together, where one might sit
and wait or do something quietly: aeuditorium, subway_interior, living_room, and
airport.terminal.

Finally, many of the scenes have very distinct action profiles from other scene
types, and resist clustering together at all. Moderately clustering-resistent scene
types, like bedroom, office, and church/indoor, are strongly associated with actions
that are typically done in a specific place but may occasionally be done elsewhere
(“sleep”, “work”, or “pray”), and are places where one might occasionally do some-
thing else. The most highly clustering-resistant scene types are strongly associated
with actions that are never done in other places, and may in fact be literally inap-
propriate to do elsewhere: it is not generally permitted to gamble outside a casino,

or to use the toilet outside a bathroom.

Visualizing the hierarchical clustering representation for all 397 scene types is

extremely difficult. Category labels would be illegible at this scale, so Figure 4-4
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shows an unlabeled dendrogram of the full dataset. A list of category labels arranged
in clusters at an intermediate level of the hierarchy shown is listed in Table A.1l.
Overall, the pattern of grouping is similar to what was seen in the small dataset.
Namely, the some scene types are very resistant to clustering (generally shown as
uncolored black lines in the top third of the diagram), while other scene types group
readily into large clusters (genreally shown as colored groupings in the bottom two-

thirds of the diagram).
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Figure 4-1: Similarity heatmaps, for the 33-category subset and the full 397-category
set
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Figure 4-3: Dendrogram showing hierarchical clustering of the 33-category subset.
Clusters separated by links of inconsistency coefficent greater than 1.2 are shown in
color.
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Figure 4-4: Dendrogram showing hierarchical clustering of the 397 categories. A set
of subclusters at an intermediate level of clustering (cutoff = 1.2) are shown in color.
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Chapter 5

Predicting Scene Type

One possible use of scene-action data is to predict what scene is being described from
a set of typical actions. This is a classification problem: given data drawn from a
particular category, infer the category label for that data.

Classifying scenes from their associated actions has two purposes. The first pur-
pose is to learn more about the data itself: specifically, Which scene types are
unambiguously determined by their associated actions, and which scene
types are easily confusable for others?. One might expect that some scene
types would be readily distinguished from others by a distinctive profile typical ac-
tions, whereas other scene types may not show a distinctive pattern of responses, or
may be easily confused for other scene types with very similar action profiles.

The second purpose is to establish a baseline for future practical applications.
How well, in general, can we predict a category label from a list of typical
actions? Is the classification problem easy or hard? Possible future applications of
predicting a scene type from a set of typical actions might include inferring location
context from written material describing actions, such as instruction manuals or movie
scripts; or using actions automatically tagged by action recognition on still images or
movies to inform guesses of scene context in those images and movies.

In the field of machine learning, there are a variety of approaches to classifica-
tion. Statistical approaches model the process that generated the data, and perform

inference on that model. Other approaches do not perform statistical inference on a
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model, but arrive at a predicted label through other algorithms. When the structure
of the generative process can be inferred accurately, and its parameters estimated,
statistical models can have more predictive power than non-statistical algorithms;
the estimated parameters can also provide further insight into the structure of the
generating process.

The goal of this work is to establish a baseline for classification accuracy, and
to determine which categories are generally more confusable, not to richly model the
joint distribution between scene type labels and participants’ responses. Many hidden
factors are likely to govern the process by which people infer the actions one might do
in a location and select words to describe that action space. Furthermore, modeling
the distribution of responses is made more difficult by the fact that words are discrete,
non-numerical datapoints. Chapter 6 outlines some of the possible hidden factors,
and presents ideas of directions for future work. Rather than elaborately modeling
this possible underlying structure, instead we present two simple, non-parametric
prediction algorithms.

The classification problem we tackle in this section is the following: Given n
responses each provided as a typical action for a certain category (such as “swim”,
“relax”, “snorkel”, “walk on the beach”, and “sit”, five responses provided about the
category “beach”), guess the associated category. We present two non-parametric
algorithms to this problem: a nearest centroid classifier which is inspired by text
classification approaches, and a simple empirical mazimum likelihood classifier which
performs statistical inference on a highly simplified distributional model based on the

observed distribution of the data.

5.1 Nearest-centroid classification

This section explains the nearest centroid, the first classification algorithm I employ.
The use of nearest centroid is inspird by text classification approaches. I first explain
why text classification as a general class of approaches is relevant to the task of

classifying scenes, and then explain why nearest centroid is particularly well-suited

a8



to the task constraints.

5.1.1 Text classification strategies can inform scene-action

classification

One domain in which classification strategies have been explored extensively is that
of text categorization, in which a document (such as a website or other collection of
natural-language text) must be categorized, often as relevant or irrelevant, for the
purposes of retrieving documents based on a search query. In the text categorization
literature, it is common to transform each document into a vector of word occurrences,
where each vector element a; indicates the weight of word 4 in the document (Salton
et al., 1975). The weight might be a binary variable indicating presence or absence
of the word; a frequency count; a term-frequency/inverse-document-frequency (tf-
idf) measure to capture the importance of each word to a given document (Manning
et al., 2008); or a more complicated weighting (Salton & Buckley, 1988). Additional
transformations on this space might be performed, such as dimensionality reduction
or feature selection (Aas & Eikvil, 1999). Document vectors are then compared in
this high-dimensional space using a distance measure, such as Euclidean distance or
cosine distance.

The scene-action classification problem bears a strong similarity to text classifi-
cation, in that the task is to categorize a collection of natural language text using a
corpus of training text. However, there are several subtleties that must be addressed
in applying text-classification strategies to scene-action classification, each of which

imposes its own constraints.

1. Queries will be small - just a handful of words or phrases - not entire “document-

sized” collections of words.
2. It is not clear how to group participants’ responses into “documents.”

3. Our classifier must choose between 397 options - much more than a simple

binary decision.
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Queries are small

The queries we would like to classify will be short lists of actions, such as (“swim”, “re-
lax”, “snorkel”, “walk on the beach”, “sit”). When represented in a term-frequency
(or stem-frequency) vector space, small queries are represented as extremely sparse
vectors, because most terms will have zero frequency. Distance measures such as
Euclidean distance or cosine distance applied in this space may be problematic, be-
cause each “zero” entry will contribute to the similarity. This problem is additionally
troublesome given that the total number of dimensions - that is, the number of words
or stems in the lexicon - could be very large. Possible solutions include transforming
to a new (perhaps lower-dimensional) vector space, or selecting a distance measure

which treats the presence of terms as informative but ignores the absence of terms.

Document groupings are unclear

Responses were generated by subjects in groups of 1-3, not in coherent documents.
One possible approach might be to treat each image as a single document even though
it was “authored” by many participants. Another approach might be to select a
classification mechanism which does not rely on individual-document distinctions,

but instead measures query similarity to an entire class.

Classification decision is 397-way

Many classification algorithms work best for binary decisions. For example, some
algorithms work by tabulating votes for each category label and selecting the label
with the most votes. However, if each vote is for one out of 397 classes, it may take

a large number of votes for any one class to emerge as the plurality winner.

5.1.2 Nearest-centroid classification is a simple approach that

fulfills our constraints

One simple approach that addresses the subtleties described in the previous section

is nearest centroid classification. In nearest centroid classification, a test datapoint is
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classified by comparing to the centroid of each category in turn (that is, the average
of all datapoints in each category) and selecting the nearest category centroid. When
applied to text classification with an importance-weighting on words, this approach
is known as Rocchio’s algorithm (Aas & Eikvil, 1999). Our nearest-centroid classifier

works as follows:

Data representation

Phrases are tokenized, stopwords are removed, and tokens are stemmed, as de-
scribed in Section 4.1. A collection of phrases is transformed to a dictionary of
stems and associated frequency counts. The frequency counts are then normalized.
For example, the collection (“water plants”, “buy plants”, “garden”) would first
become {‘‘water’’: 1, ‘‘buy’’: 1, ‘‘garden’’: 1, ‘‘plant’’: 2}, and
would then be normalized to {‘‘water’’: 0.2, ‘‘buy’’: 0.2, ‘‘garden’’:

0.2, “‘plant’’: 0.4}

Training

During training, the stem frequency count for each category is tabulated based on
all the training data for that category, and is then normalized. This is equivalent to

calculating the average over equal-sized collections of stems for each category.

Distance measure

During testing, the query is compared with each category centroid in turn using the

following similarity measure (unnormalized histogram distance):

ZZIceys min(a[key]a b[key])

The category with the greatest similarity according to this measure is selected as the

predicted category label.
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Cross-validation

To estimate the classification accuracy over a dataset of phrases, the phrases are first
grouped into queries of n responses (for values of n between 2 and 7). For example,
(“water plants”, “buy plants”, “garden”) is a 3-response query. These m-response

queries are then split into k& equal-sized subsamples for k-fold cross-validation.

Stems for "beach”
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Figure 5-1: Illustration of the nearest centroid algorithm for an example five-response
query: “swim”, “relax”, “snorkel”, “walk on the beach”, and “sit”. The query is re-
duced to stems, and the normalized histogram of stems is compared to the normalized
category histograms for each of the 397 categories (partial histograms for 3 categories
shown here) using unnormalized histogram similarity. The category of greatest simi-
larity (here beach) is selected as the predicted label.

Suitability for our task

Nearest-centroid is a very simple algorithm which is well-suited to the application of

classifying scenes by their typical actions:

1. Histogram similarity does not incorporate stems with zero frequency, so the
sparseness of queries does not cause any problems, nor is there any need to

know the “true” dimension of the space of all stems.

2. Responses do not need to be grouped into documents - a class-wide average is
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sufficient. Comparing to 397 class averages is more efficient than comparing to

potentially thousands of individual documents.

3. A single nearest class is chosen, which is appropriate to a 397-way decision - no

voting takes place.

4. This method has a direct parallel in the prototype model of categorization
in cognitive science: that is, the idea that an item’s category membership is
determined by calculating its similarity to a prototype (Gardenfors & Williams,
2001).

Finally, it is worth noting that the method described here of normalizing fre-
quency histograms and then performing an unnormalized similarity comparison is
completely equivalent to performing a normalized similarity comparison (as described
in Equation ??) on un-normalized frequency histograms. That is to say: when using
normalized histogram similarity, comparing against the average of each category is

equivalent to comparing against each category’s sum.

5.1.3 Results: Nearest centroid shows 51% classification ac-

curacy over 397 classes

Nearest-centroid classification was tested on both the 33-category subset and the full
397-category dataset, with 10-fold cross-validation, with test queries composed of n
responses each for values of n between 2 and 7 (for example, (“swim”, “relax”) is a
2-response query, and (“swim”, “relax”, “snorkel”, “walk on the beach”, “sit”, “lay
in sand”, “sunbathe”) is a 7-response query). Most of the following plots show results
from n = 5. At n = 5, classification accuracy over the 33-category subset was 87%,
compared to a chance level of 3%; accuracy over all 397 categories was similarly high,
at 50.75% compared to a chance level of 0.25%.

Figure 5-2 depicts heatmaps of the classification accuracy by class, for both the
33-category subset and all 397 categories. The 33-category dataset shows much better

performance because most of the classes selected for inclusion in the subset are quite

63



distinct from one another in terms of actions that can be done there; Figure 5-3
illustrates that all but three classes in the 33-category subset achieve greater than
70% classification accuracy, whereas accuracies in the 397-category set are evenly
distributed around the average, with 48% of the categories falling below the mean
and 52% above.

In the 397-category set, ten (10) categories were always classified correctly, and
five (5) categories were never classified correctly, over ten folds of cross-validation,
as shown in 5.1. The classes that achieved perfect classification accuracy are those
that have very strongly-associated actions (like bowling in a bowling alley) or objects
that are acted upon (like shoes in a shoe shop). The classes that achieved minimum
classification accuracy afford very little affordance: places one might visit to look at
(like a monastery outdoor) or would hope to never visit at all (like a burial chamber).

For example, aqueduct was one of the frequently confused classes. The most com-
mon stems for aqueduct are “take”, “pictur”, “walk”, “drive”, “bridge”, “sightse”,
“explor”, “visit”, “tour”, and “cross”. The most easily confused categories for aque-
duct are “ruin”, “viaduct”, “rope bridge”, “rock arch”, and “covered bridge exterior”.
This confusion set makes sense, as aqueducts appear bridge-like or arch-like, and do
not afford particularly different actions from other attractions which are primarily of
interest as historical or architectural artifacts to be viewed and photographed.

As shown in Figure 5-4, classification accuracy for the 33-category subset ranged
from 77.16% with 2 responses per query, to 94.27% with 7 responses per query. Clas-
sification accuracy for the full 397-category set ranged from 38.07% with 2 responses
per query, to 62.77% with 7 responses per query. This increasing pattern of accuracy
is exactly what would be expected: The more responses are included in each query,

the more information is available to the classifier for predicting that query’s category.
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Figure 5-2: Heatmaps of classification accuracy by class for nearest centroid classi-
fication, over a 33-category subset and over the full 397-category set, using nearest-
centroid with 5 responses per query. Although individual category labels are not
shown for the full set, the overall color gives a sense of the pattern of classification.

Table 5.1: Out of the 397 categories, over ten folds of cross-validation, ten (10)
categories were always classified correctly by nearest-centroid classification, and five
(5) categories were never classified correctly.

Nearest centroid classification
Always correct: Never correct:
waiting room monastery outdoor
shoe shop inn outdoor
track outdoor courtyard
phone booth burial chamber
gas station aqueduct
firing range indoor
discotheque
bowling alley
baggage claim
amusement arcade
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centroid classification, over
using 5 responses per query. A

subset of category labels is shown for the 397-category plot. Classification accuracy

Figure 5-3: Classification accuracy by class for nearest-
varied widely over categories.

the 33-category subset and for all 397 categories
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Figure 5-4: Overall classification accuracy using nearest-centroid classification, as a
function the number of responses per query. Each query, comprised of between 2
and 7 responses, was tested against the average query of each category. The more
responses are included in each query, the more information is available to the classifier
for predicting that query’s category, and so the classifier performs better.

67



5.2 Empirical maximum likelihood classification

The second classification approach outlined here is a basic classifier based on the
observed distribution of responses for each class. The central idea is to use simplifying
assumptions to estimate the likelihood, Pr{actions|scene); if the prior on different
scenes is non-uniform, then the likelihood can be combined with the prior Pr(scene)

using Bayes’ rule to estimate the posterior, Pr(scene|actions).

5.2.1 Bayes’ Rule enables reasoning about hidden factors

Bayes’ rule is a simple but powerful law of probability which relates conditional prob-
abilities to one another, and is commonly used to reason about hidden factors based

on observed data. In the general case:

Pr(X|Y) = Pr(Y) _ Pr(X]Y) x Pr(Y)
Pr(X) Dy Pr(X|Y) * Pr(Y)

Pr(Y|X) = Pr(X)

The causal reasoning story behind this equation is that = a collection of observed
data, and y is an unobserved cause or state. Based on some prior estimate of how
probable a given unobserved state is (Pr(Y = y) and the likelihood of the observed
data z given state y (Pr(X = z|Y = y)), Bayes rule enables us to infer a posterior
estimate of the probability of state y (Pr(Y = y|X = z) which incorporates the data

we have observed.

Once the posterior distribution of unobserved states has been calculated, one
way to draw a single guess from that distribution is by choosing the mazimum a
posteriori (MAP) estimate. If the prior distribution on unobserved states is assumed
to be uniform, then the posterior is directly proportional to the likelthood, and the

mazimum likelihood (ML) estimate is equivalent to the MAP estimate.
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5.2.2 Simplifying assumptions enable us to estimate the like-

lihood

By way of notation, we will choose X = x1, zo, . .., Tx to be a list of k£ observed stems,

drawn from an underlying distribution of stems associated with a single scene type

Y =y.

We make two simplifying assumptions to enable us to easily estimate the likelihood
Pr(zy,zs,...,zxly): first, we assume that z; and z, are conditionally independent

given y; and second, we estimate each Pr(z;|y) using the empirical distribution.

Conditional independence of observed data

The first assumption we make is that, for a given scene category, the occurrence of

any observed stem is independent of the other observed stems. That is to say:

Pr(zy, zs,. .., zx|y) = Pr(z1|y) * Pr(za|y) * ... x Pr(zi]y)

This is known as the Naive Bayes assumption. This assumption is not a faithful
approximation to the distribution of the data: even if the responses we are attempting
to classify are in fact drawn randomly from the set of all possible responses (which
would not be true if we asked one individual for a set of responses: they would
be unlikely to give the same response twice), their constituent stems would not be
independently distributed. For example, “buy shoes” is a very common response for
“shoe shop”, which means that the stem “buy” and the stem “shoe” covary strongly

when conditioned on the scene type “shoe shop”.

Although this assumption an unrealistic oversimplification, Naive Bayes classifiers
based on the conditional independence assumption have been shown to perform well

in many real-world applications (Rish, 2001).
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Empirical distribution estimate of the posterior

The second assumption we make is that the class-conditional probability of a given
stem can be accurately estimated directly from the observed frequency of that stem
(with the exception of stems with no occurrences in a given class, as explained below).

We estimate the probability of stem z, given class y to be the number of oc-

currences of zy in class y divided by the total number of stems observed in class

Yy:

(#xxly)

Pr@ely) = 5 @)

The problem with this approach is that it does not handle stems that have not
been seen with a given class. It is not reasonable to assume that never having seen
a certain stem associated with a certain class implies that such a pairing is literally
impossible (zero probability). A more reasonable assumption is that such a pairing
is extremely rare.

There are many possible approaches for dealing with unseen stem-class pairings.
One possible approach is to add a “pseudocount” to all frequency counts. Another
possibility is to adopt a more sophisticated frequency estimation strategy, such as
Good-Turing frequency estimation (Good, 1953). Good-Turing is an algorithm is an
algorithm to generate smoothed estimates of the species probability of an unknown
number of species, based on past observations of objects drawn from those species.
This algorithm assumes that the total probability for all never-before-seen species is
%L where N; is the number of single-occurrence species, and adjusts the rest of the
estimates by smoothing.

However, rather than adopting a sophisticated estimation strategy, we use some
simple rules to fudge our estimations for never-before-seen stems. If we see a stem
that has never been seen in the entire training set, we simply ignore it, as it would
provide no information in support of any of the classes under the scheme described

here. If we see a stem that has been seen elsewhere in the training set, but not for
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this particular class y, then we assign its probability to be the smallest Pr(z|y) value
otherwise calculated (that is, the probability assigned to a l-ocurrence stem in the
class with most stems). This strategy has the advantage of making the calculation
of Pr(zy, g, ..., z,|y) very simple, but it has the downside that it does not actually
lead to a legitimate probability distribution Pr(X|Y). Small “probability” has been
assigned to many never-before-seen stem-scene pairings, and the sum over all possible
values of X for a given scene is much greater than 1. Nonetheless, this shortcut works

adequately for our purposes.

Log likelihoods avoid numeric precision difficulties

The computation of the likelihood Pr(zy,z2,. .., Z,|y) requires n probabilities, which

might be small.

Pr(zy, 22, ..., Zaly) = Mi=1..n Prze|y)

Rather than computing the likelihood directly, we compute the logarithm of the
likelihood, which enables us to add log likelihoods, avoiding numeric precision errors

which arise when working with small numbers.

log Pr(zy,xs,. .., Zaly) = Le=1..n log Pr(z+|y)

5.2.3 Results: Maximum likelihood shows 67% classification

accuracy over 397 classes

Maximum likelihood classification was tested on both the 33-category subset and the
full 397-category dataset, with 10-fold cross-validation, with test queries composed of
n responses each for values of n between 2 and 7. At n = 5, classification accuracy
over the 33-category subset was 94%, compared to a chance level of 3%; accuracy over

all 397 categories was similarly high, at 67% compared to a chance level of 0.25%.
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Figure 5-5 depicts heatmaps of the classification accuracy by class, for both the
33-category subset and all 397 categories. The 33 categories are very difficult to
confuse with one another: an attic occasionally has the action profile of a basement;
lakes, rivers, and waterfalls have very similar action profile; an airport terminal some-
times seems like a subway interior; and a highway sometimes seems like a street; but
otherwise, most entries in the 33-category set are quite distinct. Figure 5-6 shows
a line plot of classification accuracy by class for each dataset, illustrating a rounded
curve for both categories: a few categories in each dataset are fairly easily confused
with other scene types, but most of them are readily distinguished with one another.
Unlike with nearest centroid classification, none of the categories were never classified
correctly.

As shown in Figure 5-7, classification accuracy for the 33-category subset ranged
from 88% with 2 responses per query, to 97% with 7 responses per query. Classification
accuracy for the full 397-category set ranged from 55% with 2 responses per query,

to 74% with 7 responses per query.
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Figure 5-5: Heatmaps of maximum likelihood classification accuracy by class, over a
33-category subset and over the full 397-category set, using nearest-centroid with 5
responses per query. Although individual category labels are not shown for the full
set, the overall color gives a sense of the pattern of classification.
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5.3 Discussion

Why is classification performance so good with these two simple classifiers? The
answer is perhaps because any given set of responses is likely to contain at least
one very diagnostic stem. The long tail of subjects’ responses is to our advantage
in this respect. Subjects describe actions in specific terms, rather than restricting
their answers to common verbs like “walk” and “eat.” In this detail they provide a
large amount of context-specific information. For example, “highway” is distinguished
from a “street” or a “car-interior/frontseat” by relatively rare stems such as “speed”,
“race”, and “hitchik”.

The empirical maximum likelihood classifier performed better than the nearest
centroid clasifier, at 67% with n = 5-response-queries as compared to 51%. That
said, the comparison is not a fair one because the nearest-centroid weighting does not
currently incorporate any importance-weighting. It would be interesting to incorpo-
rate a weighting such as TF-IDF (Manning et al., 2008) into the nearest-neighbor

classifier.
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Figure 5-6: Classification accuracy by class for maximum likelihood classification,
over the 33-category subset and for all 397 categories, using 5 responses per query. A

subset of category labels is shown for the 397-category plot.
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Maximum likelihood classification accuracy
by number of responses per query
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Figure 5-7: Overall classification accuracy using maximum likelihood classification,
as a function the number of responses per query. The empirical maximum likelihood
class for each query was computed. Each query was comprised of between 2 and 7
responses; with more responses per query, classifier performance improved.
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Chapter 6

Future Directions

There are a variety of potential future directions for this work, in both computer
science and cognitive science. Some of the most promising directions are elaborated

in detail below, along with briefer mentions of more nebulous directions.

6.1 Examine the effects of category name on ac-

tions

In the present study, subjects were not told the name of the scene type they were
viewing a picture of. How would subjects’ responses change if they were told the
name of the place as listed in the collection of 397 SUN categories? The SUN category
name does not necessarily correspond to the “basic-level” category name that subjects
themselves would typically use to describe the scene type (Rosch & Lloyd, 1978) —
for example, subjects are unlikely to use the word “apse” to refer to the semicircular
recess at the front of a church, or “medina” to refer to a certain type of historic district
in a North African city. In this study, the experiment would be run again, but subjects
would be told the fine-grained category name and definition for the image they were
viewing. The hypothesis is that subjects’ descriptions in response to named scenes
would more precisely describe scene types that are visually hard to distinguish. This

may lead to better classification accuracy and more diversity of responses.
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In particular, I expect that increased classification accuracy would be seen pri-
marily for categories whose SUN category name does not match the basic level of
categorization — that is, categories which SUN separates, but which subjects them-
selves do not distinguish between. By contrast, categories whose SUN category name
matches subjects’ own judgments of scene type would not show much difference in
subjects’ responses. The relationship between changes in subjects’ responses and
mismatch between the SUN categorization structure and subjects’ basic-level catego-
rization structure could be verified by further asking subjects to provide basic-level
category labels for the images shown, and looking for a correlation between the set
of images that subjects most often group together using their own categorization,
and the set of images that show the msot improved classification accuracy in the

class-labeled dataset as compared to the no-category-name-shown dataset.

6.2 Correlate objects, materials, and spatial prop-

erties with actions

Visually speaking, scenes are made up of objects and materials, arranged in a physical
space of some shape and size. How much are these objects, materials, and properties
diagnostic of typical actions? Intuitively, it seems that many of the actions people
report are driven by the objects, materials, and spatial properties of the scene (such
as “bake” if an oven is present, “swim” if a body of water is present, or “walk” if the
space is long and narrow), as contrasted with phrases that are driven primarily by
the known or inferred purpose of the scene (such as “heal animals” for a vet’s office

even if no animals or medical equipment are immediately visible).

A potential future question is whether some actions are more strongly associated
with specific physical properties, and other actions are more strongly associated with
more abstract scene types. Some actions might best be explained by the presence
or absence of certain objects, materials, and spatial properties independent of scene

type, whereas some actions may be best explained as properties relating to the overall
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inferred purpose of the whole scene as a property above and beyond the objects,
materials, and spatial properties it is composed of.

One path forward in investigating this question is to use ground truth annotation
of objects, materials, and spatial properties of each scene, and measure the correla-
tion of these attributes with the actions provided by subjects. For example, ground
truth annotation of objects is available in the LabelMe dataset (Russell et al., 2008);
the SUN attribute dataset (Patterson & Hays, 2012) contains a variety of mate-
rial properties (“concrete”, “vegetation”, or “rusty”), spatial properties (such as “no
horizon”, “open area”, or “symmetrical”), semantic properties (such as “soothing”
or “man-made”); and Oliva et al. have generated a database ranked on subjective
visual complexity (Oliva et al., 2004). These attributes could be correlated with the
occurrence of particular stems or phrases to look for the strongest correspondences,
or more complex generative models could be constructed.

Another possible path forward is to use computer vision to detect or approximate
these attributes. How well can the typical actions for a scene be predicted from
the features extracted by standard computer vision algorithms? Are certain “visual
words” as extracted by SIFT (Lowe, 1999) associated with certain actions? The gist
descriptor can give an approximation of properties like openness, expansion, natu-
ralness, roughness, and so on (Oliva & Torralba, 2001); do these inferred properties

correlate with different actions?

6.3 Compare the similarity space of actions with

other similarity spaces

One contribution of this work as described in Section 4 was to extract a similarity
space for scenes based on their associated actions. Does this similarity space resemble
other similarity spaces extracted from other scene data by other measures? For ex-
ample, does the hierarchical clustering correlate at all with the SUN 7-layer hierarchy

(Xiao et al, 2010)7 Or with scene types that are found physically close to one another
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in space? Or with which scene types show more similar neural pattern activation in

the human brain (Mur et al., 2009), and in which brain areas?

In performing these comparisons, similarity heatmaps can be compared directly
using correlation or Euclidean distances, or the extracted clusterings can be compared
using methos designed specifically for hierarchical clustering (Fowlkes & Mallows,
1983) or with more general clustering-comparison methods (Meil, 2005) (Hubert &
Arabie, 1985).

6.4 Analyze image-to-image variability

As mentioned in Chapter 2, this dataset was gathered for typical images in order
to better elucidate category-to-category variation. However, investigating image-to-
image variation is a natural next step. For example, images vary in typicality rat-
ing; one might hypothesize that an image’s distance from the category average in
action-similarity-space would be anti-correlatered with its typicality rating, such that

exemplars rated as more typical do in fact elicit more typical responses.

Examining image-to-image variation might explain some of the category-level vari-
ation. For example, images in the category “kasbah” can often look quite ruined, so
when the classifiers described in Chapter 5 classify a kasbah as a ruin, that may
not actually be a particularly noteworthy misclassification, unlike misclassifications
of a “highway” as a “car interior”, which are distinct locations despite having similar

action profiles.

Finally, any image property could be correlated with the properties described in
this work, such as response diversity, average response length, classification accuracy,
and so on. For example, do cluttered scenes generate a greater diversity of responses?
Are man-made scenes easier to classify? Candidate image properties include the
attributes for memorability as labeled in in (Isola et al., 2011); the number and type
of LabelMe objects (Russell et al., 2008); the SUN attributes described in (Patterson
& Hays, 2012); or visual complexity as described in (Oliva et al., 2004).
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6.5 Richly model the joint distribution

The probability of a certain action phrase being produced in response to a certain
image is a product of many unobserved factors. While it would be impossible to model
literally all the factors underlying subjects’ response patterns, a richer model than
the simple empirical model described in Chapter 5 would not only shed more light
on these unobserved factors, but may also show improved classification performance,
and could generalize to unobserved phrases and scenes. If scenes and words are
each modeled as being composed of a set of features, or generated by latent factors,
then graphical models could be employed that relate the representations to the other

according to a generative probabilistic structure.

Existing work in the space of matching words to actions, such as the work of Blei
(Blei et al., 2003) and Barnard (Barnard & Forsyth, 2001) (Barnard et al., 2003)
in the space of image captions, could be readily be applied to the domain of typical
actions. As an alternative to the graphical models approach, more sophisticated latent
topic models could be borrowed from text classification, including non-probabilistic
models such as latent semantic analysis (Manning et al., 2008). As demonstrated in
Chapter 5, generic term-document models can readily be translated to the problem
of associating actions with scene types. If a latent topic model were employed, it
would be interesting to visually inspect the topics it generates, to see if any of them

correspond to identifiable scene features.

One final possibility would be to model the dependency structure of actions; for
example, a tree structured dependency model would be relatively simple to build
using the Chow-Liu algorithm (Chow & Liu, 1968), as demonstrated in (Choi et al,,
2010).
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6.6 Incorporate semantic properties of natural lan-

guage

Aside from tokenizing and stemming, this work largely ignores the rich semantic
content of natural language. Projects such as Wordnet (Princeton University, 2010)
model the synonym structure of word senses in the English language. Furthermore,
a variety of word similarity measures have been devised, some based on structures
like Wordnet, and some based on statistical properties such as corpus co-occurrence

(Pedersen et al., 2004).

A few obstacles remain before the semantic hierarchy of Wordnet can be lever-
aged towards understanding subjects’ responses. For one, subject’s responses must
be disambiguated: words have multiple meanings (“senses”), and while wordsense
disambiguation algorithms do exist (Warin, 2004) (Resnik, 1995), they tend to func-
tion best with more surrounding context than the responses gathered here tend to
provide. Furthermore, even once wordsense has been disambiguated, the WordNet
hierarchy does not capture all the relatedness between terms: for example, “bathe”
and “swim” are unrelated according to the WordNet hierarchy, because bathing is a

type of cleansing, and swimming is a type of travel.

6.7 Relate action words directly to constituent ob-

jects

Many of subjects’ responses describe objects directly visible in the scene. A webtool
could be deployed to allow users to directly connect object polygons provided by
LabelMe with the words they use to describe an image. A prototype for such a tool
has been designed, although the future steps for potential word-object correspondence

data are still unclear.
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6.8 Gather responses for scene type names with-

out images

In this study we showed people images without names for two reasons: one, because
we intend to eventually link typical actions with visually-detectable properties, and
two, because we wanted to gathe subjects’ responses to the scenes themselves rather
than associations with the words. As described in Section 6.1 we hope to compare
reponses to images alone with responses to images with names and definitions. What
if we don’t show any picture at all? How do subjects’ responses differ if they have

only the name of a scene type and a definition, and no visual information at all?
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Chapter 7

Contributions

In summary, the SUN Action project comprises the first effort to gather and analyze
unconstrained natural-language annotations of typical actions over a comprehensive
set of scene types. This work offers the following contributions to the field of scene

understanding;:

o I gathered a large dataset of typical actions by scene type, consisting of over

100,000 free-form responses over all 397 “well-sampled” SUN scene categories.

I analyzed the response distribution and diversity, overall and between cate-

gories.

I defined a similarity space over actions, and demonstrated heterogeneous hier-

archical clustering over this space.

I implemented two classifiers that successfuly classify scenes by their associated

actions at considerably higher than chance rates.

I outlined a plan for future work in both computer science and human vision.
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Appendix A

Additional tables

This appendix includes tables of verbatim responses and figures that are too long to

include in the main text.

All 397 Scene Types

’abbey’

’airplane_cabin’
airport_terminal’
’alley’

>amphitheater’
’amusement_arcade’
’amusement_park’
’anechoic_chamber’
*apartment_building/outdoor’
’apse/indoor’

*aquarium’

*aqueduct’

*arch’

*archive’
'arrival_gate/outdoor’
’art_gallery’
>art_school’
art_studio’
’assembly_line’
‘athletic_field/outdoor’
’atrium/public’

Yattic?

auditorium’
’auto_factory’
’badlands’
’badminton_court/indoor’
’baggage_claim’
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’bakery/shop’
'balcony/exterior’
’balcony/interior’
’ball_pit’
*ballroom’
’bamboo_forest’
’banquet_hall’
’bar’

barn’

barndoor’
’baseball_field’
’basement’
’basilica’
‘basketball_court/outdooxr’
’bathroom’
’batters_box?
’bayou’
’bazaar/indoor’
’bazaar/outdoor’
’beach’
’beauty_salon’
’bedroom’

’berth’
’biology_laboratory’
’bistro/indoor’
’boardwalk’
’boat_deck’



’boathouse’
’bookstore’
’booth/indoor’
’botanical _garden’
‘bow_window/indoor’
’bow_window/outdoor’
'bowling_alley’
’boxing_ring’
*brewery/indoor’
’bridge’
’building_facade’
’bullring’
’burial_chamber’
’bus_interior’
’butchers_shop’
butte’
’cabin/outdoor’
*cafeteria’
’campsite’

’campus’
’canal/natural’
*canal/urban’
’candy_store’
’canyon’
’car_interior/backseat’
‘car_interior/frontseat’
’carrousel’
’casino/indooxr’
’castle’

’catacomb’
’cathedral/indoor’
’cathedral/outdoor’
’cavern/indoor’
‘cemetery’

’chalet’
’cheese_factory’
’chemistry_lab’
*chicken_coop/indoor’
*chicken_coop/outdoor’
’childs_room’
’church/indoor’
’church/outdoor’
’classroom’
’clean_room’

Ycliff?
’cloister/indoor’
’closet’

’clothing_store’
’coast’

’cockpit’
’coffee_shop’
’computer_room’
*conference_center’
’conference_room’
’construction_site?
’control_room’
’control_tower/outdoor’
corn_field’
’corral’

’corridor’
’cottage_garden’
’courthouse’
’courtroom’
’courtyard’

'covered_bridge/exterior’

’creek’

’crevasse’
’crosswalk’
*cubicle/office’
)dam)
’delicatessen’
’dentists_office’
‘desert/sand’
’desert/vegetation’
‘diner/indoor’
’diner/outdoor’
’dinette/home’
’dinette/vehicle’
’dining_car’
’dining_roonm’
’discotheque’
Ydock’
’doorway/outdoor’
’dorm_room’
’driveway’
’driving_range/outdoor’
’drugstore’
’electrical_substation’
'elevator/door’
‘elevator/interior’
’elevator_shaft’
’engine_room’
'escalator/indoor’
*excavation’



*factory/indoor’
*fairwvay’
'fastfood_restaurant’
*field/cultivated’
’field/wild?
’fire_escape’
>fire_station’
*firing_range/indooxr’
*fishpond’
’florist_shop/indoor’
*food_court’
*forest/broadleaf’
’forest/needleleat’
’forest_path’
*forest_road’
*formal_garden’
*fountain’

‘galley’

’game_room’
’garage/indoor’
’garbage_dump’
’gas_station’
'gazebo/exterior’
*general_store/indoor’
‘general_store/outdoor’
’gift_shop’
’golf_course’
’greenhouse/indoor’
’greenhouse/outdoor’
’gymnasium/indoor’
*hangar/indoor’
’hangar/outdoor’
’harbor’

’hayfield’

’heliport’
’herb_garden’
’highway’

’hill’

’home_office’
’hospital’
’hospital_room’
’hot_spring’
’hot_tub/outdoor’
*hotel/outdoor’
’hotel_room’

‘house’
'hunting_lodge/outdoor’

’ice_cream_parlor’
’ice_floe’
’ice_shelf’
’ice_skating_rink/indoor’

’ice_skating rink/outdoor’

’iceberg’

*igloo’
’industrial_area’
’inn/outdoor?
’iglet?

’ jacuzzi/indoor’
’jail/indoor’
’jail_cell’
’jewelry_shop’
’kasbah’
’kennel/indoor’
’kennel/outdoor’
’kindergarden_classroonm’
’kitchen’
’kitchenette’
'labyrinth/outdoor’
’lake/natural’
’landfill’
’landing_deck’
'laundromat ’
’lecture_roonm’
’library/indoor’
*library/outdoor’
’lido_deck/outdoor’
*lift_bridge’
*lighthouse’
’limousine_interior?’
’living_room’
’lobby’
’lock_chamber’
’locker_room’
‘mansion’
’manufactured_home’
'market/indoor’
‘market/outdoor’
’marsh’
‘martial_arts_gym’
‘mausoleum’
‘medina’
‘moat/water’
'monastery/outdoor’
'mosque/indoor’



’mosque/outdoor’
‘motel’

‘mountain’
’mountain_snowy’
‘movie_theater/indoor’
‘museum/indoor’
‘music_store’
'music_studio’

’nuclear_power_plant/outdoor’

’nursery’

’oast_house’
’observatory/outdoor’
’ocean’

’office’
’office_building’
’0il_refinery/outdoor’
’oilrig’
'operating_room’
’orchard’
outhouse/outdoor’
’pagoda’

’palace’

’pantry’

)parkl
’parking_garage/indoor’
*parking_garage/outdoor’
’parking_lot’

’parlor’

‘pasture’

’patio’

’pavilion’

’pharmacy’
’phone_booth’
’physics_laboratory’
’picnic_area’
’pilothouse/indoor’
’planetarium/outdoor’
’playground’
’playroom’

’plaza’
'podium/indoox?
’podium/outdoor’
’pond’
’poolroom/establishment’
’poolroom/home’
’power_plant/outdoor’
’promenade_deck’

’pub/indoor’
'pulpit?
‘putting_green’
racecourse’
’racewvay’

‘raft’
’railroad_track’
‘rainforest’
'reception’
’recreation_room’

’residential_neighborhood’

’restaurant’
’restaurant_kitchen’
'restaurant_patio’
'rice_paddy’
’riding_arena’
‘river’
’rock_arch’
'rope_bridge’
’ruin’

’runway’

’sandbar’
?sandbox’

’sauna’
’schoolhouse’
’sea_cliff’
’server_room’
*shed’

*shoe_shop’
’shopfront’
’shopping_mall/indoor’
’shower’
*skatepark’
’ski_lodge’
’gki_resort’
’ski_slope’

)Sky)

’skyscraper’
’slum’

snowfield’
’squash_court’
’stable’
’stadium/baseball’
'stadium/football’
’stage/indoor’
’staircase’
’street’
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’subway_interior’
’subway_station/platform’

’utility_room’
’valley’

’supermarket’ ’van_interior’
’sushi_bar’ ’vegetable_garden’
’swamp’ ’veranda’
’swimming_pool/indoor’ ’veterinarians_office’
’swimming_pool/outdoor’ ’viaduct’
*synagogue/indoor’ ’videostore’
'synagogue/outdoor’ ’village’
’television_studio’ ’vineyard’
‘temple/east_asia’ ’volcano’

’temple/south_asia’
’tennis_court/indoor’
’tennis_court/outdoor’

’volleyball_court/indoor’
’volleyball_court/outdoor’
’waiting_room’

*tent/outdoor’ ’warehouse/indoor’
’theater/indoor_procenium’ ’water_tower’
’theater/indoor_seats’ ’waterfall/block’
>thriftshop’ ‘waterfall/fan’
>throne_room’ 'waterfall/plunge’
’ticket_booth’ ’watering _hole’
’toll_plaza’ ‘wave’
’topiary_garden’ ’wet_bar’

’tower’ ’wheat_field’
’toyshop’ 'wind_farm’
’track/outdoor’ ’windmill’

'train_railway’
’train_station/platform’
’tree_farm’

’tree_house’

’trench’
'underwvater/coral_reef’

Stop words

The following words “stopwords” carrying little semantic information, as defined in the
nltk python module in nltk.corpus.stopwords.words(’english’), were removed before

further morphological processing:

‘wine_cellar/barrel_storage’
'wine_cellar/bottle_storage’
‘wrestling_ring/indoor’
’yard’

’youth_hostel’

’i’, ’your’, ’her’, ’theirs?,
‘me’, ’yours’, ’hers’, ’themselves’,
‘my’, ’yourself’, ’herself?, ’what?,
‘myself’, ’yourselves’, ’it?, ’which’,
‘we?, ’he’, ’its?, ’who’,

our’, ’him’, ’itself’, ’whom’,
‘ours?, ’his’, ’they’, ’this?,
ourselves’, ’himself’, ’them’, ’that’,
’you’, ’she’, ’their?’, ’these’,
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’those’?, lor?, ’down?’, ‘most’,

am’, ’because’, ’in’, other’,
’ig?, ’as’, ‘out’, some’,
‘are’, until’, ‘on’, ’such?,
‘was?’, ’while’, ‘off’, ‘no’,
‘were’, Yof?, ‘over’, ’nor?,
'be’, ‘at?, ’under’, ’not’,
’been’, ’by’, ’again’, ’only’,
’being’, foxr’, further’, ‘own?,
’have’, with?, ’then’, ’same’,
’has’, about’, ‘once’, ’so?,
’had’, ’against’, ’here?’, ’>than’,
’having’, ’between’, ’there’, ’too?,
’do”’, ’into’, ’when’, ‘very’,
’does?, *through’, ’where’, ’g?,
’did’, ’during’, ‘why’, t?,
’doing’, before’, ‘how?’, ’can’,
’a’, ’after’, ‘all’, ‘will?,
an’, *above’, ’any’, ’just?,
’the’, ’below’, ’both?’, ’don’,
’and’, ’to?, ’each’, ’should’,
hut’, ’from’, few?, now’
’if?, 'up’, ‘more’,

Phrase diversity

Least diverse: ’shower’ with 51 phrases:

(112, ’shower’) (1, ’washing’)

(78, ’take a shower?) (1, ’wash your body’)

(19, ’take shower’) (1, ’wash up?)

(17, ’showering’) (1, ’wash oneself’)

(12, ’clean’) (1, ’wash hands?’)

(12, ’bathe’) (1, ’wash body’)

(11, ’get clean’) (1, ’turn on the shower’)
(7, ’wash’) (1, ’taking shower?)

(7, ’taking a shower’) (1, ’take showers’)

(5, ’relax’) (1, ’take a luxurious shower’)
(4, ’'wash hair?’) (1, ’take a bath’)

(4, ’turn on water’) (1, ’stand’)

(3, ’use shower’) (1, ’sit?)

(3, ’scrub?) (1, ’sing?)

(3, ’clean the shower’) (1, ?*showing?’)

(2, ’take bath’) (1, ’shower oneself’)

(2, ’rinse’) (1, ’shave’)

(2, ’poop?) (1, ’putting in new glass’)
(2, ’clean oneself’) (1, ’pee’)
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(1, ’look out window?’)

(1, ’getting clean’)

(1, ’get washed’)

(1, ‘’enter shower’)

(1, ’dry yourself’)

(1, ’dry off with a towel’)
(1, ’cleanse’)

a,
1,
Q,
1,
1,
(1,

’clean yourself’)
’clean up’)

’clean shower dooer’)
’bathing’)

’bath’)

’adjust water’)

Most diverse: 'veterinarians_office’ with 253 phrases:

(11, ’examine’)

(8, ’pet dog’)

(6, ’help animals’)

(5, ’pet animals’)

4, ’wait?’)

(4, ’talk to vet’)

(4, ’pet the dog’)

(4, ’pet?)

(4, ‘’operate’)

{4, ’check’)

(3, ’take care of dog’)
(3, ’take care of animals’)
(3, ’pet cat’)

(3, ’heal’)

(3, get pet examined’)
(3, ’examine dog’)

(3, ’examine a cat’)
(3, ’exam’)

(3, ’care for pet’)

(2, ’worry’)

(2, ’watch the vet’)
(2, ’visiting the vet?)
(2, ’taking care of animals’)
(2, ’pet animal’)

(2, ’pay a bill’)

(2, ’nursing’)

(2, ’helping animals?)
(2, ’heal animals’)

(2, ’get checkup’)

(2, ’get check up’)

(2, ’examine the dog’)
(2, ’examine pets’)

(2, ’examine pet’)

(2, ’draw blood’)

(2, ’comfort the dog’)
(2, ’comfort dog’)

(2, ’checkup’)

(2, ‘’caring’)
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@,
(1,
{1,
(1,
(1,
1,
a,
1,
1,
a,
Qa,
1,
Qa,
Q,
Q,
(,
(1,
(1,
(1,
{1,
1,
1,
4,
(1,
(1,
“a,
1,
1,
(1,
(1,
Qa,
Q,
Q,
1,
(1,
(1,
1,
(1,

’care for dog’)

'work as assistant’)
’work?’)

’watch the vet examine my dog’)
’wash dog’)

'waiting’)

’visit the veterinarian’)
’yisit the vet’)

‘yisit?)

’vaccinating’)

'vaccinate pet’)
'treating animals.?’)
’treating a pet’)

’treat their pets’)
’treat sick animals.’)
’treat pet?’)

*treat dog’)

’treat animals’)

’treat animal’)

’treat an animal’)

"treat a pet’s illness")
’thank the veternmarian’)
’test?’)

’tend to pet’)

’talk to the doctor?’)
*taking the animal to the vet’)
*taking pet to the vet’)
*taking care of the dog’)
’taking care of pets’)
’taking care of a dog’)
’taking animal for medical care’)
’take x-rays’)

’take vitals?’)

’take temperatures’)
‘take pet to the vet’)
"take dog’s temperature")
’take dog to vet’)

'take care of pets’)



(1, ’take animal to vet’) (1, ’maintain your cats heath’)

(1, ’take a sit pet for care’) (1, ’listening to the cat heartbeat?’)
(1, ’take a sick pet?’) (1, ’listen to the vet?)

(1, ’take a pet’) (1, "listen to a cat’s heart")
(1, ’spay or neuter a dog’) (1, ’listen’)

(1, ’spay’) (1, ’learn to take care of animals’)
(1, ’soothe kitty’) (1, ’keep your pet healthy’)

(1, ’sit in waiting room’) (1, ’keep pet calm’)

(1, ’sit down’?) (1, ’keep animals healthy?’)

(1, ’shake hands?’) (1, ’inspect animal for injuries’)
(1, ’seeing the health of the animal’) (1, ’inject’)

(1, ’say "good boy"?) (1, ’hug pet’)

(1, ’saving an animal’) (1, ’hope for the best’)

(1, ’run tests’) (1, ’hold their breath’)

(1, ’rescue animals’) (1, ’hold the dog?)

(1, ’rescue an animal?) (1, ’hold dog’)

(1, ’request’) (1, ’hold an animal?’)

(1, ’remove tick’) (1, ’helping an animal’)

(1, ’receive treatment’) (1, ’helping a golden retriever’)
(1, ’put on leash’) {1, ’help with the kitten’)

(1, ’protect your pets’) (1, ’help the veterinarian’)

(1, ’play with the dog?) (1, ’help the dog”)

(1, ’play with cats’) (1, ’help pet’)

(1, ’petting dog’) (1, ’help my pet?)

(1, ’petting animal’) (1, ’help animials’)

(1, ’pet your cat.’) (1, ’help an animal’)

(1, ’pet vaccinations’) (1, ’help a cat’)

(1, ’pet the kitty’) (1, ’help’)

(1, ’pet the iguana’) (1, ’health check’)

(1, ’pet the cat’) (1, ’healing pets’)

(1, ’pet the animal’) (1, ’healing’)

(1, ’pet puppy’) (1, ’heal the tiger?’)

(1, ’pet pup’) (1, ’heal cat’)

(1, ’pet kitty?) (1, ’heal a dog’)

(1, ’pet getting shot’) (1, ’have pet looked at’)

(1, ’pet checkup’) (1, ’groom dog’)

(1, ’pet an animal’) (1, ’going to the veterinarianm.?)
(1, ’pet a cat?) (1, ’go to vet’)

(1, ’perform surgery’) (1, ’go to the vet’)

(1, ’perform medical examination’) (1, ’giving the cat a shot’)

(1, ’perform animal surgery’) (1, ’give vetrinary care’)

(1, ’perform a medical exam’) (1, ’give the dog medicine’)

(1, ’operate on animals in need’) (1, ’give shots’)

(1, ’neuter cat’) (1, ’give shot to pet’)

(1, ’medically care for animals’) (1, ’give shot?)

(1, ’measuring’) (1, ’give dog shots?’)

(1, ’'making the cat feel better?’) (1, ’give cat a shot?)

9



(1,
(1,
(1,
1,
Qa,
(1,
(1,
(1,
(1,
1,
1,
(1,
1,
1,
(1P
a,
1,
1,
(1,
(1,
1,
(1,
1,
1,
1,
1,
(1,
(1,
(1,
1,
1,
1,
1,
1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,

‘give animals a shot’)
’give a shot’)

‘give injection’)
’getting pet healthy’)
’getting medical care for pet?)
’getting better’)

‘get your pet checked up’)
‘get your dog checked’)
’get your cat checked’)
’get treatment’)

’get their cat checked out’)
‘get shots’)

’get scratched’)

‘get results’)

‘get puppy shots’)

’get puppy checked up’)
‘get pet well’)

’get pet checkup’)

’get pet checked up’)
‘get pet checked’)

‘get pet a healthcheck’)
’get exam’)

‘get dog exam’)

’get checkup for pets’)
’get checkup for pet’)
’get care for your pet’)
’get bath’)

’get animal examined’)
‘get a checkup’)

’fix animals’)

'fix?)

’examining animals’)
’examining a collie’)
’examining’)

’examine the cat’)
’examine cat’)

’examine animals’)
’euthanize dog’)
’euthanize animals?)

‘do surgery’)

’diagnose dog’)
’diagnose cat’)

Stem diversity

Least diverse: “shoe shop” with 41 stems;

(,
(1,
(1,
(1,
(1,
a1,
(1,
1,
(1,
(1,
(1,
(1:
(1,
(1)
1,
(1’
(1,
(1,
(1,
(1,
1,
1,
(1,
(1,
(1,
a1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
a1,
1,
a,
(1,
(1,
1,
1,
(1,

’cut nails?)
’converse’)

’comfort the puppy’)
’comfort the animal’)
’comfort?’)

’checkup for pet’)
’checkup dog’)
’checking up on the dog’)
’checking up on dog?)
*checking up?)
’checking pet’)
’checking out the dog?’)
’checking on cat’)
"checking dog’s health")
’checking’)

’check vitals’)

’check up on your pets’)
’check the kitty’)
*check the heartrate’)
’check out pets’)
’check on your pet?)
’check on pets’)

’check on pet’)

’check health’)

’check dog’)

’check cat.’)

’check animal’)

‘care for animals’)
’care for animal’)
’care for an animal’)
’care for’)

’care’)

’calm the dog’)

’buy meds’)

’bring pet’)

’bring in pet’)

’be a vet’)

’ask the vet questions’)
'ask questions’)

’ask question’)

’animal checkup’)
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(255, ’shoe?’)
(128, ’buy’)

(92,
67,
(19’
(13,
(10,
(6,
(5,
(5,
(4,
(4,
2,
2,
(2,
2,
2,
2,
(2,
2,
(2,

Most diverse: “slum”
m” with 181 stems:

(63,
(29,
(21,
(16,
(11,
(11,
(9,
(s,
(s,
(s,
(7,
(7,
(7,
(7,
(6,
6,
(5,
(5,
(s,
(5,
(5,
(5,
(,
(5,

‘tri?)
’shop?)

’purchas’)

’brows’)

*look?)
*find?)
‘new’)
‘boot’)
‘pick’)
'pair?’)
‘work?)
‘wear’)
’aneaker’)
’gize?)
’gell?’)
)run))
‘make’)
:go))
fit?)

’live’)
’clean’)
‘walk?)
’help?)
Ysurviv?’)
’food?)
’slum’)
‘water?’)
'peopl?)
’cloth?)
‘poverti’)
*look?’)
’hang’)
’beg?’)
*trash’)
‘feed?’)
'visit?)
‘take?’)
‘ride?)
‘needi’)
’laundri’)
’hungri’)
‘garbag’)
’build?)

2,
(2,
(1,
(1,
(1,
1,
1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
1,
(1,
(1,
(1,

(4,
(4,
(4,
(4,
(4,
(4,
(4,
(4,
(4,
(4,
(4,
(4,
(4,
3,
(3,
(3,
(3,
a3,
(3,
(3,
3,
(3,
@3,
@3,

’decis?)
’around’)
‘winter?’)
‘window’)
’touch’)
‘talk’)
’take’)
,Shp))
’gensibl’)
’gelect’)
‘right?’)
’organ’)
’nike’)
‘measur’)
>loafer’)
*like?)
‘hoe’)
)get))
*cloth’)
‘admir’)

’sleep’)
’shop?)
'search’)
‘repair’)
‘pick’)
’move’)
‘feel’)
’explor’)
‘donat’)
‘car’)
’boat’)
‘barter?’)
>around’)
‘work’)
‘wish?)
*wash’)
'yillag?)
’gwim’)
'struggl’)
*shelter’)
‘resid’)
’poor’)
’money’)
‘hous’)



(3,
3,
(3,
(3,
(3,
(3,
(3,
(3,
2,
(2,
2,
2,
(2,
(2,
(2,
2,
(2,
(2,
2,
(2,
(2,
e,
(2,
2,
(2,
2,
(2,
2,
(2,
2,
(2,
(2,
(2,
(2,
(1,
(1,
(1,
(1,
(1,
4,
(1,
(1,
(1,
a4,
Q,
1,
Q4,

’home’)
’go))
*find?)
‘drive?)
’catch?’)
‘carri?’)
*buy’)
’aid?)
'way’)
*tri’)
’town’)
’talk’)
’street’)
’starv?’)
’gorri’)
Jrun))
‘road’)
‘restor’)
‘rebuild’)
’play’)
’pictur?)
‘mess?)
‘market’)
>local’)
'litter’)
>leav’)
’hut’)
’good’)
’get’)
’diseas’)
’damag’)
‘eri?)
’away’)
'avoid?)
’young’)
‘werent’)
‘view’)
’upset’)
'travel’)
*toss’)
’time’)
*suppli’)
)Sun))
‘suffer’)
’subsist?)
rstuff?)
’stick’)
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{1,
(1,
(1,
(1,
(1,
(1,
(1,
,
(1,
{,
{,
Qa,
a,
Qa,
Qa,
1,
4,
1,
Qa,
1,
1,
(1,
(1,
4,
(1,
(1,
(1,
1,
(1,
(1,
,
1,
i,
a,
1,
a4,
(1,
1,
4,
4,
(1,
4,
a,
1,
1,
(1,
Q,

’squat’)
’squalor?’)
’spend’)
’someth’)
’soccer’)
’sightse’)
’shanti?)
’sell?)
’seek?)
’scrap’)
’sad?)
’rummag’)
’rubbag’)
‘row?)
‘rob’)
‘river?)
*renov’)
‘relax’)
’re))
’purchas’)
'provid’)
'prepar’)
*poverish?)
*poorli’)
’pollut’)
’photo?)
*pail?)
’paddl’)
*occup?)
’observ’)
:neighbor’)
,ne%ghboorhood’)
,nelgbor’)
necess’)
‘mud’)
:missionari’)
mingl?’)
‘meat’)
‘make’)
*line’?)
*ladder?’)
*kid?)
juryrig’)
,ju.nk,)
’inspect’)
’insgid?)
»inhabit’)



Q4,
(1,
(1,
(1,
1,
(1,
(1,
Qa,
Qa,
1,
(1,
(1,
(1,
(1,
a1,
Q,
(1,
Q,
Qa,
4,

Table A.1: Cluster members for an intermediate level of hierarchical clustering.

’hill?)
‘hepat’)
’happi’)
’ground’)
‘greet?)
‘give?)
’gather’)
’friend’)
'fix?)
’fish’)
fight?)
’empath’)
‘eat?)
,dri’)
distribut?’)
’dispos’)
‘disea’)
‘disast’)
’dirti’)
’dirt?)

(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
Q,
(1,
(1,
(1,
(1,
Q,
a,
(1,
Qa,
a,

'dig?)
‘die’)
‘death’)
’cook’)
’convers’)
’ commut ’)
*collect’)
Yelimb?)
’cleanup’)
Yeiti?)
*chariti?’)
’builld’)
‘box’)
’bike’)
’ball?)
’bad?)
’area’)
>aorund’)
’age))

Cluster members

firing range/indoor’
‘martial_arts_gym’
end cluster

’amusement_arcade’
‘athletic_field /outdoor’
’auditorium’
"badminton_court/indoor’
’ball_pit’

’baseball_field’
"basketball_court/outdoor’
batters_box’

"boxing_ring’

bullring’

"classroom’
"conference_center’
'conference_room’
'courtroom’
‘driving_range/outdoor’
fairway’

‘game_room’

’golf_course’
kindergarden.classroom’

Continued on next page
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Table A.1 — continued from previous page

Cluster members

"lecture_room’
‘movie_theater/indoor’
‘playground’

'playroom’
"podium/indoor’
'poolroom /establishment’
’poolroom/home’
‘putting_green’
‘recreation_room’
’sandbox’

’squash_court’
’stadium/baseball’
'stadium/football’
'stage/indoor’
‘tennis_court/indoor’
’tennis_court/outdoor’
‘theater/indoor_procenium’
‘theater /indoor_seats’
'volleyball_court/indoor’
*volleyball_court/outdoor’
*wrestling_ring/indoor’
end cluster

’assembly_line’
"auto_factory’
"biology laboratory’
‘brewery/indoor’
‘cheese_factory’
‘’chemistry Jab’
’clean_room’
’computer_room’
‘construction_site’
’control_room’
‘cubicle/office’
’electrical substation’
’engine.room’
’excavation’
factory/indoor’
’home_office’
‘industrial-area’
"nuclear_power_plant /outdoor’
‘office’

‘oil_refinery /outdoor’
‘oilrig’
'physics_laboratory’

Continued on next page
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Table A.1 — continued from previous page

Cluster members

‘power_plant /outdoor’
’server.room’

trench’

'wind_farm’
‘wine_cellar/barrel_storage’
'wine_cellar/bottle_storage’
end cluster

‘art_gallery’
‘museum/indoor’
‘observatory/outdoor’
end cluster

"balcony /exterior’
"balcony /interior’
'bow_window /indoor’
"bow_window /outdoor’
’gazebo/exterior’
"hot_tub/outdoor’
‘jacuzzi/indoor’
living_room’

parlor’

patio’

pavilion’
’picnic_area’

’sauna’

'veranda’

end cluster

"archive’

‘attic’
"bakery/shop’
’banquet_hall’
'bar’

’basement’
"bazaar/indoor’
"bazaar /outdoor’
"bistro/indoor’
bookstore’
"butchers_shop’
‘cafeteria’
‘candy_store’
’clothing_store’
'coffee_shop’
‘delicatessen’
"diner/indoor’
’diner /outdoor’

Continued on next page
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Table A.1 — continued from previous page

Cluster members

‘dinette/home’
’dinette/vehicle’
"dining_car’
"dining_room’
"drugstore’

"fastfood restaurant’
"florist_shop/indoor’
"food_court’

‘galley’

'gas_station’
"general_store/indoor’
’general store/outdoor’
"gift_shop’
’ice_cream_parlor’
jewelry_shop’
*kitchen’
’kitchenette’
library/indoor’
'market/indoor’
‘market/outdoor’
‘music_store’
’pharmacy’
’pub/indoor’
'restaurant’
'restaurant_kitchen’
‘restaurant..patio’
’shed’

’shoe.shop’
’shopfront’
’shopping_mall/indoor’
"slum’

'supermarket’
'sushi_bar’
"thriftshop’

'toyshop’

'videostore’
*warehouse/indoor’
'wet_bar’

end cluster

fountain’
end cluster

ticket_booth’
end cluster

toll_plaza’

Continued on next page
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Table A.1 — continued from previous page

Cluster members

end cluster

‘abbey’

‘alley’
’amphitheater’
’apartment_building/outdoor’
'apse/indoor’
'aquarium’
aqueduct’

‘arch’
’atrium/public’
’badlands’
’bamboo_forest’
'barn’

’barndoor’
"basilica’

"bayou’

"beach’
’boardwalk’
"boat_deck’
"boathouse’
"botanical garden’
bridge’

building _facade’
’burial chamber’
butte’
’cabin/outdoor’
’campus’

’canal /natural’
’canal /urban’
’canyon’
‘car_interior /frontseat’
‘castle’

’catacomb’
’cathedral/indoor’
‘cathedral /outdoor’
‘cavern/indoor’
‘chalet’
"church/indoor’
"church/outdoor’
cliff’

cloister /indoor’
‘coast’

"corn_field’

’corridor’

Continued on next page
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Table A.1 — continued from previous page

Cluster members

‘cottage_garden’
‘courthouse’
"courtyard’
‘covered_bridge/exterior’
‘creek’

‘crevasse’
"crosswalk’

’dam’

'desert /sand’
'desert /vegetation’
"dock’
'doorway/outdoor’
'field /cultivated’
field /wild’
"fishpond’

"forest /broadleaf’
"forest /needleleaf’
"forest_path’
"forest_road’
formal.garden’
‘greenhouse/indoor’
'greenhouse/outdoor’
harbor’

"hayfield’
herb_garden’
‘highway’

"hill’

"hospital’
"hot_spring’
"hotel/outdoor’
"house’

"hunting lodge/outdoor’
"icefloe’

'ice_shelf’

'iceberg’

"igloo’
’inn/outdoor’

islet’

'kasbah’

"labyrinth /outdoor’
"lake/natural’
library/outdoor’
'lido_deck /outdoor’
lift _bridge’
lighthouse’

Continued on next page
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Table A.1 — continued from previous page

Cluster members

lock_chamber’
‘mansion’
'manufactured_home’
‘marsh’

‘medina’

‘moat /water’
‘monastery /outdoor’
‘mosque/indoor’
‘mosque/outdoor’
‘mountain’
‘mountain_snowy’
’oast_house’

’ocean’

’orchard’

‘'pagoda’

'palace’

'park’
’planetarium/outdoor’
plaza’

'pond’
’promenade_deck’
'pulpit’

rainforest’
residential_neighborhood’
'rice_paddy’

river’

rock_arch’
rope_bridge’

'ruin’

'sandbar’
'schoolhouse’
'sea.cliff’

’skilodge’

’ski_resort’

’skislope’

’Sky,

’snowfield’

'street’

'swamp’
'swimming_pool/indoor’
’swimming._pool/outdoor’
’synagogue/indoor’
'synagogue/outdoor’
‘temple/east_asia’
’temple/south_asia’

Continued on next page

104




Table A.1 — continued from previous page

Cluster members

’throne_room’
‘topiary_garden’
‘tower’

treefarm’
'underwater /coral reef’
valley’
'vegetable_garden’
viaduct’

'village’

vineyard’
’volcano’
'water_tower’
'waterfall /block’
'waterfall/fan’
‘waterfall /plunge’
'watering hole’
'wheat_field’
'windmill’

end cluster

’jail/indoor’
end cluster

’airplane_cabin’
‘airport_terminal’
‘arrival_gate/outdoor’
"bus_interior’
’car_interior /backseat’
"cockpit’

‘control_tower /outdoor’
’hangar/indoor’

’hangar /outdoor’
“heliport’

landing.deck’
"limousine_interior’
railroad_track’

runway’
'subway_interior’
’subway _station/platform’
'train_railway’
’train_station/platform’
’van_interior’

end cluster

‘amusement_park’
"beauty.salon’
‘carrousel’

Continued on next page
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Table A.1 — continued from previous page

Cluster members

‘corral’
"dentists.office’
‘elevator/door’
‘elevator /interior’
’escalator /indoor’
"hospital_room’
’kennel/indoor’
’kennel/outdoor’
‘operating_room’
'pasture’
'riding.arena’
’stable’
'veterinarians_office’
end cluster

‘gymnasium/indoor’
end cluster

'racecourse’
raceway’
end cluster

"chicken_coop/indoor’
’chicken_coop/outdoor’
end cluster

‘office_building’
’skyscraper’
end cluster

laundromat’
‘utility _room’
end cluster

’closet’
locker _room’
end cluster

ballroom’
'discotheque’
end cluster

‘track/outdoor’
end cluster

‘music_studio’
end cluster

television_studio’
end cluster

fire_escape’
’staircase’
end cluster

tree_house’

Continued on next page
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Table A.1 — continued from previous page

Cluster members

end cluster

’booth/indoor’
end cluster

‘campsite’
"tent /outdoor’
end cluster

’bedroom’
berth’
"childs_room’
’dorm_room’
"hotel_room’
jail_cell’
‘motel’
nursery’
’youth_hostel’
end cluster

‘elevator_shaft’
end cluster

’phone_booth’
end cluster

'baggage_claim’
end cluster

reception’
end cluster

'waiting_room’
end cluster

’garbage_-dump’
landfill’

end cluster

lobby’
end cluster

7yard bl
end cluster

'driveway’
'garage/indoor’

'parking. garage/indoor’
‘parking garage/outdoor’
‘parking lot’

end cluster

raft’
end cluster

’bathroom’
‘outhouse/outdoor’
'shower’

Continued on next page
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Table A.1 — continued from previous page

Cluster members

end cluster

fire_station’
end cluster

’anechoic.chamber’
end cluster

'‘podium/outdoor’
end cluster

’bowling_alley’
end cluster

'ice_skating_rink/indoor’
"ice_skating rink/outdoor’
’skatepark’

end cluster

‘'wave’
end cluster

’pilothouse/indoor’
end cluster

‘pantry’
end cluster

‘casino/indoor’
end cluster

’art_school’
"art_studio’
end cluster

‘cemetery’
‘mausoleum’
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Figure A-1: Top 5 most common stems for every category in the 33-category subset
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Appendix B

Mechanical Turk Best Practices

Data collection took place using Amazon Mechanical Turk, an online crowdsourcing plat-
form through which “Requesters” can post small tasks (known as Human Intelligence Tasks,
or HITs) for anonymous “Workers” to complete. Each HIT on Mechanical Turk is typically
a few seconds to a few minutes long, and workers generally receive a few cents per HIT.
Although it is possible to pay rates much below minimum wage, the community standard
among workers is that fair payment should correspond to a rate of roughly 10 cents per
minute, or $6.00/hour (mturk forum, 2013); the most experienced and reliable workers avoid
tasks that pay less than this rate, and warn others to avoid them as well.

Most studies can be run using Amazon’s built-in HIT design tools!. For more advanced
functionality than the standard HIT design interface, the command-line interface offers
more control in designing, running, and updating HITs.

Additional best practices uncovered in the course of this work are described here:

The ”best practices” guides contains valuable information on HIT design:

— http://mturkpublic.s3.amazonaws .com/docs/MTURK_BP.pdf

— http://mechanicalturk.typepad.com/blog/tips-tricks/

High qualifications ensure trustworthy workers

— At least 95% HIT approval rate
— At least 100 HITs approved

— Location is United States

¢ Running a small trial, with a text area at the bottom asking for comments, can
provide useful feedback before running your full batch.

Workers care about being paid enough, being paid promptly, and not getting any
“rejections” (which are very damaging for their ability to continue to work)

— Paying enough: aim for 10 cents per minute of work.

Unstructions are accessible at http://aws.amazon.com/documentation/mturk/
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— Paying promptly and minimizing rejections: even if they’re working poorly, your
Turkers still did the work for you and you should pay them. Also your IRB
probably expects that you pay your subjects regardless of their performance. I
recommend setting a short (1-hour) auto-approval timer.

¢ Building trust with your workers can establish a good reputation in the Turker com-
munity

— Workers will rate requesters on websites such as “Turkopticon.”

— Workers appreciate getting responses to emails, especially if they are confused
by your instructions, express concern that they will not be paid for their work,
or raise doubts about whether you are paying fairly.

— Turker forums (such as http://mturkforum.com/) can provide additional feed-
back. Consider creating an account and being available on the forums to answer
questions.
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