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Abstract

The multicore revolution sparked another, similar movement towards scalable mem-
ory architectures. With most machines nowadays exhibiting non-uniform memory
access (NUMA) properties, software and operating systems have seen the necessity
to optimize their memory management to take full advantage of such architectures.
Type 1 (native) hypervisors, in particular, are required to extract maximum perfor-
mance from the underlying hardware, as they often run dozens of virtual machines
(VMs) on a single system and provide clients with performance guarantees that must
be met.

While VM memory demand is often satisfied by CPU caches, memory-intensive
workloads may induce a higher rate of last-level cache misses, requiring more accesses
to RAM. On today's typical NUMA systems, accessing local RAM is approximately
50% faster than remote RAM.

We discovered that current-generation processors from major manufacturers do
not provide inexpensive ways to characterize the memory locality achieved by VMs
and their constituents. Instead, we present in this thesis a series of techniques based
on statistical sampling of memory that produce powerful estimates for NUMA locality
and related metrics. Our estimates offer tremendous insight on inefficient placement
of VMs and memory, and can be a solid basis for algorithms aiming at dynamic
reorganization for improvements in locality, as well as NUMA-aware CPU scheduling
algorithms.

Thesis Supervisor: Prof. Saman Amarasinghe
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 The NUMA Architecture

First invented in 1947 [4], the transistor quickly replaced the vacuum tube as the

three-terminal device of choice for the construction of complex logic circuits. The

invention of the integrated circuit followed thanks to two key innovations in 1958 and

1959, solving the problems encountered when assembling very large circuits made

of individual transistors. The first programmable microprocessors were right around

the corner of the next decade, with Intel's 4004 chip being commercialized in 1971.

Since then, in accordance with Moore's Law [27], transistor densities have followed

an exponential increase, with the number of transistors in a CPU doubling roughly

every 18 months, allowing for more complex logic on a chip of the same size. This

upward trend has been a reality for more than 50 years and is expected to continue

at least for the next 10 years, if not much longer.

However, more transistors in a CPU do not readily translate to faster performance.

Consequently, chip designers make use of a large arsenal of techniques in order to

squeeze the most out of a single chip. One such technique is pipelining - separating

the execution of an instruction into numerous stages, each taking a fraction of the

total execution time. Among other positives, pipelined processors can take advantage

of instruction level parallelism (ILP), which allows them to have multiple instructions

executing different stages of the pipeline at the same time.
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Figure 1-1: Simplified schematic of a quad-core SMP system.

To increase the number of instructions being executed in parallel, modern pro-

cessors have very deep pipelines. In order to keep the single-instruction latency low,

these processors need to have increasingly higher clock speeds, which has recently be-

come a significant problem. A higher clock speed causes transistors to switch faster,

which increases their power consumption and the amount of heat they generate. Tran-

sistors' power demand is worsened further by the fact that at the current scales of

miniaturization, transistor gates, which control current flow, tend to be less capable

of blocking the passing of electrons. Therefore, transistors waste power even when

they are not switching [14]. It is for these reasons that manufacturers have turned to

techniques other than increasing clock speed to increase performance. One natural

way of maintaining the promise of Moore's Law is to create multi-core chips: CPUs

that pack more transistors, but in separate cores, speeding up execution by having all

cores execute different threads or processes [25, 28]. Such architecture are commonly

referred to as SMP, or Symmetric Multiprocessing, as there are multiple identical

processors connected to a single shared main memory. An example SMP architecure

is shown in Figure 1-1.

The benefits of migrating to multi-core have been demonstrated extensively. A

recent study by chip manufacturer Intel [26] investigated the trade-offs between over-

clocking a single-core processor and using the same core in a dual-core setup, but at

a lower clock speed. Overclocking the core by 20% and using it as a single core CPU

resulted in a 73% increase in its power requirement, but only a 13% performance gain.

In contrast, using it in a dual-core setup, each core underclocked by 20% resulted in

a mere 2% increase in the overall required power, but an admirable 73% increase in

performance compared to using the single-core processor at its designated frequency.

14
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Figure 1-2: Simplified schematic of a generic 4-node NUMA system. An alternative
design might include two additional interconnects forming an "x" in the middle,
effectively ensuring every node is within 1 "hop" of every other node.

Multi-core processors have been prevalent for many years now, and are generally

accepted as the most viable way of scaling CPU performance in the foreseeable fu-

ture [3, 15]. However, processing power is only one of the factors to consider when

evaluating system performance. Memory speed is another key factor, and it has

alarmingly lagged behind CPU speeds for decades. This disparity has lead to the

inclusion of complex cache hierarchies in today's hardware. Despite this, many work-

loads are memory-bound - that is, memory is the main bottleneck in their execution.

As a result of high access latency, the CPU can become "starved for memory". In

other words, no further instructions can be executed until data has been retrieved

from memory in order to continue the computation.

While already concerning on single-core CPUs, this problem is only exacerbated

on multi-core. Not one, but many cores can become stalled waiting for I/O at once due

to access latency or the limited bandwidth available on the memory bus. This issue

undermines the benefits of concurrent execution, and only worsens with the increase

of the number of cores on a CPU. Therefore, a new, more scalable architecture is

necessary to extract the full benefits of multi-core parallelism.

Non-Uniform Memory Access (NUMA) multiprocessors are designed with memory

starvation in mind. Under the NUMA architecture, CPU cores are arranged in pack-

ages, or nodes, and each such package is connected to local RAM for quick access [22].

An example can be seen in Figure 1-2. As each processor uses a separate memory
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bus, the theoretical promise of NUMA is performance scaling roughly proportional

to the number of nodes, or memory banks.

Despite being distributed throughout the system, memory in NUMA is still pre-

sented to the programmer as a global, shared address space. Any memory location

can be accessed by any CPU. This is achieved by linking the different nodes in the

system with high-speed interconnects. As with regular SMP, memory performance is

further improved by the use of a hierarchy of caches at each node. It is important

to note that initial NUMA designs did not implement cache coherence across nodes,

which meant processors were not guaranteed to retrieve the latest updated data in

case the memory reference they were accessing was found in their local cache, but

had already been modified on another node. Although easier to design and manufac-

ture, this model was found to prohibitively increase the complexity of programming

for such systems. As a result, nowadays NUMA machines are implied to be, in fact,

ccNUMA (cache-coherent NUMA).

Under NUMA, memory references from a CPU's point of view can be divided into

remote ones, which reside on other nodes, and local ones, which are stored in the

CPU's local bank. When a CPU accesses memory, it first queries its local caches.

If no level in the hierarchy contains the required data and the address is local, it

will be retrieved from the local RAM. On the other hand, if it is remote, the CPU

has to stall while memory is accessed over the high-speed interconnect. The non-

uniform characteristics for NUMA systems are due to the increased latency penalty

incurred when going over the interconnect, because of the greater physical distance

covered. Typically, the fastest access times are achieved when hitting a local cache

(from less than 1 to a few nanoseconds), followed by hitting a remote cache (dozens

of nanoseconds), followed by an access to local memory (-60ns), and lastly an access

to remote memory (-100ns). Approximate latencies for recent Intel processors are

shown in Table 1.1.

Clearly, NUMA will favor some types of workloads over others. For example,

workloads with small working sets that are mostly contained in caches should not

experience slowdowns due to the distributed nature of the system. For memory-
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Table 1.1: Approximate latencies for the individual data sources corresponding to an
L2 cache miss on Intel Core i7 Processor and Intel Xeon 5500 processors [21].

L3 CACHE hit, line unshared ~ 40 cycles
L3 CACHE hit, shared line in another core ~ 65 cycles
L3 CACHE hit, modified in another core ~ 75 cycles
remote L3 CACHE ~ 100-300 cycles
Local DRAM 60 ns
Remote DRAM ~ 100 ns

intensive workloads, however, good performance can be achieved only if the data

can be spread across the system, such that each processor can load data only (or

predominantly) from its local bank, and thus avoids expensive remote accesses.

Unfortunately, due to the dynamics of CPU scheduling, load balancing, memory

allocations, and several other factors, achieving sufficient locality of accesses in the

general case is difficult. Different operating systems have taken different approaches

to this problem. In this thesis, we will discuss the optimizations implemented in

ESXi, VMware, Inc's type 1 hypervisor. We also explore means to further improve

performance of virtual machines (VMs) on NUMA hardware. Specifically, we study

new techniques for locality estimation and how this data can be used to improve

performance. We show that statistical sampling of memory pages is a viable, efficient

approach to estimating locality of virtual machines, whereas other potential methods

do not provide the level of detail we need to implement further optimizations.

1.2 The Problem of Memory Locality

With NUMA, targeted allocation and migration of data and code in memory becomes

essential. The number of remote accesses by each processor must be minimized, or else

not only would any potential advantages of NUMA be negated, but performance might

suffer even further than on a symmetric architecture, due to the high interconnect

latency. This "locality" problem can be addressed in a variety of ways, none of which

are mutually exclusive.

The first possibility is to expose the NUMA topology, and to offload the decision-
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making to the programmer. This by itself can hardly be a solution, as it imposes

unnecessary burden on application writers and will lead to slower development, less

efficient software, or both. For example, here are some challenges the developers

would face:

1. accounting for current and future NUMA topologies,

2. keeping track of data migration and locality,

3. predicting where remote accesses might happen,

4. duplicating memory in order to improve performance,

5. keeping duplicated memory consistent.

In addition, it will be difficult to change the existing mindset that assumes uniform

access time to all of memory, which has been ingrained for the entire history of com-

puting. Furthermore, modern operating systems (OS) provide isolation guarantees to

running processes to shield them from improper interaction. Subsequently one appli-

cation cannot have full knowledge of the state of the OS and all running programs,

and is therefore limited in the optimizations it can aim to achieve.

A similar approach, but easier on the developers, would be to introduce libraries

that provide useful abstractions, or compilers that automatically lay out memory in

a NUMA-aware fashion. It is unclear, however, how well the compiler could optimize

when presented only with the code and not the target topology - assuming that

no single topology will dominate the others, and that users will not be expected to

recompile applications to match the platform they are using. As for software libraries,

they could provide limited benefits, but again would depend on the programmer

making good use of the functionality provided. Not unlike compilers, it is hard to

imagine that a general-purpose library could fine-tune NUMA performance for every

possible program and topology.

A third approach would be to include optimizations at the operating system level.

This is a particularly attractive option, as the OS controls every layer of execution

18



and has full knowledge of the topology it runs on, and the current state of the system.

In this thesis, we concentrate exclusively on OS-level improvements.

In the future, it might be worthwhile to investigate coupling the aforementioned

techniques for best results. Although the OS has full knowledge of the machine state

and architecture, it can only indirectly monitor and make predictions on the most

likely short- and long-term changes in the behavior of running applications. The

applications could, through exposed libraries, inform the OS of the key features of

their memory layouts and usage patterns, simplifying the job of the OS and allowing

for maximal gains.

1.3 Our Approach

As mentioned above, this thesis will focus on OS-level optimizations. In traditional

SMP (the most common form of UMA, or Uniform Memory Access architecture), all

processors (or cores) share one memory bus, and therefore have uniform access time

to all of memory. The main focus of modern operating systems' memory management

modules is their paging policy: which pages to fetch into memory, which frame to

load them into, and which pages to swap to disk in order to make room for new ones.

The most attention is typically given to the algorithm for selection of pages to swap

in/out, to reduce the occurrence of problems such as thrashing, where the same pages

continuously get flushed to disk and accessed soon afterwards, bringing about a heavy

performance hit.

With the advent of NUMA, new aspects need to be considered. For example,

the importance of memory placement has risen dramatically, so which pages to fetch

matters just as much as where in memory these pages are loaded. What is more, it

is no longer enough to fetch a page and keep it in memory if it is accessed frequently.

Often, processes will be scheduled to run on various nodes rather than stick to a single

one, depending on the load distribution in the system; so, memory that was once local

to a process may suddenly become remote. Therefore, dynamic detection of changes

in locality and proactive migration of pages, as well as locality-aware scheduling, are
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needed to keep performance high.

In order to make informed decisions on NUMA memory placement and CPU

scheduling, it is essential to collect accurate data on current placement of memory

and on access patterns, so as to predict the level of locality that can be achieved

in the system, and identify which possible actions exhibit the lowest cost-benefit

ratio. The main contribution of this thesis is the development of novel methods for

locality profiling and analysis, with a proof-of-concept demonstration implemented

on VMware ESX/ESXi.

The central technique presented consists of invalidating the mappings of sets of

memory pages, forcing the CPUs to page-fault when accessing those pages. Upon

faulting, the accesses are logged for later aggregation. We make extensive use of

statistical sampling to get detailed information for each VM and its constituent virtual

CPUs (vCPUs). With aggregate data in hand, we can enable quick response to

changes in locality, precise fine-tuning of present and future data and code placement,

detection of candidate pages and VMs for migration across the system, and many

other NUMA optimizations. While we do not collect data for every active page in a

VM, we focus on computing the general trend in memory usage. Trend data can be

applied, for instance, to ration the allocations of VMs depending on their entitlement,

in a NUMA-aware fashion.

1.4 Organization of this Thesis

The organization of this thesis is as follows. Chapter 2 introduces the current state-of-

the art techniques employed in popular operating systems, including VMware ESX.

We describe the various techniques in detail, compare the approaches, and present

the shortcomings of the current implementations.

In Chapter 3, we explore the possible ways of estimating memory locality on

various hardware platforms. We describe the currently available technology, such as

performance counters, and how suited it is for the task. After a discussion of the

alternatives, we dwell on the suitability and promise of statistical sampling as the
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method of choice.

Chapter 4 exposes the implementation details of the ideas presented in Chapter

3. We start by evaluating the existing logic in ESX, then describe a series of aug-

mentations that form the basis of this thesis. In particular, we describe techniques

for detecting a virtual machine's per-node locality, and per-vCPU per-node locality.

Per-vCPU estimation requires extensions which, incidentally, allow for direct detec-

tion of inter-vCPU sharing of data. This data can be used, for instance, as a hint to

schedule vCPUs on nearby nodes, so their shared data resides in a lower-level cache.

Experimental results using a proof-of-concept implementation are presented in

Chapter 5. An introductory section describes the experimental setup: the hardware

configuration and the benchmark used. Section 5.2 covers 4 classes of experiments

that were used to evaluate the correctness and applicability of the implementation.

A discussion follows in section 5.3.

Chapter 6 summarizes the results of the thesis and suggests future work in the area.

We present two specific applications of the new, more precise locality estimates. This

includes an algorithm that was implemented as part of this thesis, but not thoroughly

tested. The algorithm in question attempts to detect idle memory that unnecessarily

clogs a node, forcing virtual machines to make remote allocations. Once detected,

this idle memory can be evicted and scattered around the system to make space for

active memory which will be accessed locally.
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Chapter 2

Current State-of-the-Art

In this chapter, we explore the NUMA optimizations implemented in various operating

systems, and contemplate their potential shortcomings.

2.1 NUMA Optimizations on Different Operating

Systems

2.1.1 VMware ESX/ESXi

ESXi server is in a unique position to implement NUMA optimizations, as it is not

designed to run general-purpose software. As a type 1 hypervisor, ESXi runs virtual

machines; therefore, rather than handling each process separately, it can group pro-

cesses as pertaining to one and the same VM1 , and optimize the NUMA scheduling

and placement of the entire VM and its memory.

VMware ESX/ESXi has boasted a NUMA-aware CPU scheduler at least since

version 3.0. At boot, the kernel detects the NUMA topology it is running on, including

number of sockets, number of cores on each node, and memory per node. After

this initial detection, the scheduler uses that information to try to minimize remote

accesses. Each VM is assigned a "home node" on startup, determined by the current

'A VM consists of a Virtual Machine Monitor (VMM), a helper process called the VMX, and a
world for each one of its virtual CPUs (vCPUs).
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state of the system so that CPU and memory loads remain balanced across nodes. A

VM will preferentially allocate memory on its home node, and will also be scheduled

to run on the home node as much as possible.

If a VM consists of more vCPUs than there are cores on a single node in the hard-

ware, or if it has more memory than a single node can provide, then it is considered

a Wide VM. In ESXi 3.5, Wide VMs were not assigned a home node and as such

did not benefit from NUMA optimizations, suffering a performance hit. ESXi 4.1

improved on this by splitting Wide VMs into separate "NUMA clients," with each

client being treated as a separate "small" VM.

However, clever initial placement is not enough for long-term, efficient NUMA

scheduling. VMs powering off and new VMs getting started, as well as varying CPU

and memory demand of the workloads inside the VMs may introduce load imbalance

between NUMA nodes. To this end, ESXi periodically invokes a NUMA rebalancer,

which performs two dynamic optimization. The first involves migrating VMs between

NUMA nodes. A VM's home node gets reassigned, and its internal data structures get

transferred to its new target node. This operation is expensive and might saturate the

node interconnect, so it is only performed if it will be highly beneficial to performance

and load balance in the long term.

The NUMA rebalancer also handles dynamic page migrations from remote loca-

tions to a VM's home node. This is regulated by continuously reassigning the VM's

page migration rate, in proportion to the locality the VM is currently achieving. Pages

are selected for migration using two concurrent methods: random selection and a lin-

ear scan, in order to avoid pathological cases. Immediately after a VM migrates, its

page migration rate will be very high, as most of its pages will be left behind on its

previous home node. Conversely, when high locality is achieved, the page migration

rate will be low, to avoid scanning memory only to find pages that are already local

to the VM's vCPUs.

In addition to dynamic migration of VMs and their memory, ESXi uses advanced

sharing techniques to reduce VM's memory footprint and improve performance. ESXi

capitalizes on the fact that many memory pages can be shared by different VMs. For
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example, multiple VMs may be running the same application, or may have the same

guest OS. In such cases, ESXi transparently serves the same copy of each shared

page to the guests, avoiding unnecessary redundancy. On NUMA systems, the im-

plementation has been overhauled to replicate copies of shared pages on each node,

eliminating the need for VMs to access remote memory.

The final aspect to ESXi's handling of NUMA architectures was introduced in

version 5.0. It allows users to expose the NUMA topology to a guest operating

system using Virtual NUMA, or vNUMA. In this way, ESXi can leverage guest OS

and application optimizations for NUMA systems. Enabling vNUMA also functions

on non-NUMA systems, which is necessary for example when a virtual machine is

migrated from a NUMA to a non-NUMA host system using VMware vMotion. In

those cases, the underlying hardware memory access time is uniform for all CPUs,

but the VM is fooled into thinking it runs on a NUMA topology.

2.1.2 Other Operating Systems

Most modern OSes are at least NUMA-aware, even if they do not actively optimize

for it. With the increase in the popularity of NUMA, especially on server hardware,

however, a stronger focus has been given to the problem of locality.

The Linux kernel has been NUMA-aware since version 2.6 [12]. Its default policy

is to allocate memory locally, wherever a thread is currently running [7]. Threads

are not bound to nodes by default, and as such are free to be rescheduled across

NUMA domains. A NUMA API is available to applications through libnuma [2],

with which they can specify application-specific policies. Administrators and users

can also influence NUMA placement and behavior by using the numactl command-

line utility, which allows processes to be bound to given cpusets [19]. If the cpuset of

an application is subsequently modified, the process migrates to a CPU that is part of

the new cpuset. A process' memory can be configured to also migrate upon changes

in the allowed cpuset, but this behavior is disabled by default [20]. Lastly, several

patches have been proposed to implement automatic page migration, but none have

made it into a release version of the kernel so far [6].
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Microsoft Windows provides similar enhancements to the ones already mentioned.

It follows the traditional "initial placement" policy, and attempts to schedule pro-

cesses on the same nodes as the memory they are accessing. New allocations are also

satisfied locally. A NUMA API is available, which exposes the underlying topology

to applications and allows them to set special policies and affinities at runtime [8].

Type 1 hypervisors are interesting to consider, given their typically more advanced

NUMA support. In Microsoft Hyper-V Server, a popular virtualization platform, ad-

ministrators are given the option of enabling or disabling "NUMA Spanning," thus

specifying whether a VM is allowed to spill over more than one NUMA node. The

latest version of the OS features an implementation of Virtual NUMA, enabling the

guest operating systems' native NUMA optimizations [9]. No publicly available in-

formation could be found on adaptive VM and page migrations across nodes within

a single NUMA system.

Another popular choice is the Xen Hypervisor, an open source alternative for

server virtualization. The current version of Xen only supports pinning VMs to a

node, not allowing its vCPUs to run on any other node than the one it is initially

assigned to. In the next release, Xen will use the more flexible notion of "node

affinity," which optimize for NUMA locality by mostly scheduling VMs and allocating

their memory on their assigned nodes, while still allowing for them to be scheduled

remotely as necessary for load balancing.

2.2 Shortcomings of Current Approaches

For the purposes of this thesis, we will discuss virtual machines from this point on,

as opposed to individual processes. As discussed in section 2.1.1, it is insufficient

to rely on static node bindings or predetermined node affinities to maintain high

performance in the long term. Exposing a virtual NUMA topology is certainly a

step forward within single VMs, and is a necessary requirement to getting the best

performance out of wide VMs. However, VM interaction and overall system load

balancing requires further optimizations, since VMs are, and should be, unaware of
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and isolated from each other.

VMware ESXi's advanced dynamic migration mechanisms are the current state of

the art in this respect. Even so, it is of interest to inquire how to improve the current

ESXi implementation.

1. VM migration. In order to select VMs for migration, the NUMA scheduler

needs to estimate their per-node memory access frequencies. Currently, ESXi

uses total page allocations per NUMA node as a proxy for this. This metric is

inaccurate at best. For example, consider the following scenario: ymO allocates

1GB of memory on nodeo, and 200MB of memory on node1 . If vmo's working

set is a strict subset of the memory allocated on node1 , then vMO would highly

benefit from being scheduled on that node. However, should rebalancing for

a migration in the system, the total allocations metric would suggest vmo to

be migrated to nodeo, where most of its memory lies. This would lead to a

majority of remote accesses and the corresponding decrease in performance,

especially if the workload inside vmo's guest OS is memory-bound. Therefore,

a better memory locality estimation technique would improve edge cases of VM

migration.

2. Memory migration. ESXi's memory migration works as follows: periodically,

pages are picked, both at random and in a sequential scan. A page is migrated

if it is remote, and ignored otherwise. This technique does not consider the

relative "hotness" of pages, i.e. the current frequency at which they are being

accessed. Consequently, unnecessary migrations can occur, since migrating an

idle page does not benefit performance. In fact, a large number of such migra-

tions can hurt performance, since the VM incurs the cost of copying each page

and remapping it on its local node. Therefore, better targeting migrations at

active pages can reduce overhead and lead to a quicker increase in performance.

As can be seen above, dynamic NUMA balancing could benefit from further im-

provements. In the next chapter, we examine ways to enhance ESXi's VM and mem-

ory migration mechanisms.

27



THIS PAGE INTENTIONALLY LEFT BLANK

28



Chapter 3

Estimating Memory Locality

In this chapter, we explore alternative methods to estimate memory locality on NUMA

systems. Many of them hold substantial promise, but are not currently usable to fully

enable us to meet our goals. We describe each in detail, and evaluate whether it might

be improved in the future to fulfill our needs. Our own approach - using statistical

sampling of memory - is discussed in section 3.2.

3.1 Alternatives Explored

3.1.1 Performance Counters

Prior research has suggested the use of hardware performance counters for locality

estimation [13]. Modern processors include a Performance Monitoring Unit (PMU),

which provides counters used to gather statistics on the operation of the processor and

memory system. Different CPU manufacturers expose various micro-architectural

events that can be recorded and counted by the PMU. On multi-core CPUs, each

core usually provides separate counters, and there may also be counters available for

socket-wide events related to the memory controller, caches, and other I/O.

Performance counters are of interest for two main reasons. First, they allow us to

track all memory accesses, as opposed to statistical sampling of memory (described

below) which only captures accesses to sampled pages. Second, if used correctly,
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their impact on performance should be negligible - again, as opposed to our chosen

alternative, which purposefully induces a page fault for each sampled access.

However, it was not clear prior to this writing whether current PMUs offer events

applicable to NUMA locality profiling. We investigated the functionality provided on

both Intel and AMD processors, and briefly present our findings below.

Intel

Processors based on the Intel Core microarchitecture support Precise Event-Based

Sampling (PEBS) [11]. PEBS allows storing a subset of the architectural state when

the counter for an event being tracked exceeds a certain threshold. This precise mem-

ory sampling focuses on loads rather than stores, since loads are typically responsible

for long stalls in execution. PEBS can be enabled on last level cache misses, and thus

can be used to track accesses to memory. The saved state includes the Instruction

Pointer (IP), the values of the 16 general registers and, most notably, a virtual or

linear address being accessed, reconstructed automatically from the instruction at IP

and the saved register state.

However, because the state is saved after the trigger instruction executes, there

are cases in which the virtual address cannot be reconstructed - namely, if the target

of a load was the same register that initially held the virtual address. Because such

an instruction is not uncommon, we cannot rely on this mechanism to provide us

with the target virtual address reliably. Besides this issue, another major problem is

that the PEBS buffer, in which the state is saved, can only be held at a guest linear

address.

Recent Intel processors, such as the Intel Core i7, provide a "latency event" [21],

which exhibits several enhancements. First, it can be configured to trigger only when

the latency of a memory access exceeds a certain value. Second, since the event

triggers before the load has finished, the virtual address can always be recovered.

Lastly, latency events register the data source for each event in an additional register

of the PEBS buffer.

Unfortunately, latency events also suffer severe drawbacks which render them
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inapplicable for NUMA sampling. Like PEBS, they only operate with guest linear

addresses. Also, the data source recorded for each event only differentiates between

local and remote accesses, but does not provide fine-grain information on which node

serviced the access. Finally, although both loads and stores are important when

optimizing NUMA memory policies, these events only support load instructions.

AMD

Recent AMD processors, besides the regular per-core performance counters, also in-

clude four additional ones dedicated to counting northbridge events [18]. Northbridge

counters can record, among other events, any data traffic that is handled by local

and remote DRAM. Each memory controller in the system can count the number of

read and write requests it fulfills [17], and as such, we can gather per-node access

data. However, we only know that each access originated from the local socket, but

we cannot tell which core executed the trigger instruction. This is not useful for our

purposes, as there might be multiple VMs running on a socket, and it is important to

know which one of them is accessing which data. It also precludes us from collecting

information on a finer granularity than per VM (e.g. counting accesses from specific

vCPUs), which is valuable for reasons examined later in this thesis.

Conclusion

In conclusion, latest-generation processors from two of the world's major manufactur-

ers do not offer performance counters with functionality that can be used to gather

per-node access information for each VM in the system. Therefore, an alternative

approach that overcomes their various limitations needs to be found.

3.1.2 A/D Bits

Another mechanism for determining the location of a VM's hot pages would be to

periodically examine the accessed/dirty bits of the VM's page tables. A/D bits are

supported by both Intel's Extended Page Tables [11] and AMD's Nested Page Ta-
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bles [16]. This approach has the advantage of providing a full picture, as opposed to

requiring extrapolation from a randomly selected set of sample pages, as in 3.2.

However, there are several drawbacks. The first and most significant one is that

if large pages are in use, all pages are likely to be either Accessed or Dirty, effectively

masking accurate information on individual small pages' "hotness." Therefore, this

approach would mandate the use of small page mappings only. This is undesirable, as

large page mappings are key to reducing the overhead due to the increased cost of a

page walk when nested page tables are enabled [5]. Second, no information is captured

on which vCPU from within the VM initiated the access, so A/D bits can only provide

information on a per-VM basis. This is not sufficient for wide VMs that spread

over multiple nodes, as vCPUs on different nodes should be considered separately.

Therefore, while we note that this approach may be valuable for identifying hot

pages for migration, it is not sufficient for purposes of scheduling and NUMA client

migrations.

3.2 Statistical Sampling of Memory

After initial investigation, we picked our approach of choice to be statistical sam-

pling of memory. The idea is to randomly select a set of pages and invalidate their

mappings in the TLB (Translation Lookaside Buffer) and the virtual MMU (Memory

Management Unit). If any of these pages is subsequently accessed, it will lead to a

page fault, which is processed by the VMM (Virtual Machine Monitor). In the page

fault code path, the VMM can mark sampled pages as accessed, and at the end of

a sampling period, the results can be extrapolated for a full picture of the spread of

active pages across nodes. This gives us a good per-node estimate of memory activity,

which can be used as the heuristic for VM migration.

For VMs that span more than one node, however, it is not sufficient to gather VM-

wide per-node access pattern information. Rather, we are interested in per-vCPU

per-node statistics, since memory local to one vCPU may be remote to another. For

this reason, we propose to extend the sampling mechanism to provide per-vCPU data.
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This can be done by invalidating pages' mappings not once, but many times over the

sampling period. In this way, multiple accesses from different vCPUs can be detected

to give us the necessary per-vCPU estimates.

Besides being useful for VM migration, the above estimates can also help in the

case of memory migration. Namely, the selection of pages can be geared towards the

most active remote nodes. While this method does not help individually detect all

active pages, it could be useful on future hardware with dozens, if not hundreds of

NUMA nodes, where identifying only the "hottest" nodes as targets will lead to an

important difference in effectiveness.

Statistical sampling of memory successfully addresses the shortcomings of using

performance counters or A/D bits for per-vCPU and per-node activity. In addition,

such sampling has the advantage of being flexible in terms of performance and ac-

curacy. We believe the performance impact of sampling to be minimal if using a

sufficiently small sample set size, and infrequent enough invalidation of mappings.

We found that small sample sizes (relative to a VM's memory size) were good enough

for the purposes of NUMA scheduling and VM migration.
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Chapter 4

Implementation

4.1 Current Sampling Technique in ESX

VMware ESX Server implements a proportional-share framework, which allows ad-

ministrators to specify what portion of a shared resource a given client is entitled

to using. In other words, in the case of memory, a VM with more shares will be

allocated more physical pages than other VMs with smaller entitlement. As opposed

to traditional proportional-share systems, however, ESX's algorithm is enhanced to

consider the effects of idle memory on performance. In overcommitted scenarios -

that is, more memory is requested by the clients than is available in the system -

pages are reclaimed preferentially from clients whose allocation is not actively used.

It is precisely to detect such idle memory that ESX's current sampling technique

was put into place[29]. The ESX kernel samples each VM independently. By default,

four sample sets of pages are created at VM boot time. Each period, one of the sample

sets is disposed of and populated with n pages selected uniformly at random. The

state associated with these pages in the TLB and the virtual MMU is invalidated,

such that upon the next access by the VM, a page fault will be triggered. The VMM

records faults on sampled pages and computes, at the end of each sampling period

and for each sample set, the fraction of sampled pages that was accessed.

A fast and a slow exponentially moving weighted average (EWMA) is kept for

each sample set. The first helps establish an estimate that reacts quickly to changes
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in activity; the latter remains stable over longer periods of time. Lastly, a special

EWMA is computed for the youngest sample set (the set that was updated last).

This value helps track intra-period abrupt changes in activity.

The final activity estimate for a VM is computed as the maximum of all aver-

ages for all samples sets. This effectively ensures the average will reflect any recent

increases in memory consumption, but will slowly respond to a decline in activity,

which is the desired behavior: a VM should be awarded memory as soon as its demand

increases, but idle memory should be reclaimed slowly after activity lessens.

The period duration defaults to 1 minute, and the sample set size to 100 pages.

All parameters can be fine-tuned by the user on a per-VM basis, in cases where the

defaults might not lead to an acceptable performance-accuracy compromise.

4.2 Estimating Per-Node Memory Activity

It is precisely the mechanism described in section 4.1 that we extended in order to

estimate per-NUMA node memory activity. This first enhancement was straightfor-

ward: the kernel is aware of the mappings of each VM physical page number (PPN)

to a machine page number (MPN). It also knows which node an MPN belongs to.

Therefore, at the end of each period, the sampling code in the VMM makes a system

call into the kernel, which counts how many pages happened to be sampled from each

node, and how many of those were accessed since being invalidated. The same slow

and fast EWMAs as described in the previous section are computed for each node,

and the maximum of all values is the final activity estimate.

4.3 Estimating Per-vCPU Memory Activity

As discussed in section 3.2, to maximize locality for wide VMs it is necessary to collect

per-vCPU data, since different vCPUs may be homed on different nodes. Similarly,

per-vCPU estimates may come in handy when running a VM on vNUMA, with a

guest and applications that are not NUMA-optimized. In that case, it is up to the
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hypervisor to move memory around to boost performance.

In order to gather per-vCPU statistics, we implemented periodic re-invalidation of

the page sample sets. In this way, many accesses to a page (from the same or different

vCPUs) can be recorded over one sample period. Each sample set is extended with a

hash table, which maps page numbers to arrays containing per-vCPU counts. Upon

a fault to a sampled page, the faulting vCPU needs to find the page in one of the

sample set hash tables, then increment the count corresponding to its vCPU number

(vCPUs are numbered sequentially), as well as mark the page as accessed if this is

the very first sampled access, in order to maintain the previous functionality.

At the end of each period, the same statistics as for per-VM and per-node estimates

are computed. Note that since this is temporal sampling as well as spatial sampling,

the accuracy of the results may be questioned. It is entirely possible that many

vCPUs may be accessing the same page, but the same one always ends up touching

the page exactly after it is invalidated, leading to only accesses from that vCPU

being recorded. However, we report in the next chapter that this estimate is, in fact,

accurate enough for our purposes.

The default delay between page re-invalidations is 100ms, and is easily config-

urable through a user-exposed parameter. This allows for a maximum of 600 accesses

per page to be recorded over a sample period, which is a relatively high resolution,

suggesting a longer delay value (and therefore a lower performance impact) might be

more suitable.

4.3.1 Estimation of Sharing Between vCPUs

Incidentally, the availability of per-vCPU access data for each sampled page allows

us to get direct estimates of inter-vCPU sharing of pages. Two different parameters

are important here: which vCPUs share data, and in what proportion. For example,

simply detecting that two vCPUs accessed the same sampled page can be treated

differently if both vCPUs touch it equally often, as opposed to 90% touches from one

vCPU and only 10% from the other. It could also be the case that one produces data,

and threads running on other vCPUs consume it.
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As these cases require different optimizations, it is important to separate the types

of accesses (reads vs writes), and the relative affinity of a page to a vCPU or set of

vCPUs. For demonstration purposes, however, we show in the next chapter a unified

metric that incorporate both number of shared pages and relative frequency of access

into a single value. Pairs of vCPUs are assigned a "sharing weight," suggesting that

the pairs with highest weights be co-placed to run on the same socket, or even the

same core, so they benefit from sharing the last-level cache of the processor.
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Chapter 5

Evaluation

In this chapter, we describe the architecture of the evaluation system and the bench-

mark program we used to characterize the performance of our new estimates. In

section 5.3, we describe the setup and results of the experiments we carried out for

each of the features we added to ESX Server.

5.1 Hardware

We used a single machine for all experiments: an HP ML350 G6 X5650 server. It

is based on the Intel Nehalem microarchitecture, and boasts a two-socket NUMA

configuration, with each socket incorporating an Intel Xeon X5650 processor (6 cores,

2.66 GHz, 12MB L3). Each CPU can use Hyper-Threading, allowing each constituent

core to appear as two logical cores. The system also features 12GB of RAM in total,

3x2GB in each node. In this way, each of the two processors is directly linked to

half of the memory in the system, via a local memory controller. The two nodes are

connected using Intel QuickPath Interconnect technology [10].

The test system is setup to run an internal build of VMware ESX Server 5.0.
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5.2 Benchmark

Our testing strategy was to implement a benchmark with known memory access

patterns, which would run inside a VM in ESX. Observing the estimates produced

for per-node and per-vCPU activity would reveal the extent of the sampling error,

demonstrating whether our estimates were indeed viable. We also tested inter-vCPU

sharing and page access frequency estimation.

For our evaluation, we designed a multi-purpose synthetic benchmark to test the

features we introduced in the hypervisor. The benchmark, meant to run as a user-level

process in a VM, was a memory toucher application. It starts by allocating a block of

memory, M, and iterating over it once in order to make sure the VM actually allocates

pages (on Linux, allocation happens on first touch, rather than immediately after a

call such as malloc). Then the toucher can be configured to iterate repeatedly over

a constant-sized chunk of memory, or chunks of variable sizes using a step size s to

simulate workloads with dynamic working set sizes. The iterations can be sequential

or random, to intensify or eliminate cache effects due to spatial locality. If a step size

is defined, a step duration, i, should also be provided. The workload iterates through

increasing and decreasing step sizes for i seconds per step, reaching its peak memory

consumption N times before terminating.

The benchmark also includes the possibility of running multiple instances side by

side, which may optionally share a single block of memory using a shared key, k, and

Linux shared memory segments (shmget).

5.3 Experiments Run

All experiments involved a single 4-vCPU VM with 4GB of memory running on

our test machine. The VM is configured with two virtual NUMA nodes and two

vCPUs on each node, with the numa. vcpu. maxPerVirtualNode option set to "2."

The system is further configured to run a maximum of 2 vCPUs per physical node,

in an attempt to make sure the kernel does not migrate vCPUs to run on the same
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Table 5.1: Per-Node Working Set

-I
Active
vCPU pinned
Total allocation (M)
Memory location
Memory shared
Step size
Step duration
Iterations

Yes
Node 0
1536MB
Node 0
No
768MB
8 min
3

No No No
Node 0 Node 1 Node 1

0
E
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2000-

1802 - -- - - - - - -- - - - - - -- - - - - - - -
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Figure 5-1: Results of per-NUMA node active memory estimation testing.

node, although they belong to different virtual nodes. This is achieved by setting the

numa. vcpu. maxPerMachineNode option to "2." The VM runs Ubuntu 12.04 "Precise

Pangolin" as the guest operating system.

5.3.1 Per-Node Working Set Estimation

To evaluate per-node active memory estimation, we setup an instance of the toucher

benchmark as shown in table 5.1. A single instance was launched, constrained to

run on vCPU0 and allocate memory only on vNUMA node 0 using the numactl

command-line utility with options -- physcpubind=O and -- membind=O.

The results of the experimental run can be seen in Figure 5-1. As can be seen,

node 1 is estimated to have nearly 0 active pages for most of the test period, while the
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Table 5.2: Per-vCPU Estimation Experimental Setup

Active Yes No Yes No
vCPU pinned Node 0 Node 0 Node 1 Node 1
Total allocation (M) 1536MB - 1536MB -
Memory location Node 1 - Node 0 -

Memory shared No - No -

Step size 768MB - 768MB -

Step duration 8 min - 8min -

Iterations 3 - 3 -

3000-

.N 2000 -

0 1720-
E1474 --
S1228 -

1000 ------
768 -

491 -overall est.
245- -node 0 est.

0 -------------------1-1-1111 1 -1---1 -111li 11-1111-11 -- node 1 est.

Time (seconds)

Figure 5-2: Results of per-vCPU, per-node active memory estimation testing. Plotted

above are the overall and per-node activity estimates for vCPUO.

estimate for node 0 closely follows the overall VM's activity estimate, as is expected

since the toucher is the only workload running in the VM.

5.3.2 Per-vCPU, Per-Node Working Set Estimation

For per-vCPU, per-node activity estimation, we set up our workload so that two

vCPUs are running two touchers in parallel. Both are configured to alternate between

iterating over 768MB and 1.5GB of memory, with vCPUO touching memory pinned

on node 1 and vCPU2 touching memory pinned on node 0, as displayed in table 5.2.

vCPUs 1 and 2 are idle. Figures 5-2 and 5-3 show the outcome of the experiment.

(Plots for idle vCPUs are omitted for the sake of brevity. The estimates for those

vCPUs gravitate around 0.)
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Figure 5-3: Results of per-vCPU, per-node active memory estimation testing. Plotted
above are the overall and per-node activity estimates for vCPU2.

Table 5.3: Inter-vCPU Sharing Detection Experimental Setup

Active
vCPU pinned
Total allocation (M)
Memory location
Memory shared
Step size
Step duration
Iterations

Yes No Yes No
Node 0 Node 0 Node 1 Node 1
1536MB
Node 0
vCPU2
768MB
8 min
3

1536MB -
Node 0 -
vCPUO -
768MB -
8min -

3 -

For both active vCPUs, the overall activity estimate tracks very closely the run-

ning workload. Similarly, the per-node estimates for nodes that have no active mem-

ory remain close to zero, whereas active nodes match overall estimates in activity.

5.3.3 Inter-vCPU Sharing Detection

To evaluate inter-vCPU sharing detection, we configured two toucher processes to run

as shown in Table 5.3. They are executed by vCPUO and vCPU2, and both share a

single memory chunk allocated by vCPUO on node 0. Therefore, we expect to detect

heavy sharing between vCPUs 0 and 2.

In order to demonstrate the effectiveness of our sharing detection mechanism,

we designed a metric for sharing between each vCPU pair, which encompasses both

43

3000 -

0
E

1802 -

1536 -

1310 -

1064 -

819 -

573 -

245 -

0-



Algorithm 5.1: Computing a vCPU pair's sharing weight. Function
A (bpn, vCPU1) returns the number of times we recorded a touch on sample
page bpn by vCPU vCPUi.

input : lists of sampled page numbers (BPNs)
output: sharing weight of vCPUj and vCPUj

1 overlap +- 0;
2 pages +- 0;
3 result <- 0;
4 foreach bpn in BPNs do
5 if A(bpn, vCPUi) > 0 or A(bpn, vCPUj) > 0 then

6 overlap +- overlap + [2 - A(bpn, vCPUi) -A(bpn, vCPUj)]/
7 [A (bpn, vCPU,) +A (bpn, vCPUj)];
8 pages - pages + 1;

9 if pages > 0 then
10 L result +- overlap/pages;

11 return result

Table 5.4: Access Frequency Estimation Experimental Setup

Active
vCPU pinned
Total allocation (M)
Memory location
Memory shared
Step size
Step duration
Iterations

Yes Yes Yes Yes
Node 0 Node 0 Node 1 Node 1
1536MB 1536MB 1536MB 1536MB
Node 0 Node 1 Node 1 Node 0
vCPU3 vCPU2 vCPU1 vCPUO
768MB 768MB 768MB 768MB
8 min 8min
3 3

8min
3

8min
3

the number of shared pages and the access frequency to those pages by each vCPU.

Our metric makes use of the harmonic mean, and is computed as described in Algo-

rithm 5.1.

We plot our metric against time in Figure 5-4. The sharing weight of pair vCPUO-

vCPU2 dominates all other pairs for the period of the benchmark run, thus success-

fully exposing inter-vCPU sharing with a direct estimate, without any guest partici-

pation.
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Figure 5-4:. Results of inter-vCPU sharing estimation testing. The plot shows the
sharing weight of the six possible vCPU pairs in a 4-vCPU configuration. vCPUO
and vCPU2 carry a notable higher weight, as they are executing a toucher workload
iterating over a single shared chunk of memory.

5.3.4 Access Frequency Estimation

We configured our access frequency experiments as shown in Table 5.4. Four toucher

workloads are launched, each pinned to a particular vCPU. The workloads running

on vCPUO and vCPU1 share a block of memory, as do the workloads running on

vCPU2 and vCPU3. The first pair of vCPUs iterate over their memory as fast as

possible, whereas the second pair execute 10 consecutive asm("pause") instructions

after each access to 4 bytes of memory. This effectively lowers the access rate of the

second pair significantly, relative to the first one. It is this relative difference that we

look to observe in the output data.

The resulting access pattern, at the VM level, is plotted in Figure 5-5. Access rate

plots are shown in Figure 5-6. Plot 5-6a highlights the difference in access frequency

between node 0 and node 1 at the VM level. Plots 5-6b and 5-6c show the number of
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accesses recorded as originating from each vCPU to node 0 and node 1, respectively.

5.4 Discussion

The results for per-node active working set estimation show strong promise. Our

estimates shoot up quickly with each activity increase, and slowly ramp down after

activity has decreased or ceased. By design, the estimate overshoots, reaching a peak

of 17% above the actual workload. However, our assumptions for the workload's

consumption do not account for overhead memory such as, for example, pages used

for the text segment. Therefore, we have reason to believe the estimates are in fact

closer to the real working set size than the plots presented above would suggest.
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Performance-wise, per-node estimation only adds some additional logic to the end-

of-period sampling computations. No additional page faults are incurred, in contrast

with per-vCPU sampling. As such, the added overhead for per-node estimation is

negligible.

In section 5.3.2, we demonstrate we can successfully estimate the number of active

pages on a per-vCPU, per-node basis. As discussed previously, this data will be highly

valuable when evaluating wide VMs and VMs running over more than one NUMA

node with vNUMA. It is worth noting that in Figure 5-2, the estimate does not soar

significantly higher than the assumed workload consumption, which is not the case in

Figure 5-3. We believe this is due to the use of temporal sampling; vCPU2 happened

to access shared pages right after invalidation more often than vCPUO did. This is

not surprising, as vCPU2 is expected to have a higher access frequency to the shared

block than vCPUO, simply because the memory is local to vCPU2's home node.

The performance impact of the periodic re-invalidation of page mappings for per-

vCPU activity estimation was not studied in detail, as our implementation was des-

tined as a proof-of-concept. Our initial results showed an unexpected slowdown of

up to 10%, suggesting performance profiling of the implementation should be carried

out to weed out any obvious flaws. A few hundred page invalidations every 100ms

should not lead to a noticeable decrease in performance, though in the current im-

plementation, all vCPUs are halted briefly for this step and additional system calls

are required. On top of the additional invalidation operations, performance may also

suffer a hit from the extra page faults induced. This can be mitigated by choosing a

longer timeout between invalidations.

Our results in section 5.3.3 demonstrate we can successfully pick out a pair of

vCPUs that share memory out of all possible vCPU pairs. Figure 5-4 shows our

custom "sharing weight," which combines the number of shared pages and the average

access rate to a page. It is of interest to note that our weight value is inversely

proportional to the number of shared pages, and as such, the periods during which

the two benchmark instances iterate over a smaller memory size, but cycle through

it more frequently, have noticeably higher sharing weight. In other words, our metric
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was designed to reward small working sets that are heavily shared. To illustrate why

this is useful, consider the following scenario: vCPUO shares memory with vCPU1

and vCPU2, and pages are shared in the same proportion on average. If the amount

of memory shared between vCPUO and vCPU1 is twice the amount shared between

vCPUO and vCPU2, we would prefer to co-place the first pair on the same socket

rather than the second, since it is more likely that the pair's entire working set will

fit in local memory.

As mentioned in Chapter 4, a unified sharing metric might not be ideal for fine-

grain decision making on how to place memory. In a producer-consumer situation,

the best course of action would be to co-place the collaborating vCPUs. In a read-

only sharing scenario, it might be optimal to duplicate memory across nodes instead.

However, as a first step, when a vCPU (or set of vCPUs) is considered for migration,

the sharing weight can be a good indication of which node would be its optimal target,

in case sharing has been detected.

Our final result in this chapter is access frequency estimation. Since we sample

both spatially and temporally (i.e. we only record the first access to a sampled page

every 100ms), our estimates are not very useful in absolute terms, as it is unclear

how many accesses we are missing in-between page invalidations. However, they can

be very valuable in relative terms. This can be seen by evaluating Figures 5-5 and

5-6a. In the former, we notice that the estimated number of active pages is close

for both nodes over the duration of the workload. This is correct, because we set

up our experiment so that each node has approximately 1.5GB of active memory.

However, the latter figure shows us that the access rates to each node are indeed

very different, with NUMA node 1 being accessed approximately 6 times more often,

on average, than node 0. This reflects the other parameter used in our experiment,

which imposed a lower access rate to memory on node 0. Taking into account our

access rate estimates, we therefore realize that even our improved per-node memory

activity estimates can be misleading, and that the access frequency to memory should

be a very important factor in locality optimization decisions. In this particular case,

if this spread of data and access patterns had occurred in a non-wide VM, it would
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make sense to preferentially set the VM's home node to node 1. Reaching further in

this analysis, it is possible to picture a scenario in which a node has more active pages

than another, but the other is still preferred due to a higher average access frequency.
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Chapter 6

Conclusions and Future Work

6.1 Summary of Results

The most important result of this thesis is the evidence of the applicability of statis-

tical sampling of memory to various aspect of NUMA locality estimation. We have

shown that this technique can deliver results where performance counters on modern

processors, or other hardware-assisted approaches, would fall short. It is clear that

dynamic reorganization of memory is necessary to achieve optimal performance on

NUMA systems. In the case of a type 1 hypervisor such as VMware ESX, we need

accurate data on memory access patterns per node and per vCPU process in order

to make satisfactory migration decisions.

Our investigation in Chapter 3 concluded that, while other approaches might be

more desirable, they are currently not realizable. Performance counters on both Intel

and AMD do not provide us with the full information we require, and neither do A/D

bits. Therefore, sampling memory and tracing page faults was deemed a reasonable

alternative. We presented an overview of an implementation of sampling for locality

estimation in Chapter 4.

Test data from our proof-of-concept implementation was presented in Chapter 5.

Using a synthetic benchmark and the numacti Linux utility, we verified that our

estimates were valid. Interesting results included the direct detection of inter-vCPU

sharing of data, as well as observations of relative access frequency to pages by dif-
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ferent vCPUs, and to different NUMA nodes.

6.2 Future Work

While the work in this thesis provided promising results, they are only a hint to-

wards a long series of future works that can have a significant impact on memory

performance on NUMA systems. As a starting point, the existing algorithms for dy-

namic memory and VM migrations should be modified to use active estimates instead

of static allocation data. Besides such relatively straightforward changes, however,

there is also entirely new functionality that can be developed. In this section, we first

present an idea that could potentially lead to performance improvements in a specific

corner case, which is not currently handled by the hypervisor. We then discuss the

idea of characterizing workloads according to the memory usage and sharing patterns

they exhibit.

6.2.1 Idle Memory Eviction

The corner case we suggest as worthy of investigation is one where a VM with idle

pages is hogging its home node's available local memory, potentially forcing other

VMs to allocate remotely. Without system-wide memory pressure, the kernel does

not feel the need to reclaim memory from the VM, either by ballooning it or by other

means, such as compressing it or swapping to disk. And without per-node data on

active memory, it is not aware that the node is overcommitted with idle memory.

For instance, consider the following scenario. VMs vml, vm2, and vm3 are

started, in that order. By round-robin assignment of home nodes, on a two-node

machine, vml and vm3 end up on the same node. If vm2 remains idle, and both

vml and vm3 run a CPU-intensive workload, we expect one of them (say vm3) to be

migrated for load balancing reasons and start sharing a home with vm2. If, however,

vm2 ran a memory-hungry workload before this migration and allocated most of the

memory on its home node, vm3 will not be able to migrate its memory along to its

new destination. As such, it will end up accessing mostly remote memory from its
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Figure 6-1: Idle memory eviction experiment. In this test run, one of the VMs in the
system (vm3) migrates from its original home node, node 1, to node 0. Because the
latter has most of its memory allocated to vm2, vm3 manages to relocate only half
of its memory, ending up with 50% remote memory accesses.

previous home node, hampering performance.

A test run of this scenario is shown on Figure 6-1. We used the same test machine

as described in Chapter 5. The experiment was set up with 5GB used by vm2 on node

1 (out of 6GB available), and 2GB used by each vml and vm3. The figure shows the

usage and migration patterns of the latter, which is running a workload repeatedly

iterating over a constant-sized block of data. As expected, a migration occurs and

memory is migrated, but half of the VM's memory is left behind as it does not fit on

the destination node. Ideally, in a situation like this, idle memory would be either

reclaimed or migrated away to "make room" for vm3's active memory. Migration is

the more appealing solution, as reclaiming memory from vm2 might lead to decreased

performance down the road, when vm2 ramps up its activity.

With the techniques from this thesis, we can detect the local memory pressure

and take action. An algorithm could consider each NUMA client in turn, find ones

exhibiting locality below a set threshold, and then look for idle clients residing on the
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same home node that could be migrated away to free up valuable local memory. The

freed memory would be used by the pressured clients to bring in pages in order to

decrease the number of remote accesses.

Armed with per-node locality data, the algorithm can compute a prediction of

what the long-term impact of the migration will be. We present below a set of

equations to compute such a prediction for the overall performance delta in terms of

CPU cycles gained. We first define a series of convenience functions, all pertaining

to a single VM except L(m, n), which is a property of the system:

O(n) = occupancy on node n,

Ot = total occupancy across all nodes

A(n) = number of active pages on node n,

R(n) = last level cache misses per page per second, for pages on node ni,

M(m, n) = pages migrated from node m to node n,

L(m, n) = latency when accessing node n from node m,

D = average duration between VM migrations.

Let vml be the VM that has low locality, and vm2 the VM that is considered as

a candidate to be migrated from node src to node dst, where src is also vml's home

node. In order to compute the delta for vml, we first need to estimate the number

of pages that will be freed on its home node. We compute that number by assuming

that once vm2 migrates, it will either fill up all available memory on node dst and

still have remote memory, or it will migrate all of its remote memory and there will

still be free space left on dst. In case not all remote memory can be migrated, we

assume pages are chosen uniformly at random and migrated if they are remote, so

the number of pages migrated from the source node is directly proportional to the

fraction of vm2's memory located on node src.

'If the per-node cache miss rate is not known, the average cache miss rate can be used as a proxy.
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freed = {0vmr2 2 (c) Ot,VM2 - Ovm2 (dst) < Free(dst)

Free(dst) - O(s) otherwise

where Free(n) is the number of unallocated pages on node n.

Next, we need to estimate the number of pages of vml that were previously remote

and will be migrated to its home node (assuming vml takes up the freed memory in

its entirety).

M(*, src) = min(freed, Ot - O(src))

Using the previous assumptions that pages are chosen for migration uniformly at

random across all remote nodes, the number of pages migrated from node n is

M(n, src) = M(*, src) - 0(n)
Ot - O(src)

The number of active pages migrated from each node n can then be estimated as

A(n)
Mactive(n, src) = M(n, src) - A()

At last, we can estimate the number of CPU cycles vml gains from this migration:

E[cycles] = D -
n G nodes

Mactive(n, src) -R(n) - [L(src, n) - L(src, src)].

Similarly to vml, we can estimate the change in performance for vm2. Because

of the VM migration, we need to consider not only any migrated memory, but also

the modified distance (and thus latency) to all nodes in the system:

E [cycles] = D . 1: R(n) - [Abefore(n) - L(src, n) - Aafter(n) - L(dst, n)].
n C nodes
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An algorithm can use these estimates for a number of migration candidate VMs,

and for a number of destination for each VM. The best delta will be achieved by

migrating a VM with large amounts of idle memory on the source node, especially

if it will not suffer a significant performance impact from the migration (e.g. if

the VM itself is more generally idle). The algorithm can run independently of any

performance-critical code paths, and therefore checking all VMs repeatedly will not

hurt overall system performance. If a VM is found to have good locality and is not

a good candidate for a memory eviction migration, it can be flagged as such and

not be considered again until a later time (a few minutes would be reasonable as

VM migrations should not be frequent events) to further reduce the impact of this

algorithm.

In a broader context, the equations presented provide a framework for any algo-

rithm dealing with VM migrations to estimate the outcome of a single migration, or

two or more VMs swapping home nodes. Further research is necessary to determine

whether this case, and other similar cases, are encountered frequently enough and

provide sufficient performance gain to warrant inclusion into a release version of a

commercial hypervisor, such as VMware ESX.

6.2.2 Workload Sharing Patterns Analysis

Another application of the estimation techniques described in this thesis would be

the analysis and categorization of various workloads of interest with respect to their

NUMA performance and data usage patterns. Recent research [23] has highlighted

the importance of matching access patterns and data placement for applications run-

ning on NUMA systems. The inverse is also valuable - investigating why third party

applications perform the way they do, and what the operating system and the ad-

ministrator can do to maximize performance.

In the case of VMware ESX, one area in particular in which virtualization is

increasingly relevant is High Performance Computing (HPC) [24]. Performance eval-

uations of existing HPC benchmarks on ESX show some run at close to or faster than

native speed, whereas others suffer a higher performance cost when virtualized [1].
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We suggest directly inspecting these workloads' data layouts, access rates, vCPU uti-

lization, and possible inter-thread data sharing, in order to characterize where any

major bottlenecks may lie.

With deeper insight into these bottlenecks, the hypervisor's CPU scheduling,

memory allocation and reclamation, and any NUMA migration algorithms can be

tweaked to perform better under specific workloads, which may possibly lead to gen-

eral improvements in performance. VMware and other vendors can also provide

further recommendations for workload-specific tweaks, helping customers make the

most out of their system.

6.3 Conclusion

The research in this thesis has been fruitful. We have demonstrated successful NUMA

locality estimation techniques based on memory sampling that are likely to bear fruit

in the future, although they could possibly be phased out eventually due to increased

hardware support. As discussed in the previous section, a lot remains to be learned on

where these techniques might become most relevant. We look forward to the future

and hope that this research will help ease the transition to systems with increasingly

complex memory architectures, highlighting the importance of the role of software

and the operating system in the management of memory.
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